
 1

UNIVERSITY OF LJUBLJANA
Faculty of Electrical Engineering

Jordi Sans

INTERACTIVE 3D SIMULATIONS

Erasmus exchange project work

Supervisor: Assoc. prof. dr. Andrej Košir

Ljubljana, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41798417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Table of content

1. Introduction...3
2. Existing technologies and their evaluation..4
2.1. Java Script ..4
2.2. Visual Basic ..5
2.3. C++ and JAVA...5
2.3.1. JAVA Overview and features...6
2.4. Disadvantages of JAVA ...8
2.5. Chosen language..8
3. Implementation issues...10
3.1. Video refreshment ..10
3.2. Hot Equation ...11
3.3. Structure of MVC ..11
3.4. Unicode ...11
3.5. Model-view-controller (MVC) concept...12
3.5.1. Why to use MVC structure?...13
4. Interactive Java applet structure and graphic ...13
4.1. Introduction of Java Applets ...13
5. Basic description of structure and operation ..16
5.1. Basic relations between classes...16
5.1.1. Starting the applet ..16
5.1.2. Creation of MVC pattern...17
5.1.3. Model features ..17
5.1.4. View system features ...21
5.1.5. ControlUI features ..22
5.1.6. Properties files..22
5.1.7. Javadoc comments ..23
5.1.8. HotEqn...23
6. Simulated models...25
6.1. Analytic model of a homogeneous TEM electromagnetic wave in a LIH
media ... 25
6.2. Parameters dependencies ...31
6.3. Conversion of field units, projection 3D to 2D and sizing waves with
constants... 32

6.3.1. E and H Units conversions ..32
6.3.2. E and H 3D to 2D projection ..35
7. Simulation implementation tutorial...37
7.1. Introduction...37
7.2. Getting started ..37
7.3. Other features and properties ...39
7.4. Step by step instructions...40
8. Simulation results and evaluations...42
9. Conclusion and further work...44
Bibliography ..45

 3

1. Introduction

“Simulation” is a word that might be familiar to everybody. Its meaning is so
expanded in all sectors (medicine, education, biology, engineering, psychology...),
that the introduction of this paperwork will mainly focus only on computer simulations
subject.

To better understand what a computer simulation is, the most suitable and simple
definitions are below:

“The technique of representing the real world by a computer program”; "a simulation
should imitate the internal processes and not merely the results of the thing being
simulated";

“is a technique to perform tests using a model written in software”

Why do we use computer simulations? The answer to this question may seem very
long, but the main reasons for using simulations are easy to find, although they
depend on what area we are in:

Business simulations: Modern business has to stay competitive by keeping
development and training costs and times to a minimum, while still keeping high
levels of quality for both.
Modeling and simulation of systems can provide solutions for product development
and personnel training without the costs usually associated with these. In other
words: computer simulations save time and money, and they are as reliable as real
world tests.

Education simulations: They provide the students with one intermediate space, which
joins the reality with the models or theories. In addition, simulations allow interactive
manipulation of the models, that will facilitate the acquirement of knowledge of the
students.

Obviously the subject of this work is to program and to study an example of
“educational simulation”.

More specifically, the simulation we work on is an interactive simulation, which
intends to provide the students with a tool they can play with. The students can
better understand the mathematical model used to explain the phenomena
under study, because they can check and observe, in an interactive way, the
reality the model represents.

Our Applet simulation is drawn on a 2D projection of a 3D interactive graph
representing two plane waves, one electric and the other magnetic, with z axe as
their direction of propagation.

It is an interactive Applet because the users can change the values of the wave
equations through sliders, buttons and combo boxes.

 4

2. Existing technologies and their evaluation

If only the points of a bidimensional graph want to be displayed, then the easiest
languages to be used are Java and C++.

What language should be used for 3D programming?

There are many useful program languages to develop an interactive 3D simulation
program. Some of them are listed below, as well as the reasons why Java language
was chosen to do this paper work, which are explained in the following paragraphs:

Flash

The most serious competitor of Java on the internet is Flash. It allows web
developers to create interactive content, such as animations, animated menus,
movies, games...

Flash is based on vector graphics, which means that Flash animations can be
rescaled without losing the image quality. Flash animations can be embedded in
HTML pages as menus, movies or web site layouts.

There are also disadvantages of Flash, depending on its implementation in a web
site structure. For example, it is recommended to avoid its excessive usage,
especially in web sites introductions. It is not optimized for search engine indexing,
such as Google or Yahoo.

There are obvious differences if we compare Java with Flash:

Main differing points between java and flash languages
JAVA FLASH

Universally available and usable Depends on Macromedia’s Flash plug-in
propagation

Java Applets are typically larger Smaller applets, faster loads/downloads
Integrates easily with other web pages
elements (i.e. HTML web sites)

Less so

Pre-defined GUI, such as AWT or
Swing

Vector-graphics “look”, larger possibilities
for web designers

Scalable to any processor-driven
platform (computers, mobile phones...)

Less so

Figure 2.1 Comparisons between Java and Flash.

It appears that Java and Flash are designed to work together; Java scripts can
activate and communicate with Flash files. Therefore, nowadays both languages are
evolving, Java can be found in almost every existing device, while Flash is showing
up more and more in the internet (i.e. movies sites).

2.1. Java Script

 5

JavaScript is, in some way, similar to Java. Both are object-oriented programming
languages. They mainly differ in two basic points:

1. Java can stand on its own, whereas JavaScript is text put in a browser that
reads and plays it. As a result of it, JavaScript must be included in an HTML
document so it works. On the contrary, a Java applet is considered a program
itself that must be compiled in the JVM before being added in a website.

2. The second main difference is how the languages are presented to the final
user. A Java applet is handed out so the machines that receive it see the
program as an already set one, which cannot be changed, nothing can be
either added or removed from it. On the contrary, JavaScript is text-based, it
can be modified and run as many times as necessary and no compilation
process is needed.

To summarize, Java is much more powerful than JavaScript, because it is
conceived to run in a general field, whereas JavaScript is meant to run in web
pages.

On the other hand, these two languages are the most frequently used by website
designers, as they can give outstanding designs and dynamism to the web pages.

Basically, FLASH was not chosen to be the language because it is more focused to
design the user interface, and it is not very suitable for simulating mathematical
models. Moreover, a plugin for FLASH is needed.

2.2. Visual Basic

It was one of the first languages to take advantage of GUI interfaces, so along with
Java they allow the programmer to create an application much faster than other
languages. VB can provide web programs as Java does, so both can be deployed in
many modes (stand-alone, components of other systems...). VB is widely used in
Microsoft Office programs (macros in Word, Excel...) and in Windows OS.

In conclusion, although it is difficult to affirm and it has not been carefully proved in
this work, it makes sense to use VB for PC based applications, where Windows
dominates, and to use Java for a browser interface. Java may be better in an internet
environment due to Swing classes that makes GUI operations very fast.

2.3. C++ and JAVA

It was partially modeled after C and C++, and offers all their features but avoids the
worst and most confusing parts of them.

As stated in Java language white paper by Sun Microsystems: "Java is simple,
object-oriented, distributed, interpreted, robust, secure, architecture neutral, portable,
multithreaded, and dynamic."

 6

2.3.1. JAVA Overview and features

It is simple. It is similar to C++ although it is much simpler than it because Java uses
automatic memory allocation and garbage collector while C++ requires the
programmer to allocate memory and to collect garbage. It means that using Java, the
programmer does not have to bother to free the dynamic memory. Also, Java
eliminates the use of pointers, which caused a lot of troubles to programmers
(parameters are passed only by value, not by reference). Besides, Java code can be
easily read and written, and the language and the class libraries are all integrated
together. Though it is true that Java standard library is considerably large in
comparison with C++ standard libraries.

Java, as well as C++, is object-oriented because programming in Java is focused
on creating objects, manipulating objects, and making objects work together (where
everything can be considered as an object).

An object has properties and behaviors. Properties are described by using data, and
behaviors are described by using methods. Objects are defined by using classes in
Java. A class is like a template for the objects. The process of creating an object
class is called instantiation. Java consists of one or more classes that are arranged in
a treelike hierarchy, so that a child class is able to inherit properties and behaviors
from its parent class. An extensive set of pre-defined classes, grouped in packages
that can be used in programs are found in JAVA, for instance J2SE development kid
(JDK library), provided freely by Sun Microsystems.
Creation of objects:

1. Declaration: name the object.
2. Instantiation: to asign memory to the object.
3. Initialization: to provide the object with an initial value.

