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Abstract

The Optical Burst Switching (OBS) paradigm is regaining greater attention by the
professionals and researchers of the optical networking field, as it offers a number of
advantages when compared with other optical switching paradigms. This type of technology
was developed with the objective to carry information all-optically without using any kind of
buffering device. However, due to its one-way signaling process, the presence of a control
plane is extremely useful to manage complementary signaling and routing features, providing

flexibility, reliability and taking more benefits of the OBS networks.

The goal of this project is to extend Generalized Multiprotocol Label Switching (GMPLS)
control plane architecture to properly handle OBS networks. In spite of GMPLS is not
prepared to lead with these type of networks, this flexible architecture has been seen as a
potential candidate to be used as the control plane of other kinds of optical networks (e.g., IP,

Ethernet, Optical Circuit networks) and therefore to manage control OBS networks.

In this project, the existent event-driven JAVA simulator for OBS networks — JAVOBS —
is extended to simulate a possible interoperability model between GMPLS and OBS
technologies. The first objective is to implement a new control layer (GMPLS) separated from
the data layer of the OBS network. The second and main objective fits on the basic signaling
procedures implementation of the GMPLS Reservation Protocol-Traffic Engineering (RSVP-
TE) protocol, in order to analyze the performance of the OBS network’s behavior when it is

controlled by such interoperable control plane (GMPLS/OBS).

Keywords: OBS, GMPLS, Control Plane, LSP, Simulator



Resumo

O paradigma de Redes de comutacdo de Rajadas (Optical Burst Switching - OBS) tem
vindo a ganhar maior atencao por parte dos profissionais e investigadores do campo das redes
Opticas, uma vez que oferece um ndmero de vantagens quando comparado com outros tipos
de paradigmas de comutacdo Optica. Este tipo de tecnologia foi desenvolvido com o objectivo
de transportar a informacdo apenas no dominio éptico, sem o uso de qualquer tipo de
dispositivo de memoria. No entanto, devido ao seu processo de sinalizacdo one-way, a
presenca de um plano de controlo é extremamente Util para gerir sinalizacdo complementar e
caracteristicas de encaminhamento, proporcionando flexibilidade, fiabilidade e tirando maior
proveito das redes OBS.

O objectivo deste projecto consiste na extensdo da arquitectura do plano de controlo
Generalized Multiprotocol Label Switching (GMPLS) para suportar correctamente redes
OBS. Apesar de 0 GMPLS ndo estar preparado para lidar com este tipo de redes, esta
arquitectura flexivel tem sido vista como uma potencial candidata a ser usada como plano de
controlo para outros tipos de redes Opticas (e.g. IP, Ethernet, Redes de Comutacdo de
Circuitos) e por conseguinte, para a gestdo das redes OBS.

Neste projecto, o simulador JAVA baseado em eventos para redes OBS- JAVOBS — é
estendido para simular um possivel modelo de interoperabilidade entre as tecnologias
GMPLS e OBS. O primeiro objectivo consiste na implementacao da nova camada de controlo
(GMPLS) separada da camada de dados da rede OBS. Quanto ao segundo e principal
objectivo, este enquadra-se na implementacdo dos procedimentos basicos de sinalizacdo do
protocolo de reserva RSVP-TE do GMPLS, tendo em vista a analise da performance do
comportamento da rede OBS quando esta € controlada por um plano de controlo interoperavel
(GMPLS/OBS).

Palavras-Chave: OBS, GMPLS, Control Plane, LSP, Simulator
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Chapter |

Introduction

1.1 Background and Motivation

Nowadays, one of the major concerns in the Internet-based information is the demand for
even more bandwidth. Optical communication technology has the potential for meeting the
upcoming needs of getting information at a much faster yet more consistent rates (i.e., less
errors and losses in the information transmission), because of its potential capabilities(e.g.
vast bandwidth provided). The objective is to turn the promise of optical networking into

reality and meet the demands of the Internet communication for the coming years.

Current optical networks, though offering high capacity, are limited due to inherent
inflexibility of manually provisioned large scale networks. Long provisioning times,
inefficient resource utilization or complex network managements are some of the major

drawbacks that can be enumerated, as it says in [1].

The Automatic Switching Optical Network (ASON) framework appears to be a potential
solution to cover this situation. Opposite to the drawbacks referred above, this architecture
provides fast provisioning, scalability, and easier network management, amongst others.
However, the ASON control plane architecture is specified in a neutral way protocol, which
enables a generic approach for defining and validating potential solutions. The ITU-T idea is
to integrate the Generalized Multiprotocol Label Switching (GMPLS) protocols or other valid
applicants in the ASON framework [2, 3].

Two different control plane model approaches were discussed: the Optical Private
Network to Network Interface (O-PNNI) [4] and the GMPLS [5]. What essentially differs the
GMPLS architecture from O-PNNI is the fact that the first one is able to support the

separation of the control plane from the data plane, which is one of the most important control



plane requirements demands by the ASON framework. Once the control plane is separated, it

can be used not only for one but for several types of networks.

On one side, the creation of a control plane separated from the data plane will considerably
impact the optical networks operations and the management systems. Such systems will be
relieved from functions, such as the connections setting up/teardown, and route selections. On
the other side, it will provide more flexibility in handling higher capacity networks and
increasing scalability which contributes to support switching processes on a global scale [1,
2]. Structurally, the control plane functions include signaling, routing, path selection and link
management, while all physical resources management and the transmission of optical data

traffic through the optical network are done over the data plane.

The GMPLS is the architecture adopted for the control plane implementation that consists
of a Multiprotocol Label Switching (MPLS) [6] generalization that extends the data routing
based on labels for non-based packets switching devices. Inclusively, it also adds other types
of switching capabilities [6]: cell switching (e.g. Asynchronous Transfer Mode, ATM),
timeslot switching (i.e., Time Division Multiplexing — TDM), wavelength switching

(Wavelength Division Multiplexing — WDM) and spatial switching (i.e. between fibers).

Due to the GMPLS-based control plane dynamical capacity to deal with these several types
of traffic switching, makes us to think, why not to use the GMPLS control plane for Optical
Burst Switching (OBS) networks? The idea of this project is to have a control plane that can
handles with all kind of network types, such as Optical Circuit Switching (OCS) networks,
Optical Packet Switching (OPS) networks and OBS networks.

1.2. Challenges and Objectives

In this work we face a challenge that aims for the possible integration of the GMPLS in the

OBS networks control plane [7].
The objectives are:

1) The implementation of a GMPLS control layer in OBS-based JAVA simulator [8].

The current version of the simulator is based on a single OBS network layer. Thus, the idea is



to separate the basic features of the GMPLS control plane from the OBS network (data and
control planes) and establishing a correct interaction between them.

2) Implementation of basic signaling procedures of the GMPLS signaling protocol,
namely Resource Reservation Protocol — Traffic Engineering (RSVP-TE). Demonstration of
the end-to-end exchange process of the signaling messages and the successful LSP set-up to

forward traffic over OBS network.

The master thesis is organized as follows.

Chapter Il — Takes a look on the state of the art. First, it is given an overview over the
optical switching technologies with a special focus on the OBS technology. Second, the
GMPLS architecture is briefly described, with emphasis on the signaling protocol. This
chapter ends with the GMPLS/OBS architecture that is considered along this project, pointing
out the ideas and techniques defined in order to solve the problems faced in the OBS

networks.

Chapter 111 — Explains in detail the functionality of a Java simulator implemented for burst
transmissions in OBS networks. In a first phase, it is explained how the simulator works
without the presence of the GMPLS-based control plane. Then, basic signaling features of the
GMPLS control plane architecture are implemented (RSVP-TE protocol), where we will be

able to observe the exchange of the signaling messages, through a simulation demo.

Chapter IV — The fourth chapter exposes a simulation demo of the RSVP-TE protocol,
showing all the signaling messages that are exchanged for a successfully burst-LSP
establishment.

Chapter V — Refers to the conclusions taken from the entire project, which demonstrate the
correct implementation and interaction between the two separated networks and the GMPLS
signaling protocol RSVP-TE performance on the GMPLS control network. This chapter ends
with a future work suggestion to be accomplished as part of this vast field of Optical

Communications.



Chapter I

State of the Art

2.1 Introduction

Many studies have been carried out aiming to reduce the number of O/E/O signal
conversions. This results in all-optical switching networks where the data transmission is

done only in the optical domain.

This chapter explains the characteristics of the OBS technology [9, 10], but it is also given
a brief explanation of the OCS [9, 11] and the OPS [9, 12] technologies, later on, the GMPLS
control plane is summarized, focusing on its signaling protocol (RSVP-TE). This chapter ends
with the approach on a possible interoperability between the GMPLS and the OBS

technologies.

2.1.1 Optical Circuit Switching

Today’s current all-optical networks are based on circuit switched. Optical packet switched
networks are still being studied, or in other words they are on “laboratory level” yet. It seems
that in the optical world, circuit switching is considerably more appropriate alternative than
packet switching due to its characteristics in comparison to this last switching technology, as
it will be referred in this subsection. This type of switching technology, as it is shown on fig.

1, has three distinct phases:
- Circuit set-up
- Data transmission

- Circuit tear-down



There are two main features of optical circuit-switching that differentiates it from the OBS
and OPS technologies. The first one is its two-way reservation process in the first phase (also
known as the Tell-and-Wait, TAW technique), where a source sends a request for setting up a
circuit and needs to wait for an acknowledgment (ack) from the corresponding destination.
The second one is the fact that circuits tend to be fairly static and provide a fixed amount of
bandwidth.

One of the major advantages of optical circuit switching is that is a fundamentally transparent
service with no storage requirement. Once the connection is established, constant data rate is
provided and sent to the connected stations. An important consequence of transparency is
that, no buffer is required to accommodate the optical information that travels through the
Label Switched Path (LSP), since all the resources until the destination point are reserved. An
LSP in the optical networks scope refers to a connection establishment from a source to a

destination node, composed by a group of links which form the lightpath [6].

On what concerns the disadvantages, the OCS has an undesired delay provoked by the time
that data needs to wait for the connection establishment. Means that, most of the times the
transmission time tends to be smaller compared to the roundtrip propagation delay required
by the signaling protocol, leading to inefficient use of the LSP and overhead. For example,
consider a case in which a connection is established with all the necessary available resources
dedicated to the entire duration of a connection, where no data is actually being transmitted.
In case we are in presence of voice communications, since the idle times are minimum, high
utilization is expected, but for data communications, since the capacity may be idle during
most of the time of the connection (e.g., when a user is only reading a downloaded web site),

this type of circuit switching can result in inefficient utilization.

