
Master in Computing
Llenguatges i Sistemes Informàtics

Master’s Thesis
– September 2010 –

DESIGN AND IMPLEMENTATION

OF A CONCEPTUAL MODELING

ASSISTANT (CMA)

Student:

Advisors:

David Aguilera Moncuśı

Antoni Olivé Ramon
Cristina Gómez Seoane

Title: Design and Implementation of a Conceptual Modeling Assistant
(CMA)

Author: David Aguilera Moncuśı

Advisors: Antoni Olivé Ramon
Cristina Gómez Seoane

Date: September 2010

Abstract: This Master’s Thesis defines an architecture for a Conceptual Model-
ing Assistant (CMA) along with an implementation of a running pro-
totype. Our CMA is a piece of software that runs on top of current
modeling tools whose purpose is to collaborate with the conceptual
modelers while developing a conceptual schema. The main functions
of our CMA are to actively criticize the state of a conceptual schema,
to suggest actions to do in order to improve the conceptual schema,
and to offer new operations to automatize building a schema.

On the one hand, the presented architecture assumes that the
CMA has to be adapted to a modeling tool. Thus, the CMA permits
the inclusion of new features, such as the detection of new defects to
be criticized and new operations a modeler can execute, in a modeling
tool. As a result, all modeling tools to which the CMA is adapted
benefit of all these features without further work.

On the other hand, the construction of our prototype involves
three steps: the definition of a simple, custom modeling tool; the
implementation of the CMA; and the adaptation of the CMA to the
custom modeling tool. Furthermore, we also present and implement
some examples of new features that can be added to the CMA.

Keywords: CMA, Design Assistant, Conceptual Modeling, CASE tools, UML

Language: English

Modality: Research Work

This thesis was written in LATEX.
Figures were drawn using Inkscape.

“Make everything as simple as
possible, but not simpler.”

Albert Einstein

Acknowledgements

Acknowledgements

First of all, I would like to thank my Master’s Thesis
advisors Dr. Antoni Olivé and Dr. Cristina Gómez for

their support and guidance. Our meetings and
discussions made this thesis possible.

I am specially grateful to my colleagues and friends
Antonio Villegas, Miquel Camprodon, Rodrigo Pizarro,

and Jorge Muñoz. When I was in trouble, their patience
and comments were really insightful. I also want to

thank Auba Llompart for reading this thesis and
correcting my English.

I would also like to thank Maŕıa for all this time
together; she always believed in me and she encouraged

me in difficult times.

And, finally, thanks to my family for being always close
to me.

This work has been partly supported by the
Ministerio de Ciencia y Tecnoloǵıa under

TIN2008-00444 project, Grupo Consolidado.

This work has been partly supported by the
Universitat Politècnica de Catalunya, under

Beques UPC Recerca program.

Contents

Contents

1 Introduction 1

1.1 Conceptual Modeling . 1

1.1.1 UML: A Modeling Language . 2

1.1.2 UML’s meta-model . 3

1.2 Modeling CASE Tools . 4

1.3 Aim of this Thesis . 5

1.4 Outline of the Document . 6

2 Research Methodology 7

2.1 Design Research Overview . 7

2.2 Design Research in this Master Thesis . 8

3 State of the Art 9

3.1 Modeling Tools . 9

3.1.1 Comparison of Modeling Tools . 10

3.1.2 ArgoUML . 11

3.1.3 MetaEdit+ . 13

3.2 Model Improvements . 14

3.2.1 Improving the Understandability of Conceptual Schemas 14

3.2.2 Checking Properties of the Schemas . 17

3.2.3 Inconsistency Management . 18

3.2.4 Refactorings . 19

3.3 The Eclipse Platform: an Example of an IDE . 19

3.3.1 Related Work on Improving Eclipse’s Assistance 21

3.4 Conclusions . 22

4 Overview of the CMA 25

4.1 Goals and Requirements . 25

4.2 A Platform Tool . 26

4.3 The CMA . 28

i

CONTENTS

5 CMA’s Architecture 31
5.1 Architecture Overview . 31

5.1.1 Commands and Tasks . 31
5.1.2 Operational and Knowledge Levels . 32

5.2 The APIs . 33
5.2.1 The UML API . 33
5.2.2 The UI API . 35

5.3 Operational Level . 35
5.3.1 Command Effects . 36
5.3.2 Tasks . 36
5.3.3 Structural Events . 38

5.4 Knowledge Level . 40
5.4.1 Commands . 41
5.4.2 Structural Event Types and Task Types 41
5.4.3 Further Assistance . 45

6 Construction of a Prototype 47
6.1 Design and Implementation of a Custom Platform Tool 47

6.1.1 Platform Tool’s Architecture . 47
6.1.2 Implementation . 48

6.2 Implementation of the CMA . 49
6.2.1 The CMA System Class, or how to Prepare the CMA to be Adapted to

a Platform Tool . 50
6.2.2 Operational and Knowledge Levels . 52
6.2.3 Tasks Behavior based on Triggered Structural Events 53
6.2.4 Plugin-based System . 55

6.3 Adaptation of the CMA over the Custom Platform Tool 55
6.3.1 APIs Implementation . 55
6.3.2 Command Modifications to Include Structural Events 56
6.3.3 CMA Command Wrappers . 57
6.3.4 Additional Tuning . 57

7 Experimentation 59
7.1 Naming . 59

7.1.1 Description . 59
7.1.2 Implementation . 61
7.1.3 Results . 63

7.2 Schema Satisfiability . 67
7.2.1 Description . 67
7.2.2 Implementation . 68
7.2.3 Results . 69

7.3 Schema Auto-Completion . 71
7.3.1 Description . 71
7.3.2 Implementation . 71
7.3.3 Results . 72

7.4 Conclusions . 73

8 Conclusions 75
8.1 Master’s Thesis Contributions . 75
8.2 Future Work . 76

ii

CONTENTS

Bibliography 77

A Review of the Used Patterns 81
A.1 Analysis Patterns . 81

A.1.1 Accountability Pattern . 81
A.2 Design Patterns . 82

A.2.1 Abstract Factory Pattern . 82
A.2.2 Adapter Pattern . 83
A.2.3 Command Pattern . 84
A.2.4 Publish/Subscribe –Observer– Pattern . 85
A.2.5 Proxy Pattern . 86

B UML API Documentation 87
B.1 UMLFactory . 87
B.2 UMLUtilities . 89
B.3 Association . 92
B.4 Class . 93
B.5 Classifier . 94
B.6 DataType . 94
B.7 Element . 95
B.8 Enumeration . 96
B.9 EnumerationLiteral . 97
B.10 Generalization . 97
B.11 MultiplicityElement . 98
B.12 NamedElement . 99
B.13 PrimitiveType . 99
B.14 Property . 100
B.15 Type . 101

C UI API Documentation 103
C.1 UIFactory . 103
C.2 UINamedElement . 104
C.3 InputText . 104
C.4 Item . 105
C.5 Menu . 105
C.6 ModalWindow . 105
C.7 Node . 106
C.8 QuestionDialog . 106

D Plugin XML Files 107
D.1 Naming . 107

D.1.1 commands.xml . 107
D.1.2 tasks.xml . 108

D.2 Schema Satisfiability . 112
D.2.1 tasks.xml . 112

D.3 Schema Auto-Completion . 113
D.3.1 commands.xml . 113

iii

CONTENTS

iv

List of Figures

List of Figures

1.1 Example of a domain modeled in UML. 3
1.2 Example of an instantiation in UML. 3
1.3 A simplified version of the UML metamodel. 4
1.4 Source of software bugs. 4

2.1 Reasoning on Design Cycle. 7
2.2 Design Research in this Master Thesis. 8

3.1 ArgoUML’s User Interface showing some improvements available. 12
3.2 Architecture of MetaEdit+. 14
3.3 Architecture of the GeNLangUML system. 15
3.4 The Natural Language Entity Renderer Plugged in SWOOP. 16
3.5 Overview of the Filtering Method proposed by Villegas and Olivé in [54]. 17
3.6 Simple UML example of schema satisfiability. 18
3.7 User Interface of the Eclipse Platform. 20
3.8 Architecture of the Eclipse Platform. 20

4.1 The CMA with new features adapted to a modeling tool. 25
4.2 Schema of a Platform Tool’s architecture. 27
4.3 Examples of a Platform Tool’s GUI. 27
4.4 The CMA over a Platform Tool. 29

5.1 Detail of the CMA’s architecture. 33
5.2 The UML API is a simplified UML meta-model. 34
5.3 The UI API includes some UI elements required to interact with the modeler. . . 35
5.4 Conceptual schema of the CMA’s Operational Level. 35
5.5 Detail of the Command Effects. 36
5.6 Tasks’ State Diagram. 37
5.7 Detail of the task generation at the operational level. 39
5.8 Detail of Structural Events (operational level). 40
5.9 Conceptual schema of the CMA’s Knowledge Level. 41
5.10 Detail of Structural Event Types (knowledge level). 42
5.11 Example of Structural Events generation. 43

v

LIST OF FIGURES

5.12 Conditions included in the relationship between Structural Event Types and Task
Types. 44

5.13 Detail of Conditions. 45
5.14 CMA Corrector Commands included in the knowledge level. 46
5.15 CMA Corrector Command Effects included in the operational level. 46

6.1 Architecture of our Platform Tool. 48
6.2 Conceptual schema of our Platform Tool. 49
6.3 Screenshot of our Custom Platform Tool. 50
6.4 UML Diagram of the CMA System Class. 51
6.5 Example of how the different API implementations are related and “wrapped”. . 51
6.6 Detail of the Conditions’ implementation. 53
6.7 Platform Tool’s UML API implementation solves potential undo problems. . . . 56
6.8 Screenshot of our Custom Platform Tool with the CMA modifications. 57

7.1 The graph G corresponding to Fig. 3.6(b). 67
7.2 A recursive relationship type with non-satisfiable cardinality constraints. 68
7.3 Example of a recursive relationship between a general and a specific class with

non-satisfiable cardinality constraints. 69

A.1 Structure of the Adapter Pattern. 83
A.2 Structure of the Adapter Pattern. 84
A.3 Structure of the Command Pattern. 84
A.4 Structure of the Command Pattern with Undo/Redo Capabilities. 85
A.5 Structure of the Publish/Subscribe (Observer) Pattern. 86
A.6 Structure of the Proxy Pattern. 86

vi

1
Introduction

Modeling is hard. The definition of good models is especially hard. In order to reduce the
complexity of modeling tasks, and therefore improve schemas’ quality, analysts and designers
use Computer Aided Software Engineering (CASE) tools. These tools help and assist them
throughout all the software development process.

Conceptual modeling, which is in an early stage of the software development process, is the
task by which conceptual models are generated. Conceptual models, also known as conceptual
schemas, are described in a certain modeling language. A modeling language is an artificial
language whose purpose is to represent information or knowledge about a domain. A modeling
language is defined in terms of its meta-model, which states how to define a model, and the
rules and constraints its models have to conform to.

Modeling CASE tools use meta-models to check whether a specific model is valid or not.
Having valid models that conform to its meta-model is the first step towards the definition of
good models. However, such models may not be right and correct. In the same way that a
syntactically correct sentence does not ensure that it is also semantically correct, a model that
conforms to its meta-model may be incorrect. There are some typical properties that can be
automatically tested to determine this other kind of correctness [41], but they are not included
in current modeling CASE tools. The aim of this thesis is to address this issue by increasing
the capabilities these tools offer.

This chapter begins with a description of what conceptual modeling is and its relevance in
the software development process. We define the role modeling languages play in conceptual
modeling, focusing our attention in the Unified Modeling Language (UML) and its meta-model.
Then, we justify the importance of using modeling CASE tools. We see that they are supposed
to provide some sort of help and assistance to analysts and designers in early phases of the
development process. However, as we describe in the aim of this thesis, modeling CASE tools
are not powerful enough; there is full of requests on what a modeling CASE tool should offer
and is currently missing. After briefly analyzing these ideas, we present the goal of this thesis
in detail. Finally, we present the outline of the remaining chapters of the thesis.

1.1 Conceptual Modeling

Conceptual modeling is an early activity of the software development process, closely related
to requirements engineering. It tries to gather, organize, and classify the relevant, general
information of a domain, so that, ultimately, it can maintain concrete information [40, 56].

1

1. Introduction

For example, think about a piece of software to manage projects within a company. Such
a software may know that an employee works in a project as a programmer, and in another
project as an analyst, once it knows that there actually are employees in the domain and that
an employee may be assigned to a project playing a certain role.

Surprisingly, it is quite common among developers to begin software development without
an available conceptual schema. They tend to invest their time in programming rather than
designing a conceptual schema. As a result, conceptual schemas are sometimes considered
documentation items with little or no value to the resulting software. However, even if there
is no specific document with an explicit conceptual schema, someone (the programmer) has to
know the general information of the domain; otherwise, it would be completely impossible to
code it into a program.

Conceptual schemas are easier to understand than real software due to their higher level of
abstraction. As a result, they are much less bound to the underlying implementation technology
and much closer to the problem domain [45]. Conceptual schemas provide a piece of documen-
tation that can be discussed and shared with stakeholders and developers. Furthermore, if they
are used in a Model-Driven Development (MDD) framework, they can be used to generate code
automatically [45].

Conceptual schemas, among other things, include the structural schema and the behavioural
schema. The former consists of the set of entity and relationship types. It is usually known as
the static component of the general knowledge. The latter, on the other hand, represents the
valid changes in the domain state, as well as the actions the system can perform [40]. In other
words, it defines and constraints how the population of the model can evolve.

1.1.1 UML: A Modeling Language

A modeling language is an artificial language whose purpose is to represent information or
knowledge about a domain. To put it simply, it is “what we use to specify a conceptual
schema”. These languages, which can be graphical or textual, express the concepts we find in
a domain, the relationships between these concepts, some constraints to be satisfied, etc.

There are several modeling languages, but in this master’s thesis we only focus on the Uni-
fied Modeling Language (UML). UML is a standardized, graphical, general-purpose modeling
language maintained by the Object Management Group (OMG). The specification of its latest
version (2.2) can be found in [39].

UML covers a large and diverse set of application domains. Not all of its modeling capabil-
ities are required in all domains. Consequently, the language is structured modularly to allow
the selection of only those parts that are of direct interest for a given domain. In this thesis,
we only use a subset of the UML that permits us to define structural schemas.

In an structural schema expressed in UML we may find concepts (named Classes, represented
by boxes), their relationships (named Associations, drawn using lines that connect the classes),
Generalizations of a set of classes, etc.

Fig. 1.1 shows an example of how to model a domain using UML. In this example, we
can easily see that there are Employees, who can either be a Boss or a Regular Employee. A
Regular Employee may be assigned to one, two, or three Projects, and a Project may have as
many Regular Employees as needed (even none). When a Regular Employee is assigned to a
Project, it plays a certain Role. Such Role is, in fact, associated to the Membership of that
Regular Employee to that Project.

Using this general knowledge, we would now be able to say, for example, that “John”, who
is a Regular Employee, is currently working in the “Eclipse Project” and “visio”. In the first
project he is an “analyst” and in the second one he is a “programmer”. This concrete knowledge

2

1.1. Conceptual Modeling

Figure 1.1: Example of a domain modeled in UML.

is an instantiation of the general knowledge. Fig. 1.2 shows how to represent this information
in UML. This information is usually known as “an instantiation of the model”.

Figure 1.2: Example of an instantiation in UML.

1.1.2 UML’s meta-model

A meta-model is a precise definition of the constructs and rules needed for creating models [16].
Meta-models can be used as a schema for semantic data that needs to be exchanged and stored,
as a language that supports a particular methodology or process, or as a language that expresses
additional semantics of existing information.

If we look at Fig. 1.1 we see a domain modeled using UML. The schema shows concepts like
Boss or Role. If we take a closer look, we see that UML uses its own meta-concepts to express
domain concepts. For example, both Boss and Role are Classes, and relationships between
Classes are modeled using Associations.

Fig. 1.3 shows a simplified version of UML’s metamodel. We can see that any element in a
UML schema is, obviously, an Element. Some of these elements have an associated name, like
Class or Association; this is why they indirectly are Named Elements. A Generalization, for
example, is a special kind of Element that relates two instances of Classifier. Note how the
constraints defined in the meta-model affect the model: for example, an Association has to be
related to, at least, two Properties.

3

1. Introduction

Figure 1.3: A simplified version of the UML metamodel.

1.2 Modeling CASE Tools

The acronym CASE is generally used to refer to “Computer-Aided Software Engineering” [22].
CASE tools are applications that automate, to some extent, the design process of a software
product, providing a set of functionalities that help and assist analysts and designers in their
daily job.

Modeling CASE tools are focused on the early stages of the software development process,
where the time and effort required to locate and debug software problems is much greater. In
Fig. 1.4, extracted from [50], we can see that up to 85% of software bugs are due to inaccurate
analysis and design specifications.

Figure 1.4: Source of software bugs.

CASE tools should dramatically improve analysts’ productivity in two areas: initial appli-
cation system development and long-term maintenance of the production software [50]. The
goal is to use this kind of tools to analyze and design an application, while the source code is
automatically generated based on the design.

Nowadays, modeling tools offer some sort of support [52]: consistency checking, which en-
sures that the products of the analysis conform to the rules of structured specifications; the
usage of a concrete methodology to manage the extreme complexity that system development
task involves; automatic code generation from the specification; etc.

4

1.3. Aim of this Thesis

1.3 Aim of this Thesis

As described in [28, 31], current CASE tools are centered in methodology, paradigms and
techniques, rather than in users. As a consequence, these tools are too restrictive. A fully
assisted modeling environment is a widely unexplored field. We address this issue by designing
a Conceptual Modeling Assistant (CMA) which may run on top of current CASE tools to
automatically assist and actively criticize the work modelers do.

A next generation CASE tool should include the following features:

1. It should differentiate between a novice user and a professional one.

2. The functions shown to the modeler should depend on the context.

3. It should guide the user in the development process, trying to figure out what the next
step is.

4. It should tolerate inconsistencies, because they are part of the creative process.

5. It should avoid reinventing the wheel; that is, it should provide a wide range of predefined,
application domain-specific templates for reuse.

In [22], Gane sketches a few more ideas on the future of CASE. While some of them have
already been achieved, a lot of these features remain underdeveloped.

6. It should include expert systems, such as natural-language parsers, that come close to the
best human performance at specific tasks.

7. There should be no difference between the development of the new software and the
maintenance of the existing one.

8. It should provide real-time feedback on the syntax of model diagrams.

9. It should suggest entity types according to its description, probably using ontologies.

10. It should allow multi-user systems, where large models can be shared by more analysts.

11. It should incorporate a common repository from which to retrieve company’s own knowl-
edge.

As we shall see in Ch. 3, several of these ideas have been already implemented into CASE
tools. The problem we find in all the features presented in the state of the art is that they are
scattered among too many different tools, instead of being under the same platform. Therefore,
our aim is to design a piece of software that can integrate as many of these features as possible.
These new features are either a new functionality or a criticism to the model:

New functionalities that offer shortcuts to and, thus, automate common tasks (5, 6 and
9). A few examples are applying design patterns, providing a wide range of predefined,
application domain-specific templates for reuse, or having a repository from which to
retrieve knowledge (11).

Criticisms to modeler’s work that outline errors are outlined as soon as they appear (1, 2
and 8). Those errors may be severe, like invalid syntax or schema unsatisfiability, or just
recommendations, such as not following a naming guideline.

5

1. Introduction

We believe that the adoption of a tool like the CMA would provide great benefits to its
users, but as Hall and Khan explain in [26], “the adoption of new technologies is not always
easy”. The costs it implies, especially those of the non-pecuniary “learning” type, are incurred
at the time of adoption, and cannot be easily recovered. Thus, the CMA should not be a tool
itself, but something that can be plugged into current CASE tools. Thus, we would not change
how people work, but we would simply broaden the range of available options.

In Ch. 3 we present ArgoUML, a tool that focuses on providing cognitive support, that is,
criticizing models. Despite ArgoUML’s goals are close to our CMA’s, the former has some open
issues that may prevent modelers from using it. Our CMA addresses these issues and becomes
an extensible tool which is able to implement a wide range of the previously enumerated ideas,
including the ones supported by ArgoUML, and it is presented as an extension of currently
existing CASE tools, so its adoption can be done in a seamlessly manner.

1.4 Outline of the Document

The master thesis is organized as follows:
In Ch. 2, we explain the research methodology used to develop our work, and how it fits to

this master thesis.
Chapter 3 reviews the state of the art from different perspectives. First, we analyze current

modeling tools in order to know which features, if any, they include to guide modelers. Second,
we study a set of tools that implement features aimed to improve the model quality. These fea-
tures are categorized in the following groups: understandability improvements, schema property
checkings, inconsistency management, and refactorings. Finally, we see how Integrated Devel-
opment Environments (IDE) implement many functionalities aimed to improve the code quality
and simplify programmer’s work, because it may shed some light on how to help modelers when
modeling.

In Ch. 4 we define the goals our CMA has to fulfill, and we describe all the concepts required
to understand subsequent chapters. In particular, we explain what a Platform Tool is and what
its parts are. We then briefly describe how the CMA should be adapted onto it.

Chapter 5 describes our CMA’s architecture. First, we present an overview of this ar-
chitecture. This overview includes the definition of some important concepts related to the
architecture and the organization of the architecture in two levels: the knowledge and the
operational levels. Next, we describe in detail each level.

Chapter 6 covers the implementation of the previous ideas. The construction of the proto-
type includes the design and implementation of a simple modeling tool, the implementation of
the CMA itself, and the adaptation of the CMA to the modeling tool.

The CMA prototype we implemented is an extensible tool. New features can be included by
implementing a plugin. Chapter 7 presents some plugins we implemented to test our CMA. We
have organized them according to their scope and, for each one, we describe it, provide some
notes on how it is implemented, and show a few results of its execution.

Chapter 8 concludes the thesis with a short review of the conclusions extracted from this
research. It also sketches some notes about future work that has to be done in order to have a
fully functional CMA running on top of a real modeling CASE tool.

6

2
Research Methodology

In this chapter we describe the research methodology used to develop our work. We first define
what Design Research is, and we then focus on how the methodology applies in this master
thesis.

2.1 Design Research Overview

The work presented here is structured following the main ideas of the Design Research method-
ology. As stated in [51], Design Research “involves the analysis of the use and performance of
designed artifacts to understand, explain, and very frequently improve on” those artifacts.

Figure 2.1: Reasoning on Design Cycle.

Fig. 2.1 illustrates the course of a general design cycle, as Takeda et al. analyzed in [48].
This model always begins with Awareness of a problem. Suggestions to solve the problem are

abductively drawn, using the existing knowledge available. Then, an artifact that implements
the proposed solution (Development stage) is built. Implemented solutions are then Evaluated.
Suggestion, Development and Evaluation are frequently performed iteratively, so better and
more accurate solutions can be found. Conclusion indicates the termination of a project.

New knowledge production is shown in the figure by arrows labeled Circumscription and
Operation of Knowledge and Goal. The Circumscription process is really relevant in design
research, because it outlines the importance of construction to gain understanding.

Table 2.1 summarizes the outputs that can be obtained from a design research effort [51].

7

2. Research Methodology

Output Description
Constructs The conceptual vocabulary of a domain
Models A set of propositions or statements expressing relation-

ships between constructs
Methods A set of steps used to perform a task
Instantiations The operationalization of constructs, models and meth-

ods
Better theories Artifact construction as analogous to experimental natu-

ral science

Table 2.1: The Outputs of Design Research

2.2 Design Research in this Master Thesis

The first stage in Design Research is the awareness of the problem. In our case, we found
that there is a lack of a real conceptual modeling assistant. As stated in Sec. 1.3, nowadays
modeling CASE tools provide some level of automatism to the development process, but they
do not assist the modeler at all.

In Ch. 3 we review some research contributions related to modeling tools and providing
assistance. On the one hand, we see the functionalities current modeling tools have, and
how they are presented to modelers. This stage is specially important because our goal is to
define a conceptual modeling assistant that runs on top of these tools. On the other hand, we
study different approaches on providing assistance and, more specifically, how this assistance
is implemented in a tool. These functionalities, not included in current modeling tools, are
scattered in different applications and have to be integrated, as long as possible, by the CMA.