Object myObject = new Object();

Figure 2.2 example of an object creation where the class is Object.

Object-oriented programming provides greater flexibility, modularity and reusability.
Each object can stand alone, but the sum of them makes up the whole.

Java provides the programmers with libraries and tools so the programs can be
distributed; that is they can be run from several computers in a network while
interacting with each other. So Java has been built to interconnect with TCP/IP
protocols and to interact with http or ftp.

Java is an interpreted language. Due to it, an interpreter (Java Virtual Machine) is
needed in order to run JAVA programs. After the code is compiled, a bytecode (or
pseudo-code) is created, which is not understandable by any machine.
Therefore, bytecode is machine independent and it can only be run on any machine
that has a Java interpreter (JVM). Normally, a compiler will translate a high-level
language program to machine code and the code is able to run only on the native
machine. If the program is run on other machines, the program has to be recompiled
on the native machine. For example, if you compile a C++ program in Windows, the
executable code that is generated by the compiler can only be run on a Windows

 7

platform. With Java, the program needs only to be compiled once, and the bytecode
generated by the Java compiler can run on any platform (with a JVM installed).

Java code gets through a lot of checkings before being executed in a machine. Java
is one of the first programming languages to consider security as part of its design.
The Java language, compiler, interpreter, and runtime environment were each
developed with security in mind. The compiler, interpreter, and Java-compatible
browsers all contain several levels of security measures that are designed to reduce
the risk of security compromise, loss of data and program integrity, and damage to
system users.

Java is Robust. Robust means reliable and no programming language can really
assure reliability. Java puts a lot of emphasis on early checking for possible errors, as
Java compilers are able to detect many problems that would first show up during
execution time in other languages. For instance, Java does not support pointers,
which eliminates the possibility of overwriting memory and corrupting data. Java has
a runtime exception-handling feature to provide programming support for robustness,
and can catch and respond to an exceptional situation so that the program can
continue its normal execution and terminate gracefully when a runtime error occurs.

One advantage of Java, as it was already mention above, is that its programs can
run on any platform without having to be recompiled. This is one positive aspect of
portability. It goes on even further to ensure that there are no platform-specific
features on the Java language specification. For example, in some languages, the
integer bit size varies on different platforms. In Java, the size of the integer is the
same on every platform, 32 bits with two’s complement. Having a fixed size for
numbers makes Java programs portable. The Java environment itself is portable to
new hardware and operating systems, and actually the Java compiler itself is written
in Java.

Java is Multithreaded, which means a program is capable of performing several
tasks simultaneously within a program. For instance, downloading an .mp3 file while
playing it would be considered multithreading. In Java, multithreaded programming
has been integrated into it, whereas in other languages, operating system-specific
procedures have to be called in order to enable multithreading. Multithreading is
especially useful in graphical user interface (GUI) and network programming. In GUI
programming, many things can occur at the same time. In network programming
(even though it is not the goal of this work), a server can serve multiple clients at the
same time. Multithreading is a necessity in visual and network programming.

The most remarkable feature of Java is that it is architecture neutral. Architecture
neutral means that it is platform independent. A Java program can be run on any
platform with a Java Virtual Machine (run-time). Many operating system companies
have adopted the Java Virtual Machine, and soon Java will be able to run on all
machines.. Java applets can be run from Web browsers. Stand-alone Java
applications can also be run directly from operating systems using a Java interpreter.
Nowadays, software vendors usually develop multiple versions of the same product
so that it can run on different platforms, such as Windows, Macintosh, Linux.... Using
Java, the developers need only to write one version, and this one version will be able
to run on all of the platforms.

 8

Java is Dynamic. The Java programming language was designed to adapt to an
evolving environment. New methods and properties can be added freely in a class
without affecting their clients. Also, Java is able to load classes as needed at runtime.

2.4. Disadvantages of JAVA

The main disadvantage of Java is speed.

Although Java's ability for producing portable, architecturally neutral code is
desirable, the method used to create this code is inefficient. As mentioned above,
once Java code is compiled into byte code, an interpreter called a Java Virtual
Machine, specifically designed for computer architecture, runs the program. Why is it
a problem? "Java, being an interpreted system, is currently an order of magnitude
slower than C. An interpreter must first translate the Java binary code into the
equivalent microprocessor instruction. Obviously, this translation takes some amount
of time and, no matter how small a length of time this is, it is for sure slower than
performing the same operation in machine code. So we can affirm that Java still can
not compete with natively compiled C++ code.

Check point [1] for further information about JAVA pros and cons.

2.5. Chosen language

In conclusion, Java language has been chosen in this work to be the language to
develop the simulation applet. This language removes the unnecessary complexities
of C++ (Java is less hard to learn than C++). It does not have the same high
performance than C++ does, but these powerful features and complexities can
sometimes lead to many errors. In addition Java can be run in any machine
independently of the OS, as long as it is equipped with JVM (Java Virtual Machine),
which is free cost.

A java applet runs independent of HTML files that call it. A java applet can be
compiled in user-friendly environments such as Eclipse or Netbeans.

Java has many advantages for an internet language, mainly the robustness,
neutrality, portability and security derived from the use of bytecode, which even if
they slow the applications speed (they need to be compiled and interpreted), they
solve many other issues.

To sum up why Java language was chosen among all the others, some of its main
features are summarized below:

 9

Java main features & Advantages

Simple language to learn (syntax similar to C++ but no pointers)
Object-oriented language
Organizing of classes into packages (Java.swing, Java.applet)
Easy management of the memory (garbage collector)
Scalable to any processor-driven platform (computers, mobile phones...)
Less so
Platform independent (Windows, Linux…)
Open-source
A lot of API allowing for instance 3D programming and Graphics

Figure 2.3 Main Java advantages

 10

3. Implementation issues

In this chapter, there are going to be described the major issues that came up when
implementing the simulation applet and how they were solved or how the program
deals with the problem.

3.1. Video refreshment

One of the major encountered issues concerned the video refreshment. A previous
simulation applet was developed. It consisted in drawing a TEM wave, where the
drawn graph was supposed to be refreshed every time a slider changed its value.
It turned out that the wave was not refreshed until a whole period of it was drawn.

The structure of the program did not follow the MVC concept, there was only one
class containing all the code. Furthermore, all the computed points to plot a period of
the wave where held in a buffer before being painted. It is called “double-buffering”
technique and was used on the program to avoid the flickering while painting.

“Double-buffering” creates off-screen images. It draws to the an off-screen image
using the image's graphics object, then, in one step, calls drawImage method using
the target window's graphics object and the off-screen image.

As a result of it, when user slides the scrollbar, the graph is not refreshed until a
whole period of the wave is completely painted.

The main issue due to the lack of MVC structure was that painting method held the
processor. That is, when user changed a slider value, an event was thrown, but it
was never caught since the processor was busy plotting continuously the wave.

This applet was eventually abandoned and, starting from the beginning, simulation
template was programmed.

Figure 3.1 TEM wave, where no MVC concept is applied. It is drawn using AWT
toolbox.

SimulationTemplate applet uses MVC concept and runs a thread, mainly in order to
make sure the processor does not get stuck in a single duty. The key factor of MVC

 11

lays on the use of the java Event listeners. These listeners keep the classes in touch,
and when an event is thrown, it is notified immediately through the listeners to the
appropriate class.

3.2. Hot Equation

There are some issues regarding the hot equations. These classes where somehow
smoothly modified and added to the whole program. However further changes could
be done to optimize them. As a matter of fact, the classes with regard to Hot
Equations are too large. There are some methods that could be removed but have
not been yet, because it may produce unexpected errors. They stay there as long as
they do not affect the Hot Equation. In fact, when an equation is added using the
HotEqn, the loading time of the applet in the JVM slightly increases.

The procedure of adding an equation must be thoroughly done. Although the steps to
follow are explained on chapter 7.4, what is wanted in this chapter is to remark an
open issue on the SimulationTemplate applet.

Currently, only one equation can be added on the applet using hot equations
LaTeX writing.

