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Abstract (English) 

 

This project has analyzed and implemented a system based on DS-CDMA with a common 

receiver and multiple transmitters on a modular platform in Matlab, which is used for 

theoretical validation tool. 

 

This platform has been chosen over a DSP implementation due to the economic cost of DSP 

boards. So, it was decided to implement it using Matlab considering the inherent constraints in 

a DSP board. 

 

Project's main objective is to validate this system by having a simulation at a sample level 

which has no memory constraints. The next step would be to implement this in DSP boards; 

however this is beyond the scope of this project. A system has been designed that can process 

data with few resources in Matlab environment. The system developed is highly configurable 

using some input parameters. The transmitter consists of several modules that are invariant 

which are encoder, modulator, spreader, zero padder, pulse shaper and converter. These 

chained modules generate each user transmitted signal. 

 

Once these transmitters’ signals have been generated, they pass through a slowly fading 

channel with additive Gaussian noise which models a means of mobile communications. 

 

Ultimately the receiver gets all signals and processes them in a series of independent modules 

consisting of a low pass filter, downconverter, matched filter, synchronizer, downsampler, 

equalizer, despreader, demodulator and decoder. 

 

This work can be seen in the “Results” section where there are screens of the signal in each of 
the phases followed by a brief justification.  
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Abstract (Spanish) 

 

En este proyecto se ha analizado e implementado un sistema basado en DSSS-CDMA con un 

receptor común y varios transmisores sobre una plataforma modular en Matlab, siendo ésta  

una herramienta de validación teórica. 

 

Se ha primado esta sobre una implementación en DSP por el coste económico de las placas 

DSP. Así que se ha decidido hacer una implementación en Matlab con las constricciones 

propias de una placa DSP. 

 

El objetivo principal del proyecto es la validación del sistema mediante la simulación a nivel de 

muestra sin restricciones de memoria. El siguiente paso sería la implementación en placas DSP 

pero esto se escapa del objetivo de este proyecto. Para ello se ha diseñado un sistema que 

pueda procesar los datos con pocos recursos en Matlab, marcados por una serie de variables.  

 

El transmisor se compone de varios módulos invariantes que son  el codificador, modulador, 

spreader, zero padder, pulse shaper y el up converter que encadenados generan la señal a 

transmitir de cada uno de los distintos usuarios. 

 

Todas estas señales pasan por un canal con desvanecimientos lentos y ruido aditivo gaussiano 

que modeliza un medio de comunicaciones móvil. 

 

Finalmente el receptor recibe todas las señales y las procesa en una serie de módulos 

independientes formados por un filtro paso bajo, downconverter, filtro adaptado, 

sincronizador, downsampler, equalizador, despreader, demodulador y decodificador. 

 

En este trabajo se puede observar en la sección “Resultados” las capturas de la señal en cada 

una de las distintas fases seguida de una breve explicación. Para finalmente llegar a la sección 

de “Conclusiones” y “Futuras líneas de investigación”. 
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Abstract (Catalan) 

 

En aquest projecte s’ha analitzat e implementat un sistema basat amb DSSS-CDMA amb un 

receptor comú y diversos transmissors sobre una plataforma modular en Matlab, essent 

aquesta una eina de validació teòrica. 

  

S’ha primat aquesta per sobre d’una implementació en DSP principalment pel cost ecònomic 

de les plaques DSP. Així, s’ha decidit fer una implementació en Matlab amb les restriccions 

pròpies d’una placa DSP. 

  

El principal objectiu del projecte es la validació del sistema mitjançant la simulació a nivell de 

mostra sense restriccions de memòria. El proper pas seria la implementació en plaques DSP, 

peró això s’escapa del objectiu d’aquest projecte. És per això que s’ha dissenyat un sistema 

que pugi processar les dades amb pocs recursos mitjançant Matlab, tots marcats per una serie 

de variables. 

  

El transmissor es composa de diversos mòduls invariants que son el codificador, modulador, 

spreader, zero padder, pols conformador i el up converter que estan encadenats per generar la 

senyal a transmetre per cada un dels diversos usuaris. 

  

Totes aquestes senyals passen per un canal d'esvaniment lent amb soroll Gaussià blanc que 

modelitza un medi de comunicacions mòbil. 

  

Finalment el receptor rep totes les senyals y les processa en una serie de mòduls independents 

formats per un filtre pas baix, downconverter, filtre adaptat, sincronitzador, downsampler, 

equalitzador, despreader, demodulador y decodificador. 

  

En aquest treball es pot observar en la secció de “Resultats” les captures de la senyal a cada 

una de les diverses fases seguides d’una breu explicació. Finalment es tracten les conclusions i 

les properes vies d’investigació. 
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1. Introduction 

This project has analyzed and implemented a system based on DS-CDMA with a common 

receiver and multiple transmitters on a modular platform in Matlab, which is used for 

theoretical validation tool. 

 

Figure 1: "System of several transmitters to a common base station" 

1.1 Project context          
 

This platform has been chosen over a DSP implementation due to the economic cost of DSP 

boards. For this very same reason, an implementation with Matlab was preferred. 

 

1.2 Objectives           
 

Project's main goal is to validate this system by having this system by having a simulation at a 

sample level which has no memory constraints. The next step would be to implement this in 

DSP boards; however this is beyond the scope of this project. A system has been designed that 

can process data with few resources in Matlab environment. The system developed is highly 

configurable using some input parameters. The transmitter consists of several modules that 
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are invariant which are encoder, modulator, spreader, zero padder, pulse shaper and 

converter. These chained modules generate each user transmitted signal. 

 

1.3 Memory structure          
 

Once these transmitters’ signals have been generated, they pass through a slowly fading 

channel with additive Gaussian noise which models a means of mobile communications. 

Ultimately the receiver gets all signals and processes them in a series of independent modules 

consisting of a low pass filter, downconverter, matched filter, synchronizer, downsampler, 

equalizer, despreader, demodulator and decoder. 

This work can be seen in the results section where there are screens of the signal in each of 

the phases followed by a brief justification.  

The last two sections are”future lines of work” and “references”.  
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2. State of the art 

CDMA or Code Division Multiple Access is a channel access method which uses different radio-

communication technologies. CDMA is a wide spread spectrum technique for multiple access. 

A wide spread spectrum technique consists on extending data’s bandwidth uniformly through 

a range of the spectrum using a pseudo-random code. This code consists of several chips that 

operate at a much faster rate than data transmitted 
𝑓𝑓𝑐𝑐ℎ𝑖𝑖𝑖𝑖 = 𝑁𝑁 · 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

This technique allows multiplexing, which is one of the basic concepts in data communication 

consisting of allowing several transmitters to send information simultaneously in a single 

communication channel. This is achieved by having multiple users share a range of bandwidth 

in different frequencies. CDMA employs spread spectrum technology and a special coding 

scheme (where each transmitter is assigned a code) to allow multiple users to be multiplexed 

over the physical channel. By contrast, time division multiple access (TDMA) divides access by 

time, while the frequency division multiple access (FDMA) is divided by frequency. CDMA is a 

form of spread spectrum signaling, since the code modulated signal has a higher bandwidth 

than the data being transmitted. 

𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=

1
𝑁𝑁 · 𝑓𝑓𝑐𝑐ℎ𝑖𝑖𝑖𝑖

 

CDMA can be applied to various applications such as use in the GPS. Currently used in satellite 

communications. 

The performance of CDMA is very simple, is based on XOR logic when considering that it is 

transmitted {0,1}, also known as exclusive OR [VITE 1995]. In Figure 2: "Relationship between 

data bits, pseudo-random codes and transmitted signal" displays how it is generated the 

spread spectrum signal from a sequence of bits and the user’s chip. Data signal with pulse 

duration of 𝑇𝑇𝑏𝑏 is passed to a XOR function with the transmission code with pulse duration 𝑇𝑇𝑐𝑐 . 

The relationship 
𝑇𝑇𝑏𝑏
𝑇𝑇𝑐𝑐

is called spreading factor or processing gain and is a decisive factor for the 

upper limit of the total number of users supported simultaneously by a base station. 
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Figure 2: "Relationship between data bits, pseudo-random codes and transmitted signal" 

 

Each user in a CDMA system uses a different code or group of codes to modulate their signal 

(one code if data and pilot is transmitted in the same frequency or 2 if it is done in different 

ones). For example one code for data channel and another for pilot channel. A key point for 

the performance of the system is the choice of codes used to modulate the signal from CDMA 

systems. The two best known are used for CDMA Hadamard and Gold used for ACDMA1. The 

best performance occurs when there is good separation between the signals of a desired user 

and the signals from other users (also known as MAI2

                                                            
1 Asyncronous Code Division Multiple Access 
2 Multiple access interference 

).  

Amplitude 

time Amplitude 

Amplitude time 

time 
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Figure 3: "Cross correlation of all users of a Gold code with a SF of 63, normalized to the correlation of a code" 

The separation of the signals is performed by correlating the received signal with the local 

source code of the desired user. If the signal matches the desired user code then the 

correlation function will be high and the system can extract that signal. If desired by the user 

code has nothing in common with the correlation signal, this correlation should have a value 

close to zero. This procedure is known as auto-correlation and is used to reject multipath 

interference. 

In general, CDMA belongs to two basic categories: synchronous orthogonal codes and 

asynchronous using pseudorandom sequences. 

Synchronous CDMA exploits mathematical properties of orthogonality between the vectors 

representing data streams. For example, the binary string 1011 represents the 

vector(1 0 1 1). These vectors can be multiplied by the scalar product, the sum of the 

products of their components. If the scalar product is zero, the two vectors are said to be 

orthogonal to each other. 

Synchronous CDMA uses a code orthogonal to other codes to modulate their signal. To set an 

example would bea four orthogonal digital signals as shown in the following equations. 

Orthogonal codes have zero cross-correlation, meaning that do not interfere with each other. 

𝑟𝑟𝑎𝑎𝑎𝑎 =  𝑟𝑟𝑏𝑏𝑏𝑏 = 𝑎𝑎 · 𝑏𝑏 = 0 

𝑎𝑎 · (𝑎𝑎 + 𝑏𝑏) = 𝑎𝑎 · 𝑎𝑎 + 𝑎𝑎 · 𝑏𝑏 = ‖𝑎𝑎‖2 + 0 

𝑎𝑎 · (−𝑎𝑎 + 𝑏𝑏) = −𝑎𝑎 · 𝑎𝑎 + 𝑎𝑎 · 𝑏𝑏 = −‖𝑎𝑎‖2 + 0 

𝑏𝑏 · (𝑎𝑎 + 𝑏𝑏) = 𝑏𝑏 · 𝑎𝑎 + 𝑏𝑏 · 𝑏𝑏 = 0 + ‖𝑏𝑏‖2 

𝑏𝑏 · (𝑎𝑎 − 𝑏𝑏) = 𝑏𝑏 · 𝑎𝑎 − 𝑏𝑏 · 𝑏𝑏 = 0 − ‖𝑏𝑏‖2 

Coef 

time 
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In the above example, an orthogonal Walsh sequences describes how two users can be 

multiplexed together in a synchronous system, a technique commonly known as code division 

multiplexing (CDM) [TONO 1992]. Indeed, a NxN Walsh matrix can be used to multiplex N 

users. When multiplexing is necessary that all users are coordinated so that each transmitter 

transmits with a delay of the channel to reach the receiver at exactly the same time. Thus, this 

technique is used in links to mobile base, where all transmissions originate from the same 

transmitter and can be coordinated perfectly. 

Another type of CDMA based on the use of pseudorandom sequences is asynchronous CDMA  

known as ACDMA.  

ACDMA links are used when the mobile to the base communication cannot be coordinated 

with a proper precision, mainly due to the mobility of terminals. Thus, this has a big implication 

which is that the chip code needs to has good properties in the exact moment and when it is 

delayed. A first approach would be to design a system orthogonal at all times, however this is 

impossible from a mathematical point of view. So, a pseudo-random sequences (PN)is used for 

which have these good properties. A PN code is a binary sequence that appears random but 

can be reproduced in a deterministic manner. These PN codes are used to encode and decode 

the signal from an asynchronous CDMA users in the same way that the orthogonal codes. 

These PN sequences are statistically correlated, and the sum of a large number of PN 

sequences results in multiple access interference (MAI) which is approximated by a Gaussian 

noise process if there is no near-far problem3 (extracted when using Central limit theorem 4

                                                            
3 It is based on the receiver picks up a strong signal that makes it impossible for the receiver to detect a 
weaker signal. 
4 The central limit theorem states that, in very general terms, the distribution of the sum of random 
variables tends to a normal distribution when the number of variables is very large 

). If 

all users have the same power, then you can approximate the variations of the MAI as white 

noise which is directly proportional to the number of users. In other words, unlike synchronous 

CDMA, the signals from other users appear as noise to the signal of interest and interfere 

slightly with the desired signal in proportion to the number of users. These signals from other 

users in the ACDMA are received as broadband noise which reduces the gain of the process. 