In chapters 4 to 7 we show the result of iterating over the Suggestion – Development –
Evaluation cycle. Throught these chapters we propose an architecture that (1) can be adapted
to current modeling tools and (2) extended with new functionalities. We study the feasability of
this architecture by building a proptotype of the CMA. This prototype is capable of extending
the functionalities of an existing modeling tool with plugins that, in fact, extend the power of
the CMA itself.

The Conclusion/Solution of this research is the architecture of a CMA, along with a proto-
type that provides some clues on how to adapt the CMA to a real CASE tool.

Fig 2.2 shows graphically how design research was applied to this master thesis:

Figure 2.2: Design Research in this Master Thesis.

8

3
State of the Art

The aim of this thesis is to design a tool that runs on top of existing modeling tools and
provides a better assistance to modelers while they specify conceptual schemas. Hence, this
chapter explores the literature related to providing assistance in conceptual modeling and,
more specifically, how this assistance was implemented in a tool.

First, we analyze current modeling tools in order to know which features, if any, they include
to guide modelers in their job. As we shall see, they all provide some sort of automatisms
to improve software development, specially the transition from models to code, but not the
modeling task itself. After a brief review of their characteristics, we describe in more detail a
couple of tools that, in our opinion, are the most relevant: ArgoUML and MetaEdit+. These
two tools are specially interesting because they accomplish some of the goals our CMA has to
fulfill.

Second, we study a set of tools that implement features which may dramatically improve the
model quality if they are used while developing these models. These features are categorized
as follows: understandability improvements that simplify the comprehension of the conceptual
schemas by end users and modelers; schema properties checkings, like ensuring the population
of a class is not always empty; inconsistency management to ensure a model conforms to its
meta-model; and refactorings that improve the resulting schema by following a set of guidelines
on how to define a good schema.

Finally, we see how Integrated Development Environments (IDE) implement many function-
alities aimed to improve the code quality and simplify programmer’s work, like code refactoring
or code completion. We believe that the ideas IDEs implement to help their users may shed
some light on how to help modelers. We focus our attention in one particular IDE: the Eclipse
Platform. We have chosen Eclipse because, although virtually all IDEs provide the same func-
tionalities, it has some interesting plugins whose goal is to improve its assistance, making it
specially interesting for our CMA.

3.1 Modeling Tools

In this section, we analyze current modeling tools in order to know the features they provide.
After a brief comparison of their characteristics, we describe in more detail ArgoUML and
MetaEdit+. These two tools are specially interesting because they accomplish some of the
goals our CMA has to fulfill.

9

3. State of the Art

3.1.1 Comparison of Modeling Tools

ArgoUML [1] is one of the most complete tools available nowadays. Its latest release, which
is 0.30.1 by June 2010, includes plenty of new features:

• UML 1.4 support.

• XMI support.

• Code generation and reverse engineering.

• Design critics, corrective automations, to-do list, check lists, etc.

Eclipse Platform is an extensible IDE. With the Eclipse Modeling Framework (EMF), which
includes the UML2Tools plugin [14], Eclipse has a Graphical Modeling Framework editor
for manipulating UML models.

• UML 2.1 support.

• MDA support.

• Code generation and reverse engineering.

• Requirements management support.

• XMI support.

Ideogramic UML [30] is a tool for creating UML diagrams. As stated in its website, its
main strength is its user interface which, “unlike heavyweight CASE tools with bloated,
hard-to-learn interfaces”, offers “just the features that you need”. The tool focuses on
how diagrams are drawn, and provides a completely different approach: freehand drawing.

Magic Draw [36]

• UML 2.3 support.

• Traceability from requirements to implementation and deployment models.

• Multi-user environment.

• Code generation and reverse engineering.

• UML Profiles and custom diagrams to extend standard UML.

MetaEdit+ [33]

• Definition of custom modeling languages.

• Multiple views (graphical diagrams, matrices, tables, etc.)

• Multi-user environment.

• Code generation.

Poseidon for UML [24]

• UML 2.0 support.

• Template-based code generation for different programming languages and reverse
engineering for Java.

• UMLdoc documentation generation.

• XMI support.

Rational Rose Modeler [29]

10

3.1. Modeling Tools

• UML 1.x support.

• MDD support through Patterns.

• Team support through a merge mechanism.

• Web publishing and report generation.

USE [25] can parse and interpretate OCL expressions in order to validate the correct speci-
fication of the system. It also allows the instantiation of the model so the analyst can
check whether the constraints hold or not.
USE lacks a user interface to define a UML schema. Therefore, it has to be defined tex-
tually before using the program. OCL expressions can be defined at run-time, so the user
can check certain properties once the schema has been loaded. However, those expressions
are not stored in the resulting schema; they have to be typed manually using an external
text editor.

Visual Paradigm [55]

• Requirements management.

• Impact analysis support.

• Multi-user environment.

• Ming mapping (brainstorming tool).

• Report generation.

• XMI support.

As we can see from the previous features list, the general operation of every single tool is
almost the same. To our understanding, almost all these tools are tightly related to the coding
stage, which means that the emphasis is given in the link between models and code by means of
code generation and reverse engineering. From a modeling point of view, the features they offer,
such as multi-user environments or definition of patterns, are insufficient. The only tool that
really focuses on the modeling stage and, thus, tries to improve models’ quality is ArgoUML.

Note that USE and Ideogramic UML are also exceptions, because of the goals they pursue.
The former is not a modeling tool at all, because it focuses on checking a schema, instead
of defining it. The latter tries to simplify the design process at the expense of reducing the
functions the environment offers. It focuses on drawing the schema and adding annotations,
among other functions, which may be interesting for non-expert users, but a handicap for more
expert ones.

3.1.2 ArgoUML

As stated in [42], ArgoUML is a domain-oriented design environment that provides cognitive
support of object-oriented design. It provides some of the same automation features of a com-
mercial CASE tool, but it focuses on features that support the cognitive needs of designers.
Fig. 3.1 shows the ArgoUML’s User Interface criticizing modeler’s work.

ArgoUML is particularly inspired by three theories within cognitive psychology [42]: (i)
reflection-in-action, (ii) opportunistic design and (iii) comprehension and problem solving.

Reflection-in-action This theory observes that modelers do not conceive a fully-formed de-
sign. Instead, they construct a partial design and evaluate it so that, ultimately, they can
revise, improve and extend it.

11

3. State of the Art

Figure 3.1: ArgoUML’s User Interface showing some improvements available.

Opportunistic design A theory which states that, despite the fatct that users plan and
describe their work in an ordered fashion, in the end they choose successive tasks based
on the criteria of cognitive cost.

Comprehension and Problem Solving The theory notes that designers have to bridge a
gap between their mental model of the problem or situation and the formal model of a
solution or system.

ArgoUML implements these theories using a number of techniques:

• A user interface which allows the user to view the design from a number of different
perspectives.

• Processes running in parallel with the design tool that evaluate the current design against
models of what “best practice” design might be like (design critics).

• The use of to-do lists, so the user can record areas for future work.

• The use of checklists, to guide the user through a complex process.

Despite this new approach makes ArgoUML really useful at the modeling stage, the tool
lacks some features that are very important and common among other tools. The absence of
an undo/redo mechanism and the copy/paste meta-commands may discourage modelers from
using ArgoUML. In fact, and as stated in [38, sec.3], an undo/redo mechanism has been one of
the most requested features for ArgoUML. Although its implementation work has begun, it is
not yet at a usable state, due to the complexity associated with the handling of model element
deletion. There is an open issue pointing this problem out since 2003 in [49].

Design Critics

The key feature that distinguishes ArgoUML from other UML CASE tools is its use of concepts
from cognitive psychology. The critics are background processes which evaluate the current
model according to various “good” design criteria. There is one critic for every design criterion.

12

3.1. Modeling Tools

The output of a critic is a critique, which points out some aspect of the model that does not
appear to follow good design practice. A critique generally suggests how the bad design issue
can be rectified.

ArgoUML categorizes critics according the design issue they address1:

• Uncategorized

• Class Selection

• Naming

• Storage

• Planned Extensions

• State Machines

• Design Patterns

• Relationships

• Instantiation

• Modularity

• Expected Usage

• Methods

• Code Generation

• Stereotypes

• Inheritance

• Containment

A couple of examples of these critics are the detection of duplicate class names, which
violates the condition that “names of contained elements in a namespace have to be unique”,
and the suggestion of concrete subclasses definition when a class is abstract, because such a
class “can never influence the running system because it can never have any instances”.

Currently, the implementation of critics detection is quite simple. There is a background
process that evaluates the current model periodically against all the critics implemented. There
is a critiquingInterval variable that determines how often the critiquing thread executes. As the
ArgoUML programmers say, the concept of an interval between runs will become less important
as ArgoUML is redesigned to be more trigger driven.

3.1.3 MetaEdit+

MetaEdit+, proposed by Kelly, Lyytinen and Rossi in [33], is a CASE tool that resolves, to
a greater or lesser extent, some of the issues listed in Sec. 1.3. It “enables flexible creation,
maintenance, manipulation, retrieval, and representation of design information among multiple
developers”.

One of its main characteristics is its multi-user nature. MetaEdit+ can be run either as a
single-user workstation, or simultaneously on many workstation clients connected to a server.

The heart of its architecture is the MetaEngine, illustrated in Fig. 3.2, which handles all
operations on the underlying conceptual data. The MetaEngine provides a common way to
access the repository data, where design objects are stored. Every new single functionality
added to the system runs on top of this MetaEngine, so each one is only responsible of itself,
without interfering the others.

In the design of MetaEdit+, tools have been classified into five distinct families:

Environment management tools are used to manage features of the environment, its main
components, and to launch it.

Model editing tools are used to create, modify and delete model instances, and to view them
from different view points.

1See [42, Ch. 15] in order to view a detailed description of each category and the critics within it.

13

3. State of the Art

Figure 3.2: Architecture of MetaEdit+.

Model retrieval tools are used for retrieving design objects from the repository (regardless
of the fact that they are models or metamodels).

Model linking and annotation tools are used for traceability, or maintaining conversations
about design issues, etc.

Method management tools are for method specification, management and retrieval.

3.2 Model Improvements

In this section, we study a set of tools that implement features which may dramatically improve
models’ quality if they are used while developing these models. These features are categorized
as follows:

Understandability Improvements of conceptual schemas, both for regular stakeholders and
highly-skilled users.

Checking Properties of the Schemas , like ensuring the population of a class is not always
empty (satisfiability).

Inconsistency Management , which involves the detection, handling, and eventually repa-
ration, or inconsistencies that arise while creating the models.

Refactorings to improve the final model by including best-practices to solve common prob-
lems.

3.2.1 Improving the Understandability of Conceptual Schemas

Conceptual design is a very important aspect of information systems development. Wrong
conceptual models can lead to serious problems since the software trusts that the right concepts

14

3.2. Model Improvements

and relations are chosen. On the one hand, much effort has to be spent on the communication
and negotiation with the stakeholders, which means that they have to understand conceptual
schemas. On the other hand, the largeness of conceptual schemas makes it difficult for users
to get the knowledge of their interest, regardless they are regular stakeholders or highly-skilled
users [34, 54]. In this section, we present different tools to improve the understandability of
conceptual schemas: paraphrasing tools that generate a natural language description of the
schema, and a filtering tool that reduces the complexity of a schema by focusing on a few
classes.

As Kop states in [34], the most used representation of conceptual modeling is a graphical
representation, which is good for IT professionals, but end users are typically not able to
understand them. Therefore, it is required to verbalize the conceptual schema, that is, to
transform it back to natural language.

In [37], Meziane, Athanasakis and Ananiadou present the GeNLangUML system, which
generates English specifications from UML class diagrams.

Figure 3.3: Architecture of the GeNLangUML system.

Fig. 3.3 illustrates the architecture of the GeNLangUML system, which is very similar to
that found in generic Natural Language Generation (NLG) Systems. It is composed of four
components: the pre-processor and tagger, the sentence planner, the realizer and the document
structurer :

• The UML Class Diagram Interface was designed to define UML models. The internal
representation they use is based on two XML files: the former stores the classes and the
latter the relationships.

• The pre-processing and tagging processes the input and tries to disambiguate it. It uses
a controlled language, because controlled languages result into fewer ambiguities, as the
input’s variation is limited.

• The sentence planner component receives the tags and the corresponding words from
the tagger and generates sentences following templates. Each template defines how to
verbalize attributes, operations and relationships.

• The realizer ensures agreement between words and aggregations.

• The document structurer structures the generated sentences into an output in a more
readable format. Sentences referring to the same entities are generated at the same time,
so there is a flow in the generated text.

15

3. State of the Art

Halpin and Curland propose in [27] an extension to NORMA (an open-source software tool
that facilitates entry, validation, and mapping of ORM 2 models) to verbalize these models.
They wanted to meet five main design criteria: expressibility, clarity, flexibility, localizability,
and formality.

The verbalization support implemented uses a pattern-driven generative approach whenever
possible. The rules for verbalization of a constraint pattern are constant, but the actual text
used depends on environment-specific factors, such as the language or the output format.

The implementation, which uses field replacement to simplify the verbalization engine and
to enable data-driven snippet sets to be specified according to both language and user prefer-
ences, was broken down into the following components: the selection manager and the snipped
manager.

In [32], Kalyanpur et al. present an algorithm that provides Natural Language (NL) para-
phrases for OWL Ontologies on the Semantic Web. They describe the design and implementa-
tion details of their NL algorithm in the context of an existing semantic web ontology engineering
toolkit: SWOOP.

Fig. 3.4 illustrates the architecture of SWOOP, along with the additional plugin implemented
to generate a natural language representation of OWL concepts. As shown in the figure, various
kinds of renderer can be plugged in SWOOP. Their work was to design a Natural Language
Entity Renderer plugin.

Figure 3.4: The Natural Language Entity Renderer Plugged in SWOOP.

In their work, they define how to parse the taxonomy using the Visitor Design Pattern
and, hence, to generate a natural language parse tree. Once they have this tree, the task of
displaying a NL output of the OWL class expression reduces to walking this tree and printing
out the values of nodes and links in an orderly fashion. Additionally, to improve results, they
use a combination of filters and rules to sort the links, aggregate relevant information and
combine data about different restrictions on the same property.

A different problem related to the understandability of a conceptual schema arises when
we are dealing with large conceptual schemas. As Villegas and Olivé expose in [53, 54], the
largeness of a conceptual schema makes it difficult for users to understand it and to extract
knowledge from it. Thus, they argue that computer support is mandatory, and they propose
a new method, which they implement into a prototype tool, to improve the usability of these
schemas.

In the former paper, they present a method to compute the importance of every entity type
in a schema. In order to compute this metric, they implemented different algorithms found

16

3.2. Model Improvements

in the literature, and also adapted them to include additional information, such as textual
integrity constraints. Once the importance is computed, the top n entity types are returned.

In the latter paper, the approach is quite different. Instead of returning the most important
classes in the schema, they return the most interesting classes according to what the user is
interested in. Basically, they query the user which classes she wants to know more about, and
the method returns a filtered set with the most interesting classes related to those. In order to
decide the most interesting classes, they compute the closeness and importance factors from
the structure of the original conceptual schema.

Figure 3.5: Overview of the Filtering Method proposed by Villegas and Olivé in [54].

Fig. 3.5 illustrates their filtering method. The user is interested in retrieving more informa-
tion about a portion of a schema, but it is too large to do it manually. The method requires the
user to introduce some data that describes what she wants; that is, a filtering set FS, which
defines which entity types is the user interested in and wants to know more information about,
a rejection set RS, which eventually defines those entity types the user does not want, and how
many K classes the result has to contain.

In order to prove the effectiveness of the method they proposed, the authors implemented
a prototype tool on top of the USE environment [25] and tested it.

3.2.2 Checking Properties of the Schemas

The correctness of a conceptual schema can be determined by reasoning on the definition of the
schema itself. There are some typical properties that can be automatically tested, like schema
satisfiability or operation executability [41]. In this section, we review different tools that test
the satisfiability of a schema, that is, whether a class is forced to have either zero or infinitely
many objects.

Consider the example presented in [9] by Cadoli et al., and illustrated in Fig. 3.6. The
example refers to an application concerning management of administrative data of a university,
and exhibits two classes and an association between them. The multiplicity constraints state
that:

• Each student has to be enrolled in one, and only one, curriculum.

• Each curriculum has to have, at least, twenty students.

Note that, because of these constraints, it is impossible to have any number of students be-
tween one and nineteen. If we had, e.g., five students enrolled to one curriculum, the constraint
stating that “a curriculum has, at least, twenty students” would be violated.

In some cases the number of objects of a class is forced to be zero. For example, consider
Fig. 3.6(b), where a new association likes has been added. The cardinalities of this association
state that a student likes one, and only one, curriculum, and a curriculum is liked by one,
and only one, student. Because of these cardinality constraints, the populations of Student and

17

3. State of the Art

(a) A UML class diagram. (b) A UML class diagram with finitely inconsistent
classes.

Figure 3.6: Simple UML example of schema satisfiability.

Curriculum have to have the same size, so that the cardinality constraints linked to the enrolled
association can never be satisfied.

It is obvious that the situation described by Fig. 3.6 is not realistic, but such inconsistencies
may arise in more complex situations. As stated in [7], software verification is one of the
long-standing goals of software engineering, specially in the context of MDD and MDA, where
models are used to (semi-) automatically generate the implementation of the final software. In
this section, we will review different approaches to detect these problems.

Cabot, Clarisó and Riera use in [7] Constraint Programming to verify UML/OCL class
diagrams. This paradigm provides a fully automated, decidable and expressive verification of
these diagrams. A finite solution space is established so the constraint solver can perform a
complete search within this space.

In their paper, the authors describe how to translate a UML/OCL class diagram into a
Constraint Satisfaction Problem (CSP). The tool they implemented is base on a set of ECLiPSe

constraint libraries and Java classes, extended with the libraries of the Dresden OCL toolkit
and MDR.

In [9], Cadoli et al. also implement finite model reasoning on UML class diagrams. They
show that it is possible to use off-the-shelf tools for constraint modeling and programming for
obtaining a finite model reasoner. Their implementation is based on the standard language
Managed Object Format (MOF) to represent UML class diagrams textually, which is then
converted to an output language (OPL) that can be used with the state-of-the-art solvers.
Thus, their approach is quite similar to the one presented by Cabot et al., but without taking
into account OCL constraints.

Queralt and Teniente’s main contribution in [41] is an approach to help validating a con-
ceptual schema with a behavioural part. It is important to take into account the behavioural
part because, although it is possible to find instances of a class satisfying all the constraints, it
may be the case that there is no operation that successfully populates it.

To study the feasibility of their approach, they have used the CQC Method [17], which is
an existing reasoning procedure, to perform the tests. To check if a certain property holds in a
schema, it has to be expressed in terms of an initial goal to attain and the set of integrity con-
straints to enforce, and then ask the CQC Method to attempt to construct a sample information
base to prove that the initial goal is satisfied without violating any integrity constraint.

3.2.3 Inconsistency Management

Another example where modeling CASE tools may be really helpful is consistency checking.
Large systems and specifications are rarely consistent. Even if they are, its evolution tends to
introduce inconsistencies. Software systems and software specifications are no exception. As
Balzer says in [2], exceptions inevitably arise in the data managed by practical software applica-
tions. In [46], Spanoudakis and Zisman focus their attention in an earlier stage, and they state
that the construction of complex software systems, generally involving various stakeholders,
results in many partial models that are not consistent between them.

18

3.2. Model Improvements

Due to the increasing use of models, and that inconsistencies inevitably arise during software
development, model inconsistency detection is gaining more and more attention. Solutions that
detect such inconsistencies as they arise, in a way like IDEs do, lead to interesting design
approaches and implementations.

Inconsistency handling involves two main steps: detection and response. The first one
involves detecting the insertion of an inconsistency into the model. The second, involves deciding
what to do with the inconsistency found: should it be rejected? Should it be accepted, but
marked somehow for later correction? If we accept inconsistencies, should the modeling tool
provide a repair plan in order to fix them? There is plenty of literature about these questions,
but we only focus on the first stage: detecting inconsistencies.

Blanc et al., in [5], propose an incremental consistency checker based on the idea of represent-
ing models as sequences of primitive construction operations. The four elementary operations
they define are: create, delete, setProperty, and setReference.

In order to detect an inconsistency, they define Inconsistency Detection Rules. Any inconsis-
tency rule is a logic formula over the sequence of model construction operations. In other words,
if a set of operations were triggered in a specific order, we can assure that an inconsistency has
been introduced into the model.

In [15], Egyed proposes an instant consistency checking for the UML. Its immediacy makes
it similar to the one proposed by Blanc et al., but it takes a completely different approach to
deal with inconsistency detection. His approach defines a few consistency rules for UML 1.3
and checks whether they hold or not each time a change is performed. His main contribution
involves the detection of scope. The rules have to be checked against the elements that have
changed or can be indirectly affected by the change, not against the whole schema. In previous
methods, rules were defined in terms of types, but Egyed suggests a new solution where rules
are checked against concrete instances, not types.

3.2.4 Refactorings

As introduced in [6, 19], refactorings are changes made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its observable behavior.
They describe what can be changed, how the modification can be done without altering the
semantics, and what problems to look out for when doing so.

Fowler et al., in [19], argue that automated tools that support refactoring would improve
model’s quality. Even with the safety net of a test suite in place, refactoring by hand is time
consuming. This simple fact prevents programmers from making refactorings they know they
should, simply because refactoring costs too much.

Until now, refactorings have usually been discussed in the context of program code. As
stated by Boger et al. in [6], refactorings may be defined on the level of models, so refactoring
browsers could be implemented in the context of UML CASE tools rather than IDEs. Following
this idea, they have implemented a few refactors within Poseidon for UML [24]. Usually, code
based refactorings are shown to the user via application menus. The authors, though, have
implemented them using panes that can always be seen aside the model. Refactorings are
proposed based on the current selection. If, for example, a method is selected, the refactoring
Rename Method is proposed. Possible conflicts or problems that can occur if the refactoring is
executed are also shown.

19

3. State of the Art

3.3 The Eclipse Platform: an Example of an IDE

Integrated Development Environments (IDE) implement many functionalities aimed to improve
code’s quality and simplify programmer’s work, like code refactoring or code completion. We
believe that the ideas IDEs implement to help their users may shed some light on how to help
modelers. In this section, we focus our attention in one particular IDE: the Eclipse Platform.
We have chosen Eclipse because, although virtually all IDEs provide the same functionalities,
it has some interesting plugins whose goal is to improve its assistance, making it specially
interesting for our work.

As defined in [3], “the Eclipse Platform is designed for building IDEs that can be used to
create applications as diverse as web sites, C++ programs, or Enterprise JavaBeans”. Fig. 3.7
shows a screenshot of the Eclipse Platform. Eclipse was originally developed by Object Tech-
nology International, before IBM bought the company. IBM began working on it to integrate
its many development programs [23]. Eclipse was created as an extensible tool, where inter-
operable plugins can be added to extend its capabilities. Thus, Eclipse can work with a great
range of programming languages and applications.

Figure 3.7: User Interface of the Eclipse Platform.

Fig. 3.8 illustrates the architecture of the Eclipse Platform. When Eclipse is started, it
discovers the set of available plugins and builds an in-memory plugin registry; whenever a
plugin’s functionality is required, the plugin is loaded.

As we briefly introduced, Eclipse can be a modeling tool when used in conjunction with the
Eclipse Modeling Framework (EMF). This extension allows an Eclipse user to define models
graphically. Despite Eclipse includes a huge set of operations and features that automatize and
assist programmers when coding, it does not provide the same or similar functionalities when
modeling. Nonetheless, we believe that the following features, which are available at the coding
stage, may shed some light on how to assist users:

• Keyword and syntax coloring.

• Compiler problems shown as annotations, outlined as soon as they are introduced.

20

3.3. The Eclipse Platform: an Example of an IDE

Figure 3.8: Architecture of the Eclipse Platform.

• Code refactoring.

• Code completion.

• Replacement of individual Java elements with versions of element in local history.

3.3.1 Related Work on Improving Eclipse’s Assistance

Robbes and Lanza explore in [43] how code completion can be improved. As they state, code
completion is one of the top commands executed by developers, along with copy, paste, save,
and delete. Code completion is “one of those features that once used becomes second nature”,
and it is integrated in most of the major IDEs.