The problem lies in the way of getting the LaTeX image from the HotEqn class. It
does not recognize which string equation is inputted in SimulationTemplate, so
simply creates one image from the first inputted string equation and the other
equations are omitted.

3.3. Structure of MVC

It is not considered to be an issue, but SimulationTemplate applet does not follow
strictly the MVC architecture. It basically has to do with the ControlUI class, which
does not listen to the ViewUI. Instead of it, it sends the information directly to
ViewNum01 class. There is no need to set listeners between ControlUI and
ViewNum01, either. Everything that involves changes in the view is handled between
the ControlUI and the ModelUI classes, and it is this last one which is in charge of
notifying these view changes to ViewNum01 class.

Furthermore, it is true that the ViewNum01 class computes some equations, with
regard to the 3D to 2D projections and to the units’ conversion into pixels. H2.3.1r,
these calculations were not considered to be the Model class duty, since all of them
are strictly connected only to the view system.

Check the structure of the class listeners in figure 3.2.
This issue is also treated in chapter 5.1.4.

3.4. Unicode

Unicode (Universal Code) is a computing industry standard allowing computers to
represent and manipulate text expressed in most of the world's writing systems.

 12

Using Unicode was necessary to input Slovenian specific characters, such as “č” or
“š” on the properties files.

The correspondence between characters and Unicode is found in point [10].

3.5. Model-view-controller (MVC) concept

In general terms, it is the architectural pattern used by programmers to implement
their applications.
It was first introduced by “Smalltalk” language. Nowadays it is widely used in Web-
based application frameworks.

The basic idea of MVC is to partition the interactive software, so the user interface is
separated into a View, and the mathematical equations into a Model. To make it work
out, a Controller is needed to response the user requests on the Model or the View.
Thus, the Controller interacts with both the Model and the View.

Normally, the basic structure of MVC shows three basic bodies:

 Model – Computes and contains the data of the application, along with the
logic that defines how to change and access that data. That is, it is in touch
with both the View and the Controller so it is continuously listening and
notifying to them any change. If a change occurs, then the Model must re-
compute new data using the incoming inputs and send it to which it may
concern (most likely the View or the Controller).

 View – It is typically the user's interface. Presents the Model data on the
screen. All the imaginable presenting possibilities are considered here, from
GUI to sounds, and they depend on where the programming language is
capable of getting up to. In other words, the View is how the user views the
current state of the Model.

 Controller – It gathers the user, or other possible inputs, and provides
feedback to the Model, normally changing some of the data in that Model. Can
also be done on the other way, if some changes occur in the Model, the
Controller is in charge of providing feedback to the View so these changes can
be seen by the final user.

 13

Figure 3.1 Detailed interactions between the three bodies. For further general
information visit Sun's website: [3]

3.5.1. Why to use MVC structure?

It was designed to simplify the work of the software programmers. Moreover, it
properly creates listeners of events, in a way that permits to implement separately the
components of the program. Also, to keep the program well organized is fundamental
to maintain it or to develop further versions of it.

It is time now to emphasize the applet SimulationTemplate. It is no matter at this
point to get deep into the program structure, so it is only introduced the basic
diagram of its MVC structure:

Figure 3.2 MVC listener structure of SimulationTemplate2D

Simulation Template applet does not follow strictly the MVC pattern, but it is still a
very valid working example. The figure above shows the Listeners added between
the classes so they listen and notify to each other the events thrown.

4. Interactive Java applet structure and graphic

4.1. Introduction of Java Applets

 14

Sun Microsystems defines Java applet as a ‘Java programming language that can
be included in an HTML page, much in the same way an image is included in a
page'.

There is one thing to take into account, though. Java applets can run in a web
browser as long as it has a Java Virtual Machine (JVM), which understands the
byte-code of a Java class and makes it ready for run. A Java Run-time
Environment (JRE) is provided by Sun and includes a JVM and some other library
files that run the application.

It is also interesting to know that the applets run in a web browser cannot be
accessed or changed by the remote clients that run them. It happens because
web browsers use a mechanism to safely execute non-checked code. It is called
sandboxing.

Commonly the goal (not the only one) of applets is to be embedded in websites,
and to add interactive applications to HTML pages. But they can also be run in
stand-alone applications provided by Sun. For instance, the applet developed in
this paper work was programmed and tested in Eclipse environment, which is an
open-source toolset for Java development.

To create an applet class, it is needed to extend the basic class of Java: Applet.
This way, all the necessary things in order to create an applet are inherited.

Import java.applet.Applet;

Public class Example extends Applet{}

4.1 Example of applet class creation

All applet extensions are subclasses of java.applet.Applet class. So this class
must be imported in any applet that wants to be embedded in a Web page or
viewed by a Java Applet Viewer, because the Applet class provides a standard
interface between applets and their environment.

Even for the simplest applet, some methods must be used:

init() It is called only once, when the applet is created.
start(): It is called every time the applet wants to be activated. It is called right

after init() is called.
destroy(): It is called once, when the applet will not be used anymore.
stop():

It is called every time the applet wants to be stopped, for example to
stop an animation.

4.2 Basic methods for applets

And methods to paint components:

paint(Graphics
g)

It is called every time the drawing area must be refreshed. It
cannot be directly called by the programmer; instead calls repaint
or update methods. It is the only one which really paints the
components.

 15

update(Graphics
g)

Removes the area where the application has been painted in and
calls paint() method.

repaint() It is called when changes on components want to be visualized.
 4.3 JAVA painting methods

The difference between update() and repaint() methods is that update method
includes an additional step in which the screen is first cleared, so it removes the
previous drawn graphics before calling the paint method.

Check point [2] for further information on applets at Sun’s website.

 16

5. Basic description of structure and operation

It is going to be shortly described the role of each java class that appears on the
simulation. All the connections between them are also going to be reviewed, as well
as the chain of events that follows a user input.

The global scheme of the SimulationTemplate Applet is:

5.1 Figure showing the sequence of class creation

On the figure above it is observed the sequence of class creation, taking into account
that SimulationTemplate class is the one that starts the program.

NOTE: Classes inherited from Java packages, such as AWT and SWING
components have been omitted in this scheme (i.e. JPanel, JFrame, Applet…).

In order to better understand the relation between classes, they are now going to be
reviewed all the steps the program follows when an event is thrown by the user.

5.1. Basic relations between classes

5.1.1. Starting the applet

It is first introduced the SimulationTemplate class. Its duty is to start up the whole
simulation process. It extends the java Applet class.
By using init() method, it initiates the thread that runs continuously the program, and
previously calls SimulationFrame class. User must notice that Model class is based
on a thread, which runs continuously until exit button is pressed.

The main duties of SimulationTemplate are:

 To start up the thread that runs the applet.
 To stop the thread when exit button is pressed.
 To create “HotEqn” in order to input equations on the applet in LaTeX style.
 To load the properties files in order to choose the language of the applet.

 17

5.1 SimulationTemplate creates SimulationFrame

5.1.2. Creation of MVC pattern

SimulationFrame adds all components and graphs of the applet. It extends JFrame
class which belongs to java AWT toolkit. JFrame is the biggest container, so it is
possible to add any component inside (JPanel, JButton,…). JPanel is a container
itself, where it is also possible to add components and to distribute them using a
layout manager. So basically its duties are:

 To distribute the simulation in the MVC structure, creating the Model, the View
and the Controller.

 To call the Model class so the program gets started.
 To set the applet and the dimensions of JPanel components.
 To add Model and ControlUI listeners.

5.2 MVC concept

5.1.3. Model features

As said before, Model class runs consecutively due to a thread, until reset button is
pressed. The aim of the Model is to calculate the necessary data so the view system
can plot both the electric and magnetic waves. It is done by computing discrete
values and by storing them into matrixes (called dataE and dataH). These matrixes
are sent to ViewNum01.

The Model also sets the sliders default values, either when the applet is run for the
first time or when reset button is pressed. At this point, it makes sense that if the
Model sets the default values, it also has to read the new slider values entered by the
user and it has to update the data matrixes (dataE and dataH), so the view system
can repaint the graphs using the new slider values. Some of these values are
dependent to each other, that is the reason why the Model has to recognize which
slider has changed its value, and to apply the parameter dependencies if necessary.