Since each user generates MAI, controlling the signal strength is a key issue related to CDMA 

transmitters. 

The CDMA has a number of advantages over other systems such as TDMA and FDMA[LEWI 

1993]: 
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1. Efficient use of a fixed bandwidth. 

Type Main challenge 

TDMA 

Timing. TDMA must synchronize the transmission of all users, so it is ensured that 

there is no co-channel interference. Since this cannot be perfectly controlled in a 

mobile environment, each time interval should have guard time, reducing the 

likelihood that users will interfere, but decreases the spectral efficiency. 

FDMA 

Frequency generation.FDMA systems must use a guard band between adjacent 

channels due to Doppler shift. Unpredictable shift of the signal due to user 

mobility. The frequency bandwidth reduces the probability that adjacent channels 

will interfere, but decrease the use of the spectrum. 

CDMA 

Power control. The need of a CDMA power control since it has a direct impact on 

signal to noise ratio (SNR). Other techniques such as SIC (Successive Interference 

Cancellation) can relax this restriction and improve overall system spectral 

efficiency. 

 

2.  Flexible allocation of resources 

CDMA can offer a key advantage over flexible allocation of resources, for example PN 

codes can be assigned to each user. In the case of TDMA and FDMA have a number of 

simultaneous orthogonal codes fixed slots and fixed frequency bands. This fixed 

number of time slots or frequency bands are underutilized especially in cases of bursts 

such as when data is packed. In contrast CDMA adapts to the number of users because 

you can add another user and the overall impact will be a decrease on SIR decreases, 

while if there are fewer users SIR increases. 

3. Anti-jamming capability of CDMA 

Because bandwidth is limited, it is usually common to try minimizing bandwidth. 

However, the use of spread spectrum techniques aims to use more bandwidth while 

reducing power spectral density. One of the initial reasons for doing this was military 

applications in communications systems. These systems were designed using spread 

spectrum for resistance to interference. The code makes CDMA spread spectrum 

signals appear random, so, these have some properties similar to noise. A receiver 
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cannot demodulate this transmission without knowing pseudorandom sequence used 

to encode data. 

4. Resistant to interference 

Both synchronous and asynchronous CDMA are resistant to interference. So if the 

interference is constant over the spectral width, the effective noise will be the 

bandwidth of the chip code over the noise bandwidth. Furthermore, the CDMA is very 

effective against narrowband interference since noises outside the bandwidth 

associated with the code chip are not affecting the signal. 

Another key point is that the CDMA is resistant to multipath interference and the 

delayed versions of the codes will have little correlation with the original 

pseudorandom code, and therefore will appear as another user, which is ignored in 

the receiver being used a RAKE receiver. In other words, if multiple channel chip cause 

the least delay, the multipath signals arrive at the receiver so that travel time by at 

least one chip of the predicted signal. 
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3. System description 

This section is a brief description of the implemented system. It goes from a general level 

description with the organization of the transmitter, receiver and channel, to a description of 

the blocks at a schematic level of the system, and finally a more detailed analysis is performed. 

The system consists of several transmitters that communicate with a common receiver 

through a common medium. Communication with the common receiver can be carried out by 

each transmitter which uses a bandwidth set by its associated chip code. 

The system is outline in Figure 4: "General Model" in general terms as each transmitter sends a 

signal that amount in one medium or channel, the receiver receives a signal of all 

transmissions over a noise introduced by the channel. 

 

Channel+

Transmitter #1

Transmitter #2

Transmitter #NT

Receptor

 

Figure 4: "General Model" 
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3.1. System            

 

The implemented system is a synchronous CDMA composed of multiple transmitters and a 

common receptor. These transmitter and receiver consist of a series of blocks: 

 

• Builder bits. This module generates random bits that the transmitter uses to encode 

and transmit. 

• Encoder. The encoder includes a bits as input and adds redundancy to protect against 

noise and channel interference 

• Modulator. This block modulates a sequence of bits in a symbol determined by the 

selected constellation. 

• Spreader. Symbols are used as a input using single chip for each transmitter to create a 

widened stream. 

• Zero Padder. It consists on inserting a zeros sequence to the symbols of the signal. 

• Pulse shaper. It consists on modifying the signal properties to reduce the effect of 

intersymbol interference. 

• Up converter. It consists on uploading the frequency to transmitted signal. 

• Down Converter. This module is analogue to the upconverter, it lower the frequency of 

the received signal. 

• Down sampler. Analogous to zero padder module, it consists on saving some samples 

of the total samples received. 

• Synchronizer. This block of acquisition is to select the point at which the signal is 

received. 

• Despreader. Module which gets symbols using user-specific chips. 

• Demodulator. Analogue structure to the modulator which gets a sequence of bits 

based on a symbol. 

• Decoder. Analogue structure to encoder which compensates for the changes 

introduced by the decoder. 
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Down ConverterDemodulator
Spreader 

#sequencei
DecoderBits Down Sampler Pulse Shapper

Synchronizer

Random bit 
generator Zero Padder

Spreader 
#sequencei

Pulse Shapper Up ConverterModulatorCoder

Channel

Transmitter #N

Random bit 
generator Zero Padder

Spreader 
#sequencei

Pulse Shapper Up ConverterModulatorCoder

Transmitter #1

...

Receiver

 
Figure 5: "General structure of receptor and transmitter chain” 
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3.2. Frame structure          

 

A critical point of system design is the frame structure implemented on this CDMA model. Its 

design directly affects the channel estimation and actual data transmission. This project has 

defined this as a specific pattern, which does not correspond to any real system. 

The plot consists of two different elements: 

1. User bits information associated with a particular sequence spreader. 

2. Pilot bits associated with a particular sequence spreader. 

 

These bits can be differentiated on time or frequency as shown in Figure 6: "Frame structure in 

a time division" and Figure 7: "Frame structure in a frequency division" have been studied in 

both cases, concluding that the most interesting is frequency division. This report is based on 

the division frequency on data information and pilot information. 

The first case consists on having a temporal division, firstly transmitting pilot and then 

transmitting the information as shown in Figure 6: "Frame structure in a time division". Its 

advantages are an efficient use of resources, for instance the amount of information 

transmitted, since you can change the number of transmitted pilot symbols vs. the transmitted 

information. 

 

Pilot symbols Data symolsGuard symbols
 

Figure 6: "Frame structure in a time division" 

The second implementation is based on incorporating the data to transmit on one frequency, 

and pilot symbols on another frequency, this is achieved by assigning a code to data and a 

pilot. The following Figure 7: "Frame structure in a frequency division" details the structure of 

a frame, which uses two spread sequences for the same user. The advantages are the 

continuous collection of pilot data which allows estimating channel and improve 

synchronization. 
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Information useri Trama #j

Pilot useri Trama #j
 

Figure 7: "Frame structure in a frequency division" 

Extrapolating the second implementation in time and frequency and under the assumption 

that each user shares the same transmission medium. The general structure is illustrated in 

Figure 8: "Global structure of the frames with respect to time under the assumption that all 

users transmit at the same time". 
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Information user1 Frame #1

Pilot user1 Frame #1

Information user1 Frame #2

Pilot user1 Frame #2

Information userNt Frame #1

Pilot userNt Trama #1

Information userNt Frame #2

Pilot userNt Frame #2

Information user2 Frame #1

Pilot user2 Frame #1

Information user2 Frame #2

Pilot user2 Frame #2

··· ···

···

···

···

Information user1 Frame #i

Pilot user1 Frame #i

Information userNt Frame #i

Pilot userNt Frame #i

Information user2 Frame #i

Pilot user2 Frame #i

···
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am

e
Time

 

Figure 8: "Global structure of the frames with respect to time under the assumption that all users transmit at the same time" 
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3.3. Transmitter           

 

The system consists of three well defined parts: transmitter, channel and receiver. Following 

there is going to be analyzed in detail all elements of the transmitter, from a description 

supported by the help of a diagram of the elements to a detailed analysis of each of elements. 

The first step is to generate a series of bits with a bit generator which simulates the 

information transmitted by the user. 

𝑏𝑏𝑖𝑖[𝑛𝑛]𝜖𝜖 {0,1} 

These series of bits are passed through an encoder that adds some redundancy to protect 

against inter-symbolic interference and channel noise. 

𝑏𝑏𝑏𝑏𝑖𝑖[𝑛𝑛] = 𝑓𝑓(𝑏𝑏𝑖𝑖[𝑛𝑛]) 

Then the encoded bits are passed through a modulator BPSK, QPSK or 16-QAM to obtain a 

sequence of symbols. Following it is supposed that a BPSK modulation is used. 

𝛼𝛼𝑖𝑖[𝑛𝑛] = 𝑓𝑓(𝑏𝑏𝑏𝑏𝑖𝑖[𝑛𝑛]) 

These symbols are repeated and multiplied by the chip associated with each user. 

𝜎𝜎𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑛𝑛] = � 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆−1

𝑙𝑙1=0

[𝑙𝑙1] · 𝛼𝛼𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑛𝑛] 

At the same time this process is done, a parallel process is done to obtain the pilot symbols 

using different chip sequence. 

𝜎𝜎𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [𝑛𝑛] = � 𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑆𝑆𝑆𝑆−1

𝑙𝑙2=0

[𝑙𝑙2] · 𝛼𝛼𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [𝑛𝑛] 

These two widened sequences are added. 

𝜎𝜎𝑖𝑖[𝑛𝑛] =  𝜎𝜎𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑛𝑛] + 𝜎𝜎𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [𝑛𝑛] 

Once the symbols to transmit have been proceeded Nc zeros are added between the symbols, 

having the following expression: 

𝑔𝑔[𝑘𝑘] = 𝜎𝜎𝑖𝑖 �
𝑘𝑘

Nc + 1
� · 𝛿𝛿 �

𝑘𝑘
Nc + 1

� 

Here are convolution is carried by a pulse in order to change the chip pulse shape. 

𝑠𝑠𝑖𝑖[𝑘𝑘] = � 𝑔𝑔[𝑛𝑛] · 𝜑𝜑𝑐𝑐[𝑘𝑘 − 𝑛𝑛]
∞

𝑛𝑛=−∞
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Where the pulse has a form (SRRC) 

𝜑𝜑𝑐𝑐[𝑘𝑘] =
𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋𝜋𝜋(1 − 2𝛽𝛽 · 𝑇𝑇) + 8𝛽𝛽 · 𝑘𝑘 · 𝑇𝑇 · 𝑐𝑐𝑐𝑐𝑐𝑐�𝜋𝜋 · 𝑘𝑘(1 + 2𝛽𝛽 · 𝑇𝑇)��

𝜋𝜋 · 𝑘𝑘 · 𝑇𝑇
1
2(1 − (8𝛽𝛽 · 𝑘𝑘 · 𝑇𝑇)2)

 

The frequency signal is upped in order to use the assigned broadband while protecting the 

signal in front of low frequency noise. 

𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 [𝑛𝑛] = 𝑅𝑅𝑅𝑅 �𝑠𝑠𝑖𝑖[𝑘𝑘] · 𝑒𝑒𝑗𝑗2𝜋𝜋�𝑓𝑓𝑐𝑐𝑓𝑓𝑠𝑠
�𝑛𝑛� 

The following steps are in case that an analog system should be implemented. Then, it would 

be need to convert the digital signal to analog as detailed in Figure 9: "Standard structure for 

D/A conversion". 

X

upconverter

LPFD/A Amplifier

 
Figure 9: "Standard structure for D/A conversion" 
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X
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Bits Pilot

BCH
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+

Zero Padding
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Figure 10: "Transmission chain for a user" 
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3.3.1. Encoder           

3.3.1.1. Introduction           

An encoder is a block that implements an algorithm which converts a sequence of bits into 

another sequence of bits with specific characteristics. In our case, we used an encoder to 

minimize the impact of the channel by correcting the errors introduced by the channel. 

The main idea lies in the correction and data detection is to add redundancy to the message. 

This redundancy can be used by the receiver to check the consistency of the received message 

and correct message degradation. 

Coding can be systematic or unsystematic. The systematic encoding is based on adding a bit 

fixed test obtained from deterministic algorithms. In contrast, non-systematic coding 

algorithms are based on obtaining a coded message. 

f(info)
parity info

g(info)

Systematic 
Structure

Non-Systematic 
Structure

 

Figure 11: "Systematic vs no-systematic structure " 

When choosing the encoder channel a communication characteristic needs to be studied.  FEC5 

coding has been selected for being a suitable for the kind of channel implemented. Several 

algorithms can retransmit incorrect data(ARQ6) or a combination of data retransmission with a 

correction code (HARQ7

• Convolutional codes. Are codes that are processed bit by a bit, used mostly for 

hardware implementation as Viterbi code. 