Furthermore, since the circuits-switching uses the reservation TAW technique [9], in case
the connection goes down, the entire information will be lost without any possibility to

recover.
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Figure 1. OCS architecture

2.1.2 Optical Packet Switching

The OPS technology will probably be used in the future as the preferential switching
technology for optical networks. This kind of network rather than the OCS, attempts to use
resources only when data is being transferred, thereby providing a high degree of the

bandwidth utilization.

However, there are some factors that put the OPS technology “behind” the OCS: the
difficult implementation, the higher costs due to the presence of several O/E/O converters and

the optical buffers implementation.
As screened on fig. 2, this architecture follows two phases on its transmission mode:

- A header is added to the payload forming what we call a packet, before any
transmission. Uses one-way reservation process (also known as the Tell-and-Go,
TAG technique [9]).

- Each packet is transmitted without the need of any ack. Every time a packet
reaches a node, the header must be extracted by using a converter O/E/O to make
the resources reservation, while the payload is stored in a fiber-optic delay line

(FDL) until the header’s extraction process is completed.

The two major advantages in comparison to OCS technology is the reduced delay on the
pre-transmission of each packet and the OPS robustness. The OPS has the possibility to route
the packets to another path in case the resource reservation process fails in a switching point,

avoiding the lost of the entire information.

However, every time a packet reaches a switching node and the header is extracted, it

increases the packet’s delay. Besides that, the conversion O/E/O is not simple to implement
6



and the use of a single converter for each single packet takes costs. Furthermore, another
drawback concerns on the difficult allocation of optical memory for the packets switching.
Even the FDL’s are not enough due to their limited storage capacity, where in a situation
which there is a continuously coming of data packets, there is a chance to lose some of them.
On one hand, the OCS increases the data delay but it gives near 100% of feasibility that after
receiving the ack the data will not be lost. On the other hand, the OPS does not have much

delay but it is susceptible to packets lost.

~3| Switch Control -

Input Fiber
—

| Hea
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i
|
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Demux FDL Mux

Optical
Switch
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Figure 2. OPS architecture

2.1.3 Optical Burst Switching

A new switching paradigm called OBS has been proposed as the viable technology for the

next generation optical internet, as shown on fig. 3a.

The OBS is a near-term alternative to OPS in which packets are assembled into bursts at
the edge of the OBS network and kept in the optical domain, while its control packet or

header can be converted to electronics for processing.
The OBS architecture follows two phases:

- Uses one-way (but can also use a two-way process) reservation process (off-set-
based approach), where the packets are assembled into a burst.

- An out-of-band burst control packet (BCP) leaves the source first to reserve
resources and configure switchers along the burst’s route in the network, while the

data burst follows the BCP after an off-set time, as it is demonstrated on fig. 3b.



Since this technology uses an off-set-based approach, there is enough time for the
intermediate nodes to process the BCP, avoiding the burst’s delay during its journey to the
destination node. It is used only one O/E/O converter for the control packet, which turns this
technology simpler to implement in comparison to OCS that uses an O/E/O for every single
packet. Furthermore, what mostly differentiates the OBS from the OPS is the lack of
buffering in the network. Since BCP leaves the source first, to make the reservation along the

path, there is no need for the burst to stop every time it reaches an optical switching node.

In spite of this technique does not need to wait for a connection’s confirmation from the

destination, there is a smaller delay provoked by the off-set time.

Another major drawback is the fact that, this technology uses most of the time one-way
reservation process, which does not guarantee the successful reservation of resources,
increasing the possibilities of bursts lost. The way to solve this problem is through the use of

some contention techniques explained below.

a) b)
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Figure 3. a) OBS architecture b) OBS transmission mechanism

In the OBS signaling/reservation and contention scope there are some protocols and
techniques [13, 14] capable to complete their functions in different modes. Some of those

protocols are used by different switching technologies.

In this project is used the Just-in-Time (JIT) reservation protocol [15]. The JIT is a
reservation protocol for OBS networks that works in an out-of-band signalling process,
eliminating the buffering of data bursts in intermediate nodes of the LSP. This protocol

8



comparing to other reservation protocols, like Just-enough-Time (JET) [16], makes use of
immediate reservation and explicit release. In this kind of approach, the optical channel is not
used during the time between the BCP arrival and the burst arrival. However this kind of
technique is not as efficient as the JET in terms of resource utilization but in another side, is

simpler to implement and does not have complicated scheduling algorithms [15, 16].

A typical problem that all OBS networks face is the possible loss of data bursts in case the
reservation is not accomplished at a switching point. Therefore, it is extremely necessary to
find a solution when it is needed to hold bursts always when the out-link’s wavelengths of

some OBS node are reserved or occupied for other burst transmission.

In this project the contention techniques are not yet implemented, but they are definitely
one of the imminent issues that are going to be worked in a near future. As referred in [10],
there are some techniques with the capacity of reducing the number of possible dropped
bursts on the OBS network, one of them is the already mentioned, the FDL.

Another technique is the Burst segmentation (also known as preemption technique) that
separates the burst into segments, dropping only those segments that may cover other burst
when contention occurs. The most probably contention technique to be adopted in this project
is the deflection [17, 18], which deflects the burst, to another available output when
contention occurs. This type of technique is simpler to implement and guaranties the burst

loss reduce.

2.2 GMPLS Overview

The GMPLS is the architecture adopted for the control plane implementation in this
project. It is a well consistent framework, and can be easily extended by IETF when new
requirements come up [6]. Certainly, the question is why such an extension is needed and
what does it mean for? Remind that MPLS has been designed to switch packets using a
labeling mechanism. Though, there is the need of a MPLS control-type functionality that is
beyond just switching packets, such as the different switching capabilities referred in the

previous chapter.



The big difference between GMPLS and MPLS is the different kind of traffic that can be
switched and transmitted in the optical network. In response to the need of higher flexibility
in optical networks, the GMPLS has proposed traffic engineering extensions to some of the
MPLS signaling and routing protocols such as, the RSVP and the Open Shortest Path First
(OSPF), allowing these ones to support dissimilar information that can be handled by the
GMPLS Traffic Engineering [TE] switching capabilities [19].

The GMPLS extends two signaling protocols defined by the MPLS: the RSVP-TE [20] and
the Constraint-based Routed Label Distribution Protocol (CR-LDP) [21]. There are also two
traditional routing protocols: the OSPF-TE [22] and the Intermediate System to Intermediate
System (1S-IS-TE) [23]. Besides that, the GMPLS proposes a new link management protocol,
the Link Management Protocol (LMP) [24], whose functions are in [Appendix D — GMPLS
Framework and Control plane functions].

The GMPLS focuses on the control plane services that perform connection management
for the data plane, including both packet-switched interfaces and non-packet-switched

interfaces, as well as routing control and network topology discovery.

The fundamental service offered by the GMPLS control plane is dynamic end-to-end
connection provisioning, where the operators need only to specify the connection parameters
and send them to the ingress node. The GMPLS network control plane then determines the
optical paths across the network according to the parameters that the user provides, and
signals the corresponding nodes to establish the connection. The following point gives an

explanation about the implemented RSVP-TE signaling protocol in this project.

2.2.1 RSVP-TE Signaling Protocol

The GMPLS-based control plane has two types of signaling protocols available to
implement the LSP setup: the RSVP-TE [20, 25] and the CR-RDP.

Figure 4 below shows how the client’s data is transmitted through the OBS network, from
a source (edge node) to a destination node by using the RSVP-TE signaling protocol

architecture.
10
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Figure 4. RSVP-TE signaling model

In the beginning of this signaling process, a client tries to send data packets (e.g. IP,
Ethernet) from an edge to a destination node. Since there is no connection between the client
and the physical network layer, the transmission of the data is done through a User-network
Interface (UNI) from the adopted network overlay model. For example, consider the case that
the client wants to transmit data from the edge node (Optical Cross-Connect, OXC1) to the
destination node (OXC3) on fig. 4: the source OXC1 receives the packets from the client
through the UNI, and assembles them into bursts. The edge node before launches the bursts to
the OBS network, checks its forwarding table to see if a LSP to the OXC3 is already

established. If so, the bursts are sent one by one following their BCPs until the destination
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node. If not, a connection request for a LSP is sent through a user-network signaling interface
(UNI Signaling) to the corresponding GMPLS edge node in the control layer. That is where
the GMPLS signaling protocol (RSVP-TE) comes into action. The connection request is filled
up with some important information such as the source, the destination, the quality of service
(QoS) and the load to be sent.

The GMPLS edge node receives the connection request and computes the two shortest
paths (Shortest Path algorithms) according to the destination field received in the connection
request message. Two RSVP-TE Path messages are created, each one with one of the shortest
paths, and sent to the destination ingress node to setup the LSP between OXC1 and OXC3.
The creation of two Path messages allows the destination node to decide which path is better
to be used for the LSP establishment, basing on its arrival time. The first to arrive is defined
as the LSP and the second is discarded. At the same time, two entries (corresponding to the
next nodes ID of each path) are inserted in a temporary table of the GMPLS control node.
Each Path message follows the corresponding shortest path, where the resources reservation
process (i.e. bandwidth reserved on a desired output channel within the control network) is
done every time the Path message is switched from a node to the next node. If all the
reservation processes are correctly accomplished, the two Path messages reach successfully
the destination node. Immediately a new RSVP-TE signaling message (Resv) is generated by
the destination node, and sent back as acknowledge, confirming that the respective LSP is

successfully established.

Meanwhile, and independently of what is happening on the control layer, the data nodes,
through the respective OBS control Unit (CU), send updating messages (Trap messages) to
the corresponding GMPLS control nodes, informing them about the links state on the physical
data network. As an answer to those trap messages, each control node sends an acknowledge
trap message as soon as it receives the Resv message, informing about the established tunnel
LSP label, the next hop and the number of wavelengths to reserve. A tunnel in the GMPLS
control plane signaling context is composed by a single LSP however, due to operations such
as load distribution, LSP protection backup amongst others, a tunnel might be supported by
several parallel LSPs [6].

On the other side, each physical node (OBS node) receives that information and updates its
Forwarding Table (FT). If no error occurs during the RSVP-TE messages transmission, as
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soon as the OXC1 edge node receives the confirmation of the successful connection
establishment, the BCP is sent to its destination followed by the corresponding burst in the
OBS network. [9, 10]

2.3 GMPLS-0BS Architecture

The GMPLS-OBS network architecture is based on a transparent all-optical data plane and
a hybrid control plane. Such hybrid control plane refers to a GMPLS control layer and an
OBS control layer, where each one operates in separated networks, fig. 5a [7]. However, the
integration of the GMPLS architecture in the OBS Control Plane Network has some

variances:

1) OBS control plane uses in-fiber control, while GMPLS uses out-of-fiber (but also in-
fiber) control.