Their goal is to analyze how this feature is implemented in different systems and to discuss
different code completion algorithms. Based on their analysis, they come to the conclusion
that, nowadays, it has some limitations. For example, if an API is quite large or the language
is not typed, the number of candidates to choose from will still be too large, making the
code completion unusable. However, there is little research to improve code completion. They
propose the introduction of a new code completion algorithm named “optimist completion”,
which “performs better than anyone”.

In [35], Layman et al. present MimEc, an “Intelligent User Notification of Faults”. Its
purpose is to display only those faults in which a developer may be interested.

Nowadays, Automatic Fault Detection (AFD) tools show an alert to the programmer as
soon as a potential fault has been introduced. The problem is that many of these notifications
are produced too often, distracting the programmer. Thus, the programmer’s confidence in the
tool is reduced and the alerts are generally dismissed, so all the advantages they would provide
become useless.

The authors propose a new platform for displaying alert information to the user. This
platform is based on the AWARE plugin for Eclipse. AWARE collects information of third-party
tools, such as the Eclipse compiler, estimates the potential faults, ranks the faults according to
the likelihood that it is not a false positive, and displays the alerts to the user. Their goal is
to supplement AWARE with an intelligent interface component, so the alerts presented to the
user are both interesting and informative.

In [13], Dubinsky et al. present an Eclipse plugin to manage User Centered Design (UCD).
The UCD approach is used to develop software products acquiring as much feedback as possible,
and as soon as possible, from end users. Its goal is to increase the usability for the users by
involving them in design and development activities. The authors identified a lack of UCD
management within the development environment of a project, so they have implemented a
tool that fits in Eclipse and solves this problem. The main feature of the UCD management
plugin is the ability to create and deploy user experiments within the Eclipse IDE.

21

3. State of the Art

3.4 Conclusions

We analyzed the state of the art from two different view points. On the one hand, we presented
many current modeling tools and we discussed the features they offer. On the other hand, we
explained different approaches to improve the quality of the resulting models. These functional-
ities include model’s understandability improvements, schema properties checks, inconsistencies
management, and refactorings. They all have been implemented, somehow, in prototypes, but
we think that including them into modeling tools is highly recommendable. Furthermore, we
briefly analyzed how assistance is provided in IDEs, because they are applications closely re-
lated to modeling tools and the ideas IDEs implement shed some light on how modeling tools
can provide assistance.

After the analysis of the literature, we can conclude that the vast majority of modeling tools
do not provide real assistance to their users when modeling. They only focus on automating
tasks, instead of both automating and criticizing modeler’s work. Moreover, the automatisms
they offer is not focused on modeling tasks; take code generation as an example. In fact, code
generation is of one of current CASE tools’ strengths: code is automatically generated from the
model, which is really interesting in a Model Driven Development (MDD) environment, but it
does not provide any guidance while developing the model itself, even if in an MDD approach
the emphasis is given to models.

Yet, there is one exception: ArgoUML. This tool provides cognitive support of object-
oriented design. It actively anlayzes and, if required, criticizes the models that are being done.
Its aim is to guide modelers while defining conceptual schemas so, ultimately, the resulting
schemas are better, follow certain guidelines, and become error-free.

However, despite ArgoUML implements great features, we think that it is not sufficient.
There are certain factors that can be improved and, thus, have to be addressed. First of all,
other current CASE tools lack this kind of features. We strongly believe that these features
should be adopted by them, and it should be done as seamless and easy as possible. The fact
that ArgoUML supports critics does not solve that others do not. Furthermore, ArgoUML is
still in an alpha (though quite usable) stage. As a result, the way it implements critics may
produce some problems in the long-term:

• The detection of critics is done by a background process. This process checks if none of
the critics is violated and, if it is, a critique is created. Such an implementation is really
inefficient, because these checks are performed regardless of whether the model changed
or not.

• ArgoUML has some limitations that may prevent modelers from using it and, therefore,
taking advantage from its critics system. For example, it lacks a few commands that are
very common among other tools, such as undo/redo and copy/paste.

• New critics cannot be easily integrated within the environment; they are part of the core.
Consequently, whenever a new critic is developed, ArgoUML has to be recompiled and a
new version has to be released.

As we have seen, current IDEs provide some guidance to programmers. Keyword and syntax
highlighting, code completion, or code refactoring are a few examples of this guidance. These
ideas can be ported to a modeling stage within modeling CASE tools. For example, code
completion at a higher level of abstraction could imply the use of ontologies, so whenever a new
class is created, its attributes are automatically fetched and proposed.

The inclusion of the presented model improvements in modeling tools permit the fulfillment
of the ideas listed in Sec. 1.3. The improvement of the schema understandability helps novice and

22

3.4. Conclusions

expert users to understand the information represented in a model. Inconsistency management
is a way to tolerate inconsistencies, and along with checking schema properties, to improve
the resulting model, which is the goal that, ultimately, our CMA pursues. Refactorings do
also improve the quality of a schema and, as we have seen, provide a mechanism by which
information from ontologies can be properly included to our models.

23

3. State of the Art

24

4
Overview of the CMA

In this chapter we present a detailed overview of the CMA, so that subsequent chapters can
be easily understood. We first state which goal the CMA pursues and which requirements it is
constrained by. We then define what a Platform Tool is and the parts that it has. Finally, we
roughly explain how the CMA is supposed to be adapted to a Platform Tool.

4.1 Goals and Requirements

As we have sketched throughout Ch. 1, modeling tools are not powerful enough to offer a
complete assistance to modelers. In Sec. 1.3, we have seen several examples on how to offer
this assistance to a user. After the literature review from the previous chapter, we came to the
conclusion that all the presented solutions are scattered among different tools, instead of being
under the same, unified platform.

The goal of this master thesis is to design the architecture of a piece of software that can
integrate as many guidance and assistance features as possible on top of current modeling tools.
We have already seen that these features can be new functionalities that offer shortcuts to, and
thus automate, common tasks, or criticisms to modeler’s work, so errors are outlined as soon
as they appear. We have also stated that we want them to be components that can be plugged
in the CMA, in order to extend its capabilities and power.

Figure 4.1: The CMA with new features adapted to a modeling tool.

Fig. 4.1 sketches, in a very abstract way, the architecture of the CMA. The CMA is somehow
adapted to a modeling tool, and integrates a set of new features that can be plugged in or

25

4. Overview of the CMA

removed from the CMA. A few concrete examples of the features that could be added to the
CMA are also illustrated. Note that a feature may be presented as a combination of one or
more functionalities and criticisms:

Naming could provide a set of guidelines that include criticisms to outline invalid names, and
a set of operations to validate those names or to fix case.

Refactors could be a set of operations to perform a refactor and criticisms to detect whenever
a refactor could be applied.

Multiplicities could include a criticism to point out that a multiplicity constraint has the
default unconstrained value, so the modeler notices that it may be changed, or a criticism
that identifies whether the schema is satisfiable or not.

Model completion could provides an operation that decides which attributes can be included
in a class based on its name. These attributes could be gathered from, for example, a
general ontology.

4.2 A Platform Tool

One of the requirements the CMA has to meet is that it has to run on top of existing modeling
tools1, so the former increases the features the latter offers to modelers. The CMA is tightly
related to the underlying modeling tool, so it is mandatory to analyze and comprehend how a
modeling tool works. In this section, we describe the architecture of a Platform Tool2 and the
assumptions we make about it, so we can then build our CMA.

It is quite reasonable to think that a Platform Tool is designed following a multi-layer
architecture, like the one shown in Fig. 4.2. Such an architecture allocates the responsibilities of
an application into different layers. Typically, a multi-layer architecture comprises the following
layers:

Presentation tier (User Interface) The main function of this layer is to translate results
to something the user can understand, and to gather information from him to perform
new operations.

Logic tier (Domain — UML Model) This layer processes commands, performs calcula-
tions, and moves information between the two surrounding layers. Usually, this layer
loads the information from the Data tier and performs the operations without interacting
with the Data tier, unless the user wants the changes to be saved.

Data tier (XMI Reader/Writer) The information is stored and retrieved from a database
or file system.

Usually, the user interface of a Platform Tool is a Graphical User Interface (GUI), which
means that the operations the modeler can perform and the information of the model are shown
graphically. Some of the most common GUI elements, shown in Fig. 4.3, are:

• Menus and tool bar buttons to present the available operations.

• Shortcuts inside the model viewport for those operations that are most common, such as
“create a class” or “create a generalization”.

1See Sec. 3.1 to view a list of current modeling tools.
2In order to strengthen the existing dependency between our CMA and the CASE tool it runs onto, we name

“Platform Tool” to this modeling tool.

26

4.2. A Platform Tool

Figure 4.2: Schema of a Platform Tool’s architecture.

• Panels that show additional information within the application’s main window, or dialogs
that are opened when requested.

(a) Menus and tool bars. (b) Viewport and shortcuts
to common actions.

(c) Additional properties panel.

Figure 4.3: Examples of a Platform Tool’s GUI.

The data layer stores and retrieves models from a database or a file system. It is important
to know which solution is used, in general, by Platform Tools to save information about models,
because the CMA defines additional information that has to be also saved somehow, such as
the critics that have to be addressed. From our previous experience, we can assume that almost
all Platform Tools work with files.

Finally, the logic layer is responsible for capturing, analyzing the feasibility, and processing
all the commands triggered by the modeler. Moreover, it usually keeps all the information of the
current model loaded from the data layer, such as the existing entity types, or the relationships
between them, as well as additional data that are necessary for the correct operation of the
application. That is, this layer defines the concrete behaviour a Platform Tool has.

As long as the CMA relies on the Platform Tool, it is very important to know which features
are usually implemented in these tools and, moreover, how they are implemented. In Sec. 3.1,
we have seen a few examples of these features, like code generation, reverse engineering, XMI
support, documentation generation, among others. However, there are a couple of features
we have not seen yet, which are specially important for our CMA. These features are: (1)
consistency handling and (2) the meta-commands undo/redo.

Consistency handling (1) is a basic requirement to get correct models. UML defines several

27

4. Overview of the CMA

consistency rules, which may or may not be implemented by Platform Tools. Moreover, those
Platform Tools that implement them do it in different ways. Therefore understanding the
behaviour of a Platform Tool when dealing with a potentially inconsistent environment becomes
difficult. For example, there is a consistency rule that states that “there can not be two classes
with the same name”. While some Platform Tools do not allow the creation of two classes with
the same name, and so they avoid the inconsistency, others do.

The truth is, though, that it does not matter whether the Platform Tool implements con-
sistency handling or not. If modelers are interested in this functionality, and the Platform Tool
they use does not include it, it can be included inside the CMA; consistency rules could be
programmed as a CMA feature and, whenever inconsistencies are introduced, the CMA can
outline them. However, as we shall discuss later in Sec. 6.3 the Platform Tool has to implement
some UML constraints.

The meta-commands copy/paste and undo/redo (2) are included in the vast majority of
Platform Tools. While the former commands can be seen as an “automatic creation of objects”,
and can thus be treated like any other regular command, the latter ones require special attention.

As we shall see in Sec. 6.3, it is mandatory to know which solution was implemented within a
concrete Platform Tool in order to properly adapt the CMA. Usually, an undo/redo mechanism
follows a linear undo, which uses a chain of commands where only the previous and next
commands can be undone or redone [4]. To our knowledge, this mechanism can be implemented
using one of the following techniques:

Commands Each time the modeler issues a command, this command is stored in a commands
history. Each command knows how to perform an action and how to undo it. When the
modeler moves backwards, the proper command is retrieved and its undo method called.
When she moves forwards, the execute method of the proper command is called instead.
See Sec. A.2.3 for a detailed explanation of this solution.

Snapshots Each time the modeler issues a command that changes the model, a snapshot of
the model is taken. A list of snapshots is kept and, whenever the modeler navigates back
and forth through the snapshots history, the current model is replaced by the proper
snapshot. This solution is very fast, at the expense of increased memory consumption.

4.3 The CMA

The CMA has to meet the following non-functional requirements:

• It has to integrate as many guidance and assistance features as possible within a Platform
Tool,

• these features may be either a new functionality that automates a certain task, or a
criticism that outlines some “error” within the model that has to be improved,

• we want these new features to be easily included into the CMA; in other words, we want
the CMA to be extensible,

• the CMA has to run on top of existing CASE tools, which means that it supports some
kind of adaption to the Platform Tool it runs onto, and

• this adaption has to be done in a seamlessly manner; the CMA has to fit its Platform
Tool’s behaviour as best as possible.

28

4.3. The CMA

Fig. 4.4 illustrates the previous ideas. The CMA, which is a piece of software that includes
new functionalities and criticisms, requires a Platform Tool to run. In order to interact with
it, the CMA defines a couple of Application Programming Interfaces (API), which provide an
abstract way to handle the underlying Platform Tool. CMA’s new features use these APIs
instead of the Platform Tool’s, so that they operate properly regardless of the latter’s specific
implementation.

Figure 4.4: The CMA over a Platform Tool.

UI API CMA functionalities and criticisms have to be available and visible to the modeler, so
the UI has to be modifiable somehow. The User Interface API provides a set of functions
to create menus, dialogs, etc. Another benefit obtained by using an API allows a tiny
integration with the Platform Tool: when the CMA is adapted to a specific Platform
Tool, and this API is thus implemented, the resulting UI items are seamlessly integrated
with the ones found in the Platform Tool.

UML API New functionalities need to access the current UML model. In Ch. 1, we have seen
that a UML model is an instance of a UML meta-model. This API provides an implemen-
tation of the UML meta-model, so the concrete UML meta-model implementation found
in the Platform Tool can be wrapped and, thus, decoupled from the CMA. It provides a
set of operations to create, modify, delete, and query UML elements.

29

4. Overview of the CMA

30

5
CMA’s Architecture

The goal pursued by the CMA is the improvement of the model’s quality. In order to achieve
it, the CMA provides criticisms and new functionalities that should be included in current
modeling tools. In this chapter, we present the architecture we propose to cope with this goal.

First, we present an overview of this architecture. This overview includes the definition of
the Command and Task concepts as the materialization of new functionalities and criticisms.
We also discuss how the complexity our CMA has to deal with can be simplified by organizing
components in two different levels: the operational level and the knowledge level.

Second, we describe the APIs by which the CMA can be adapted to a specific Platform Tool.
On the one hand, the UML API provides a mechanism to access and modify the Platform Tool’s
UML model. On the other hand, the UI API offers a few components to modify the Platform
Tool’s User Interface, so that the CMA can, for example, interact with the modeler.

Finally, we describe in detail the operational and knowledge levels. The former tracks the
consequences of executing commands in the Platform Tool. These consequences may be the
creation of tasks pointing out a defect introduced by the command, or the finalization of tasks
that do no longer apply, because the defects they were pointing out disappeared. The latter,
on the other hand, has all the required information to handle the operation and evolution of
the operational level : in other words, it maintains the definitions of what can be criticized, how
Tasks evolve, and which new functionalities (Commands) can be introduced.

5.1 Architecture Overview

In this section we present an overview of the CMA’s architecture. We first present and describe
the concepts of Commands and Tasks as the implementations of new functionalities and criti-
cisms used throughout the first chapters of this master’s thesis. Then, we show the complexity
our CMA has to deal with: how to include new functionalities, how to detect defects, how to
notify the modeler, etc. In order to simplify this complexity, we define a two-level architecture.
This architecture organizes the components in two different levels: the operational level and
the knowledge level.

5.1.1 Commands and Tasks

The goal pursued by the CMA is the improvement of the model’s quality. In order to achieve
it, the CMA includes criticisms and new functionalities. On the one hand, the CMA criticizes

31

5. CMA’s Architecture

the work done by the modeler. Thus, whenever something that requires modeler’s attention
happens, the CMA notifies her. On the other hand, the CMA avoids reinventing the wheel
by offering shortcuts to common tasks and automating as much work as possible. Our CMA’s
architecture implements these ideas using Tasks to represent criticisms and CMA Commands
to represent new functionalities.

A Task is anything that needs to be addressed by the modeler so she can improve her model.
For example, assume we want class names of a model to follow the following guideline:
“they have to start with a capital letter”. Whenever a new class is created, or its name
is modified, the CMA would check whether the new name follows the guideline. If it does
not, a new Task stating that “the class c does not follow the naming guideline; the first
letter of the name n should be changed so it begins with a capital letter” is created.

A Command is anything that can be executed by the modeler and modifies the model’s
state. Platform Tools already have commands, like “create class” or “modify name”
We can integrate new functionalities in the Platform Tool by defining Commands in
the CMA. These Commands are named CMA Commands. For example, “automatic
attributes gathering” to automatically include attributes in a class based on the class
name, or “capitalize the first letter of a class name” so the name follows the guideline.

5.1.2 Operational and Knowledge Levels

The architecture of the CMA has to allow the integration of as many features as possible on top
of current modeling tools. If we focus on a couple of examples (naming and code completion)
of those presented in Sec. 4.1, we will notice the complexity of our CMA. On the one hand,
a feature concerning naming properties may state that (1) “class names have to begin with a
capital letter”. Thus, if, for example, the model we are working with (2) “has a class named
person”, the CMA (3) “would notice it” and (4) “would notify the modeler with a task”. On the
other hand, a model completion feature may include a new command (5) that automatically
gathers attributes for a class based on its name. If we execute such a command for a class
named Person, we would (6) get a list of attributes like, for example, name or birthday. These
examples show common problems that could be controlled and solved by the CMA. Despite
their apparent simplicity, we can see that the CMA has to deal with a high level of complexity
to include them. In particular, the following questions may arise:

1. How to include a set of “rules” or “guidelines” that define what is “correct” and what is
not?

2. Which rules are violated by a model and why?

3. When does the CMA check the model’s correctness?

4. How does the CMA notify the modeler?

5. How does the CMA include new commands?

6. How does the CMA compute the effects of a command?

These questions have to be answered by our CMA’s architecture. If we find a solution that
successfully answers them in an efficient manner, we will be able to build a CMA that achieves
our goals. In order to organize this complexity, we use the ideas Fowler presented in [18] when
describing the Accountability Pattern (see Sec. A.1.1), and we thus structured the architecture
in two levels: the knowledge level and the operational level.

32

5.2. The APIs

The knowledge level includes the general knowledge that describes which properties a model
has to have to be correct, and when this correctness may be violated. For example, it may
contain a property stating that “class names have to start with a capital letter” (1). This
property may be violated “whenever a class is given a name” or “its name is changed”
(3), because the new name may not start with a capital letter. This knowledge would
also be able to describe that a new command, such as the automatic attributes gathering,
is available (5). The information this level maintains is independent from any model; it
is something we always know, regardless the models we work with.

The operational level includes the concrete knowledge of a model. That is, which commands
were issued to modify the model, which properties the model violates, and which command
produced those violations. For example, we may know that we issued a command to
change the name of a certain class. If the new name was “person”, we would violate the
guideline defined in the knowledge level. Thus, this level is strongly related to the model
we are working with and the knowledge level. On the one hand, it points out the defects
that this particular model has. On the other hand, it is the knowledge level which defines
“what a defect is”, “when it may be introduced”, etc.

Figure 5.1: Detail of the CMA’s architecture.

Figure 5.1 shows a detailed view of the CMA’s architecture. We can see that the CMA
is adapted to a Platform Tool by implementing its APIs. The knowledge level knows which
Commands are available, and that these commands, when executed, may introduce or correct
defects in the model. The operational level maintains information on what has actually hap-
pened. When a Command is executed, it affects the defects the model has: it creates new
defects, or it corrects (some of) the existing ones.

5.2 The APIs

In this section, we define the UML and the UI APIs. These APIs have to be implemented by
a Platform Tool if we want the CMA to run on top of it.

5.2.1 The UML API

As we stated in Ch. 1, UML models are instances of the UML meta-model. Since Platform Tools
work with UML models, these tools are supposed to implement the UML meta-model. In Ch. 4,
we briefly explained that the CMA needs to access the model maintained by the Platform Tool.
The problem is that every Platform Tool has its own implementation of the UML meta-model,
making it impossible for the CMA to manage those concrete implementations directly.

33

5. CMA’s Architecture

In order to overcome this problem, we applied the Adapter Pattern described in Sec. A.2.2.
When the CMA is adapted to a concrete Platform Tool, an implementation of this API has to
be provided, adapting the Platform Tool’s UML meta-model. Thus, Platform Tool’s instances
are wrapped by the implementation of the CMA’s API. Figure 5.2 shows the simplified version
of the UML meta-model our CMA uses. The UML API, which is detailed in Appx. B, is
comprised of a set of operations scattered among the classes of this meta-model.

Figure 5.2: The UML API is a simplified UML meta-model.

In Appx. B, we can see the complete documentation of all the operations defined in the API.
The definition of this API is based on the MDT-UML2Tools for Eclipse [14]: the operations are
distributed among the different UML elements in order to simplify its usage. For example, in
order to create an attribute inside a class C, we have to invoke the createOwnedAttribute method
from C. Additionally, the API provides two more classes to operate with UML diagrams: a
UML Factory class and a UML Utilities class.

The UML Factory implements the abstract factory pattern described in Appx. A.2.1. The
implementation provided by the Platform Tool of our API instantiates UML elements using
the meta-model defined in the Platform Tool, but the returned instances are properly wrapped
using our own API. Since this factory is part of the API, we can assure that its implementation
matches the underlying Platform Tool. As a result, whenever a new UML element is created
using this factory, a Platform Tool’s UML element is instantiated and it is properly adapted to
the implementation of our API. The UML Utilities class simplifies the retrieval of information.
It provides a set of functions to access those UML elements that are already defined in the
model.

Note that the classes defined in this API, which follow the adapter pattern, do also follow
the factory pattern. When invoking an operation from one of those classes to instantiate new
UML elements, a Platform Tool’s UML elements is instantiated, and a wrapped version of it is
returned.

34

5.3. Operational Level

5.2.2 The UI API

The adaptation of the CMA to a Platform Tool does also require some UI integration. The
CMA has to be able to define new Menus to show the new Commands it provides, to interact
with the modeler to query her information, and to show the Pending Tasks it is maintaining.
Figure 5.3 shows an extremely simple UI API that allows us to perform these tasks.

Figure 5.3: The UI API includes some UI elements required to interact with the modeler.

The UI API includes the definition of Menus, which can include more Menus and Items,
and some elements to interact with the modeler. The QuestionDialog is a UI element whose
purpose is to ask a yes-or-no question to the modeler. The ModalWindow, on the other hand,
implements a form that displays a set of InputFields and expects the modeler to fill them in
with some values.

5.3 Operational Level

The operational level is closely related to the way the Platform Tool operates. Generally,
commands change the state of the model; this level tracks the consequences of executing these
commands. These consequences may be the creation of tasks pointing out a defect introduced
by the command, or the finalization of tasks that do no longer apply, because the defects they
were pointing out disappeared.

Figure 5.4: Conceptual schema of the CMA’s Operational Level.

Figure 5.4 illustrates the main components of this level. A Task, whose goal is to point out
a defect in the model, is generated and finalized because of the effect of a command execution
(named CommandEffect). For example, if the modeler issues a SetName command, and she

35

5. CMA’s Architecture

changes the name of a class to “person”, an “invalid capitalization” Task would be generated
by this CommandEffect and would be related to the Element1 (in this particular case, a Class)
that has the invalid name.

5.3.1 Command Effects

We have seen that a Command is whatever the modeler can execute in order to modify model’s
state. When the modeler issues a command from a UI menu, a CommandEffect is created and
its execute method is called. Since we are interested in improving the quality of a model, we
only care about those commands that modify the model. The commands that do not change it,
such as “list classes” or “computing the importance of a class”, are not of this level’s interest.

Figure 5.5: Detail of the Command Effects.

Figure 5.5 shows two types of CommandEffects: Platform Tool’s and CMA’s. The former
are those commands that the Platform Tool offers to the modeler, regardless of the CMA. Some
typical examples of this kind of commands are the creation of a new class, the creation of an
association, or the deletion of an attribute. The latter are those commands that were added to
the Platform Tool by the CMA, such as “automatic attributes gathering”. Both types follow
the Command Pattern, with an undo/redo mechanism, but their behavior is different:

• If the command issued is defined in the Platform Tool, we need to do almost nothing at
CMA level. The CMA only requires to know that a certain command was issued because,
as we have said, it needs to check, and eventually criticize, its consequences.

