
The Mærsk Mc-Kinney Møller Institute Facultat de Informàtica de Barcelona
University of Southern Denmark Universitat Politècnica de Catalunya

Odense, Denmark Barcelona, Spain

Master's Thesis – Projecte Final de Carrera

Support Vector Machines
Similarity functions to work with heterogeneous data

and classifying documents

Juan Manuel Parrilla Gutiérrez

Supervisor:
John Hallam (SDU)

Co director: Nasrullah Memon (SDU)
Co director: Enrique Romero Merino (FIB-UPC)

Project Period: Spring 2010

Juan Manuel Parrilla Gutiérrez (280485) – jupar09@student.sdu.dk

Preface

This thesis document was done in Denmark although I am an student from FIB-UPC
Spain, as part of the program Erasmus. It will be evaluated in Denmark and the credits
will be approved in Spain. There this thesis is called “Final Project” and once it is passed
I will have completed “Informatics Engineering”, 5 years studies which are considered to
be like bachelor + master. That is why this thesis in Denmark is considered a Master's
Thesis although I am not a Master student.

This document was done using “OpenOffice.org” because I lack the minimum knowledge
to do it in Latex. I promise next time I will have to write a technical document I will use
Latex. English is not my native language that is why I tried to use simple sentences and
expressions.

This document contains three major chapters:

The first one is the Introduction, there I explain all I learned about SVM and how we will
apply our idea.

The second one, called “middle chapter” is about using a Data Mining tool and a Natural
Language Processing tool to classify documents.

The third one, called “last chapter” is about integrating the ideas described in the
introduction in a Data Mining tool.

Each chapter contains its own conclusions, however there is a final chapter where I talk
about what I did manage to finish and what I did not.

Acknowledgments

To Enrique Romero. This project is his idea. He waited for me during 3 years until I
arrived to my Final Project. He let me do this project abroad and it was not a problem for
him if he could not be a supervisor. He taught me all I know about SVM and while I was
doing this project he answered to several e-mails. We discussed everything and he
supervised every step I did.

To John Hallam. He let me do my project here and he let me work in one of his
computers at MMMI offices.

To Soeren Sonnenburg. He answered all my questions about Shogun, without him I
would be stuck in the very beginning. He is a model about how to maintain an open
source project.

To Michael Witten. He helped me developing C++ and fixed my biggest bug.

To the #C++ and #Python channel in IRC's Freenode. They helped me with both
languages.

Abstract

The objective of Data Mining (DM) is to classify information from the real world. That
kind of information is commonly heterogeneous data: information that needs different
kind of data to be represented. How to deal with heterogeneous data has been usually
something DM lacks about because DM is not deeply used with real world problems.
Different solutions has been shown and our objective is to show a new one using
similarities and Support Vector Machines (SVM). How to use similarities instead of
kernels in SVM and later how to combine similarities to work with heterogeneous data.
The idea is that any type of data will have a similarity related and then all this similarities
will be combined to output a result. What makes this idea powerful is the way we can
combine similarities, it can be practically anything while other methods to work with
heterogeneous data only do linear combinations.

Our Goals

First of all understand how SVM works and what does it means to use similarities instead
of Kernels. Later implement in a SVM library what explained before and show it working
with an example. We will work with documents so it would be also required to do some
NLP, learn about a NLP is another of my goals.

Another of our goals is to use OO techniques and get a good design. Make our framework
easy to be modified by anybody. Make an easy implementation. The objective is to
extend the library used not to fork it.

Index

1.Motivation ... 1
2. Introduction ... 2
 2.1 Support Vector Machines ... 3
 2.2 Kernel ... 6
 2.3 Soft Margin ... 8
 2.4 Similarity ... 9
3. Classifying documents ... 12
 3.1 Set up the framework ... 13
 3.2 From documents to real numbers ... 17
 3.3 Working with “Movie Reviews” corpus ... 17
 3.3.1 1st feature selection: frequency thresholding ... 18
 3.3.2 Removing non-alphanumeric and stopwords ... 21
 3.3.3 Normalizing words ... 23
 3.3.4 Feature selection: information gain ... 24
 3.3.5 How to represent a document ... 27
 3.3.6 Collecting new data ... 28
 3.4 Working with the “Brown Corpus” ... 30
 3.4.1 Improving TFIDF ... 31
 3.5 Chats ... 34
 3.6 More about documents representation ... 34
 3.7 Summary ... 35
4. Making texts similar ... 38
 4.1 Can we use any similarity with SVM? ... 40
 4.2 Why using a similarity instead of a kernel? ... 42
 4.3 What is heterogeneous data? ... 42
 4.4 Our Solution ... 44
 4.5 Other (new) solution ... 46
 4.6 Implementation ... 47
 4.6.1 Implementing similarities ... 47
 4.6.2 Similarities or kernels ... 53
 4.6.3 Making it work with Python ... 53
 4.6.4 Combining similarities ... 55
 4.6.5 Finally heterogeneous data ... 57
 4.6.6 Some extra work was required ... 60
 4.6.7 Complete design ... 61
 4.7 Comparing in with MKL ... 62
5. Conclusion ... 63
6. Further work ... 64
7. Bibliography ... 65
8. Our contribution ... 67
A. Appendix ... 68

Support Vector Machines and similarities to work with heterogeneous data

1. Motivation

It all started 3 or 4 years ago. At my home university (FIB – UPC Spain) with the old
degree (the one I am finishing now, nowadays they are changing everything) there were
four courses that were projects. Most of the courses had a project related and we also had
to do what is called “final project” (now thesis), but there were four courses that were just
a project, a big one actually, it stole part of our lives: one about the net, one about
operative systems (do one), one about software engineering and one about programming.
At the same time the students were supposed to do other 3 o 4 courses. The only useful
thing I can see about that was make us work under big pressure for lots of hours in a row.
It is common for a computer guy to work around 10-12 hours everyday, 6 days a week (or
more) in Spain, although the law of courses says that the maximum is 40. So we were
kind of prepared for the “real world”.

The important course in this story is the one called “Programming project”. It is the first
big project you usually do. The objective of that course is to make you write a lot of code,
dozens of classes, write as mad. Then you go to class after one week working on it
everyday several hours and the teacher makes you change everything. You also lack a lot
of information, usually when doing ProP no one has done any software engineering
course and they require it, they also require AI knowledge while at that moment you don't
have any idea about it. That project is done in groups of 3 people and there are 3 projects
that must be merged in one application, in total 9 people. It can be seen as a “Big
Brother” experiment.

I was very lucky about the topic I did. Usually the projects are about creating a system to
control an airport or something like that. I was very lucky because I had to do a Neural
Net, from zero. I had to learn how they worked and implement one, we used Back
Propagation. At that point I never did anything related with DM or AI. I really enjoyed
that and I searched for better ways to improve my Neural Net and I tried to implement
RProp and QuickProp. Sadly I did not manage to get them working (it was enough with
Back Propagation to pass it). So my teacher pointed me to Enrique Romero to try to fix it.

We met on summer time when the classes were done. It was for fun. This is when he
offered me to do my “final project” about Neural Nets, then as explained in the last big
chapter that idea was moved to SVM. We met more or less and he taught me most I know
about DM, NN and SVM. It was supposed that we were going to do the project together
but I decided to do it abroad and Enrique let me do his project in another university.
Luckily it was OK for John Hallam to do that project about SVM.

That is why I am doing this project. That is when probably my love for AI and DM
started although with the years passing by and getting a better perspective I see that I like
the fields were I had good teachers.

That is my personal motivation. This is the last chapter I am writing and I explained
several times (in the introduction and in the last big chapter) the real motivation so I feel
like I am going to make lost time to the reader. Briefly, the objective is to show a better
way to work in Data Mining with heterogeneous data.