2) OBS operates in one-way reservation process while GMPLS operates in two-way

reservation process.

Due to the transmission of burst control packets (BCP) and data payloads, both
optical/electronic control and all-optical data planes can be seen as two parallel networks, the
physical (i.e. data) and the control network. On one hand, in the OBS control plane, control
packets and the corresponding data bursts use the same optical fiber (in-fiber), or in other
words, the bursts and the control packets use the same path (i.e. also known as, LSP) until the
destination. On the other hand, the GMPLS control plane uses out-of-band, out-of-fiber (but it
can be also in-fiber) control architecture, this means that control packets and the data bursts
can travel into two separated fibers [26, 27]. The other major divergence between GMPLS
and OBS is the signaling issue where GMPLS operates in a two-way reservation process
opposite to the OBS that uses a one-way procedure. The two-way process means that, the
GMPLS uses a connection oriented signaling technique, while the OBS uses packet oriented
process. This issue brings up the question: how does the GMPLS control plane can be
integrated with the OBS control plane?

The solution for these variations can pass by having two separated control planes (fig. 5b).
Where the signaling, routing and link management functions are in charge by the GMPLS

protocols [Appendix D — GMPLS Framework and Control Plane Protocols], while the process
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of physical resources reservation through the BCPs information is from the OBS control
plane’s responsibility [7, 28]. Therefore, a high level of independency for both planes is
achieved, providing a fine network management, and it also contributes to improve the optical

resources availability leading to the reduction of the developing costs.

On what concerns the signaling decision, the one-way technique is the chosen technique,
because in the presence of a large OBS networks the two-way reservation technique is totally
excluded, due to the large latency (i.e. delay) in connections establishment [7].

This idea of separate both OBS- and GMPLS control planes, leads also to a separation of
the OBS tasks [7]:

OBS Control Plane (Tasks): Resource Reservation; Network Resource Availability.

GMPLS Control Plane (Tasks): Virtual Topology Management; Network Topology.

BS

Resource Reservation — Process of bandwidth reservation for data bursts transmission over
the data plane, where the BCP contains all the necessary information to route the burst to

the corresponding destination point.

Network Resource Availability — The OBS control plane is also responsible to gather all
the information about the network’s resources availability, in order to achieve a better

traffic balance and to reduce the lost-burst probability.

GMPLS

Virtual Topology Management — The GMPLS control plane is responsible to control the
signaling processes as well as routing processes. On what concerns the signaling, the
GMPLS control plane is in charge to setting up and tearing down the connection
establishments in the OBS network in a two-way procedure. On the routing side, it has the
function to compute the shortest paths for the ligthpaths establishment between the two
OBS nodes, and update their forwarding tables stored in the control units within the data
plane [7, 29].
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Network Topology Information — This feature concerns about the link states management

functions that can be done by the OSPF-TE routing protocol, under GMPLS framework.

This protocol is also in charge of warning the OBS nodes about the links connectivity, fault

management and other important information like the traffic distribution in the OBS

network, aiming to the traffic balance to avoid possible burst losses.
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Figure 5. a) GMPLS/OBS Control Plane interoperability, b) Two physical separate

networks [7].
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Chapter 111

A novel event-driven JAVA Simulator
for GMPLS-OBS network

3.1 Introduction

The study of a possible integration scenario of the GMPLS control plane in the OBS
networks will be done on top of an existent Java OBS network’s simulator [JAVOBS]. In
such way, it will be here further extended to cope with the basic features of GMPLS
technology. A separated control layer will be deployed, comprising basic GMPLS features
and messages, and will interoperate with OBS control layer, in order to provide reliable and

efficient optical data forwarding service.

This chapter is organized as follows. Firstly, it is given a succinct explanation of the
simulator’s background. Secondly, it is explained how the simulator’s extended version [JA-

GOBS] was implemented in order to achieve the proposed objectives of this project.

3.1.1 Basis for JAVOBS

The JAVOBS is a flexible simulation tool running in a Java environment, exclusively
developed for the study of OBS networks on top of the JAVANCO framework [8]. The
JAVANCO is no more than an implemented software that works as a supporter to the
JAVOBS simulator, where is possible to represent network topologies, graphs, as well as it

also provides support for simulation models construction.

The name defined for this simulator’s first version, JAVOBS, comes from: JAV — Because

this simulator was entirely developed in Java programming language and - OBS because it is
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dedicated to the study of the optical burst switching paradigm. Using the functionality offered
by JAVANCO, multiple OBS network topologies can be constructed over particular objects,
called NetworkHandlers, as it is shown in fig. 6. The NetworksHandlers are the keystone of
the JAVOBS architecture in charge of organizing the references towards each object,
composing the graph (i.e. links, layers, nodes) and providing access to several engines and
managers (i.e. interface manager, script manager). Furthermore, JAVOBS offers a basic OBS

model which can be adapted and modified in many ways [8].
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Figure 6. General perspective of the Javanco architecture [8]
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This simulator was proposed to analyze the behavior of the OBS networks and its nodes
when are submitted to burst transmission situations, in order to get statistical results about the
number of success and unsuccessful transmissions in the network. In it, it is defined an OBS
network composed by a group of nodes and the corresponding connecting links. There is also
implemented a group of Java classes with their functions, which represent the major features
and employed mechanisms for the bursts transmission simulation, like the OBS nodes, the
bursts, the control packets (BCPs) and the resources reservation techniques (e.g. JIT and
JET). All of this simulator’s functions and developed methods will be explained with more

detail in the JAVOBS extended version subsection.
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3.1.2 Basis for JA-GOBS

The JA-GOBS is a new simulation package of the JAVANCO framework. The idea for
JA-GOBS is due to: — JA, because it was deployed within a Java environment and — GOBS

because it refers to the GMPLS control plane implementation over OBS networks.

The proposal for this new simulator’s version is based on the GMPLS signaling protocol,
RSVP-TE implementation. Following the defined scheme by having to separated planes [7,
30] (data and control), new nodes network were initially implemented, representing the
GMPLS control plane. On one side, functions like the signaling and routing operations will be
processed by the GMPLS control nodes (i.e. GMPLS control plane), on the other side, the
extraction of burst control packets in each OBS core node will be associated to OBS control
plane. On what concerns the data plane, this one will be in charge of bursts transmission in

the all-optical domain.

3.2 JA-GOBS - Simulator Description

In an initial phase, the simulator (JAVOBS) was constituted by a single OBS network,
where all functions from signaling to routing were rolled by the OBS control plane without
any presence of any other control plane architecture.

Later, the simulator was extended to a new version (JA-GOBS) with the implementation
of a new network referencing the GMPLS control plane, where it would be also implemented
the respective GMPLS RSVP-TE signaling protocol. Figure 7 and 8 demonstrate the
migration from a network composed by the OBS control/data plane to a two separated
networks represented by the OBS data/control plane and the GMPLS control plane.

In fig. 7 is represented the OBS network’s data and control planes, which are composed by
a group of OBS nodes (also referred as OXC nodes) connected by links. Each OBS node can
either be an edge node if the data transmission starts from it or a core node if the data is
received by or switched to another node. Remind that an edge node cannot receive any kind

of traffic from another node.
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Besides that, both OBS edge nodes and OBS core nodes have their own control units to
handle with all kind of operations that are part of the bursts switching, which are defined by
the classes VirtualAggregatorController (VC) and SwitchController (SC) respectively.

On Fig. 8 are represented the two separated networks formed by the GMPLS control

network, and on the bottom the OBS data/control network.
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Figure. 8 GMPLS Control network and OBS Control/Data Network
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The Interaction between the different networks

As a first approach, the communication between the GMPLS nodes and the OBS nodes is
done by a relation 1:1, this means that each OBS node is only connected to its own GMPLS
node. In a future, we might consider a 1:N (i.e. each OBS node will be able to interact with
any GMPLS node, and vice-versa) relation establishment between the nodes of the two
networks. To make this 1:1 interaction possible, it was necessary to implement four extra
links for each OBS node. Figure 9 shows the two groups of two links between an OBS node

and the corresponding GMPLS node.

Two Links
Link 1

OBS (Edge/Core) Node

Figure 9. Links establishment between two nodes in different layers.

Two links with opposite directions are established for the OBS edge node (for the
connection request transmission and its confirmation), and the other two links are established

for the Trap Messages transmission and its acknowledgment.

The difference between these links and the links connected between nodes of the physical
network is in its capacity. Links connecting two OBS nodes have 10 Gbit/s of capacity while
the rest of them have 1 Gbit/s of capacity. This disparity is due to the fact that between the

formers only client’s traffic travels, while for the others only signaling messages travel.
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The reservation process for LSP establishment

The migration from the static mode to the dynamic mode has changed the way of how the
LSP establishment process is implemented. In the situation that a LSP is not established, the
OBS source node has to request to the GMPLS node for a connection establishment. This
action of computing and establishing a LSP is in charged by GMPLS RSVP-TE signaling

protocol.

Many important processes occur before the LSP establishment is completed and one of
those processes concerns on the way that the reservation procedure is made. As referred on
the previous chapter, the establishing of a connection between a source node and a destination

node demands the resources reservation in each intermediate node of the path.

There are two different situations for the resources reservation on a LSP establishment,
during the Path message exchange between the GMPLS nodes: the normal reservation, where
the link in process is only used to carry out traffic of one LSP at the time and the second
situation, where the link in process needs to carry out the traffic from two different LSPs at
the same time. For both situations, the reservation procedure is made through the use of the
well known Erlang B table [Appendix H — Erlang B Traffic Table]. On a normal reservation
situation, each GMPLS node receives trap messages from its corresponding OBS node and
extracts the expected load p and the QoS factor. On the presence of those two features {load,
Qos}, the Erlang B table is used to get the exactly number of necessary wavelengths to

achieve the QoS defined for each burst transmission.

However, there are some different situations that might occur, changing the way of how
the reservation process is made. On fig. 10 is exemplified a reservation situation when a link

is shared at the same time by two different LSPs.

¢y GMPLS Nodes

- —
p1+p2
3 4 )

Figure 10. Control Network - Resources reservation for a shared link.
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The GMPLS node 1 and node 3 are the sources of two different LSPs with paths [1; 3; 4]
and [3; 4; 2] respectively and both have in common the link [3; 4] in order to reach their
destination node. The solution is to summon up both loads p: and p2 of the link in common
and pass it, also with the QoS factor, to the respective simulator’s method. This method uses
the Erlang B table to get the total number of A wavelengths, which will carry out the traffic
that is shared by both LSPs, taking into account the used scheduling algorithm, last available
unscheduled channel (LAUC) explained in [9].