• If the command is defined in the CMA, its effect has to be coded in the CMA. In order
to provide new operations to the modeler, we need to extend the CMA Command Effect
class. A new operation has to provide the code required to perform its effects. Since a
CMA Command Effect follows the Command Pattern, with an undo/redo mechanism,
both the execute and the undo methods have to be implemented.

5.3.2 Tasks

A Task is anything that needs to be addressed by the modeler so her model can be improved:
if the model changes, and the changes introduce “defects” to the model, a Task pointing them
out is created. In other words, the goal of a Task is the notification of defects a model has.
The introduction of tasks to our system requires some sort of management, which involves the
creation and finalization of tasks. This Task Management leads us to the following questions:

• When and why is a task created?

1See Fig. 5.2.

36

5.3. Operational Level

• When and why is a task finalized?

At the operational level, we can answer when a task was created or finalized, and what
created or finalized it. However, as we shall see, in order to provide an answer to why a task
was created or finalized, we require additional information, which is not available at this level,
but at the knowledge level.

Tasks’ Behavior

As we can see in [5, 15], an approach to detect inconsistencies in real time consists on detecting
when the model changes and, then, detecting what has been changed. Following this idea, in
order to instantiate new Tasks, which can be thought as our “inconsistencies”, we just need to
detect when a Command was issued, because it is the only way to change the model.

It is expected that any Task in the system can be solved; that is, the defect it points out
can be corrected. It is the modeler’s job to fix the tasks pointed out by the CMA. In order
to achieve it, the modeler must execute a set of one or more commands, so the model changes
and, ultimately, the task becomes done.

Figure 5.6 illustrates the Task ’s state diagram. When a new task is created, its state is
Pending which means that the task requires some action from the modeler to be solved. When
the modeler continues her work, executing commands while she is modeling, it might be the
case that one of those issued commands resolves the task, either by completing it or by canceling
it.

Figure 5.6: Tasks’ State Diagram.

The Done and Canceled statuses both represent that the task does no longer apply, because
the defect it pointed out no longer exists. The difference is subtle, but important: a Task
becomes Done when the Command fixes the problem the task outlined, whilst it becomes
Canceled if there is a new Task pointing out the same defect. For example, renaming a class
named “person” to “Person” sets the “capitalization task” to Done, because the new name
follows the capitalization guidelines. Now, assume we have a class named “person”. Since this
name does not follow the guideline, the CMA has a Task pointing out this defect. If we rename
the class to “man”, a new Task has to be generated, because the new name does not follow the
guideline either, and it has to cancel the previous one.

In principle, it is not possible to change a Task state from Done or Canceled back to Pending.
Once a specific task has been Done or Canceled, it remains with this state forever. The truth
is, though, that the state of a “non-pending” Task can become Pending again because of the
special command “undo”, which leads the model to its previous state.

The association generates between a Command and a Task represents the fact that every
single Task our CMA maintains is due to the execution of a concrete Command. All the
tasks linked to a Command by this association are in the Pending state. The association
finalizes represents that the task does not apply anymore because the execution of the associated
Command “corrected” the defect pointed out by a Task. As we have seen, these tasks may be
either Canceled or Done.

37

5. CMA’s Architecture

5.3.3 Structural Events

We have defined that the changes occur in a model because of Command executions or, in other
words, because of Command Effects. The rationale is that the only way to change the model is
by executing a command. As a result, if we are able to detect when a command is issued, we
are able to detect when changes occur. However, this solution entails some problems. If we use
Structural Events instead of Command Effects, the problems disappear.

An Example of Why Structural Events are Better than Command Effects

In Ch. 4, we have seen that our CMA is an extensible tool. The features that someone can
define for and include in the CMA are independent: they can be plugged in and removed from
the CMA easily. Assume that two different people, John and Kate, have different CMAs at
different places. That is, their CMAs differ on the functionalities each one offers to the modeler.

On the one hand, John added a new functionality to his: the Pull-Up Property refactor.
This refactor assumes that there is a set of classes which are an specialization of another class;
if there is a common property between those subclasses, it is usually a good practice to remove
that property from every single specialization and to place it in the superclass.

Kate, on the other hand, included the capitalization feature: she wants to ensure that all
the attributes of her model begin with a small case letter. Whenever a modeler invokes the
Create Attribute command, the CMA checks the rule Kate included and, if it does not hold,
creates a new Task pointing it out.

Now, suppose that there is a third person, Sawyer, who wants to include both functionalities
to his own CMA. Since the two functionalities are independent, there should be no problem
including them in our framework. But when Sawyer starts using his CMA, he realizes that if
he performs a Pull Up Property from an attribute named “Age”, the CMA does not create a
Task stating that it should be renamed to “age”. This happens because when Kate made that
feature, the only command that could create an attribute was the Create Attribute command;
she had no idea that a refactor command named Pull-Up Property existed.

This result is unexpected and disconcerting. To solve this problem, Sawyer could adapt the
functionality Kate created, and specify that the task Kate defined must also be instantiated
whenever a Pull-Up Property command is issued. However, this solution goes against one of our
goals: whenever someone “installs” a new functionality, it is supposed to work “out-of-the-box”.

It is obvious that both the Create Attribute and the Pull-Up Property commands may require
the creation of the task Kate defined, because they both create an attribute, and it might be
the case that this attribute’s name does not follow the guideline. Hence, we are not interested
in the commands itself, but in the Structural Events they generate.

Definition

A Structural Event is an elementary change in the population of an entity type or relationship
type [8]. We have defined the following structural events:

create creates a new instance of a UML Element.

delete deletes an instance of a UML Element.

link creates a new instance of an association that relates the types of the two instances. In
order to determine which association is being instantiated, the role names, which are
unique, are used.

38

5.3. Operational Level

unlink deletes an instance of an association that relates the types of the two instances. In
order to determine which association is being instantiated, the role names, which are
unique, are used.

set sets a value to an attribute defined in the type of the instance.

unset removes the value of an attribute defined in the type of the instance.

Example 1. Assume we want to create a new Class x named “Person” with an “Natural”2

attribute y named “age”. The Structural Events generated are:

create(x[Class])

set(x, name [=" Person "])

create(y[Property])

set(y, name [=" name "])

link(" property", y, "type", n)

link("class", x, "ownedAttribute", y)}

Example 2. Suppose we want to delete a Generalization g between two classes x and y.
The Structural Events generated are:

unlink (" general", x, "generalization", g)

unlink (" specific", y, "generalization", g)

delete(g[Generalization])

Integration of Structural Events

We have already discussed the necessity of determining Tasks’ behavior in terms of Structural
Events. Since a Command Effect, at the end, is just an ordered set of Structural Events, the
modifications we have to apply to our model are quite simple. When a Command Effect is
issued, we need to compute the Structural Events it triggered and create or finalize the tasks
according to those Structural Events.

Figure 5.7: Detail of the task generation at the operational level.

Figure 5.7 shows the generation of Tasks when using Structural Events. An Structural Event
is always related to the Command that triggered it. Now, a Task is generated or finalized by
a Structural Event, and the relationship between a Task and a Command Effect becomes a
derived association.

The Structural Events we have defined are create, delete, link, unlink, set, and unset.
These Structural Events can be classified depending on the meta-type they affect. Hence,
create and delete affect meta-classes, such as the instantiation of a Property ; link and
unlink affect meta-associations, such as relating a Property to a Class, so the former becomes

2Assume that the “Natural” Type is the variable n.

39

5. CMA’s Architecture

an attribute of the latter; and set and unset affect the meta-attributes of the UML meta-
classes, such as defining the name of a Class, or the upper value of a MultiplicityElement. In
Fig. 5.8 we have defined three subclasses of Structural Event which correspond to these three
categories.

Figure 5.8: Detail of Structural Events (operational level).

There is an integrity constraint which states which ActionNames value can be set to each
subclass of Structural Event : Class Related Structural Events can only use Actions create and
delete; Association Related Structural Events can only use link and unlink; and Attribute
Related Structural Events can only use set and unset.

How to Determine the Structural Events a Command Effect Produces

In order to determine the Structural Events a Command Effect produces, we use different
approaches based on the concrete type of the Command Effect. Platform Tool’s Command
Effects rely on the proper adaptation of the CMA; that is, the Platform Tool has been properly
modified to generate the Structural Events associated to every single command it defines. On
the other hand, CMA’s Command Effects rely on the Proxy Pattern. The CMA accesses and
modifies the Platform Tool’s UML model via our UML API. When the CMA is adapted to a
concrete Platform Tool, the API is implemented for that particular tool, and thus the CMA
can access the information the tool handles. Sticking to our API ensures that the execution
of its operations conform to the expected behavior. Two different API implementations have
to behave exactly in the same manner. This characteristic allows us to determine in advance
which structural events will be issued by the operations of our CMA.

Hence, by using the Proxy Pattern, our CMA provides its own implementation of the API
which, in turn, uses the specific Platform Tool’s implementation. Every time an operation
is executed in our CMA’s API implementation, the Platform Tool’s is invoked and then the
Structural Events are properly generated.

5.4 Knowledge Level

The operational level tracks the consequences of the execution of every single command issued
by the modeler. It maintains the tasks that point out the defects introduced by the structural
events a command generated. It also maintains those tasks that were corrected or canceled,
and the command that finalized them. The knowledge level has all the required information
to handle the operation and evolution of the operational level. Whatever is defined at the
operational level has an alter ego at the knowledge level that describes its behavior.

40

5.4. Knowledge Level

This section begins with a brief description of what a Command is and its relation with a
Command Effect. We then discuss the concept of a Task Type and its relation with Tasks. We
also explain what Structural Event Types are, and how they are used to describe the behavior of
a Task ; that is, when a Task is created, completed, or canceled. Figure 5.9 shows the conceptual
schema corresponding to the CMA’s knowledge level, which includes all these concepts. For the
sake of simplicity, this figure hides some information which is shown in figures 5.10 and 5.13.

Figure 5.9: Conceptual schema of the CMA’s Knowledge Level.

5.4.1 Commands

We already know that a Command is whatever the modeler can execute in order to modify
model’s state. We have seen that the execution of a command generates a Command Effect in
the operational level. This effect executes the code that actually performs the modifications
to the model’s state. Moreover, the effect is stored in a Command Effect Processor to allow
the modeler to navigate back and forth the executed command and, thus, provide the “undo”
functionality. We also know that there are two types of Command Effects, depending on where
they are defined: CMA Command Effects and Platform Tool Command Effects.

When a Platform Tool, along with the CMA, is started, it needs to know all the available
operations; otherwise, they could not be shown to the modeler and, thus, she would not be able
to execute them. Since the CMA can define new operations, the concept of a CMA Command
has to be modeled somewhere so, ultimately, the Platform Tool can detect which commands are
additionally available and can show them to the modeler. As CMA Commands are independent
from the current working model, they are defined in the knowledge level3.

5.4.2 Structural Event Types and Task Types

The goal Tasks pursue is outlining the defects a model has. The set of Pending Tasks the
modeler has to address evolves according to the Structural Events generated. But, how does
the CMA know that “when a certain Structural Event is triggered, a certain Task has to be
generated4”? In order to answer this question, we have to define two concepts and a relationship
between them: the Structural Event Type concept, the Task Type concept, and the generates
association. Thus, we are able to say that “whenever a Structural Event happens, the Tasks
generated are those whose type is related to the type of the Structural Event”.

The creation of these types entails additional problems that have to be addressed:

• Provided that Structural Events occur regardless of Structural Event Types, how do we
determine the type of a Structural Event once it has been triggered?

3Note that this differs from what we first presented in Fig. 5.1. At the knowledge level, we only need to
define the CMA Commands, not Platform Tool’s. A Platform Tool already knows the Commands it provides.
However, the CMA has to “tell the Platform Tool” which are the new commands it provides.

4For the purposes of simplicity, from now on and during this section, instead of talking about generating,
completing, and canceling a Task, we will be only referring to generating tasks. However, whatever we say about
the generates operations does also apply to the other two operations.

41

5. CMA’s Architecture

• When a certain type of Structural Event occurs, it may generate a new Task. We know
this because we have an association relating the type of the Structural Event and the
type of the potentially creatable Task. How do we know that the Task has to be actually
generated?

• When a Task is generated, it points out the offending Elements. How does the CMA
know which Elements have to be related to this new Task?

Determining the Type of a Structural Event

Figure 5.8 presented the different Structural Events that can be triggered by the Platform Tool
or by our CMA Commands. The Structural Events where classified in three groups: Class,
Association, and Attribute Related Structural Events. Each group was related to the Element
instance it affected (an Association Related Structural Event affects two instances).

Figure 5.10: Detail of Structural Event Types (knowledge level).

Figure 5.10 shows the Structural Event Types our CMA is able to deal with. As we can see,
the three groups presented in the operational level are preserved. The only difference is that
they are no longer related to an Element, but to an Element Type. Using this structure we are
able to state predicates like “whenever a Class is created, it may be the case that a Task of a
certain Task Type has to be generated”, or “whenever a Named Element has its name set, it
may be the case that a Task of another specific Task Type has to be generated”.

In order to determine the Structuarl Event Type of a Structural Event, we need to take into
account information about the Structural Event and the Elements it is related to. We define
a candidate type of a Structural Event as the Structural Event Types that match the following
properties:

• If the Structural Event is a Class Related Structural Event :

1. The actions of both the event and the type match.

• If the Structural Event is an Association Related Structural Event :

1. The actions of both the event and the type match.

2. The firstRoles of both the event and the type match.

3. The secondRoles of both the event and the type match.

42

5.4. Knowledge Level

• If the Structural Event is an Attribute Related Structural Event :

1. The actions of both the event and the type match.

2. The attributeNames of both the event and the type match.

Finally, to determine which candidate types are actually a type of a Structural Event, we
look at the Elements and Element Types to which they are related:

• If the Structural Event is a Class Related Structural Event, or an Attribute Related Struc-
tural Event, we only need to check that the type of the Element to which the Structural
Event is the same to which the candidate Structural Event Type is related, or a subclass.

• If the Structural Event is an Association Related Structural Event, we have to perform
the same check with the two elements it is related to. The type of the firstElement has to
match the firstElementType to which the candidate Structural Event Type is related to,
and the type of the secondElement to the secondElementType.

(a) Structural Events generated by an attribute cre-
ation.

(b) Object Model of these Structural Events.

Figure 5.11: Example of Structural Events generation.

Consider the example shown in Fig. 5.11. Suppose the modeler decides to add an attribute
x named age to the class Person. When she executes the command to perform this creation, a
set of Structural Events is generated. Their Structural Event Types are, to mention a few:

• create(x):

– create(Property)

– create(NamedElement)

– . . .

• set(x, "name"):

– set(Property, ”name”)

– set(NamedElement, ”name”)

– . . .

43

5. CMA’s Architecture

• link("ownedAttribute", x, "class", c):

– link(”ownedAttribute”, Property, ”class”, Class)

– link(”ownedAttribute”, Property, ”class”, Classifier)

– . . .

By using this solution, we can now define defects that apply to more than one Element type.
For example, we can define a rule stating that “whenever a NamedElement is given a name,
check if the name is properly spelled; if it is not, generate a Task stating that “the name seems
to be misspelled””, which applies to all NamedElements regardless of its concrete type, like a
Class, a Property, or an Association.

Event-Condition-Action Rules

Suppose we have a Structural Event Type x related to a Task Type t. If an x-type Structural
Event is triggered, it may be the case that a t-type Task has to be generated. In order to
generate the Task once the Structural Event has been received, a certain Condition has to
hold.

The rules that handle the way our Tasks evolve consist of three parts: the event part,
which specifies a list of events, the condition, which is a query on the UML model, and the
action, which in our case is the generation of one or more Tasks. These rules are known as
Event-Condition-Action (ECA) rules[10].

Figure 5.12: Conditions included in the relationship between Structural Event Types and Task
Types.

In Fig. 5.12 we can see how we include the Conditions in our model. To make it simpler, only
the Generator association is shown. As we can see, the relationship between a Structural Event
Type and a Task Type is now an Associative Class, in order to include further information.
This associative class is related to the Condition governing the actual generation of Tasks of a
certain type when a Structural Event occurs. When the modeler includes a new Task Type in
the CMA, it needs to provide the code of the Condition that evaluates whether a Task has to
be actually created or not.

How to Implement Conditions

Tasks are related to the offending elements. That is, if we have a Class named “person”, we
would have a Task pointing out that this class does not follow the naming guideline we set. As
we have seen, the knowledge level has Structural Event Types, Conditions, and Actions. How
did the CMA link that Task to the offending class “person”? Or, more precisely, if a Condition
only states whether a defect was introduced, how does the CMA know which are the offending
elements?

Suppose there are some offending elements in the model, and that a Task has to be generated.
In other words, we have received a Structural Event, and the associated Condition evaluates

44

5.4. Knowledge Level

to true. Since the Structural Event is related to an Element, we may think that this element
is the offending one. In the previous example, when we set the name of a class to “person”,
the CMA would have received an Attribute Related Structural Event related to the class, the
evaluation of the Condition would have returned “true”, and, as a result, a new Task related
to the offending class could have been created.

The problem is that this solution does not always work. For example, suppose we want
to detect duplicate class names. If we created a class named “Person”, and there already was
one class with that name, the CMA would have to create a Task related to the two offending
classes. However, the Structural Event received is only related to the class we have created, not
to the already existing one.

Figure 5.13 illustrates the solution to overcome this problem. A Condition can be either a
Generator Condition or a Finalizer Condition. The former evaluates the model and, if a Task
pointing out an error has to be created, it then returns the set of offending Elements. The
latter, on the other hand, evaluates whether a Task, to which it is related, has to be finalized
or not.

Figure 5.13: Detail of Conditions.

How to Finalize Tasks

We have been describing how Tasks are generated and set to Pending, but not how they are
set to Done or Canceled. The only difference between the Generator association and the other
two is how the Conditions are implemented. Whilst the Generator association is related to
a Generator Condition, which returns the set of offending elements when a Task has to be
generated, the other two are related to a Finalizer Condition.

A Finalizer Condition is invoked in order to determine whether tasks of a certain type have
to be finalized. When a Structural Event is received, the CMA retrieves those Tasks whose
type corresponds to the Task Type to which the Structural Event Type is related and, for each
Task, it evaluates whether the Condition holds or not. If it does, the Task becomes Canceled
or Done, depending on the concrete associative class the condition was related to. When a
Structural Event is received, this process is repeated for each Task of the associated type.

5.4.3 Further Assistance

Tasks evolve because of Structural Events. We have seen that if a Task is generated, the only
way to finalize it is by generating another Structural Event. However, there are some Tasks

45

5. CMA’s Architecture

that can not be finalized by any Structural Event ; these Tasks require the intervention of the
modeler. For example, suppose we have the following naming guideline for Class names:

The name of a Class

– should be a noun phrase, whose head is a countable noun in singular form,

– written in the Pascal case (that is, every word in the phrase begins with a capital
letter), and

– if N is the name of the Class, then the following sentence has to be grammatically
well-formed and semantically meaningful:

An instance of N is [a|an] lower(N).

where lower(N) is a function that gives N in lower case and using blanks as delim-
iters.

Whenever we set the name of a class, a Task querying the modeler if the sentence makes
sense is created. This Task cannot be successfully finished by a Structural Event (it could be
canceled if the class was removed).

Figure 5.14: CMA Corrector Commands included in the knowledge level.

In order to solve this problem we define a special type of CMA Command whose purpose
is to finalize this kind of tasks: CMA Corrector Commands. As we can see in Fig. 5.14, Task
Types can be finalized by executing one of the CMA Corrector Commands they are linked to.

Once we have introduced this concept, it is easy to see that we can provide assistants that
guide the modeler in the process of finalizing Tasks. For example, suppose we have a Task
pointing out that there is a class whose name is “person”. We can provide a CMA Corrector
Command that, when executed, automatically changes “person” to “Person”.

Figure 5.15: CMA Corrector Command Effects included in the operational level.

Finally, note that we have to modify the operational level to include these new type of
Commands. Figure 5.15 shows the adopted solution. We define CMA Corrector Command
Effects as a subclass of the already defined CMA Command Effects class, and a relationship
Finalizes between the corrector and the task.

46

6
Construction of a Prototype

In this chapter we describe the construction of a prototype. The prototype requires (1) a
Platform Tool, (2) the CMA, and (3) adapting the CMA to the Platform Tool.

First, we present the design and implementation of a Custom Platform Tool. Since the
adaptation of the CMA to a specific Platform Tool requires detailed knowledge on how the
tool is implemented, we decided to build an extremely simple modeling tool to be used as our
prototype’s Platform Tool.

Second, we detail the implementation of the CMA’s architecture. This implementation is
organized using the following two modules: the core module and the plugins module. The former
comprises the minimum knowledge (which includes the knowledge and the operational levels)
required for the correct CMA operation, whilst the latter populates the knowledge level in order
to add new features and detect new defects.

Finally, we describe the adaptation of the CMA to the Custom Platform Tool. This adap-
tation involves (1) the implementation of the UML and UI APIs defined in the architecture,
(2) the modification of Platform Tool Commands to generate Structural Events, and the mod-
ification of the Platform Tool’s UI to (3) show CMA Commands and (4) which Pending Tasks
and Task Types are available.

6.1 Design and Implementation of a Custom Platform Tool

In order to create a running prototype we need a Platform Tool to which our CMA can be
adapted. The adaptation to a specific Platform Tool requires detailed knowledge on how the
tool is implemented. It is not the aim of this thesis to study and understand the technical
details of a real Platform Tool, which would be a preliminary step if we want to adapt the
CMA on it. However, in order to implement a running prototype, having a Platform Tool is a
requirement. In this section, we explain the design and implementation of an extremely simple
modeling tool to be used as our prototype’s Platform Tool.

6.1.1 Platform Tool’s Architecture

If we take a look at Fig. 4.2, we can see Platform Tools usually have a three-layered architecture:
a User Interface layer, a Domain layer, and a Data layer to load/save models from/to files.
In order to define our own Platform Tool, we followed such a layered architecture. Figure 6.1
provides a detailed view of it, showing the main components located at each layer.

47

6. Construction of a Prototype

Figure 6.1: Architecture of our Platform Tool.

The User Interface (UI) Layer is how the user interacts with the system. It presents to
the modeler a set of Commands she can execute in order to modify the model and to
query information about it. Thus, a Command is “whatever the modeler can execute”.
In this case, Commands are operations aimed to modify and to query the state of the
UML model.

The Domain Layer maintains the information of the UML Model the modeler is working
with, and additional State information required by the tool for its correct operation.

As we shall see, UML Models are defined and handled by using the UML2Tools package.
This package is an Eclipse’s plugin, but it can be used in a stand-alone fashion.

The State information our Platform Tool handles comprises the stack of undos and redos
available and the name of the XMI file we are working with, among others.

The Data Layer saves and retrieves UML models to and from files. Basically, it is a module
that provides a couple of operations to work with XMI files.

Figure 6.2 shows the conceptual schema of our Platform Tool. We can see that Com-
mands are presented to the modeler using a set of Menus, and that these Commands use the
UML2Tools package to query and modify the UML model. The PTSystem class maintains the
State information. It also offers some operations to list UML Elements, because the UML2Tools
package lacks such operations. The UML2ModelSerializer includes the operations required to
work with XMI files.

6.1.2 Implementation

The implementation of our Custom Platform Tool is quite simple. We only need to code the
conceptual model shown in Fig. 6.2. As we have seen in Sec. 3.1, modeling tools usually use
Graphical User Interfaces. Implementing GUIs like the ones found in a real Platform Tool
takes a lot of time, and it is not a goal of this master’s thesis either. Hence, our Platform Tool
uses a minimal GUI, which only displays three lists: Classes, Associations, and Enumerations.
Whenever an item of one of these lists is selected, its description is shown (Fig. 6.3).

The interaction with the modeler is done using a Command Line Interface (CLI). A CLI is
a mechanism for interacting with an application, by which the user types commands to perform
specific tasks. For example:

> new c l a s s
New Class Form

Name: > Person
Is it abstract? (y/N) > N

> l s c l a s s e s

48

6.2. Implementation of the CMA

List of classes

class Person

end

Figure 6.2: Conceptual schema of our Platform Tool.

