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Abstract

Implementing Privacy-Preserving Filters in the MOA

Stream Mining Framework

by David Mart́ınez Rodŕıguez

Data mining enables a better understanding of human and natural processes by analyzing

massive amounts of data with machine learning algorithms. Stream mining is a process

that allows us to discover knowledge in data when it comes in the form of a continuous

stream. MOA, initials for Massive Online Analysis, is an open source data stream mining

framework, developed at the University of Waikato, New Zealand. One of the available

features in MOA is the use of filters, which can process streaming data before or after

being fed to other subsystems, such as machine learning algorithms.

Although data science has brought us many benefits, because the data being analyzed

is often personal and sensitive, we face the threat of losing our privacy. Statistical Dis-

closure Control (SDC) deals with controlling that information about specific individuals

is not extracted from released datasets, whilst maintaining the statistical significance of

the masked data. By applying SDC techniques to data, disclosure is prevented, thus

effectively protecting the privacy of the data owners.

Four MOA privacy-preserving filters have been developed in this project, which im-

plement the following SDC methods: noise addition, microaggregation, data rank

swapping and differentially private microaggregation. Each of the algorithms has

been adapted from well-known solutions in order to enable their utilization for stream

processing tasks. Finally, the filters have been benchmarked to assess their quality in

terms of two important SDC measurments: disclosure risk and information loss.
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Resum

Implementing Privacy-Preserving Filters in the MOA

Stream Mining Framework

per David Mart́ınez Rodŕıguez

La mineria de dades ens ajuda a entendre millor els processos antropogènics i nat-

urals, analitzant quantitats massives de dades, mitjançant algorismes d’aprenentatge

automàtic. La mineria de fluxos de dades és un paradigma d’anàlisi que ens permet

extreure coneixement de les dades quan són rebudes en forma d’un flux continu. El

paquet de programari MOA, de l’anglès Massive Online Analysis, és un entorn de mine-

ria de fluxos de codi obert, desenvolupat a la Universitat de Waikato, a Nova Zelanda.

Una de les funcionalitats de MOA és la possibilitat d’utilitzar filtres, els quals processen

les dades en flux abans o després de ser redirigides cap a altres sub-sistemes, com ara

algorismes d’aprenentatge automàtic.

Tot i que la mineria de dades ens aporta molts beneficis, les dades que s’analitzen són,

sovint, personals i sensibles. Ens trobem, doncs, davant d’un escenari en el que la

nostra privacitat està en perill. L’SDC, de l’anglès Statistical Disclosure Control, és un

camp que estudia mecanismes per controlar que la informació d’un individu espećıfic

no sigui extreta dels conjunts de dades publicades, alhora que s’intenta preservar la

utilitat estad́ıstica de les dades emmascarades. Aplicant tècniques d’SDC, s’impedeix la

re-identificació dels individus, protegint, per tant, la privacitat dels mateixos.

En aquest projecte s’han desenvolupat quatre filtres de preservació de la privacitat per

l’entorn MOA, que implementen els següents mètodes d’SDC: addició de soroll, mi-

croagregació, intercanvi de rangs i microagregació de privacitat diferencial.

Cadascun dels algorismes ha estat adaptat d’algun mètode ja conegut, en ús, per habil-

itar la seva utilització per a tasques de processament de fluxos. Finalment, tots quatre

filtres han estat avaluats respecte de dues mesures molt importants en l’àmbit de l’SDC:

el risc de revelació i la pèrdua d’informació.
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Resumen

Implementing Privacy-Preserving Filters in the MOA

Stream Mining Framework

por David Mart́ınez Rodŕıguez

La mineŕıa de datos nos ayuda a entender mejor los procesos antropogénicos y natu-

rales, analizando cantidades masivas de datos, mediante algoritmos de aprendizaje au-

tomático. La mineŕıa de flujos datos es un paradigma de análisis que nos permite extraer

conocimiento de los datos, cuando éstos son recibidos en forma de un flujo continuo. El

paquete de software MOA, del inglés Massive Online Analysis, es un entorno de mineŕıa

de flujos de código abierto, desarrollado en la Universidad de Waikato, Nueva Zelanda.

Una de las funcionalidades de MOA es la posibilidad de utilizar filtros, los cuales proce-

san los datos de los flujos antes o después de ser redirigidos hacia otros subsistemas,

como los algoritmos de aprendizaje automático.

Aunque la mineŕıa de datos nos aporta muchos beneficios, los datos que se analizan

son frecuentemente personales y sensibles. Nos encontramos, pues, ante un escenario

en el que nuestra privacidad está en peligro. El campo de SDC, del inglés Statistical

Disclosure Control, estudia los mecanismos para controlar que la información de un

individuo espećıfico no se extraiga de los conjuntos de datos publicados, a la vez que se

intenta maximizar la utilidad estad́ıstica de los datos enmascarados. Aplicando técnicas

de SDC, se impide la re-identificación de los individuos, protegiendo, por lo tanto, la

privacidad de los mismos.

En este proyecto se han desarrollado cuatro filtros de preservación de la privacidad

para el entorno MOA, que implementan los siguientes métodos de SDC: adición de

ruido, microagregación, intercanvio de rangos y microagregación de privaci-

dad diferencial. Cada uno de los algoritmos ha sido adaptado de algun método ya

conocido y en uso, para habilitar su utilización para tareas de procesamiento de flujos.

Finalmente, los cuatro filtros se han evauado respecto dos medidas muy importantes en

el ámbito del SDC: el riesgo de revelación y la pérdida de información.
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Chapter 1

Introduction

What follows is a brief introduction to the project under review in this report and its

context, in a broad sense. The structure of this document is also outlined in the last

section of this chapter.

1.1 Context

An overview is now given of the two main concepts that, when combined, drive the

motivation behind the inception and development of this project.

1.1.1 Data mining

Information society produces vast amounts of data all over the world. This data comes

from innumerable sources and in diverse formats, and has been stored for years in data

warehouses, waiting to be processed. With the continuous increase in computing power,

due to the recent advances in software and hardware technologies, the machine learning

field, also known as data science, has arisen, allowing us to exploit this stored data and

extract knowledge from it.

Data science is, indeed, a holistic process, where many different disciplines are involved,

from data acquisition and storage, through its selection, filtering and analysis up to

knowledge extraction, visualization and discovery.

Data science enables a better understanding of human or natural processes and pro-

vides us with means to identify trends, predict future events or discover useful patterns.

Its uses range from scientific and medical applications to social sciences or business

administration [1].

1
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Figure 1.1: Data mining as a process. Adapted from Fayyad et al. [1]

1.1.1.1 Facing the limits

Despite lots of efforts are put into enhancing different data mining processes, there still

are many cases where these techniques fail to perform well, mainly because of the scale

of the problems that we face nowadays.

On the one hand, traditional data mining workflows cannot cope with the really massive

data sets that are available nowadays, if performed on a common infrastructure. To

solve this issue, clusters of hundreds or thousands of computers are used to run such

analysis. It is costly and complex but, doing so, we can mine amounts of data in a way

that was unthinkable some time ago.

On the other hand, we face another type of scaling problem. In some situations, data

acquisition throughput is so high that it cannot be stored anyway, so another approach

is needed to avoid this loss of information, because we still want to analyze it to extract

knowledge from it. Both these scenarios are addressed with a series of techniques known

as stream mining.

1.1.1.2 Stream mining

Stream mining or data stream mining is a process that allows us to still discover knowl-

edge and patterns in data, even when it comes in the form of a continuous stream, or

many of them [2]. Instead of processing all statically stored data, like traditional data

mining does, a relatively small portion of it is kept during the analysis, and it is updated

when needed - either because more resources are available to the system or because new

data is acquired. A more deeper review of this research area is given in 2.1.
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1.1.2 Privacy

Privacy is a concept that can be defined as the ability of an individual or group to

seclude1 themselves, or information about themselves, and thereby express themselves

selectively. It is understood differently depending on the social and cultural background

of each individual, but it is in fact recognised as one of the most fundamental rights of

our human nature. The Universal Declaration of Human Rights’ 12th article [4] states

that:

No one shall be subjected to arbitrary interference with his privacy, family,

home or correspondence, nor to attacks upon his honour and reputation.

Everyone has the right to the protection of the law against such interference

or attacks.

This right has been continuously violated ever since information exchange and advanced

communication technologies have been developed. Despite this did not begin with the

spread of the Internet, its adoption has greatly magnified both the ability to breach

people’s privacy and the impact that these breaches have. A more thorough analysis of

privacy and its interrelations with society and technology is given in Section 4.1.

1.1.3 Privacy Preserving Data Mining

Nowadays, data mining technologies have become a relevant debate topic, concerning

what information is collected from individuals, who owns it and what are the purposes

behind its gathering. Information technologies deliver us many benefits at many levels -

safer streets, cheaper communications, better health systems, more convenient shopping

- but at the high cost of losing our privacy.

Knowledge discovery processes need data to work and, in most cases, it is sensitive and

personal. Moreover, it is massively collected, stored and analyzed without the users

consent. Besides this lack of consent in the data acquisition stage of the process, data

mining poses a bigger thread on individuals: information disclosure. Sensitive data

must be treated accordingly, which involves not only good IT security practices to avoid

information leaks, but a responsible treatment when research results are published.

1.1.3.1 Statistical Disclosure Control

Statistical Disclosure Control (SDC) is the name that the statistical community has given

to what the data mining community calls Privacy Preserving Data Mining (PPDM). This

1“Seclusion is the act of placing or keeping someone away from other people.” [3]
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field, whatever its preferred name is, deals with controlling that information about spe-

cific individuals is not extracted from statistical summary results. Also, if full datasets

are to be released, SDC methods should be applied to data in order to preserve user’s pri-

vacy, whilst maintaining the statistical significance of it, i. e., the amount of information

- knowledge - that this data can provide.

1.2 The project: moa-ppsm

Having reviewed the main concepts to which this project is related to, we can now outline

its main purpose, once we take a closer look to the technical environment in which it

will be developed.

1.2.1 MOA

MOA, initials for Massive Online Analysis, is an open source framework for data stream

mining [5], originally developed at the University of Waikato, New Zealand. It includes

several machine learning algorithms2 to perform the analysis and tools to evaluate the

quality of the results. It also deals with a problem known as concept drift3. It is related

to the well known and commonly used Weka4 package, but it is built to perform at a

greater scale for more demanding problems.

Figure 1.2: Massive Online Analysis logo.

1.2.1.1 MOA filters

One of the available features in MOA is the use of filters, which can process streaming

data before or after being fed to other systems or algorithms, such as learners or file

2Algorithms used to perform the actual data mining analysis (the “machine learning & visualization”
step on Figure 1.1) belong to the field of machine learning. In MOA, clustering, classification, regression,
outlier detection and recommender systems are available.

3It is said of statistical properties of a target variable being analyed, when they change over time in
unforeseen ways.

4Weka is a popular software package including classical data mining algorithms, this is, not stream
mining. It is also developed at the University of Waikato. [6]
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writers. However, few filters are currently shipped within the latest MOA distribution,

namely a filter to replace missing values5 and a filter that adds noise to data.

1.2.1.2 MOA extensions

When working with MOA, the environment consists of the core library, but extensions

can be used to enhance the existing methods or to provide additional features, based

on the core tools that MOA already provides. A series of extensions have been de-

veloped and can be found on MOA’s website, at http://moa.cms.waikato.ac.nz/

moa-extensions.

1.2.2 The project in a nutshell

Summing up, the aim of this project is to implement privacy preserving filters for

the MOA stream mining framework. This is, adapt some well-known SDC methods

to a stream mining environment and, more precisely, to the MOA software framework,

in the form of a MOA extension.

1.3 Report structure

The structure of this report gives an overview of the development process of the project,

from the theoretical foundations that are necessary to understand the work to the final

results and conclusions.

Chapter 2 covers the theory basis behind the SDC methods implemented in the project

and provides some insights on different stream mining approaches. Chapter 3 discusses

state of the art solutions concerning SDC for static databases (not streaming data).

Chapter 4 analyzes more thoroughly the motivation behind privacy-preserving data min-

ing by discussing practical questions like the relationship between society and privacy

or the legal framework that applies to the context of this project. Project management

is layed out in Chapter 5 and then the report turns to more technical related topics,

such as implementation details and desgin decisions, covered in Chapter 6, as well as

benchmarking, in Chapter 7. Finally, the report and project conclusions are given in

Chapter 8, covering both achievements and possible future work.

5In statistics, missing data, or missing values, occur when no data value is stored for the variable in an
observation. Missing data are a common occurrence and can have a significant effect on the conclusions
that can be drawn from the data.

http://moa.cms.waikato.ac.nz/moa-extensions
http://moa.cms.waikato.ac.nz/moa-extensions
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Theoretical framework

Before reviewing the state of the art and compare existing solutions to this project, to

better understand the contribution of this work, we will provide now an introductory

overview of the theoretical concepts related to this project on stream mining and privacy

preserving data mining mechanisms.

2.1 Stream Mining

Data stream mining is a relatively new field. Even though its theoretical foundation is

based in well-established statistical and computational approaches, it has not been until

recent years that this research area has experimented a great growth in interest.

The main problem when dealing with streaming data is the high throughput of data be-

ing analyzed, under computational resources constraints. Variable data rates is another

problem that has to be addressed too. Once these problems are resolved, the same kind

of data mining analysis as in the case of batch data processing are available: classifi-

cation, regression or clustering tasks, as well as outlier detection and recommendation

systems. We will not cover these techniques here, because they are not related to this

project, by themselves. Instead, we will have a look at some different stream mining

solutions, because their working principles do affect the way the project’s algorithms

will be implemented.

2.1.1 Stream mining approaches

Solutions provided in this field can be categorized into data-based and task-based ones [7],

depending on their approach.

6
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Figure 2.1: Processing a data stream using a sliding window approach. In the figure,
N is the size of the sliding window, in terms of the number of samples of the stream

being stored, whereas M is the number of attributes of the samples in the stream.

Data-based stream mining solutions

The idea behind these solutions is to use a subset of the original dataset to perform the

required analyses. Diverse techniques that have been used in this sense can further be

split into two more categories:

• Sampling methods: either by randomly picking samples of the data stream or

by randomly selecting chunks (subsets) of the stream, sampling methods discard

part of the incoming data, while performing the knowledge discovery processes

with the sampled data. The main problem with this approach is that is hard to

know when to pick a sample or which records should be stored, because there is

no previous knowledge of the dataset size or its information structure.

• Summarizing methods: they use aggregated data or calculated statistical mea-

sures (that are continuously recalculated) to provide the information needed for

the data mining algorithms. In this case, it is the loss of information and accu-

racy and the inability to control data distribution fluctuations what renders these

methods not so usable as it was desired.

Task-based stream mining solutions

The solutions that fall into this category are based not on performing data transforma-

tions, but on changing the data mining methods to enable their use on data streams.

• Approximation algorithms: these are a kind of algorithms that are designed

to solve computationally hard problems, by giving an approximate result. Instead

of computing exact solutions, they just guarantee a certain error bound. The

problem with these methods is, again, the high received data throughput, which
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they cannot cope as well. Additional tooling is therefore needed if one wishes to

use them.

• Sliding window method: this method, a common pattern in many online1

applications, maintains a sliding window in which the most recent data is kept.

As data is received from the incoming streams, this window “advances” so new

observations are kept inside, as can be seen in Figure 2.1. The data mining analyses

are then performed using the data available inside the window and summarized

versions of the older records, in the form of statistical measures or aggregated data.

This particular method is the one that the MOA package uses - thus its name:

Massive Online Analysis. This solution scheme enables dealing with concept drift,

which would not be possible if just aggregated data was used.

• Algorithm output granularity: this method is a resource-aware data analy-

sis approach that can perform the local analysis on resource constrained devices,

by adapting to resource availability and data stream rates - when resources are

completely running out, the results are merged and stored.

2.2 Statistical Disclosure Control

As was already introduced in Section 1.1.3, the purpose of Statistical Disclosure Control

(SDC) is to prevent confidential information from being linked to specific individuals to

whom this data belongs. We will review now some concepts related to data disclosure

and SDC methods and some theoretical foundations.

2.2.1 Privacy preserving algorithms

As a quick and superficial review, the algorithms2 being used nowadays to achieve ef-

fective privacy preserving in datasets can be categorized into the following groups [8]:

• Non-perturbative data masking: these kind of methods do not perform data values

transformations. Instead, they are based in partial suppressions of records or

reductions of detail of the datasets. Some examples are:

– Sampling

– Global recoding

1In computer science, an online algorithm is one that can process its input piece-by-piece in a serial
fashion, i.e., in the order that the input is fed to the algorithm, without having the entire input available
from the start.

2We will not cover every algorithm in detail, because some of them are not included in the scope of
this project.
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– Top and bottom coding

– Local suppression

• Perturbative data masking: these methods do release the whole dataset, if required,

but it is perturbed, this is, values are changed by adding them noise. This way,

records are diffused and reidentifying individuals is harder. Some examples are:

– Noise masking

– Micro-aggregation

– Rank swapping

– Data shuffling

– Rounding

– Re-sampling

– PRAM

– MASSC

2.2.2 Definitions of disclosure

When assessing the disclosure risks of a given dataset (or data stream) we must have a

look at the different kind of variables this data is composed of. We will stick to a clas-

sic [9] categorization of such attributes into three groups, which need not be disjunctive,

as follows:

• Identifiers: variables that precisely identify individuals, e.g., social insurance

numbers, person names, or addresses.

• Quasi-identifiers: a set of variables that, when considered together, can be used

to identify individual units. It might be possible to, for example, identify people

by combining variables such as gender, age, region and occupation.

• Non-identifying variables: these are neither identifiers nor quasi-identifiers.

Concerning disclosure, it is also defined differently depending on the type of privacy

breach that has occurred:

• We talk about identity disclosure when a specific individual record can be recog-

nised in a dataset, i.e., when linkage with external available data is possible. Iden-

tity disclosure is performed using direct identifiers, rare combinations of values

in quasi-identifier attributes and exact knowledge of variable values in external

databases.
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• In the case of attribute disclosure, the intruder is able to gather sensitive informa-

tion about a specific unit from the released data, where it is directly available. For

example, if no perturbation is applied to the original values of the wages variable,

one could learn how much a person is earning if its identity is disclosed too.

• Inferential disclosure, the most general case, occurs when an intruder is able to,

with some uncertainty, predict or infer confidential information about an individ-

ual from the statistical properties of data.

It is important to remark that a subset of critical variables might be exploited to disclose

every information about a single unit in a dataset. Thus, we are bound to carefully

select which variables of the dataset might be released to further users of the data, while

trying to maximize its statistical utility. More concretely, it is extremely important

to not release identifiers and to analyze quasi-identifiers closely, in order to avoid

information leaks and privacy breaches.