1

Support Vector Machines and similarities to work with heterogeneous data

2. Introduction

Support Vector Machines (SVM) [1] are an “state of the art” Data Mining tool for
different reasons. SVM usually offer better results than other methods, they have no
problem with local minima (the big issue with Neural Nets), SVM don't require to specify
many parameters as other methods do, usually the capacity (explained later) and the
Kernel to use (and any parameter required by the kernel). SVM can work very easily with
thousands of different features, they are usually very fast and finally, what makes a big
difference is that SVM uses a Kernel function. I will go a bit deeper later, but what makes
a Kernel a very powerful idea is that we only have to think about the kind of data we are
working with.

Provided we are working with a good Kernel suitable for the problem much of the
preprocess usually done to the data is not required and what is more important is that the
Kernel will let us work with the data in a “near raw state”. We can focus on how to
classify the data in the same way we would do in real life. We can abstract ourselves from
all the mathematic and statistics problems usually one have to deal when working on
Data Mining and just concentrate on the data itself.

If we are experts about what we are working on, finding a function to classify it should be
easy, and once we have that function construct a Kernel is straightforward (usually just
apply it) and the problem is solved.

This thesis is about SVM and Kernels. At first I will work with a framework and classify
documents doing all the preprocess outside the SVM and using standards Kernels like
Gaussian or Chi2. In that stage I will focus more on the problem of classifying texts,
extracting features, using different similarity function between documents and NLP. The
objective is also to learn to work with Shogun SVM; the framework I will be using
through all the thesis, first as an end user, later as a developer, and learn how to integrate
a NLP (NLTK) library with a DM (Shogun) library. The language used will be Python.

The second stage is about exploring the concept of similarity and Kernel which I will
explain later. The basic idea is, if a Kernel is computing how similar are two training
points (usually done by a dot product being a training point a vector in some space), why
not use a similarity function instead?

The big point about this simple idea is that it will let us work with heterogeneous data in
a very easy and direct way without much preprocess while nowadays when working with
heterogeneous data it has to be converted to (usually) real numbers before starting the
classifying method.

The philosophy and “motto” about this thesis related with Data Mining can be defined in:
– Solve the problem as you would solve it if working with real world entities.
– The data itself is enough. Think about the data as it is, not about what

mathematically/statistically it is.
– There is no need to make the problem transparent to the end user.

We think that since we solve real problem in our real world in a daily basis it should be

2

Support Vector Machines and similarities to work with heterogeneous data

easier if Data Mining problems can be solved in the same way. If we know how to
classify something in real world the same solution must be valid in a DM context.

We provide a framework (“similarity” concept, explained later) and we show the results
classifying documents.

2.1 Support Vector Machines

What follows is not an introduction about SVM. It is not my intention to go deep in
theory or cover all the details, I will only cover in a quick way the key points about SVM
that I may use later. Part of this thesis is about learning SVM (around three weeks).
Usually thesis reports offer results about experiments, I will offer what I have learned as a
result here. For a good introduction about SVM the common checkpoints are [2] [3] [4]
[5]. What follows is learned from those texts.

If we have a two-class dataset what an SVM will do is finding an hyperplane that will
divide the space where the data is. All the points at one side of the hyperplane will belong
to one class and all the points at the other side will belong to the other class (multi class
problems are usually done one vs all way, it can also solve multi-label problems [6]).
That is how SVM classifies.

The equation of an hyperplane is defined as 〈w⋅x 〉b=0

Given this situation we can define two margins: functional and geometric. The functional
margin is the value we obtain using in the hyperplane equation a training point where x is
multiplied by his label, the functional margin of a (x,y) point is y⋅〈w⋅x 〉b where
the value of y is -1 or +1. The geometric margin is the euclidean distance from any point
to the hyperplane.

The objective of SVM is to find the critical points in each class set. The critical points
will be those that are very near to the hyperplane so given the set of critical points and
any other other point we can know to which class the other point belongs comparing it to
the critical points.

The critical points are a boundary of the class set. We will focus on them and we will fix
the functional margin to 1 or -1 (depending on the class) when applied to a critical point.
Critical points are called Support Vectors. Support Vectors are all the information we will
need to classify new points. All the other points will not be considered and that means
that given a train set with thousands of entries we will only work with a very little set.

The critical points of each class are defining an hyperplane too, so we have two more
hyperplanes with functional margin 1 and -1 (the equations of the new hyperplanes will
be 〈w⋅x+〉b−1=0 and 〈w⋅x- 〉b1=0 , the sign over the x marks the class).
There are different generalization bounds, however the most common is to reduce the
problem to minimizing the norm of the weight vector (w), by minimizing it what we are
achieving is maximizing the geometric margin (Euclidean distance) the most we can
given the functional margins of 1 and -1. So now we have an equation (the hyperplane)
and a condition (minimizing w) and that defines the problem.

3

Support Vector Machines and similarities to work with heterogeneous data

The basic formulation of the problem is what follows:

Given a linearly separable training sample S=x1, y1 ...xl , yl where “l” is the size
of the training set, x i , yi  represents an entry in the training set, where x is the vector
that represents that entry and y is its class (as suggested before when working with SVM
x can be anything, a vector of reals, an image,...).

The formulation of the problem is:

minimisew ,b 〈w⋅w 〉
subject to yi 〈w⋅xi〉b≥1,

i=1,... ,l

What follows now is a sequence of mathematic tricks to make that formulation as easiest
to calculate as possible, the objective is to transform the problem to a dual formulation
where the solution can be found as a linear combination of the training points.

We mix the objective and the condition in one equation using Lagrangian multipliers, in
this way we obtain the primal form:

Lw ,b ,=1
2
〈w⋅w 〉−∑

i=1

l

i [yi 〈w⋅x i〉b−1]

 are the Lagrange multipliers. If we now differentiate with respect to w and b:
∂ Lw ,b ,

∂w
 w=∑

i=1

l

yii xi

∂ Lw ,b ,
∂b

 ∑
i=1

l

yii=0

And resubstituting the relations obtained into the primal form, we obtain the dual form

maximise W =∑
i=1

l

i−
1
2 ∑i , j=1

l

yi y ji j 〈 xi⋅x j 〉

subject to ∑
i=1

l

y ii=0

i≥0, i=1,. .. ,l

The most important thing about this formulation is that now the solution can be described
as a linear combination of the training points. A training point is represented as a vector
and we are performing an inner product between them; the biggest is the result of the
inner product, the most both vectors are pointing to a similar direction, the most similar
that two vectors (training points) are.

Now we use one of the key concepts used in SVM, the KKT conditions, the conditions
state that the optimal solutions * ,w* ,b* must satisfy:

4

Support Vector Machines and similarities to work with heterogeneous data

i
* [yi 〈w

⋅xi 〉b−1]=0, i=1,. .. , l

This means that or * is 0 or [yi 〈w
⋅xi 〉b−1] is 0 and we know that we forced

what we called critical points to have a margin of 1 or -1 (the classes will be defined as 1
or -1), so we know that [yi 〈w

⋅xi 〉b−1] will be zero in that case and then *

will be non-zero. All other points will have [yi 〈w
⋅xi 〉b−1] different from zero so

* will be zero. And that is how we find the critical points called support vectors.
Searching for that points with an * different from zero. And that is what SVM is
about. At first I told that SVM search for an hyperplane that divides the data in classes.

Actually what SVM does is to search for that points called support vectors because that
points are defining an hyperplane themselves, and that hyperplanes would divide the data
in classes. Each hyperplane would divide the data in two classes: the one defined by the
hyperplane and the rest. This is why at the beginning I said that multi-class problems are
usually solved in a one vs all way.