) if the channel capacity cannot be estimated or changes constantly. 

Following there is description of the main FEC since one of them will be implemented in this 

project. FEC are some systems that add redundancy to the system in order to use such 

redundancy to recover the original message. 

There are two types of codes: 

• Block Code are codes which are processed using bit sequences. The main block codes 

are: 

                                                            
5 Forward Error Correction 
6 Automatic Repeat Request 
7 Hybrid Automatic Repeat Request 
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o Golay 

o  BCH 

o Multidimensional parity check 

o Hamming Codes 

o Reed-Solomonor Turbo Codes 

o LDPC8

Keep in mind that the turbo and LDPC codes are defined for convolution codes. So even if 

codes are included within a code block, these are a hybrid between convolutional and block 

codes. 

 

Below in Figure 12: "BER-SNR comparing different types of channel” is a diagram which 

compares the main coders shows that the turbo code is the most efficient. LDPC results are 

very similar to the turbo code. 

 

Figure 12: "BER-SNR comparing different types of channel”9

3.3.1.2. Motivation choice: BCH Codes        

 

In this project we used the BCH codes as they are available in Matlab libraries. These are used 

in communications systems which need FEC error detection and correction of errors when the 

received signal can be susceptible to error or uncertainty. 

The choice of such codes has been done for their properties of correctness of data, as well as 

easy implementation and low use of system resources. 

  

                                                            
8 Low Density Parity Check Codes 
9 “Forward Error-Correction Coding” from Charles Wang, Dean Sklar, and Diana Johnson 
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3.3.1.3. Mathematical formulation         

BCH encoders are implemented using a linear feedback shift register as shown in Figure 13: 

"Block diagram of the BCH encoder". Each input bits have K symbols, and the output have N 

symbols. The input message is moved to the left N-K positions and added to the first N-K parity 

bits positions. The parity symbols are calculated according to the module (N-K) of the message 

and g (x) which is a polynomial base. 

𝐶𝐶 = 𝑊𝑊 · 𝐺𝐺 

Where C is the encoding of information bits W longitude k and G is the matrix from the 

generator polynomial g (x) 

𝐺𝐺 = �

𝑔𝑔(𝑥𝑥)
𝑥𝑥 · 𝑔𝑔(𝑥𝑥)

⋮
𝑥𝑥𝑛𝑛−𝑟𝑟−1 · 𝑔𝑔(𝑥𝑥)

� 

Indeed, it can also be represented with the following block diagram. 

f(info)
parity

Incoming bits

Coded bits

 

Figure 13: "Block diagram of the BCH encoder" 

3.3.2. Modulator           

3.3.2.1. Introduction           

This modulator is a crucial process in the system. In this module the system will focus on digital 

modulation consisting in passing a series of bits into symbols. In all digital modulation, each of 

the phases, frequencies or amplitudes are assigned according to a unique pattern of binary 

bits. Normally, each phase, frequency or amplitude encodes have the same number of bits. 

Thus a certain number of bits generate a symbol. 

The steps taken by the modulator for transmitting the information are: 

1. Grouping the data into code words, one for each symbol to be transmitted 

2. Map these words on attributes such as the amplitudes of the signals I and Q 
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The alphabet consists of 𝑀𝑀 = 2𝑁𝑁symbols; each symbol represents an N bit message[TSVI 

2005]. There are 4 cases of fundamental digital modulation: 

• Phase Shift Keying (PSK). This scheme is based on controlling the phase of the symbols 

generated. There are two types of deployment with the differential phase or the phase 

itself. In PSK symbols are chosen in a uniform angular distribution spread over a circle. 

This provides maximum phase separation and gives the best immunity to corruption of 

the signal. Each symbol is associated with a given energy can be fixed. Two typical 

cases are using two-phase BPSK and QPSK uses four phases as shown in Figure 14: 

"Constellation for BPSK and QPSK modulation using gray code". 

 

Figure 14: "Constellation for BPSK and QPSK modulation using gray code" 

• Quadruatre Amplitud Modulation (QAM). It is a digital modulation technique that 

conveys data by modulating the carrier signal information in both amplitude and 

phase. This is achieved by modulating a single carrier, shifted 90 degrees the phase 

and amplitude. 

 

Figure 15: "Constellation from a 8-QAM modulation" 
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3.3.2.2. Motivation choice: BPSK, QPSK, 16QAM       

We have chosen three different types of modulation to provide the system flexibility to 

channel interference. Thus, the BPSK modulation is easy to implement, allowing transmit 

signals to low SNR. 4QAM is somewhere quite efficient and can be used with a SNR average. 

While the 16QAM requires a high SNR and have different power transition levels, but is most 

efficient. 

 

Figure 16: "Constellation from a 16-QAM modulation using Gray code" 

3.3.2.3. Mathematical formulation         

The mathematical expression for BPSK is: 

𝑠𝑠 = �
𝐸𝐸𝑏𝑏
𝑇𝑇𝑏𝑏
𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 · 𝜋𝜋),𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0,1 

Mathematical expression 4QAM modulation is given by next expression: 

𝑠𝑠 =
1
2
�

𝐸𝐸𝑏𝑏
2 · 𝑇𝑇𝑏𝑏

�𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘 ·
𝜋𝜋
2

+
𝜋𝜋
4
� + 𝑗𝑗 · sin �𝑘𝑘 ·

𝜋𝜋
2

+
𝜋𝜋
4
�� , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0,1,2,3 

The mathematical expression for the 16QAM modulation is given by the following expression: 

𝑠𝑠 = �
𝐸𝐸𝑏𝑏

80 · 𝑇𝑇𝑏𝑏
�𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘 ·

𝜋𝜋
2

+
𝜋𝜋
4
� + 𝑗𝑗 · sin �𝑘𝑘 ·

𝜋𝜋
2

+
𝜋𝜋
4
�� ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0,1,2,3 

𝑠𝑠 = �
3 · 𝐸𝐸𝑏𝑏

80 · 𝑇𝑇𝑏𝑏
�𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘 ·

𝜋𝜋
2

+
𝜋𝜋
4
� + 𝑗𝑗 · sin �𝑘𝑘 ·

𝜋𝜋
2

+
𝜋𝜋
4
�� ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0,1,2,3 

For implementation are calculated all possible combinations and makes a look-up table to 

optimize the function. 
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3.3.3. Spreader           

3.3.3.1. Introduction           

This module implements a DSSS10

 

 scheme. This variation uses more bandwidth than the 

information without modular, meaning it spreads the spectrum of the signal. 

It consists in the modulation of the input signal with a sequence of chips. This sequence of 

chips has a form pseudo-noise that has certain properties very similar to white noise. A bit is 

composed by several chips. 

Figure 17: "Spectral Estimation of a pseudo-random Gold code where you see a tendency to white noise" 

This modulation implies that chip sequence is known in advance by the receiver, and is used to 

reconstruct the signal sequence. 

There are several types of pseudo-noise each with different properties [TONO 1992]. The most 

common ones are: 

• MLS11

                                                            
10 Direct Sequence Spread Spectrum 

. Bit sequences are generated by a linear shift registers. These sequences are 

periodic and undergo a series of binary sequences that can be played by the shift 

registers. The initial value of the records is indicated by an irreducible polynomial. 
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They have a periodicity bigger than the re-alimented register thank to its feedback. It 

has the same properties as Hadamard codes. 

a3 a2 a1 a0

+

s(n)
 

Figure 18: "Getting a sequence with noise properties through MLS 

• Gold codes. Gold sequences are named after its discoverer. Consist of combining two 

m-sequences using a XOR, such that cross-correlation has only three values. The 

resulting sequence is a repetition of 2m +1, instead of 2m -1 as the original sequences. 

• Kasami codes. Kasami sequences have optimal cross-correlation that approaches the 

theoretical limit of Welch. 

• Orthogonal codes. These codes have zero cross correlation, but the problem is that 

they are not robust when adding a noise in the form of offset. 

• Walsh codes. Walsh codes are generated by applying the Hadamard transform starting 

from scratch repeatedly. 

The DSSS transmissions can multiply the information transmitted through the use of a signal 

"noise." This "noise" is a pseudorandom signal with values between 1 and -1, at a frequency 

much higher than the original sequence. Thus the signal is broadened spectrum signal occupies 

a wider bandwidth than the original signal. 

The result seems to be white noise. From this apparent white noise, the signal can be 

recovered using the pseudo-random signal used for spreading it. This process is known as de-

spreading. 

3.3.3.2. Motivation choice: Spreader using Gold codes       

This module has been implemented to share a single channel with multiple users, although the 

spreading also provides other benefits: 

• Robustness against jamming 

• Reduce the relationship between signal and background noise, allowing the 

transmission hide more easily. 

• It provides a relative time between the transmitter and receiver. 

                                                                                                                                                                              
11 Maxium Linear Sequence 
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Regarding the pseudo-random noise signal has been chosen a Gold code for good cross-

correlation and its robustness to offsets. 

3.3.3.3. Mathematical formulation         

It mainly consists on applying a Gold code to each user. There are multiples codes which are 

based on a common mathematical expression: 

𝑠𝑠[(𝑛𝑛 − 1) · (2m + 1) + 𝑖𝑖] = 𝑏𝑏[𝑛𝑛] · 𝑔𝑔𝑗𝑗 [𝑖𝑖] 

Where   𝑏𝑏[𝑛𝑛]is the bit sequence 

gj(1..i.. 2m +1) is the sequence of length 2m +1 gold by user j 

s[𝑚𝑚] is the sequence after the spreader 

3.3.4. Zero Padder           

3.3.4.1. Introduction           

The zero padder is the process of increasing the frequency of signal by including zeros between 

signal samples. The oversampling factor L is usually an integer or a fraction greater than unity. 

This factor multiplies the sampling frequency for sampling the output. 

 

Figure 19: "Original signal and passed through the block zero padder" 

This module is transparent to the Nyquist-Shannon theorem12

                                                            
12 Nyquist's theorem shows that the exact reconstruction of a continuous periodic signal from baseband 
samples, it is mathematically possible if the signal is bandlimited and the sampling rate is more than 
twice its bandwidth. 

 as long as the original signal 

meets it. 

  

Amplitude Amplitude 

Time Time 
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3.3.4.2. Motivation choice          

The addition of this module is used to reduce inter-symbolic interference. 

3.3.4.3. Mathematical formulation         

The zero padding is to apply the following mathematical expression. 

𝑔𝑔[𝑘𝑘] = �𝑓𝑓 �
𝑘𝑘
𝐿𝐿
� 𝑖𝑖𝑖𝑖

𝑘𝑘
𝐿𝐿
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

Where:  f (k) is the input signal 

g (k) is the output signal 

L is the sampling factor 

3.3.5. Pulse Shaper           

3.3.5.1. Introduction           

The pulse shaper transmits a symbol (complex) over a pulse by appropriate amplitude in 

channels I & Q according to its specific constellation. The pulse shaper controls the shape of 

the power spectral density, under the restriction of ISI = 0. Spectrum signal is determined by 

the type of pulse shaper used in the transmission as shown in the following mathematical 

expression. 

𝑠𝑠ℎ(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) · ℎ(𝑡𝑡) 

𝑆𝑆ℎ(𝑓𝑓) = 𝑆𝑆(𝑓𝑓) ∗ 𝐻𝐻(𝑓𝑓) 

Where:  s(t) is the signal 

h(t) is the filter 

S(f) is the signal in frequency domain 

H (f) is the filter in frequency domain 

3.3.5.2. Motivation choice: “SRRC”         

The objective of implementing this filter is limiting bandwidth transmission, thus reducing the 

inter-symbolic interference produced by the channel. 
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The filter used was a SRRC for their good properties. Several tests have been done to select 

this filter. 

3.3.5.3. Mathematical formulation         

We have chosen the Root Raised Cosine Square selecting parameters that fit correctly into our 

system. 

The function is given by: 

𝜑𝜑𝑐𝑐[𝑘𝑘] =
𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋𝜋𝜋(1 − 2𝛽𝛽 · 𝑇𝑇) + 8𝛽𝛽 · 𝑘𝑘 · 𝑇𝑇 · 𝑐𝑐𝑐𝑐𝑐𝑐�𝜋𝜋 · 𝑘𝑘(1 + 2𝛽𝛽 · 𝑇𝑇)��

𝜋𝜋 · 𝑘𝑘 · 𝑇𝑇
1
2(1 − (8𝛽𝛽 · 𝑘𝑘 · 𝑇𝑇)2)

 

This function is obtained from raised cosine pulse. 