2.2.3 Disclosure Risk

Concerning the safety of the released data, Disclosure Risk (DR) is a common way to

measure and assess the risk of re-identification of particular individuals. Re-identification

happens when some sensitive and confidential data that have been released are subse-

quently linked to a particular individual, which results in a confidentiality breach. There

are a number of different approaches in how to assess disclosure risk and whether to mea-

sure it per record or globally, taking into account the whole dataset.

As noted in [10], there is not much literature on disclosure risk that can be used for a

broad class of perturbative methods; disclosure risk measures tend instead to be method-

specific. Therefore, empirical methods are most used to assess disclosure risk for these

kind of methods.

2.2.3.1 Record linkage

Most notably, the mechanisms used to measure disclosure risk follow a record linkage ap-

proach. This is, after an SDC method has been used to anonymize data, a record linkage

procedure is applied to the original and released (masked, anonymized) datasets. This

linkage attempts to identify, for each record in the masked dataset, which is the corre-

sponding record in the original dataset. If such correspondance is verified, the record

is labeled as correctly linked. A generic measure for disclosure risk is the percentage of

correctly linked records from the total amount in the dataset.
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• Distance-based record linkage: provided that a distance measure can be de-

fined between the original and the masked datasets, linkage is performed as fol-

lows: for each record in the anonymized dataset, a distance to each record in

the original dataset is calculated. The nearest record, in terms of this distance

measurement, is assumed to be the corresponding record, thus establishing a link

between them. This linkage is then verified to assess how many of these guesses

are true re-identifications.

• Probabilistic record linkage: in this case, the matching algoritm works a little

different. For each possible pair of original and masked records, a coincidence

vector is defined. This vector holds, for each attribute, whether or not the values

of the considered records are equal. An index is computed afterwards over these

vectors and, using such index, the records pairs are classified as linked or not linked.

Again, this linkage is verified to assess the number of true re-identifications.

2.2.4 Information Loss

Another key measurement concerning data protection is Information Loss (IL) or

data utility, which could be defined as the amount of useful statistical information that

is lost along the data masking process. A good SDC method should try to minimize

IL, in order to provide optimally useful data to the legitimate users of such data, while

also keeping a low disclosure risk. It is important to note that these two properties are

inversely proportional: the lower disclosure risk is, the higher information loss will occur.

This trade off between these two parameters is often a difficult and challenging task and

should be taken into very careful consideration, depending on the release policies that

apply, the kind of data being released and the sensitivity of the information contained

in such data. This evaluation should be performed not only from a purely quantitave

and numerical point of view, but from an ethical and privacy concerned one too.

As well as with disclosure risk, a number of methods and approaches are taken to assess

information loss when releasing privacy protected datasets, ranging from unbounded [11]

to probabilistic (bound to the [0, 1] interval) measurements [12].

Unbounded Information Loss

An example framework to assess IL was given in [11], which evaluates some key sta-

tistical properties of the released data. More concretely, it computes three discrepancy

measurements for a series of pairs of matrices (correlation, covariance, etc. of the origi-

nal and masked datasets), namely the mean square error, the mean absolute error and

the mean variation.
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Probabilistic Information Loss

The aim of measuring IL in a probabilistic manner is to bound this measurement to

the [0, 1] range, thus allowing its comparison with DR, which is also generally expressed

within this range. This way, a score could be calculated from both normalized measures

for an SDC method, easing parameters selection to data protectors, for example.

2.2.5 Privacy guarantees

Many different methods have been developed to help prevent information disclosure when

data mining datasets or results are released. These algorithms pursue the generation of

results or data that have particular properties concerning privacy preservation. Some of

the desirable properties of privacy-protected data are described in the following sections,

but no formal definition is provided for some of them (please refer to the original papers

and publications to understand them better).

2.2.5.1 k-Anonymity

First described in 2002, by Latanya Sweeney, a release of data is said to have the k-

anonymity property if the information for each person contained in the release cannot

be distinguished from at least k − 1 individuals whose information also appears in the

release [13]. A more formal definition uses the previously reviewed concept of quasi-

identifiers (see Section 2.2.2).

Definition 2.1. (k-Anonymity)

A dataset is said to satisfy k-anonymity for an integer k > 1 if, for each combina-

tion of values of quasi-identifiers, at least k records exist in the dataset sharing that

combination. [14]

An intruder trying to use a k-anonymous dataset to do, for example, record linkage

against an external source of information will find that at least k records in the dataset

match any value of the quasi-identifiers that he or she is trying to use to perform the

linkage. Thus, re-identification is limited to groups, this is, no individual records can be

linked, just groups of size at least k.

2.2.5.2 l-Diversity

The evolution of the concept of k-anonymity is l-diversity and adds further privacy

preservation by adding intra-group diversity, so to avoid the flaws of the k-anonymity

privacy model [15].
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2.2.5.3 t-Closeness

Further on, the t-closeness property definition adds attribute-based privacy enforcement

to the l-diversity model: to better preserve privacy, all values (all observations) from a

particular attribute must not be too much different - instead, they should be close up

to a certain threshold [16]. This is needed to preserve the privacy of those records that

are more easily identifiable because their attribute values are more distinguishable.

2.2.5.4 Differential Privacy

Described in Dwork [17], differential privacy is a condition on the release mechanism

(not the dataset) that guarantees a strong privacy preservation level for some particular

data uses contexts. Differential privacy is introduced in an interactive setting, i.e., in a

query-response data retrieval environment, and offers probabilistic guarantees that the

contribution of any single individual to thenquery response is limited.

Definition 2.2. (ε-Differential privacy)

A randomized mechanism3 M gives ε-differential privacy if, for all datasets X1, X2

such that one can be obtained from the other by modifying a single record, and all

S ⊂ Range(M), it holds

P (M(X1) ∈ S) ≤ exp(ε)× P (M(X2) ∈ S) (2.1)

This definition, cited from Soria-Comas et al. [14], easier to understand than the original

one given in Dwork [17], states that, given an ε-differential privacy mechanism M and

any possible output r, the presence or abscence of a participant (in terms of the dataset,

a row) will cause at most a multiplicative eε change in the probability of the mechanism

to output a response r.

2.3 SDC methods

We will describe now some of the most common methods and mechanisms used in SDC

applications to anonymize data or provide privacy preserving data releases.

Notation

We assume the following notation for the subsequent method descriptions:

3By mechanism, we refer to any kind of function or system used to query for data.



Theoretical framework 14

• The original dataset is the matrix X, with n rows (samples) and m attributes or

variables. Therefore, the xij element of the dataset denotes the value that the j-th

attribute takes in the i-th row for any 1 ≤ i ≤ n and 1 ≤ j ≤ m.

• The anonymized (protected) dataset is named X ′.

2.3.1 Noise Addition

Noise addition or additive noise masking is a fairly simple method that is based on the

addition of gaussian noise to data, thus randomly distorting its values and difficulting

re-identification of individuals. The main additive noise algorithms in the literature

are [8, p. 54]:

• Uncorrelated noise addition.

• Correlated noise addition.

• Noise addition and linear transformation.

• Noise addition and non-linear transformation.

We will only cover the first couple of methods, because of the inherent difficulty of the

latter, both in its theoretical basis and its practical implementation, which renders them

not suitable for the needs of this project.

2.3.1.1 Uncorrelated noise addition

Masking by additive noise the j-th variable of an original datasetX yields an anonymized

dataset X ′ such that

x′ij = xij + ε for 1 ≤ i ≤ n (2.2)

where ε is drawn from a random variable εj ∼ N(0, σ2
εj ). The general assumption is

that the variances of each εj are proportional to those of the original variables, this is,

if Var(Xj) = σ2
j is the variance of the j-th attibute of the dataset X, then σ2

εj := ασ2
j .

While this method preserves means and covariances, it is, unfortunately, not able to

preserve variances nor correlation coefficients.
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2.3.1.2 Correlated noise addition

This method is aimed to also preserve correlation coefficients, with respect to uncor-

related noise addition. The main difference with the previous mechanism is that the

covariance matrix of the errors is now proportional to the covariance matrix of the data:

ε ∼ N(0,Σε), where Σε = αΣ.

Masking by correlated noise addition provides data with higher analytical utility than

masking using uncorrelated noise, as long as α is revealed to the data user. However,

the low level of protection yielded by this method and the previous one render them as

not very useful for truly important SDC applications.

2.3.2 Microaggregation

Originally described for continuous (numerical) data, microaggregation is a family of

SDC methods that, in the most general form, consist of making homogeneous groups of

k or more individuals (rows) from within the X dataset to later replace their values with

aggregated ones, this is, averages, computed on the groups themselves. These grouped

and aggregated records conform the resulting X ′ release dataset.

Two main approaches are taken when considering microaggregation techniques: uni-

variate and multivariate microaggregation. The difference remains in the number of

variables used to perform the clustering phase of the method: a single variable and

multiple attributes, correspondingly. As can be assessed in the literature, the univariate

approach causes either a very high information loss or a very high disclosure risk, thus

not being appropriate for normal SDC uses [8, p. 63]. On the other hand, multivariate

microaggregation, proposed by Domingo-Ferrer and Mateo-Sanz [18], is considered an

excellent protection method and, as such, we will focus on this approach.

It is important to note that this family of techniques are directly related to k-anonymity,

as proved in Domingo-Ferrer and Torra [19].

2.3.2.1 Partition

The first and most computational complex task to do in a microaggregation method is

to partition the dataset into g groups of size at least k > 1, which is, indeed, a clustering

task. This proves to be quite difficult, but an optimal solution approximation with

respect to information loss was already given in [19] and further refined in Domingo-

Ferrer et al. [20].

The aim of these partition methods is to find the optimal k-partition that maximizes

within-group homogeneity. Following Domingo-Ferrer and Mateo-Sanz [18], a practical
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information loss measure for microaggregation, relatively common in the clustering lit-

erature, is the ratio of within-group homogeneity over the total sum of squares (the sum

of within and between group homogeneity)

L =
SSE

SST
(2.3)

The within-group homogeneity (SSE) is defined as

SSE =

g∑
i=1

ni∑
j=1

(xij − x̄i)
2 (2.4)

where g denotes the total number of groups of ni elements each and x̄i denotes the i-th

group centroid. The between-groups sum of squares, SSA, is

SSA =

g∑
i=1

ni(x̄i − x̄)2 (2.5)

where x̄ is the average vector over the whole dataset. The total sum of squares is, then,

SST = SSE + SSA.

Because microaggregation replaces values in a group by the group centroid, if we re-

call Equation 2.3, it follows that the higher the within-group homogeneity, the lower the

information loss is. Both the MDAV [19] (Maximum Distance to Average Vector) and

µ-Approx [20] algorithms are built to partition the dataset into groups, while minimizing

information loss, exploiting the previous theoretical result.

2.3.2.2 Aggregation

The aggregation step is the simplest of the ones that take place in a microaggregation

setting: for each group g of at least k records and for each attribute 1 ≤ j ≤ m, an

aggregate γ is computed among the values of the j-th variable for the records in the

group. This aggregate is then imputed to each record for its j-th attribute.

Concerning the types of variables that are aggregated [19]:

• Continuous attributes: the aggregated value correponds with the arithmetical

mean of the selected values.

• Categorical attributes: the aggregated value should either be the median or

the mode of the selected values.
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2.3.3 Rank Swapping

Also a fairly simple SDC method, the basic idea behind data swapping and its refinement,

rank swapping, is to transform a dataset by exchanging values of confidential variables

in such a way that marginals are maintained. The method works as follows:

First, values of a variable j are ranked in ascending order, this is, they are sorted. Each

ranked value is then swapped with another ranked value, randomly chosen within a

restricted range. This range is controlled by an input parameter p, normally denoting

that swapped values cannot differ more than p% of the total number of records. This

procedure is applied for every variable in the dataset.

2.3.4 Laplace Mechanism

We recall now the context of differential privacy to discuss a relatively extended method

that is designed to achieve this privacy preserving guarantee. However, this technique is

restricted to a particular family of data release functions. More precisely, it can only be

applied to functions that provide a numerical answer, like counting queries, for example.

To understand this method, called Laplace mechanism, we must review first the concept

of global sensitivity of a function.

Definition 2.3. (Neighbour datasets)

Given two datasets from a universe of datasets, D1, D2 ∈ D, we call them neighbours if

they differ in just one record, which we indicate using the notation |D1∆D2| = 1.

Definition 2.4. (Global Sensitivity of a function)

We define the global sensitivity of a numerical function f : D → Rw, with w ∈ N+, over

the universe of datasets D, as

∆(f) = max
D1,D2 ∈ D
|D1∆D2| = 1

‖f(D1)− f(D2)‖1 (2.6)

As we will now see, the Laplace mechanism is just a noise addition masking method,

where the sensitivity of the release function f drives the amount of noise being added

to the response of f : the higher the sensitivity of the function, the higher the amount

of noise added. If f is applied to a dataset D1 and then to a neighboring dataset D2,

if f changes a lot, it means that we will have to add more noise to probably obtain the

same output.

Definition 2.5. (Laplace mechanism)

Given a database D ∈ D and a function f : D → Rw, with w ∈ N+ and global sensitivity
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∆, an ε-differential privacy mechanism M for releasing f is to publish

M(D) = f(D) + L (2.7)

where L is a vector of random variables each drawn from a Laplace distribution Lap(0, ∆(f)
ε ).

This mechanism ensures that ε-differential privacy is achieved for the release function

f , as can be assessed in Leoni [21] and Soria-Comas et al. [14].

Laplace distribution

On a quick note to understand the kind of noise being added through the Laplace

mechanism, a Laplace distribution Lap(µ, b) has location µ (which could be understood

as the mean or the location of the peak of the PDF of the distribution) and scale

parameter b. This last parameter is the one used to adjust the amount of perturbation

the data or release method will receive.

Figure 2.2: Laplace distribution probability density function (PDF). Source:
Wikipedia [22]

The density function of the Laplace noise, also called double exponential, is

P (x|µ, b) =
1

2b
exp(−|x− µ|

b
) (2.8)



Chapter 3

State of the art

This chapter gives further insights concerning the latest discoveries and cutting-edge

technological solutions related to the main knowledge fields that affect this project:

data stream mining and statistical disclosure control.

3.1 Stream mining software

Data stream mining is a relatively new field. Even though its theoretical foundation is

based in well-established statistical and computational approaches, it has not been until

recent years that this research area has experimented a great growth in interest Gaber

[7].

Because it is an incipient field, stream mining software packages are quite uncommon.

Even though specific applications have been developed (see Kargupta [41]), MOA re-

mains as one of the few generic, free and open sourced systems. One example of a com-

mercial solution that includes support for data stream mining is RapidMiner, through

the use of plugins.

MOA is currently the most complete framework for data stream clustering research

and it is an important pioneer in experimenting with data stream algorithms. MOA’s

advantages are that it interfaces with WEKA, provides already a set of data stream

classification and clustering algorithms and it has a clear Java interface to add new

algorithms or use the existing algorithms in other applications.

Related to MOA, a new project called SAMOA (from Scalable Advanced Massive On-

line Analysis) is being developed too, based on MOA itself and a couple of streaming

processing engines: Apache S4 [46] and Apache Storm [47], developed by the Apache

Software Foundation.

19
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Figure 3.1: MOA’s Graphical User Interface, showing the clustering visualization
capabilities of the software.

Finally, an R package called stream was released into the CRAN repository1 in 2013. It

allows to do real time analytics on data streams and is currently focused on clustering

algorithms available in MOA.

3.1.1 The MOA framework

Massive Online Analysis (MOA) is a software environment for implementing algorithms

and running experiments for online learning from evolving data streams. MOA is de-

signed to deal with the challenging problems of scaling up the implementation of state

of the art algorithms to real world dataset sizes and of making algorithms comparable

in benchmark streaming settings.

MOA contains a collection of offline and online algorithms for both classification and

clustering as well as tools for evaluation. Researchers benefit from MOA by getting

insights into workings and problems of different approaches, practitioners can easily

compare several algorithms and apply them to real world data sets and settings.

MOA supports bi-directional interaction with WEKA, the Waikato Environment for

Knowledge Analysis, which is an award-winning open-source workbench containing im-

plementations of a wide range of batch machine learning methods. WEKA is also written

in Java. The main benefits of Java are portability, where applications can be run on any

1The capabilities of the R language are extended through user-created packages. Most of these
packages are available at the Comprehensive R Archive Network (CRAN), on the following web address:
http://cran.r-project.org.

http://cran.r-project.org
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platform with an appropriate Java virtual machine, and the strong and well-developed

support libraries. Use of the language is widespread, and features such as the automatic

garbage collection help to reduce programmer burden and error.

The MOA framework provides a graphical user interface (GUI), which eases its use, when

experiments can be carried out using the algorithms already included in the framework.

However, for more complicated analysis or industry-scaled uses, MOA offers the pos-

sibility to be used using a command line interface, which is extremely powerful and

flexible. Also, due to its open source nature and the fact that it is built in Java, cus-

tom procedures and integration techniques can be developed to meet the data analysis

requirements. Last but not least, when the core features are not sufficient for the user’s

needs, MOA can be extended with new mining algorithms, new stream generators or

evaluation measures, like the SDC filters that we will implement in this project.

3.2 Statistical Disclosure Control software

With the advent of new technologies and the Internet widespread, concepts like Open

Data2 are beginning to arise. Information exchange within the Internet is a very powerful

way to share knowledge and allow others — researchers, statistical agencies and any other

user — get insights from the analysis of this data. However, the released data must be

protected against disclosure attacks, to enhance data owners privacy.

Figure 3.2: sdcMicro package graphical user interface.

2Open data is the idea that certain data should be freely available to everyone to use and republish
as they wish, without restrictions from copyright, patents or other mechanisms of control.
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Some software suites have been developed to provide the SDC tools needed to effectively

anonymize the released datasets. The most prominent of these is the sdcMicro package.

It is a free R-based open source suite for the generation of protected data for researchers

and public use. It can be used for the generation of anonymized data, i.e. for the

creation of public and scientific-use files. In addition, various risk estimation methods

are included. Moreover, the sdcMicro package it is bundled with a graphical user

interface for some of the SDC methods it offers.

The sdcMicro includes all the methods of another popular software, called µ-ARGUS3,

along with some more new methods. A series of documents can be found on the official

website of the package concerning its usage.