Since the calculation of  is the most important in SVM and they came from a hard
mathematic way I like to think about them in a simpler fashion.

The Perceptron Algorithm is a big loop that starts with random values as weights (or
zero) and tries to classify the data. For each iteration misclassified training examples are
added or subtracted from the weight vector until no mistakes are made or we arrive to an
small error we think it is enough to stop the loop. Inside the loop we would have:

if y i〈w⋅xi 〉bk ≤0 then
wk1w k yi xi

If we start with the weight being zero the final weight will be a combination of the
training points. This value of w is the same we get when differentiating with respect from
w in the primal form. Looking at the dual form it is very similar to what we get in the
function to maximize.

w=∑
i=1

l

i yi xi

And here we have  again, now it means the number of misclassification xi has
caused, inside the loop we would have:

if y i∑
j=1

l

i y j 〈x j⋅xi 〉b≤0 then

ii1

The hardest points to classify will cause more misclassifications so they will have a
bigger  value, and since what we are searching for are the critical points for each
class, we are searching for the points with a bigger  . In SVM the idea is similar,
though the search is easier because if a point has an  different from zero: it is a
critical point.

5

Support Vector Machines and similarities to work with heterogeneous data

2.2 Kernel

When working with SVM we are usually dealing with spaces with a very high
dimensionality. For example in the tests I did about classifying documents and which
results I will show later, I worked with spaces with around 1000 and 3000 dimensions.
The objective of SVM is to find an hyperplane that separates the data in spaces we may
don't know how to do it, or what it is worse, we may know that the data is not linear
separable in the actual space (called input space).

Kernel is a tool that helps us in the sense that it projects the data from an input space to a
feature space where we know that the data is linear separable (or where we know how to
separate the data). What we do is using a function to transform the data from the input
space to the feature space. We map the input space X to a new space, F={x∣x∈X }
, so returning to the dual form we can rewrite it as:

W =∑
i=1

l

i−
1
2 ∑i , j=1

l

yi y ji j 〈xi ⋅x j〉

Suppose that we want to compute the similarity between documents, something that will
be shown later. At first we have them in raw form, a sequence of symbols, we can't do the
inner product between them and use the result as a similarity value. We are working in an
space where we don't know how to separate the data (and maybe that space doesn't have
an inner product).

What we can do is to define a new space, each dimension of that space will be represent a
word that appears in one of the documents (or more) so it will have as many dimensions
as different words. We will define each document as a vector in that space, where each

positioni of the vector represents the dimensioni , that position will be 1 if the
document contains that word, 0 otherwise.

If we have 3 documents as follows:

Document1 = {“car”,”bike”,”plane”}
Document2 = {“plane”,”train”,”car”}
Document3 = {“train”,”bike”,”boat”}

We have 5 different words and we will define a 5D space where dimension1 will
represent “car”, dimension2 will represent “bike”, dimension3 will represent
“plane”, dimension4 will represent “train” and dimension5 will represent “boat”.

Now we project each document from the input space to the feature space:

Document1 = {1,1,1,0,0}
Document2 = {1,0,1,1,0}
Document3 = {0,1,0,1,1}

What we have done in all this process if to define a function  that projects from an

6

Support Vector Machines and similarities to work with heterogeneous data

input space to a feature space. From documents in a raw format which we don't know if
they are separable (at least in a easy way) to a new representation in a higher dimensional
space (each document went from 3 entries to 5, although is not always necessary to user a
higher dimensional space, it uses to do the separation easier) where we can know in a
very easy way if they are separable or not.

If we follow what appears in the dual representation and apply the inner product, we get:

document1⋅document2=2
document1⋅document3=1
document2⋅document3=1

This means that Document1 and Document2 are the most similar and that the data
is easily separable. This demonstration may seem trivial, but this idea can be powered as
much as we want, we can define more complex  to project the input documents or
given any kind of data and a way to represent it, we can use it as a  . For example,
when working with a set of images, we can focus on the edges and contrasts of colors and
create a new space with that information.

The process is being done in two steps, project the data (use ), calculate the inner
product (the “similarity”) but if we know that the inner product is also available in the
feature space we can mix both steps in one to build a non-linear learning machine. We
call this mix a Kernel.

K x , z=〈x⋅ z〉

The dual formula is rewritten as (and what follows may be called the basic proposition of
the SVM problem):

maximise W =∑
i=1

l

i−
1
2 ∑i , j=1

l

yi y ji j K xi , x j

subject to ∑
i=1

l

y ii=0

i≥0, i=1,. .. ,l

I can't avoid talking about Mercer's Condition now, however I will not go any deep with
it. Mercer's Condition defines when this process may be done and when not. If the Kernel
we are getting is semi definite positive it will work, otherwise it may work. It may not be
always possible to check if our Kernel satisfies Mercer's Conditions.

In the first stage I will only use Kernels to compute the inner product, I will use different
kinds of Kernels, like Gaussian, Chi2, Polynominal,... but all the projection from the
input space to the feature space will be done outside the Kernel. I will send to the kernel a
list of real numbers so the real power of kernels will not be used.

Sadly that is what is happening in most of the cases since it is easier to do the projection
outside instead of defining a new Kernel (they are use to be considered something

7

Support Vector Machines and similarities to work with heterogeneous data

transparent to the user that classifies the data), but once a Kernel is constructed it is
keeping a concept itself, not only a formula. It has become a tool and it can be reused
easier that repeating all the projection each time outside the kernel.

Also, we can trace what is happening, we can see the data flowing, we can determine
which ones are the support vectors and why (doing all the projection outside we only get
vectors with real numbers as output). We can consider SVM something with can work
with, not a transparent tool that offers good results.

2.3 Soft Margin

Until now I have talked about drawing a perfect line that perfectly separates the data, if it
is not possible or we don't know if it is separable we can use a Kernel that will do it
perfect anyway. That's not the case in real world scenarios. Although the data might be
easy to separate with a line we may get points out of its class. With everything talked
before that points would screw our problem. That is why soft margins were created, to let
some points be out of class. The key here is a variable called C. Since we will mostly
work with real world data the most used SVM libraries require to specify always a value
for C.

The basic idea about C is, the bigger C the harder margin is, while the lower C the softer
margin is. Until now we have not worked with C so the margin was very hard. Usually
when getting similar results it is better to choose a lower C, it prevents overfitting, but
that totally depends on the data.

When the current margin is violated by a training point we have to consider if that
training point is out of class of it is defining a new margin. We call the distance from the
current margin to the actual training point “slack”, represented by  .We can rewrite
the first formulation of the problem to let the margin be violated using slack variables, we
are relaxing the constraints only when necessary, we are introducing a new cost:

minimisew ,b 〈w⋅w 〉
subject to yi 〈w⋅xi 〉b≥1−i ,

i≥0, i=1,... ,l

When we have an error it means that the corresponding slack variable exceeds the unity,

so ∑
i

i is an upper bound on the number of training errors. We can use this idea an

assign an extra cost for errors in the objective function to be minimized, C means how big
the penalization per error will be.

minimisew ,b 〈w⋅w 〉C∑
i=1

l

2

subject to yi 〈w⋅xi 〉b≥1−i ,
i≥0, i=1,... ,l

Now follows some mathematic tricks to represent it in the dual form but this brief
introduction should be enough to know how to play with the C parameter.