ℎ(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑡𝑡
𝑇𝑇
�

cos⁡(𝜋𝜋𝜋𝜋𝜋𝜋)
1 − 4β2t2

= sinc �
𝑡𝑡
𝑇𝑇
� · 𝑝𝑝𝛽𝛽(𝑡𝑡) 

 

Figure 20: "Raised cosine amplitude for different parameters" 

and its frequency expression is: 

𝑃𝑃𝑅𝑅𝑅𝑅(𝑓𝑓) = 𝐹𝐹{ℎ(𝑡𝑡)} = 𝑇𝑇 · Π(𝑓𝑓 · 𝑇𝑇) ∗ 𝐹𝐹�𝑝𝑝𝛽𝛽(𝑡𝑡)�

=

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇                                                 , |𝑓𝑓| ≤

1
2𝑇𝑇

− 𝛽𝛽

𝑇𝑇 �𝑐𝑐𝑐𝑐𝑐𝑐2 �
𝜋𝜋

4𝛽𝛽
�|𝑓𝑓| −

1
2𝑇𝑇

+ 𝛽𝛽���         ,
1

2𝑇𝑇
− 𝛽𝛽 ≤ |𝑓𝑓| ≤

1
2𝑇𝑇

+ 𝛽𝛽

0                                    , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⎭
⎪
⎬

⎪
⎫

 

 

Figure 21: "Frequency transform of raised cosine with several parameters” 
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A way to get a neutral value-neutral basis (1) in the center is by square root to obtain the 

raised cosine pulse as we seek to: 

𝑃𝑃𝑅𝑅𝑅𝑅(𝑓𝑓)
1
2 · 𝑃𝑃𝑅𝑅𝑅𝑅(𝑓𝑓)

1
2 = 1 

Thus the function will be as follows: 

ΦSRRC (𝑓𝑓) = 𝑃𝑃𝑅𝑅𝑅𝑅(𝑓𝑓)
1
2 =

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇

1
2                                                , |𝑓𝑓| ≤

1
2𝑇𝑇

− 𝛽𝛽

𝑇𝑇
1
2 �𝑐𝑐𝑐𝑐𝑐𝑐 �

𝜋𝜋
4𝛽𝛽

�|𝑓𝑓| −
1

2𝑇𝑇
+ 𝛽𝛽���         ,

1
2𝑇𝑇

− 𝛽𝛽 ≤ |𝑓𝑓| ≤
1

2𝑇𝑇
+ 𝛽𝛽

0                                    , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⎭
⎪
⎬

⎪
⎫

 

Since its inverse Fourier transform: 

𝜑𝜑𝑐𝑐(𝑡𝑡) =
𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋𝜋𝜋 �1

𝑇𝑇 − 2𝛽𝛽� + 8𝛽𝛽 · 𝑡𝑡 · 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋 · 𝑡𝑡 �1
𝑇𝑇 + 2𝛽𝛽���

𝜋𝜋 · 𝑇𝑇−
1
2(1 − (8𝛽𝛽 · 𝑡𝑡)2)

 

Sampling this expression we obtain 

𝜑𝜑𝑐𝑐[𝑘𝑘] =
𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋𝜋𝜋(1 − 2𝛽𝛽 · 𝑇𝑇) + 8𝛽𝛽 · 𝑘𝑘 · 𝑇𝑇 · 𝑐𝑐𝑐𝑐𝑐𝑐�𝜋𝜋 · 𝑘𝑘(1 + 2𝛽𝛽 · 𝑇𝑇)��

𝜋𝜋 · 𝑘𝑘 · 𝑇𝑇
1
2(1 − (8𝛽𝛽 · 𝑘𝑘 · 𝑇𝑇)2)

 

 

3.3.6. Up converter           

3.3.6.1. Introduction           

Up converter places the low-pass signal in an appropriate range for the transmission, that 

transmission is determined according to the statutory licenses that grant the use of a 

spectrum. 

The procedure introduces image frequency to twice the signal carrier. For this same reason 

that you need to filter out these frequencies images. 

3.3.6.2. Motivation choice          

The aim of the module is to shift the frequency modulation, as the actual communication 

devices are very noisy at low frequencies. In addition, this allows you to select a carrier 

frequency which transmit the communication 

3.3.6.3. Mathematical formulation         

This module follows the following mathematical expression that makes a frequency shift: 

𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) · cos(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) 
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Where   y (t) is the output signal  

x (t) is the equivalent complex input signal 𝑥𝑥(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) + 𝑗𝑗 · 𝑄𝑄(𝑡𝑡) 

Sampling this function we obtain 

𝑦𝑦[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] · cos[2𝜋𝜋𝑓𝑓𝑐𝑐 · 𝑛𝑛 · 𝑇𝑇] 

3.4. Channel            

A channel is the medium through which signals travel carrying information between the 

transmitter and receiver. There are a multitude of channels and each channel has its specific 

properties: 

• Nature of the signal which is capable of transmitting 

• Bandwidth 

• Noise generated 

Electromagnetic signals can use multiple channels depending on the frequency of the 

transmitted signals, cables, vacuum (satellites), the atmosphere itself, among others  [JAWI 

1974]. This project is considered an empty channel. 

Summing up, the signal at the output of channel filter that simulates the codes will no longer 

be orthogonal due to interference from other users. 

𝜑𝜑𝑖𝑖 ′(𝑡𝑡) = 𝜑𝜑𝑖𝑖(𝑡𝑡) ∗ ℎ𝑖𝑖(𝑡𝑡) 

𝜑𝜑𝑗𝑗 ′(𝑡𝑡) = 𝜑𝜑𝑗𝑗 (𝑡𝑡) ∗ ℎ𝑗𝑗 (𝑡𝑡) 

�𝜑𝜑𝑖𝑖 ′(𝑡𝑡) · 𝜑𝜑𝑗𝑗 ′(𝑡𝑡) · 𝑑𝑑𝑑𝑑 ≠ 𝜕𝜕[𝑖𝑖 − 𝑗𝑗] 

Indeed, the following expression is true when there is an absence of synchronization and 

sequences are not orthogonal. 

�𝜑𝜑𝑖𝑖 ′(𝑡𝑡 − 𝜏𝜏𝑖𝑖) · 𝜑𝜑𝑗𝑗 ′�𝑡𝑡 − 𝜏𝜏𝑗𝑗 � · 𝑑𝑑𝑑𝑑 ≠ 0 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜏𝜏𝑖𝑖 ≠ 𝜏𝜏𝑗𝑗  

In this case we focus on fading channels with AWGN. 
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3.4.1. Channel AWGN 13

AWGN channel model is a simple linearly added white noise with a constant spectral density 

and a Gaussian distribution with input signal. Below is graphically in 

          

Figure 22: "Real spectral 

signal of white noise baseband" the main baseband signal characteristics, where BW is the 

bandwidth, fc is the center frequency and power is the white noise. 

BW

fc

No/2

Sn(f)

BW

-fc
f

 

Figure 22: "Real spectral signal of white noise baseband" 

This model allows an approach to analyze the system before considering dispersion, 

interference and frequency selective fading. The broadband Gaussian noise is used to model 

natural elements such as thermal noise. This model is used to level communications satellite, 

and together with other models such as the slow fading for modeling terrestrial 

communications. 

3.4.2. Fading channels          

The propagation of waves through wireless channels is a very complicated phenomenon 

characterized by various effects such as multipath and shadowing. In recent years there has 

been a great effort to obtain statistical models and characterization of these elements. We 

have obtained relatively simple statistical models and quite accurate fading channels. These 

models depend on the environment and the communication scenario [MASI 2000]. 

The main effect when a signal goes through a fading transmission is the fluctuation over time 

of amplitude and phase components. For coherent modulation, a fading effect in phases can 

have a negative impact on the reception making it impossible any communication. This effect 

has been corrected in this project. For non-coherent modulations, the phase information is not 

necessary for the reception and may well neglect their effect. So in the analysis of coherent 

and non-coherent modulation, an attention must be paid just to the amplitude or power, since 

                                                            
13 Additive White Gaussian Noise  
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the phase has no effect, either because it has been already corrected or because it has no 

effect when the signal reception. 

So the first classification of these models is the behavior of the powers, separating them into 

two types of models: 

1. Large-scale models. These types of models explain the behavior of the powers at 

distances much greater than the wavelength range distances of kilometers. There are 

several different models including: 

a. Open space 

b. Okumura-Hata 

c. Blocking: Log-distance and Log-normal 

2. Small-scale models. These types of models explain the behavior of the powers at 

distances comparable to the wavelength of the order of meters. In this project we will 

focus on implementing this type of models. These models are based on the type of 

multipath due to the Doppler Effect. 

Following an explanation of basic knowledge about channels, then several models for 

frequency-flat fading channels and frequency-selective fading channels are described. 

3.4.2.1. Background           

Multipath channels arise when the signal reaches the receiver via multiple paths as shown in 

Figure 23: "Multipath signal", where a base station communicates with a mobile terminal 

receiving the signal directly over the reflections produced by two buildings [JEMI 2000]. 

 

Figure 23: "Multipath signal" 

This can be modeled as the following mathematical expression to the response: 
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𝐻𝐻(𝑧𝑧) = �𝐻𝐻𝑙𝑙 · 𝑧𝑧−𝑙𝑙
𝐿𝐿

𝑙𝑙=0

 

Where L is the number of independent paths through which the signal arrives, and the 

attenuation 𝐻𝐻𝑙𝑙  associated to that path. 

Being the equivalent baseband channel between transmitter i and receiver antenna is given by 

the following expression: 

ℎ𝑖𝑖 ,𝑗𝑗 [𝑛𝑛] = �𝛼𝛼𝑙𝑙 · δ[n − nl]
𝐿𝐿

𝑙𝑙=0

 

Where 𝛼𝛼𝑙𝑙  usually modeled with Gaussian complex variables to simulate a frequency selective 

Rayleigh channel. Its variance is defined by the Power Delay. The Power Delay Profile (PDP) 

gives the intensity of the signal received through the multipath channel as a function of time 

delay (τ). The time delay (τ) is the difference between the time delay between direct 

visualization and the way through several paths. 

𝛼𝛼𝑙𝑙 = 𝐸𝐸[|𝛼𝛼𝑙𝑙 |2] 

Table 1: “Correlation and spectral properties of different types of fading processes taken from 

Mason” is the most common models to model the environment and their specific approaches. 

Table1: “Correlation and spectral properties of different types of fading processes taken from Mason” 

Type of fading spectrum Fading autocorrelation (ρ) Normalized PSD14 

Rectangular 
sin 2𝜋𝜋𝑓𝑓𝑑𝑑𝑇𝑇𝑆𝑆

2𝜋𝜋𝑓𝑓𝑑𝑑𝑇𝑇𝑆𝑆
 2𝑓𝑓𝑑𝑑

−1 , |𝑓𝑓| ≤ 𝑓𝑓𝑑𝑑  

Gaussian 𝑒𝑒−(𝜋𝜋𝑓𝑓𝑑𝑑𝑇𝑇𝑆𝑆)2
 𝑒𝑒

−�� 𝑓𝑓𝑓𝑓𝑑𝑑
�

2
�
�√𝜋𝜋𝑓𝑓𝑑𝑑�

−1
 

Earth moving 𝐽𝐽𝑜𝑜(2𝜋𝜋𝑓𝑓𝑑𝑑𝑇𝑇𝑆𝑆) �𝜋𝜋2�𝑓𝑓2 − 𝑓𝑓𝑑𝑑
2��

−1
2  , |𝑓𝑓| ≤ 𝑓𝑓𝑑𝑑  

First order Butterworth 𝑒𝑒−(2𝜋𝜋|𝑓𝑓𝑑𝑑𝑇𝑇𝑆𝑆 |) �𝜋𝜋𝑓𝑓𝑑𝑑(1 +
𝑓𝑓
𝑓𝑓𝑑𝑑

)2�
−1

 

Second order Butterworth 𝑒𝑒
−�𝜋𝜋|𝑓𝑓𝑑𝑑𝑇𝑇𝑆𝑆 |

√22 �
 �1 + 16 �

𝑓𝑓
𝑓𝑓𝑑𝑑
�

4

�
−1

 

 

  

                                                            
14 Power Spectral Density 
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3.4.2.2. Channel Characterization         

3.4.2.2.1. Multipath propagation         

The multipath propagation is due to constructive and destructive combination of delays 

caused by signal components with different amplitudes [MASI 2000]. These are mainly 

classified into two types: flat fading and frequency selective fading. 