3The µ-ARGUS suite can be found on http://neon.vb.cbs.nl/casc/mu.htm, but it seems to be
quite an outdated software.

http://neon.vb.cbs.nl/casc/mu.htm


Chapter 4

Practical aspects

This chapter addresses the practical aspects of this project, this is, those that are related

to the praxis1, rather than to technology or theory. An analysis of the concept of privacy

and the need to protect it is given in the first section of the chapter, followed by a short

review of the legal framework that applies to this project and, finally, a brief note on

the environmental impact of the present work.

4.1 Privacy & society

Privacy has become a hot topic in debates nowadays, concerning what information is

collected from individuals, who owns it and with which purposes. It is a matter of great

importance and certainly worth to be examined carefully. Information technologies have

brought us many benefits at many levels — safer streets, cheaper communications, better

health systems, more convenient shopping — but many times at the high cost of losing

our privacy. With the rapid adoption of the Internet and all sorts of digital telecom-

munications as the basis of our modern communication relationships, a vast capacity of

interception, storage and analysis of such information exchanges has been reached. This

potential has been used by companies in the private sector to, for example, analyze the

population consuming profiles, target marketing campaigns more accurately and offer

much more customized products and services. In order to apply these techniques and

mechanisms, corporations collect private data from users, excusing that these same users

accept privacy terms and conditions. It seems clear that data mining is highly related to

privacy: knowledge discovery processes need data to work and, in most cases, sensitive

personal data is at stake.

1Praxis is the process by which a theory, lesson, or skill is enacted, embodied, or realised. Praxis
may also refer to the act of engaging, applying, exercising, realizing, or practicing ideas.

23
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We have already outlined in Section 2.2 that the aim of SDC and this project in particular

is to protect users privacy by avoiding information disclosure from released datasets and

real time analysis processes that require sensitive data. The question, however, is: why

do we need to protect privacy? What urges us to preserve our right to privacy? It is

not a simple and mere question; indeed, the answer is related to our understanding and

interpretation of the term “privacy” itself. Therefore, we will review the definition of

privacy and provide an argument that is the basis to justify privacy protection.

In the introductory chapter of the report (see Section 1.1.2) an introduction to the

concept of privacy was given by literally reproducing a dictionary definition: “Privacy is

a concept that can be defined as the ability of an individual or group to seclude themselves,

or information about themselves, and thereby express themselves selectively”. We also

saw that privacy is recognised as one of our most fundamental rights, as it is enshrined

in the Universal Declaration of Human Rights. Going further on, privacy, understood

not only as the mechanism that allows us to keep our opinion and ideas private, but also

the rest of our praxis, enables us to develop a particular personality, yet when we are

within a social structure. Without the right to keep certain aspects of our life private, the

individuation process is compromised and many consequences of this individual diversity

are endangered — thought heterogeneity, for example, cultural heritage and, above all,

individuals emancipation, all because the individuation process does not happen in a

context of complete freedom.

We must not forget that when organizations such as enterprises or governments acquire

massive amounts of private information about particular individuals, a certain control

capacity on these individuals is gained too. This power, on the contrary of what ulti-

mate defendants of data gathering hold, does not liberate people nor make them safer.

The true consequence of such an increase in control power is that all equitable bonds

between individuals and these organisms are torn apart: people become dominated by

social institutions, be them governments or any kind of structured association, and their

freedom is, thus, canceled. There is no possible emancipation nor conviviality of people

in a social context if the individuals-society relationships are domain based.

Finally, from a more pragmatic point of view, not only ethical concerns are addressed by

protecting users privacy, but economical issues too. Industrial-scale information theft

has a huge impact on enterprise economies, because of distrust and because disclosed

sensitive data can be used to make profit of it. Identity theft, for example, was estimated

to have a cost in the order of billions of dollars, back in 2005, as shown by Romanosky

[23].
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4.1.1 Impact of this project

The motivation of the project is now well-founded: privacy is a relevant concern for any

data analysis related field, whether it is statistics, data mining or data stream processing.

Of course, this project addresses just a small portion of the broader picture of privacy

protection, but it is indeed another effort taken towards its effective achievement.

Together with good IT security practices, a reasonable usage of data and information

and ackowledged consent from the data owners, the application of SDC techniques —

like the ones implemented by the privacy filters which conform the goal of this project

— enables the preservation of the inalienable right to privacy.

To provide further examples of the impact of the project, potential users of the MOA

privacy filters are both companies and government statistical agencies, which handle

vasts amounts of sensitive and personal data. Using SDC methods, they would be able

to exploit the intrinsic knowledge of these data, while preserving privacy and protect-

ing their users against disclosure attacks. Not only they could carry more interesting

experiments, but they could also release this information, sharing it with third par-

ties to promote collaboration with researchers and, last but not least, as an exercise of

transparency.

4.2 Legal framework

One of the aspects to bear in mind when developing a technological project is the legal

environment in which it is framed. To this respect, efforts are being carried out to develop

legal frameworks to help protect people’s privacy, at many levels. One such example

is the spanish LOPD2, a law that aims, among other things, to define different data

privacy levels and mandatory proceedings associated to each - no matter the medium

used to transfer it or store it. The full text of the law can be consulted at the BOE [24].

There are some pitfalls to these legislative efforts, though. Firstly, it is really hard to

assess their accomplishment in the IT sector and, thus, it is sometimes a matter of

confidence in the developer’s good practice. Another important drawback is that online

services, such as social networks, can be accessed globally, but, on the other hand, their

legislative framework is that of the country to which the backing company offering the

2LOPD stands for Ley Orgánica de Protección de Datos, a law that was approved by the spanish
courts in 1999. It has been modified several times, being the law enforcement regulation approved in
2007.
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service belongs to - jurisdiction definition in the Internet is still a matter of intense

debate nowadays3.

We have not detected any kind of legal consequences or regulations bound to this

project’s development, besides intellectual property protection measures — no personal

data has yet been used to perform any benchmarking process nor to assess the quality of

the developed methods: random data generators are being used instead (see Chapter 7).

As we already stated before, concerning the code base of the project, we must implement

all necessary copyright protection mechanisms. Because this is an open source project,

an internationally recognised software license is included in the public code repository,

hosted at GitHub4. The chosen license is the MIT License, which has proven to be easy

to understand, relatively widespread and quite permissive in terms of its commercial

applicability.

4.3 Environmental issues

No relevant direct environmental impact is related to this project, neither tied to its

development nor its further deployment. No use of massive resources is done and the

results of the work do not, presumably, result in a significant environmental change of

any kind.

It is still true, however, that data mining as a discipline, does consume a lot of resources,

in terms of technological infrastructure and energy. We cannot forget that collecting,

storing and processing data at the scale that we have reached needs entire data centers

fully dedicated to the data mining process. Power consumption is a big concern with

nowadays information technology, as it is the huge amount of rare materials that elec-

tronic devices contain. These highlights are indeed indirect effects of the data mining

process.

3Proof of this debate is the emergence of initiatives like the Internet & Jurisdiction Project, which
was launched in 2012 to address the tension between the cross-border nature of the Internet and the
patchwork of national jurisdictions. To enable the digital coexistence of different norms in shared cross-
border online spaces, it facilitates a neutral multi-stakeholder dialogue process, which brings together
governments, civil society groups, major Internet platforms, technical operators and international orga-
nizations [25].

4The project is available at https://github.com/necavit/moa-ppsm.

https://github.com/necavit/moa-ppsm


Chapter 5

Project management

This chapter discusses all the aspects concerning the management of the project: scope,

schedule and budget. However, we must stress that this classical approach of management

analysis is not really suited for our needs. Instead, a more Agile1 methodology will be

applied. We cover this on the Methodology section, but there is an important conceptual

change to be taken into account: the different driving force of the project. Whereas in

classical project management the scope-schedule-budget triad is what must be controlled,

in an Agile project management approach it is value. Indeed, quality must be ensured

so maximum value is delivered to the project’s stakeholders, thus being scope, cost and

schedule just secondary constraints to these primary goals.

Figure 5.1: Traditional to Agile project management evolution. Source: Agile Aus-
tralia - Opening keynotes [27]

1Agile software development is based on the Agile manifesto [26].
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5.1 Goals & scope

One of the first things to do when beginning any project is delimiting its scope, this is,

deciding what will be done and how, in terms of resources and methodology.

We already stated in Section 1.2 what the main goal of this project is:

Main goal:

Implement privacy preserving filters for the Massive Online Analysis

(MOA) stream mining framework.

5.1.1 Requirements analysis

For the sake of completeness and verbosity, a more detailed list of the project’s re-

quirements is given in the next couple of sections, categorized into functional2 and

non-functional3 ones. Together, they comprise the formal scope of the project.

Functional requirements

R1 Implement privacy preserving stream mining filters4 for the MOA stream min-

ing framework. The suggested algorithms to be implemented correspond with

the following requirements:

R1-1 Noise addition [8, p. 54]

R1-2 Multiplicative noise [8, p. 57]

R1-3 Microaggregation [8, p. 60]

R1-4 Rank swapping [8, p. 73]

R1-5 Differential privacy [17]

R2 Evaluate technological alternatives prior to the implementation of the privacy

filters.

R3 Benchmark the performance of the filters in terms of disclosure risk and infor-

mation loss.

2Functional requirements explain what has to be done by identifying the necessary task, action or
activity that must be accomplished.

3Non-functional requirements are requirements that specify criteria that can be used to judge the
operation of a system, rather than specific behaviors.

4Within the MOA context, filters are procedures applied to data prior to their analysis using machine
learning algorithms.
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Non-functional requirements

NFR1 Correctness: privacy protection is at stake in this project, so algorithms must

be implemented correctly, from the theoretical point of view, in order to not

ease information disclosure when they are used.

NFR2 Efficiency: given that no data mining process can scale well if its algorithms

are slow, effort will be put in making them the most efficient we can.

NFR3 Test coverage: measures and tests will be performed to assess the quality of

the developed software, as well as its scalability and performance, which is

paramount in this project’s context.

NFR4 Documentation: MOA is an open source data mining framework, which means

that its community can assess how is it built and how to improve it. One of the

benefits of the open source development model is that software can be safer,

more robust and efficient, by receiving contributions from different developers.

If people are to continue improving the work done, it has to be well documented.

5.1.2 Scope deviations

There have been no major changes in the scope of the project along its development.

Both the functional and non-functional requirements sets remain the same as the ones

defined in the final report of the Project Management course (and also listed above).

However, concerning its completion, we have to admit that not all requirements have

been achieved. We provide now an enumeration of the functional requirements and their

final status:

R1 [Mostly completed] Implement privacy preserving stream mining filters for

the MOA stream mining framework.

R1-1 [Completed] Noise addition [8, p. 54]

R1-2 [Not completed] Multiplicative noise [8, p. 57]

R1-3 [Completed] Microaggregation [8, p. 60]

R1-4 [Completed] Rank swapping [8, p. 73]

R1-5 [Completed] Differential privacy [17]

R2 [Completed] Evaluate technological alternatives prior to the implementation

of the privacy filters.

R3 [Completed] Benchmark the performance of the filters in terms of disclosure

risk and information loss.
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Even though the R1-2 requirement could not be finished, and further work would be

possible, as will be discussed in the Conclusions section, the Agile approach for this

project has enabled us to avoid a sense of failure at the end of its development.

5.2 Methodology

The methodology approach used in this project will be based on Agile principles. Some

of the key concepts and practices related to Agile software development are:

• Iterative development versus the classical waterfall development model.

• Short to mid range development sprints (phases), in order to keep track of the

project’s evolution and to be able to react to changes, unforeseen constraints or

scope drifts.

• Constant meetings with the project’s stakeholders, in which the progress and

deviations of the project are assessed.

• Usage of burndown charts - a graphical model of work left to do versus time -

and other visual representations of the project’s track

• Reduced documentation generation, to alleviate the potential loss of time that

changes in the requirements would cause.

Among many other approaches and Agile methodological frameworks, Scrum is one of

the most well-known due its flexibility, its proved resilience against requirements rapid

changes and easy adoption by software development teams.

5.2.1 Scrum

Scrum is an iterative and incremental agile software development methodology for

managing product development. It challenges assumptions of the traditional, sequential

approach to product development, and enables teams to self-organize by encouraging

physical location or close online collaboration of all team members, as well as daily

face-to-face communication among all team members and disciplines in the project [28].

This methodology is based on the adoption of certain roles, as well as some artifacts

and predefined processes, all of which can be adapted as necessary by the team to suit

their specific needs and resources. However, a central concept forms the basis for the

rest of the framework: the sprint. A sprint or iteration is the basic unit of development

in Scrum. The sprint is a timeboxed effort, this is, it is restricted to a specific duration,

which is fixed in advance for each sprint and is normally between one week and one

month, with two weeks being the most common.
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Figure 5.2: Scrum methodology process overview. Adapted from Wikimedia [29]

Roles

The follwing are the relevant roles that emerge in a Scrum developed project:

• Product owner: the product owner represents the stakeholders and is the voice

of the customer. He or she is accountable for ensuring that the team delivers value

to the business. The product owner writes user stories (tasks) and adds them to

the product backlog, prioritizing them.

• Scrum master: Scrum is facilitated by a scrum master, who is accountable for

removing impediments to the ability of the team to deliver the product goals and

deliverables. The scrum master is not a traditional team lead or project manager,

but acts as a buffer between the team and any distracting influences. The scrum

master ensures that the scrum process is used as intended.

• Development team: the development team is responsible for delivering poten-

tially shippable increments of product at the end of each sprint. A team is made

up of 3–9 individuals with cross-functional skills who do the actual work: analyse,

design, develop, test, document, etc. Finally, it is important to emphasize that

the development team in Scrum is self-organizing.

Events

A series of events take place during the Scrum process, configuring the actual workflow

of the team. We will provide an overview of some of them:

• Sprint planning: at the beginning of a sprint, the team holds a sprint planning

event, in which the work to be done is selected from the product backlog and

transferred to the sprint backlog.
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• Daily Scrum: a stand-up, timeboxed and short meeting takes place every day

during each sprint. In these meetings, every member of the team explains the work

carried out the previous day, discusses any impediment or blocking situation he or

she has encountered and decides which tasks will do in the following day.

• Retrospective: at the end of each sprint, a review of the work that has been

completed is made, and the team reflects on the past sprint to identify and agree

on any process improvement, which requires actions to be taken in the upcoming

sprint.

Artifacts

Even though we have given an overview of some of them, the following artifacts are the

remaining pieces that shape up the Scrum process and methodology:

• Product backlog: the product backlog is an ordered list of requirements that

is maintained for a product. It consists of features, bug fixes, non-functional

requirements, etc., i.e., whatever needs to be done in order to successfully deliver

a viable product. The items in this backlog are ordered by the product owner

based on considerations like risk, business value, dependencies or date needed, for

example.

• Sprint backlog: The sprint backlog is the list of work the development team must

address during the next sprint. The list is derived by selecting product backlog

items from the top of the product backlog until the development team feels it has

enough work to fill the sprint. The development team should keep in mind its past

performance assessing its capacity for the new sprint, and use this as a guide line

of how much effort they can complete.

5.2.2 Agile in this project

The methodology chosen for this project will be based upon Scrum, but major modifica-

tions will have to be made, for a number of reasons. Firstly, there is no such development

team: a single developer will take care of the implementation of the project. Moreover,

there is no possibility of having a Scrum master either. The project director will take a

role between a technical coordinator and a product owner, although no real concept of

product exists in the project, either way.

5.2.2.1 Practices

The adopted Agile practices for this project include:
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• The usage of Trello5 as a task tracking tool, to prioritize them similarly to the

Scrum backlogs.

• Sprint-based development cycles with a sprint duration of one week.

• Constant (re)-evaluation of constraints and requirements, to forsee changes and

take preventive action (similar to retrospectives, but less formal and certainly

shorter).

5.2.2.2 Scope

Adopting Agile methodologies involves several decisions on how to manage the project

and its requirements. In this particular project, if we are to examine the classical

constraints (of which we talked about at the beginning of this chapter), we must be

aware that the schedule is fixed (perhaps not the planning, but the final milestone) and

this forces us to let the scope opened. This means that we will implement as much

features as we can, assessing their quality, but no feature list will drive the success or

failure of the project. Because we will be working on the basis of such an open scope,

deviations in this field are likely to happen. These, however, will not result in a project

failure in any case, because an agreement has been reached to work this way.

5.3 Schedule

The following subsections provide some details about the initial project planning (Sec-

tion 5.3.1), as well as the changes it has suffered over time (Section 5.3.2). There have

been significant deviations concerning the original project schedule. Not only the global

duration has been lengthened, but more phases have been layed out, as was needed. As

a positive contrast, early detection of such alterations has been sometimes possible.

5.3.1 Initial schedule

In this section, we cover the original analysis that was reported during the Project

Management module6, at the beginning of this project’s development.

5Its description, along with other resources and tools used, can be found on Section 5.4.1
6The Project Management module is a compulsory course that all students have to undertake when

beginning their Bachelor’s Degree Final Project, concerning project management concepts and tech-
niques, as well as documentation.
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5.3.1.1 Overall duration

Taking a general look at the project’s schedule, we can estimate it to have a total

duration of about 5 months. Even though it was registered on July, 2014, the project

did not begin until September, because August is the only month I can have holidays,

due to job restrictions. Considering the next possible project’s lecture shifts, we believe

that the one taking place in December is too close in time. Thus, the project will endure

until January the 26th, 2015. This should give us time enough to develop the project

and document it without too much pressure, which is key to fulfill one of the main

established goals: high quality results.

5.3.1.2 Schedule slack

The project schedule we present herein does not fill up the total amount of time available

- more than two weeks are left blank, with no assigned tasks. This is intended because

of the following reasons:

• The amount of time needed to develop the proposed algorithms is uncertain. It

is hard to estimate the time it may take, because I have no previous knowledge

on the area. Therefore, we opted for, in one hand, an open scope approach, and,

on the other, leaving a considerable time gap between the last planned task and

the project’s final milestone: its defense. Being conservative, if the development of

any proposed method is delayed, we still have some leeway to introduce schedule

changes, without risking the project’s success.

• We have estimated the project’s report confection and the defense presentation

rehearsals to be 35 and 7 days, respectively, but depending on how much develop-

ment is finally carried out, it might not be time enough to write down the report.

Extra time for doing it can be then borrowed from the schedule slack time.

5.3.1.3 Schedule monitoring & changes

For the development phase of the project, the most suitable way to monitor the schedule

we have found is applying an Agile approach to the process. We will work in one week

long sprints, meeting every week to assess the quality of the solutions, the proper progress

of the project and to plan what will be done during the following sprint.

Sprint planning meetings are where the main goals of the project will be sliced in small

tasks, which can be tracked and implemented better, because they are not so complex.