To sum up, the main performances of Model class are listed below:
 It computes all mathematical equations of the E and H waves.
 Sets default values when the simulation is run for the first time or reset

button is pressed.
 It eventually sends to the view system new user events (i.e. drawing style

has changed). The ViewNum01 and the ControlUI do not have listeners to

 18

be in touch to each other, so the Model must notify to the ViewNum01 some
user changes.

There are some important vectors and matrixes declared in Model class and that
must be taken into account to better understand how the applet works:

 The modelParams array is used to set the parameters of the scrollbars (also
the default parameters). Using these parameters, which are stored in
modelParams array, the electromagnetic equations are computed. The 3D
points coming from this computing are stored in dataE and dataH matrixes.

 dataE and dataH are two matrixes containing the points used to draw the
electric and the magnetic waves on the applet. They are eventually sent to
ViewNum01 class, which will eventually draw the two waves using the
information stored in the two matrixes. There are 3 points in each row
(, ,)i i ix y z and there are as many rows as the number of points that want to be
drawn.

For further information about the Model class calculation check chapter 6.

Since it is not trivial to understand the Model class duties and its relations with all the
other classes, there will be listed next all the user events that can occur on the
simulation, and they will be explained with the aid of figures:

1. Start up: Model sets all parameters default values (realTime, sliders, Drawing
style), and sends them to ControlUI class. ControlUI updates the values on the
scrollbars. ViewNum01 receives the computed data coming from the Model,
and after some later data process (unit conversion and projection to 2D) it
plots the 2D projected waves.

5.3 sequence of data conveying

2. User changes the value of a Scrollbar: It can be done either by dragging the

slider using the mouse or by inputting a number in the text fields. Two different
situation can happen:

a. The slider changed does not have parameter dependencies, so
although its value has changed, it does not affect any other scrollbar.

In this case the sequence is as follows:

When ScrollBarPanel class detects an event has been thrown, (user enters
a new value in the text field or, what is the same thing, drags the slider) it
sends directly to the Model the identifier (ID) of this scrollbar (there are 12
scrollbars and are numbered from 1 to 12). Once ID is sent, Model gets the
current value of all the scrollbars from the ControlUI and checks whether
this identifier obliges to apply any parameter dependencies or not. If we
assume at the present time that there are no parameter dependencies,
then the Model computes the equations using the new scrollbar values and

 19

sends them to ViewNum01 by means of dataE and dataH matrixes, so the
two waves can be updated according to the new computed values. Notice
that Model does not send any value to ControlUI because there are no
updates to be done on the scrollbars.

 5.3 sequence without parameter dependencies

b. Model checks if any parameter dependencies must be applied and the
ID sent from one out of the nine ScrollBarPanel class demonstrates it
has to. That is, the changed scrollbar must be one amongst:

 Angular frequency [/]rad s .
 Relative dielectricity r .
 Relative permeability r .
 Conductivity [/]s m .

These parameters are characteristic of every material, and are the ones
that affect the attenuation [/]Np m and the phase number [/]rad m
of the plotted Transversal wave. Therefore, not only the steps of point
number 2 (User changes the value of a Scrollbar) must be followed, but
also the Model has to compute the new attenuation and phase number
because one of the dependent scrollbars changed its value.

So, to summarize it, what Model does different in case B than in case A,
is that has to re-compute the new attenuation and phase number
(attenuation corresponds to scrollbar with ID number 1 and phase
number to ID number 2) and to send the results to ControlUI by using
specific methods programmed for doing this job.
ControlUI receives the new attenuation value and continues with the
sequence shown in point number 1 (Start up). The figure below shows
that all scrollbars are updated, even if only for example scrollbar(ID=1)
must be updated. It is done this way in order to save unnecessary java
code writing and does not affect the simulation performance in any
case.

5.4 sequence with scrollbar parameter dependencies

For further information about parameter dependencies check chapter 6.2.

 20

3. User changes the view mode of waves graphs:

The user can change the view mode of the wave in an interactively way. He
can choose whether the two waves are shown at the same time or only one of
them. Also the E and H waves can be displayed in to modes: in arrows or in
curves style.
 The default value of the two existing combo box is 0, which means both
waves are plot together and in curves style. These features do not change
unless the user changes the default values by using the combo box.

A JComboBox is a component of java GUI Swing, same thing happens with
buttons, text fields, labels...
It is added in ControlUI class. As soon as the graph mode changes, an action
event is thrown within ControlUI class, and the new value is put into Model
class. The role of the Model is to send the new value to ViewNum01 class, so
it can repaint the graph using the new user chosen style.

5.5 sequence of events when the view mode of drawing the waves is
changed

4. User presses Reset button: The procedure is very similar to the one followed

in point number 3 (User changes the view mode of waves graphs). When
pressing the button, an action event is thrown in ControlUI class. It is notified
to Model listeners. The simulation default parameters are stored in Model
class, so it can start the simulation applet for the first time or it can restart it
whenever reset button is pressed, which is the situation we now assume.
So the sequence that follows once the Model class receives the event of
reset- button-pressed, is the same than in point number 1 (start up).

5.6 sequence of events when the reset button is pressed

5. User presses Exit button: When so, in ControlUI an action event is thrown.

Right after this, the method DestroyAll() in SimulationFrame is called, which
stops the thread located in Model class and calls destroy() method in
SimulationTemplate class. Destroy() method belongs to the Applet class, and
its duty is to destroy any resources that the applet program has allocated. For
instance, in SimulationTemplate, destroy() method calls dispose() method for
SimulationFrame class. Dispose() method releases all native screen resources
of JFrame contained in SimulationFrame, and all its subcomponents.

5.7 sequence of events when the exit button is pressed

 21

5.1.4. View system features

It is time now to focus on the ViewUI class and on other related generalities.
ViewUI class makes up the MVC concept together with the Model and the ControlUI.
In simulation template applet, the main tasks of the ViewUI are:

 To add the ViewNum01 and the Model listeners.

 To create and to set the dimensions of the ViewNum01 panel, where the 2D
projected E and H waves will be drawn.

An overview of ViewNum01 class is going to be done:

As said before, ViewNum01 receives the data from ViewUI to set and to locate the
size of its own panel. In addition, it receives straight from the Model the matrixes
dataE and dataH. Using these matrixes is capable of drawing the E and H waves and
the (, ,)x y z axis as well as to plot the wave either in vectors or curves styles. To do
so, however, viewNum01 needs to process the points contained in dataE and dataH
before drawing the waves.

What does this processing consists in? It consists in converting the real units of the
wave points into pixels. So E field points are converted from Volts/meter units to
pixels, and the H field points are converted from Ampere/meter to pixels. This change
on the units of the 3D points computed in the Model class is needed to draw the
waves on the panel with their appropriate dimensions, because everything drawn on
the panel is always in pixels units.

Once the wave points are in pixels units, the ViewNum01 projects them from 3D to
2D points. A projection to 2 dimensions is needed to draw on the computer screen.
Thus, everything drawn on the panel (wave lines, wave vectors, axis, tics of the axis)
is projected 2D points in pixels units.

For further information with regard to 3D to 2D projection, check chapter 6.3.2.

Last but not least, the ViewNum01 receives data only from the ViewUI and the
Model, not from the ControlUI although the MVC concept says the Control must listen
to both the View and the Model classes. So what we have so far is a minor change in
MVC concept. We can affirm it is an unimportant fact because there are no
processing speed issues and the bases of MVC concept are respected.

The figure below shows the particular used MVC concept. The Model class computes
the points from the time domain E and H wave equations, and input them on dataH
and dataE matrixes, which are sent directly to ViewNum01, where this data is
processed to be eventually drawn on the screen.

 22

Figure 5.8 Steps to draw projected points

5.1.5. ControlUI features

ControlUI major duties can be listed in several points:

 Implements MVC control GUI.
 Adds all user controls, such as sliders, buttons and combo boxes.
 Adds the I/O methods, to join the ControlUI class to all the other classes.
 Adds model listeners.

ControlUI sets data from or to the Model and from or to the ScrollbarPanel class and
listens or notifies to the Model and to the ScrollbarPanel class any change occurred
on the scrollbars, on buttons…

One of the aims of ControlUI is to create and to add the buttons, as well as to add the
scrollbars displayed on the applet. Actually, the scrollbars are created, painted and
located in ScrollBarPanel class as well as the text fields where users can input new
wave parameters. ControlUI listens to the Model and to the ScrollBarPanel classes.