8

Support Vector Machines and similarities to work with heterogeneous data

2.4 Similarity

The more far we are from mathematics and statistics and the more near we are to our
data, the best results we will obtain. Usually Data Mining doesn't care about the kind of
data, it has a very big arsenal of tools to extract all the info it cans. Usually Data Mining
abstracts the problem to formulas, SVM let us to abstract the problem to the data and that
is one of the reasons it is nowadays considered state of the art. If we are an expert in the
problem (the word expert is widely used in Artificial Intelligence, and Data Mining can
be probably considered part of it) we will get very good results and maybe most
important, we will know why and in case of problems it will be easier to fix them. In the
tests that will follow this introduction to SVM I didn't do much statistical analysis, I
played with the words as would be done in real world.

As said before a Kernel does two steps, computes the projection to the feature space and
calculates the inner product; the inner product seeks how much two vectors are pointing
to the same direction, the most they do the more similar they are, why not working with a
similarity function directly?

The objective of Data Mining is to classify real world problems and for doing that there is
a “problem”: most real world problems contains heterogeneous data. Heterogeneous data
is defined as a data set that contains different types of data, and all of them are required to
get results. For example, if we are trying to guess what's wrong with a medical patient we
will have to work with different data to predict the sickness, like a blood analysis, x-rays
images, blood pressure... and only using all the information we can from all sources we
can get a good output.

Another example is a robot moving in a map, the robot may have sensors to receive
information from the world and analyzing that information predict (classify or use
regression) the next movement. The information the robot is receiving can be an image of
what the robot “sees”, a sound wave about what the robot “hears”, daytime to predict the
light of the scene and interpret the image, wind velocity to interpret the sound wave to
remove the noise, the path of other robots moving around, and so on.

We have different types of data and we have to get an output. Until now we have talked
about one kind of data and one function to project it. Nowadays the way this problem is
solved in SVM consists in a combination of Kernels, one Kernel for each kind of data,
this means that we are adding a new parameter to estimate the weight assigned to each
kernel (now usually called sub-kernel and using ki x , y  instead of K x , y  [7].

The new Kernel, called combined Kernel, is calculated as:

k combinedx , y =∑
m=1

M

m kmx , y 

Where  is the new parameter we have to estimate. Adding this new parameter means
that we have to modify our SVM algorithm, the new algorithm is called MKL (from
Multiple Kernel Learning), it is a variation of the algorithm explained before, it is deeply
explained in [7].

9

Support Vector Machines and similarities to work with heterogeneous data

The idea of combining kernels lets us to work with heterogeneous data, but it is not using
the information the data has itself. It is in a simple way, combining data and finding
critical features.

Let's return to the examples I talked before, we have a medical patient with an x-ray
image and a blood analysis, we want to know if the patient is sick or not. MKL will
combine that two types of data and find relevant features, like “focus on this part of the
image and these parameters of the blood analysis to tell if the patient is sick or not, the
image is three times more important”.

What we suggest is a similarity function that is a simpler and more powerful way to
combine heterogeneous data. Let's suppose that we have two training points, each one
consisting in a x-ray image and a blood analysis. We want to know how similar they are,
the objective of the problem is knowing which patients are sick and which aren't, so as
always we can find the critical patients and test new ones against them.

Our similarity function can perform actions like: “if both entries have a similar value in
some parameters about the blood analysis, check some part of the x-ray image”, “if the
value of one training point the parameter x at blood analysis is above some threshold, but
the other training point has that parameter under the threshold, check for other
parameter”, “if some part of the x-ray is similar, don't check the blood analysis”.

Another example in criminal context is to classify faces with images and descriptions.
Usually a witness is required to describe the face of a criminal, the witness would usually
use words, the policeman would try to get an sketch. This information will be later
checked against a database to search for suspect people. Suppose we have both types of
data in our system. The system can “read” the description and focus on different parts in
the pictures. If the description talks about hair the system would focus on the top part, if it
talks about the nose, the system will check the middle part. If it doesn't talk about the
mouth, the system would ignore it. If two pictures have similar eyes we can check the text
descriptions and so on...

Also, another interesting side-effect is that if we lack some information we can still work
and solve the problem (although the result will probably not be the best, we can still get a
result). For example in a crime scene were there were not witnesses but we get a picture
by a hidden camera we can still classify it. Missing values are more frequent in medical
contexts: in emergencies doctors must take decisions with very basic information. We can
define our similarity function to work when all the information is applied and we can also
define it to work when some information is lacking, it is not just redo the linear
combination, it can be a totally different way to solve it.

Provide we can compute a similarity function for each kind of data we can merge them in
one function. What we may need is the advice from an expert. In the above scenario we
will need a doctor to help us. We can ask the doctor, with an x-ray image and a blood
analysis how do you know if a patient is sick or not? The doctor will explain to us in what
he focuses or what he searches for, and is that kind of procedures what we will use in our
similarity function.

10

Support Vector Machines and similarities to work with heterogeneous data

If we don't have an expert we can combine the similarity functions in the same way MKL
combines kernels. A kernel is a matrix so we can construct a set of matrices with the
results from the similarity functions, one matrix for each similarity, give this information
to MKL and it will find the best way to combine them.

Given all the SVM basic theory the only change we need to do is using a similarity
function instead of a Kernel: each time we found K(x,y) replace it with S(x,y). And if we
are lazy and want to still use the SVM libs already working, since a Kernel is a matrix we
can construct a matrix filling it with the similarity values between all the pairs of training
points. Use this matrix as a “Kernel” with our SVM algorithm and everything should
work, some changes may be needed because the matrix should be semi definite positive,
but it may work still.

Why using SVM and similarities? Because SVM are using in their calculation a concept
very “similar” and because a similarity function is not necessary differentiable, and this
means for example that we cannot use this idea in Neural Nets.

Working with similarity functions has another good side-effect: for some kind of data we
can calculate how similar are n elements while kernels always compute it in pairs. As
example, given 3 sequences of DNA we can say how similar they are by finding the
common ancestor and counting the average number of changes from the initial sequence
to the ancestor. That can be extended to n sequences. This is something that will not be
explored in this thesis, but it would be nice to work with it because it can boost the
execution of SVM.

11

Support Vector Machines and similarities to work with heterogeneous data

3. Classifying documents

The objective in the introduction was about understanding how SVM works, the theory
beyond them. The objective now is to make them work. We will use a library called
Shogun [7], that library has several data mining tools; we will focus on classifiers,
specially SVM. That library, among other feature types, wants to receive lists of real
numbers with their labels as input, “anything” converted to real numbers would be
classified by Shogun.

Since in software development one has to explain why some tools were chosen, we will
also explain why we chose Shogun:

– Shogun is an alive project (compared to most of the others Data Mining projects), it is
continually being updated1.

– Shogun covers everything about SVM, it is in C++, a quick look at Shogun's code is
enough to see that it is high quality done by expert people.

– Shogun's authors are top people in SVM nowadays, they are part of the MKL
development.

– The community is alive, the authors are easy to contact and they provide quick help.
– Shogun is free software, they use a GPL v3 license. The code is high quality and this

also means that is very easy to add new features (what we will do in the next chapter).
– The documentation is very good with dozens of examples, each class is very well

explained, all the code is well documented (more than 80K lines). Develop to Shogun
is easy.

– It is in the Debian repositories. That means an instant installation.

We will work with documents; the documents will be in a raw “machine readable” state,
by that we mean that documents will be in what is known as “txt”, each byte will contain
a character in (probably) ASCII format. That means that we will not cover the part where
documents are converted (or parsed) from PDF, HTML, DOC,... although there are easy
ways to do it and the Natural Language Processing (NLP) tool we will use support many
of them.

To process the documents we will use a library called NLTK, there are lots of NLP
libraries, why we chose NLTK?

– It is implemented in Python, Python is probably with Perl the best programming
language to work with documents.

– Shogun works with Python, so if the NLP also works with Python everything will be
easier.

– We found that the NLTK tutorial is very good and straightforward and they also have
a book to cover it. [8]

– After a quick review, we found that NLTK did everything we need and also provide
us with tools we didn't know before.