3.3 Implementation Description

This section explains how the simulator is implemented and how it works, first with one

layer (OBS Data/Control Plane) and then with the new implemented GMPLS control layer.

In the first phase, before the GMPLS control layer development, the simulator was defined
by a group of important classes: the Obs_Simulator [Appendix A — JA-GOBS Configuration
Classes] is the main class or, in other words, the engine for each simulation. Then, there are
the classes that define the OBS nodes such as the Obs_Edge Node and the Obs_Core_Node,
the corresponding OBS nodes control units VirtualAggregatorController (VC),
SwitchController (SC) and the classes that represent the reservation protocols (e.g. JIT, and
JET) [Appendix B —OBS Data/Control Plane main classes].

Running the simulator in a static mode [Appendix G — JAVOBS configuration classes
diagram] was the first scheme to take place before we assume the change for a dynamic
mode. The idea with the static mode was to get a first approach of all functions and

procedures implementation, with a list of LSPs already established for the OBS network.

Later on, with two implemented networks, the static mode is changed to a dynamic mode,
where instead of having a list of established LSPs, each OBS node needs to request for a LSP
establishment to the corresponding GMPLS node, every time the connection between a source
and a destination does not exist. The idea for this change is to follow as much as possible the
real mechanism of bursts transmission in the OBS network with the GMPLS control plane

integrated.
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3.3.1 JAVOBS Simulator — One Network Layer

Each simulation is events-based that occur between a number of steps defined by the user.
Within a 30ms length step, some actions take place from the traffic generated to the bursts

transmission.

In general when the simulator is running the first thing to do is to load the OBS data
network from the XML file (5nodes.XML) with all the nodes and links connected to each
other, like it is shown on fig. 11.

“network>
<main_ descriptions
<layer id="data” channels="32" link rate unit="ghit” link rate_walue="10"%>
<node id="0" pos_x="50" pos_y="400" node_color="#FFFFFF" type="Corelode” atrategqy="JTIT"/>
<node id="1" poz_x="Z50" pos_y="400" node_color="#FFFFFF" type="Corellode” strategy="JIT"/>
<node id="2" poz_x="2Z50" poz_y="250" node_color="#FFFFFF" type="Corellode” strategy="JIT"/>
<node id="3" poz_WX="250" pos_y="250" node_color="#FFFFFF" type="Corelode” atrategqy="JIT"/>
<node id="4" poz wx="2Z50" pos_y="250" node_color="#FFFFFF" type="Corelode” atrategqy="JIT"./>

<link orig="0" dest="1" length="100"/>
<link orig="1" dest="0" length=""100"/>
<link orig="0" dest="3" length="100"/>
<link orig="3" dest="0" length="100"/>
<link orig="1" dest="2" length="100"/%
<link orig="2" dest="1" length="100"/>
<link orig="1" dest="3" length=""100"/>
<link orig="3" dest="1" length="100"/>
<link orig="2" dest="4" length="100"/>
<link orig="4" dest="2" length="100"/>
<link orig="3" dest="4" length="100"/>
<link orig="4" dest="3" length=""100"/>
</flayer>

Figure 11. XML file with the OBS Physical Network

Our OBS data network is composed by five nodes, each one with its own index from 0 to
4, followed by the link connections between them. On the following fig. 12, is represented the
OBS network topology, which will be the same for the GMPLS control network.

OBS 0BS 0BS
Node Node Node

"

OBS OBS
Node Node

Figure 12. OBS Data Network’s topology
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For the node 0, there are two link connections with two other nodes, node 1 and node 3. It
IS important to take into account that each connection between two nodes has two established
links, one for one direction and the other for the opposite, for instance (link orig=0 dest=1
and link orig=1 dest=0) defined in the XML file.

Besides the network initialization, all the other essential features are also loaded within the
class Obs_Simulator [Appendix A — JA-GOBS Configuration Classes], such as the calculation
of the network diameter, the number of steps, the assignment of the number of wavelengths
per link (given by Mixed Integer Linear Programming, MILP formulation problem), burst
length, the quantity of load to transmit, the tunnels setup for the transmission of High Priority
(HP), Best Effort (BE) data bursts and the Database initialization.

On what concerns the nodes (Core/Edge) classes, the Obs_Edge Node class takes care of
the generated traffic from the Obs_Sim_Generator [Appendix A — JA-GOBS Configuration
Classes] class to the Obs_Edge Node control unit class VirtualAggregatorController (VC)
and gives the initial start of the steps transmission sequence. On the other hand, the
Obs_Core_Node makes the resources reservation of the network and all the procedures that
must be done before sending any information to its neighbor nodes. The bond between the
Obs_Core_Node class and the reservation protocol class, the Just _In_Time class, is made
through its control unit, the SwitchController (SC) class. This protocol has the function of
checking if there are internal available resources to transmit the data burst to the next

destination node.

The following fig. 13 explains step by step the interaction of the JAVOBS java classes for
the process of bursts transmission in the OBS network, running on static mode. The initial
phase of this transmission process starts with the OBS data network initialization, as well as
the initialization of all the important features, such as the defined list of the established LSPs
and the correct wavelengths assignment, forming what was called the Virtual Network
Topology. Due to the presence of a default list of established LSPs, the edge node after
receive the generated data traffic, already knows what LSP to use to start the transmission.
Therefore, its only function is to send the BCP and the corresponding burst towards its

destination node.
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Simulation Scheme of the OBS Network Control/Data Plane

Entities

O]
<> Condition
L)

Action

Failure

Transmission
BCP1 FT

Forwarding Table

VC — VirtualAggregatorController class;
BCP — Burst Control Packet;

DB — Database class; Transmission
SC — SwitchController class;
JIT —Just_In_Time class.

Successful

Figure 13. Simulation Scheme of the OBS Network Control/Data Plane

The initial phase starts with the class Obs_Sim_Generator generating bursts to be sent by
Obs_Edge_Node. Since this simulator only works with traffic transmission between core
nodes, the BCP information is initially sent from the Obs_Edge Node control unit VVC to the
Obs_Core_Node class. The Obs_Core_Node control unit, SC, checks the priority of the BCP

25



packet, if it is High Priority (HP) or Best Effort (BE), after that, a Database (DB) call is made
to get the next hop of the LSP. All the necessary burst control information is collected and a

new BCP1 is mounted.

On the following phase, the SC checks if there are enough available resources to reserve,
by calling the reservation protocol JIT (Just_In_Time) class. If it receives an ack from the JIT
class, all the resources are reserved for the burst, otherwise, that burst will be discarded. The

same process continues until the destination node.

Meanwhile, all successful and unsuccessful burst transmissions from a source to a
destination are counted and collected by the class ObsSimulationDataManager [Appendix E —
OBS Network Classes Diagram], which at the end of the simulation, a final statistical result is

displayed.

3.3.2 JA-GOBS Simulator — Two Network Layers

Two implemented network layers will show us how the OBS networks work with two
separated networks, where one refers to the OBS data plane and control plane while the other

refers to the GMPLS control plane.

After everything has been checked and run correctly with just one network layer, it is time
to optimize the architecture. The idea is to use the GMPLS-based control plane architecture to
manage all the burst transmissions in the OBS network.

It was introduced a new network of nodes in the same XML file, corresponding to the

GMPLS control nodes and its link as shown on fig. 14.

<layer id="control”™ chamnels="32Z" link_rate_unit="gbit"” link_ rate_walue="1">
«node 1d="1000" pos_x="50" pos_w="400" node_color="#FFFFFF" type="Corellode” strategy="JIT"/ >
«node 1id="1001" pos_x="250" pos_w="400" node_color="#FFFFFF" type="Corellode” strategy="JIT"/ >
«node 1id="100Z" pos_x="250" pos_w="Z250" node_color="#FFFFFF" type="Corellode” strategy="JIT"/ >
£node 1d="1003" pos_x="250" pos_w=":2Z50" node_color="#FFFFFF" type="Corellode” strategy="JIT"/>
£node 1d="1004" pos_x="250" pos_v="Z50" node_color="#FFFFFF" type="Corellode” strategy="JIT"/>
<link orig="1000" dest="1001" length="100"/>
<link orig="1001" dest="1000" length="100"/>
<link orig="1000" dest="1003" length="100"/>
<link orig="1003" dest="1000" length="100"/>
<link orig="1001" dest="1002Z" length="100"/>
<link orig="1002Z2" dest="1001" length="100"/>
<link orig="1001" dest="1003" length="100"/>
<link orig="1003" dest="1001" length="100"/>
<link orig="1002" dest="1004" length="100"/>
<link orig="1004" dest="1002" length="100"/>
<link orig="1003" dest="1004" length="100"/>
<link orig="1004" dest="1003" length="100"/>
</layers

Figure 14. XML file with the GMPLS Control Network
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With a relation 1:1 between each node of the two layers, it was decided to set the GMPLS
nodes with an ID starting with the OBS node ID plus 1000. For that reason the OBS node
with ID 0 has a relation to the GMPLS node with ID 1000 plus 0, and so on for the rest of the

nodes.

After run the Obs_Simulator class, the same features explained before are initialized
together with the new ones: the new GMPLS control nodes, its links and the links which
connect the two layers in order to allow each OBS node to interact with the corresponding

control node.

However, there is a difference facing the old architecture. Whereas the optical tunnels with
one layer are all established, some of the LSPs with two layers will not be defined after this
optimization. In this case, when an OBS edge node wants to send a burst to a destination node
and the LSP is not yet defined, it will have to request for a LSP establishment (i.e. a
connection) to the corresponding GMPLS control node in the layer above [Appendix F —

GMPLS Network classes Diagram].

Figure.15 shows the RSVP-TE protocol signaling process implemented in JA-GOBS, and
how it acts when a connection request is required. Since this protocol was already explained,
it will be given a briefly resume of the signaling messages exchange, focusing essentially on

the new JA-GOBS classes interaction.
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RSVP-TE Signaling Process diagram
L Begins the BCP
transmission

Connection

Request

GMPLS_Signaling
Msg

RESV 2 Resv Msg (Fail) 2 x Path Msg
(Success)

(2x) PATH

NoI

RESV 2
(Success)

R M
(Success) =k
(Success)

TrapMessage
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The RSVP-TE signaling protocol is constituted by a main class, GMPLSController
[Appendix C — GMPLS Control Plane main class] which represents each GMPLS control
node of the network. Following the steps explained about the RSVP-TE signaling protocol
subsection of the previous chapter, each Obs_Edge Node checks its forwarding table (FT) to
see if the pretended connection is already defined. If so, the normal burst transmission starts
either in the OBS data plane, or a Connection Request is sent by the VC to the GMPLS edge
node of the layer above.