Thanks to this constant fine-grained planning process, schedule or scope deviations are

detected earlier and can be managed efficiently, reacting before they affect deeper the
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overall success of the project. Given that no fixed features list is assigned to each sprint

of the development phase, if the completion of either of those features is delayed, it can

be made to span for some more time.

Within each of the development sprints, burndown charts7 will be used to monitor the

progress of the sprint. These charts are helpful in identifying patterns of work (sprint-

end rushes, for example) and can help developers maintain a constant rate of finished

features.

Besides burndown charts and sprint planning meetings, the use of velocity charts will

also be helpful to increase the predictability of the following sprint plannings. The more

predictable they are, the less deviations will occur and the schedule will be more likely

to be fulfilled.

5.3.1.4 Project phases

The project is divided in 4 main phases, besides of the undertaking of the Project’s

Management module. Each phase has an estimated duration and a risk evaluation

in terms of schedule deviation. The amount of hours is an approximated calculation

from the number of days in each phase: 4 hours a day are estimated to be spent,

because I am currently working part-time and also taking some subjects. A more detailed

task granularity can be seen in the Gantt chart (on Figure 5.3 and Figure 5.4). Task

dependencies are shown in the chart too. Those phases, chronologically ordered are:

[Phase 1] Contextualization: it is intended to perform a deeper bibliographic research

and a study of the main subjects concerning the project, at the theory level -

no practical skills or technological research will be done.

• Duration estimation: 11 days (44 hours).

• Risk: this phase has a medium to high risk of being delayed, due to lack

of effective time (a wrong estimation), and also because more insight than

planned might be needed, consuming more time.

[Phase 2] Environment setup: during this phase, all necessary tools and material re-

sources will be gathered and configured. The concrete developing workflow will

be decided, too.

7A burn down chart is a graphical representation of work left to do versus time. The outstanding
work (or backlog) is often on the vertical axis, with time along the horizontal. That is, it is a run chart
of outstanding work. It is useful for predicting when all of the work will be completed. It is often used
in agile software development methodologies such as Scrum.
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• Duration estimation: 8 days (32 hours).

• Risk: this phase has a low risk of being delayed, because the technology

that is to be used is, a priori, well known to us.

[Phase 3] Development: all of this project coding will be performed during this phase.

As said before, a sprint methodology will be used during this phase, being one

week each.

• Duration estimation: with an initial planning of 7 sprints, 49 days will

be used (196 hours).

• Risk: there is a medium risk of this phase to be delayed. Even with the

use of Agile methodologies, if a fundamental feature was needed and there

was no more time left, another sprint (or at most a couple of them) could

be introduced, to finish the remaining tasks.

[Phase 4] Documentation: the project’s report will be written after the development

phase, along with any deployment documentation that was required and the

final presentation, which will also be rehearsed then.

• Duration estimation: 42 days (168 hours).

• Risk: this phase has a medium risk of being delayed too. Reviews of the

report will be made and writing in English might take up more time than

expected.

5.3.1.5 Detailed schedule: Gantt chart

A detailed Gantt chart of the schedule can be seen in Figure 5.3 and Figure 5.4. The

chart was generated with the Project management free software package, available online

on the Ubuntu 12.04 Software Center. Please note that there is no way the chart could

fit in a single page (not even if it was landscape).
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GEP module 44d

Scope definition 5d

Project scheduling 5d

Budget management & feasibility 5d

Preliminar presentation 6d

State of the art & literature 5d

Specifications 9d

Final presentation & document 9d

Contextualization 14d

IT & Privacy 4d

Data mining 3d

PPDM 7d

Environment setup 8d

Workflow design 1d

MOA framework 7d

Development 49d

Sprint 1 7d

Planning 1d

Implementation 5d

Integration 1d

Sprint 2 7d

Planning 1d

Implementation 5d

Integration 1d

Sprint 3 7d

Planning 1d

Implementation 5d

Integration 1d

Sprint 4 7d

Planning 1d

Implementation 5d

Integration 1d

Sprint 5 7d

Planning 1d

Implementation 5d

Integration 1d

Sprint 6 7d

Planning 1d

Implementation 5d

Integration 1d

Sprint 7 7d

Planning 1d

Implementation 5d

Integration 1d

Documentation 43d

Project deployment & finalization 1d

Project report 35d

Presentation & rehearsal 7d

Project defense

Oct 2014 Nov 2014

Week 37 Week 38 Week 39 Week 40 Week 41 Week 42 Week 43 Week 44 Week 45 Week 46

Name Work

Figure 5.3: Initial project schedule Gantt chart (part 1).
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Dec 2014 Jan 2015 Feb 2015

Week 47 Week 48 Week 49 Week 50 Week 51 Week 52 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 We…

Figure 5.4: Initial project schedule Gantt chart (part 2).
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5.3.2 Schedule deviation

We will cover now the changes that have occurred in the schedule of the project and

analyze its causes.

5.3.2.1 Overall duration

The original total duration has been extended from 5 months to 8 months, approxi-

mately. Thus, the final report and its defence is now scheduled to be in April, which is

the next available lecture shift in the Faculty. We believe that this extended duration

will allow us to fulfill all requirements defined in the scope of the project.

5.3.2.2 Deviation analysis

There are several possible reasons behind this schedule deviation:

• The Project Management module lasted longer than expected, forcing the devel-

opment phase of the project to begin later.

• During the definition of the project initial schedule, we expected to begin devel-

oping it while the Project Management module endured, which was, definitely, a

planning error. Such tasks concurrency was not possible at that time.

• At the beginning of the development phase, we explored different technological

alternatives, before deciding which approach was mostly suited to our needs, but

this exploration delayed the actual development process for a couple of weeks.

• As was already stated in the Project Management report, some of the requested

features have posed to be more complicated than was expected, consuming some

more time than that assigned to them.

• For personal reasons, no work could be carried out during the Christmas vacations,

which lasted two more weeks, furtherly delaying the project’s development.

5.3.2.3 Current detailed schedule

Considering the previous analysis, a new Gantt chart has been built, with the new

project’s schedule, which is detailed in Figure 5.5 and Figure 5.6.
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Figure 5.5: Final project schedule Gantt chart (part 1).
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5.4 Budget

The initial budget and resources analysis, performed during the Project Management

module, corresponds with Section 5.4.1, Section 5.4.2 and Section 5.4.3. Due to schedule

deviations during the project, a final budget estimation is given in Section 5.4.4.

The project’s budget is entirely based on an estimation of human, hardware and soft-

ware resources costs. No real income is perceived, besides the salary of the project’s

supervisor, who is a tenure-track lecturer at the Barcelona School of Informatics, and

an associate researcher at the Barcelona Supercomputing Center. No third parties are

involved in the project - no companies or organizations are providing any funds. More-

over, even though the work is to be integrated into the MOA framework, it is indeed

an open-source project, to which we will be contributing, meaning contributions are

expected from any kind of source, be it funded or not.

All other associated costs are externalized, either by people involved in the project or

by the university, where the development of the project will be held.

5.4.1 Resources & budget estimation

Resources consumed in this project only fall in one of the following categories: human

resources, hardware, software and other expenses. For a detailed description of what will

be needed in the project, please see the following subsections. It is important to keep in

mind that all resources will be consumed equally througout the entire project duration.

5.4.1.1 Human resources

Human resources are summarized in Table 5.1.

All expenses included here are related to people’s salaries. Only one developer will

be working on this project, but a number of hours involving supervision tasks is also

imputed to the project’s supervisor, so its corresponding cost is added too. Taxes are

included in all of the following items. The price is also an estimation: on the developer’s

side, it is based on a salaries comparison webpage (Glassdoor [30])8; on the supervisor

side, the price is based on his own estimation.

• Developer: an average of 20 hours a week are estimated, spanning for about 21

weeks, summing up a total of 420 hours.

8As of date 12th October, 2014, the average salary for a software engineer in Barcelona is 32000e
per year (including taxes). Considering 12 monthly instalments and an average of 160 hours per month,
this yields a total of 16.66e per hour.
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• Supervisor:

– Project’s take off: 8 hours, between meetings and initial planning.

– Sprints: 8 hours each sprint, taking into account both face to face meetings

and other supervising tasks. There are 7 sprints scheduled so far, making a

total of 56 hours.

– Documentation: during the project’s final stage, an estimation of 20 hours

is taken from the corresponding supervision of the project’s report.

Role Price (per hour) Working hours Total

Supervisor 35e 84 2940e
Developer 16.66e 420 6997.2e

Total 9937.2e

Table 5.1: Human resources associated costs. All taxes are included in the Price per
hour column.

5.4.1.2 Hardware resources

Hardware resources are summarized in Table 5.2.

All hardware needed resources are shown in the corresponding table. Their cost is

calculated by estimating its amortization, spanned over 5 years (it is a personal laptop).

To calculate its amortized cost per hour, we will take into account that this equipment

is used throughout the course too, and estimating that 2500 hours of work are carried

each year.

Product Price Units Amortized
price per hour

Work time (hours) Total

Asus k53sv 650e 1 0.052e 420 21.84e
Total 21.84e

Table 5.2: Hardware amortization costs. All taxes included.

5.4.1.3 Software resources

All software needed to undertake this project is free and, most of it, is open sourced.

Despite this, we will include a list of it here, to show what will be used at a finer grain.

• Ubuntu 12.04: operating system. Available at: http://www.ubuntu.com/download.

• Trello: online task management tool. Available at: https://trello.com/.

• Google Drive: online, collaborative office software suit, used to create burndown

charts (spreadsheets). Available at: https://drive.google.com.

http://www.ubuntu.com/download
https://trello.com/
https://drive.google.com
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• Java SDK: Java language Software Development Kit. Available at: http://

openjdk.java.net.

• Eclipse IDE: integrated development environment package. Available at: https:

//www.eclipse.org/home/index.php.

• Git: source version control system. Available at: http://git-scm.com/. Remote

code repositories will be hosted at GitHub (https://github.com) for free.

• MOA: Massive Online Analysis, a stream mining framework. Available at: http:

//moa.cms.waikato.ac.nz.

• LATEX: document preparation system. Available at: http://www.latex-project.

org.

5.4.1.4 Other expenses

All expenses not covered in the previous sections are detailed in Table 5.3.

Please note that the cost of each item of this section is an estimation. Moreover, even

though they are displayed, since no budget is really available, they will be absorbed by

the university, where most of the work will be carried out.

Product Price per month Months Total

Energy 35e 4 140e
Water 25e 4 100e
Heat & air 30e 4 120e
Internet connection 40e 4 160e

Total 520e

Table 5.3: Uncategorized resources estimated costs. All taxes are included.

5.4.2 Total budget estimation

The sum of the subtotals of the previous sections is shown in Table 5.4. Please note

that, since taxes are already included in each item appropriately, there is no need to add

them here.

Concept Total

Human resources 9937.2e
Hardware 21.84e
Software 0e
Other expenses 520e

Total 10479.04e

Table 5.4: Total budget: summation of budget estimations.

http://openjdk.java.net
http://openjdk.java.net
https://www.eclipse.org/home/index.php
https://www.eclipse.org/home/index.php
http://git-scm.com/
https://github.com
http://moa.cms.waikato.ac.nz
http://moa.cms.waikato.ac.nz
http://www.latex-project.org
http://www.latex-project.org


Project management 45

All costs are just estimations and are not covered in any way, with the exception of

the supervisor’s salary. This means that, in fact, there is no possible way this project

is feasible. However, given that the developer has no salary at all and that all other

extra costs are assumed by the university or the developer, the project can be developed

normally.

5.4.3 Budget control mechanisms

Any budget deviations related to material equipment or software purchases will be mon-

itored in the sprint planning meetings at the beginning of each of those phases during

the project. These possible extra costs will be assumed by the developer, since no other

source of funds is available.

Another source of budget deviations can be found on the project’s duration. If the

schedule is not fulfilled and the project is delayed, extra cost in terms of human resources,

hardware amortizations and other expenses would have to be added. They still would be

treated as they are in the present analysis, meaning no significant change would occur.

5.4.4 Final budget estimation

Due to the deviation in the project’s schedule, that was already analyzed in Section 5.3.2,

an increment in the human resources, external expenses and hardware amortization bud-

get contributions has arised. It is important to note that, given that no proprietary soft-

ware package has been used, no additional costs might be derived from the lenghtening

of the project duration. We will now cover this budget deviation and provide a final

estimation of the project cost, which is summarized in Table 5.8.

Human resources: deviation

Following the analysis from 5.4.1, we just have to add the corresponding increment of

working hours for both the developer and supervisor.

• Developer: an average of 20 hours a week are estimated, spanning for about 32

weeks, summing up a total of 640 hours. However, given that no work was carried

during Christmas holidays, the total number of hours should be lowered to, at

most, 600 hours.

• Supervisor:

– Project’s take off: 8 hours, between meetings and initial planning.
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– Sprints: 8 hours each sprint, taking into account both face to face meetings

and other supervising tasks. With 10 sprints of final work, this yields a total

of 80 hours.

– Documentation: during the project’s final stage, an estimation of 20 hours

is taken from the corresponding supervision of the project’s report.

Considering the previous estimation and keeping the same prices per hour of the initial

estimation, the following total human resources cost is calculated (see Table 5.5).

Role Price (per hour) Working hours Total

Supervisor 35e 108 3780e
Developer 16.66e 600 9996e

Total 13776e

Table 5.5: Human resources associated costs (final estimation).

Hardware resources: deviation

The only change in the hardware related costs is the number of working hours devoted

to the project, which have a direct impact on the amortization of the equipment.

Product Price Units Amortized
price per hour

Work time (hours) Total

Asus k53sv 650e 1 0.052e 600 31.2e
Total 31.2e

Table 5.6: Hardware amortization costs (final estimation).

Other expenses: deviation

Given that the amount of months dedicated to the project’s development has increased,

the estimated cost for the expenses related to the developer’s accomodation has to reflect

the changes as well.

Product Price per month Months Total

Energy 35e 7 245e
Water 25e 7 175e
Heat & air 30e 7 210e
Internet connection 40e 7 280e

Total 910e

Table 5.7: Uncategorized resources estimated costs. All taxes are included.
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Final estimation

The following is the final estimation of the project’s budget, taking into account all

deviations from the particular budget contributions.

Concept Total

Human resources 13776e
Hardware 31.2e
Software 0e
Other expenses 910e

Total 14717.2e

Table 5.8: Total budget final estimation.



Chapter 6

Implementing the filters

We will cover now the results of the main development phase of the project, concerning

the implementation of the MOA privacy preserving filters and the design decisions taken

for each of them.

6.1 Alternatives exploration

The Massive Online Analysis stream mining framework is built in the Java language, thus

providing some benefits in terms of portability, ease of maintenance and development,

but also exposing some drawbacks, mainly due to the lack of easily parallelizable code,

like is the case with C or Fortran by using the OpenMP1 language extensions. Given the

language enforcement MOA imposes and the existence of well-known SDC toolsuites, like

the sdcMicro R package (reviewed in Section 3.2), an analysis of possible alternatives

was taken during the first weeks of the project’s development phase.

6.1.1 sdcMicro & Java

The most direct alternative, besides actually implementing the filters, was to use the

sdcMicro library to perform the necessary calculations over the streaming data origi-

nated in MOA and take the results back to the framework. This approach can be better

understood in Figure 6.1: a bi-directional connection between the Java runtime (the

Java Virtual Machine or JVM) and the R process would be needed to be able to use the

SDC methods of the sdcMicro library. The results of the exploratory analysis of this

type of solution are summarized in Table 6.1.

1OpenMP (Open Multi-Processing) is a programming interface that supports multi-platform shared
memory multiprocessing programming in C, C++, and Fortran. It consists of a set of compiler directives,
library routines, and environment variables that influence run-time behavior. [31]

48
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R

MOA (Java)

Privacy Filters

Data Processing
(Machine Learning)

sdcMicro

data 

knowledge 

Figure 6.1: R/Java hybrid solution using the sdcMicro package.

This interconnection could be achieved by using some existing technologies that perform

the inter-process communication based on different approaches:

• rJava/JRI: the rJava and JRI counterparts are a couple of libraries designed to

provide low-level communication between the Java Virtual Machine (JVM) and

an R process. rJava provides a low-level bridge between R and Java via the Java

Native Interface (JNI)2. It allows to create objects, call methods and access fields

of Java objects from R [33]. On the other side, JRI is a Java/R Interface, which

allows to run R inside Java applications as a single thread. Basically, it loads R

dynamic library into Java and provides a Java API to R functionality [34].

• Rserve: it is a TCP/IP server which allows other programs to use facilities of R

from various languages without the need to initialize R or link against an R library.

A typical use is to integrate R backend for computation of statstical models, plots

etc. in other applications [35].

Due to performance related to networking protocols against native interface communi-

cation, Rserve was discarded as an option to implement filters for MOA: a streaming

environment requires the maximum throughput possible for its algorithms and, thus,

the overhead associated with TCP-based IPC is considered to be excessive.

2The Java Native Interface is a standard programming interface for writing Java native methods and
embedding the Java Virtual Machine into native applications. The primary goal is binary compatibility
of native method libraries across all Java virtual machine implementations on a given platform [32].
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Benefits Drawbacks

Faster development No algorithms are indeed developed
Easily extensible Strong dependencies
SDC methods are right Depends on external installed software

Needs system libraries to work
Maintanability is harder
Reduced performance due to marshalling

Table 6.1: Evaluation of the R/Java hybrid solution.

Anyway, either of such solutions imply that marshalling and unmarshalling techniques

would have to be applied, in order to transform the data structures that are differently

used by R and Java. Moreover, even though that no SDC algorithm would need to be

implemented, the interconnect code would not be easy to maintain.

Finally, there is another important argument against the R/Java hybrid approach: its

strong reliance in external dependencies. These dependencies not only make the instal-

lation of the SDC-enabled MOA framework more difficult, but are directly linked to

third-party software and system libraries, making the environment less stable and ro-

bust, from the software user point of view. These dependencies are shown in Figure 6.2
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Figure 6.2: JRI based R/Java hybrid solution architechture: strong dependencies.

6.1.1.1 Renjin

Yet another altenative was explored that was meant to interconnect MOA with the

sdcMicro package: the Renjin project [36]. Renjin is a JVM-based interpreter for the

R language: all computations of any R package can be executed upon the JVM, instead

of a separate R process. This way, the dependency that this project could have had on

R and some system libraries disappeared. However, it is worth noting that, even with

Renjin, data structures conversion would have to be performed, rendering its use as

impractical as the use of the JRI library. Moreover, the sdcMicro package was still not
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available in its JVM port at the time of the evaluation due to some internal dependencies

and errors, and we could not wait for it to be solved.