ℎ𝑖𝑖 ,𝑗𝑗 [𝑛𝑛] = �𝛼𝛼𝑙𝑙 · δ[n − nl]
𝐿𝐿

𝑙𝑙=0

 

An important feature of channel fading is that it is a selective in frequency. If all the spectral 

components of a transmitted signal are affected in the same way by the channel, this channel 

is said to be afrequency non-selective or flat fading. This is the case of systems where the 

bandwidth of the transmitted signal is much smaller than the coherent bandwidth fc. This 

bandwidth is measured by the frequency range for which the fading is correlated and is 

defined as the frequency bandwidth over which the correlation function of two samples of a 

response channel on the same time but at different frequencies have a value similar. 

On the other hand, if the spectral components of the transmitted signal are affected in 

different frequency and phase, it is said to be a frequency selective fading causing inter-

symbolic interference and not keeping the transmitted signal spectrum. 

In Figure 24: "Flat Fading vs. Frequency Selective Fading" shows the main feature where Bc is 

the bandwidth of the channel, and B is the bandwidth of the signal. 

Frequency selective fading

Bs

Bc

Signal

Channel

Flat fading

Bs

Bc

Signal

Channel

FrequencyFrequency

 

Figure 24: "Flat Fading vs. Frequency Selective Fading" 
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3.4.2.2.2. Doppler dispersion         

The Doppler spread is another differentiator. There are two types of fading according to it: 

slow and fast fading. The main distinction is given by the coherence time Tc = 1
Bc

 which 

measuresthe time period over which the fading process is correlated. It is said to be slow 

fading if symbol time Ts is smaller than the coherence time, if not it is considered a fast fading. 

In Figure 25: "Fast fading vs slow fading" compares the bandwidth of the signal (BC) with the 

Doppler bandwidth (BD) allowing seeing the principal distinction between high dispersion 

fading fast fading and slow fading with low scattering fading. 

Slow fading

Bd

Bc

Signal

Doppler

Fast fading

Bd

Bc

Signal

Doppler

frequency frequency

 

Figure 25: "Fast fading vs slow fading" 

The effect of a fast fading channel is a symbol decorrelation over another symbol. One must 

consider this variation of the fading channel for an interval of one symbol to the next in order 

to compensate this type of error and consider receiver communication elements’ decisions 

based on an observation of two or more signal symbols. This is done with a series of correlated 

models which mainly depends on specific propagation of the environment in a particular 

scenario. 

In channels with slow fading, a fading of a certain level may affect successive symbols, leading 

to error burst. So, if this wants to be avoided, the channel needs to be estimated by adding a 

header which the receiver knows a priori. 

3.4.3. Implemented model          

When a signal is propagated by a frequency selective fading channel spectrum is affected by 

the channel transfer function, it results on a dispersion in time of the signal. This type of fading 

can be modeled with a linear filter characterized by the following impulse response: 
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h(t) = � αl · e−jθ l · δ(t − τl)
Lp

l=0
 

Lp  is the number of possible realizations δ is a Dirac delta, l is the channel index θl , αl  and τl  

are random variables representing the phase, amplitude and delay of the channel. 

This model assumes a number of features and simplifications of the channel: 

• It has been assumed slow fading 

o Lp  is constant for a certain length of time longer than the symbol. 

o θl , αl  and τl  are all constants for a range longer than the symbol time. 

• It is assumed that all constants are generated so they have a negligible cross-

correlation, which can be assumed as statistically independent. 

• It is assumed that the noise disturbs a AWGN source, after passing through the canal. 

3.5. Receiver            

 

The next step is the reception at the receiver. A reciprocal process to the transmitter is 

perfume in order to recover the transmitted signals for each user. The received signal shifts 

the signal followed by a low pass filter to remove noise outside the band. The baseband signal 

is filtered by the matched filter receiver, powered by a synchronizer that provides the ideal 

moment to recover the signal. The last step is to recover the signal consists of a decimator to 

symbol frequency, followed by an estimate of the channel, passed through a detector and 

demodulator. 

Note that the analog part has been omitted in this case since we are working on a digital 

environment, Matlab. 

The first step is to pass the received signal to baseband, where 𝑠𝑠𝑖𝑖𝑖𝑖 [𝑛𝑛] is a complex signal. 

𝑟𝑟𝑖𝑖𝑖𝑖 [𝑛𝑛] = 𝑅𝑅𝑅𝑅 �(𝑠𝑠𝑖𝑖𝑖𝑖 [𝑛𝑛] + 𝑤𝑤[𝑛𝑛]) · 𝑒𝑒𝑗𝑗2𝜋𝜋�−𝑓𝑓𝑐𝑐𝑓𝑓𝑠𝑠
�𝑛𝑛� 

A signal is then filtered to eliminate interference and noise that are outside the signal band, 

hence minimizing noise. 

𝑟𝑟[𝑛𝑛] = 𝐿𝐿𝐿𝐿𝐿𝐿{𝑟𝑟𝑖𝑖𝑖𝑖 [𝑛𝑛]} 

Thus, the received signal is the sum of all users plus noise band associated with each user. 

𝑟𝑟[𝑛𝑛] = �𝑠𝑠𝑖𝑖[𝑛𝑛]′
𝑁𝑁

𝑖𝑖=1

+ 𝑤𝑤𝑖𝑖[𝑛𝑛]������� 

Where each user component breaks down the symbols that have been passed that have zeros 

between the displaced pulses. 
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𝑠𝑠𝑖𝑖[𝑛𝑛]′ = � 𝑔𝑔[𝑙𝑙] · 𝜑𝜑𝑖𝑖 ′[𝑛𝑛 − 𝑙𝑙]
∞

𝑙𝑙=−∞

 

𝑤𝑤[𝑛𝑛]������ = �𝑤𝑤𝑖𝑖[𝑛𝑛]�������
𝑁𝑁

𝑖𝑖=1

= 𝑅𝑅𝑅𝑅 �𝑤𝑤[𝑛𝑛] · 𝑒𝑒𝑗𝑗2𝜋𝜋�−𝑓𝑓𝑐𝑐𝑓𝑓𝑠𝑠
�𝑛𝑛� 

The signal is convolved with the reflected pulse in order to recover, thus obtaining. 

𝑑𝑑𝑑𝑑[𝑛𝑛] = 𝑟𝑟[𝑛𝑛] ∗ 𝜑𝜑𝑖𝑖 ′[−𝑛𝑛] = � ��𝑠𝑠𝑖𝑖[𝑘𝑘]′
𝑁𝑁

𝑖𝑖=1

+ 𝑤𝑤𝑖𝑖[𝑘𝑘]��������
𝑛𝑛=−∞

𝑛𝑛=∞
· 𝜑𝜑𝑖𝑖[𝑘𝑘 − 𝑛𝑛]

= � ��𝑠𝑠𝑖𝑖[𝑘𝑘]′ · 𝜑𝜑𝑖𝑖[𝑘𝑘 − 𝑛𝑛]
𝑁𝑁

𝑖𝑖=1

+ 𝑤𝑤𝑖𝑖[𝑘𝑘]������� · 𝜑𝜑𝑖𝑖[𝑘𝑘 − 𝑛𝑛]�
𝑛𝑛=−∞

𝑛𝑛=∞
 

A key step is obtaining a good synchronization to correlate with a signal pattern. Then, a down-

sampler is done obtaining the coefficients chip with its associated value: 

 

𝑦𝑦[𝑛𝑛] =  𝑑𝑑𝑛𝑛 [𝑛𝑛]|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ���𝜌𝜌𝑖𝑖𝑖𝑖 · 𝜎𝜎𝑚𝑚𝑚𝑚

𝑁𝑁

𝑙𝑙=1

[𝑛𝑛] + 𝛽𝛽𝑖𝑖[𝑛𝑛]�
𝑁𝑁

𝑖𝑖=1

 

So, the values associated with each user are pilot sequence and information (𝜎𝜎𝑚𝑚𝑚𝑚 ) by a factor 

𝜌𝜌𝑖𝑖𝑖𝑖  marked by the channel, plus an associated noise. 

𝑦𝑦𝑖𝑖[𝑛𝑛] = �𝜌𝜌𝑖𝑖𝑖𝑖 · 𝜎𝜎𝑚𝑚𝑚𝑚

𝑁𝑁

𝑙𝑙=1

[𝑛𝑛] + 𝛽𝛽𝑖𝑖[𝑛𝑛] 

This expression can be represented by a formulation as follows: 

�
𝑦𝑦1
⋮
𝑦𝑦𝑁𝑁
� = �

𝜌𝜌11 … 𝜌𝜌1𝑁𝑁
⋮ ⋱ ⋮
𝜌𝜌𝑁𝑁1 … 𝜌𝜌𝑁𝑁𝑁𝑁

� · �
𝜎𝜎1
⋮
𝜎𝜎𝑁𝑁
� + �

𝛽𝛽1
⋮
𝛽𝛽𝑁𝑁
� 

𝒚𝒚� = 𝑹𝑹𝒔𝒔�������� · 𝒔𝒔𝒎𝒎���� + 𝒏𝒏� 

Whereas it has been defined as: 

𝒚𝒚� = �
𝑦𝑦1
⋮
𝑦𝑦𝑁𝑁
� 

𝑹𝑹𝒔𝒔�������� = �
𝜌𝜌11 … 𝜌𝜌1𝑁𝑁
⋮ ⋱ ⋮
𝜌𝜌𝑁𝑁1 … 𝜌𝜌𝑁𝑁𝑁𝑁

� 

𝒔𝒔𝒎𝒎���� = �
𝜎𝜎1
⋮
𝜎𝜎𝑁𝑁
� 

𝒏𝒏� = �
𝛽𝛽1
⋮
𝛽𝛽𝑁𝑁
� 
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To minimize the impact of channel signal, the pilot signal is used to estimate the channel in a 

chip obtaining  𝑹𝑹𝒔𝒔��������. Then using this matrix, equalization is done to information data. 

𝒙𝒙� = 𝑹𝑹𝒔𝒔��������
−𝟏𝟏

· 𝒚𝒚� = 𝑹𝑹𝒔𝒔��������
−𝟏𝟏

· �𝑹𝑹𝒔𝒔�������� · 𝒔𝒔𝒎𝒎���� + 𝒏𝒏�� = 𝒔𝒔𝒎𝒎���� + 𝑹𝑹𝒔𝒔��������
−𝟏𝟏

· 𝒏𝒏� 

 

The last step is to get the bits through a quantification of𝒙𝒙� 
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Figure 26: "Receptor chain for one user" 
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3.5.1. Low Pass Filter          

3.5.1.1. Introduction           

Low pass filter is a block that can pass frequencies with a low frequency signal while 

attenuating the higher frequencies from a cutoff frequency. The attenuation introduced by the 

filter depends on the type of filter used. 

 

Figure 27: "Gain in a low pass filter with a first order approximation" 

The ideal filter is a rectangular frequency response which is impossible to achieve because it 

requires infinite length signals, it is approximated (FIR). In addition to the filter that is a 

temporary sync requires all past and future values of the signal. This can be done by assuming 

that the digital signal is finite, so it has zero extensions in the past and the future or with the 

assumption that the signal is repetitive. 

Real filters for real-time applications require an ideal filter approximated by truncation of the 

signal and delay to make causal filter. 

3.5.1.2. Motivation choice: FIR          

The addition of a low pass filter is to eliminate noise introduced by the channel, and removing 

pictures frequencies introduced by the upconverter and downconverter. 

3.5.1.3. Mathematical formulation         

To obtain a low pass filter has been approximated by a FIR filter. The impulse response has 

order N and last N +1, then all the values are zeros. Any signal x (n) through a filter is 

convoluted by it with the filter settings 𝑏𝑏𝑖𝑖 , obtaining y (n) 
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𝑦𝑦[𝑛𝑛]������ = �𝑏𝑏𝑖𝑖 · 𝑥𝑥[𝑛𝑛 − 𝑖𝑖]
𝑁𝑁

𝑖𝑖=0

 

Using fir1, a Matlab function that implements a classic method of FIR filter with a Hamming 

window with specific cutoff frequency determined. 

3.5.2. Downconverter          

3.5.2.1. Introduction           

This module is the analogue of the upconverter and aims to pass the band-pass signal to 

baseband. 

This procedure also introduces a dual-frequency component of the carrier. This is the main 

reason why you need to filter out these images in a low-pass filter. 

3.5.2.2. Motivation choice          

The aim of the module is to shift the frequency modulation, as the actual communication 

devices are very noisy at low frequencies. Indeed, this allows to select a carrier frequency 

which transmits the communication. 

3.5.2.3. Mathematical formulation         

This module follows the following mathematical expression that makes a frequency shift: 

𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) · cos(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) 

Where   y (t) is the output signal 

x (t) is the input signal 

The equivalent sample to sample is 

𝑦𝑦[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] · 𝑐𝑐𝑐𝑐𝑐𝑐[2𝜋𝜋𝑓𝑓𝑐𝑐 · 𝑛𝑛 · 𝑇𝑇] 

3.5.3. Matched filter          

3.5.3.1. Introduction           

A matched filter is obtained by correlating a known signal with an unknown signal to detect 

signal presence known on the unknown signal. 
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The matched filter is the linear optimal filter to maximize signal to noise ratio (SNR) in the 

presence of additive stochastic noise. 