When that control node receives the request, the two distinct shortest paths are computed
by calling the class kSPDisjointPaths, where the “k” is the number of paths pretended. When
the two new Path signaling messages are built, each one is represented by the
GMPLS_SignalingMsg class. The difference between the Path and the Resv messages is the
field “Type” that differentiates one from the other. The next step is to send those two
signaling messages to the destination node following distinct paths. This process is done by

calling a class defined as GMPLSTransmitter.

The control core node on the control plane receives one of the Path messages and checks if
the destination node ID corresponds to its ID. If so, a new signaling message is created (Type:
Resv) and sent back to the source control node. At the same time on every Resv message
switching, a new message (ACK TrapMessage) represented by the TrapMessage class is sent
to the equivalent OBS core node, allowing this one to update its FT. However, we must take
into account the path IDs conversion: when the ACK Trap Message is sent to each OBS node
of the path but the destination node, the ID of the GMPLS node is subtracted by 1000 in order
to get the correctly physical node ID.

When the Resv message reaches the destination node, this one warns the OBS edge node,
represented by the Obs_Edge Node class, about the successfully tunnel establishment,

completing the signaling process.
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Chapter IV

Signaling Protocol - Simulation Demo

4.1 Introduction

In this chapter, a demonstration of the GMPLS signaling protocol RSVP-TE for the LSP
establishment between two OBS nodes is done, where different phases of the signaling
process are shown and explained in detail. The main idea of this demo is to show all the steps
that are made during the signaling process, with the respective networks initialization,
followed by the connections request generation, and ended with the respective exchange of
the RSVP-TE signaling messages in order to successfully establish a LSP for the burst

transmission.

4.2 Simulation Demo conclusions

This demonstration allows the analysis of the simulator functionality after have been
implemented all the proposed tasks. This demonstration can be divided into a group of three
important sections. The initialization of the new control network (GMPLS) and the correct
interaction made by the two different layer nodes, let us to think on a possible optimization
where each OBS node will be allowed to interact with any of the GMPLS control nodes,
avoiding the existed 1:1 relationship. With that change we can get a GMPLS control network
topology completely different from the defined in the OBS network, which in fact, takes us
closer of how the real interaction between the two different networks should be. Finally, the
signaling section, where the RSVP-TE signaling protocol basic procedures such as, the
correct exchange of both signaling messages (Path, Resv) for the LSP establishment, has let
us to conclude that the main two objectives for this project were successfully accomplished.
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However some functions of this signaling protocol are not implemented yet, such as:

- The resources reservation failure for the LSP establishment request in the control
layer, leads to a new signaling message, with type Resv, confirming to the OBS

edge node that the LSP was not possible to establish.

- From the time that a LSP is no longer being used for any bursts transmission, it

must be disconnected, through the use of the signaling message Teardown.

Networks — Nodes & Links Initialization

On the following Fig. 16 is shown the beginning of each simulation with all the initially
configured features and the respective networks initialization, composed by its nodes and
links. All of the nodes are identified with an index: the OBS core nodes with an index from 0
to 4, the OBS edge nodes also with their pair’s index from 0 to 4 plus their own index from 5
to 9 and, finally, the GMPLS control nodes with the OBS core’s index + 1000. The option for
that number is due to the fact that the OBS network can be enlarged at any time, so the best
way to differentiate both nodes from each layer is to give a large index number to the GMPLS
control nodes. After the nodes initialization, the links are automatic initialized with the

respectively index numbers.

The number of steps defined for this simulation demo is 50000, however, since we are just
going to pay attention to the RSVP-TE signaling function for one LSP establishment, the

demonstration will end before it reaches that number.

The next phase leads us to a first study of the connections generation, where in each 5ms of
a step, one connection request of a total of four, is forwarded to the GMPLS node from each
node of the OBS network.
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Index: 1888 link: 18AA3-1881 CONTROL NODE Index: 1882 Initialized
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Index: 1818 link: 1AR4-1AA2 CONTROL NODE Index: 1883 Initialized
Index: 1811 link: 1884-1883 CONTROL MODE Index: 1884 Initialized

Figure 16. Simulation Demo — Nodes and Links Initialization

Connection Generation

The idea in the connections generation phase is to follow a dynamic scenario, where the
interaction between the two nodes of each network for a LSP establishment should be done
dynamically. As mentioned before, each OBS node has four LSP connections to request, each
one for a different destination of the network. Since we are just analysing and proving that the
RSVP-TE signaling protocol is correctly implemented, only one LSP establishment is
demonstrated for just one node of the OBS network.

As mentioned before, the RSVP-TE signaling protocol is only called if a LSP is not
established from a source to a destination point in the data network, therefore, a connection

request is generated and sent from the OBS edge node to the corresponding GMPLS node.

On fig. 17 the node in process has an index 9 that means we are in the presence of the OBS
edge node with core’s index 4 (remember that each OBS edge node has its own index). If
there are 5 OBS core nodes from indexes 0 to 4, then, the core node 0 has an edge pair node
with index 5, therefore the forth core node has an edge pair’s index of 9. From now on we are

always referring to the core’s indexes.
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Continuing with our example, let’s pay attention to the connection request with index
29639202 (red box) forwarded from the OBS node 4 to the GMPLS node, in order to
establish a path towards the destination 0. An initial arrival time (IAT) of 10,39 ms is

computed, this means that the corresponding GMPLS node receives the first connection

request at 10,39 ms of a step with 30ms of duration.

PROCESEING START-UF COMMECTION REGQUEST
- nodeInProcess: 9

- destinations size: 4

Generating First Requests

destination: @ IAT mse: 18.393277
destination: 1 IAT ms: 28.688261
destination: 2 IAT ms: 63.462242

destination: 3 IAT me: 63.123516

3% EndOfStepTotalTime: a.a3

msg Rand. stamp: 29639282
ignaling _meg.getType(d: zetu
— En eplotallime: ©.

— msg TimeStamp: 28.688261
— msg Rand. stamp: 9166482
- signaling_mzg.getType(): setup
— End0OfStepTotalTime: B.6A3

— msg TimeStamp: 63.462242

— msg Rand. stamp: 22812765

- signaling _msg.getType(d: setup
— EndOfStepTotalTime: B._083

— msg TimeStamp: 63.123516

— msg Rand. stamp: B334968%

- zignaling meg.getType(d: setup

Figure 17. Simulation Demo — Connection Request generation

Signaling Process Initialization

This phase refers to the LSP end-to-end signaling process initialization. From now on, we
are just focus on the GMPLS network, where the first two signaling path messages are
implemented (by the node 1004) in order to be sent to the respective destination (node 1000).
Each path message is differentiated from the other, through the colourful sections that
surrounds it (red section for the Path message is the shortest path, and the green section for

the path message is longest path).

Figure 18 shows the period of the signaling process where the GMPLS node with index
1004, receives the first LSP connection request message with index 29639202, from its

corresponding OBS node with index 4 (line 2- Red section). Following with our demonstration,
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the GMPLS node with index 1004 computes the first of two shortest paths and gets the first
route with an explicit path [4, 3, 0] (line 5 — Red section), with the equivalent signaling path
[1004, 1003, 1000]. In the resources reservation computation, some features are detailed such
as the source of the message and the total of wavelengths necessary to reserve (line 9 — Red
section) and on line 11 is displayed the QoS priority, which in this case is High Priority (i.e.
0.01), otherwise it would be Best Effort (i.e. -1.0).

Following this example, line 14 shows the number of entries and the next hop
characteristics of the node 1004 Forwarding Table (FT). As we can see there are already two

entries in the table belonging to Best Effort transmissions.

The first Path message is built and ready to be sent. However, since there are two types of
Path messages to send, the second route (Green section) is also computed with a different
shortest path (line 23 — Green section). In this case the second shortest Path message has to
pass by two intermediate nodes 1002 and 1001 before it reaches its destination node 1000,
rather than the first path message that only has one intermediate node. This longer way

increases the possibility of unsuccessful resources reservation.

If we look carefully at line 32, it shows a temporary FT of node 1004, meaning that a path
was already established from node 1004 to node 1003 carrying High Priority traffic,
identified by label 14. This entry refers exactly to the first route computed before.

To complete the analysis of this message, it is set an identification number of 22040847

(line 39). Both messages are now defined and ready to carry on their own journey until the
destination node 1000.
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Compute Connection Resources

Msg source: 1884
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Hext hop: 35 QoS: @.81;

FT Look-up:
Next hop:
Hext hop:

Label: 14; nChannels: 3

32
3z

nChannels:
nChannels:
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Figure 18. Simulation Demo — Path messages Initialization

Switching Signaling Path Messaqges

This phase of the LSP establishment shows the switching of the Path messages.

On Fig. 19 is shown the two Path messages switching process, distinguished by the

colourful sections. The red section, represents the Path message with the shortest path (i.e.,

the first route), below the red section we have the second route’s Path message (green
section) with the longer path [1004, 1002, 1001, 1000] corresponding to the explicit path [4,

2, 1,0].

AT GMPLE node:

msgy source: 1
next GMPLS hop: 1888
next optical hop: 3
explicit path: [4, 3.
signaling path:

1884

Msg source:

Constraints:

temp FT size: 1

sig. dest: 1888 node:
action To Take:

1883 — SWITCHING SIGMALING MSG.
msg rand stamp: 728602319
84

a1l
[1084, 19883,

Compute Connection Resources

nChannels To bhe Reguested: 3

Check Resources For MextHop.
GoS: B.81; next hop: B

FI size: 3

TEMF FT Look—up:
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FT Look—up:
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Compute Connection Resources

action To Take: switchSignalingMessage
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Figure 19. Simulation Demo — Path messages switching

Receiving Signaling Path Messages

On Fig. 20 it is shown the receiving process of the first signaling Path message by the
destination node 1000. Following the RSVP-TE signaling process protocol, the destination
builds a new signaling message Resv and sends it back as an acknowledgement to the source

node with ID 1004, confirming the correctly LSP establishment.

Continuing with our example, at this moment, one of the Path messages is about to
accomplish its journey, whereas the other one still needs to be switched one more time until it

gets its destination node (index 1000).