ScrollbarPanel class simply throws “action performed” or “adjustment value changed”
events to the Model and to the ControlUI every time a text field or a scrollbar is
changed. Furthermore, it receives from ControlUI the current scrollbar values and
updates them, when the applet is run for the first time or when reset button is
pressed.

ScrollBarPanel class is used by ControlUI class to create the 12 scrollbars that
appear in the simulation applet.

5.1.6. Properties files

Applet SimulationTemplate includes a properties files application. This application is
meant to be a fast applet translator. It consists of:

 Some .properties files. These sorts of files are used to store strings for
localization; these are known as Property Resource Bundles. Each parameter
is stored as a pair of strings, one storing the name of the parameter (called the
key), and the other storing the value. At SimulationTemplate applet, the keys
correspond to all the strings to be translated, and the value contained in the
.properties files correspond to the translated strings in the chosen language.

 23

 A .conf file containing all the links of the applet to the properties files, so when
the language of the applet wants to be changed, it is needed to open util.conf
file and to choose among the available languages.

To run properties files it is needed to include java.util.Properties class. The objects of
this class are created in SimulationTemplate class, and the needed .conf file is
loaded there as well. There must be a specified path to search automatically at the
location where the file is.

Check point [5] for more information about loading properties files (and file-based
configurations in general).

5.1.7. Javadoc comments

Javadoc is a tool for generating API documentation in HTML format from comments
in source code. It is a tool that parses the declarations and documentation comments
in a set of source files and produces a set of HTML pages describing the classes,
inner classes, interfaces, constructors, methods, and fields.

In SimulationTemplate the comments emphasize on the most important public
methods of the classes, and they have been created to guide the user throw the code
and to make easier to understand the whole class structure of the applet.

Check point [6] to visit reference pages listing all javadoc tags and command-line
options.

5.1.8. HotEqn

SimulationTemplate applet incorporates a version of HotEqn application. HotEqn is
an AWT-based Java applet to view and display mathematical equations on the Web,
using HTML language. The applet uses the familiar LaTeX notation to code its
equations. The added version of HotEqn is a variant of CHotEqn application.

The original CHotEqn applet supported all LaTeX features, but did not include
methods for equation editing, variable substitution, and for more sophisticated
interactive elements. This applet was preferably for only showing mathematics
statically.

In SimulationTemplate, CHotEqn has been slightly modified in order to simplify it as
much as possible, and currently SimulationTemplates version is meant to be a simple
displayer of mathematical equations on the applet. Some original features have been
removed, such as mouse operations for debugging purposes.

It consists of three java classes, CHotEqn, EqnScanner and EqToken, as well as of
10 .gif extension archives.

The main features and duties of each one of them are:

 CHotEqn: It contains the majority of the methods running the application.
CHotEqn objects are added in SimulationTemplate class. For each desired
equation to be written down, a new CHotEqn constructor must be added in

 24

SimulationTemplate. Basically it receives from the SimulationTemplate class
the LaTeX equation code to be included on the applet, and it converts this
LaTeX code into the appropriate mathematical way, by scanning and parsing
the received LaTeX strings. An equation image is created out of them, and
they are sent to the desired frame where are plotted.

 EqnScanner: Provides the detection methods to detect the elements (tokens)

on an equation.

 EqnToken: Contains the list of all the scanner tokens to be recognized and
parsed.

.GIF images: Are 10 files containing all the mathematic symbols. When one
symbol is required to be drawn, for instance a Greek letter, cHotEqn class
loads it from the .gif files.

Figure 5.9 Example showing electric waves phasors equations captured from
the ViewNum01 panel and written using hot equations.

Check point [7], hot equations website, which includes a tutorial on LaTeX writing.

 25

6. Simulated models

6.1. Analytic model of a homogeneous TEM electromagnetic
wave in a LIH media

 The waves radiate spherically, but at a remote distance away from the source they
resemble uniform plane waves. The E

 (electric) and H

 (magnetic) fields are

always orthogonal to the direction of propagation, which will always be considered
in this paper work as 1z

.

 The waves drawn in this applet are assumed to be plane, in a linear, isotropic and

homogenous (LIH) media. In this chapter, there are going to be shortly discussed all
the consequences of dealing with LIH media, and will be listed the LIH explicit
waves equations, which will be the ones to be plotted in the applet. All these LIH
equations are the results of solving Maxwell equations with some specific values
due to the LIH media.

 Starting from the beginning, that is Maxwell equations, it is possible to arrive at
 Helmhottz equation for time-harmonic electric fields:

 2

() ()()r rE j j E

 (6.1)

where: : Angular frequency [Rad/s] : Magnetic permeability

 : Conductivity [S/m] : Electric dielectricity
()rE

: is a complex vector: (, ,)Ex Ey Ez

To reach the equation (6.1), it is necessary to work on Maxwell’s equation but within
the isotropic TEM waves. When all physical properties are the same in different
directions it is call Isotropic media. Those Maxwell’s reduced equations due to
isotropic media are:

0E

 0H

EH E
t

 HE

t

 (6.2)

The next equations are the result of solving Helmhottz equation using (6.2)
equations:

() 0
r

rE E e

 (6.3)
0

()
1 rv

r
EH e

Z

 (6.4)

0
0

1v EH
Z

 (6.5)

1v

: Direction of propagation

jZ

 Wave impedance (6.6)

: Propagation vector

 26

 is used to describe the behavior of an electromagnetic transmission wave.
Its mathematical expressions are:

()j j propagation constant (6.7)

or j

 (6.8)

Where:

: attenuation vector [Np/m]

: phase vector [Rad/m]

The real part of the propagation constant is the attenuation constant and is denoted.
It causes the signal amplitude to decrease.

The phase constant adds the imaginary component to the propagation constant. It
determines the sinusoidal phase of the signal.

To better understand the meaning of attenuation constant and phase number , it
is next added a graph showing how the wave parameters affect the wave
propagation:

 Figure 6.1 Amplitude of an electromagnetic wave versus distance when time is

frozen. For further information check Reference [8].

If it is assumed that we are describing homogeneous wave, then ||

 and
consequently 1v

 and 1v

 so it can be affirmed:

() (1 1) ()v vr j r j r j z

According to the construction of wave equations, the direction of the wave

propagation is the direction of the phase vector 1v

. Without any loss of

generality we can assume 1z =1 (0,0,1)v

.

 27

As a result of it, the equation (6.3) can be converted into () 0

z j z
rE E e e

 (6.9)

 Now it is a matter of going from the complex domain to the time domain and to get

the real part of it, taking into account every complex number can be split into its real
and its imaginary part: 0 0 0r iE E jE

 (,) () 0 0()jwt z j z jwt

z t z r iE E e E jE e e e

 Finally, the equation of the electric field is obtained after computing the equation
above:

 (,) 0 0(cos() sin())z

z t r iE e E t z E t z

 (6.10)

 The procedure to reach the magnetic field equation is very similar:

 Starting within the complex domain, the general equation for the magnetic field is

the equation (6.4)

 Though from now on, it is assumed that the direction of propagation is ()z , in the

same way as in the magnetic field case. Also the magnetic field is split in real and
imaginary components and the wave impedance Z written with the equations (6.6)
and (6.8):

 0 0
()

r i z j z
r

H jHH e ej
j

 Back to time domain, and after some steps the next equation is derived:

 (,) () 0 0... cos() sin()jwt z

z t z r iH H e e H t z H t z

(6.11)

The equations (6.10) and (6.11) are the ones that the Model class of the applet will
compute, and eventually they will be drawn. However, they are not completed yet.

Amongst all the variables that appear on the equations, there are some that must be
first computed and written in the appropriate way before being computed in JAVA.

These are the cases of the phasors components 0rE

, 0iE

, 0rH

 and 0iH

. To compute
them in JAVA language, it is necessary to arrange them.

 The roles of these phasors on the equations are to control the polarization of the
electric and magnetic waves. First we introduce the orthogonal basis of transversal
plane. The transversal plane is the plane orthogonal to the wave direction that is
orthogonal to the phase vector . We choose the orthogonal base of transversal
plane 1 ,1 so that1 1 and 1 1 1v .