The undo/redo mechanism

Our Platform Tool implements a snapshot-based undo mechanism. Whenever a Command is
executed, a snapshot of the previous state is generated. The Platform Tool maintains a list of
the available snapshots, so the modeler can move back and forth.

6.2 Implementation of the CMA

When we presented the architecture of the CMA we saw that it is organized in two levels:
the knowledge level and the operational level. The implementation we propose, however, is
organized using the following two modules: the core module and the plugins module. The
former comprises the minimum knowledge required for the correct CMA operation, whilst the
latter populates the knowledge level in order to add new features and detect new defects.
Hence, the core includes the CMA class; information about Structural Events and Structural
Event Types; Commands and Command Effects to maintain their execution; and the interfaces
of Tasks, CMA Command Effects, etc., by which the CMA is extended. The plugin component,
on the other hand, is responsible for loading new features: it loads the relationships between
Structural Event Types and Task Types, with the associated Conditions; and CMA Commands.

In this section, we describe the implementation of these two components. First, we focus our
attention on the most important part of our system’s core: the CMA system class. It is in charge

49

6. Construction of a Prototype

Figure 6.3: Screenshot of our Custom Platform Tool.

of maintaining the operational and knowledge levels, and the API specific implementations
provided by the adaptation of the CMA over the Platform Tool.

Second, we explain the implementation of the knowledge and operational levels. This im-
plementation is straightforward, because we only need to code the UML diagrams presented
throughout the previous chapter. We need to take special care with the following classes: the
Command Effect Processor, which implements the undo/redo mechanism; the CMA Command,
which is used to add new operations to the Platform Tool; and the definition of the ECA
Rules, that is, how we define the relationships between Structural Event Types, Task Types, and
Conditions.

Next, we detail one of the most important parts of the prototype: the link between the
previous two levels. That is to say, we show how we implemented the Structural Event Processor
class, which is responsible for modifying the Pending Tasks set because of the Structural Events
generated according to the rules defined in the knowledge level. Finally, we explain how we
implemented the plugin component.

6.2.1 The CMA System Class, or how to Prepare the CMA to be Adapted
to a Platform Tool

The first thing we need to do in order to build our CMA on top of a Platform Tool is to define
a System Class which holds all the information our CMA manages. That is, we need a class to
maintain the following information:

• which CMA Commands are available,

• which Task Types the CMA handles and, thus, the defects it is capable to detect,

• which Structural Event Types can generate a Task of a certain type and under which
Conditions,

• which specific API implementations have been provided by the Platform Tool for the
CMA integration,

50

6.2. Implementation of the CMA

• which Tasks are associated to the current model, that is to say, which defects our model
actually has, and

• which Command Effects produced these Tasks.

Figure 6.4: UML Diagram of the CMA System Class.

The previous information comprises what we presented in the operational and knowledge
levels. Figure 6.4 shows how we tie everything. We can see that there is a CMA class which
is related to everything else: the Command Effect Processor, a Task Manager, a Structural
Event Processor, and the available Task Types. It also illustrates that the CMA is related to
the Platform Tool’s API implementation.

CMA’s own API Implementation

In Sec. 5.3.3, we said that CMA Command Effects invoked an implementation of the API
provided by the CMA. This specific implementation follows the Proxy Pattern: when a CMA
Command Effect invokes an operation of the API, the implementation it is using is the CMA’s
own API implementation. When the CMA class is instantiated, it requires the instances of
the Platform Tool’s API implementation: the UML Factory, the UML Utilities, and the UI
Factory. The UML instances are wrapped by the CMA’s API implementation.

Figure 6.5: Example of how the different API implementations are related and “wrapped”.

51

6. Construction of a Prototype

Figure 6.5 provides an example of how the APIs are related and wrapped. When we create
a new Class using the CMA’s UML Factory, the Platform Tool’s UML Factory is invoked to
create the Class. The returned Class is an instance of the Platform Tool’s API implementation.
However, since classes can create additional elements, such as Properties that will become their
attributes, the Platform Tool’s Class also has to be wrapped to a CMA’s Class before the CMA’s
UML Factory can return its result. Now, if someone invokes the createOwnedAttribute defined
in the returned Class, it will invoke the createOwnedAttribute defined in the Platform Tool’s
Class and, then, the associated Structural Events.

6.2.2 Operational and Knowledge Levels

The implementation of these levels is straightforward. However, we believe that there are some
classes that require special care: Command Effect Processor, the CMA Command, and the
definition of the ECA Rules. These components are important because they define how the
CMA matches the underlying Platform Tool and how it can be extended.

The Undo/Redo Mechanism

In Ch. 4 we presented two different solutions to implement a linear undo mechanism: Commands
and Snapshots. The former solution assumes that the changes in a model occur because of the
execution of a Command. Every time a Command is issued, a new instance of its execution is
saved. Since a Command execution knows the changes it produces, it also knows how to undo
them. The latter solution, on the other hand, assumes that each time the model is changed, a
snapshot of its previous state is generated. Thus, whenever we want to recover a previous state,
we just replace the current model with the appropriate snapshot. As we stated, our CMA has
to be able to work with both solutions and adapt itself to the specific solution implemented in
the Platform Tool.

When the modeler undoes an operation, she wants to undo all the effects it caused. That is,
she wants the model to be as it was in the previous state and, if the CMA is running on top of
the Platform Tool, she also wants the Tasks to be as they were in the previous state. At first,
it may seem that, in order to restore Tasks to their previous state, it is not necessary to know
which undo mechanism is implemented in the Platform Tool. Our operational level “knows”
that an action generated and canceled a specific set of Tasks. By using this information, we can
undo the changes the action produced to the Tasks. However, we do need to know the specific
approach used by the Platform Tool, because the CMA also includes CMA Commands that
have to undo the effects they generated in the model.

A command-based undo mechanism matches our implementation of Commands and Com-
mand Effects, because it follows exactly the same idea. Whenever a Command is issued, its
execution is saved; that is, a Command Effect is generated and saved. If the Platform Tool
uses this approach, and the modeler undoes an action, the CMA must call the undo operation
to recover the model’s previous state. Otherwise, the Tasks would be in their previous state,
but the model would not.

A snapshot-based undo mechanism, on the other hand, does not require the undo operation
of a Command Effect. Whenever the modeler wants to undo an action, the previous state is
restored from a snapshot, which was taken by and is stored in the Platform Tool. In this case,
using Command Effects in the CMA does not matter. When an action is undone, the CMA
can restore the Tasks to its previous state, without calling the undo operation.

In short, the difference between these two solutions is whether the CMA calls, or not, the
execute and undo methods of a CMA Command Effect when redoing or undoing actions.
Platform Tool Command Effects are already handled by the Platform Tool; we only need them

52

6.2. Implementation of the CMA

to be represented in the operational level so we can modify Tasks status as explained. However,
CMA Command Effects have to execute its code if we are in a command-based undo mechanism,
because, otherwise, the Platform Tool would not be able to restore the previous state.

Note that in a command-based approach, each time an action is undone or redone, the code
that modifies the model is executed again. This means that the Structural Events are triggered
again, too. We have decided that, whenever an action is being undone or redone, the Structural
Events it generates are ignored, and we use the information between a Command Effect and a
Task to recover the Tasks’ appropriate state.

CMA Commands

CMA Commands purpose is to notify the Platform Tool that new operations are available.
The code that actually modifies the UML model is defined within a CMA Command Effect.
Since every single CMA Command is related to one CMA Command Effect, the only thing our
CMA needs to know is this relation. When new commands are introduced in the CMA, a new
instance of a CMA Command is created, using the provided name, and related to the CMA
Command Effect class. When a CMA Command is executed, it creates a new instance of the
CMA Command Effect and the latter’s code is executed.

ECA Rules

In order to implement the model illustrated in Fig. 5.13, we normalized the associative classes
(see Fig. 6.6). Structural Event Types are related to one Generator Condition and two Finalizer
Conditions. These classes are subclasses of Condition, which is related to the Task Type it
affects. Whenever a new Task is supposed to be created, an instance of the class Task to which
the Task Type is “related” is created. Whenever new defects are supposed to be detected by
the CMA, new subclasses of Generator Condition and Task have to be provided. Finalizer
Conditions or CMA Corrector Commands are also required to cancel or end a Task.

Figure 6.6: Detail of the Conditions’ implementation.

6.2.3 Tasks Behavior based on Triggered Structural Events

One of the most important parts of our CMA is Structural Event Management. We have
already seen that Structural Events are the backbone of Tasks generation and finalization. In
this section we describe how Structural Events are generated and related to the command that
created them. We also describe how we process them to modify Task states.

53

6. Construction of a Prototype

Generating and Packing Structural Events

The execution of a Command Effect, whichever its concrete type is (a CMA Command Effect
or a Platform Tool Command Effect), generates a set of Structural Events. CMA Command
Effects generate these events because of the CMA’s API implementation. When the CMA is
adapted to a Platform Tool, latter’s commands are properly modified to generate the events.
Since every execution of a Platform Tool command is represented by an instance of a Platform
Tool Command Effect, we can link this instance to the generated structural events.

In order to simplify the creation of the Structural Events and its link with the Command
Effect that generated them, we use two classes: Structural Event Factory and Structural Event
Processor. The Factory provides a set of operations with the parameters that are required to
generate a Structural Event. When one of these operations is invoked, the Structural Event
is generated and sent to the Structural Event Processor. The Processor analyzes the received
Structural Events and modifies the Tasks according to the information stored in the knowledge
level.

In order to know which Command Effect generated a set of Structural Events we need these
events to be “packed”. The Structural Event Processor defines three operations to handle the
received Structural Events: begin, commit, and rollback. When a Command is executed,
it notifies the Command Events Processor by invoking its begin method. When the begin

method of the Structural Event Processor is called, the processor is ready to receive Structural
Events, until the commit operation is invoked. When it is, the Structural Events Processor
analyzes the Structural Events and modifies the Tasks of the system accordingly. However, if
the rollback operation is invoked, the received Structural Events are discarded, and the Tasks
processing is aborted.

Processing Structural Events

If an operation invokes the Structural Event Processor ’s commit operation, it means that its
execution has finished, and it is therefore time to determine which Tasks it affected, if any.
That is, we need to check if there are any Completed, Canceled, and/or Generated Tasks. For
each Structural Event related to that Command Effect, the CMA checks if

1. any of the Pending Tasks can be completed and, if so, it completes them;

2. any of the Pending Tasks can be canceled and, if so, it cancels them; and

3. new Tasks have to be generated and, if so, it generates them.

In other words, the CMA instantiates the associations between Tasks and Structural Events
shown in 5.7. The associations between Tasks and Command Effects are derived; they can be
materialized or calculated. For efficiency reasons, we decided to materialize the associations, by
“copying” the links between Tasks and Structural Events. Once the information is materialized
in the associations between a Command Effect and the affected Tasks set, the Structural Events
and their links can be deleted, because they are redundant. Again, we decide to remove them for
efficiency reasons. Thus, Structural Events and their associations are “temporary information”
used to compute the other associations.

Note that it may be the case that a Command Effect generates and finalizes a Task within
its execution. For example, if we create a Class named “Person”, the operation triggers two
Structural Events. The first one, “creation of a class”, may generate a Task stating that “Named
Elements need a name”. The second one, “set the name of the class”, completes the Task. When
we materialized the associations between Tasks and Command Effects, we did not materialize
the links between a created-and-finalized Task and its associated Command Effect.

54

6.3. Adaptation of the CMA over the Custom Platform Tool

6.2.4 Plugin-based System

We stated our CMA has to be extensible. Usually, programs are extensible by using plugins. A
plugin is a piece of software that adds specific capabilities to a larger application, by using a
certain API. In our case, we can increase the capabilities of our CMA by adding new Commands
and new Tasks. The addition of a new CMA Command involves extending the CMA Command
Effect class with a new subclass that implements the undo and the execute operations. On
the other hand, new defects can be detected by extending the Task and Condition classes,
and providing the description of which Structural Event Types may require the evaluation of a
Condition to modify Tasks.

Following this idea, we propose a Plugin System, whose purpose is to populate the knowledge
level, where each plugin is composed of:

• A file commands.xml containing the description of new commands. That is, the name of
the Command and the class that implements the CMA Command Effect interface.

• A file tasks.xml containing the description of new tasks. That is, for every new Task Type
we can detect, its name, a brief description of what it does, and the set of Structural Event
Types that affect it. For every Structural Event, we provide the name of the Condition
class.

• The implementations of the new classes.

The next chapter presents a few examples of plugins that could be added to our CMA. For
each of them, we present the rationale behind it, the XML files describing the plugin, and the
classes that implement our interfaces.

6.3 Adaptation of the CMA over the Custom Platform Tool

The adaptation of the CMA to the Custom Platform Tool requires four main steps:

• Provide an implementation of the UML and UI APIs.

• Modify the Commands that were defined in the Platform Tool (see Fig. 6.2) to include
the generation of the associated Structural Events.

• Provide a wrapper for the CMA Commands, so they can be shown in the UI and, thus,
be executable by the modeler.

• A mechanism to show the Pending Tasks and which Task Types are available.

6.3.1 APIs Implementation

In principle, the implementation of the APIs should entail no difficulty. We just need to
provide the functionalities defined by the signature of every single operation. In the previous
chapter, we said that the UML API implementation provided by the Platform Tool follows the
Adapter Pattern. Usually, this pattern is implemented by wrapping the original instance; that
is, a Class defined in the Platform Tool (using, as we have seen, UML2Tools), is wrapped to
a PlatformToolClass, which implements the Class interface found in our API. However, this
solution has several problems.

Take, for example, the scenario presented in Fig. 6.7(a), where we create a Class named
“person”. Then, we create an attribute named “age”. If we undo this action, we need to

55

6. Construction of a Prototype

restore the previous state; that is, we want a model with only one class: “person”. Our CMA
implements the snapshot-based undo mechanism, which means that, whenever we want to
undo the effects of an operation, the whole schema is replaced by a copy of the previous state.
This schema replacement means that we change the instances of the schema; they have the
same information that was available in the previous state, but the instances are “new”. If the
creation of the “person” Class generated one or more Tasks, the wrapped instance of Class
does no longer match any instance of the model, because they are all new.

(a) (b)

Figure 6.7: Platform Tool’s UML API implementation solves potential undo problems.

In order to solve this problem, our UML API implementation does not wrap any UML2Tools
Element. Instead, we identify these elements with a unique identifier, which is saved in a special
Comment associated to the Element (Fig. 6.7(b). The API implementation maintains the value
of this unique identifier. Whenever we want to call an operation of the wrapped Element, we
look in the model for an Element whose identifier is equal to the one our wrapper maintains,
and we then call the appropriate operation.

6.3.2 Command Modifications to Include Structural Events

As we have seen in Sec.6.1, the Platform Tool defines a set of Commands that can be executed
by the modeler. Some of these Commands can modify the model, such as the Association
Creation Command or the Attribute Deletion Command, whilst other only query information

56

6.3. Adaptation of the CMA over the Custom Platform Tool

about it, like the Enumeration Listing Command. We need to modify those Commands that
change the model, so they include the Structural Events they generate.

6.3.3 CMA Command Wrappers

CMA Commands must be accessible and executable by the modeler. Otherwise, they would be
useless. Since our Custom Platform Tool defines its own Commands, which are shown to the
modeler via menus, we need to modify the Platform Tool so it can include the CMA Commands.
In order to achieve this, we decided to use, again, the Adapter Pattern. We defined a CMA
Command Wrapper that wraps an instance of a CMA Command to something the Platform
Tool can execute.

6.3.4 Additional Tuning

The CMA provides new information which has to be accessible by the modeler: the Task Types
our CMA controls and the Pending Tasks the model has. In order to view this information,
we include two new Commands in the Platform Tool that access this information and print it
in the screen. Moreover, since we decided to include a simple GUI to simplify the interaction
with the modeler, we decided to add a new “list” where Tasks are shown in real time.

Figure 6.8: Screenshot of our Custom Platform Tool with the CMA modifications.

57

6. Construction of a Prototype

58

7
Experimentation

In the previous chapter we constructed a prototype of our work, which consists on the conjunc-
tion of a Platform Tool and the CMA. Since the CMA is extensible, we need to provide plugins
to test its correct operation. In this chapter we present some plugins we implemented. We have
organized these plugins according to their scope and, for each of them, we describe it, provide
some notes on how it was implemented, and show a few results of its execution.

First, we present a Naming plugin. The names given to a conceptual schema have a strong
influence on the understandability of that schema. This plugin checks whether the names given
to the elements of a conceptual schema follow a certain proposal of naming guidelines. Following
such a guideline is a first step towards giving good names.

Second, we describe a plugin that checks, to some extent, Schema Satisfiability. In Sec. 3.2.2
we presented the concept of Schema Satisfiability. A schema S is satisfiable if it admits at least
one legal instance of an information base [40].

Next, we propose a naive plugin which provides Schema Auto-Completion capabilities. In
Sec. 3.3, we presented the Eclipse Platform as an example of an IDE. One of the features IDEs
usually include is code completion. The idea of this plugin is to follow a similar approach, helping
modelers to complete their models automatically. Despite the importance general ontologies
have while developing conceptual schemas [11, 47], this plugin does not use them to gather new
information: it uses hard-coded information to provide further assistance.

Finally, we present a few conclusions on the work done, valuing the complexity of creating
new plugins and adding them to the CMA. We also discuss and compare the different approaches
used to implement the plugins presented in this chapter.

7.1 Naming

The names given to a conceptual schema have a strong influence on the understandability of
that schema. Giving good names increase its pragmatic quality. However, choosing good names
is a very difficult task [44, p.46], and current modeling tools do not help modelers at it.

7.1.1 Description

This plugin checks whether the names given to the elements of a conceptual schema follow a
certain proposal of naming guidelines. Following such a guideline is a first step towards giving
good names. More specifically, the plugin checks the following properties:

59

7. Experimentation

1. Whenever a Named Element is created, it should suggest the modeler that she should
give a name to the Named Element.

2. Whenever a Class is given a name, this name

• should be a noun phrase, whose head is a countable noun in singular form,

• written in the Pascal case (that is, every word in the phrase begins with a capital
letter), and

• if N is the name of the Class, then the following sentence has to be grammatically
well-formed and semantically meaningful:

An instance of N is [a|an] lower(N).

where lower(N) is a function that gives N in lower case and using blanks as delim-
iters.

3. Whenever a Property is given a name, this name should be a noun phrase written in the
Camel case (that is, every word in the phrase begins with a capital letter, except the first
one, which begins in lower case).

4. Let E::A:T be an attribute named A of type T of the entity type E. Whenever we give
a name to the attribute,

• if T is not the Boolean data type, then the following sentence has to be grammatically
well-formed and semantically meaningful:

[A|An] lower(E) has [a|an] lower(A).

• but if T is the Boolean data type, the name A

– should be a verb phrase in third-person singular number, and

– the following sentence has to be grammatically well-formed and semantically
meaningful:

[A|An] lower(E) may inf(A).

where inf(A) is a function that gives the infinitive form of the verb in A, and
the phrase is written in lower case and using blanks as delimiters.

Some examples of these guidelines are:

1. If we create an Association with no name, the CMA suggests the modeler to give it a
name (though she can dismiss it).

2. If we create a Class named “PathForWheeledVehicles”:

• It has to begin with a capital letter, and

• the sentence like

An instance of a PathForWheeledVehicles is a path for wheeled vehicles.

has to be meaningful and grammatically well-formed.

3. If we create an attribute Name in a Class named Person, the CMA warns us that “it
should begin with a lower case letter”.

60

7.1. Naming

4. If we create the attributes name:String and studiesArchitecture:Boolean in a Class named
“Person”, the following sentences have to be meaningful and grammatically well-formed:

A Person has a name.
A Person may study architecture.

Furthermore, our plugin also includes a Spell Checker. A Spell Checker is a program that
flags words in a document that may not be spelled correctly. Detecting misspelled words is
another step towards our goal: giving good names. Whenever a misspelled word is detected,
the CMA should notify the modeler and provide a correct spelling.

7.1.2 Implementation

Whenever the CMA detects there is an Element whose name does not follow the proposed
guideline, a Task has to be generated. As a result, this plugin mainly describes Tasks. We
have organized Tasks in the following categories: Name Required, Capitalization, Guidelines,
and Spell Checking.

Name Required

Named Elements have an attribute named “name”. For some Named Elements, like Classes,
the name is mandatory, whilst for others, like Associations, it is optional. We believe that
naming all elements in a model is important so, whenever a Named Element is created, and if
it is not given a name, a Task reminding the modeler she should set one is created.

If we take a look at the tasks.xml file, we will see that such a Task is generated whenever
a Named Element is created, and it is achieved whenever it is given a name. The Task has to
become canceled when the Named Element is deleted.

There are some cases where a Named Element was given a name, but a default one. For
example, some Platform Tools set the name of a new Class to something like “Class 1”. In
these cases, it is important to generate a Task reminding the modeler that she did not set that
name, and so she may be interested in setting one herself.

This Task is generated whenever we receive the set Structural Event for the name of a
Named Element, and the Structural Event says the value is default. The Task is achieved if the
Named Element is given a non-default value, and canceled if the element is deleted.

Capitalization

As we have seen, Classes have to begin with a capital letter. In order to detect whether a Class
follows this guideline, we define a new Task that can be generated whenever a Class is given a
name. The Condition that checks if the guideline is followed needs to validate that the name
begins with a capital letter; if it does not, a Task has to be generated. However, if the given
name follows the guideline, a Pending Task would become achieved.

Enumerations and Associations follow the same guideline: they have to begin with a capital
letter. In order to evaluate whether these two Named Elements also follow the guideline, we
can use the same Conditions. We have to add some new Structural Events in the tasks.xml

file to specify that we also have to check the Conditions if the modified name belongs to an
Enumeration or an Association.

Note that the Condition ignores if it will check the name of a Class, an Association or an
Enumeration. It will be one of them for sure, because the tasks.xml file specifies that the
Condition will be only executed to check the guideline if it is one of them. Since the three types

61

7. Experimentation

are Named Elements, the Condition can safely cast the associated Element of the Structural
Event to a Named Element.

Following the same idea, we can check the capitalization for Properties. The only differences
are the concrete implementation of the Condition, which now checks whether the first letter of
the name begins with low case, and the Structural Event Types that may generate or finalize
this Task, which are related to Properties.

Guidelines

The proposed naming guidelines specified (1) how a name had to be written (Camel or Pascal
case) and (2) required a sentence using that name to be grammatically well-formed and mean-
ingful. The first condition is already controlled by the previous capitalization-related Task.
Let’s see how to achieve the second one.

We only defined these guidelines for Classes and Properties that are attributes of a Class.
Since we are interested in detecting whether their names follow the guideline, the Structural
Event to track is the set name of a Class and of a Property. If we use the same approach we
used in the Capitalization category, we would define different Conditions and Structural Event
Types for, on the one hand, Classes and, on the other hand, Properties. However, we have
decided to use the same Structural Event and Condition to check the guideline. We control the
set Structural Event of a Named Element ’s name, regardless it is a Class or a Property. Thus,
the Condition has to check whether the Named Element is a “Class” or a “Property that is an
owned attribute of a Class”. If it is, it can generate a new Task pointing out that the modeler
has to check whether the name follows the guideline.

Such a Task is canceled if the Named Element is deleted. There is no Structural Event that
can achieve this Task. The only way to achieve it is by defining a Corrector Command. In the
tasks.xml file, we specify that this Task can be corrected by using a certain CMA Command
Corrector, which is defined in the commands.xml. This Command has to generate the specific
sentence and query the modeler if the generated sentence makes sense. If it does, the Task is
achieved. If it does not, it has to remain Pending.

Spell Checking

The goal of spell checking is to verify that the introduced names are properly spelled. In order
to implement this feature, we have decided to use a new approach. Instead of coding ourselves
a spell checker, our plugin queries an external service if the words are properly spelled. This
approach becomes very interesting, since we could use external functionalities inside our CMA
with little effort.