On this second phase of the signaling process, the GMPLS destination node 1000 has just
received the first Path message corresponding to the signaling path [1004, 1003, 1000], with
an arrival time of 12059 pseg (line 3).

The new signaling message (Resv message) is created and is sent to the following node
(1003) of the reverse path (line 5) with a LSP identifier label 14 (line 6).
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AT GMPLS node: 1888 — RECEIUVING SIGHMALING MSG.

— PATH msg vrand stamp: 79802319

arrival time: 120857 .mcs

timestamp of the new RESU msg: 13.859943
reverse path: [1888,. 1883, 18841

msg id:= 14

At GMPLS transmitter: GMPLE TO GMPLS
Prop. delay is:- B.3333333

PATH msg rand stamp: 723352%6

sig. dest: 10H@4 node: 1083

action To Take: switchSignalingMessage

3
5
6

Figure 20. Simulation Demo — Path message receiving

Second path Message Drooped

This sector shows the dropping action taken by the destination node, when it receives the
last Path message. Since the destination node has already received the first path message, the

second one will be immediately dropped.

Figure 21 shows the time that the second Path message reaches the destination with an
arrival time (line 6) greater than the one that belongs to the first Path message (line 3 of Fig.
20). Like it is represented on line 2, the list of received messages has already one entry that
refers to the first Path message, leading this second one to its drop. Therefore the LSP is
established through the signaling path [1004, 1003, 1000].

AT GHPLS node: 1888 - RECEIVING SIGHALING HSG.
2 -listO0f ReceivedMsgs . sized)d: 1 i: B

2nd PATH meg

- mzg id:z 14

= path: [4. 2, 1, A]

= arrival time: 12393.mcs

Figure 21. Simulation Demo — Path message dropping
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Resv Message Switching

This sector refers to the Resv switching process until it reaches the original source node

1004, before it confirms the successfully LSP connection.

The node 1003 receives the Resv message (line 4), shown on fig. 22 and right away it is
switched again to the last node (line 15). On the same time, a new message (line 5) is created
(Trap Message) and sent to the core node of the data layer with index 3, where it gets the LSP
label, the next hop of the explicit path and other information to be retained on its forwarding
table.

- AT GMPLS node: 1683 — SWITCHING SIGHALING MSG.

msy rand stamp: 72335276
msy source: 1808
4 %ignaling Message Type: RESU

5 — Sending Trap Message
msg_did: 14
label: 14
Next hop: B; QoS: B.81; Label: 14; nChannels: 3
forwarding_entry NextHop<>: A

At GMPLS transmitter: GMPLS TO CORE
signaling_msg TimeStamp: 14393 .mcs

At GMPLS transmitter: GMPLS TO GHPLS
Prop. delay is: A.3333333
signaling_msg ArrivalTime: 13.393276
15 sig. dest: 1884 node: 1884
action To Take: receiveSignalingMessage

Figure 22. Simulation Demo — Resv message switching

Receiving Resv Message — Connection Establishment

Figure 23 shows the last step of the RSVP-TE protocol signaling process between the
nodes 1004 and 1000, corresponding to the data nodes 4 and 0, respectively.

The source node 1004 receives the Resv message from the node 1003 and the same process
of Trap messages exchange that was done on the node before is repeated. As an
acknowledgment to the received Trap message, an ACK Trap Message is created and sent to

the corresponding physical node (line 8) on the data layer with all the information about the
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LSP. Meanwhile, the GMPLS control node 1004 confirms to its corresponding OBS edge

node (line 10) that the connection was finally successfully established (line 15), finishing the
signaling process for that LSP.

— AT GMPLS node: 1884 — RECEIVING SIGNALING MSG.

REEU mzg (destination>
meg id: 14
explicit path: [4, 3. @]

— Sending Trap Message
msg_id:
label: 14
Mext hop: 3; QoS: B.81; Label: 14; nChannels: 3
forwarding_entry NextHop(>: 3

8 At GMPLS transmitter: GMPLS TO CORE
signaling_msg TimeStamp: 14726.mcs

10 At GHMPLS transmitter: GMPLS TO EDGE
Signaling message TimeStamp: 14726 .mcs

AT CORE HODE. receiveACKIrapMessage
AT SWITCH CONTROLLER. updateForwardingTable
AT DATABSE <Node: 4> - Updating the FI.

15 AT Receive ConnectionBRequest Confirmation

{ms? holding time: 8.446548
(mz? connection end time: 23.1731597

STOP? Connection Established

Figure 23. Simulation Demo — Established Path Connection
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Chapter V

Conclusions and Future Work

In this project was discussed the signaling and control aspects related to the GMPLS-based
control plane interaction with the optical burst switching (OBS) control plane network.

The GMPLS control plane technology is currently accepted as a unifying multiprotocol for
deploying IP over DWDM networks. Its big advantage is that it is already based on existing
and widely organized protocols which simplify network management and engineering tasks

that can be performed in an integrated way in both the data and the optical domains.

Although GMPLS control plane is a very extensive and detailed technology to cover and
be implemented, generally all the proposed objectives were accomplished. The separation and
interaction between both GMPLS and OBS control layers was done, as well as the basic

features implementation of the GMPLS signaling protocol, RSVP-TE.

Future Work

As a future work, our objective is focusing on the rest of the GMPLS control plane
protocols, including some RSVP-TE functions that were not yet implemented (e.g. LSP
teardown), and trying to implement them on our unique simulator that can test the behaviour
of the OBS networks managed by the GMPLS-based control plane. It will also be included
the implementation of the traffic engineering mechanisms that will permit the management of
alternative paths for the bursts, avoiding their lost and to improve the quality of service in the

optical networks traffic transmissions.
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Appendixes

Appendix A — JA-GOBS Configuration classes

OBS Simulator

The Obs_Simulator is the main class of the JA-GOBS simulator. In it all the nodes and the

links of the two networks are initialized and stored in the main Database.

Configuration Features

Load — A load with value 0.5 means that half of the resources are occupied.

Number of Channels (Wavelengths) — The total number of wavelengths available at the

beginning before any distribution is set to 32.

Bursts — The burst’s length is variable, in this demonstration the used value was set to 0.278 x
1E6.

Wavelength Capacity — The capacity of each wavelength in the OBS network is 10Gbit/s.

Steps — The simulation depends on the number of chosen steps at the beginning. Each step has
duration of 30ps.

Matrix-type — In this simulation is used a uniform traffic matrix, means that the amount of

load sent is equal for all nodes.
ProcessingTime - Time that takes to process each packet.

tOXC — Time that takes to switch a packet.

Main Methods

initNetwork - Load the nodes / links of the two networks (Data, Control) from the XML file.
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initNodes — Initialization of the nodes network , the edge nodes, the core nodes and the
GMPLS control nodes.

initLinks — Initialization of all links from each network and also the link connections between

both networks.

ObsSimulationDataManager

The class ObsSimulationDataManager has the role to collect every information about the
received- and dropped bursts during each step. At the end of the simulation the

ObsSimulationDataManager displays the statistic of the entire simulation.

Main Methods

processData — This method processes the data of every burst transmission between the nodes
in the OBS network.

getBLP — This method recovers the QoS pretended for the clients traffic transmission in the
OBS network.

getTotalBurstDropped — This method displays at the end the number of lost bursts during the

simulation.

Obs Sim Generator

This class, like the name says, is the generator of client’s traffic to be sent. It has an
interaction with the edge node’s control unit, the class VirtualAggregatorController where it

is sent the generated High Priority or Best Effort traffic (bursts).

Main Methods

setLabelMachine - Method that sets the labels for the sent traffic through the tunnels.
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generateHPBETraffic — Method that generates High Priority (HP) or Best Effort (BE) traffic
to be sent to the OBS nodes. The HP traffic has priority over the BE traffic on the resources

reservation.

forcedTrafficPeak — A method that forces the sending of traffic peaks. At the moment this

option is disabled since we are not simulating traffic peaks.
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Appendix B — OBS Data/Control plane main classes

Obs Core Node

The class Obs_Core_Node represents the nodes in the OBS network. As explained before,
in the simulation an OBS node is represented by two classes the Obs_Edge_Node and the
Obs_Core_Node. This class in the Data Plane has the objective to receive or switch the packet

/ burst to the next node of the path though its control unit, the SwitchController class.

When used to interact to the Control Plane, the Obs_Core_Node objective is to send to the

control node the links state connected to it.

Main Methods

implReset - This method is called through the SwitchController class, setups the node with

the outgoing links and also the link connection to the corresponding GMPLS control node.
receiveBurst — This method receives the BCP/burst from the stack of events.

switchBurst — This method has the objective to switch the burst for the next node of the
current path after the resources reservation has been successful accomplished.

receiveACKTrapMessage — This method receives the acknowledge from the GMPLS control
node where is sent the label of the established tunnel, time indicators, message ID among

other information fields.

SwitchController

The SwitchController class is the control unit for every single core node. This class has
the function to call the reservation protocol (JIT) to reserve the resources for the respective

burst.

Besides that it also communicates to the GMPLS node, where it sends Trap messages

indicating the state of each link connected to the core node.

44



Main Methods

checkInternalResourcesAvailabilityAndTransmit — Method that calls the reservation protocol
JIT represented by the class Just_In_Time to compute the reservation of the available
resources for the transmission. If it receives a NACK as an answer, then the packet is
dropped, otherwise, is reserved successfully and the burst will not be lost.

contentionWindow / occupancyWindow - These methods tell us the right time that the load

should be distributed to another link, avoiding the overload in the tunnel.

sendTrapMessage - This method interacts with the corresponding GMPLS control node
where it sends the links state connected to the core node in the OBS network. Then waits for
an ACK trap message where it receives the label of the established tunnel and the number of
wavelengths necessary to the burst reservation.

Obs Edge Node

The class Obs_Edge Node is one of the two classes, which represents the OBS node in the
real view. This class refers to the source node that wants to transmit traffic over the OBS
network. However it also receives the confirmation (positive or negative) of the established

path from the corresponding GMPLS control node.

It has as its control unit, the class VirtualAggregatorController that receives the HP or BE

traffic from the Obs_Sim_Generator to be transmitted through the optical path.

Main Method

receiveConnectionRequestConfirmation — This method receives the confirmation from the
GMPLS control node, if the tunnel was successful or unsuccessful established.
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VirtualAggregatorController

The class VirtualAggregatorController is the control unit of each edge node that sends
traffic (bursts) to the destination nodes within the OBS network. Besides that, it also interacts
with the GMPLS control plane by sending a connection request for the establishment of a

tunnel.