6.1.2 Chosen alternative

As a simple remark, the final decision was to actually develop the filters for the MOA

framework by extending it, in the form of a pure Java implementation.

6.2 MOA & Privacy Filters

Notation: from now on, a text stylized with a monospaced font like this example will

refer to an actual programming artifact: a variable, class, file name, etc.

We have already showed along this report that filters are a feature of the MOA frame-

work. Filters are, actually, a particular form of stream. Whenever a filter should be

applied to a stream to perform a posterior analysis, a FilteredStream3 is built. This

class takes a generic Stream object as the input stream and a list of StreamFilters,

which are also Streams, if we examine their type hierarchy. Taking advantage of the ex-

istence of both the FilteredStream and StreamFilter classes, we can begin designing

the privacy filters that will implement the actual SDC methods.

6.2.1 PrivacyFilter

Thanks to the object-oriented capabilities of the Java language, we can design and

implement a generic abstract data type for all proposed SDC algorithms. By doing so,

we will be able to centralize some of the common logic behind them. The abstract type

of the privacy filters is the PrivacyFilter class. An incomplete UML diagram of the

specification of this class and its most relevant parent types can be seen in Figure 6.4.

Concerning the responsibility4 of this class, there is a main task that the PrivacyFilter

is meant to address: the measurement or evaluation of the disclosure risk (DR) and

the information loss (IL). The approach is to let the SDC method (the concrete sub-

class) anonymize the instances5 of the stream and collect them, along with the original

instances that have been processed. The evaluation of both magnitudes, DR and IL,

3All documentation of the MOA API can be found on http://www.cs.waikato.ac.nz/~abifet/MOA/

API/index.html
4In object-oriented programming, the single responsibility principle states that every class should have

responsibility over a single part of the functionality provided by the software, and that responsibility
should be entirely encapsulated by the class (Martin [37]).

5In the MOA context, records in a dataset (in a stream) are called instances and are represented
using the Instance interface.

http://www.cs.waikato.ac.nz/~abifet/MOA/API/index.html
http://www.cs.waikato.ac.nz/~abifet/MOA/API/index.html
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is performed by estimators using these pairs of instances (see Estimators, below). The

mechanism is best understood with the schematic presented in Figure 6.3.

Figure 6.3: A schematic of the tasks performed by the PrivacyFilter class, showing
the stream data flow.

Implementation details

The PrivacyFilter class is, by construction, an InstanceStream and a StreamFilter

(see Figure 6.4) but also, and most importantly, an AnonymizationFilter. This last

interface, which the PrivacyFilter implements, allows to encapsulate all privacy-

preserving behaviour in a single module.

The most important of the methods defined in the AnonymizationFilter type is

nextAnonymizedInstancePair() : InstancePair

which is left to be implemented (it is abstract at the PrivacyFilter level) by any

subclass. This way, we can use inversion of control6 to force a subtype define the

concrete behaviour of the function, while still conforming to a precise contract. The

InstancePair returned by this abstract method is just a pair structure containing both

the original and anonymized instances that should be streamed next. If we say that x

is an instance and x′ its anonymized counterpart, the InstancePair class would simply

be the tuple 〈x, x′〉.

Estimators

The estimators used by the PrivacyFilter class are desgined to be modular and, most

of all, easily modifiable: they are just interfaces defining a contract that all estimators

6The Hollywood principle or inversion of control pattern is a software design methodology that takes
its name from the cliché response given to amateurs auditioning in Hollywood: ”Don’t call us, we’ll
call you”. It is a useful paradigm that assists in the development of code with high cohesion and low
coupling that is easier to debug, maintain and test.
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«interface»
InstanceStream

+ getHeader() : InstancesHeader
+ estimatedRemainingInstances() : Integer
+ hasMoreInstances() : Boolean
+ nextInstance() : Instance
+ isRestartable() : Boolean
+ restart()

«interface»
AnonymizationFilter

+ nextAnonimizedInstancePair() : InstancePair
+ prepareFilterForUse()
+ restartFilter()

«abstract»
AbstractStreamFilter

# inputStream : InstanceStream
+ restartImpl()

«interface»
StreamFi l ter

+ setInputStream(stream : InstanceStream)

«abstract»
AbstractOptionHandler

«abstract»
PrivacyFilter

+ disclosureRiskEstimatorOption : ClassOption
+ informationLossEstimatorOption : ClassOption
- disclosureRiskEstimator : DisclosureRiskEstimator
- informationLossEstimator : InformationLossEstimator
+ getDisclosureRiskEstimator() : DisclosureRiskEstimator
+ getInformationLossEstimator() : InformationLossEstimator
+ getEvaluation() : Evaluation
+ getCurrentInformationLoss() : Double
+ getIncrementalInformationLoss() : Double
+ getCurrentDisclosureRisk() : Double

Figure 6.4: UML class diagram of the relevant types in the PrivacyFilter class
hierarchy. Notice that not all the involved types are shown.

must implement. The methods belonging to such contracts can be seen in Figure 6.5

(the concrete estimators implementation is explained in Section 6.3). Again, there is

one particular method that is most important in the estimators context:

performEstimationForInstances(instancePair : InstancePair)

This method is the generic way for the PrivacyFilter to feed the estimators with

〈x, x′〉 tuples (InstancePairs). The estimators have the responsibility of performing

the necessary calculations using this stream of pairs of instances.

«interface»
DisclosureRiskEstimator

+ getCurrentDisclosureRisk() : Double

«interface»
InformationLossEstimator

+ getCurrentInformationLoss() : Double
+ getIncrementalInformationLoss() : Double

«interface»
FilterEstimator

+ performEstimationForInstances(instancePair : InstancePair)

Figure 6.5: Class diagram of the FilterEstimator type hierarchy.
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moa

streams

filters

privacy

differentialprivacy

laplace

microaggregation

est imators

disclosurerisk

informationloss

microaggregation

noiseaddition

rankswapping

uti ls

tasks

Figure 6.6: Package organization of the privacy filters. New packages (not existing
in the MOA framework) are shown in bold. Existing packages that have been extended

with new types are shown in italics.

Finally, the DR and IL estimators used by a PrivacyFilter can be configured at runtime

by setting the appropriate options7 of the filter.

6.2.2 Filters ecosystem

Having reviewed the basic PrivacyFilter generic type, we can now provide a couple

of figures that introduce the final structure of the privacy filters class ecosystem. The

package encapsulation of the methods can be seen on Figure 6.6. An incomplete8 class

diagram of the filters is shown in Figure 6.7.

6.3 Estimators

We have implemented a pair of disclosure risk and information loss estimators, con-

forming to the corresponding interfaces described in Figure 6.5. These concrete imple-

mentations are the default estimators of the PrivacyFilter, but can be configured as

necessary, being able to plug in different methods.

7The MOA framework makes extensive use of configurable options, which can be set either on a
command line execution or via the GUI that MOA provides.

8Most of the classes shown in the diagram depend on others for their internal implementation, but,
for the sake of concreteness, they are not shown, as are not relevant for the purpose of this report.
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«abstract»
AbstractOptionHandler

«interface»
StreamFi l ter

MADPFil ter

SSEEstimator BufferedIndividualRecordLinker

«interface»
AnonymizationFilter

inputStream

«interface»
FilterEstimator

«interface»
DisclosureRiskEstimator

«interface»
InformationLossEstimator

«abstract»
AbstractStreamFilter

RankSwappingFilterNoiseAdditionFilter MicroaggregationFil ter

«interface»
InstanceStream

«abstract»
PrivacyFilter

Figure 6.7: Class diagram of the privacy filters ecosystem. Only the relevant types
are shown and no method or member specifications have been included.

6.3.1 BufferedIndividualRecordLinker

The disclosure risk estimator, called BufferedIndividualRecordLinker, uses a distance-

based record linkage approach (see Section 2.2.3.1) to estimate the risk of records re-

identification.

The estimator holds a buffer W , thus its name, of the last b original instances, this is,

non-anonymized records, with size |W | = b as an input parameter. Each time that a

〈x, x′〉 pair is passed in to the estimator, it adds the original instance x to the buffer,

deletes the oldest seen one, and performs a record linkage trying to re-identify x′ with

any instance in the buffer.

The re-identification works as follows: for each instance wi, with 0 ≤ i ≤ b− 1, we store

it a set G if its distance to x′ is the minimum one recorded, named δ. Whenever an

instance is found at distance d < δ, all the instances are removed from G and both this

set and δ are updated accordingly. At the end of the buffer traversal, the target original

instance is checked to see if it is in the set G. The linkage probability for an anonymized

instance x′ is calculted as

P (x′) =

0 if x /∈ G
1
|G| if x ∈ G

(6.1)

Being X the set of all the instances already processed and |X| = n, the disclosure risk

is estimated in a [0, 1] range as

DR =

∑
x∈X P (x′)

n
(6.2)
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Finally, the distance measure used in the estimator follows a modification of the Eu-

clidean distance which also takes into account categorical variables. It is best explained

with the pseudo-code representation shown in Procedure 6.1.

Procedure distance(x,y)

Data: x, y instances

Result: the distance measure, d

begin
d← 0;

for i ∈ attributes(x) do

if isNumeric(i) then

d← d+ (xi − yi)2;

else

if xi 6= yi then
d← d+ 1;

d←
√
d;

return d;

end

6.3.2 SSEEstimator

The information loss estimator implemented as a default for the PrivacyFilter class

uses an unbounded approach (see Section 2.2.4) to measure the amount of useful infor-

mation that is lost with the application of such privacy filters.

The aim of the implementation given in this project is to provide a way to compare

the diverse privacy filters, this is, we do not intend to achieve a reliable and precise IL

measurement. Therefore, the estimation is simply based on the sum of square errors or

SSE between the original and anonymized instances, x and x′, respectively. If we call X

to the set of original instances already processed and X ′ to its anoymized counterparts,

the SSE is calculated as

SSE =
∑
x∈X

∑
x′∈X′

(dist(x, x′))2 (6.3)

where the distance metric used is the same that was defined for the DR estimator

in Section 6.3.1 (see Procedure 6.1). The main drawback in using this approach, besides

it being more difficult to make comparisons due to not being a bounded measure, is that

categorical attributes are overweighted, thus distorting the validity of the estimation.
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6.4 NoiseAdditionFilter

The uncorrelated noise addition mechanism that was reviewed in Section 2.3.1 to protect

microdata is implemented in the NoiseAdditionFilter class. Given the low level of

data protection that this family of algorithms are capable of [38], we have not imple-

mented any further sofistication, such as estimating correlated noise or using (non)-linear

transformations to obtain it.

6.4.1 Design

The NoiseAdditionFilter adds uncorrelated noise to the values of the attributes of an

instance x, whether they are numerical or categorical. This is achieved using an array

of observers, one for each variable. If an attribute is numerical, its associated observer

is a GaussianEstimator, an existing class in the MOA framework that allows us to

incrementally (thus best suited to streaming data) estimate the properties of a gaussian

distributed variable: the mean µ and the variance σ2 (or standard deviation, if desired).

On the other hand, for each categorical attribute, its observer stores a set of all the

different values that previously processed instances had.

The filter has two input parameters: a and c, both real numbers in the [0, 1] range,

which act as a scaling factor of the noise being applied to attributes and to the class

variable, respectively.

We denote by xi the value of the i-th attribute of the instance x and by x′i its masked

(distorted) counterpart. For a numeric variable, the noisy values are calculated as

x′i = xi + β · σ · ε (6.4)

where β ∈ [0, 1] is one of the input parameters a or c, σ is the standard deviation

estimate, obtained from the attribute’s GaussianEstimator observer and, finally, ε is

drawn from a gaussian random variable ε ∼ N(0, 1).

For a categorical variable i, its value for a given instance, xi, is replaced by another value

x′i ∈ Range(i). Given that MOA encodes the values of categorical attributes as natural

numbers, we can simply select x′i from a uniform discrete random variable bound to the

range of the attribute as it is estimated by its observer. In order to preserve the scale

of the amount of noise being added, this replacement only takes place if ε < β, with β

being either the a or c parameter and ε drawn from a random variable ε ∼ N(0, 1).
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Finally, because no complex processing is needed to implement this filter, its computa-

tional cost bounded by O(n), with n being the number of instances anonymized by the

algorithm.

6.4.2 Summary

The NoiseAdditionFilter implements an uncorrelated noise addition scheme to the

instances of the filtered stream. Table 6.2 summarizes the main properties of the filter.

NoiseAdditionFilter

Parameters a, c scaling factors of the noise added for attributes and class variable
Type of data Heterogeneous (both numeric and categorical attributes)
Cost O(n)

Table 6.2: NoiseAdditionFilter summary.

6.5 MicroAggregationFilter

The MicroAggregationFilter class is an implementation of the microaggregation SDC

method that was reviewed in Section 2.3.2. It is one of the best performing filters in

terms of both speed and disclosure risk versus information loss trade off.

6.5.1 Design

There are three main issues that are involved in the design of the microaggregation filter:

the need of a sliding window and the partition and aggregation steps.

6.5.1.1 Buffered filter

The first issue to address when designing the microaggregation implementation was the

adaptation of existing well-known algorithms to a streaming environment. It is obvious

that no partition can be made by just processing a single instance at a time: we need

some kind of historical knowledge of the previous or future records that the algorithm

will process in order to cluster them into groups. Given that MOA uses a sliding window

(see Section 2.1.1) technique to perform most of the machine learning tasks, we decided

to follow the same approach: we use a historical instance buffer to perform the partition

and aggregation steps. We say that it is historical, because it holds the last b instances

of the stream, being b ∈ N+ an input parameter.

Because the contract defined in the AnonymizationFilter interface requires that the

result of an anonymization step is a pair of an original and an anonymized instances, it
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is not the only buffer we need. Therefore, a second vector is used to hold the actually

modified instances. A third list (containing boolean values) is used to control which of

the instances in the buffers have been already anonymized.

We say that a MOA filter implementation of an SDC method using this processing

scheme (a sliding window) is a buffered filter.

Notation: from now on, when discussing implementaiton details of buffered filters, we

will use the following notation and symbols:

• The original instances buffer is named W and has length |W | = b 9 By wi, we

denote the i-th instance stored in the buffer, being w0 the oldest one and wb−1 the

most recently added.

• The anonymized instance buffer is named W ′ and has the same length than the

previous buffer: |W ′| = b. The i-th instance of the buffer is denoted by w′i.

• For convenience, A denotes the set of already anonymized instances. A generic

instance x is said to be anonymized if x ∈ A.

• The value of the j-th attribute of an instance wi is denoted as wij .

• Named instances are those that are denoted using greek letters: τ, σ, ρ. These

instances must be named by explicitly denoting which position they are in a buffer;

for example: τ ← w0.

• The value of the j-th attribute of a named instance is denoted as τj , for example.

Notice that, since a named instance is already well defined in terms of its position

in the buffer, a single subscript index is needed to reference an attribute.

• The instance to be anonymized is called the target and is always referred to by a

the named instance τ .

Procedure 6.2 shows the common implementation of the nextAnonymizedInstancePair()

abstract method (defined in the AnonymizationFilter interface) for any buffered fil-

ter: the buffer is filled with instances of the input stream S and, if the target in-

stance (τ = w0) has not already been processed, its anonymization is requested via the

processNextInstance() method. After this procedure has been called, the instance

9The size of the historical buffer is a common parameter to all buffered filters.



Implementation 60

pair 〈x, x′〉 is built, the target instance is removed from all necessary buffers and the

tuple is returned.

Procedure nextAnonymizedInstancePair(void)

Data: buffers W,W ′, A and stream S

Result: an instance pair 〈x, x′〉
begin

while S.hasMoreInstances() and |W | < b− 1 do
s← S.nextInstance();

W ←W ∪ s;
W ′ ←W ′ ∪ s;

x← w0;

if x /∈ A then
processNextInstance();

x′ ← w′0;

W ←W − {w0};
W ′ ←W ′ − {w′0};
A← A− {x};
return 〈x, x′〉;

end

6.5.1.2 Partition

Concerning the clustering step of microaggregation, we have seen that the MDAV

and µ-Approx algorithms are best suited to achieve the lowest information loss pos-

sible (see Section 2.3.2), but a more thorough evaluation forced us to discard them as

they are rather too computationally complex, given the streaming context we are in.

Domingo-Ferrer et al. [20] show that both methods (MDAV and µ-Approx) are bounded

to a O(n2) complexity time, where n is the number of records (instances) processed.

With such a high cost, a sensible implementation would do the clustering step just once,

when the window was full of instances, thus getting a complete partition (all instances

would belong to a cluster.) and then returning the whole window as a block. This is,

no real streaming scheme would be used; instead, we would be doing block processing.

Our proposal is to use a k-Nearest Neighbours (KNN) algorithm to continuously par-

tition the sliding window and be able to provide anonymized instances much faster, by

building just one cluster each time a new instance is requested to the filter. The records

in this single cluster are then aggregated and the target instance is returned. The com-

putational cost of this approach is quite lower than that of the MDAV and µ-Approx

heuristics, as long as the sliding window size remains relatively small.
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Figure 6.8: k-Nearest Neighbours based microaggregation schematic of a whole pro-
cessing step (from time t = 5 to t = 6). The target instance at the top of the buffer
(position 0) is anonymized by aggregating the values of its attributes with the other
instances of the cluster, highlighted with a gray background. Afterwards, it is flushed

out of the buffer and a new instance is received.

The idea of this partition procedure, formally explained in Algorithm 6.3, is to calculate,

for all instances not yet anonymized, the distance to the target (τ), keeping track of the

k − 1 nearest ones. If an instance is closer than the current furthest, the latter is

removed from the cluster and the former is added. At the end of the buffer traversal,

together with τ , the instances that have been kept will form the next cluster of the

stream partition. The distance metric used is the same than that used by the default

disclosure risk estimator (see Section 6.3.1 and Procedure 6.1).

The KNN algorithm uses a priority queue10 to hold the k− 1 nearest neighbours to the

target, τ . The queue works over distance-instance pairs 〈d, i〉, but is actually indexed

by d, holding the greatest value on the top of the queue. This way, it is very cheap

(constant time) to know whether a given instance x is closer than the current furthest

instance from τ . Insertions are also cheap, with an upper bound cost of O(log(k)).

The overall cost of the procedure, when implemented with a priority queue, depends on

the amount of instances n being processed, the size b of the sliding window and the size

k of the clusters and its upper bound is O(n · b · log(k)).