Whenever a Named Element is given a name, we have to check whether this name is properly
spelled. Google’s Spell Checker is an online service that can correct misspelled words: it receives
a phrase, detects which words are misspelled, and provides a suggestion for each of them. Since
the spell checker expects a phrase, and we have a single name, like “PathForWheeledVehicles”,
our plugin has to split the name in one or more words: “Path For Wheeled Vehicles”, query
the external service, and wait for the response.

Corrector Commands

The Tasks presented by this plugin can include a Corrector Command that automatizes, and
thus simplifies, correcting them. For example, an incorrectly-capitalized noun could automati-
cally change its first letter case to match the guideline; a misspelled name could get a proposal
where all the words are properly spelled; etc.

62

7.1. Naming

Following this idea, we have define some Corrector Commands in the commands.xml, and we
have modified the tasks.xml file to relate these Correctors to the specific Tasks. In particular,
we created three Corrector Commands:

• Capitalize the first letter of the name automatically.

• Change the first letter of the name to lower case automatically.

• Provide a correct spell suggestion (via Google).

7.1.3 Results

First scenario

1. The modeler creates three classes: “person”, “man”, and “dona”.

2. The CMA has generated the following tasks:

• Invalid capitalization of “person”.

• Invalid capitalization of “man”.

• Invalid capitalization of “dona”.

> new c l a s s
New Class Form

Name: > person
Is it abstract? (y/N) >

> new c l a s s
New Class Form

Name: > man
Is it abstract? (y/N) >

> new c l a s s
New Class Form

Name: > dona
Is it abstract? (y/N) >

> l s t a s k s
tasks

- [0] Invalid capitalization of ‘person ’.

- [1] Invalid capitalization of ‘man ’.

- [2] Invalid capitalization of ‘dona ’.

3. The modeler decides to correct “person”.

4. The CMA offers her to fix the name itself.

5. The modeler accepts the suggestion.

6. The CMA renames “person” to “Person”, and thus a task is corrected.

tasks> 0
Pending task: Invalid capitalization of ‘person ’.

Rationale:

Normally classes begin with a capital letter. The name

‘person ’ is unconventional because it does not begin

63

7. Experimentation

with a capital.

Following good naming conventions help to improve the

understandability and maintainability of the design.

Available commands to fix this task:

[0] Dismiss this task

[1] Capitalize the First Letter of the Name Automatically

If you want to correct this task , type the corrector ’s

identifier you want to use: > 1

> l s c l a s s e s
List of classes

class Person

end

class man

end

class dona

end

> l s t a s k s
tasks

- [0] Invalid capitalization of ‘man ’.

- [1] Invalid capitalization of ‘dona ’.

tasks> back

7. The modeler realizes “dona” is not in English, so she renames it to “woman”.

8. The CMA shows a new task:

• Invalid capitalization of “woman”.

> update c l a s s name
Modify the Name of a Class

Old Name: > dona
New Name: > woman

> l s c l a s s e s
List of classes

class Person

end

class man

end

class woman

end

> l s t a s k s
tasks

- [0] Invalid capitalization of ‘man ’.

- [1] Invalid capitalization of ‘woman ’.

tasks> back

9. The modeler removes the class “man”.

10. The CMA removes the following task:

64

7.1. Naming

• Invalid capitalization of “man”.

11. The modeler realizes she made a mistake, and undoes the last action.

12. The CMA restores both the class “man” and the removed task.

> rm c l a s s
Delete Class Form

Name: > man

> l s c l a s s e s
List of classes

class Person

end

class woman

end

> l s t a s k s
tasks

- [0] Invalid capitalization of ‘woman ’.

> f i l e undo
> l s c l a s s e s
List of classes

class Person

end

class man

end

class woman

end

> l s t a s k s
tasks

- [0] Invalid capitalization of ‘man ’.

- [1] Invalid capitalization of ‘dona ’.

tasks> back

Scenario 2

1. The modeler wants to create a new class “Parser”, but when she types the name she
misspelled the word and wrote “Praser”.

2. The CMA generates the following task:

• Is “Praser” properly spelled?

3. The modeler realizes it is not, and queries the CMA if it can provide a solution.

4. The CMA provides “Presser” as a solution, which is not what the modeler wanted.

5. The modeler types herself the name: “Parser”.

> new c l a s s
New Class Form

Name: > Praser
Is it abstract? (y/N) >

65

7. Experimentation

> l s t a s k s
tasks

- [0] Is ‘Praser ’ properly spelled?

tasks> 0
Pending task: Is ‘Praser ’ properly spelled?

Rationale:

Google ’s spell checking software , used by this task , checks

whether your name uses the most common spelling of a given word.

If it thinks you ’re likely to be wrong , it provides a different

spelling.

Available commands to fix this task:

[0] Dismiss this task

[1] Provide a Correct Spell Suggestion (via Google)

If you want to correct this task , type the corrector ’s

identifier you want to use: > 1

Modify Name

(Type ‘!cancel ’ at any time to quit this dialog.

New name (Presser): > Parser

6. The modeler wants to create a subclass of “Parser” named “XMLParser”, but she misspells
the word again, and writes “XMLPraser”.

7. The CMA generates the following task:

• Is “XMLPraser” properly spelled?

8. The modeler realizes it is not, and queries the CMA if it can provide a solution.

9. This time, the CMA provides a valid solution: “XMLParser”.

10. The modeler accepts the suggested solution.

> new c l a s s
New Class Form

Name: > XMLPraser
Is it abstract? (y/N) >

> l s t a s k s
tasks

- [0] Is ‘XMLPraser ’ properly spelled?

tasks> 0
Pending task: Is ‘XMLPraser ’ properly spelled?

Rationale:

Google ’s spell checking software , used by this task , checks

whether your name uses the most common spelling of a given word.

If it thinks you ’re likely to be wrong , it provides a different

spelling.

Available commands to fix this task:

[0] Dismiss this task

[1] Provide a Correct Spell Suggestion (via Google)

If you want to correct this task , type the corrector ’s identifier

you want to use: > 1

66

7.2. Schema Satisfiability

Modify Name

(Type ‘!cancel ’ at any time to quit this dialog.

New name (XMLParser): >

> l s c l a s s e s
List of classes

class Parser

end

class XMLParser

end

7.2 Schema Satisfiability

In Sec. 3.2.2 we presented the concept of Schema Satisfiability. A schema S is satisfiable if it
admits at least one legal instance of an information base [40]. For some constraints, it may
happen that only empty or non-finite information bases satisfy them. In conceptual modeling,
the information bases of interest are finite and may be populated. Then, a schema is strongly
satisfiable if it admits at least one nonempty and finite legal instance of the information base.
Otherwise, we consider that schema incorrect.

7.2.1 Description

In [40], Olivé describes a method to examine whether a schema with a set of cardinality con-
straints is strongly satisfiable. This method is able to deal with two cardinality constraints that
we can define for binary relationship types.

Figure 3.6(b) shows an example that is not strongly satisfiable. In order to verify that
no nonempty finite population of the four types (two entity types and two relationship types)
satisfies the cardinality constraints, the method builds a directed graph G and checks it does not
contain cycles of a particular type. Figure 7.1 shows the graph corresponding to this example.
There are two archs for each participant in a relationship type: one from the relationship type
to the participant entity type, and the other in the opposite direction.

Figure 7.1: The graph G corresponding to Fig. 3.6(b).

Each arch has a weight, which is computed as follows. Let R(p1 : E1, p2 : E2) be a binary
relationship type with cardinalities Card(p1; p2) = (min12, max 12) and Card(p2; p1) = (min21,
max 21). The arch from R to E1 has a weight w12, where

• w12 =∞ if min12 = 0;

• w12 = 0 if min12 =∞;

• w12 = 1/min12 otherwise;

67

7. Experimentation

The arch from E1 to R has a weight max 12.
It is obvious that G contains cycles. A critical cycle of G is a nonempty sequence of archs

(v0, v1), (v1, v2), . . . , (vk−1, vk) such that

• v0 = vk, and

• v1, . . . , vk are mutually distinct, and

• the product of the weights of the arcs (v0, v1), (v1, v2), . . . , (vk−1, vk) is less than 1.

(a) (b)

Figure 7.2: A recursive relationship type with non-satisfiable cardinality constraints.

This method can also be applied to recursive types. An example, taken from [40, p.90], is
shown in Fig. 7.2. The schema 7.2(a) includes the constraints that each Person has to have two
parents and three children. The corresponding graph 7.2(b) has a critical cycle, which proves
that the schema is not strongly satisfiable.

7.2.2 Implementation

This plugin only implements one Task : “Unsatisfiable Schema because of some reason”. The
“reasons” it is capable to detect are the ones we presented here: binary associations between
two classes and recursive types.

Binary Associations

As we have seen, if there is more than one association relating two concepts, the schema can
become unsatisfiable because of the cardinality constraints associated to the member ends of
each association. The only way a satisfiable schema can become unsatisfiable, according to
what the method is capable to detect, is if

• a member end of an Association relating two classes A and B has its lower or upper value
modified, and

• there are more associations relating A and B.

In short, we have to (1) detect the “set” Structural Event of the upper or lower value
of a Property, (2) determine if this Property is a member end of an Association x, and (3)
check whether the two classes related by this Association have more Associations linking them.
When these three conditions hold, we have to run the method for every pair of Associations
that include the Association x in order to determine whether the schema is satisfiable or not.

The first step is described in the tasks.xml file, where we describe which Structural Event
Types may generate certain Task Types. Steps (2) and (3) are coded inside the Generator
Condition; if they hold, the same Generator Condition calls a isStronglySatisfiable method
defined in StrongSatisfiabilityChecker.java.

68

7.2. Schema Satisfiability

Once we have an unsatisfiable schema, the only way it can become satisfiable again is by
either

• removing one of the conflicting Associations, or

• change one of the multiplicities and hope the new cardinality constraints make the schema
satisfiable.

Recursive Entity Types

A similar approach is followed to detect if the schema is satisfiable when we modify the mul-
tiplicities of a Recursive Entity Type. In order to detect whether the schema is unsatisfiable
because of a recursive type, we only need to add an “exception” to the algorithm defined before.
Once we (1) detected the Structural Event, and (2) determined the Property is a member end
of an Association, we only need to modify step (3) so it checks whether the two classes related
by the Association are the same; if this is the case, we have to apply the algorithm for this
particular case. Otherwise, it behaves as described above.

Figure 7.3 illustrates a special kind of recursive association, where the two member ends of
the Association are “the same” because one is the superclass of the other. In this case, the
algorithm should also check whether the schema is satisfiable or not.

Figure 7.3: Example of a recursive relationship between a general and a specific class with
non-satisfiable cardinality constraints.

In order to detect this new approach, we need to do some more tunings to our algorithm.
First of all, step (3) has to be changed again: we have to check whether the two classes related
by the Association are the same, or if one is more specific than the other.

Furthermore, we now have to take care of the Generalizations. When a Generalization is
created, it may be the case that a binary association in the previous state between two classes
becomes a recursive association, because one of them has become a subclass of the other.
Similarly, when we remove a Generalization, the recursive association may become a regular
binary association.

7.2.3 Results

Scenario 1

1. The modeler wants to create the schema defined in Fig. 3.6(a).

> new c l a s s
New Class Form

Name: > Student
Is it abstract? (y/N) >

> new c l a s s

69

7. Experimentation

New Class Form

Name: > Curriculum
Is it abstract? (y/N) >

> new assoc
New Binary Association Form

Association name: > Enro l l ed
First participant (classname): > Student
First role name (student): >
First min cardinality (0): > 20
First max cardinality (1): > ∗
Second participant (classname): > Curriculum
Second role name (curriculum): >
Second min cardinality (0): > 1
Second max cardinality (1): > 1

2. The modeler wants to add the new association illustrated in Fig. 3.6(b).

3. The CMA detects the schema is unsatisfiable and defines the following task:

• Unsatisfiable schema because of a conflict between associations “Likes(s: Student,
likeCurriculum: Curriculum)” and “Enrolled(student: Student, curriculum: Cur-
riculum)”.

> new assoc
New Binary Association Form

Association name: > Likes
First participant (classname): > Student
First role name (student): > s
First min cardinality (0): > 1
First max cardinality (1): > 1
Second participant (classname): > Curriculum
Second role name (curriculum): > l i kedCurr icu lum
Second min cardinality (0): > 1
Second max cardinality (1): > 1

> l s t a s k s
tasks

- [0] Unsatisfiable Schema because of a Conflict

between Associations

‘Likes(s:Student , likedCurriculum:Curriculum)’ and

‘Enrolled(student:Student , curriculum:Curriculum)’

tasks> back

Scenario 2

1. The modeler wants the model defined in Fig. 7.2.

2. The CMA detects the schema is unsatisfiable and defines the following task:

• Unsatisfiable schema because of Recursive Association “IsParentOf(parent: Person,
child: Person)”.

> new c l a s s
New Class Form

Name: > Person
Is it abstract? (y/N) >

70

7.3. Schema Auto-Completion

> new assoc
New Binary Association Form

Association name: > IsParentOf
First participant (classname): > Person
First role name (person): > parent
First min cardinality (0): > 2
First max cardinality (1): > 2
Second participant (classname): > Person
Second role name (person): > c h i l d
Second min cardinality (0): > 3
Second max cardinality (1): > 3

> l s t a s k s
tasks

- [0] Unsatisfiable Schema because of Recursive Association

‘IsParentOf(parent: Person , child: Person)’.

tasks> back

7.3 Schema Auto-Completion

In Sec. 3.3, we presented the Eclipse Platform as an example of an IDE. One of the features
IDEs usually include is code completion. This feature is one of the most executed commands
by developers, because it automatizes the work they have to do. The idea of this plugin is to
follow a similar approach, helping modelers to complete their models automatically.

7.3.1 Description

In [11, 47], we can see the importance of using general ontologies while developing conceptual
schemas. Creating conceptual schemas is difficult because it involves a modeler understanding a
domain. However, by using ontologies the concepts can be automatically gathered and refined.

7.3.2 Implementation

This plugin does not use an ontology to gather new information, but uses hard-coded infor-
mation to provide further assistance. The goal of this plugin is to demonstrate how a CMA
Command can be included in the CMA and the effects of its execution.

The plugin only defines a new operation, called “Create a Class with Automatically Gathered
Attributes”. Consequently, we only need to define the commands.xml file and provide the
Command ’s name and the CMA Command Effect ’s class name.

When the Command is executed, a Class name is queried to the modeler. If the provided
name is one of the following, additional attributes are automatically introduced in the model:

Person has a name, a surname, an age, and an identity document.

Company has a name and may be private.

Product has a name, a description, a code, and may have been certified by the European Union.

Furthermore, the plugin also instantiates the following associations, if the related entity
types are in the model:

WorksIn between a Person (worker) and a Company.

71

7. Experimentation

Owns between a Person (owner) and a Company (property).

Sells between a Company (seller) and a Product.

Despite the implementation is naive, it demonstrates how such a feature could improve
modeler’s work. A similar approach to the one presented in Sec. 7.1, when we connected to
Google’s API to perform spell checking, could be used: we may be able to connect to a external
service which would provide some attribute or association suggestions based on the Classes
defined in the model.

7.3.3 Results

1. The modeler wants to create the class “Person”, and let the CMA populate the class with
some attributes.

2. The modeler executes the following CMA operation:

• Create a class with automatically gathered attributes and associations.

3. The CMA creates the class “Person” with the following attributes: “name”, “surname”,
“age”, and “identityDocument”.

> cma
cma

- [createcagaa] Create a Class with Automatically Gathered

Attributes and Associations

cma> createcagaa
Class Name

(Type ‘!cancel ’ at any time to quit this dialog.

Class name: > Person

> l s c l a s s e s
List of classes

class Person

attributes

name: String -- [1]

surname: String -- [1]

age: UnlimitedNatural -- [1]

identityDocument: String -- [1]

end

4. The modeler wants to use the same operation to create a class named “Company”.

5. The CMA creates the class “Company” with the following attributes: “name” and “is-
Private”.

6. The CMA has also create the following associations between “Person” and “Company”:

• WorksIn(worker: Person, company: Company)

• Owns(owner: Person, property: Company)

72

7.4. Conclusions

> cma createcagaa
Class Name

(Type ‘!cancel ’ at any time to quit this dialog.

Class name: > Company

> l s c l a s s e s
List of classes

class Person

attributes

name: String -- [1]

surname: String -- [1]

age: UnlimitedNatural -- [1]

identityDocument: String -- [1]

end

class Company

attributes

name: String -- [1]

isPrivate: Boolean -- [1]

end

> l s assocs
List of associations

association WorksIn between

Person [1..*] role worker

Company [0..1] role company

end

association Owns between

Person [1] role owner

Company [0..1] role property

end

7.4 Conclusions

As described in Ch. 5, the architecture is splitted in two levels to simplify the complexity
of our CMA. The main benefit of this solution is that the addition of new features becomes
quite simple, since a method engineer has to only populate the knowledge level in order to
have new functionalities and criticisms running. Furthermore, the implementation we made
aimed to maintain this simplicty by defining two components. The plugin component provides
a mechanism to specifically populate the knowledge level seamlessly.

In this chapter we have seen the work a method engineer has to do is as difficult as the
functionality he wants to implement. Note that this difficulty has nothing to do with the CMA,
because what is important to us is if the inclusion of the functionality into the CMA is difficult,
not the programming of the functionality itself. However, since our CMA does not constraint
how a functionality has to be programmed, this programming can also be simplified. Take as
an example the Google Spell Checker: despite programming an spell checker is quite complex,
calling an external service is not.

73

7. Experimentation

74

8
Conclusions

In this chapter we present the main contributions of this master’s thesis and some conclusions
about the work done, and sketch a few ideas about future work that has to be done in order to
have a fully functional CMA running on top of a real modeling CASE tool.

8.1 Master’s Thesis Contributions

Despite the relevance conceptual modeling has in the software development process and, spe-
cially, the design of good conceptual schemas, we have seen current modeling tools do not
provide enough assistance. Modeling tools are more focused on automating the development
process by means of, for example, code generation, than on improving conceptual models itself.
We have also seen that there are several tools that implement features which are of our interest.
The main contribution of this master’s thesis is the definition of an architecture for our CMA
along with the implementation of a running prototype. The proposed architecture allows the
integration in current modeling tools of these features.

Our approach involved adapting the CMA to a Platform Tool, which provided many advan-
tages. First of all, it added an abstraction layer by which new features can be included in the
Platform Tool. Hence, a method engineer could program a new feature for the CMA and all
the Platform Tools to which the CMA is adapted would benefit. Furthermore, the architecture
did not set any boundaries to how new features should be. Furthermore, our proposal entailed
a flexibility that permited a method engineer to fully program new features inside the CMA,
or to call external services instead. And last, but not least, the architecture was capable to
efficiently manage Tasks. The usage of Structural Events, whose types were related to Task
Types, allowed the CMA to control Tasks’ behave efficiently, because for every single change in
the model, only those potentially affected Tasks were considered.

In this thesis we also have shown an evaluation of the architecture by implementing a running
prototype. On the one hand, we implemented the prototype itself. This prototype consisted
of a Platform Tool which, in our case, was a custom modeling tool created for test purposes,
and the CMA, which implemented the architecture we defined and which was adapted to the
Platform Tool. By this implementation, we acquired useful information on how to deal with
the adaptation of the CMA to a Platform Tool and how to create a plugin system to load new
features, among others. On the other hand, in order to have a running prototype, we had to
implement a few new features. We presented some examples of new features that could be
added to our CMA. We showed the work a method engineer would have to do to extend the

75

8. Conclusions

capabilities of a Platform Tool and we evaluated the complexity of this work.

8.2 Future Work

There are some open issues that should be addressed in order to complete the research in this
work. First of all, the APIs we defined have to be extended. On the one hand, the UML API
includes a simplified version of the UML metamodel, which we believe it is powerful enough to
add interesting new features, since it includes the most important UML elements. Nonetheless,
it is worth to extend it to cover more information. On the other hand, we defined an extremely
simplified UI API. If we want a richer interaction with the modeler, more UI elements are
required. We also believe that defining this richer UI screens declaratively (external files),
instead of programmatically (inside the code), would simplify the generation and maintenance
of plugins.

Second, another task is the adaptation of the CMA to a real modeling CASE tool. We have
already demonstrated that the CMA can be adapted to a modeling tool, but using a real one
would also be interesting. Furthermore, we could also evaluate the impact the adaptation of
the CMA to a real modeling tool has. The CMA’s goal is to evaluate the consequences of a
Command Effect. Thus, every time a Command Effect modifies the model, the CMA analyzes
the Structural Events generated and modifies the Tasks the modeler has to address. This
additional work probably increases the response times of the modeling tool, and the additional
information kept by the CMA increases the memory usage requirements of the modeling tool.
We believe that a comparison of time and memory usage of a modeling Platform Tool with
and without the CMA is important. Moreover, such an evaluation could be useful if different
implementations of the CMA were provided, because they could be compared.

Finally, the CMA could be extended to include further customization to improve its be-
haviour. For example, in Ch. 7 we presented the following two plugins: a naming plugin
which asked the modeler if a name is correct by showing her a sentence, and a schema auto-
completion plugin which automatically includes attributes to the model. It is expected that
the automatically gathered attributes follow the naming guidelines, but each time an attribute
is automatically gathered and added to the model, the Task querying the modeler if the name
is correct is created. An extension to the CMA could be to disable certain plugins when a
certain Command is executed. Another example could be the inclusion of repair plans [12] to
fix inconsistencies.

76

Bibliography

Bibliography

[1] ArgoUML. ArgoUML, http://argouml.tigris.org.

[2] Balzer, R. Tolerating inconsistency. In ICSE ’91: Proceedings of the 13th international
conference on Software engineering (1991), IEEE Computer Society Press, pp. 158–165.

[3] Beaton, W., and des Rivières, J. Eclipse platform: Technical overview. Tech. rep.,
The Eclipse Foundation, 2006.

[4] Berlage, T. A selective undo mechanism for graphical user interfaces based on command
objects. ACM Trans. Comput.-Hum. Interact. 1, 3 (1994), 269–294.

[5] Blanc, X., Mougenot, A., Mounier, I., and Mens, T. Incremental detection of
model inconsistencies based on model operations. In CAiSE ’09: Proceedings of the 21st
International Conference on Advanced Information Systems Engineering (2009), Springer-
Verlag, pp. 32–46.

[6] Boger, M., Sturm, T., and Fragemann, P. Refactoring browser for UML. In Proc.
Int’l Conf. eXtreme Programming and Flexible Processes in Software Engineering (XP)
(2002), pp. 77–81.

[7] Cabot, J., Clarisó, R., and Riera, D. Verification of UML/OCL class diagrams using
constraint programming. In ICSTW ’08: Proceedings of the 2008 IEEE International Con-
ference on Software Testing Verification and Validation Workshop (2008), IEEE Computer
Society, pp. 73–80.

[8] Cabot, J., and Teniente, E. Determining the structural events that may violate an
integrity constraint. In in UML 2004, LNCS (2004), Springer, pp. 173–187.

[9] Cadoli, M., Calvanese, D., and Mancini, T. Finite satisfiability of UML class dia-
grams by constraint programming. In In Proc. of the 2004 International Workshop on De-
scription Logics (DL’2004), volume 104 of CEUR Workshop Proceedings. CEUR-WS.org
(2004).

[10] Comai, S., and Tanca, L. Termination and confluence by rule prioritization. IEEE
Transactions on Knowledge and Data Engineering 15 (2003), 257–270.

77

http://argouml.tigris.org

BIBLIOGRAPHY

[11] Conesa, J., de Palol, X., and Olivé, A. Building conceptual schemas by refining
general ontologies. In Database and Expert Systems Applications, 14th Int. Conf., Prague,
Czech Republic (2003), pp. 693–702.

[12] Da Silva, M. A. A., Mougenot, A., Blanc, X., and Bendraou, R. Towards
automated inconsistency handling in design models. In 22nd International Conference on
Advanced Information Systems Engineering, CAiSE 2010 (June 2010), no. 6051, Springer
Lecture Notes in Computer Science (LNCS), pp. 348–362.

[13] Dubinsky, Y., Humayoun, S. R., and Catarci, T. Eclipse plug-in to manage user
centered design. In Proceedings of the First Workshop on the Interplay between Usability
Evaluation and Software Development (2008).