– The handicap is that Python is slower than, for example, C++, but the code is so easy
that it saved by far in coding time all the time c++ in running time could win. Since
Python is an interpret language the production cycle is faster.

1 Last update at the moment of writing this is 31/05

12

Support Vector Machines and similarities to work with heterogeneous data

There were some discussions about which NLP tool choose; there were no discussions
with Shogun, it is clearly by far the best tool available.

The other thing to be chosen was the language. Since Shogun is recommended to be used
with Python (as an end user) and Python is a very good language to work with text this
was also an easy pick.

So the objective now is to provide a framework to classify text from raw format with the
tools described (that will be described deeper soon).

My personal objectives were:
– Learn Python [16]
– Learn basic about NLP
– Learn about feature processing
– Learn to use NLTK
– Learn how to use SVM, understand the different kernels, understand how to

practically use SVM.
– Learn to use Shogun

The hardest programming part was how to use the output from NLTK as input to Shogun
since both libraries are using different conventions. We will not explain much about the
programming process in this part (it will be the main part in the next chapter), but as an
anecdote and where we lost most of the time here was realizing that the output from
NLTK (a matrix of results) has to be transposed to be used with Shogun; usually the
training points are described as rows, not columns.

The work in this part was mostly about NLP not about SVM itself; it was more about how
to extract the information from a text, how to represent it, how to define a feature, how to
improve the results, how to make it faster. The work with SVM was more about playing
with the parameters, trying different Kernels, understand how the few parameters impact
on the results, realize how complexity affects the runtime, see how different feature
processing provide different results. Study the classical dilemma “time vs accuracy”.

The whole process starts dealing with documents and as said it is also the main topic
here; we will start with it.

3.1 Set up the framework

The first thing needed to work with documents are... documents. NLTK provides a good
set of corpus to work with. We worked with three different corpuss: movie reviews (2
class), Brown corpus (5 class), chats conversations (2 class).

Most of the work will be done with the movie reviews. This corpus is provided by NLTK;
NLTK provides 2000 movie reviews, 1000 are positive and 1000 are negative, the
objective is to learn them and predict new ones. We chose this as the main corpus because
predicting movie reviews is hard (other corpus offered a 99% accuracy out of the box,
without any work, just throwing it to Shogun), while movie reviews offered around an

13

Support Vector Machines and similarities to work with heterogeneous data

75% of accuracy out of the box; so it is a good set to try different techniques. Also,
extend the corpus with other movie reviews grabbed from the net is easy.

Brown corpus is only used to check how SVM works with multi label sets. It is also
totally provided by NLTK.

Chats conversations are used because here corpus from NLTK and corpus picked from
Internet will be used. NLTK has some chats conversations about sexual predators, so we
searched for “normal” chat conversations and showed how SVM can be used in a
criminal scenario.

We used mainly corpus provided by NLTK because they are well-prepared to work with
and classify and by saying that it is prepared to be classified we don't mean that it is
easier, the opposite indeed. When working in Data Mining one of the big issues to deal
with is finding a good set to classify; most of the sets we can create by ourselves are very
easy. For example we tried to create a corpus about terrorism, we gathered a lot of
documents about terrorists (news, FBI entries,...) and then we used other criminal related
news to compare it, that news were chosen from the Reuters corpus. It was very easy to
classify, without any processing we get around 99.99% accuracy.

The big and interesting real work with Data Mining is collecting useful information. In
the terrorist case, a nice set would be to compare Islamic terrorism with Spanish
terrorism, or terrorists from Iraq compared to terrorists from Afghanistan. In a more wide
criminal scenario a good set to work would be, for example, compare sexual chat
conversations with illegal sexual chat conversations. Talking about sex is legal (in most
countries), illegal chatting would be when an under 18 child is part of the conversation.
Would a machine be able to classify if one of the interprets is above 18 and the other
under 18? That would be a good problem but we don't have access to this kind of
information. The initial objective for this thesis was to classify criminal data but then we
found that we were unable to use that kind of information so we had to move from sexual
predators to movie reviewers.

The good point about movie reviews is that it is easy to find the documents, it is easy to
label them, it is not easy for computers to classify it.

All the different tests that follows are based on the movie reviews corpus. We will try to
find the best processing and the best SVM (best capacity, best kernels, best parameters).
Since between NLP and SVM the number of parameters and decisions are very big we
will fix the SVM part, we will only work with a Gaussian Kernel (which is probably the
most used and works OK for most problems) in most of the tests, when nothing is said
about the SVM we are using a Gaussian Kernel.

The other classifying method to compare the results with is Naïve Bayes because it comes
out of the box with NLTK. Our objective is not to do a deep analysis about different ways
to classify documents, there are already better papers about this that what we can do [9].

Nowadays there are two implementations of the SVM algorithm (we mean the most
used). One of them is as said SVMlight by Joachims[10], the other is libSVM [11]. We

14

Support Vector Machines and similarities to work with heterogeneous data

will always use libSVM because it is GPL v3 while SVMlight is not. Shogun allows to
use both and some other not so popular implementations.

About the results that will follow if nothing is said we are using a Gaussian Kernel. The
results will be shown in tables because with Gaussian Kernel two parameters are
required: the capacity of the SVM and the width of the Gaussian Kernel. Both parameters
will be tested with different values to select the best results (rule of thumb).

For each test we will do a 4-fold cross validation. The results presented will have two
values: the best and the worst result. If only one is presented it means that both values are
the same. As we move forward in the tests we will find that usually some range of C2 and
some range of width provides the bests results, we will focus on them because in that way
the process will be faster.

Besides the accuracy we will also show the running time. In Data Mining the running
time is very important because real problems often deal with millions of entries that can
take several weeks. If instead of a week we can get results in a day, although we are
losing some precision, the results can probably be considered better. That is why we will
always consider very important the running time.

About the result we will only consider the accuracy, that is, the number of correctly
classified points between the total number of points. Some papers use the accuracy, some
prefer the precision3, some prefer the F-Measure4.

Precision and F-Measure fit best with Information Retrieval problems because they are
using the concept of “relevant”, that kind of concept is hard to use in Data Mining; we
can say that one class is relevant and the other class is not, but that may not our case. Are
positive movie reviews relevant or irrelevant? What happens with the negative ones? In
multi-class classifications, what's relevant and what's irrelevant?

We are also working with little examples, accuracy results are easy to read and
understand and they not require extra calculations. There is another problem derived from
the way we are mixing train and test. Since we are mixing it in a random way we can't
ensure that 50% of the documents will pertain to one class and 50% to the other5, each
part in the 4-fold cross validation will have a different % of positive and negative
reviews, it would be around 50%, but not exactly, this makes harder to calculate the
recall.

With movie reviews we don't have a training set separated from the test set, we will use
the randomizer from Python to mix both classes, we will divide that set (2000 documents)
in four parts (500 documents each) in each iteration of the 4-fold cross validation one part
will be considered test, and the other parts will be considered training.

Figure 1 is extracted from NLTK's book, our NLP tool. It explains the whole process

2 Capacity, the penalty we talked about in the introduction.
3 Number of relevant documents retrieved between number of documents retrieved.
4 A ratio using the precision and the recall, being the precision what said before, being the recall the
number of relevant documents retrieved between the total number of relevant documents.
5 There are other ways to merge the sets that guarantee a perfect 50% mix.

15

Support Vector Machines and similarities to work with heterogeneous data

about classifying anything, in our case when the “input” are “documents”. Basically we
have to convert our input to something we know how to work with (real number usually)
and send that information to the machine learning algorithm.