Main Methods
transmitEvent - Method used to transmit the BCP to the following core node through the
stack of events.

getOffsetTime - Method that gets the offset time for the waiting burst.

sendConnectionRequest - Method used to send a tunnel connection request to the control
layer when there is not any established tunnel in the data layer. As acknowledge it might
receives the confirmation that the tunnel is established or an error message that at some point

of the path it was not possible to make the reservation.

ExplicitRoutingLogic

The class ExplicitRoutingLogic implements and follows the rules of the OSPF protocol by
routing the data through the tunnels and other functions like the setup of all tunnels and the
assignment of the number of LSPs per tunnel. In other words, every time a node needs to send
the data burst to a neighbor node, as soon as the resources reservation is done, the properly
methods from the ExplicitRoutingLogic class are called to give the information needed from

the tunnel and the output link selected, so the data burst can be routed.

Main Methods

getNextHop / getNextHopSP - Methods used to get the next hop of a given optical path to
flew the bursts until the destination node. The getNextHop is used for burst with HP and the
other is for BE.
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wavelengthAssignment - This method as the role to assign the number of wavelengths
(resources) for each Label Switching Path (LSP).

tunnelSetup - Important method that establishes the tunnel from a source node to the given

destination node.
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Appendix C - GMPLS Control Plane main class

GMPLSController

The class GMPLSController represents the GMPLS control nodes of the control plane
network. Therefore, every time is requested the establishment of a new path, this class takes
into action by executing all the processes needed to a correctly functionality of the GMPLS

signaling protocol, RSVP-TE.

Main Methods

sendPATHMessage/ sendRESVMessage — These are the two methods that perform the

exchange of the two signaling messages Path and Resvof the RSVP-TE protocol.

computeConnection — This method decides if is possible to make the reservation of the

available resources for the establishment of the optical path between two control nodes.
LSPLabelGenerator - Generates a new label to indentify each established tunnel.

checkTrafficincrement / Decrement — Those two methods allow to check the traffic that was

incremented or decremented inside a link shared by two different tunnels.
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Appendix D — GMPLS Framework and Control Plane Protocols [31]

GMPLS Framework
Switching | Traffic Type |Forwarding Example Nomenclature
Domain Scheme of Device
Packet, cell I, Label as shim IP router, Packet switch
asynchronous | header, virtual ATM switch | capable (PSC)
transfer mode channel
[ATM) commection (VCC)
Time TDM/SONET | Time slot in Digital cross- | TDM capable
repeating cycle connect
system
(DCS), ADM
Wavelength | Transparent Lambda DWDM Lambda switch
capable (LSC)
Physical Transparent Fiber, line OXC Fiber switch
space capable (FSC)
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GMPLS Control Plane Protocols

Protocols

Description

Routing

Routing protocols for the auto-discovery of network
topology, advertise resource availability (e.g., bandwidth
or protection type). The major enhancements are as
follows:

Advertising of link-protection type (1+1, 1:1, unprotected,
extra traffic)

Implementing derived links (forwarding adjacency) for
improved scalability

Accepting and advertising links with no IP address—link
ID

Incoming and outgoing interface ID

Route discovery for back-up that is different from the
primary path (shared-risk link group)

Signaling

ESVP-TE,
CR-LDP

Signaling protocols for the establishment of traffic-
engineered LSPs. The major enhancements are as follows:

Label exchange to include non-packet networks
{generalized labels)

Establishment of bidirectional LSPs

Signaling for the establishment of a back-up path
(protection Information)

Expediting label assignment via suggested label

Waveband switching support —set of contiguous
wavelengths switched together

Management

Control-Channel Management: Established by
negotiating link parameters (e.g., frequency in sending
keep-alive messages) and ensuring the health of a link
{hello protocol)

Link-Connectivity Verification: Ensures the physical
commectivity of the link between the neighboring nodes
using a PING-like test message
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Appendix E — OBS Network Classes Diagram

N
ZONE 2 - Classes Diagram

TimeWindow

Just_Enough_Time

Just_In_Time

+TimeWindow()

+incrermentBursts ToForward() © void
+getWindowEndTime() : Time
+UpdateWindowEndTimel() : void

f?\

Database

+updateF T() © void

+check TEDUpdating() © void
+aetConnectionNextHan() : int

[

v

b m e e e e e e

SwitchController

+SwitchController()

+getlirkIndex() ¢ int

+configuraterlode() : void
+checkInternalResourcesAvailability AndTransmit() : boolean
-explicitRouting() : boolean

+treatBackwardTurnelInf() ; void

+contentiorwWindow() : void

+occupancyWindow(] : void

+resetContentionWindow() : void
+updateReservationLists() : void
+getChannelsForBETraffic() @ LinkedList<Integer >
+gethlextHopSP() © int

' T
[
[
' T
[
Lo
|
+serdTrapMessage() : void ! i
n [
1 ! Vo
I
B | o
[ [
' '
! 3 ' i ExplicitRoutingLogic
. B
' | ' 1
' ' Vo
] | i I
I 1 Vo
! I
| . .
i ! AbstractRoutingl ogic ‘
I
v il T
! '
P P
Ly Lo ;
[ i
Obs_Core_Node i \i/ !
'

+implementProtocoli) © boolean
-updateOffsetTimeAndsetinfol) @ void

+implementProtocoli) © boolean
+HransientBCP() : void
-updateOffsetTimeAndSetinfo() : void

!

Delayed Resource_Reservation

+Delayed_Resource_Reservationi)
+implemenifrotocoll}: boolaan
+generateReservation() : Reservation

]

Immediate_Resource_Reservation

+Immediate_Resource_Reservation()
+implemeniBrotocol}: boolaan
+generateReservation() : Reservation

sinkerfacsr

Resource_Reservation_Protocol

generateReservation() : Reservation
implementPratocol() : boolean

getMaxOfferedLoadErlangl)

getThannelsForBETraffic()

ConnectionRequest

+getSource() : int
+getDestination() : int
+getvsglD() ¢ int
+geti oad() : float

A

VirtualAggregatorController

+Wirtual AggregatorController()
+configurateNode() : void
+ProcessSteplnAggregatorController() : void
- transmitEvent() : void

-getOffsetTime() : Time
+sendCornectionRequest() : boolean

n )

+0bs_Core_Node()

+implReset() : void
+implInitStep() : void
+recelveBurst) : void
+switchBurst() : void
+implConcludestep() : void
+receiveACKTrapMessage() © void
- burstsDataProcessing() © void

- burstsDataProcessing() : void

- collectInfol) : void

RecelveBurst cals:

policyControl{): void

Obs_Edge_Node

<interface>
SimulationDataManager [<------"--""~"

,,,,,,,,,,,,,,,,,,,,,, i +0bs_Fdge_Node()

+irplReset(] ; void
+implInitStep() : void
+irmplConcludeStep() © void

-collectinfol) : void
+rewMethod() : void

+receiveConnectionReqguestConfirmation() @ void

ObsSimulationDataManager

+initRoutes() : void
+wiriteRoutes() : void
-processCatal) © void

+aeBLP() : float

+getiNumberCfEdaes() : int
+gethlumberOfTotalRoutes()

+0bssimulationDataManadger()
+setTotal Tunnels() : void
+writeAssociatedRoutes() : void

int

-getTotalBurstsDropped() : float
+handlestepyStepResults() : void

s

QObs_Sim_Generator

+Q0bs_Sim_Generator()

+setl abelMachine() : void

+generateTraffic() | Collection<CbsPacket>
+generateHPBETraffic() : Collection<ObsPacket >
- typeCFrafficl) : String

+forcedTrafficPeak () : Collection<CbsPacket >

- - - -» Dependency

Generalzation (extended to abstract class)
+ public type
_ Pprivate type

# protected type
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Appendix F - GMPLS Network Classes Diagram

AbstractSimulableMNode

‘F

ConnectionRequest

é____

GMPLSController

V

winterfaces - ---4

GMPLS_SignalingMsg

.(_E____

Signaling

TrapMessage

GMPLSTransmetter

V

«interfaces
Transmitter

+GEMPLSController()

+configuratetode() © void
+gethewTransmetter() | GMPLSTransmetter
+implConcludeStep() : void
+implInitstep() : void
+sendPATHMessage() © void
+sendRESYMessage() © void
+switchSignalingMessage()  void
+sendACK TrapMessage() © void
+receiveSignalingMessage() © void
+receiveTrapMessage() © void
+gethewChanmelsFromErlang() @ int
+UpdateForwardingEntries() : void

- check TrafficIncrement() ; void

- check TrafficCecrerment() : void

- computeConnection() : boolean
-waavelengthAssignment() : LinkedList <Wavelength>
- gethextHop() it

-invertPath() : LinkedList
-LSPLabelGenerator() © int

Y Y

Database VirtualDestination
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Appendix G - JAVOBS Configuration Classes Diagram

ZOME 1 - Classes Diagram j

ExplicitRoutinglogic:

List of methods caled inside Zone 1

HeuristicsVer2

ExplicitRoutingLogic

+Heuristics\er2()
+run() ; void
#HoetPathSelection() ; intl]

#oetl inklUsagel ambdas() © irt]]
#ealoulatelinkCost() ; doublel]
#ealoulatePathCost) © doublel]

i )

v

+ExplicitRoutingLogic)
+getiletworkMNodes!) : int
+wavelengthAssignment() © void
+getCos() : float
+tunnelSetup() © int
+tunnelPairSetup() © int
+getMyEdgeTunnels() © Vector <Tunnel=
+getMyCoreTunnels() © Vector <Tunnel =

AbstractRoutingl_ogic

TunnelAllocation

+TurnnelAllocation()
#inittodel () ; void
+runL() ©int ]

+getPathSelectionvector() © int]

M

R e e

Obs_Simulator

+main() ; void

- initietwork () + void

- Inithodes() ; void

- initlinks() ¢« void

- getNetworkDiameter() © int

- initVirtual Topology () : int

- bidirectional TunmelsSetup() ; void

-regular TunnelsSetup(l © void
-runSimulator() ; void

setDoS5()

regular TunnekSetp calls:
tunnelSetup() ¢+ int

bidirectional TunnelsSetup calls:
turnelPairSetup()

intinityirtualTopology cals:
s void
wavelengthAssignment() © void

rnain() calls:
getMyEdgeTunnels():
Vector<Tunnel=
getMyCoreTunnels():
Vector<Tunnel=

Database

+Database(node: Core)

+Database(node: Edge)

+Database(node; GMPLS)