[14] Eclipse Community. MDT-UML2Tools, http://wiki.eclipse.org/MDT-UML2Tools.

[15] Egyed, A. Instant consistency checking for the UML. In ICSE ’06: Proceedings of the
28th international conference on Software engineering (2006), ACM, pp. 381–390.

[16] Ernst, J. What is metamodeling?, http://infogrid.org/wiki/Reference/WhatIsMeta
Modeling.

[17] Farré, C., Teniente, E., and Urṕı, T. Checking query containment with the CQC
method. Data Knowl. Eng. 53, 2 (2005), 163–223.

[18] Fowler, M. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1996.

[19] Fowler, M., Beck, K., Brant, J., Opdyke, W. F., and Roberts, D. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc.,
1999.

[20] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., 1995.

[21] Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. M. Design patterns:
Abstraction and reuse of object-oriented design. In ECOOP ’93: Proceedings of the 7th
European Conference on Object-Oriented Programming (1993), Springer-Verlag, pp. 406–
431.

[22] Gane, C. Computer-Aided Software Engineering: the Methodologies, the Products, and
the Future. Prentice-Hall, Inc., 1990.

[23] Geer, D. Eclipse becomes the dominant Java IDE. Computer 38 (2005), 16–18.

[24] Gentleware. Poseidon for UML, http://www.gentleware.com/.

[25] Gogolla, M., Büttner, F., and Richters, M. USE: A UML-based specification
environment for validating UML and OCL. Science of Computer Programming 69, 1-3
(2007), 27–34.

[26] Hall, B. H., and Khan, B. Adoption of new technology. Tech. Rep. 1055, 2003.

[27] Halpin, T., and Curland, M. Automated verbalization for ORM 2. In On the Move
to Meaningful Internet Systems 2006: OTM 2006 Workshops (2006), pp. 1181–1190.

[28] Huang, R. Making active CASE tools—toward the next generation CASE tools. SIG-
SOFT Softw. Eng. Notes 23, 1 (1998), 47–50.

78

http://wiki.eclipse.org/MDT-UML2Tools
http://infogrid.org/wiki/Reference/WhatIsMetaModeling
http://infogrid.org/wiki/Reference/WhatIsMetaModeling
http://www.gentleware.com/

BIBLIOGRAPHY

[29] IBM. Rational Rose modeler, http://www-01.ibm.com/software/awdtools/developer/
rose/modeler/.

[30] Ideogramic. Ideogramic UML, http://www.ideogramic.com/products/uml/product-
info.html.

[31] Jarzabek, S., and Huang, R. The case for user-centered CASE tools. Commun. ACM
41, 8 (1998), 93–99.

[32] Kalyanpur, A., Halaschek-Wiener, C., Kolovski, V., and Hendler, J. Effective
NL paraphrasing of ontologies on the semantic web.

[33] Kelly, S., Lyytinen, K., and Rossi, M. Metaedit+: A fully configurable multi-user
and multi-tool CASE and CAME environment. In CAiSE ’96: Proceedings of the 8th
International Conference on Advances Information System Engineering (1996), Springer-
Verlag, pp. 1–21.

[34] Kop, C. Towards a combination of three representation techniques for conceptual data
modeling. Advances in Databases, First International Conference on 0 (2009), 95–100.

[35] Layman, L. M., Williams, L. A., and St. Amant, R. Mimec: Intelligent user notifi-
cation of faults in the Eclipse IDE. In CHASE ’08: Proceedings of the 2008 international
workshop on Cooperative and human aspects of software engineering (2008), ACM, pp. 73–
76.

[36] Magicdraw. Magic Draw, http://www.magicdraw.com.

[37] Meziane, F., Athanasakis, N., and Ananiadou, S. Generating natural language
specifications from UML class diagrams. Requir. Eng. 13, 1 (2008), 1–18.

[38] Neustupny, T., Thompson, D., and Morris, T. ArgoUML users wiki: Hot topics,
http://www.argouml-users.net/index.php?title=Hot_Topics.

[39] Object Management Group (OMG). Unified Modeling Language (UML), Superstruc-
ture – version 2.2, 2009.

[40] Olivé, A. Conceptual Modeling of Information Systems. Springer, 2007.

[41] Queralt, A., and Teniente, E. Reasoning on UML conceptual schemas with op-
erations. In Advanced Information Systems Engineering, 21st International Conference,
CAiSE 2009, Amsterdam, The Netherlands, June 8-12, 2009. Proceedings (2009), pp. 47–
62.

[42] Raḿırez, A., Vanpeperstraete, P., Rueckert, A., Odutola, K., Bennett, J.,
Tolke, L., and van der Wulp, M. ArgoUML user manual: A tutorial and reference
description. Tech. rep., 2000–2009.

[43] Robbes, R., and Lanza, M. How program history can improve code completion. In
ASE ’08: Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (2008), IEEE Computer Society, pp. 317–326.

[44] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-
Oriented Modeling and Design. Prentice-Hall, Inc., 1991.

[45] Selic, B. The pragmatics of model-driven development. Software, IEEE 20, 5 (2003),
19–25.

79

http://www-01.ibm.com/software/awdtools/developer/rose/modeler/
http://www-01.ibm.com/software/awdtools/developer/rose/modeler/
http://www.ideogramic.com/products/uml/product-info.html
http://www.ideogramic.com/products/uml/product-info.html
http://www.magicdraw.com
http://www.argouml-users.net/index.php?title=Hot_Topics

BIBLIOGRAPHY

[46] Spanoudakis, G., and Zisman, A. Inconsistency management in software engineering:
Survey and open research issues. In In Handbook Of Software Engineering and Knowledge
Engineering (2001), World Scientific, pp. 329–380.

[47] Sugumaran, V., and Storey, V. C. The role of domain ontologies in database design:
an ontology management and conceptual modeling environment. ACM Trans. Database
Syst. 31, 3 (2006), 1064–1094.

[48] Takeda, H., Veerkamp, P., Tomiyama, T., and Yoshikawa, H. Modeling design
processes. AI Mag. 11, 4 (1990), 37–48.

[49] Tarling, B. Issue 1934: Implement undo, http://argouml.tigris.org/issues/show_
bug.cgi?id=1834.

[50] Towner, L. E. CASE: Concepts and Implementation. McGraw-Hill, Inc., 1989.

[51] Vaishnavi, V., and Kuechler, W. Desing research in information systems, 2004.

[52] Vessey, I., Jarvenpaa, S. L., and Tractinsky, N. Evaluation of vendor products:
CASE tools as methodology companions. Commun. ACM 35, 4 (1992), 90–105.

[53] Villegas, A., and Olivé, A. On computing the importance of entity types in large
conceptual schemas. Advances in Conceptual Modeling-Challenging Perspectives (2009),
22–32.

[54] Villegas, A., and Olivé, A. A method for filtering large conceptual schemas. In
Conceptual Modeling - ER 2010 (2010), (To Appear).

[55] Visual Paradigm. Visual Paradigm for UML, http://www.visual-paradigm.com/pro
duct/vpuml/.

[56] Wand, Y., and Weber, R. Research commentary: Information systems and conceptual
modeling – a research agenda. Info. Sys. Research 13, 4 (2002), 363–376.

80

http://argouml.tigris.org/issues/show_bug.cgi?id=1834
http://argouml.tigris.org/issues/show_bug.cgi?id=1834
http://www.visual-paradigm.com/product/vpuml/
http://www.visual-paradigm.com/product/vpuml/

A
Review of the Used Patterns

This appendix reviews the primary patterns used throughout this master thesis. First, the
Accountability Pattern is presented. This analysis pattern introduces the concepts of knowledge
level and operational level to deal with the complexity we may found while modeling hierarchical
structures.

Then, a wide range of design patterns are reviewed. We first describe the Abstract Factory
Pattern, which provides an interface for creating families of related objects. Subsequently, we
describe the Adapter Pattern, which converts the interface of a class into another one. We
then see the Command Pattern, which encapsulates operations into regular classes and, thus,
it simplifies the inclusion of an undo/redo functionality in an application. Next, we present
the Publish/Subscribe Pattern, also known as Observer Pattern, which defines how to detect
when an object changes so that all its dependents are notified. Finally, we describe the Proxy
Pattern, which provides a surrogate for another object to control access to it or to perform
additional actions whenever the original object is accessed.

A.1 Analysis Patterns

In [18], Fowler defines a pattern as “an idea that has been useful in one practical context and
will probably be useful in others”. Analysis patterns reflect conceptual structures, which are
untied from actual software implementations.

The only analysis pattern we see is the Accountability Pattern, because it introduces the
concept of a knowledge level when the complexity and variability of what we are working with
is high.

A.1.1 Accountability Pattern

Throughout chapter 2 of [18], Fowler presents the concept of accountability, and proposes a
pattern to deal with it. Accountability “applies when a person or organization is responsible
to another”.

Fowler uses the organization structure problem to show the development of the accountabil-
ity model. As he states in sections 2.2–2.5, it is quite common for companies to be organized
into different levels, such as operating units, which are divided into regions, which are divided
into divisions, which are divided into sales offices, etc. He questions how to model this domain
and proposes different solutions, discussing the pros and cons of each one.

81

A. Review of the Used Patterns

Basically, he concludes that it is better to model this structures using types and associations,
constrained by rules, between those types than using a taxonomy of classes. He argues that “it
is easier to change a rule than to change the model structure”. As complexity is introduced,
the rules for defining types become more and more complex. This complexity can be managed
by introducing a knowledge level. Using a knowledge level splits the model into two sections:
the operational and the knowledge levels.

At the operational level, the model records the day to day events of the domain. At the
knowledge level, the model records the general rules that govern this structure. Note that
the operational level is always related to the knowledge level, because its types and, thus, its
behaviour is defined there.

A.2 Design Patterns

As Gamma et al. state in [21], design patterns identify, name, and abstract common themes
in object-oriented design. Design patterns have many uses in the object-oriented development
process:

• They provide a common vocabulary, defining abstractions that raise the level at which
one programs, so, at the end, the system complexity is reduced.

• They constitute a reusable base of experience and knowledge.

• They reduce the learning time of new libraries and provide a target for the refactoring of
class hierarchies.

They consist of three essential parts:

• An abstract description of a set of classes and its structure.

• The issue in system design addressed by the abstract structure.

• The consequences of applying the abstract structure to a system’s architecture.

The design patterns presented in the following subsections have been studied in depth by
Gamma et al. in [20]. The figures used to describe each pattern are based on those they use in
their work.

A.2.1 Abstract Factory Pattern

The Abstract Factory Pattern is a creational pattern, which means that it abstracts the instan-
tiation process. More specifically, this pattern “provides an interface for creating families of
related or dependent objects without specifying their concrete classes”.

A typical example of this pattern is a user interface toolkit that supports multiple look-and-
feel standards. Different look-and-feels define different appearances for “widgets”, like scroll
bars or buttons. Depending on the platform on top of which the application is running, it may
instantiate one widget or another.

In Figure A.1, we see the main components of this pattern. There is an interface1 named Ab-
stractFactory that defines the callable operations. These operations are supposed to create new
AbstractProducts. The types they return are, in turn, interfaces. A concrete implementation of
the AbstractFactory returns concrete implementations of the AbstractProducts.

Some consequences of using this pattern are:

1We do not care whether it is an interface or an abstract class.

82

A.2. Design Patterns

Figure A.1: Structure of the Adapter Pattern.

• It isolates concrete classes.

• It makes exchanging product families easy, because it only requires to change the concrete
factory.

• Supporting new kinds of products is difficult, because the AbstractFactory interfaces fixes
the set of products that can be created.

A.2.2 Adapter Pattern

The Adapter Pattern is a structural pattern. Its intent is “to convert the interface of a class into
another interface clients expect. Thus, classes that are incompatible because of its interfaces
can work together”.

Consider for example a drawing editor that lets users arrange graphical elements into pic-
tures. The drawing editor’s key abstraction is the graphical object, which has an editable shape
and can draw itself. Certain Shapes are easy to implement, such as LineShapes or Polygon-
Shapes, but it is really complex to implement a TextShape, so the programmer might want to
use a toolkit that already implements a TextView.

In order to include this TextView, which probably has a different and incompatible interface,
the programmer could change the TextView class so it conforms to the Shape interface. This
solution requires access to the toolkit’s source code, which is not always available, and modify
it, which is difficult and not desirable, because one should be able to adapt it without modifying
the original code. A better solution would be to define a TextShape that adapts the TextView
interface to Shape’s.

Adapting the TextView to the Shape’s interface can be achieved in one of two ways: (1) by
inheriting Shape’s interface and TextView ’s implementation or (2) by compositing a TextView
instance within a TextShape, and implementing TextShape in terms of TextView ’s interface.

Figure A.2 shows the adapter pattern using object composition. The Target interface define
the set of operations available to the Client, and the Adapter adapts an Adaptee so the later
conforms the Target interface.

83

A. Review of the Used Patterns

Figure A.2: Structure of the Adapter Pattern.

A.2.3 Command Pattern

The Command Pattern is a behavioural pattern in which an object encapsulates all the infor-
mation needed to call a method at a later time.

Sometimes it is necessary to issue requests to objects without knowing anything about the
operation being requested. A typical example is a user interface toolkit, which includes buttons
and menus that carry out a request in response to user input. The toolkit can not implement
the request explicitly, because only applications using the toolkit know what should be done on
which object.

Figure A.3: Structure of the Command Pattern.

In Figure A.3 we see that the abstract Command declares an interface for executing oper-
ations. A ConcreteCommand stores the Reciever as an instance variable and implements the
execute method to invoke the request. The Receiver has the knowledge required to carry out
the request.

Some consequences of using this pattern are:

• Command decouples the object that invokes the operation from the one that knows how
to perform it.

• Commands can be manipulated and extended like any other object.

• Commands can be assembled into a “composite command”.

• It is easy to add new Commands.

The Undo/Redo Functionality

One of the main advantages of using Commands to implement operations is that the effects
of these operations are properly encapsulated and perfectly defined inside a Command object.
This feature implies that, as long as a Command knows how to perform an action, it also knows
how to undone the effects of this action.

Furthermore, we have seen that Commands can be manipulated like any other object. This
means that we can create a data structure to store as many issued Commands as required, and

84

A.2. Design Patterns

then move backwards and towards this list of Commands to undo and redo, respectively, their
effects.

Figure A.4: Structure of the Command Pattern with Undo/Redo Capabilities.

Figure A.4 shows the changes required to include the undo/redo capabilities to this pattern.
Basically, we add a CommandProcessor element which stores all the issued Commands via the
associations HasDone and HasUndone, and an undo method to undo the changes introduced
by the Command.

Usually, the concrete performance of this functionality is the following:

1. Every time the user issues a Command, it is executed and stored in the HasDone associ-
ation.

2. When the user decides to undo the effect of the last Command, the Command is retrieved
from the HasDone association and its undo method is called. Once the operation is
undone, it is removed from the HasDone association and it is stored in the HasUndone
association.

3. If the user rollback to undo an undo, the CommandProcessor acts in a similar manner:
it retrieves the last undone Command from the HasUndone association and executes its
execute method. Finally, it removes it from the HasUndone association and stores it in
the HasDone association.

4. Generally, whenever a new Command is issued, the HasUndone association is reset.

A.2.4 Publish/Subscribe –Observer– Pattern

The Publish/Subscribe Pattern, also known as Observer Pattern, is a behavioural pattern. It
defines “a one-to-many dependency between objects so that when one object changes, all its
dependents are notified and updated automatically”.

Partitioning a system into a collection of cooperating classes requires some further work to
maintain consistency between the related objects. For example, a spreadsheet application that
can show data in a chart should automatically update the chart whenever the data is modified.
This behaviour implies that the spreadsheet and the chart are dependent.

The Observer Pattern describes how to establish these relationships using subjects and
observers. A subject may have any number of observers that require to be notified whenever
the subject changes its state.

Figure A.5 shows the main elements found in this pattern. We can easily see that there
is a Subject which can have as many Observers as required. Whenever we want to make an
object dependent to another one, the former has to subclass the Observer and the later has to
subclass the Subject.

85

A. Review of the Used Patterns

Figure A.5: Structure of the Publish/Subscribe (Observer) Pattern.

A.2.5 Proxy Pattern

The Proxy Pattern is a structural pattern. It “provides a surrogate or placeholder for another
object to control access to it”. This pattern is specially useful whenever we want to reference
another object in a more complex manner. There are several situations in which the Proxy
Pattern is applicable:

• A virtual proxy creates expensive objects on demand.

• A protection proxy controls access to the original object.

• A smart reference is a replacement for a bare pointer that performs additional actions
whenever an object is accessed.

• etc.

Figure A.6: Structure of the Proxy Pattern.

In Figure A.6 we can see the structure of the Proxy Pattern. The Proxy maintains a reference
that permits the access the real subject. Note that both the Proxy and the RealSubject subclass
Subject, which means the Proxy can be substituted for the real subject.

86

B
UML API Documentation

B.1 UMLFactory

public interface UMLFactory

The Factory for the model. It provides a create method for each non-abstract class of the
model.

createBinaryAssociation

public Association createBinaryAssociation(Type src , Type dest) throws

OperationExecutionFailedException

Returns a new object of class Association. This instance has two Member Ends, which
are those specified in the creation statement.

Parameters

src The Type of the first participant.

dest The Type of the second participant.

Returns

A new object of class Association.

Exceptions

OperationExecutionFailedException

createClass

public Class createClass(String name) throws

OperationExecutionFailedException

Returns a new object of class Class, named name.

Parameters

name The name of the new Class.

87

B. UML API Documentation

Returns

A new object of class Class.

Exceptions

OperationExecutionFailedException

createDataType

public DataType createDataType(String name) throws

OperationExecutionFailedException

Returns a new object of class DataType, named name.

Parameters

name The name of the new DataType.

Returns

A new object of class DataType.

Exceptions

OperationExecutionFailedException

createEnumeration

public Enumeration createEnumeration(String name) throws

OperationExecutionFailedException

Returns a new object of class Enumeration, named name.

Parameters

name The name of the new Enumeration.

Returns

A new object of class Enumeration.

createGeneralization

public Generalization createGeneralization(Classifier general ,

Classifier specific) throws OperationExecutionFailedException

Returns a new object of class Generalization.

Parameters

general The value of the General reference.

specific The value of the Specific reference.

Returns

A new object of class Generalization.

Exceptions

OperationExecutionFailedException

88

B.2. UMLUtilities

createPrimitiveType

public PrimitiveType createPrimitiveType(String name) throws

OperationExecutionFailedException

Returns a new object of class PrimitiveType, named name.

Parameters

name The name of the new PrimitiveType.

Returns

A new object of class PrimitiveType.

Exceptions

OperationExecutionFailedException

B.2 UMLUtilities

public interface UMLUtilities

This interface defines some useful functions to perform common tasks. It may be used to
retrieve information about the current working UML model.

Any class implementing this interface must implement the Singleton pattern, because
there is a getInstance() method.

getAllAssociations

public List <Association > getAllAssociations ()

Returns all the instances of associations of Association found in the schema.

Returns

All the instances of associations of Association found in the schema.

getAllClasses

public List <Class > getAllClasses ()

Returns all the instances of associations of Class found in the schema.

Returns

All the instances of associations of Class found in the schema.

getAllDataTypes

public List <DataType > getAllDataTypes ()

Returns all the instances of associations of DataType found in the schema.

Returns

All the instances of associations of DataType found in the schema.

89

B. UML API Documentation

getAllEnumerations

public List <Enumeration > getAllEnumerations ()

Returns all the instances of associations of Enumeration found in the schema.

Returns

All the instances of associations of Enumeration found in the schema.

getAllPrimitiveTypes

public List <PrimitiveType > getAllPrimitiveTypes ()

Returns all the instances of associations of PrimitiveType found in the schema.

Returns

All the instances of associations of PrimitiveType found in the schema.

getAssociation

public Association getAssociation(String name) throws

AssociationNotFoundException

Returns the Association whose name is name.

Parameters

name The name of the Association.

Returns

The Association whose name is name.

Exceptions

AssociationNotFoundException

getClazz

public Class getClazz(String name) throws ClassNotFoundException

Returns the Class whose name is name.

Parameters

name The name of the Class.

Returns

The Class whose name is name.

Exceptions

ClassNotFoundException

90

B.2. UMLUtilities

getDataType

public DataType getDataType(String name) throws

DataTypeNotFoundException

Returns the DataType whose name is name.

Parameters

name The name of the DataType.

Returns

The DataType whose name is name.

Exceptions

DataTypeNotFoundException

getEnumeration

public Enumeration getEnumeration(String name) throws

EnumerationNotFoundException

Returns the Enumeration whose name is name.

Parameters

name The name of the Enumeration.

Returns

The Enumeration whose name is name.

Exceptions

EnumerationNotFoundException

getPrimitiveType

public PrimitiveType getPrimitiveType(String name) throws

PrimitiveTypeNotFoundException

Returns the PrimitiveType whose name is name.

Parameters

name The name of the PrimitiveType.

Returns

The PrimitiveType whose name is name.

Exceptions

PrimitiveTypeNotFoundException

91

B. UML API Documentation

getElement

public Element getElement(ElementIdentifier id) throws

ElementNotFoundException

Returns the Element whose identifier is id.

Parameters

id The id of the Element.

Returns

The Element whose identifier is id.

Exceptions

ElementNotFoundException

B.3 Association

public interface Association extends Classifier

A representation of the model object Association. An association describes a set of tuples
whose values refer to typed instances. An instance of an association is called a link.

getMemberEnd

public Property getMemberEnd(String name) throws

MemberEndNotFoundException

Retrieves Property with the specified Name from the Member End reference list.

Parameters

name The Name of the Property to retrieve

Returns

The Property with the specified Name.

Exceptions

MemberEndNotFoundException

getMemberEnds

public List <Property > getMemberEnds ()

Returns the value of the Member End reference list. The list contents are of type Property.

Returns

The value of the Member End reference list.

92

B.4. Class

destroy

@Override public void destroy () throws OperationExecutionFailedException

Destroys this element by removing all cross references to/from it and removing it from its
containing resource or object.

Exceptions

OperationExecutionFailedException

B.4 Class

public interface Class extends Classifier

A representation of the model object Class. A class describes a set of objects that share
the same specifications of features, constraints, and semantics.

createOwnedAttribute

public Property createOwnedAttribute(String name , Type type) throws

OperationExecutionFailedException

Creates a new Property, with the specified Name, and Type, and appends it to the Owned
Attribute containment reference list.

Parameters

name The Name for the new Property.

type The Type for the new Property

Returns

The new Property.

Exceptions

OperationExecutionFailedException

getOwnedAttribute

public Property getOwnedAttribute(String name) throws

OwnedAttributeNotFoundException

Retrieves the first Property with the specified Name from the Owned Attribute contain-
ment reference list.

Parameters

name The Name for the new Property.

Returns

The Property with the specified Name.

Exceptions

OwnedAttributeNotFoundException

93

B. UML API Documentation

getOwnedAttributes

public List <Property > getOwnedAttributes ()

Returns the value of the Owned Attribute containment reference list. The list contents are
of type Property.

Returns

The value of the Owned Attribute containment reference list.

getSuperClasses

public List <Class > getSuperClasses ()

Returns the value of the Super Class reference list. The list contents are of type Class.

Returns

The value of the Super Class reference list.

B.5 Classifier

public interface Classifier extends Type

A representation of the model object Classifier. A classifier is a classification of instances
- it describes a set of instances that have features in common.

B.6 DataType

public interface DataType extends Classifier

A representation of the model object Data Type. A data type is a type whose instances are
identified only by their value. A data type may contain attributes to support the modeling
of structured data types.

createOwnedAttribute

public Property createOwnedAttribute(String name , Type type) throws

OperationExecutionFailedException

Creates a new Property, with the specified Name, and Type, and appends it to the Owned
Attribute containment reference list.

Parameters

name The Name for the new Property.

type The Type for the new Property

Returns

The new Property.

Exceptions

OperationExecutionFailedException

94

B.7. Element

getOwnedAttribute

public Property getOwnedAttribute(String name) throws

OwnedAttributeNotFoundException

Retrieves the first Property with the specified Name from the Owned Attribute contain-
ment reference list.

Parameters

name The Name for the new Property.

Returns

The Property with the specified Name.