When working with SVM this process can be merged in one step, the Kernel will do
something like “feature extraction” and “machine learning” in one step. In this chapter we
will not do it, we will process the features outside the SVM part and it will only work as a
“machine learning algorithm”. In the case of SVM the “classifier model” is a set of
training points, usually a very little set. If we have thousand of training points it may be
enough with a dozen (two points are enough to define a vector), that is one of the best
features about SVM.

As required by Shogun labels will always be integer numbers; in the case of 2-class we
will use -1 and +1, in the case of multi-class we will use 0,1,2,3,... in some machine
learning algorithms there may be a big difference between using -1/+1 or 0/1 as labels
(neural nets, for example, they compute and spread the error as the difference), in SVM it
is also important, but not so important.

The “feature extractor” should be the same in the training phase and in the prediction
phase otherwise some people may say that we are cheating. That's not necessary the case.
Mainly we will use the same “feature extractor” but in one improvement we did we will
use a different “feature extractor” depending on the phase; it will be explained later, it
will be assured that we are not cheating. By cheating we mean that the training and test
set are not completely separated. That the test set is using some information that should
only be available to the training set.

Those all are the big details, now we are going to explain deeper each step, starting by the
NLP part.

16

Illustration 1: Figure 6-1 from NLTK book

Support Vector Machines and similarities to work with heterogeneous data

3.2 From documents to real numbers

NLP can be roughly defined as “make the computer understand a natural language”. By
natural we mean “human” language. Machines have been proved to work very well with
formal languages (like programming languages), it's not the case with natural language.

NLP is a big field in AI, still under big development. The number of relations that words
in a natural language have is probably too big for the computers we are using nowadays;
that's why in NLP we try to make problems simpler. Our objective is to classify
documents, so a machine should understand the documents we will send to it and say
which ones are more similar. We can make this trip easier by using “feature extraction”,
formatting the documents in some way that it is easier for computers to understand it.

There are four steps that we can use to help the machine:
– Phonology: Converting from sound to text. Instead to sending the machine a .wav

wave, we can send it a text, it is easier for the computer. Luckily we don't have to deal
with this problem because nowadays no perfect results have been shown.

– Morphology: Once we have a text, separate it in words. It's not easy and it requires
mastering regular expressions because it is not always obvious to know when a word
starts and finish. Luckily there are tools that will do this for us very well. After this
step instead of a text we should have a list of words. We start the process here because
NLTK already provides us with list of words, otherwise using the “tokenizer” is
straightforward.

– Syntax: Extracting information about the relation between words. Sometimes a word
can be a noun, a verb or an adjective. With syntax we can also understand the style of
writing. It is a complex field that can give us a lot of information and is not much
used in DM.

– Semantics: Go from words to definitions. It can help us to say that two words are
similar although they are morphology different. The problem is that when dealing
with millions of words and comparisons if the computer has to search each word in
the dictionary the process gets slower.

For our purposes morphology is enough.

3.3 Working with “Movie Reviews” corpus

The “Movie Review” corpus contains 2000 documents, 1000 for each class. Each
document has around 800 words and around 300 different words (unique). In total there
are +1.5M words and around 40K unique words. We have to think about a way to
represent a document. In the next chapter we will show that there is no need to represent
it, just the words are enough, but now we have to think about how to convert it to
numbers, specially real numbers, that is what the Gaussian Kernel needs.

We have to extract features from it, so at first we have to define what a feature can be. In
a document a feature can be the document itself, a sentence or a word. We may also think
about some syntactic analysis, phonetic waves,... we will choose a word so we can also
say that the most common two documents are the most words they share, we will work on
that idea that has been proved to work very well [9].

17

Support Vector Machines and similarities to work with heterogeneous data

If a document is defined by its words it should be enough to map one document over the
other and tell how similar they are (intersection of documents), that's true, but if for each
word in a document we have to find it in the other document the process gets slow. Also,
in SVM we are working with vectors and inner products; imagine that we have two
vectors with 500 words each one, can we define an inner product in that space as simpler
as the used by Kernels?

What it's easier, we will define each document by a vector of 0's and 1's, a 0 means that
the document doesn't contain a word, a 1 means that the document contains it, as
explained in the introduction. Do the inner product between two vectors of 0's and 1's is
easy and fast. The problem here is that there are 40K unique words in our corpus, that
means that each document will be represented by a 40K vector (while a document usually
have around 800 words), so that vector will have 98% of zeros, we are losing much space
without information, that's not an option for a computer scientist.

Also, 40K for 2K are 80M zeros and (not many) ones. Each inner product would require
40K per 40K products, that's 160M of operations, and we have to repeat it 4M of times
(2000 x 2000 to fill the kernel matrix), there are too many operations and 98% of them
are just zero multiplied by zero.

3.3.1 First feature selection: Document frequency thresholding

Before starting to think about the problem, it is clear that we need a first feature selection.
It is proved by [12] that “Document frequency thresholding” scales the problem to be
faster to solve and also that it is not losing much information. Sometimes it offers betters
results because the words removed (low frequency words) can be considered “noise”.

About our corpus:

– The 10.000 most frequent words represent the 95%.
– The 5.000 represent the 90%.
– The 2.000 represent the 83%.

We will do the first SVM execution to compare runtime and accuracy and select where to
cut. As said we will use the Gaussian Kernel (GK), there are two parameters we have two
control when dealing with SVM and GK: the Capacity (C) and the width (w). The
capacity is a parameter required by the SVM, it was explained in the introduction, it
means how soft or hard the margin is, bigger capacity means bigger penalties to miss-
classified points. Usually it is better to use low capacities because it means less over-
fitting and that the SVM would perform better with unknown points (it is more
“flexible”). The width in the GK (and in most kernels based on distributions) means the
width of the bell.

Select a good width requires an extensive statistical analysis about the data that we will
not perform. We will use for width the average number of features different from zero in
a training point. If for example we are working with 10.000 features (the 10.000 most
frequents words) and usually only 1.000 of that features are positive in a document, we

18

Support Vector Machines and similarities to work with heterogeneous data

will use a width of 1.000, that makes sense because the GK is calculated as follows:

K x , y =exp −∥x− y∥2

width 
On average that squared difference will be different from zero between “width” times and
two “width” times. That is why on our tests we will play with the width parameter,
usually it will have values between 1 and 5. The “C “ parameter will have values between
0.5 and 100. The results are as follow for 10.000 features:

The running time for 4-fold cross validation was around 88 minutes; in that time we did
48 SVM executions (4-fold C.V. and 9 tests for each one trying different values for C and
W), that means 1m50s per execution. On average the width was around 310 activated
features (around 9700 zero values, 97% of the feature values were useless), we are
wasting a lot of space. The results represent the accuracy (number of correct classified
points between total number of points), in the test phase the total number of points is 500.

w\C 0.5 1 10 100

w*1 0.472-0.54 0.618-0.706 0.632-0.756 0.632-0.756

w*2 0.682-0.744 0.77-0.87 0.774-0.876 0.774-0.876

w*5 0.772-0.858 0.808-0.888 0.834-0.892 0.834-0.892

The set of parameters chosen would probably be “w*5” and “C=10” although for a real
world scenario the best would be “w*2” and “C=1” because it also offers good results
and the bell's width is in the range expected and the margin is not hard. We can also see
that there are big differences between the results we get in different executions because
we probably have a lot of noise.