 28

 The wave polarization is the orientation of the lines of electric flux in an
electromagnetic field. Since in this paper work only Transverse Electromagnetic
(TEM) waves are studied, the electric and the magnetic fields are both at 900 of the
direction of propagation (direction z).

 Therefore, the real and the imaginary components of phasors 0E

 and 0H

will always

be within the (x,y) plane and shifted 900 degrees to each other, as shown below:

Figure 6.2 Applet program showing an elliptical polarization of 0E

and 0H

of a

TEM. Interactive simulation is available at [9].

When time is running the vectors change their position, describing an elliptical curve.
The direction of propagation is z axis, which is where the view point of this applet is
located.

There are three possible states of polarization, depending on the phasors
components values.

0 0 0r iE E jE

 or what is the same 0 0 0r iH H jH

1. Linear polarization: 0 0||r iE E

 where 0 0 1r r EE E

 and 0 0 1i i EE E

Components 0 0,r iE E .

In Linear case, the two perpendicular components are in phase, so the
direction of the electric vector 0E

is constant and traces out a line in the plane.

2. Circular polarization: 0 0r iE E

 and 0 0r iE E K

Where: 0 1rE K

 and 0 1iE K

The two orthogonal components have exactly the same amplitude and are
exactly 900 out of phase. In this case one component is zero when the other
component is at maximum or minimum amplitude. In this special case the
electric vector traces out a circle in the plane.

3. Elliptical polarization: 0 11rE K

 and 0 21iE K

 29

Comprises all cases where the two components are not in phase and either do
not have the same amplitude and/or are not ninety degrees out of phase. The
electric vector traces out an ellipse in the plane.

Figure 6.3 Draw showing the three possible states of polarization of a TEM
wave in time evolution. Blue curves are the sum of the two perpendicular
components of the wave vectors in (x,y) plane. Violet curves are the
projections on a plane

The most general case of TEM wave components is:

 Figure 6.4 Shows the orthogonal base and the E vector components

From where it is deduced the following things:

 30

The chosen perpendicular base is 1 ,1

0 1 1(cos(), sin(),0) 1rE K K

 0 2 2(cos(),sin(),0) ()1iE K K R

Finally the two equations of the phasors that Model class computes have been
deduced. Replacing the vectors on the electric field equation (6.10):

 (,) 1 2((cos(),sin(),0) cos() (cos(),sin(),0)sin())z
z tE e K t z K t z

 (6.12)

Model class constructs two matrixes called dataE[3][numOfPoints] and
dataH[3][numOfPoints] in order to send the computed values to the View class in
an appropriate way. Then, the three components belonging to every vector are
placed at dataE and dataH rows, and there are as many vectors as numOfPoints that
want to be drawn. If N = NumOfPoints, the structure of the two matrixes, either dataE
or dataH is:

0 0 0

1 1 1

[][0] [][0] [][0]
[][1] [][1] [][1]

.....
[][] [][] [][]N N N

dataE x dataE y dataE z
dataE x dataE y dataE z

dataE x N dataE y N dataE z N

For instance, at fixed point i, a vector lays out in a matrix row the following three
components (, ,)x y z :

1 2

1 2

[0][] cos() cos() cos()sin()

[1][] sin()cos() sin()sin()
[2][]

z z

z z

x dataE i e K t z e K t z
y dataE i e K t z e K t z
z dataE i z i

 (6.13)

Note that the component z is not null, because the vector is placed according to the
desired number of points to be drawn and multiplied by a constant. This point is
widely explained in chapter 6.3.1.

As said before, the Model class also defines a matrix, called dataH[3][numOfPoints],
that is intended to do the same than dataE[3][numOfPoints], but this time the values
introduced will correspond to those of the magnetic field:

Firstly, it is needed to calculate the real and the imaginary parts of the magnetic

phasor :
0

0 0 0
1z

r i
EH H H

Z

Since the electric phasor (0E

) is known, the real and the imaginary parts of the
magnetic phasor are also know:

 0 1 sin(),cos(),0 2 sin(),cos(),0rH K K

 (6.14)

 31

 0 2 sin(),cos(),0 1 sin(),cos(),0iH K K

 (6.15)

Incorporating the equations (6.14) and (6.15) into the equation (6.11) and if the three
components are separated to match them into the dataH matrix:

[0][] 1sin() 2sin() cos() 2sin() 1sin() sin()

[1][] 1cos() 2cos() cos() 2cos() 1cos() sin()

[2][]

z

z

edataH i K K t z K K t z

edataH i K K t z K K t z

dataH i z i

 (6.16)

Eventually, it has been obtained the equations (6.13) and (6.16), which are the ones
computed by the Model class and sent to the ViewNum01 class so they can be
drawn.

Looking the equations thoroughly, it is possible to find out what the variables of the
equations are. These variables correspond to the scrollbars that appears on the
applet and which can be changed by the user interactively by sliding the scrollbars:

Name of the variable Scrollbar identifier on applet [1..12]
Attenuation constant [Np/m] () 1
Phase number [Rad/m] () 2
Angular frequency [Rad/s] () 3
Relative dielectricity (rel) 4
Relative permeability (rel) 5
Conductivity [S/m] () 6
Real time flow [ns] 7
Refresh time [ms] 8
Real amplitude [V/m] (1K) 9
Imaginary amplitude [V/m] (2K) 10
Angle or real component [Rad] () 11
Angle of imaginary component [Rad] () 12

 Figure 6.5 Table matching the scrollbars on the applet with their identifiers

6.2. Parameters dependencies

There are some variables in figure 6.5 that are not on these equations but that
appear on the expressions to calculate and . These parameters are
characteristic of every material. The following equation is important to find any
dependency between the equation parameters (left part of the equation) and the
media parameters (right part). Note that this equation is valid as long as the wave is
homogeneous (||

):

 32

2 2 22 j j (6.17)

After some computing, these four equations are found:

2 2

2
0 0

rel
rel

2

 (6.18)

20 0

0

(1 () 1
2

rel rel

rel

20 0

0

(1 () 1
2

rel rel

rel

The values with a subscript 0 mean the media is free space, while these with a
subscript rel are the ratios of an specific media to the free space media, therefore it is
possible to replace the values for an specific material:

0
rel

 0

rel

The applet puts into practice these parameters dependencies. That is, the equations
(6.18) are inputted in a way that the right side of the equal sign is dependent on the
parameter of the left side. So when some of the parameters of the left side change,
the parameter on the left side must be re-computed.

6.3. Conversion of field units, projection 3D to 2D and sizing
waves with constants

When the ViewNum01 class receives the dataE and dataH matrixes, which contains
the 3D points of the waves, must do some processing of this data before drawing it
onto the screen. This chapter is intended to overview this procedure.

6.3.1. E and H Units conversions

Firstly, a unit conversion is needed. All the elements drawn on the screen are in
pixels units (axis, tics on the axis) and the panel on ViewNum01 is sized in pixels, as
well. It makes sense, then, that the 3D points that will be used to draw the E and H
waves must also be in pixels. Otherwise the drawn wave would be wrong; units of all
plotted elements can not be mixed.

To convert the units into pixels, it is only necessary to multiply by a constant value
the 3D data incoming from Model class by means of dataE and dataH.

 33

Let’s understand the important variables involved in the conversion procedure:

4numOfPeriods ; //Fixes the number of periods that will appear on the screen.
20ref ; // Reference value of the wave number [Rad/s].

Now, how many meters are needed to draw 4 periods on the screen?

As it is already known, the waves are modeled with sines and cosines, for instance:

cos()t z Thus, it is possible to impose 4 periods (2 is one period) to be the
maximum length of the drawn wave in meters:

[/] max[] (2) max;
max 1.257[]

ref rad m Z m numOfPeriods Z
Z m

This is the “real units” distance in meters that 4 periods will take up on the screen.
Since the panel is measured in pixels (600 660) pixels, it has been set that the
direction of propagation (Z axe) will take up 500 pixels, leaving nearly 50 free pixels
on every side. As a result of it, we are in conditions now to demonstrate the constant
that will convert meters into pixels:

500[] max[] 398.88[]pixpixPerMeter pix Z m m

The number of points which draw the 4 periods is also known if previously the
distance in pixels between every point computed in the Model class is decided.