10A max-heap is used to keep the greatest element on top of the queue.
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Algorithm 6.3: KNN-based Clustering

Data: W ′, A
Result: a cluster C of k instances
begin

τ ← w′0;
C ← ∅ ∪ τ ;
Q← PriorityQueue〈DistanceInstancePair〉();
for x ∈W ′, x /∈ A do

d← dist(x, τ);
p← DistanceInstancePair(d, x);
if |Q| < k then

Q← Q ∪ p;
else

if p < Q.peek().distance() then
Q.poll();
Q← Q ∪ p;

for q ∈ Q do
C ← C ∪ q.instance();

return C;
end

6.5.1.3 Aggregation

After a cluster has been obtained from the previous partition step, the instances of the

cluster are aggregated, this is, the values of their attributes are imputed with the values

of the centroid of the cluster. For each attribute, the arithmetic mean (in the case that

the attribute is numeric) or the mode (if the attribute is nominal) are calculated over

the instances of the cluster. We do not provide any figure or algorithm concerning this

step, due its simplicity.

The computational cost of the aggregation step is directly related to the size k of the

clusters and can be approximated to Θ(n · 2 ·m · k), where n is the number of instances

processed and m is the number of attributes. This is: for each of the m attributes, a

first traversal over the k instances in the cluster is done to compute the averages and a

second one to impute the values of the centroid found. If we add together both steps,

we found the total cost of the algorithm: O(n · (b · log(k) + 2 ·m · k)). However, given

that m � n and k � b, n, the overall cost of this microaggregation implementation is

actually dominated by the cost of the clustering step: O(n · b · log(k)).

6.5.2 Summary

The MicroAggregationFilter implements a microaggregation algorithm based on a

KNN clustering for the partition step and a basic centroid aggregation scheme. Fig-

ure 6.9 shows a complete execution for a given target instance and Table 6.3 summarizes
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the main properties of this SDC method.

Figure 6.9: KNN-based microaggregation (k = 3, b = 16). Firstly, the target instance
(black) is not anonymized (a). Distances to the remaining non-anonymized instances are
calculated (b) and a cluster is formed with the k−1 nearest ones (c). After aggregating
the records in the cluster, the target instance is streamed out, a new instance (grey) is

received and a new target is selected (d).

MicroAggregationFilter

Parameters k (cluster size), b (buffer size)
Type of data Heterogeneous (both numeric and categorical attributes)
Cost O(n · b · log(k))

Table 6.3: MicroAggregationFilter summary.

6.6 RankSwappingFilter

The rank swapping SDC method described in Section 2.3.3 is implemented by the

RankSwappingFilter class. We must notice that it is a very näıve implementation and

certainly not the fastest of the filters. As we will discuss later, future work is needed to

enhance the performance of this filter.

6.6.1 Design

The RankSwappingFilter is the second buffered filter that has been implemented in this

project (see Section 6.5.1.1). Almost the same data structures (the W , W ′ and A buffers)



Implementation 64

Figure 6.10: Rank swapping algorithm schematic. Two attributes of the target record
(position 0) have already been rank swapped with other values from instances in the

buffer. The variable being now processed is highlighted.

Figure 6.11: Rank swap of a single attribute for a target instance τ . First, the non
already swapped values of the attribute are filtered from the instances in the buffer W
(b) and are ranked, i.e., sorted (c). A maximum swap range is calculated using the p
parameter (d) and a value within this range is selected to perform the swap (e). Finally,

the vector of values is returned in the original order they were in the buffer (f).

used by the MicroAggregationFilter are used by the rank swapping algorithm. The

main difference with respect to the microaggregation algorithm is that the set A, used

to know whether or not an instance has already been anonymized, is now used to know

whether or not a value w′ij (this is, the j-th attribute value of the i-th instance in W ′)

has been swapped or not. Summarizing, we say that w′ij has been swapped if w′ij ∈ A.

The design of this SDC method follows almost exactly the explanation given in the

theoretical background chapter (Section 2.3.3): for each instance processed from the

stream, values of each variable j are ranked in ascending order, this is, they are sorted.
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Each ranked value is then swapped with another ranked value, randomly chosen within

a restricted range, controlled by the input parameter p, which denotes that swapped

values cannot differ more than p% of the total number of records. A more formal

description of its implementation is given in Algorithm 6.4, along with its auxiliar pro-

cedure selectSwap() (see Procedure 6.5). Also, a more visual explanation is shown

in Figure 6.11.

Algorithm 6.4: Rank Swapping

Data: W ′, A, p

Result: the target instance τ is anonymized

begin

τ ← w′0;

for j ∈ attributes(τ) do

γ ← selectSwap(W ′, p, j);

σ ← w′γ ;

swap(τj , σj);

A← A ∪ τj ∪ σj ;

end

Procedure selectSwap(W ′, p, j)

Data: W ′ buffer, p parameter and j attribute
Result: the index γ of the instance with which the swap will be done
begin

V ← Vector({〈w′ij , i〉 | 0 ≤ i ≤ b− 1, w′ij /∈ A});
// Notice that, by construction, 〈τj , 0〉 ∈ V
V ∗ ← sort(V ) // sort by value, not by index

t← V ∗.index(〈τj , 0〉);
r ← 1 + Random.uniform() mod (p · b / 100) // r ∈ [1, p% · b]
s← 0;
if t+ r < V ∗.size() then

s← t+ r;
else

s← V ∗.size()− 1;

// s is the index of the selected value-index pair to be swapped

〈·, γ〉 ← V ∗[s];
return γ;

end

If we examine the previous rank swapping algorithm in detail, we can estimate its

computational complexity. The cost of swapping a value of an attribute is, basically,

that of sorting all of its values: O(b · log(b)), where b is the size of the buffers W and W ′.

Each of the n instances of the stream will have its m attributes rank swapped with those
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of another record; therefore, the total complexity of the algorithm can be approximated

to be O(n ·m · b · log(b)).

6.6.2 Summary

The RankSwappingFilter class implements rank swapping algorithm to anonymize

streaming data by exchanging values of the same attribute between close instances. Ta-

ble 6.4 summarizes the main properties of this SDC method.

RankSwappingFilter

Parameters p (maximum swap range, as a percentage of the buffer size), b (buffer size)
Type of data Heterogeneous (both numeric and categorical attributes)
Cost O(n ·m · b · log(b))

Table 6.4: RankSwappingFilter summary.

6.7 DifferentialPrivacyFilter

The concept of differential privacy is introduced in Section 2.2.5.4 and on Section 2.3.4

a data release mechanism that achieves this privacy guarantee is described: the Laplace

mechanism. The drawback of differential privacy is that its definition relies on an in-

teractive query-response environment, which is definitely not the one we encounter in

stream data mining. However, we can find in the literature some efforts to bring differen-

tial privacy to non-interactive settings, such as in Leoni [21] and Soria-Comas et al. [14].

The DifferentialPrivacyFilter is devised to provide a differentialy private release

method in such a setting, namely, in the context of MOA privacy filters.

6.7.1 Design

Following the idea presented in Soria-Comas et al. [14], we have built an SDC method

which combines microaggregation with the Laplace mechanism. We recall now the defi-

nition of this mechanism:

Definition 6.1. (Laplace mechanisnm)

Given a dataset X and a function f : X → Rd, with w ∈ N+, an ε-differential privacy

mechanism M for releasing f is to publish

M(X) = f(X) + L

where L is a vector of d random variables each drawn from a Laplace distribution

Lap(0, ∆(f)
ε ).
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We must remember that the amount of noise introduced by the addition of L to the

application of f depends on the sensitivity of f , denoted by ∆(f), this is, the maximum

variation in the result of f when computed over two neighbour datasets, i.e., sets differing

in at most one record. For a fixed ε, the higher the sensitivity of f , the more noise is

added.

Let Ir(X) be the function that returns the attribute values corresponding to the r-th

record (instance) of a stream X, this is, the “identity” function that returns instances

from a stream. It is clear that Ir, formally defined as

I : X × N+ → Rd

(X, r) 7→ (xr1, xr2, ..., xrd)
(6.5)

where d ∈ N+, X a dataset and r ∈ N, is a good candidate to be fed into the Laplace

mechanism to obtain an ε-differential private data release method.

The idea is now to compose Ir with a microaggregation function M , this is, Ir ◦M in

order to reduce the sensitivity of the results, thus increasing the analytical utility of

data released by the mechanism M(X) = (Ir ◦M)(X) + L. If we are able to lower the

sensitivity of the function captured by the Laplace mechanism, the information loss due

to the noise added will also be lower.

As we will see in Section 6.7.1.3, the DifferentialPrivacyFilter implements the

mechanism M described in the previous paragraph using the Ir ◦M composition.

6.7.1.1 Insensitive microaggregation

Soria-Comas et al. [14] prove that, by using an insensitive microaggregation function M ,

the global sensitivity of its composition with Ir is ∆(Ir ◦M) ≤ ∆(Ir)/k, being k the

minimum size of the clusters returned by M . The condition that such an insensitive

algorithm must fulfill is:

Definition 6.2. (Insensitive microaggregation [14])

Let X be a dataset, M a microaggregation algorithm, and let {C1, ..., Cn} be the set

of clusters that result from running M on X. Let X∗ be a neighbour dataset of X,

differing in a single record, and {C∗1 , ..., C∗n} the clusters that result from running M on

X∗. We say that M is insensitive to the input data if there is a bijection between the set

of clusters {C1, ..., Cn} and the set of clusters {C∗1 , ..., C∗n} such that each corresponding

pair of clusters differs at most in a single record.

Microaggregation algorithms are, however, very sensitive to the input data, this is,

concerning the previous definition, they mostly do not accomplish it, because a minimum
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change in a single record can cause the generation of completely different clusters. In

order to correct this behaviour, Soria-Comas et al. [14] prove that the design of an

insensitive microaggregation algorithm is possible by using a an order relation consistent

distance metric in the partition step.

Definition 6.3. (Order relation consistent distance [14])

A distance function d : X ×X → R is said to be consistent with a order relation ≤X if

d(x, y) ≤ d(x, z) whenever x ≤X y ≤X z.

One way to achieve such a consistent distance function is to define a total order relation

among the elements of a dataset X as follows: given a reference point R ∈ X, for a pair of

elements x, y ∈ X, we say that x ≤ y if d(R, x) ≤ d(R, y), where d is a function such that

d : Dom(X)×Dom(X)→ R (the Euclidean distance between records of X, for example).

Furthermore, in order to increase the within-cluster homogeneity (see Section 2.3.2), this

reference point R should be located at the boundaries of Dom(X).

6.7.1.2 Sensitivity estimation

In the previous section, we discussed how to achieve a reduction in the sensitivity of Ir

by composing it with an insensitive microaggregation function such that the following

result holds: ∆(Ir ◦M) ≤ ∆(Ir)/k.

The problem, however, remains in determining the actual sensitivity of Ir. By defini-

tion of sensitivity, the maximum change that occurs in Ir, as a result of a single record

being different in the dataset X on which Ir is applied, can be estimated as the range of

Dom(X), when the attributes of X are numerical. For example, if an attribute a in a

dataset represents the height of a person, and Dom(a) = [amin, amax], the difference in

the result of Ir that the presence or abscence of an individual in this dataset causes is

bounded by the range [amin, amax]. This is, however, a very näıve estimation, because it

assumes that this attribute values in the dataset, are representative of the attribute val-

ues of the population. Particularly, it means that the population outliers are represented

in the dataset.

Despite being a very rough estimate, we will use it to scale the amount of noise added

to the data that will eventually be released. More accurately, we will estimate the

sensitivity of an attribute j for the function Ir over a dataset X as

∆j

(
Ir(X)

)
= 1.5×

(
max

(
Dom(Xj))−min

(
Dom(Xj))

)
(6.6)

Notice that a scaling factor of 1.5 is applied, in order to make the estimation more

reasonable. The idea of this estimation was also drawn from Soria-Comas et al. [14].
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6.7.1.3 Putting it all together

Given a dataset X with m attributes, the DifferentialPrivacyFilter class imple-

ments the Laplace mechanism

M(X) = (Ir ◦M)(X) + L

where M is an insensitive k-microaggregation function and L is a vector of random

variables lj , for 1 ≤ j ≤ m, each drawn from a Laplace distribution Lapj(0, bj), with bj

being the scale parameter, estimated by

bj =
∆j

(
Ir(X)

)
ε

A general and high level description of the complete mechanism, adapted to a streaming

environment, is given in Algorithm 6.6. Notice that a single instance is processed in the

algorithm pseudo-code: the privacy filter executes the mechanism for each instance in

the input data stream. All the involved classes and modules of the actual implementation

can be seen in Figure 6.12. The general cost of this method can be approximated to the

same as the MicroAggregtionFilter: O(n · b · log(k)).

Algorithm 6.6: Microaggregation-based Laplace Mechanism

Data: an instance x from a stream, an insensitive microaggregation function M and a
Laplace noise adder L

Result: an anonymized instance x′

begin
µ←M(x);
x′ ← L(µ);
return x′;

end

The adaptation of the insensitive microaggregation algorithm to a stream processing en-

vironment follows the same scheme presented for the MicroAggregationFilter (see Sec-

tion 6.5.1), the only difference being the use of a reference point in order to achieve a

total ordering relation between the instances of the stream and, thus, fulfilling the in-

sensitivity condition. The reference “point”, denoted by R, is incrementally11 built as

new instances are processed by the filter, this is, it is updated independently of the

11Remember that, in a stream processing environment, and more precisely, in the context of a buffered
filter (see Section 6.5.1.1), only a portion of the complete dataset (the stream) is visible to the algorithm
at a given moment.
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   1   1

*

   1

LaplaceMechanism

+ addLaplaceNoise(instance : Instance) : Instance

LaplacianNoiseGenerator
- mu : Double
- b : Double
- rand : RandomGenerator
+ nextLaplacian() : Double
+ nextLaplacian(mu, b) : Double

TotalOrderKNNMicroaggregator
- k : Integer
- instanceBuffer : Instance []
- anonymized : Boolean []
+ TotalOrderKNNMicroaggregator(k : Integer)
+ addInstance(instance : Instance)
+ nextMicroaggregatedInstance() : Instance

«abstract»
AbstractStreamFilter

# inputStream : InstanceStream

«interface»
AnonymizationFilter

+ nextAnonimizedInstancePair() : InstancePair
+ prepareFilterForUse()
+ restartFilter()

«abstract»
PrivacyFilter

DifferentialPrivacyFilter «abstract»
LaplacianNoiseScaleEstimator

# epsilon : Double
+ LaplacianNoiseScaleEstimator(epsilon : Double)
+ estimateScale(value : Double) 

DomainRangeScaleEstimator
- min : Double
- max : Double

Figure 6.12: DifferentialPrivacyFilter and the related classes and types it uses.
Notice that the LaplaceMechanism uses many noise scale estimators, one for each

attribute in the stream.

clustering step, when a new instance is added to the buffer. The necessary modifications

are presented in Algorithm 6.7.

Algorithm 6.7: KNN-based Insensitive Clustering

Data: W ′, A buffers and R, the current reference point
Result: a cluster C of k instances
begin
C ← ∅;
Q← PriorityQueue〈DistanceInstancePair〉();
for x ∈W ′, x /∈ A do

d← dist(x,R);
p← DistanceInstancePair(d, x);
if |Q| < k then

Q← Q ∪ p;
else

if p < Q.peek().distance() then
Q.poll();
Q← Q ∪ p;

for q ∈ Q do
C ← C ∪ q.instance();

return C;
end

The Laplace-distributed noise addition step of the mechanism is performed by a noise

adder (called L in Algorithm 6.6) that works in a very similar fashion to the NoiseAdditionFilter,
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with the addition of the scale parameter estimation, already discussed before. The com-

plete description of the procedure is given in Algorithm 6.8 and, finally, the generation

of a random variable Λ following a Laplace distribution is shown in the equation below:

Λ ∼ Lap(µ, b) ⇐⇒ Λ = µ− b sgn(U) ln(1− 2|U |) (6.7)

where U is another random variable drawn from a uniform distribution constrained to

the (−0.5, 0.5] interval.

Algorithm 6.8: Laplace Noise Adder

Data: an instance x and a vector B of scale estimators
Result: an anonymized instance x′

begin
for i ∈ attributes(x) do

b← Bi.estimate(xi);
x′i ← xi + Random.laplace(0, b);

return x′;
end

6.7.2 Summary

The DifferentialPrivacyFilter class implements a microaggregation-based Laplace

mechanism to achieve ε-differential privacy sanitization of released data. Table 6.5 sum-

marizes the main properties of this SDC method.

DifferentialPrivacyFilter

Parameters k (cluster size), ε (differential privacy), b (buffer size)
Type of data Numerical data only
Cost O(n · b · log(k))

Table 6.5: DifferentialPrivacyFilter summary.
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Benchmarking

This chapter shows the benchmarks that have been performed with the privacy filters

which implementation was detailed in Chapter 6. A brief introduction is given to the

software and hardware resources involved in the benchmark process in 7.1. The final

results are displayed in Section 7.2.

7.1 Experimental setup

A simple experimental setup has been used to assess the performance of the MOA

privacy filters in terms of disclosure risk and information loss. To do so, a MOA task1

was specifically designed to retrieve the results of the evaluation measures of the filters.

7.1.1 MOA generators

In order to test the filters, streams of synthetically generated data have been used,

rather than actual datasets, mainly because, this way, we avoid the complex and time

consuming preprocessing of real datasets.

The MOA framework offers a rich set of stream data generators, of which we chose the

RandomRBFGenerator and the WaveformGenerator. Both streams consist of numerical

variables only. Even though most of the implemented filters are capable of dealing with

heterogeneous data, some previous tests had shown that the information loss evaluation,

based on the SSE estimation, pondered too much categorical attributes differences, thus

getting disturbed IL measurements.

1Within the MOA framework, tasks define a procedure to run as the main program, like a classifier
or regression learning task.

72
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The RandomRBFGenerator outputs a stream of 10 attributes and 1 class variable, drawing

values for those attributes from radial basis functions (RBFs). The class variable is

indeed a categorical one, indicating to which RBF an instance belongs, this is, the

intended machine learning task of this generator is classification.

The WaveformGenerator generates values by combining two or three base wave func-

tions, which form a numerical stream of 21 attributes and 1 class variable. The machine

learning task intended for this generator is, again, classification.

7.1.2 Experimental design

The experiments undertaken during the benchmarking stage of the project consist in

generating streams of synthetic data and pipe those streams through each of the privacy

filters, for each of the parameters permutations that we decided, taking 100000 instances

from the generators. A summary of paramaters values used in those experiments is shown

in Table 7.1.