These are the results for 5000 features (the most 5000 frequent words):

The running time for 4-fold C.V. was around 44 minutes, we did the same number of
executions as before, that is 55 seconds for executions. Width was on average 285
(around 4700 zero values, 86% of the feature values were useless). We are still wasting
space but we are saving a lot compared to the execution before.

w\C 0.5 1 10 100

w*1 0.476-0.58 0.708-0.742 0.738-0.76 0.738-0.76

w*2 0.746-0.766 0.812-0.858 0.826-0.868 0.826-0.868

w*5 0.82-0.854 0.85-0.876 0.848-0.87 0.848-0.87

Comparing both outputs, in 10000 the best results are better but they also have a bigger
standard deviation, in 5000 the best results are worse but they are still very good and the
standard deviation is much lower, probably because we removed some noise; the average
results we can expect are very similar. Statistically the 5000's can be considered better, it

19

Support Vector Machines and similarities to work with heterogeneous data

is also saving a lot of space and it takes half time.

These are the results for choosing 2000 features:

 The running time was around 17 minutes; the time per execution was 21 seconds. Width
was on average 237 (around 1570 zero values, 78% of the feature values were useless).
We are saving a lot of space and being more productive.

w\C 0.5 1 10 100

w*1 0.464-0.482 0.718-0.816 0.742-0.826 0.742-0.826

w*2 0.754-0.83 0.826-0.866 0.84-0.868 0.84-0.868

w*5 0.814-0.862 0.822-0.872 0.838-0.86 0.838-0.86

The best results are similar and the standard deviation is also similar, moreover we are
getting the best results for a width around “*2” which is what we expected. The process is
much faster, we are saving a lot of space; we consider this the best solution.

So, as our first “feature selection” we will only use the 2000 more frequent words. They
represent the 83% of the information.

We will now try the same scenario for Naïve Bayes; the accuracy we got was 0.79 – 0.81,
worse than SVM. The run time for one execution was 62s (compared to 21 seconds). One
interesting feature about Naïve Bayes is that it can tell us the best feature, the list is as
follows:

contains(word) Relevance ratio

contains(outstandi
ng)

pos : neg = 13.6 : 1.0

contains(seagal) neg : pos = 11.7 : 1.0

contains(lucas) pos : neg = 7.8 : 1.0

contains(mulan) pos : neg = 7.7 : 1.0

contains(wasted) neg : pos = 7.1 : 1.0

contains(jedi) pos : neg = 6.2 : 1.0

contains(waste) neg : pos = 6.0 : 1.0

contains(awful) neg : pos = 6.0 : 1.0

contains(ridiculou
s)

neg : pos = 5.6 : 1.0

contains(poorly) neg : pos = 5.6 : 1.0

Table 1: Results provided by NLTK's Naive Bayes about relevant words

20

Support Vector Machines and similarities to work with heterogeneous data

Steven Seagal wouldn't probably be happy.

3.3.2 Removing non-aplhanumeric and stopwords

If we check which are the 20 most frequent features, we get the following results:
Word or
symbol

Number of
appearances

, 58314

the 57311

. 49440

a 28442

and 26458

of 25592

to 23757

' 22920

is 18854

in 16367

s 13907

" 13283

it 12119

that 11966

- 11617

) 8691

(8618

as 8478

with 8074

for 7466

Table 2: Top 20 words or symbols provided by NLTK tokenizer about Movie Reviews
corpus

First we can notice that non-alpha numeric features are very common and it is not
necessary any analysis to know that a comma would be as common in positives reviews
as in negative reviews. The other thing we can see is that the other features are very
common words, like “the”, “and”, “in”,... it is also not necessary any analysis to know
that this words will appear in probably the same quantity in both classes. These words are
usually called “stop words” and are usually removed because they are not giving any
information, also we will remove commas and so on; we will only work with alpha-
numeric words. Removing stop-words and non alpha-numeric words is probably the first
step when working with texts in any field.

21

Support Vector Machines and similarities to work with heterogeneous data

Now in total we have 710K words and on average each document has around 350 words
(1.5M and 800 before). We can be sure that we have not lost information, and now our
corpus is smaller; that means that we can work faster. Let's check the 20 most frequent
words now:

Word or symbol Number of
appearances

film 7415

one 4492

movie 4258

like 2724

even 1860

good 1830

time 1822

story 1714

would 1605

also 1595

character 1531

well 1526

much 1520

two 1482

characters 1434

first 1420

get 1402

see 1348

life 1337

way 1296

Table 3: Top 20 words after removing Stopwords and non-alphanumeric

This makes more sense. We will do another execution of our SVM, with 2000 features.
As before each feature will be 0 or 1 if that document contains (or not) the word:

The average width now is 166 (before it was 237), it means that for each document 70
words were stopwords or non-alphanumeric, this also means that our feature vectors will
be again full of zeros. The run time is still 17m because the number of feature is the same.

w\c 0.5 1 10 100

22

Support Vector Machines and similarities to work with heterogeneous data

1*w 0.466-0.492 0.662-0.756 0.68-0.766 0.68-0.766

2*w 0.71-0.778 0.802-0.842 0.816-0.854 0.816-0.854

5*w 0.814-0.854 0.84-0.848 0.844-0.862 0.844-0.862

The best results are worse but the worst results are better; the average results are probably
the same and the standard deviation is smaller (near zero in some cases) because we have
removed most of the noise. This solution would be considered better.

In all these tests we can see that for C=10 and C=100 the solution is the same. That is
because the SVM is already overfitted at 10 but not always it will be like this. We can
also check that for “1*w” the results are bad and that's because as we said before “1*w”
can be considered the lower bound of the solution. From now we will start with
“w=w*1.5”. We will keep C=10 and C=100.

We will check the Naïve Bayer results which are 0.78-0.82 and the run time per execution
is 55s, 7s seconds faster than before and better accuracy.

3.3.3 Normalizing words

The next step when dealing with a text is normalizing it. If for example one document has
the words “film” and “films” it would be considered two different words while it should
not because it refers to the same concept. If we have to classify three documents, one
about “a tree”, the other about “trees” and the last about “flower”, without normalizing it
those three document would be considered different while they are obviously not.

There are two techniques to normalize a text, stemmers and lemmatization.

An stemmer would try for each word to only save the lexeme. In the case before the
lexemes would be “tree”, “tree” and “flower” so it would be easy for the computer to
classify it. It is not a defined process, stemmers use regular expressions to extract
lexemes; it means that they can create lexemes that don't exist or that for two words with
the same lexeme they can create two different ones. In the case of “tree” a “trees” and bad
stemmer would create “tre” and “tree”.

The lemmatization is a process similar to the described before, but it checks that the
output exists in a dictionary otherwise it discards the word so the output is always
readable. When we saw the popular top features we could read that “Seagal” and
“Mulan” were good features however they would be completely useless in a real world
scenario; that words are removed because they don't exist in any dictionary. Stemmers are
faster though we will use lemmatization; all this process is provided by NLTK, as usual.

After using it to our corpus, we have 645K words compared to 710K. We will do the
SVM executions with 2000 features as usual. We don't expect to have better results than
before because our current feature extractor (be or not) is not exploiting this idea. Run
time is the same as before.

23

Support Vector Machines and similarities to work with heterogeneous data

w\c 0.5 1 10 100

1.5 0.622-0.64 0.794-0.8 0.796-0.82 0.796-0.82

2 0.732-0.736 0.826-0.828 0.828-0.84 0.828-0.84

5 0.836-0.848 0.844-0.854 0.85-0.858 0.85-0.858

The results are very similar, but now the standard deviation is even smaller and that
would be considered better because with lemmatization we removed even more noise.
With other feature extractors lemmatization will be better used.

3.3.4 Feature selection: information gain

Now we arrive to the last stop in our path about pre-processing the documents. The
objective in all these steps was to make the corpus as small as possible without losing
information and maybe gaining accuracy by removing noise. The next step is the most
drastic one because we will remove a lot of features. First we need to look again to the
20th most frequent words, they are:

“'film', 'movie', 'one', 'like', 'character', 'make', 'get', 'see', 'scene', 'even', 'good', 'time',
'story', 'go', 'much', 'play', 'well', 'also', 'take' and 'two'”.