The main uses of matched filters are in radar where a known signal is sent out, and the 

reflected signal is examined for common elements of the outgoing signal. They are also used in 

communications such as CDMA, because they are the basis of the receiver. 

3.5.3.2. Motivation choice          

The choice is minimizing the additive noise signal, thus maximizing the signal to noise ratio 

(SNR) at the point of entry to the decoder. 

3.5.3.3. Mathematical formulation         

Following there is going to be a reasoning for matched filter to minimize the additive noise. 

𝑦𝑦[𝑛𝑛] = � ℎ[𝑛𝑛 − 𝑘𝑘] · 𝑥𝑥[𝑘𝑘]
∞

𝑘𝑘=−∞

 

Suppose the input signal is added an additive noise 𝑥𝑥 = 𝑠𝑠 + 𝑣𝑣, and𝑅𝑅𝑣𝑣 = 𝐸𝐸{𝑣𝑣𝑣𝑣𝐻𝐻} 

𝑦𝑦 = � ℎ∗[𝑘𝑘] · 𝑥𝑥[𝑘𝑘]
∞

𝑘𝑘=−∞

= ℎ𝐻𝐻𝑥𝑥 = ℎ𝐻𝐻𝑠𝑠 + ℎ𝐻𝐻𝑣𝑣 = 𝑦𝑦𝑠𝑠 + 𝑦𝑦𝑣𝑣  

Minimize the SNR, we obtain 

𝑆𝑆𝑆𝑆𝑆𝑆 =
|𝑦𝑦𝑠𝑠|2

𝐸𝐸{|𝑦𝑦𝑣𝑣|2} =
�ℎ𝐻𝐻𝑠𝑠�

2

𝐸𝐸 ��ℎ𝐻𝐻𝑣𝑣�
2
�

=
�ℎ𝐻𝐻𝑠𝑠�

2

𝐸𝐸 ��ℎ𝐻𝐻𝑣𝑣��ℎ𝐻𝐻𝑣𝑣�
𝐻𝐻
�

=
�ℎ𝐻𝐻𝑠𝑠�

2

ℎ𝐻𝐻𝐸𝐸{𝑣𝑣𝑣𝑣𝐻𝐻}ℎ
=
�ℎ𝐻𝐻𝑠𝑠�

2

ℎ𝐻𝐻𝑅𝑅𝑣𝑣ℎ

=
���𝑅𝑅𝑣𝑣

1
2ℎ�

𝐻𝐻
�𝑅𝑅𝑣𝑣−

1
2𝑠𝑠��

2
�

ℎ𝐻𝐻𝑅𝑅𝑣𝑣ℎ
 

So applying the Cauchy-Schwarz inequality (|𝑎𝑎𝐻𝐻𝑏𝑏|2 ≤ (𝑎𝑎𝐻𝐻𝑎𝑎)(𝑏𝑏𝐻𝐻𝑏𝑏))   it is obtained 

���𝑅𝑅𝑣𝑣
1
2ℎ�

𝐻𝐻
�𝑅𝑅𝑣𝑣−

1
2𝑠𝑠��

2
�

ℎ𝐻𝐻𝑅𝑅𝑣𝑣ℎ
≤
���𝑅𝑅𝑣𝑣

1
2ℎ�

𝐻𝐻
�𝑅𝑅𝑣𝑣

1
2ℎ�� ��𝑅𝑅𝑣𝑣−

1
2𝑠𝑠�

𝐻𝐻
�𝑅𝑅𝑣𝑣−

1
2𝑠𝑠���

�𝑅𝑅𝑣𝑣
1
2ℎ�

𝐻𝐻
�𝑅𝑅𝑣𝑣

1
2ℎ�

=
��𝑅𝑅𝑣𝑣

1
2ℎ�

𝐻𝐻
�𝑅𝑅𝑣𝑣−

1
2𝑠𝑠��

2

�𝑅𝑅𝑣𝑣
1
2ℎ�

𝐻𝐻
�𝑅𝑅𝑣𝑣

1
2ℎ�
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According to the theorem, the limit will hold when𝑎𝑎 =∝ 𝑏𝑏 

𝑅𝑅𝑣𝑣
1
2ℎ = ∝ 𝑅𝑅𝑣𝑣−

1
2𝑠𝑠 

Thus the value of the filter is as follows 

ℎ = ∝ 𝑅𝑅𝑣𝑣−1𝑠𝑠 

Getting a SNR 

𝑆𝑆𝑆𝑆𝑆𝑆 =
∝2 ��𝑅𝑅𝑣𝑣−

1
2𝑠𝑠�

𝐻𝐻
�𝑅𝑅𝑣𝑣−

1
2𝑠𝑠��

2

∝2 �𝑅𝑅𝑣𝑣−
1
2𝑠𝑠�

𝐻𝐻
�𝑅𝑅𝑣𝑣−

1
2𝑠𝑠�

=
�𝑠𝑠𝐻𝐻𝑅𝑅𝑣𝑣−1𝑠𝑠�

2

𝑠𝑠𝐻𝐻𝑅𝑅𝑣𝑣−1𝑠𝑠
= 𝑠𝑠𝐻𝐻𝑅𝑅𝑣𝑣−1𝑠𝑠 

Assuming the additive noise power is 1 

𝐸𝐸{|𝑦𝑦𝑣𝑣|2} = 𝐸𝐸 ��ℎ𝐻𝐻𝑣𝑣�
2
� = 𝐸𝐸 ���∝ 𝑅𝑅𝑣𝑣−1𝑠𝑠�

𝐻𝐻
𝑣𝑣�

2
� =∝2 𝑠𝑠𝐻𝐻𝑅𝑅𝑣𝑣−1𝑠𝑠 = 1 

∝=
1

�𝑠𝑠𝐻𝐻𝑅𝑅𝑣𝑣−1𝑠𝑠
2

 

This procedure is equivalent to the convolution of an unknown signal with the conjugate of the 

original signal, making the cross-correlation. 

𝑦𝑦 = ℎ𝐻𝐻𝑥𝑥 =  

⎝

⎛ 1

�𝑠𝑠𝐻𝐻𝑅𝑅𝑣𝑣−1𝑠𝑠
2

𝑅𝑅𝑣𝑣−
1
2𝑠𝑠

⎠

⎞

𝐻𝐻

𝑥𝑥 

 

3.5.4. Synchronizer           

3.5.4.1. Introduction           

This module attacks the problem of determining the correct time to sample the signal using a 

sliding window [HEME 1997]. 

This block needs a training sequence which should be previously known before starting 

transmitting. The system input is the output of matched filter by choosing one of each F 

samples to compensate for the oversampled. 
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3.5.4.2. Motivation choice          

It has been used the normalized cross-correlation as a measure of similarity between two 

signals in terms of a time lag is applied to one of them. 

The normalized correlation gives a value between 0 and 1, not dependent on the strength of 

the signal used. 

3.5.4.3. Mathematical formulation         

The algorithm implemented to find the highest value of the normalized correlation between 

the received signal and the pilot signal previously known, namely: 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎 �
max

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ (n1, n2)�𝜌𝜌�𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ��� 

Where   n1 is the first sign of the analyzed signal. 

n2 is the first sign of the analyzed signal. 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the sampling instant. 

L is the length of training sequence. 

The normalized correlation coefficient is calculated following expression: 

𝜌𝜌(𝑛𝑛𝑖𝑖) =
∑ (𝑠𝑠(𝑘𝑘𝑘𝑘) − 𝜇𝜇𝑠𝑠)(𝑐𝑐(𝑘𝑘) − 𝜇𝜇𝑐𝑐)𝐿𝐿−1
𝑘𝑘=0

𝜎𝜎2  

Where   s is the input signal 

c is the training sequence. 

𝜇𝜇𝑠𝑠  is the average of the input signal (in our case is zero) 

𝜇𝜇𝑐𝑐  is the average of the training sequence (in our case is zero) 

F is the oversampling factor. 

σ is the deviation of the two signals. 
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3.5.5. Delay-Locked Loop          

3.5.5.1. Introduction           

This module is done once the receiver has been synchronized within a time chip. This block 

synchronizes the system with more precision. It has also to be correct temporary deviations of 

the signal can be induced by a difference in clock frequency transmitter and transmitter or the 

channel itself. 

3.5.5.2. Motivation choice          

DLL is a robust method that keeps the system synchronous , protected in front of delays such 

as a delay-induced cumulative and have a different clock frequency between the transmitter 

and receiver or by the type of channel. 

3.5.5.3. Mathematical formulation         

This block is based on comparing the value of a symbol that is closest to the theoretical. In this 

case we have implemented a monitoring tool that compares three symbols that let you know if 

you move, stop or reverse the signal. 

This task is part of the 6 samples captured on a chip that reach the matched filter. There are 

three samples processed for the pilot sequence: 

• One in case you do not have displacement (t = t) 

• Another in the case had been delayed signal (t = t-1) 

• Another in the event that the signal had been advanced (t = t +1) 

Once these signals have been processed compared to the theoretical value and select the one 

that comes closest to this value. Updating the time for the next symbol. 

Note that a symbol is used to check whether to advance, hold or delay the signal as this 

compensates for possible deviations. 
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Figure 28: "DLL structure" 

3.5.6. Downsampler           

3.5.6.1. Introduction           

The downsampling is the process of reducing the sampling frequency of a signal. This 

procedure is normally used to reduce the size of information processing. 

This process is done as the analogue of the upsampler in the receiver chaining. 

3.5.6.2. Motivation choice          

The addition of this module is to recover the signal for further processing, this module is 

compensated upsampler which aims to reduce inter-symbolic noise component. 

3.5.6.3. Mathematical formulation         

Downsampler is to keep one of each L data, as the following mathematical expression as we 

are always real numbers. 

𝑔𝑔[𝑘𝑘] = 𝑓𝑓[𝑘𝑘 · 𝐿𝐿] 

Where:  𝑓𝑓[𝑘𝑘] is the input signal 

𝑔𝑔[𝑘𝑘] is the output signal 

L is the downsampling factor 

3.5.7. Equalizer           

3.5.7.1. Introduction           

An equalizer is a filter, usually adjustable, designed to compensate the frequency response of a 

system. 
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An equalizer can be designed with a series of chained filters; filters are band pass or high pass 

and low pass filters. 

3.5.7.2. Motivation choice: FIR          

The addition of this module is to offset the effects introduced by the channel. In our case we 

used an FIR filter to estimate the effect of this channel. 

3.5.7.3. Mathematical formulation         

The impulse response has order N and last N +1, and then all the values are zero. Any signal 

x(n) through a filter is by convolving ℎ𝑖𝑖  filter settings, obtaining y (n) 

𝑦𝑦[𝑛𝑛]������ = �ℎ𝑖𝑖 · 𝑥𝑥[𝑛𝑛 − 𝑖𝑖]
𝑁𝑁

𝑖𝑖=0

 

Suppose we have a set of input values X and output Y: 

𝑌𝑌 = �

𝑦𝑦[0]
𝑦𝑦[1]
⋮

𝑦𝑦[𝑁𝑁]

� 

𝑋𝑋 = �

𝑥𝑥[0]
𝑥𝑥[1]
⋮

𝑥𝑥[𝑁𝑁]

� 

Whereas H is: 

𝐻𝐻 =

⎝

⎛

ℎ[0] ℎ[1] … ℎ[𝑁𝑁]
0
0

ℎ[0] …
0      …

ℎ[𝑁𝑁 − 1]
ℎ[1]

0 0      … ℎ[0] ⎠

⎞ 

Thus the above expression is in and in the following expression: 

𝑌𝑌� = 𝐻𝐻𝑇𝑇𝑋𝑋 

To obtain the most similar will minimize the MSE 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌 − 𝑌𝑌�) = 𝐸𝐸{(𝑌𝑌 − 𝐻𝐻𝑇𝑇𝑋𝑋)2} 

𝛿𝛿
𝛿𝛿�ℎ(𝑘𝑘)�

𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌 − 𝑌𝑌�) = 2 𝐸𝐸{(𝐻𝐻𝑇𝑇𝑋𝑋 − 𝑌𝑌)𝑌𝑌(𝑘𝑘)} = 0     𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘 = 0. .𝑁𝑁 

𝐸𝐸{(𝐻𝐻𝑇𝑇𝑋𝑋 − 𝑌𝑌)𝑌𝑌} = 0  
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𝐸𝐸{𝐻𝐻𝑇𝑇𝑋𝑋𝑌𝑌} − 𝐸𝐸{𝑌𝑌𝑌𝑌} = 0  

If𝑟𝑟𝑥𝑥𝑥𝑥 = 𝐸𝐸{𝑋𝑋𝑌𝑌} y 𝑅𝑅𝑌𝑌 = 𝐸𝐸{𝑌𝑌𝑌𝑌𝑇𝑇}, then the previous expression is as follows 

𝑅𝑅𝑌𝑌𝐻𝐻 = 𝑟𝑟𝑥𝑥𝑥𝑥  

So  

𝑯𝑯𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑹𝑹𝒀𝒀−𝟏𝟏 ∗ 𝒓𝒓𝒙𝒙𝒙𝒙 

3.5.8. Despreader           

3.5.8.1. Introduction           

The despreader is the analogue module of the speader. It consists on retrieving user 

information from a signal where there are multiple users. This process involves using the 

pseudo-random sequence multiplied by the signal to obtain the original user information. 