Exceptions

OwnedAttributeNotFoundException

getOwnedAttributes

public List <Property > getOwnedAttributes ()

Returns the value of the Owned Attribute containment reference list. The list contents are
of type Property.

Returns

The value of the Owned Attribute containment reference list.

B.7 Element

public interface Element

A representation of the model object Element. An element is a constituent of a model. As
such, it has the capability of owning other elements.

destroy

public void destroy () throws OperationExecutionFailedException

Destroys this element by removing all cross references to/from it and removing it from its
containing resource or object.

Exceptions

OperationExecutionFailedException

95

B. UML API Documentation

equals

public boolean equals(Element element)

Indicates whether the other Element is equal to this one. Two elements are equal if they
both have the same ElementIdentifier.

Parameters

element the other Element with which to compare.

Returns

whether the other Element is equal to this one. Two elements are equal if they both have
the same ElementIdentifier.

getIdentifier

public ElementIdentifier getIdentifier ()

Returns the ElementIdentifier that uniquely identifies this Element.

Returns

the ElementIdentifier that uniquely identifies this Element.

B.8 Enumeration

public interface Enumeration extends DataType

A representation of the model object Enumeration. An enumeration is a data type whose
values are enumerated in the model as enumeration literals.

createOwnedLiteral

public EnumerationLiteral createOwnedLiteral(String name) throws

OperationExecutionFailedException

Creates a new EnumerationLiteral, with the specified Name, and appends it to the Owned
Literal containment reference list.

Parameters

name The Name for the new EnumerationLiteral.

Returns

The new EnumerationLiteral.

Exceptions

OperationExecutionFailedException

96

B.9. EnumerationLiteral

getOwnedLiteral

public EnumerationLiteral getOwnedLiteral(String name) throws

EnumerationLiteralNotFoundException

Retrieves the first EnumerationLiteral with the specified Name from the Owned Literal
containment reference list.

Parameters

name The Name for the new EnumerationLiteral.

Returns

The EnumerationLiteral with the specified Name.

Exceptions

EnumerationLiteralNotFoundException

B.9 EnumerationLiteral

public interface EnumerationLiteral extends NamedElement

A representation of the model object Enumeration Literal. An enumeration literal is a
user-defined data value for an enumeration.

getEnumeration

public Enumeration getEnumeration ()

Returns the value of the Enumeration container reference.

Returns

The value of the Enumeration container reference.

B.10 Generalization

public interface Generalization extends Element

A representation of the model object Generalization. A generalization is a taxonomic
relationship between a more general classifier and a more specific classifier. Each instance
of the specific classifier is also an indirect instance of the general classifier. Thus, the
specific classifier inherits the features of the more general classifier.

A generalization relates a specific classifier to a more general classifier, and is owned
by the specific classifier.

getGeneral

public Classifier getGeneral ()

Returns the value of the General reference.

Returns

The value of the General reference.

97

B. UML API Documentation

getSpecific

public Classifier getSpecific ()

Returns the value of the Specific container reference.

Returns

The value of the Specific container reference.

B.11 MultiplicityElement

public interface MultiplicityElement extends Element

A representation of the model object Multiplicity Element. A multiplicity is a definition
of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to
specify the allowable cardinalities for an instantiation of this element.

getLower

public int getLower ()

Returns the value of the Lower attribute.

Returns

The value of the Lower attribute.

getUpper

public int getUpper ()

Returns the value of the Upper attribute.

Returns

The value of the Upper attribute.

setLower

public void setLower(int lower)

Sets the value of the Lower attribute.

Parameters

lower the new value of the Lower attribute.

98

B.12. NamedElement

setUpper

public void setUpper(int upper)

Sets the value of the Upper attribute. Internally, an upper value set to -1 means *.

Parameters

upper the new value of the Upper attribute.

B.12 NamedElement

public interface NamedElement extends Element

A representation of the model object Named Element. A named element is an element in
a model that may have a name. A named element supports using a string expression to
specify its name.

getName

public String getName ()

Returns the value of the Name attribute. The name of the NamedElement.

Returns

The value of the Name attribute.

setName

public void setName(String name) throws

OperationExecutionFailedException

Sets the value of the Name attribute.

Parameters

name The new value of the Name attribute.

Exceptions

OperationExecutionFailedException

B.13 PrimitiveType

public interface PrimitiveType extends DataType

A representation of the model object Primitive Type. A primitive type defines a predefined
data type, without any relevant substructure (i.e., it has no parts in the context of UML).
A primitive datatype may have an algebra and operations defined outside of UML, for
example, mathematically.

99

B. UML API Documentation

B.14 Property

public interface Property extends MultiplicityElement , NamedElement

A representation of the model object Property. A property is a structural feature of a
classifier that characterizes instances of the classifier.

A property related by ownedAttribute to a classifier (other than an association) rep-
resents an attribute and might also represent an association end. It relates an instance of
the class to a value or set of values of the type of the attribute.

A property related by memberEnd or its specializations to an association represents an
end of the association. The type of the property is the type of the end of the association.

When a property is an attribute of a classifier, the value or values are related to the
instance of the classifier by being held in slots of the instance. When a property is an
association end, the value or values are related to the instance or instances at the other
end(s) of the association

The range of valid values represented by the property can be controlled by setting the
property’s type.

getAssociation

public Association getAssociation ()

Returns the value of the Association reference. References the association of which this
property is a member, if any.

Returns

The value of the Association reference.

getClazz

public Class getClazz ()

Returns the value of the Class reference.

Returns

The value of the Class reference.

getDataType

public DataType getDataType ()

Returns the value of the DataType container reference.

Returns

The value of the DataType container reference.

getType

public Type getType ()

Returns the value of the Type reference. The type of the Property.

Returns

The value of the Type reference.

100

B.15. Type

setType

public void setType(Type type)

Sets the value of the Type reference.

Parameters

type the new value of the Type reference.

B.15 Type

public interface Type extends NamedElement

A representation of the model object Type. A type is a named element that is used as the
type for a typed element. A type can be contained in a package. A type constrains the
values represented by a typed element.

101

B. UML API Documentation

102

C
UI API Documentation

C.1 UIFactory

public interface UIFactory

The Factory for the UI widgets. It provides a create method for Menus, QuestionDialogs
and ModalWindows.

createMenu

public Menu createMenu(String name)

Returns a new object of class Menu, named name.

Parameters

name The name of the new Menu.

Returns

A new object of class Menu.

createQuestionDialog

public QuestionDialog createQuestionDialog(String name , String question)

Returns a new object of class QuestionDialog, named name and querying the user whether
he accepts or not the question.

Parameters

name The name of the new QuestionDialog.

question The question the user has to accept or decline.

Returns

A new object of class QuestionDialog.

103

C. UI API Documentation

createModalWindow

public ModalWindow createModalWindow(String name)

Returns a new object of class ModalWindow, named name.

Parameters

name The name of the new ModalWindow.

Returns

A new object of class ModalWindow.

C.2 UINamedElement

public String getName ()

Returns the name of this UINamedElement.

Returns

The name of this UINamedElement.

setName

public void setName(String name)

Sets the value of the name attribute.

Parameters

name The new value of the name attribute.

C.3 InputText

public interface InputText extends UINamedElement

A representation of an input text UI element. This widget provides an interface to retrieve
information from the user. The widget has a label and the field where the user is supposed
to write in.

getValue

public String getValue ()

Returns the value the user introduced.

Returns

the value the user introduced.

104

C.4. Item

C.4 Item

public interface Item extends Node

An Item is a special type of Node. Unlike a Menu, it cannot contain children. Thus, it is a
leaf in a Menus hierarchy.

Any leaf node in a Menu hierarchy has an associated action. Such action is a
CMACommand, and it is executed when its Item containment is selected.

C.5 Menu

public interface Menu extends Node

A Menu is a special type of Node that may contain additional nodes inside. Those nodes
can be either a Menu or an Item.

createSubMenu

public Menu createSubMenu(String name)

Creates a new Menu named name inside this Menu.

Parameters

name the name of this new sub-menu.

Returns

@returns the new sub-menu.

createItem

public Item createItem(String name , CMACommand command)

Creates a new Menu named nameinside this Menu. When this item is selected, the
CMACommand is executed.

Parameters

name the name of this new item.

command the CMACommand that must be executed when this item is selected.

Returns

@returns the new item inside this Menu.

C.6 ModalWindow

public interface ModalWindow extends UINamedElement

A representation of a window designed to elicit a response from the user. This version of
the API, which is a prototype, only allows the creation of InputText as widgets intended
to retrieve information from the user.

105

C. UI API Documentation

createInputText

public InputText createInputText(String name)

Returns a new object of class InputText, named name.

Parameters

name The name of the new InputText.

Returns

A new object of class InputText.

show

public void show()

Shows the ModalWindow to the user, so she can interact with it.

isDataValid

public boolean isDataValid ()

Returns false if the user closes the ModalWindow, or true otherwise.

Returns

false if the user closes the ModalWindow, or true otherwise.

C.7 Node

public interface Node extends UINamedElement

A Node is the superclass of Menu and Item classes. It defines the name of a node inside a
Menu, regardless its concrete type.

C.8 QuestionDialog

public interface QuestionDialog extends UINamedElement

A representation of an independent subwindow meant to query something to the user. It
show a question which has to be accepted or decline by the user.

show

public void show()

Shows the ModalWindow to the user, so he can interact with it.

acceptedByUser

public boolean acceptedByUser ()

Returns true if the user says Yes to the question, false otherwise.

Returns

true if the user says Yes to the question, false otherwise.

106

D
Plugin XML Files

This appendix shows the XML files associated to the plugins presented in Ch. 7.

D.1 Naming

D.1.1 commands.xml

<?xml version="1.0" encoding="utf -8"?>

<commands >

<command id="0" corrector="true">

<effect classname="lettercase.effects.

CapitalizeFirstLetterClassOrAssociationName" />

<name>

Capitalize the First Letter of the Name Automatically

</name>

</command >

<command id="1" corrector="true">

<effect classname="lettercase.effects.

UncapitalizeFirstLetterPropertyName" />

<name>

Change the First Letter of the Name to Lower Case

Automatically

</name>

</command >

<command id="2" corrector="true">

<effect classname="spelling.effects.FixNameSpellingEffect" />

<name>

Provide a Correct Spell Suggestion (via Google)

</name>

</command >

<command id="3" corrector="true">

<effect classname="guidelines.effects.

NamingGuidelinesCheckerEffect" />

<name>

Check if the NamedElement Follows the Naming Guidelines.

</name>

</command >

107

D. Plugin XML Files

</commands >

D.1.2 tasks.xml

<?xml version="1.0" encoding="utf -8"?>

<tasks>

<!−− A NamedElement has to have a name . . . −−>

<task classname="guidelines.tasks.NamingGuidelinesTask">

<name>

There is a NamedElement that has not been given a name.

</name>

<description >

The name of a named element is optional. It is important to

name all the elements of a conceptual schema properly. This

task outlines that there is an element that has no name yet.

Note that there are some special cases where a named element

does not require a name. This is the case of a Property that

is a memberEnd of an association. Its name is supposed to be

the name of its type , starting with a non capital letter.

</description >

<structural -events >

<create element="NamedElement">

<generation condition="

DefaultTaskGeneratorForClassInstanceCreation" />

</create >

<delete element="NamedElement">

<cancellation condition="

DefaultTaskFinalizerForClassInstanceDeletion" />

</delete >

<set default="true" element="NamedElement" attribute="name">

<cancellation condition="

DefaultTaskFinalizerForAttributeSetter" />

</set>

<set default="false" element="NamedElement" attribute="name">

<cancellation condition="

DefaultTaskFinalizerForAttributeSetter" />

</set>

</structural -events >

</task>

<!−− Classes , Assoc ia t ions and Enumerations must s t a r t with a c a p i t a l
l e t t e r −−>

<task classname="lettercase.tasks.

InvalidCapitalizationClassOrAssociationNameTask">

<name>

Invalid capitalization of ‘#namedelement#’.

</name >

<description >

Normally , classes , associations , and enumerations begin with a

capital letter. The name ‘#namedelement#’ is unconventional

because it does not begin with a capital.

Following good naming conventions help to improve the

108

D.1. Naming

understandability and maintainability of the design.

</description >

<correctors >

<corrector command="0" />

</correctors >

<structural -events >

<set default="false" element="Class" attribute="name">

<generation condition="lettercase.conditions.

UncapitalizedClassOrAssociationNameRetriever" />

<achievement condition="lettercase.conditions.

CapitalizedClassOrAssociationNameChecker" />

</set>

<set default="true" element="Class" attribute="name">

<generation condition="lettercase.conditions.

UncapitalizedClassOrAssociationNameRetriever" />

<achievement condition="lettercase.conditions.

CapitalizedClassOrAssociationNameChecker" />

</set>

<delete element="Class">

<cancellation condition="

DefaultTaskFinalizerForClassInstanceDeletion" />

</delete >

<set default="false" element="Association" attribute="name">

<generation condition="lettercase.conditions.

UncapitalizedClassOrAssociationNameRetriever" />

<achievement condition="lettercase.conditions.

CapitalizedClassOrAssociationNameChecker" />

</set>

<set default="true" element="Association" attribute="name">

<generation condition="lettercase.conditions.

UncapitalizedClassOrAssociationNameRetriever" />

<achievement condition="lettercase.conditions.

CapitalizedClassOrAssociationNameChecker" />

</set>

<delete element="Association">

<cancellation condition="

DefaultTaskFinalizerForClassInstanceDeletion" />

</delete >

<set default="false" element="Enumeration" attribute="name">

<generation condition="lettercase.conditions.

UncapitalizedClassOrAssociationNameRetriever" />

<achievement condition="lettercase.conditions.

CapitalizedClassOrAssociationNameChecker" />

</set>

<set default="true" element="Enumeration" attribute="name">

<generation condition="lettercase.conditions.

UncapitalizedClassOrAssociationNameRetriever" />

<achievement condition="lettercase.conditions.

CapitalizedClassOrAssociationNameChecker" />

</set>

<delete element="Enumeration">

109

D. Plugin XML Files

<cancellation condition="

DefaultTaskFinalizerForClassInstanceDeletion" />

</delete >

</structural -events >

</task>

<!−− P r o p e r t i e s must s t a r t wi th a low−case l e t t e r −−>

<task classname="lettercase.tasks.

InvalidCapitalizationPropertyNameTask">

<name>

Invalid capitalization of ‘#propertyname#’.

</name >

<description >

Normally , properties , like an attribute or an association ’s

member end , begin with a lowercase letter. The name

‘#propertyname#’ is unconventional because it does not.

Following good naming conventions help to improve the

understandability and maintainability of the design.

</description >

<correctors >

<corrector command ="1" />

</correctors >

<structural -events >

<set default ="false" element =" Property" attribute ="name">

<generation condition =" lettercase.conditions.

CapitalizedPropertyNameRetriever" />

<achievement condition =" lettercase.conditions.

UncapitalizedPropertyNameChecker" />

</set >

<set default ="true" element =" Property" attribute ="name">

<generation condition =" lettercase.conditions.

CapitalizedPropertyNameRetriever" />

<achievement condition =" lettercase.conditions.

UncapitalizedPropertyNameChecker" />

</set >

<delete element =" Property">

<cancellation condition ="

DefaultTaskFinalizerForClassInstanceDeletion" />

</delete >

</structural -events >

</task >

<!--

Naming Guidelines: names must follow the naming guidelines we

defined.

This means that the presented sentence have to make sense.

-->

<task classname =" guidelines.tasks.NamingGuidelinesTask">

<name >

Does ‘#namedelement#’ Follow the Naming Guidelines?

</name>

<correctors >

<corrector command="3" />

</correctors >

110

D.1. Naming

<structural -events >

<set default="false" element="NamedElement" attribute="name">

<generation condition="

DefaultTaskGeneratorForAttributeSetter" />

</set>

<delete element="NamedElement">

<cancellation condition="

DefaultTaskFinalizerForClassInstanceDeletion" />

</delete >

</structural -events >

</task>

<!−− Defau l t names must be o v e r r w i t t e n by names prov ided by the
modeler . −−>

<task classname="guidelines.tasks.NamingGuidelinesTask">

<name>

The NamedElement ‘#namedelement#’ was given a default name.

</name >

<description >

Some tools provide default names for the NamedElements of

the domain. The modeler should know that these names were

not given by him , but by the tool.

This task reminds the modeler to check if default names

are OK, or should be changed instead.

</description >

<structural -events >

<set default ="true" element =" NamedElement" attribute ="name">

<generation condition ="

DefaultTaskGeneratorForAttributeSetter" />

</set >

<set default ="false" element =" NamedElement" attribute ="name">

<cancellation condition ="

DefaultTaskFinalizerForAttributeSetter" />

</set >

<delete element =" NamedElement">

<cancellation condition ="

DefaultTaskFinalizerForClassInstanceDeletion" />

</delete >

</structural -events >

</task >

<!--

This task checks if a name was properly spelled , using Google ’s

functionality

‘‘Did you mean: ...’’

-->

<task classname="spelling.tasks.MisspelledNameTask">

<name>

Is ‘#name#’ properly spelled?

</name >

<description >

Google ’s spell checking software , used by this task , checks

whether your name uses the most common spelling of a given

word. If it thinks you’re likely to be wrong , it provides a

111

D. Plugin XML Files

different spelling.

</description >

<correctors >

<corrector command ="2" />

</correctors >

<structural -events >

<set default ="false" element =" NamedElement" attribute ="name">

<generation condition =" spelling.conditions.

MisspelledNameChecker" />

<achievement condition =" spelling.conditions.

ProperlySpelledNameChecker" />

</set >

<set default ="true" element =" NamedElement" attribute ="name">

<generation condition =" spelling.conditions.

MisspelledNameChecker" />

<achievement condition =" spelling.conditions.

ProperlySpelledNameChecker" />

</set >

<delete element =" NamedElement">

<cancellation condition ="

DefaultTaskFinalizerForClassInstanceDeletion" />

</delete >

</structural -events >

</task >

</tasks >

D.2 Schema Satisfiability

D.2.1 tasks.xml

<?xml version="1.0" encoding="utf -8"?>

<tasks>

<task classname="tasks.UnsatisfiableSchemaTask">

<name>

Unsatisfiable Schema because of #reason#

</name>

<description >

In general , conceptual schemas include many integrity

constraints. A schema ‘S’ is satisfiable if it admits

at least one legal instance of an information base.

For some constraints , it may happen that only empty

or nonfinite information bases satisfy them. In

conceptual modeling , the information bases of interest

are finite and may be populated.

This method checks whether a schema is strongly

satisfiable using the two cardinality constraints

defined for binary relationship types.

If the schema is unsatisfiable , check the cardinalities

of the related associations.

</description >

112

D.3. Schema Auto-Completion

<structural -events >

<set default ="false" element =" Property" attribute =" upper">

<generation condition =" conditions.

InvalidMemberEndMultiplicitiesRetriever" />

<achievement condition =" conditions.

ValidMemberEndMultiplicitiesChecker" />

</set >

<set default ="false" element =" Property" attribute =" lower">

<generation condition =" conditions.

InvalidMemberEndMultiplicitiesRetriever" />

<achievement condition =" conditions.

ValidMemberEndMultiplicitiesChecker" />

</set >

<set default ="true" element =" Property" attribute ="upper">

<generation condition =" conditions.

InvalidMemberEndMultiplicitiesRetriever" />

<achievement condition =" conditions.

ValidMemberEndMultiplicitiesChecker" />

</set >

<set default ="true" element =" Property" attribute ="lower">

<generation condition =" conditions.

InvalidMemberEndMultiplicitiesRetriever" />

<achievement condition =" conditions.

ValidMemberEndMultiplicitiesChecker" />

</set >

<delete element =" Association">

<cancellation condition =" conditions.

UnsatisfiableAssociationDeletedChecker" />

</delete >

<create element =" Generalization">

<generation condition =" conditions.

InvalidMemberEndMultiplicitiesGeneralizationRetriever"

/>

</create >

<unlink

first -role=" generalization" first -element =" Generalization"

second -role=" general" second -element ="Class">

<cancellation condition =" conditions.

UnsatisfiableSchemaGenerationDeletedChecker" />

</unlink >

</structural -events >

</task >

</tasks >

D.3 Schema Auto-Completion

D.3.1 commands.xml

<?xml version="1.0" encoding="utf -8"?>

<commands >

<command id="0">

<effect classname="effects.

ClassWithAutomaticAttributesGatheringCreationEffect" />

113

D. Plugin XML Files

<name>

Create a Class with Automatically Gathered Attributes

and Associations

</name>

</command >

</commands >

114

	Cover
	Abstract
	Acknowledgements
	Contents
	Introduction
	Conceptual Modeling
	UML: A Modeling Language
	UML's meta-model

	Modeling CASE Tools
	Aim of this Thesis
	Outline of the Document

	Research Methodology
	Design Research Overview
	Design Research in this Master Thesis

	State of the Art
	Modeling Tools
	Comparison of Modeling Tools
	ArgoUML
	MetaEdit+

	Model Improvements
	Improving the Understandability of Conceptual Schemas
	Checking Properties of the Schemas
	Inconsistency Management
	Refactorings

	The Eclipse Platform: an Example of an IDE
	Related Work on Improving Eclipse's Assistance

	Conclusions

	Overview of the CMA
	Goals and Requirements
	A Platform Tool
	The CMA

	CMA's Architecture
	Architecture Overview
	Commands and Tasks
	Operational and Knowledge Levels

	The APIs
	The UML API
	The UI API

	Operational Level
	Command Effects
	Tasks
	Structural Events

	Knowledge Level
	Commands
	Structural Event Types and Task Types
	Further Assistance

	Construction of a Prototype
	Design and Implementation of a Custom Platform Tool
	Platform Tool's Architecture
	Implementation

	Implementation of the CMA
	The CMA System Class, or how to Prepare the CMA to be Adapted to a Platform Tool
	Operational and Knowledge Levels
	Tasks Behavior based on Triggered Structural Events
	Plugin-based System

	Adaptation of the CMA over the Custom Platform Tool
	APIs Implementation
	Command Modifications to Include Structural Events
	CMA Command Wrappers
	Additional Tuning

	Experimentation
	Naming
	Description
	Implementation
	Results

	Schema Satisfiability
	Description
	Implementation
	Results

	Schema Auto-Completion
	Description
	Implementation
	Results

	Conclusions

	Conclusions
	Master's Thesis Contributions
	Future Work

	Bibliography
	Review of the Used Patterns
	Analysis Patterns
	Accountability Pattern

	Design Patterns
	Abstract Factory Pattern
	Adapter Pattern
	Command Pattern
	Publish/Subscribe –Observer– Pattern
	Proxy Pattern

	UML API Documentation
	UMLFactory
	createBinaryAssociation
	createClass
	createDataType
	createEnumeration
	createGeneralization
	createPrimitiveType

	UMLUtilities
	getAllAssociations
	getAllClasses
	getAllDataTypes
	getAllEnumerations
	getAllPrimitiveTypes
	getAssociation
	getClazz
	getDataType
	getEnumeration
	getPrimitiveType
	getElement

	Association
	getMemberEnd
	getMemberEnds
	destroy

	Class
	createOwnedAttribute
	getOwnedAttribute
	getOwnedAttributes
	getSuperClasses

	Classifier
	DataType
	createOwnedAttribute
	getOwnedAttribute
	getOwnedAttributes

	Element
	destroy
	equals
	getIdentifier

	Enumeration
	createOwnedLiteral
	getOwnedLiteral

	EnumerationLiteral
	getEnumeration

	Generalization
	getGeneral
	getSpecific

	MultiplicityElement
	getLower
	getUpper
	setLower
	setUpper

	NamedElement
	getName
	setName

	PrimitiveType
	Property
	getAssociation
	getClazz
	getDataType
	getType
	setType

	Type

	UI API Documentation
	UIFactory
	createMenu
	createQuestionDialog
	createModalWindow

	UINamedElement
	setName

	InputText
	getValue

	Item
	Menu
	createSubMenu
	createItem

	ModalWindow
	createInputText
	show
	isDataValid

	Node
	QuestionDialog
	show
	acceptedByUser

	Plugin XML Files
	Naming
	commands.xml
	tasks.xml

	Schema Satisfiability
	tasks.xml

	Schema Auto-Completion
	commands.xml