Parameters

Privacy filter Name Range Selected values

NoiseAdditionFilter a [0, 1] ∈ R 0.1, 0.25, 0.5, 0.75, 1.0

c [0, 1] ∈ R 0.0

MicroAggregationFilter b N+ 100, 250, 500, 1000

k N+, k ≤ b 3, 5, 10, 15, 20, 25, 50, 100

RankSwappingFilter b N+ 100, 250, 500, 1000

p [1, 100] ∈ N+ 10, 25, 50, 75, 80

DifferentialPrivacyFilter b N+ 100, 250, 500, 1000

k N+, k ≤ b 3, 5, 10, 15, 20, 25, 50, 100

ε R+ 0.01, 0.1, 1, 10, 100

Table 7.1: Privacy filters benchmark parameterization.

The optimal situation would have been to execute each filter configuration (each pa-

rameters permutation) a number of times, in order to statistically validate the results.

However, due to the lack of time and resources available, a single execution of each filter

was performed during the benchmark phase.
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7.1.3 Hardware

The executions of the filters were executed in the following hardware environment2:

Category Description

Computer model Asus k53-SV

CPU Model Intel(R) Core(TM) i5-2430M, 64 bit

Frequency 2.40GHz

Cores 2 (4 virtual threads available)

Cache 32KB data L1

32KB instructions L1

256KB L2 per core

3072KB shared L3

Memory Capacity 8GB

Frequency 1333MHz

Table 7.2: Hardware benchamark setting.

7.1.4 Software

The following software was involved in the execution of the privacy filters benchmarks:

• Operating System: Ubuntu 12.04 LTS with the Linux kernel 3.2.0-80 version

• Java: Java 1.7.0 75 (OpenJDK Runtime Environment, version IcedTea 2.5.4)

• Python: Python 2.7 (to execute the scripts running the actual MOA tasks)

7.2 Results

We provide now the results of the execution of the privacy filters, with the configuration

specified in the previous section. For each filter, we present summary tables with the

disclosure risk and information loss estimates for each parameterization, as well as plots

showing the evolution of both measurements against the number of instances processed.

2Only the relevant specifications to the execution of the filters are included.
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7.2.1 Noise addition

All the considered parameterizations for the NoiseAdditionFilter are reflected on Ta-

ble 7.3 and Table 7.4. The evolution of disclosure risk against the number of instances

processed is shown in Figure 7.1 and information loss is shown in Figure 7.2.

a c DR IL

0.1 0.0 0.956 1123.97

0.25 0.0 0.889 7024.83

0.5 0.0 0.774 28099.33

0.75 0.0 0.596 63223.50

1.0 0.0 0.430 112397.34

Table 7.3: Noise addition IL
& DR estimations for all consid-
ered parameterizations with the

RandomRBFGenerator.

a c DR IL

0.1 0.0 1.000 50741.41

0.25 0.0 1.000 317133.83

0.5 0.0 0.996 1268535.34

0.75 0.0 0.919 2854204.53

1.0 0.0 0.742 5074141.39

Table 7.4: Noise addition IL
& DR estimations for all consid-
ered parameterizations with the

WaveformGenerator.

As was anticipated in the theoretical introduction chapter, the NoiseAdditionFilter

is not able to protect data as much as other methods do. The results of its application on

the RandomRBFGenerator data prove to be much better than on the WaveformGenerator,

on which has almost no effect at all. Even the high amount of noise introduced, it is

not really protecting data against disclosure — although the a control parameter of the

filter is set to its maximum value (a = 1), the disclosure risk is quite high.

The effect of the noise scaling factor controlled by the a parameter can cleary be seen

on Figure 7.2: the higher the value of the parameter, the higher the information loss.

Another important thing to notice is that the amount of noise added for each instance

remains constant, this is, the increment in the total information loss measure grows

linearly.
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Figure 7.1: NoiseAdditionFilter DR evaluation using the RandomRBFGenerator

with fixed parameter c = 0.
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Figure 7.2: NoiseAdditionFilter IL evaluation using the RandomRBFGenerator with
fixed parameter c = 0, on a logarithmic scale.
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7.2.2 Microaggregation

Tables 7.5 and 7.6 show the final values for both information loss and disclosure risk for

increasing values of the cluster size of the partition step of the microaggregation algo-

rithm (the k parameter) and a fixed historical buffer size of b = 100. Additional tables are

provided in Appendix A for the rest of the considered buffer sizes. The evolution of dis-

closure risk against the number of instances processed for the MicroaggregationFilter

is shown in Figure 7.3 and information loss is shown in Figure 7.4.

b k DR IL

100 3 0.232 74917.30

100 5 0.144 89953.68

100 10 0.089 101193.72

100 15 0.069 104952.79

100 20 0.061 106800.51

100 25 0.055 107937.42

100 50 0.041 110179.72

100 100 0.030 111313.78

Table 7.5: Microaggregation IL &
DR estimations for increasing k (clus-
ter size) and fixed buffer size b = 100

with the RandomRBFGenerator.

b k DR IL

100 3 0.241 3375656.78

100 5 0.135 4057649.13

100 10 0.076 4566550.54

100 15 0.061 4739204.47

100 20 0.054 4822716.29

100 25 0.049 4872587.52

100 50 0.038 4976718.32

100 100 0.029 5027574.64

Table 7.6: Microaggregation IL &
DR estimations for increasing k (clus-
ter size) and fixed buffer size b = 100

with the WaveformGenerator.

As shown in the tables above, the MicroaggregationFilter disclosure risk performance

is almost the same for both streams (unlike the NoiseAdditionFilter). The total

disclosure risk diminishes as the size of the clusters formed increases, which is a direct

consequence of the theoretical privacy guarantee that microaggregation offers: because

k-anonymity is implemented through this algorithmic scheme, the maximum disclosure

risk for a given k is DR ≤ 1/k.

The couple of figures included below show an interesting result of the microaggregation

filter. Even though the size of the clusters does not affect too much the amount of noise

introduced in the data (see Figure 7.4), the increase of the of the k parameter offers much

better privacy protection than that achieved with lower values. We can anonymize data,

obtaining good (low) disclosure risk and not losing too much utility in the process with

respect to configurations that yield poorer disclosure risk results.
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Figure 7.3: MicroaggregationFilter DR evaluation using the RandomRBFGenerator
with fixed buffer size b = 100, for increasing k.
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Figure 7.4: MicroaggregationFilter IL evaluation using the RandomRBFGenerator

with fixed buffer size b = 100, for increasing k, on a logarithmic scale.
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7.2.3 Rank swapping

A comparison of the performance of the RankSwappingFilter on the streams produced

by the RandomRBFGenerator and WaveformGenerator can be seen in Table 7.7 and Ta-

ble 7.8. The remaining tables of results can be consulted in the Appendix A. Figure 7.5

shows the disclosure risk estimation against the number of instances processed, for in-

creasing values of the p parameter and two buffer sizes (b = 100 and b = 500). The

information loss estimate of the corresponding parameterizations is shown in Figure 7.6.

b p DR IL

100 10 0.838 19136.62

100 25 0.469 57753.05

100 50 0.070 136791.17

100 75 0.036 178200.11

100 80 0.037 178685.81

Table 7.7: Rank swapping IL & DR
estimations for increasing p (maximum
swap range) and fixed buffer size b =

100 with the RandomRBFGenerator.

b p DR IL

100 10 0.997 705196.07

100 25 0.776 2464673.56

100 50 0.112 6195304.18

100 75 0.046 8088473.27

100 80 0.045 8097619.70

Table 7.8: Rank swapping IL & DR
estimations for increasing p (maximum
swap range) and fixed buffer size b =

100 with the WaveformGenerator.

As we see in both Table 7.7 and Table 7.8, the maximum swap range, defined as the

percentage p of the size of the buffer, is indeed a key factor to achieve good results,

concerning the disclosure risk of the anonymized data. Both tables show that, for swap

ranges shorter than half the size of the window, the risk or fe-identification is too high.

The remaining parameter of this filter, the size of the buffer, is also, in this case, an

important factor to leverage when using the RankSwappingFilter. For bigger buffer

sizes, the information loss incurred decreases, but the disclosure risk grows too much.

The cause behind this increase in the revelation risk could be the usage of synthetical

data: for bigger buffer sizes, because generated attribute values are sensibly close to

each other, the difference between the swapped values is smaller, thus generating lower

noise and exposing more information to an attacker.
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Figure 7.5: RankSwappingFilter DR evaluation using the RandomRBFGenerator with
buffer sizes b = 100 and b = 500, for increasing p.
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Figure 7.6: RankSwappingFilter IL evaluation using the RandomRBFGenerator with
buffer sizes b = 100 and b = 500, for increasing p, on a logarithmic scale.
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7.2.4 ε-Differential private microaggregation

An aggregate of five “subtables” is shown in Table 7.9: the disclosure risk and informa-

tion loss results are assessed for increasing values of cluster size k, increasing differential

privacy scale factors, controlled by the ε parameter, and fixed historical buffer size

b = 250. The complete set of results tables is located in Appendix A.
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Figure 7.7: DifferentialPrivacyFilter DR evaluation using the
RandomRBFGenerator with fixed buffer size b = 100 and fixed differential privacy scale

parameter ε = 1, for increasing k.

The DifferentialPrivacyFilter performs really well in terms of disclosure risk, for

any of the parameters combinations displayed. However, for small values of ε, the

amount of noise added to data is really high. Confirming the hipothesis presented

in Section 6.7.1, increasing the size of the clusters k achieves a reduction in the sensitivity

of the release function of the data, thus reducing the Laplacian noise introduced, thus

reducing information loss. This effect can be seen for values of ε up to 10, but is not

visible for ε = 100, because, for such a high ε, the majority of the added noise is indeed

caused by the microaggregation function, not by the Laplace mechanism. This effect can

also be assessed in Figure 7.9, where the value of ε is fixed and k increases, effectively

reducing information loss.
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b ε k DR IL

250 0.01 3 0.004 3.298E+11

250 0.01 5 0.004 2.483E+11

250 0.01 10 0.004 2.033E+11

250 0.01 15 0.005 1.885E+11

250 0.01 20 0.004 1.880E+11

250 0.01 25 0.004 1.881E+11

250 0.01 50 0.005 1.502E+11

250 0.01 100 0.005 1.050E+11

b ε k DR IL

250 0.1 3 0.005 3.298E+09

250 0.1 5 0.005 2.483E+09

250 0.1 10 0.004 2.033E+09

250 0.1 15 0.005 1.885E+09

250 0.1 20 0.005 1.880E+09

250 0.1 25 0.004 1.881E+09

250 0.1 50 0.005 1.502E+09

250 0.1 100 0.005 1.050E+09

b ε k DR IL

250 1.0 3 0.006 3.305E+07

250 1.0 5 0.005 2.492E+07

250 1.0 10 0.005 2.043E+07

250 1.0 15 0.005 1.896E+07

250 1.0 20 0.005 1.890E+07

250 1.0 25 0.005 1.892E+07

250 1.0 50 0.005 1.513E+07

250 1.0 100 0.005 1.062E+07

b ε k DR IL

250 10 3 0.032 3.985E+05

250 10 5 0.019 3.345E+05

250 10 10 0.012 3.021E+05

250 10 15 0.011 2.917E+05

250 10 20 0.010 2.934E+05

250 10 25 0.009 2.950E+05

250 10 50 0.006 2.600E+05

250 10 100 0.005 2.164E+05

b ε k DR IL

250 100 3 0.155 7.152E+04

250 100 5 0.079 8.824E+04

250 100 10 0.041 1.004E+05

250 100 15 0.027 1.047E+05

250 100 20 0.022 1.069E+05

250 100 25 0.019 1.083E+05

250 100 50 0.010 1.110E+05

250 100 100 0.006 1.122E+05

Table 7.9: Differential privacy DR & IL estimations for increasing ε and k values and
fixed buffer size (b = 250). Results from the execution with the RandomRBFGenerator.



Benchmarking 83

0 200 400 600 800 1000
Instances (thousands)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Di
sc

lo
su

re
 R

is
k e = 0.01 

e = 0.1 
e = 1 
e = 10 
e = 100.0 

Figure 7.8: DifferentialPrivacyFilter DR evaluation using the
RandomRBFGenerator with fixed buffer size b = 100 and fixed cluster size k = 3, for

increasing ε differential privacy scale factor.
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Figure 7.9: DifferentialPrivacyFilter IL evaluation using the
RandomRBFGenerator with fixed buffer size b = 100 and fixed differential privacy scale

parameter ε = 1, for increasing k, on a logarithmic scale.
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Figure 7.10: DifferentialPrivacyFilter IL evaluation using the
RandomRBFGenerator with fixed buffer size b = 100 and fixed cluster size k = 3, for

increasing ε differential privacy scale factor, on a logarithmic scale.



Chapter 8

Conclusions

8.1 Achieved goals

The present report assesses the inception, development and benchmarking of the imple-

mentation of several Statistical Disclosure Control (SDC) methods, adapted to the MOA

data stream mining framework. Concerning the actual goals of the project, we can say

that it has ultimately been successful: the main requirements have been fulfilled and the

resulting work has proven its performance and utility for the data science community.

First, a thorough theoretical background analysis had to be done in order to select the

approaches best suited to the implementation of the filters on the MOA environment.

Moreover, the state of the art of existing solutions was reviewed and some technology

alternatives were considered before the actual development of the algorithms.

Four MOA privacy preserving filters have been developed, implementing the following

SDC methods: noise addition, microaggregation, data rank swapping and a microaggre-

gation based differential privacy mechanism. Each of the algorithms has been adapted

from well-known solutions, already in use in non-streaming data analysis settings, in or-

der to enable their utilization in stream processing tasks. Special emphasis has been put

in easing the filters customization, either by setting the appropriate parameterizations

or by actually modifying parts of their behaviour exploiting the extensibility that the

MOA framework offers us. Finally, all four filters have been benchmarked to assess their

quality in terms of two important SDC measurments: disclosure risk and information

loss. These quality parameters are evaluated using estimators, which implementation

has also been adapted to the streams processing setting from existing alternatives. While

some of the methods perform better than others, they all offer results that conform to

their theoretical limits.
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Even though this work can be improved and extended by implementing some more SDC

mechanisms, it is most useful to protect people’s privacy, which was the main goal of this

project. It is yet another contribution aimed to enhance the preservation of the universal

right to privacy, which definitely deserves more attention from the IT community than

it actually gets.

On the personal side, the development of this project has brought me a closer under-

standing of SDC, a field that was almost unknown to me, and has reassured the interest

I have for two of the main concerns of the project: data science and the relation be-

tween technology and society, since privacy preservation is, indeed, the project’s most

important outcome. Beyond this, the possibility of working in an open source project

and being able to contribute to its extension has proved to be really engaging.

Finally, I am certainly happy of having found a project in which all the skills and

knowledge acquired throughout these years as an undergraduate student could be put in

practice. Not only algorithmical theory and statistics-related concepts have been used,

but also analytical rigour and good practices in terms of software architechture and

development were necessary for the project’s success.

8.2 Future work

Different aspects of this project deserve to be considered for future enhancements, rang-

ing from algorithmic details to benchmarking methods.

First and foremost, there is a particular non-functional requirement that could be em-

phasized in the future: documentation. The confection of a user manual for the MOA

extension that the privacy filters represent would be a great complement to the tool-

suite. In addition, the developed package should be released, as a binary distribution, to

a central repository, in order to ease access not only to the source code, that is already

public, but to ready for use bundles.

Concerning the algorithmic facet of the project, there is room for performance improve-

ment, in terms of computational complexity and execution time. Advanced and more

customized data structures could be used, as well as some other design approaches.

Moreover, a complete code base refactoring should be carried out to adapt the SDC

methods to the changes introduced by the latest MOA release, that was published while

developing the filters for this project.

Finally, a more rigorous benchmark process could also be set up, running multiple exe-

cutions to assess statistically valid results and applying the filters to real world dataset,

for example, all of which could not be done due to the lack of time available.



Appendix A

Results tables

The following are the complete tables of the benchmark process performed using each

of the privacy filters, for all the parameterizations defined in the experiments design.