The transmission and reception of streams must be synchronized for the despreader to work 

properly. This requires that the receiver is synchronized to its sequence with the sequence of 

the transmitter through some process of search time. 

The spreader and despreader introduce an increase in SNR related to the length of the 

sequence used. 

3.5.8.2. Motivation choice          

The addition of this module are the same as the spreader, the despreader is responsible to 

compensate the spread module for each user and pseudo random sequence. 

3.5.8.3. Mathematical formulation         

Despreader is based on a very basic pseudo-random sequences have very high autocorrelation 

while its cross-correlation is very low. Thus the expression that determines its value is: 

𝑏𝑏𝑗𝑗 [𝑛𝑛] = � 𝑠𝑠[(𝑛𝑛 − 1) · (2m + 1) + 𝑖𝑖]
2m +1

𝑖𝑖=0

· 𝑔𝑔𝑗𝑗 [𝑖𝑖] 

Where:  𝑏𝑏𝑗𝑗 [𝑛𝑛] is the bit sequence of user # j 

gj [1 .. i.. 2m +1] is the sequence of length 2m +1gold by user j 

s [m] is the sequence after the spreader 
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3.5.9. Demodulator           

3.5.9.1. Introduction           

This module is to identify which symbols have been received at the receiver after being 

distorted by the channel. In order to make such assignment is appropriate to divide all possible 

values in regions assigned to each symbol. 

The following illustrates the division of regions marked by the red line for equiprobable 

symbols and Gaussian noise distribution in Figure 29: "Separation regions if AWGN distribution 

for BPSK", Figure 30: "Separation regions if AWGN distribution for QPSK"and Figure 31: 

"Separation regions if AWGN distribution for 16-QAM". 

 

Figure 29: "Separation regions if AWGN distribution for BPSK" 

 

Figure 30: "Separation regions if AWGN distribution for QPSK" 
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Figure 31: "Separation regions if AWGN distribution for 16-QAM" 

3.5.9.2. Motivation choice          

The reason for this module is assigning soft symbols or symbols that have not yet been 

assigned to a value for hard symbols once the receiver has a value for the soft symbols. 

3.5.9.3. Mathematical formulation         

The lines that minimize the global error need to be found by separating these regions. 

Following there are several assumptions that have been done: 

• The bits are equally likely, which are also symbols. 

• The additive noise is Gaussian. 

As the previous modules do not affect the signal negatively, but prepare the received signal for 

this step, we can assume that at this point is the signal of the form: 

𝑦𝑦 = 𝑥𝑥 + 𝑛𝑛 

The density function pdf of the additive Gaussian noise has the following mathematical 

expression. 

𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋2 𝑒𝑒−
1
2�
𝑥𝑥−𝜇𝜇
𝜎𝜎 �

2

 

Where 𝜇𝜇 = 0 𝑎𝑎𝑎𝑎𝑎𝑎𝜎𝜎2 = 𝑁𝑁𝑜𝑜
2

.is white noise of the form 𝑁𝑁~ �0, 𝑁𝑁𝑜𝑜
2
� 

We now discuss the case for BPSK case can be extrapolated to all others, assuming that the 

energy is 𝐸𝐸𝑏𝑏 = 1. 

There are just two symbols with the expression to find the line that minimizes the error is 

easier to find a line in this case. 
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𝑃𝑃𝑜𝑜𝑜𝑜1 = 𝑃𝑃𝑜𝑜𝑜𝑜2 

The probability that a symbol is correct will be the cumulative probability that the symbol is in 

the correct area 𝑃𝑃𝑠𝑠1(𝑋𝑋 ≤ 𝛾𝛾) equal to the other symbol 𝑃𝑃𝑠𝑠2(𝑋𝑋 ≤ 𝛾𝛾) 

𝑃𝑃𝑠𝑠1(𝑋𝑋 ≤ 𝛾𝛾) = 𝑃𝑃𝑠𝑠2(𝑋𝑋 ≤ 𝛾𝛾) 

So the density function for the symbol -1, associated with the bit 0 is 

𝐸𝐸{𝑦𝑦} = 𝐸𝐸{𝑥𝑥 + 𝑛𝑛} = 𝐸𝐸{𝑥𝑥} + 𝐸𝐸{𝑛𝑛} = −1 + 0 = −1 

𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋2 𝑒𝑒−
1
2�
𝑥𝑥−𝜇𝜇
𝜎𝜎 �

2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −1 𝑦𝑦𝜎𝜎2 =
𝑁𝑁𝑜𝑜
2

 

𝑓𝑓−1(𝑥𝑥) =
1

�2𝜋𝜋𝑁𝑁𝑜𝑜2
2

𝑒𝑒
−1

2
⎝

⎛𝑥𝑥+1

�𝑁𝑁𝑜𝑜2
2

⎠

⎞

2

 

Similarly the density function for the symbol 1, bit 1 is associated with: 

𝑓𝑓1(𝑥𝑥) =
1

�2𝜋𝜋𝑁𝑁𝑜𝑜2
2

𝑒𝑒
−1

2
⎝

⎛𝑥𝑥−1

�𝑁𝑁𝑜𝑜2
2

⎠

⎞

2

 

So, the accumulated function is as follows: 

𝑃𝑃𝑠𝑠1(𝑋𝑋 ≤ 𝛾𝛾) = Φ

⎝

⎛𝑥𝑥 − 1

�𝑁𝑁𝑜𝑜2
2

⎠

⎞ =
1
2

⎝

⎜
⎛

1 + 𝑒𝑒𝑒𝑒𝑒𝑒

⎝

⎛𝑥𝑥 − 1

�𝑁𝑁𝑜𝑜2
2

⎠

⎞

⎠

⎟
⎞

 

𝑃𝑃𝑠𝑠2(𝑋𝑋 ≤ 𝛾𝛾) = Φ

⎝

⎛𝑥𝑥 + 1

�𝑁𝑁𝑜𝑜2
2

⎠

⎞ =
1
2

⎝

⎜
⎛

1 + 𝑒𝑒𝑒𝑒𝑒𝑒

⎝

⎛𝑥𝑥 + 1

�𝑁𝑁𝑜𝑜2
2

⎠

⎞

⎠

⎟
⎞

 

This expression get solved when y=0. 
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3.5.10. Decoder           

3.5.10.1. Introduction          

A block decoder is similar to the encoder. This block processes a sequence of bits encoded and 

decoded depending on the selected algorithm. 

3.5.10.2. Motivación elección : BCH code        

BCH codes have been used in this project. They are used in communications systems since they 

need FEC error detection and correction of errors when the received signal can be susceptible 

to error or uncertainty. 

The choice of such codes has been done for their properties of correctness of data, as well as 

easy implementation and low use of system resources. 

3.5.10.3. Mathematical formulation        

BCH decoders are implemented using a linear feedback shift register so as to retrieve the 

original values. 
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4. Simulation methodology 

This project could be implemented using various tools. Two tools have been considered: a 

hardware level implementation (DSP) at a lower level and a more theoretical implementation 

using Matlab. 

Each one have its pros and cons. Programming in a DSP board allows for a reliable prototype, 

in return requires a high programming time and material to perform the simulations [DAHNO 

2000]. The Matlab programming is a very flexible tool with lots of features that are very useful 

for validation of theoretical concepts, their weakness is that it is a programming language 

inefficient for some purposes, but efficient if programmed using matrices structures. 

The memory constraints on the computer where the simulations have been carried out are: 

Description Capacity 

Maximum possible array 127 MB (1.333e+008 bytes) 

Memory available for all arrays 582 MB (6.098e+008 bytes) 

Memory used by MATLAB 1211 MB (1.270e+009 bytes) 

Physical Memory (RAM) 3581 MB (3.755e+009 bytes) 

Table2: “Restrictions on deployment platform” 

It has chosen to use Matlab with memory constraints inherent in a DSP for implementing the 

entire system with DSP boards which requires a large infrastructure and programming time 

[AMTR 2010]. 

Under this concept, the project has been developed in three phases: 

1. Research on the field at different theoretical models. 

I have studied and consulted several books and technical papers in several journals, 

some of them appear on reference section. 

2. Implementation of a first version to validate the concepts. 

After selecting what type of system will be implemented and what kind of algorithms 

were going to be studied. It has proceeded to implement them without any memory 

restrictions or any kind of optimization. 

3. Implementation of a stable release with memory constraints inherent DSP. 

The last step in this work was to study the restrictions of an implementation in 

hardware and simulate in Matlab, allowing a code that is easily translatable to DSP in 
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the future. In order to adapt the code to memory constraints to invariant individual 

modules using methods such as using overlap-add when convolving a sequence with 

an FIR filter is needed. The overlapped-add method is based on keeping the results of 

the convolution at the end of each cap and add them to the results of convolution in 

the beginning of the buffer is as shown in Figure 32: "Overlapp-add method". 

x(n)
L L

y   (n)
M-1

0
+

y   (n)1
+

+
y   (n)2

.....

....
y   (n)
K-1

1
L+1

L+M

(k-1)·L+M

(k-1)·L+1 k·L+M

 

Figure 32: "Overlapp-add method" 

 

4.1 Simulation programming         
This simulation was done using a modular programming with infinite link allows simulations 

without memory constraints. 

At this point we will explain how it has proceeded and the type of methodology followed. 

4.1.1. Simulation structure          

The simulation consists of a structure defined by levels. 

• File "CallMain" that releases the memory used in previous simulations, the system 

includes all files in subdirectories and then calls the main function of the "Main" 

• File "Main." Central to the simulation that is responsible for: 

o Assignment of the parameters. 

o Load parameters common to the different scenarios. 

o Scenario specific. 

o Calculate and display the results of the simulation 
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• Load File parameter, initialization of variables, system components and system 

performance. 

o Load parameters of the stage. 

o Call system components: transmitter, receiver and channel. 

CallMain

AddPath Main

Set Parameters Load scenario 
parameters Scenario#i Results

Set scenario 
parameters Transmitter Channel Receiver

 

Figure 33: "Group structure functions and related functions" 

4.1.2. Directory structure          

The first level in the folder for the versioning system that follows the nomenclature "version" + 

"version number version "+"-"+" explanation if it were necessary." For example if version 12 

and the main change is that the DLL has added his name will be "version12-DLL." 
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Figure 34: "Versioning using multiple directories" 

The next level is to separate each function according t o their purpose using folders: 

• Functions in the directory are for general functions as the "Main" or "addpath." 

• In each of the directories are the specific functions of each of them: 

o Channel functions are associated with the channel. 

o Common functions. 

o Results from the simulations. 

o Transceiver functions are receiver and transmitter’s functions. 

 

Figure 35: "General structure of the directory" 

 

4.1.3. Functions’ structure          

The methodology followed consists of a generic explanation of the function implemented 

which can be accessed seeing the code or call using the help function in Matlab. 

% Call:                [ParamOutput1,ParamOutput2]=NameFunction(ParamInput1, ParamInput2); 
% Function:        Description about this function  
% Input:              ParamOutput1 -> Description of “ParamOutput1” 
%                        ParamOutput2  -> Description of “ParamOutput2” 
% Output:           ParamInput1     -> Description of “ParamInput1” 
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%                        ParamInput2     -> Description of “ParamInput2” 
% Author:            Name of the author 
% Created:          Date of creation 
% Last modified: Date of last modification 
 
function [ParamOutput1,ParamOutput2]=NameFunction(ParamInput1, ParamInput2); 
 
<body> 

Table3: “Explanation of the structure of a function " 

Note that the input parameters and output are used objects where each object has multiple 

values. Below an example of the implementation of a user transmitter. 
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5. Results 

This section shows the results coming from the work done on this project.  It starts by showing 

some SNR-BER plots, and then moving to show some outputs of each module where can be 

seen some partial results.  

The following picture compares the different implementations of the chain of DSS-CDMA 

communications. 