+init() : void

+upgradeTunnels() : boolean
+getReverseTunnel Inf() © float
+getTunnelChannels() ; LinkedList<Integer =
+insertListTurnels() © void
+getTunnelByDest() © LinkedList<Tunnel =
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Appendix H - Erlang B Traffic Table

0.01

0001
0142
AE68
2347
A520

71282
1054
1.422
1.826
2260

2722
3207
3713

4.781

0.05

20003
0321
517
3624
6486

9957
1.3%2
1.830
2302
2803

3329
3.878
4.447
5.032
5.634

6.250
6878
7.51%
8.170
8.831

9.501
10.18
10.87
11.56
12.26

1287
13.68
1441
1513
15.86

16.60
17.34
18.09
18.84
19.59

2035
2111
2187
1264
2341

2419
2497
2575

0.1

0010
0458
1938
4383
7621

1.146
1.572
21051
2558
3.082

3.651
4.231
4.831
5446
6.077

6.722
7378
8.046
8.724
9412

10.11
10.81
11.52
12.24
1297

13.70
1444
15.18
1593
16.68

17.44
18.21
18.97

19.74
20.52

21.30
22.08
2286
23.65
2444

2524
26.04
2684

where
Erlang B Traffic Table
Maximum Offered Load Versus B and W
Bim%

0.5 1.0 2 3 10
0030 0101 0204 0526 111
1054 1526 2235 3813 5934
3480 4555 6022 JBoo4 1.271
7012 2694 1.092 1.525 2.045
1.132 1.361 1.657 2219 2881
1.622 1.909 2276 2.960 3.758
2158 2.501 2935 3738 4 666
2.730 3.128 3.627 4543 5.597
3.333 3.783 4345 5370 6.546
3961 4.461 5.084 6116 7.511
4610 5.160 5842 TO076 5487
5279 5.876 6615 7950 5474
5.964 6.607 T402 B 835 10.47
6663 7.352 E200 9.730 11.47
7376 B.108 9010 10.63 1248
E.100 B.875 9828 11.54 13.50
B834 9.652 10.66 12.44 14.52
Q578 10.44 11.49 13.39 15.55
1033 11.23 12.33 1432 16.58
11.09 12.03 13.18 1525 17.61
11.86 12.84 14.04 16.19 15.63
12.64 13.65 14.90 17.13 19.69
13.42 14.47 15.76 1808 20.74
1420 1530 16.63 19.03 2178
15.00 16.13 17.51 1999 2283
15.80 16.96 18.38 20.94 2389
16.60 17.80 19.27 2190 2494
1741 18.64 2015 2287 26.00
1822 19.49 21.04 2383 27.05
19.03 20.34 2193 2480 25.11
1985 21.19 2283 25.77 2917
20.68 2205 23.73 26.75 30.24
2151 2291 2463 2772 31.30
2234 3.7 25.53 2870 32.37
2317 2464 26.44 29.68 3343
2401 25.51 27.34 30.66 34.50
24 85 26.38 2825 3164 35.57
25.69 2725 2917 32.62 36.64
2653 28.13 30.08 33.61 3772
2738 2901 31.00 34.60 38.79
2823 2989 31.92 35.58 39.86
29.09 30.77 32.84 36.57 40.94
2904 31.66 33.76 37.57 42.01

Eyn(A) =By =

2.

B is loss probability,
offered traffic,

number of circuits.

A
N

1765
7962
1.603
2501
3454

4.445

6.498
7.551
8.616

9.691
10.78
11.87
1297
14.07

15.18
15.29
1741
18.53
19.65

20.77
21.90
23.03
2416
2530

26.43
2157
2571
2985
31.00

32.14
3328
3443
35.58
36.72

37.87
39.02
40.17
41.32
4248

43.63
4478
43.94

2500
1.000
1.930
2945
4.010

5.109
6.230
T.369
8512
9.683

10.86
12.04
13.22
14.41
15.61

16.81
18.01
19.22
20.42
21.64

22 85
24.06
2528
26.50
2792

2894
3016
3l.3%
3261
3384

35.07
36.30
37.52
38.75
3995

4122
4245
4368
4491
46.15

4738
48.62
4985

30

4286
1.44%
2.633
3.891
5.189%

6.514
7.856
8213
10.58
11.95

13.33
14.72
16.11
17.50
18.90

20.30
21.70
23.10
2451
2592

27.33
28.74
3015
3156
3297

34.3%
35.80
3721
38.63
40.03

4148
4288
4430
4572
47.14

48.56
4098
31.40
5282
3424

55.66
57.08
58.50

AN
®T

.'\".;,:‘

i=0 T
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2433
25.08

2583
26.59
1734
28.10
2887

2963
30.40
3117
3154
3272

3345
3427
35.05
3584
3662

741
38.20
35585
3978
4058

4138
4217
4287
4377
4458

4538
4615
47.00
4781
48.62

4943
30.24
51.05
51.87
3269

3351
3433
3515
3597
36.79

57.62
844
5927
60.10
60.92

61.75
62.58
63.42
6425
65.08

65.92
6673
67.59
6843
69.27

26.53
2732

B0
2850
2970
3049
3129

32.09
3250
3370
34351
3532

3613
3695
3776
3858
3940

4022
41.05
41.87
4270
4352

4435
4518
46.02
4685
47.68

4852
4936
50.20
51.04
51.88

52.72
53.56
3441
5525
56.10

36.93
5780
58.63
59.50
60.33

61.21
62.06
6292
6377
64.63

6549
6635
67.21
68.07
6893

6973
70.63
71.52
7238
T~25

2764
2845

2915
30,07
30.88
3le3
25

3333
3415
3458
3580
36.63

3746
3B29
3912
3995
4080

41.63
4247
4331
4416
45.00

4585
46.69
4754
4839
4924

50,08
5054
51.80
5265
5351

3437
5523
56.08
56.95
5781

58.67
5954
60.40
61.27
62.14

63.00
6387
64.74
63.61
6648

67.36
6823
6910
6998
7085

71.73
1261
73.48
7436
75.24

3030
ilas

31352
3338
3425
sn
3598

3685
3772
3860
847
4035

4123
4111
42599
4387
4476

4564
4653
4742
4831
4520

50.09
5098
51.87
5277
33.66

54.56
3546
3635
57.25
5815

3905
3996
6086
6176
6267

63.37
64.48
65.39
66.29
67.20

6811
6202
6993
70834
71.76

1267
7358
74.50
541
7633

7724
78.16
907
7999
8091

3254
3343

3432
3522
3511
37.00
3790

38.80
35.70
40.60
41.51
42141

43.32
4422
4513
46.04
46.95

4786
48.77
45,69
50.60
51.52

3244
53.35
34.27
55.19
56.11

57.03
57.96
58.38
59.80
60.73

61.65
62.58
63.51
64.43
65.36

66.29
67.22
68.15
69.08
70.02

7095
71.38
7182
73.75
74.68

75.62
76.56
7749
7843
79.37

80.31
B1.25
8218
83.12
84.06

34.68
35.61

3653
3746
3839
3932
40.26

41.19
4212
43.06
44.00
4404

45.88
46.82
47.76
48.70
49.64

50.59
51.33
5248
5343
3438

5533
5628
5723
5818
5913

60.08
61.04
61.99
62.95
63.90

64.86
65.81
6677
67.73
68.69

69.65
70.61
T1.57
7253
T73.49

7445
7542
76.38
77.34
78.31

7927
80.24
81.20
8217
83.13

§4.10
85.07
86.04
87.00
8797

38.56
3955

40.55
41.54
4254
43.53
44.53

4553
46.53
47.53
48.54
4954

50.54
51.35
52355
53.56
3457

5557
5658
57.59
58.60
59.61

60.62
61.63
62.64
63.65
64.67

65.68
66.69
67.71
68.72
69.74

70.75
7177
7279
73.80
T4.82

T5.84
76.86
T77.87
78.89
79.91

80.93
81.95
8197
8399
85.01

g6.04
87.06
88.08
§2.10
90.12

2115
9217
93.19
9422
95.24

43.05
44.17

45.24
46.32
47.40
45,48
4956

50.64
5173
5281
33.85
5498

56.06
57.14
58.23
59.32
60.40

61.45
62.58
63.66
64.75
65.84

66.93
68.02
69.11
70.20
71.29

7238
7347
T4.56
75.65
76.74

7783
78.93
80.02
§1.11
8220

83.30
8439
8548
86.58
87.67

88.77
8986
%0.96
92.05
93.15

94.24
95.34
96.43
97.53
938.63

99.72
100.8
1015
103.0
104.1

47.0%
48.25

4540
50.56
5171
5287
54.03

53.1%
56.35
57.50
58.66
59.82

60.98
62.14
63.31
64.47
63.63

66.79
67.95
69.11
T0.28
7144

72.60
73.77
74.93
76.09
T77.26

T8.42
79.59
80.75
81.92
83.08

8425
8541
85.58
87.74
85.91

20.08
91.24
9241
93.58
24.74

95.91
97.08
98.25
9941
100.6

101.8
1029
104.1
105.3
106.4

107.6
108.8
108 %
111.1
1123

5105
5232

33.56
54.80
36.03
57.27
38.51

39.75
60.99
62.22
63.46
64.70

65.94
67.18
68.42
69.66
T70.90

7214
73.38
T4.63
T75.87
77.11

78.35
79.59
80.83
82.08
8332

84.56
85.80
87.05
88.25
89.53

20.78
92.02
93.26
8451
95.75

96.99
98.24
9948
100.7
102.0

103.2
104.3
105.7
107.0
108.2

1094
110.7
111.%
113.2
1144

115.7
116.9
118.2
119.4
1206

5992
61.35

62.77
64.15
65.61
67.04
68.46

6988
7131
T2.73
T4.15
7558

T7.00
T8.43
T9.85
81.27
82.70

84.12
85.55
86.97
88.40
8982

21.15
92.67
84.10
85.52
96.95

98.37
9980
101.2
1027
104.1

105.3
106.9
1084
105.8
111.2

112.6
114.1
115.5
116.%9
118.3

119.8
121.2
1226
1240
1253

126.9
1283
1298
131.2
1326

134.0
1355
136.9
1383
139.7

71.01
T2.67

T4.33
T6.00
T1.66
T79.32
8055

82.85
8432
85.98
87.65
8931

8057
8264
8430
95.97
97.63

9930
101.0
102.6
1043
106.0

107.6
1093
111.0
1126
1143

116.0
117.6
1193
1205
1226

1243
1259
127.6
1293
130.9

1326
1343
135.9
137.6
139.3

1405
1426
1443
1455
147.6

1453
1509
152.6
1543
1559

157.6
1393
1605
162.6
164.3
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