6[]dPix pix ; //distance of pixels left in between every point to be drawn.
500[]int 836[]

pixnumOfPo s pix

So it is come to the conclusion that the Model class computes the matrixes dataE
and dataH, each one of them taking 83 3D points to the ViewNum01 class. And the
distance between each computed point in meters is:

max[] 0,015[]
int

Z mdisZ m
NumOfPo s

 (6.19)

The explanation of X and Y conversion constants is similar to the one of z dimension
although the units now are not meters, but in Volts per meter [/]V m and in Amperes
per meter [/]A m respectively.

To set the constants, it is needed to know the average amplitude of the wave
(considering the attenuation does not affect on it) and the number of pixels that want
to be taken up. For instance, considering now the E wave:

150[]NumOfPixels pix ;

 34

2 2 2.83irefEampl Kr K

The number of pixels taken to draw the waves on the screen have been chosen to
match them with the length in pixels of the positive part of X and Y axis, whereas the
average amplitude (refEampl) is the result of fixing both reference amplitude
constants (real and imaginary parts) 2[/]Kr Ki V m . So the constant is already set:

[] 53[]pix numOfPixelsXpixPerVpM pixV refEamplm
 (6.20)

When the constants pixPerVpM and pixPerMeter have been calculated, it is a matter
of multiplying these constants by the values out coming from the Model class in
dataE matrix as shown beneath:

0 0 0

1 1 1

[][0] [][0] [][0]
[][1] [][1] [][1]

.....
[][] [][] [][]N N N

dataE x dataE y dataE z
dataE x dataE y dataE z

dataE x N dataE y N dataE z N

 (6.21)

0 0 0

1 1 1

[][0] [][0] [][0]
[][1] [][1] [][1]

.....
[][] [][]N N

dataE x pixPerVpM dataE y pixPerVpM dataE z pixPerMeter
dataE x pixPerVpM dataE y pixPerVpM dataE z pixPerMeter

dataE x N pixPerVpM dataE y N pixPerVpM dataE

 [][]Nz N pixPerMeter

Note that the first two columns are the (,)x y points of the 3D electric wave, whereas
the third component is the location of the wave vector in the ()z axis (direction of
propagation). So the units of (,)x y are [/]V m and the units of ()z are []m .
Let’s check out what is the information of ()z :

 Locates the vector through the wave’s direction of propagation. So it is
composed by an index increasing one unit every point, and which multiplies
the constant given in equation (6.19). Then, the points stored in ()z
component are such as:

0[][0] 1*dataE z distZ

0[][1] 2*dataE z distZ
…………….

0[][int] int *dataE z NumOfPo s NumOfPo s distZ

Where distZ is the constant giving the distance in between every two computed
points.

 Is introduced in the equations of (,)x y wave components because is the

radius vector of the wave: (0,0,)r z

.

 35

Similar steps have been followed in order to find the most appropriate constant for H
wave:
We are currently dealing with [/]Amperes m units, and it is known from equation (6.5)
that the H field amplitude is proportional to the E field amplitude divided by the wave
impedance as shown beneath:

,
, [0,]x y

x y
in

E
H

Z

The following conclusion is taken from this equation: points computed in dataH matrix

are approximately inZ times bigger than the ones in dataE matrix. At the time of
drawing the waves, it would be an issue to have such a big amplitude difference
between the H and the E waves, therefore it is needed to multiply H points with a
constant that will put the amplitudes in a comparable size.

This constant is the reference value of: Re 2 2

ref ref
in f

ref ref

Z C

And since this is true:
,

,
x y

x y

E
H

C

So:
, ,

[] [] 3.34
x y x y

pix numOfPix pix numOfPix pixpixPerApm CA H Em

 (6.22)

The waves E and H will be approximately the same size as long as we multiply the
dataE and dataH points with the factors found in equations (6.20) and (6.22).

Finally it is only needed to multiply the components of dataH matrix by pixPerApm
constant, exactly in the same way it is done in equation (6.21).

6.3.2. E and H 3D to 2D projection

It is necessary to project the 3D dataE and dataH points to 2D points, because the
draw of the waves will be on the computer’s screen, which is a 2D plane.

A 3D point is projected as seen from a given viewpoint . This viewpoint is
represented by any point in the original 3D space. This projection will lie on the
imagined 2D plane, which will be the computer’s screen.

The equations giving the 2D points out of the 3D points are:

2

2 2 2

12 y x

x y

CompX D x y
r

 (6.23)

 2 2
2 2 2

12 x z y z x y

x y

CompY D x y z
r

 (6.24)

 36

Where:

(, ,)r x y z

 is the 3D point.
(, ,)x y z

 is the 3D view point.

The result of projecting all the points on the screen (points from the coordinate axes,
points of the waves) is a 3D graph drawn in 2D.

For instance, axis ()z in 3D occupies pixels from (0,0,0) (0,0,500) .
After the projection is done, new points are (0,0) (321,103) .

This is the reason why the axis ()z in 2D appears to be turned. And this is how the
sense of 3D is reached in 2D.

 37

7. Simulation implementation tutorial

7.1. Introduction

This tutorial wants to provide the reader only with the basic knowledge needed to
understand how this application is programmed and how it is run.
It means this tutorial is written either for users that simply want to work on this
application or for java programmers that want to have this applet as an example to
develop their own application based on the Simulation Template example.
Requirements
Basically, the following tools are needed:

 JDK from java installed in our computer.
 JRE 1.6.0 System Library to compile the code.
 An IDE to allow a quick java development and a project management (such as

Eclipse).

7.2. Getting started
First of all it is needed to import the whole program package into the Eclipse
environment, and run it from the class extending the JAVA applet class, which is the
Simulation Template class.
The following frame will appear onto the screen:

 Now let see what roles these elements play in the application:

1. The black lines is the electric wave and it is drawn from the following
equations:

 38

1 2

1 2

[0][] cos() cos() cos()sin()

[1][] sin()cos() sin()sin()
[2][]

z z

z z

x dataE i e K t z e K t z
y dataE i e K t z e K t z
z dataE i z i

2. In the same way, magnetic wave is drawn in red from the following equation:

[0][] 1sin() 2sin() cos() 2sin() 1sin() sin()

[1][] 1cos() 2cos() cos() 2cos() 1cos() sin()

[2][]

z

z

edataH i K K t z K K t z

edataH i K K t z K K t z

dataH i z i

 Observations:
1. The discrete 3D points for drawing the electric (E) and magnetic (H)

waves are computed in the Model class, stored in dataE and dataH
matrixes and transferred to the ViewNum01 class where the graphs are
drawn, after some further data processing. This data processing
consists in converting the units E and H into pixels and in projecting to
2D the points stored in dataE and dataH.

2. The user can change the scrollbar values, so the graph will be
repainted according to the new input values.

3. There are parameters dependencies between some scrollbars. If any of
angular frequency () , relative dielectricity ()rel , relative permeability

()rel or conductivity () scrollbars is changed, it affects to both the
attenuation () and the phase number () scrollbars.

4. It is possible to draw the E and H waves in two different ways by
choosing either the Curves or Arrays modes. It can also be displayed
only E wave, H wave or both of them at the same time.

3. The scrollbars allow the users to change interactively the parameters of the
equations used to draw the two waves on the frame.

The users can change the values either by scrolling the sliders up and down
with the mouse or by entering the numeric values in the text fields located at
the right side of the scrollbars.

Observations:

The scrollbar and the text field patterns are created in the ScrollBar class, but
they are added and located in the ControlUI class together with the JAVA
swing components (buttons, combo-boxes).

 39

There are going to be shortly described all the scrollbars used in
SimulationTemplate applet: Reset button: changes the current values of the
scrollbars to the default values, which are stored in the Model class.

1. Attenuation [/]Np m : the reduction in nepers of wave’s amplitude per
meter.

2. Phase number [/]rad m : The rotation rate in radians of the wave
every meter.

3. Angular frequency [/]rad s : How fast the wave is rotating.
4. Relative dielectricity rel : Materials in which electrical charges appear

at both ends are called dielectric substances. Relative dielectricity is
characteristic of every material.

5. Relative permeability rel : Is the degree of magnetization of a material
that responds linearly to an applied magnetic field. Relative permeability
is characteristic of every material.