 

Figure 36: "SNR-BER plot of several implementation of the system in a 16-QAM constellation" 

Several conclusions are drawn from this graph. On one hand it is observed that the system is 

robust against AWGN channel with fading and static. On the other hand it is appreciated that a 

slowly fading channel BER depends on how fast this channel change over time, the faster it 

does, the higher BER gets. 

The below figure has opted for a 16-QAM (instead of QPSK) simulation in a higher SNR range, 

where the BER is lower for the same type of simulations in order to check some trends. This 

result is expected since QPSK space of each symbol is greater than 16-QAM. Indeed, the trend 

is the same as channel type is concerned in both cases, either in QPSK or in 16-QAM just 

differentiating from having a lower BER. 

SNR 

BER 



Page 78 of 97  Chain simulation of DS-CDMA communication system 
 
 

 

   

 

Figure 37: "SNR-BER plot of several implementation of the system in a 16-QAM constellation" 

 

The next step is showing the results of each one of the key modules implemented in this 

system. 

Once bits are encoded, they can be modulated in three types of modulation BPSK, QPSK and 

16-QAM. 

 

 
Figure 38: "BPSK Modulator output" 

 
Figure 39: "QPSK Modulator output" 
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Figure 40: "16-QAM Modulator output" 

These symbols are passed through the spreader in order to place them in a specific bandwidth 

associated to each user by a chip code. Below is the autocorrelation of Gold and Hadamard 

code chip. If correlation must be compared, this should be normalized by the maximum value 

that corresponds to the length of the sequence of chip. 

 
Figure 41: "First Hadamard sequence auto-

correlation having a chip length sequence of 64" 
 

Figure 42: "First Gold sequence auto-correlation having a 
chip length sequence of 63" 

 

First of all, note that the first Hadamard sequence does not have the properties of a spread 

sequence, while the Gold sequence is a spread sequence. The second one has a higher 

difference between the signal itself (central point equal to 1) and the same signal delayed; 

hence it has spread spectrum, which may randomize interferences 
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Imag 

Coef Coef 

Pos 
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All cross-correlations have been analyzed for Hadamard and Gold chip sequences of chip 

length of 64 and 63 respectively. Below, two cross-correlations for each of them where it can 

be seen that Hadamard sequences are much more robust against MAI (with an order of 

magnitude of 100) than Gold sequences in an ideal case where all signals are synchronized. 

However, if synchronization is not perfect as in our case QS-CDMA Gold sequences are more 

robust against MAI interferences. 

 

Figure 43: "Hadamard sequence cross-correlation having a chip length sequence of 64 chips from two different 
users, normalized by the maximum value of the auto-correlation of a user" 

 

 

Figure 44: "Gold sequence cross-correlation having a chip length sequence of 63 chips from two different users, 
normalized by the maximum value of the auto-correlation of a user"  
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The next step is to pass through the zero padder to prepare the signal to convolve a filter. This 
step involves an increase on its frequency. 

 

Figure 45: "Zero padder output" 

The above signal is filtered by a pulse shaper filter to modify send signal’s shape, its power 
spectrum is: 

 

Figure 46: "Power spectral density estimation using Welch estimator of the base-band signal" 

Amplitud 

Time 
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The last step is moving transmitter signal frequency to one determined by using upconverter 

to a carrier of 1.5kHz. 

 

Figure 47: "Power spectral density estimation using Welch estimator of the band-pass signal" 

Its in-phase and quad-phase components are illustrated in the figure below. These 

components tell that instant power is not constant over time because it is using 16-QAM, 

constellation which has not a constant envelope; while when using QPSK or BPSK envelope is 

constant, hence having a constant constellation symbol power. 

 

Figure 48: "Component In-phase and Quad-phase at the last point of the transmitter" 
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Time 
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Time 
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Once each signal has been generated for each transmitter, they are added in a common 

channel. Its spectral estimation is illustrated below. It shows how the sum of all user and 

channel interference produces a signal which is wider Gaussian than before. 

 

Figure 49: "Power spectral density estimation of all users summed (Fs is 5kHz)" 

The next step is oversampling the signal since we want to introduce a random delay due to the 

channel. Note that there are several harmonics introduced to the signal for this reason. This is 

one of the consequences when extrapolating that some harmonics appear. 

 

Figure 50: "Power spectral density estimation of all users summed, after oversampling" 



Page 84 of 97  Chain simulation of DS-CDMA communication system 
 
 

 

   

This signal is transmitted through a channel that alters any of its properties; a channel which is 

shared by several users. It is seen that power difference between symbols is hidden by adding 

AWGN when plotting in-phase and quad-phase components. 

 

Figure 51: "In-phase and Quad-phase components after passing through channel which has been over-sampled at 
a ratio of 1 to 6 with an SNR of 9dB" 

Below is the signal which has passed through a slow fading channel and AWGN. The effect 
introduced by oversampling and extrapolating the signal is hidden by the AWGN noise. 

 

Figure 52: "Power Spectral Density estimation of a signal after passing through a slow fading channel with 
additive noise" 

Amplitude 

Time 

Time 

Amplitude 



Chain simulation of DS-CDMA communication system   Page 85 of 97 
 
 

     

This signal is processed in a common receiver. The first step is moving the receiver band-pass 
signal to baseband, the output is shown on below figure. 

 

Figure 53: "Base-band signal received at downconverter output" 

The signal is filtered by a low pass filter reducing interference, and hence obtaining a spectrum 
with a ripple at high frequencies introduced by this low pass filter. It can be seen as noise at 
high frequencies (frequencies above 1.5kHz) is reduced considerably. 

 

Figure 54: "Base-band signal filtered by a low pass filter" 
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This signal is used to calculate when transmission using a known pilot signal sent at the start of 
communication does begin to transmit using a known reference pilot signal sent at the 
beginning of communication. It consists on peak detection using cross-correlation, as 
explained above. Below are plotted the values which gives an intuitive idea where the signal 
starts by looking where there is an increase in power. 

 

 

Figure 55: "Signal at receiver ready to start signal acquisition on synchronizer block" 

 

In this particular scenario, a change of power was applied to better distinguis transmition stage 
from non-transmittion stage. The resulting synchronization signal is amplified thanks to a 
highly configurable system which allows, among other things, to configure the associated 
power with synchronization symbols, pilot symbols and data symbols. 
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Time 
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Figure 56: "Signal at receiver ready to start acquiring synchronization" 

The above amplified signal is used to trigger the system; however this change in power does 
not affect the system since it uses a normalized correlation to trigger signal meaning that just 
affects a change in order between magnitudes. This mechanism does not depend on power 
but on the properties of the received signal. The values obtained are explained by: 

1. If there is no signal and there is just white noise, no resemblance exists. 
2. If a signal has been transmitted, synchronization resemblance is high except for some 

noise introduced by the channel. 
3. The last case is when synchronization signal has been sent, and data is being 

transmitted. This data uses chip sequences which have some resemblances; hence, 
having a considerable normalized almost constant coefficient ratio. 

 

Figure 57: "Values of cross-correlation between the known pilot signal and received signal" 
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Zooming previous figure shows how this implementation is highly reliable, however one must 
note that there are several high values due to the use of a chip. These possible errors are 
compensated by the DLL. 

 

Figure 58: "Zoom to cross-correlation values between known pilot signal and received signal" 

Once synchronization time is obtained, the signal is decimated giving each user a specific signal 
as shown in the illustrations. Note that the amplitude difference between the equalized and 
non-equalized symbols is introduced for system customization where data and pilot symbols 
have an amplification of 0.5. 

To obtain an accurate SNR, the signal and noise are measured before entering the despreader 
module to consider only the noise affecting the symbols. 

 

Figure 59: "Not equalized and equalized symbols in a 16-QAM modulation with 23 db SNR and 0 BER in a scenario 
with slow fading (fd=0.015) and additive noise" 
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Figure 60: "Not equalized and equalized symbols in a QPSK modulation with 125 db SNR and 0 BER in a scenario 
without slow fading and additive noise" 

 

Figure 61: "Not equalized and equalized symbols in a 16-QAM modulation with 125 db SNR and 0 BER in a 
scenario without slow fading and additive noise" 

Below are a few simulations in different scenarios. 

 

Figure 62: "Not equalized and equalized symbols in a QPSK modulation with 15 db SNR and 0 BER in a scenario 
without slow fading and additive noise" 
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Figure 63: "Not equalized and equalized symbols in a BPSK modulation with 32 db SNR and 0 BER in a scenario 
without slow fading and additive noise" 

Once slow fading channel is passed, soft symbols are obtained. These are scattered but are 
compensated properly with the equalizer. Note the factor fd is increase, its associated BER is 
increased over the same SNR. This is due to the system must adapt to the channel more 
quickly, hence having more error signal. 

 

Figure 64: "Not equalized and equalized symbols in a 16-QAM modulation with 23 db SNR and 0.025 BER in a 
scenario with slow fading (fd=0.05) and additive noise" 

 

Figure 65: "Not equalized and equalized symbols in a 16-QAM modulation with 23 db SNR and 0.025 BER in a 
scenario with slow fading (fd=0.1) and additive noise" 
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Figure 66: "Not equalized and equalized symbols in a 16-QAM modulation with 24 db SNR and 0.118 BER in a 
scenario with slow fading (fd=0.4) and additive noise" 

 

Figure 67: "Not equalized and equalized symbols in a 16-QAM modulation with 27 db SNR and 0.18 BER in a 
scenario with slow fading (fd=0.6) and additive noise" 

 

Figure 68: "Not equalized and equalized symbols in a 16-QAM modulation with 26 db SNR and 0.229 BER in a 
scenario with slow fading (fd=0.8) and additive noise" 

Note that the gain obtained from the spreader average 14 dB. 

The last step is to convert symbols to a sequence of bits and decode them. 
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6. Conclusion 

Objectives initially set have been achieved, but initial estimated time for completion of this 

project has deviated from the estimate. I enjoyed my time doing this project, while learning a 

lot. 

 

The main deviated factor from initial prediction has been the need to adapt the code to the 

restrictions of memory of a DSP board, as it has had to develop modules unchanged. This point 

has required great dedication and effort on my part. 

 

The differences between the simulations are mainly due to two reasons: 

• The first approach is introduced by using finite filters. 

• The other is the random nature of each simulation. 

 

The ideal channel implementations can recover the signal without any problem if inter-

symbolic interference is bounded within a certain margin.  However, when using a slowly 

fading channel is necessary to introduce an equalizer to compensate for this. This equalizer 

uses information from an adjacent channel frequency with a known sequence to estimate the 

effect of the channel. 

 

Another key point in this project has been the acquisition of signal using a standard correlator 

allows a parameter completely independent of the power used in the receiver. 

 

On a personal level this work has allowed me to develop into the theory and implementation 
of a modular system based on CDMA. In addition to the technical side, this project has 
consolidated much of the knowledge acquired during the career.  
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7. Future work lines 

Although work on this project allows for a wide System Configuration, there are several future 

works that have not been pursued by economic or time constraints. Here are two main steps 

can be taken to continue the work on this project. 

1. System implementation in DSP hardware boards 

The next step in continuing this project is to conduct a more practical implementation 

of the system analyzed in this project. This will require translating the C and assembler 

code when necessary. 

• Conversion of C code 

The system has been implemented in MATLAB but have been scheduled taking 

into account the memory constraints inherent in a DSP board. This system is 

unable to deal with problems arising from stacks since Matlab is a high-level 

language that allows the use of low-level programming pointers. The stack is 

an abstract data type and its structure is based on the principle of Last-In-First-

Out (LIFO). 

• Bottleneck Optimization (loops) 

A key point is the optimization of the key points, bottlenecks; the code for the 

application can run in real time. Possible elements that must be optimized are 

the cosines, sinus and other intensive operations such as convolution. There 

are a variety of standard measures that developers can take to reduce the 

complexity of these operations in C and the use of intrinsic functions that are 

designed to optimize the resources of the DSP board, boards search, compiler 

options, and algorithm improvements. 

o Using intrinsic functions of the DSP board 

As mentioned previously there are features specifically designed and 

optimized for DSP, are called intrinsic functions. They have been 

programmed in assembly language and need much less time to be 

executed that implemented in C. 

o Conversion to assembly code 

The function should be optimized in assembler restrictive where there is 

an intrinsic function of a bottleneck. 
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o Software pipeline  

The C compiler pipeline software used to organize the statements inside 

the loops so that more than one instruction can be executed in parallel. 

Unfortunately, not all loops can be optimized by software pipeline. For 

example, loops that contain conditional statements (branches) may not be 

channeled. 

2. Implementation of new algorithms in Matlab. 

This system allows new algorithms to check each of the components that can range 

from a new coding, modulation, different pulse modulated, new signal acquisition 

algorithms or modeling of other channel types.  
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