NoiseAdditionFilter

a c DR IL

0.1 0.0 0.956 1123.97

0.25 0.0 0.889 7024.83

0.5 0.0 0.774 28099.33

0.75 0.0 0.596 63223.50

1.0 0.0 0.430 112397.34

Table A.1: Noise addition IL & DR estimations for all considered parameterizations
with the RandomRBF generator.

a c DR IL

0.1 0.0 1.000 50741.41

0.25 0.0 1.000 317133.83

0.5 0.0 0.996 1268535.34

0.75 0.0 0.919 2854204.53

1.0 0.0 0.742 5074141.39

Table A.2: Noise addition IL & DR estimations for all considered parameterizations
with the Waveform generator.
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MicroAggregationFilter

b k DR IL

100 3 0.232 74917.30

100 5 0.144 89953.68

100 10 0.089 101193.72

100 15 0.069 104952.79

100 20 0.061 106800.51

100 25 0.055 107937.42

100 50 0.041 110179.72

100 100 0.030 111313.78

b k DR IL

250 3 0.153 74917.30

250 5 0.089 89953.68

250 10 0.051 101193.72

250 15 0.039 104952.79

250 20 0.034 106800.51

250 25 0.031 107937.42

250 50 0.025 110179.72

250 100 0.018 111313.78

b k DR IL

500 3 0.109 74917.30

500 5 0.060 89953.68

500 10 0.033 101193.72

500 15 0.025 104952.79

500 20 0.021 106800.51

500 25 0.019 107937.42

500 50 0.015 110179.72

500 100 0.012 111313.78

b k DR IL

1000 3 0.078 74917.30

1000 5 0.040 89953.68

1000 10 0.021 101193.72

1000 15 0.015 104952.79

1000 20 0.013 106800.51

1000 25 0.011 107937.42

1000 50 0.009 110179.72

1000 100 0.008 111313.78

Table A.3: Microaggregation IL & DR estimations for all considered parameteriza-
tions with the RandomRBF generator.
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b k DR IL

100 3 0.241 3375656.78

100 5 0.135 4057649.13

100 10 0.076 4566550.54

100 15 0.061 4739204.47

100 20 0.054 4822716.29

100 25 0.049 4872587.52

100 50 0.038 4976718.32

100 100 0.029 5027574.64

b k DR IL

250 3 0.186 3375656.78

250 5 0.092 4057649.13

250 10 0.045 4566550.54

250 15 0.035 4739204.47

250 20 0.030 4822716.29

250 25 0.027 4872587.52

250 50 0.022 4976718.32

250 100 0.017 5027574.64

b k DR IL

500 3 0.152 3375656.78

500 5 0.068 4057649.13

500 10 0.030 4566550.54

500 15 0.022 4739204.47

500 20 0.019 4822716.29

500 25 0.017 4872587.52

500 50 0.013 4976718.32

500 100 0.012 5027574.64

b k DR IL

1000 3 0.125 3375656.78

1000 5 0.050 4057649.13

1000 10 0.020 4566550.54

1000 15 0.014 4739204.47

1000 20 0.011 4822716.29

1000 25 0.010 4872587.52

1000 50 0.007 4976718.32

1000 100 0.007 5027574.64

Table A.4: Microaggregation IL & DR estimations for all considered parameteriza-
tions with the Waveform generator.
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RankSwappingFilter

b p DR IL

100 10 0.838 19136.62

100 25 0.469 57753.05

100 50 0.070 136791.17

100 75 0.036 178200.11

100 80 0.037 178685.81

b p DR IL

250 10 0.910 6875.94

250 25 0.749 17803.36

250 50 0.473 41889.27

250 75 0.211 70737.65

250 80 0.176 76772.86

b p DR IL

500 10 0.953 3402.06

500 25 0.844 8210.11

500 50 0.679 17322.47

500 75 0.523 28339.42

500 80 0.493 30792.56

b p DR IL

1000 10 0.980 1670.47

1000 25 0.916 4048.45

1000 50 0.801 7993.85

1000 75 0.699 12328.09

1000 80 0.681 13204.72

Table A.5: Rank swapping IL & DR estimations for all considered parameterizations
with the RandomRBF generator.

b p DR IL

100 10 0.997 705196.07

100 25 0.776 2464673.56

100 50 0.112 6195304.18

100 75 0.046 8088473.27

100 80 0.045 8097619.70

b p DR IL

250 10 1.000 185228.04

250 25 0.996 643029.21

250 50 0.872 1729458.77

250 75 0.491 3077876.57

250 80 0.415 3362868.67

b p DR IL

500 10 1.000 69572.08

500 25 1.000 233509.06

500 50 0.995 621635.78

500 75 0.955 1118353.33

500 80 0.937 1229266.47

b p DR IL

1000 10 1.000 27149.30

1000 25 1.000 86497.92

1000 50 1.000 225324.49

1000 75 0.999 401418.85

1000 80 0.998 440628.83

Table A.6: Rank swapping IL & DR estimations for all considered parameterizations
with the Waveform generator.
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DifferentialPrivacyFilter

b ε k DR IL

100 0.01 3 0.010 3.122E+11

100 0.01 5 0.010 2.411E+11

100 0.01 10 0.010 1.959E+11

100 0.01 15 0.010 1.867E+11

100 0.01 20 0.010 1.861E+11

100 0.01 25 0.010 1.771E+11

100 0.01 50 0.010 1.007E+11

100 0.01 100 0.010 1.860E+09

b ε k DR IL

250 0.01 3 0.004 3.298E+11

250 0.01 5 0.004 2.483E+11

250 0.01 10 0.004 2.033E+11

250 0.01 15 0.005 1.885E+11

250 0.01 20 0.004 1.880E+11

250 0.01 25 0.004 1.881E+11

250 0.01 50 0.005 1.502E+11

250 0.01 100 0.005 1.050E+11

b ε k DR IL

500 0.01 3 0.002 3.222E+11

500 0.01 5 0.002 2.557E+11

500 0.01 10 0.002 2.011E+11

500 0.01 15 0.002 1.876E+11

500 0.01 20 0.002 1.949E+11

500 0.01 25 0.002 1.917E+11

500 0.01 50 0.002 1.693E+11

500 0.01 100 0.002 1.454E+11

b ε k DR IL

1000 0.01 3 0.001 3.332E+11

1000 0.01 5 0.001 2.618E+11

1000 0.01 10 0.001 2.000E+11

1000 0.01 15 0.001 1.724E+11

1000 0.01 20 0.001 1.922E+11

1000 0.01 25 0.001 1.995E+11

1000 0.01 50 0.001 1.744E+11

1000 0.01 100 0.001 1.616E+11

Table A.7: Differential privacy filter IL & DR estimations for ε = 0.01 with the
RandomRBF generator.
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b ε k DR IL

100 0.1 3 0.010 3.122E+09

100 0.1 5 0.010 2.411E+09

100 0.1 10 0.010 1.960E+09

100 0.1 15 0.010 1.867E+09

100 0.1 20 0.010 1.861E+09

100 0.1 25 0.010 1.771E+09

100 0.1 50 0.010 1.007E+09

100 0.1 100 0.010 1.871E+07

b ε k DR IL

250 0.1 3 0.005 3.298E+09

250 0.1 5 0.005 2.483E+09

250 0.1 10 0.004 2.033E+09

250 0.1 15 0.005 1.885E+09

250 0.1 20 0.005 1.880E+09

250 0.1 25 0.004 1.881E+09

250 0.1 50 0.005 1.502E+09

250 0.1 100 0.005 1.050E+09

b ε k DR IL

500 0.1 3 0.002 3.222E+09

500 0.1 5 0.002 2.558E+09

500 0.1 10 0.002 2.011E+09

500 0.1 15 0.002 1.877E+09

500 0.1 20 0.002 1.949E+09

500 0.1 25 0.002 1.917E+09

500 0.1 50 0.002 1.693E+09

500 0.1 100 0.002 1.454E+09

b ε k DR IL

1000 0.1 3 0.001 3.332E+09

1000 0.1 5 0.001 2.618E+09

1000 0.1 10 0.001 2.000E+09

1000 0.1 15 0.001 1.724E+09

1000 0.1 20 0.001 1.923E+09

1000 0.1 25 0.001 1.995E+09

1000 0.1 50 0.001 1.744E+09

1000 0.1 100 0.001 1.616E+09

Table A.8: Differential privacy filter IL & DR estimations for ε = 0.1 with the
RandomRBF generator.
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b ε k DR IL

100 1.0 3 0.013 3.129E+07

100 1.0 5 0.012 2.420E+07

100 1.0 10 0.011 1.970E+07

100 1.0 15 0.011 1.878E+07

100 1.0 20 0.011 1.872E+07

100 1.0 25 0.011 1.782E+07

100 1.0 50 0.010 1.019E+07

100 1.0 100 0.010 2.977E+05

b ε k DR IL

250 1.0 3 0.006 3.305E+07

250 1.0 5 0.005 2.492E+07

250 1.0 10 0.005 2.043E+07

250 1.0 15 0.005 1.896E+07

250 1.0 20 0.005 1.890E+07

250 1.0 25 0.005 1.892E+07

250 1.0 50 0.005 1.513E+07

250 1.0 100 0.005 1.062E+07

b ε k DR IL

500 1.0 3 0.003 3.229E+07

500 1.0 5 0.003 2.567E+07

500 1.0 10 0.003 2.022E+07

500 1.0 15 0.002 1.887E+07

500 1.0 20 0.002 1.960E+07

500 1.0 25 0.002 1.928E+07

500 1.0 50 0.003 1.704E+07

500 1.0 100 0.002 1.466E+07

b ε k DR IL

1000 1.0 3 0.002 3.339E+07

1000 1.0 5 0.002 2.627E+07

1000 1.0 10 0.001 2.010E+07

1000 1.0 15 0.001 1.735E+07

1000 1.0 20 0.001 1.933E+07

1000 1.0 25 0.001 2.006E+07

1000 1.0 50 0.001 1.755E+07

1000 1.0 100 0.001 1.627E+07

Table A.9: Differential privacy filter IL & DR estimations for ε = 1.0 with the
RandomRBF generator.
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b ε k DR IL

100 10 3 0.059 3.809E+05

100 10 5 0.038 3.271E+05

100 10 10 0.025 2.948E+05

100 10 15 0.020 2.900E+05

100 10 20 0.018 2.919E+05

100 10 25 0.016 2.843E+05

100 10 50 0.011 2.111E+05

100 10 100 0.011 1.132E+05

b ε k DR IL

250 10 3 0.032 3.985E+05

250 10 5 0.019 3.345E+05

250 10 10 0.012 3.021E+05

250 10 15 0.011 2.917E+05

250 10 20 0.010 2.934E+05

250 10 25 0.009 2.950E+05

250 10 50 0.006 2.600E+05

250 10 100 0.005 2.164E+05

b ε k DR IL

500 10 3 0.022 3.907E+05

500 10 5 0.012 3.421E+05

500 10 10 0.008 2.997E+05

500 10 15 0.006 2.907E+05

500 10 20 0.006 3.004E+05

500 10 25 0.006 2.985E+05

500 10 50 0.004 2.789E+05

500 10 100 0.003 2.567E+05

b ε k DR IL

1000 10 3 0.015 4.019E+05

1000 10 5 0.008 3.480E+05

1000 10 10 0.005 2.986E+05

1000 10 15 0.004 2.755E+05

1000 10 20 0.004 2.976E+05

1000 10 25 0.004 3.062E+05

1000 10 50 0.003 2.841E+05

1000 10 100 0.002 2.729E+05

Table A.10: Differential privacy filter IL & DR estimations for ε = 10 with the
RandomRBF generator.
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b ε k DR IL

100 100 3 0.187 7.148E+04

100 100 5 0.103 8.819E+04

100 100 10 0.053 1.004E+05

100 100 15 0.035 1.049E+05

100 100 20 0.027 1.072E+05

100 100 25 0.023 1.086E+05

100 100 50 0.012 1.111E+05

100 100 100 0.011 1.113E+05

b ε k DR IL

250 100 3 0.155 7.152E+04

250 100 5 0.079 8.824E+04

250 100 10 0.041 1.004E+05

250 100 15 0.027 1.047E+05

250 100 20 0.022 1.069E+05

250 100 25 0.019 1.083E+05

250 100 50 0.010 1.110E+05

250 100 100 0.006 1.122E+05

b ε k DR IL

500 100 3 0.139 7.136E+04

500 100 5 0.067 8.840E+04

500 100 10 0.037 1.003E+05

500 100 15 0.023 1.047E+05

500 100 20 0.019 1.070E+05

500 100 25 0.016 1.083E+05

500 100 50 0.009 1.110E+05

500 100 100 0.005 1.124E+05

b ε k DR IL

1000 100 3 0.125 7.149E+04

1000 100 5 0.058 8.848E+04

1000 100 10 0.034 1.003E+05

1000 100 15 0.020 1.045E+05

1000 100 20 0.017 1.068E+05

1000 100 25 0.015 1.082E+05

1000 100 50 0.008 1.110E+05

1000 100 100 0.004 1.125E+05

Table A.11: Differential privacy filter IL & DR estimations for ε = 100 with the
RandomRBF generator.
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b ε k DR IL

100 0.01 3 0.010 8.511E+12

100 0.01 5 0.010 7.466E+12

100 0.01 10 0.010 6.583E+12

100 0.01 15 0.010 5.583E+12

100 0.01 20 0.010 5.270E+12

100 0.01 25 0.010 5.202E+12

100 0.01 50 0.010 3.307E+12

100 0.01 100 0.010 8.695E+10

b ε k DR IL

250 0.01 3 0.004 8.293E+12

250 0.01 5 0.004 7.621E+12

250 0.01 10 0.004 6.561E+12

250 0.01 15 0.004 5.672E+12

250 0.01 20 0.004 5.226E+12

250 0.01 25 0.004 5.289E+12

250 0.01 50 0.004 4.564E+12

250 0.01 100 0.004 2.640E+12

b ε k DR IL

500 0.01 3 0.002 8.370E+12

500 0.01 5 0.002 7.711E+12

500 0.01 10 0.002 6.765E+12

500 0.01 15 0.002 5.900E+12

500 0.01 20 0.002 5.471E+12

500 0.01 25 0.002 5.420E+12

500 0.01 50 0.002 4.578E+12

500 0.01 100 0.002 3.559E+12

b ε k DR IL

1000 0.01 3 0.001 8.331E+12

1000 0.01 5 0.001 7.569E+12

1000 0.01 10 0.001 6.751E+12

1000 0.01 15 0.001 6.017E+12

1000 0.01 20 0.001 5.606E+12

1000 0.01 25 0.001 5.296E+12

1000 0.01 50 0.001 4.511E+12

1000 0.01 100 0.001 3.703E+12

Table A.12: Differential privacy filter IL & DR estimations for ε = 0.01 with the
Waveform generator.
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b ε k DR IL

100 0.1 3 0.010 8.512E+10

100 0.1 5 0.010 7.467E+10

100 0.1 10 0.010 6.584E+10

100 0.1 15 0.010 5.584E+10

100 0.1 20 0.010 5.270E+10

100 0.1 25 0.010 5.203E+10

100 0.1 50 0.010 3.307E+10

100 0.1 100 0.010 8.746E+08

b ε k DR IL

250 0.1 3 0.004 8.293E+10

250 0.1 5 0.004 7.621E+10

250 0.1 10 0.004 6.562E+10

250 0.1 15 0.004 5.673E+10

250 0.1 20 0.004 5.227E+10

250 0.1 25 0.004 5.289E+10

250 0.1 50 0.004 4.564E+10

250 0.1 100 0.004 2.640E+10

b ε k DR IL

500 0.1 3 0.002 8.370E+10

500 0.1 5 0.002 7.712E+10

500 0.1 10 0.002 6.765E+10

500 0.1 15 0.002 5.901E+10

500 0.1 20 0.002 5.472E+10

500 0.1 25 0.002 5.420E+10

500 0.1 50 0.002 4.579E+10

500 0.1 100 0.002 3.560E+10

b ε k DR IL

1000 0.1 3 0.001 8.331E+10

1000 0.1 5 0.001 7.569E+10

1000 0.1 10 0.001 6.751E+10

1000 0.1 15 0.001 6.017E+10

1000 0.1 20 0.001 5.607E+10

1000 0.1 25 0.001 5.296E+10

1000 0.1 50 0.001 4.511E+10

1000 0.1 100 0.001 3.703E+10

Table A.13: Differential privacy filter IL & DR estimations for ε = 0.1 with the
Waveform generator.
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b ε k DR IL

100 1.0 3 0.014 8.542E+08

100 1.0 5 0.012 7.505E+08

100 1.0 10 0.011 6.629E+08

100 1.0 15 0.010 5.631E+08

100 1.0 20 0.010 5.318E+08

100 1.0 25 0.010 5.251E+08

100 1.0 50 0.010 3.357E+08

100 1.0 100 0.010 1.373E+07

b ε k DR IL

250 1.0 3 0.006 8.323E+08

250 1.0 5 0.005 7.660E+08

250 1.0 10 0.005 6.607E+08

250 1.0 15 0.004 5.719E+08

250 1.0 20 0.004 5.275E+08

250 1.0 25 0.004 5.338E+08

250 1.0 50 0.004 4.614E+08

250 1.0 100 0.004 2.690E+08

b ε k DR IL

500 1.0 3 0.003 8.400E+08

500 1.0 5 0.003 7.750E+08

500 1.0 10 0.002 6.810E+08

500 1.0 15 0.002 5.948E+08

500 1.0 20 0.002 5.520E+08

500 1.0 25 0.002 5.469E+08

500 1.0 50 0.002 4.629E+08

500 1.0 100 0.002 3.610E+08

b ε k DR IL

1000 1.0 3 0.002 8.361E+08

1000 1.0 5 0.001 7.607E+08

1000 1.0 10 0.001 6.796E+08

1000 1.0 15 0.001 6.064E+08

1000 1.0 20 0.001 5.655E+08

1000 1.0 25 0.001 5.345E+08

1000 1.0 50 0.001 4.561E+08

1000 1.0 100 0.001 3.754E+08

Table A.14: Differential privacy filter IL & DR estimations for ε = 1.0 with the
Waveform generator.
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b ε k DR IL

100 10 3 0.123 1.148E+07

100 10 5 0.075 1.126E+07

100 10 10 0.040 1.103E+07

100 10 15 0.030 1.024E+07

100 10 20 0.023 1.004E+07

100 10 25 0.020 1.005E+07

100 10 50 0.012 8.284E+06

100 10 100 0.011 5.116E+06

b ε k DR IL

250 10 3 0.085 1.127E+07

250 10 5 0.050 1.142E+07

250 10 10 0.027 1.100E+07

250 10 15 0.021 1.033E+07

250 10 20 0.016 9.988E+06

250 10 25 0.013 1.012E+07

250 10 50 0.008 9.526E+06

250 10 100 0.005 7.668E+06

b ε k DR IL

500 10 3 0.062 1.134E+07

500 10 5 0.037 1.151E+07

500 10 10 0.021 1.120E+07

500 10 15 0.016 1.055E+07

500 10 20 0.013 1.023E+07

500 10 25 0.011 1.025E+07

500 10 50 0.007 9.540E+06

500 10 100 0.004 8.585E+06

b ε k DR IL

1000 10 3 0.047 1.130E+07

1000 10 5 0.028 1.136E+07

1000 10 10 0.016 1.119E+07

1000 10 15 0.012 1.067E+07

1000 10 20 0.010 1.036E+07

1000 10 25 0.008 1.012E+07

1000 10 50 0.005 9.472E+06

1000 10 100 0.003 8.725E+06

Table A.15: Differential privacy filter IL & DR estimations for ε = 10 with the
Waveform generator.
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b ε k DR IL

100 100 3 0.262 3.053E+06

100 100 5 0.131 3.867E+06

100 100 10 0.059 4.500E+06

100 100 15 0.039 4.709E+06

100 100 20 0.030 4.821E+06

100 100 25 0.024 4.890E+06

100 100 50 0.013 5.003E+06

100 100 100 0.010 5.029E+06

b ε k DR IL

250 100 3 0.221 3.047E+06

250 100 5 0.108 3.867E+06

250 100 10 0.049 4.494E+06

250 100 15 0.032 4.703E+06

250 100 20 0.024 4.807E+06

250 100 25 0.020 4.874E+06

250 100 50 0.011 5.000E+06

250 100 100 0.006 5.049E+06

b ε k DR IL

500 100 3 0.194 3.052E+06

500 100 5 0.096 3.868E+06

500 100 10 0.044 4.498E+06

500 100 15 0.029 4.702E+06

500 100 20 0.022 4.806E+06

500 100 25 0.018 4.873E+06

500 100 50 0.009 4.997E+06

500 100 100 0.005 5.054E+06

b ε k DR IL

1000 100 3 0.178 3.043E+06

1000 100 5 0.090 3.861E+06

1000 100 10 0.042 4.496E+06

1000 100 15 0.028 4.702E+06

1000 100 20 0.021 4.806E+06

1000 100 25 0.017 4.874E+06

1000 100 50 0.008 4.997E+06

1000 100 100 0.005 5.051E+06

Table A.16: Differential privacy filter IL & DR estimations for ε = 100 with the
Waveform generator.
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