6. Conductivity [/]S m : Is a property that allows electricity to flow
through a material, measured in Siemens (electric conductance unit)
per meter. Conductivity is characteristic of every material.

7. Real time flow[]ns : The time gone by since the simulation started.
8. Refresh time []ns : How many times a second the thread runs to

refresh the draw. The more the refresh time increases, the more the
thread ceases the execution (sleep method is called to stop running the
program for as much time as the value of refresh time).

9. Amplitude electric vector (Real component) [/]orE V m

: The
amplitude of the real component of the electric wave in time domain.

10.Amplitude electric vector (Imaginary component) [/]oiE V m

: The
amplitude of the imaginary component of the electric wave in time
domain.

11.Angle of electric vector (real component) []rad : The angle of

[/]orE V m

 on the base 1 ,1

12.Angle of electric vector (imaginary component) []rad : The angle of

[/]oiE V m

 on the base 1 ,1

13.Reset button: changes the current values of the scrollbars to the
default values, which are stored in the Model class.

14.Exit button: stops running the applet.

7.3. Other features and properties

 The Simulation Template uses “property files” in order to translate very easily
the language comments that appear in the applet. To change the current
language, open the util.conf archive and set the desired language.

 40

 There is available LaTeX writing for math equations, using HotEqn classes.
Enter the equation using LaTeX encoding on SimulationTemplate class, and
locate where desired the image created from LaTeX code. The image created
is on ViewNum01 class and can be located wherever within the ViewNum01
panel.

 The main structure of the program is based on Model-View-Controller, that
basically means:
 Model class computes all the mathematical equations needed to draw the

graphs.
 ViewUI class creates ViewNum01 (creates its JAVA panel and transfers its

size).
 ControlUI class adds all the AWT Components (buttons, scrollbars,..) and

listens the Model and the ScrollbarPanel classes.

7.4. Step by step instructions

In order to facilitate the programming of a new interactive simulation applet, the main
points to be followed by the programmer are going to be detailed underneath:

1. Create a separate copy of the Java project in Eclipse.

2. Build the new mathematical model equations in Model class, by means of
replacing the computed equations. New 3D points will be computed.

3. Since ViewNum01 class receives the new computed data from the Model

class, change the displayed waves in there. Notice there is a unit conversion
of E and H units into pixels, and a 3D to 2D projection of both the waves
points and the axis (units of axis are always in pixels, and their length is fixed
in 3D points on ViewNum01 array called graphPars).

4. To add new panels, containing new elements to be displayed on the applet

(i.e. a third graph), create and add them on viewUI class. After this is done, a
new class (i.e.) ViewNum02) can be added on the applet. It may be necessary
to resize the whole Frame in SimulationFrame class (where the ViewUI is
created and where the variables containing the sizes of the panel Views are
set).

5. In ControlUI add and locate the new buttons, text fields, labels and all the new

visual JAVA components desired. If a new ScrollBar wants to be set, add it in
ScrollBar array, which is already created and contains Objects from the
ScrollBarPanel class.

6. To change the language of the applet, copy and paste a

anylanguage.properties file and translate the sentences into the desired
language. After it is done, open the util.conf archive and change the current
language by this one:

 41

#languageFile=org/lor/simTemp/anylanguage.properties
The current language of the applet is the one that does not have the # symbol.
NOTE: the Unicode characters for Slovenian languages must be entered like
shown: \u0XXX. The list of correspondence between Unicode symbols and
characters is available at point [10].

7. To change or to add a mathematical equation written in LaTeX language on
ViewNum01 panel, add the LaTeX code on the equation variable in
SimulationTemplate class, which is waiting a string input as follows:
//equation=" ";
Every variable, (i.e. Greek letters) must be preceded by “\\” character).
To get to a new line down, enter “\\\\” in a row.
Go to ViewNum01 class and locate wherever it is wanted the new image
coming from the LaTeX string equation.

 42

8. Simulation results and evaluations

The result of this work is an interactive simulation allowing the users to check, in a
graphic way, the mathematical equations of LIH electromagnetic waves.

The fact of dealing with an interactive simulation, simplifies how to focus on the most
interesting things. For instance, if the user just wants to see how the attenuation

[/]nep m affects the wave's draw, it is possible to adjust the scrollbars and buttons
and to observe only the desired phenomena:

Figure 8.1 Best view for observing how [/]nep m attenuates the electric wave in
vectors style.

Another important and easily observed phenomenon is the relation between the E
and H waves in time domain. Although the phasors vectors 0H

 and 0E

 are always

perpendicular in complex domain, in time domain they are not perpendicular
anymore.

 43

Figure 8.2 (,)E z t

 and (,)H z t

 are not necessarily perpendicular to each other

 44

9. Conclusion and further work

The aim of this applet was to show to students a graphic example of a 3D TEM
electric and magnetic wave in time space. It was intended to be an interactive tool so
every student could change the equation parameters and check by himself how
these changes affected to the draw of the waves. Sometimes it is hard to understand
what the parameters of the equations mean. There is no better way to understand
them than observing a graphic example.

The previous target was successfully reached. Nevertheless, all programs can be
always improved. This applet is not an exception. Some open issues have already
been reviewed in chapter 3. Furthermore, some new ideas to improve this program
can come up to anybody at any time. For instance, it is used a thread to run
continuously the applet and to avoid holding the processor. The use of threads could
be avoided by using some programming tricks. In fact, it is certain that the code of
this applet could be more efficient, but so far no processor speed issues have
appeared on this SimulationTemplate version.

The first version of this applet was programmed to draw a 2D sine. Using the same
base structure (MVC concept), a draw of electric and magnetic 3D waves was
developed. To achieve this purpose was needed to work basically on:

 The mathematical model equations.
 The draw of the waves and axes on the panel.

Some other features were added to the applet. For instance, properties files or Hot
Equations.

The code of this applet has been widely commented and explained. It can be a
perfect point of departure for whoever is interested in simulating interactive
mathematical models.

It is important to emphasize that the basic MVC structure is valid for a countless
number of simulations. Therefore the programmer can take advantage of it and use
the MVC concept as a new applet template.

The parameter dependencies feature enhances the applet’s importance. It has been
programmed a structure of JAVA listeners allowing the interconnection of parameters
on sliders. This applet is meant to be a reliable example of real electric and magnetic
waves. To get it, it is necessary to apply parameter dependencies. For example, if
the slider of dielectricity (of a given material) changes, it must affect the wave number
() and the attenuation () of the waves. This is a specific and very interesting
feature available in this applet.

 45

Bibliography

[1] Article Java Advantages & Disadvantages. Arizona community [online]. [Visited 9th

January 2009] Available in:

<http://arizonacommunity.com/articles/java_32001.shtml>

[2] Sun Microsystems. Code samples and Applets [online]. [Visited 15th January

2009]. Available in: <http://java.sun.com/applets/>

[3] Sun Microsystems. Java SE Application with MVC [online]. [Visited 12th January
2009]. Available in: < http://java.sun.com/developer/technicalArticles/javase/mvc/>

[4] WENTWORTH, STUART M. (2005). Fundamentals of electromagnetics with
engineering applications. USA: John Wiley & Sons, 2005.

[5] The Jakarta Project. Properties files. [online]. [Visited 23rd January 2009].
Available in: <http://commons.apache.org/configuration/howto_filebased.html>

[6] The Jakarta Project. The Java API Documentation Generator. [online]. [Visited
23rd January 2009]. Available in:
<http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javadoc.html#synopsis>

[7] HotEqn. LaTeX writing Tutorial. [online]. [Visited 22nd January 2009]. Available at:

<http://www.atp.ruhr-uni-bochum.de/VCLab/software/HotEqn/HotEqn.html>

[8] Microwave encyclopedia. Propagation, attenuation and phase constants [online].
[Visited 25th January 2009]. Available at:
<http://www.microwaves101.com/encyclopedia/propagation.cfm>

[9] Wave polarization. Example of elliptical polarization [online]. [Visited 25th
January 2009]. Available at:
<http://www.ece.byu.edu/em/embook/ch7/demo7.4.html>

[10] Unicode correspondences. Slovenian characters [Online].[Visited 14th February
2009]. Available at: <http://www.geocities.com/click2speak/unicode/chars_sl.html>