If we think about movie reviews we can guess that some of this words are not providing
useful information. For example “film”, can anyone with the word film decide if a movie
is good or not? This step is called “information gain”; we have to choose the set of
features that provides more information.

What follows is again the top 20 list with a ratio that means: number of times that the
words appears in positive reviews between total number of times (this value about
negative reviews will be 1-ratio). The more this ratio is around zero the less information
this word is providing:

24

Support Vector Machines and similarities to work with heterogeneous data

word P{+|
word}

film 0.55

movie 0.45

one 0.52

like 0.49

character 0.53

make 0.49

get 0.47

see 0.57

scene 0.50

even 0.45

good 0.52

time 0.50

story 0.57

go 0.51

much 0.50

play 0.52

well 0.59

also 0.60

take 0.55

two 0.52

Table 4: Words and its probabilites to be in a positive review

It is hard to analyze what is inside a movie critic's brain but it seems that when the movie
is good they use the word “film” otherwise they prefer “movie”. We can also check some
other words they use for good movies like “also”, “well”, “story”, ”see” and some words
that are not providing information and should be removed like “much”, “time”, “scene”,...

In the multi class corpus we will do a more powerful information gain feature selector
using chi^2 statistic. In this 2-class example we will use the ratio used before: we will
remove any word that has a value between 0.55 and 0.45. Now the total number of words
is 396K (before around 645K) and each document has around 198 words. Let's see how
this performs with SVM:

The average width is around 106 words. This means that again we have feature vector full
of 0's, around 99% of the space are 0's. The run time is the same because we are still
using 2000 features.

w\C 0.5 1 10 100

25

Support Vector Machines and similarities to work with heterogeneous data

1.5 0.656-0.688 0.756-0.806 0.772-0.814 0.772-0.814

2 0.726-0.77 0.798-0.826 0.81-0.82 0.81-0.82

5 0.82-0.838 0.828-0.83 0.82-0.842 0.82-0.842

The results are good although slightly worse. While before the best accuracy was around
0.85 now it is around 0.83. The good side about this feature selection is that it allows us
to use less features, 2000 are not anymore necessary because 99% of them are zero. We
will perform the same test using only the best 1000 features:

The average width now is around 90 words (and we are using half features, that is a good
sign, we are using around 10% compared to 1% before). The run time now is 12m
compared to 17m before. That means 15s per execution (21s before).

w\C 0.5 1 10 100

1.5 0.656-0.68 0.774-0.79 0.798-0.802 0.798-0.802

2 0.74-0.754 0.824-0.828 0.826-0.846 0.826-0.846

5 0.818-0.828 0.824-0.836 0.824-0.83 0.824-0.83

As expected the results are slightly better with lower standard deviation and with better
results were “w” is twice its value. Before the best accuracy was around 0.85 and now it
is around 0.836 though the execution is faster (15s vs 21s).

In our first test the corpus had more than 1.7M words and each document had around 800
words; we were using 10000 features and the run time was around 88 minutes. The best
results were around 0.85.

Now our corpus has 396K words and each document has around 198 words. It took 12
minutes and the best results are around 0.836 while we are saving a lot of space and a lot
of time losing 0.014% accuracy. We can call this a good result.

The time vs accuracy dilemma depends on the kind of problem. The problem defines how
important the accuracy is. If we are dealing with important data were the accuracy is the
most important thing (like medical tests) we can't do this kind of feature selection,
otherwise if we are dealing in an scenario were more errors (we are talking about
0.014%) are not much important, we can say that this solution is better because we are
saving a lot of time and space.

If we check now the top 20 features we get the following results:
“'film', 'character', 'see', 'story', 'man', 'also', 'life', 'take', 'first', 'well', 'way', 'plot', 'people',
'love', 'look', 'star', 'best', 'show', 'become', 'bad'”.

Some of this words are clearly good features to decide if a movie is good or bad. Film,
for example, is good at the training set but, would it be a good feature in real word
scenario? Probably not.

26

Support Vector Machines and similarities to work with heterogeneous data

3.3.5 How to represent a document

Until now there have been two constant constraints. First as we said we will only work
with Gaussian Kernel6; we will later discover if some other kernel would provide better
results. The other constraint was the way we represent a document. We only said if a
document contains a word or not. That is probably the most basic way to do it. However
it can easily be seen that it is not the best way and that with a little work we can get better
results. The first update we can do is instead of saving if a word appears or not to count
the number of times it appears. This will also use better the lemmatization process. The
number of features will be the same so the process will not be slower and the results are
expected to be better.

Well, they should be better when working with big documents, but we are working with
movie reviews. We don't expect to get a big improvement when doing a multi
intersection. On our case, on average only 20 features have a value bigger than 1 (20 over
1000) while around 80 have a value of 1, so it will not make a big difference.

If we focus on the Gaussian Kernel:

K x , y =exp −∥x− y∥2

width 
We notice that it is computing the difference between the training points so GK does not
care if a word appears 7 times on one document and 7 times in the other: it would be a 0,
the same result that would have if it appears once in both documents. It is clearly not
using the feature vector as we would like to. It is calculating the distance while what we
need is “how similar they are”. Another famous kernel is the Chi^2, it is also not much
useful because it is still computing a distance so we will try the most basic kernel: the
linear kernel:

K x , y =x⋅y

We didn't get any improvement. We also tried the Sigmoidal Kernel without any
improvement too; maybe we are in the wrong way. The next step we tried was using the
term frequency instead of the number of appearances. That would fit better in kernels that
focuses on the distance. The results are quite similar so we will not write them again.

When working with documents in Information Retrieval or Data Mining the most
common way to represent a document is the “tf-idf” weight. It is an update about term
frequency (tf). The idea is to use another value (idf) to weight the term frequency. Idf
means “inverse document frequency”. While tf is a value about a document, idf is a value
about the whole corpus. Idf says how popular in a corpus a word is; it tries to mark the
words as relevant and non-relevant. The most popular a word is, the less relevant it is.

It makes sense in information retrieval. If someone searches in Google “football Odense”
it can be seen that “Odense” (probably with a much higher IDF than “football”) is a better

6 Considered the swiss army knife

27

Support Vector Machines and similarities to work with heterogeneous data

word to decide which documents are relevant and which are not. It is better to search for
all the documents about “Odense” and later among them search for “football” than doing
it in the opposing way.

Will it be useful in DM? We could see in our TOP 20 lists of words that some of them are
very popular and spread among all the classes. The idea is to find the words that are very
popular inside a document but rare in the whole corpus; that words would define that
document.

The most popular a word is, the lower IDF value it has; we do the dot product between tf
and IDF. The formal definitions are as follows:

tf i , j=
ni , j

∑
k

nk , j

For a term “i” in a document “j”.

idf i=log
∣D∣

{d :t i∈d }

The total number of documents between the number of documents that contains the word
“t”.

Finally:

tf−idf i, j=tf i , j×idf i

The results with “tf-idf” are as follows. We will use again 2000 features, we will only
remove stop words and non-alphanumeric and use a lemmatizator:

w\c 0.5 1 10 100

w*1.5 0.48-0.5 0.48-0.5 0.56-0.68 0.81-0.82

w*2 0.48-0.5 0.48-0.5 0.49-0.52 0.8-0.83

w*5 0.48-0.5 0.48-0.5 0.48-0.5 0.79-0.81

The results with tf-idf are worse than just checking if a document has or not a word. That
is because we are dealing with a little corpus with not many documents and each
document with not much words. As we said before a document has around 300 words and
only 20 of them appear twice or more times and we are using 2000 features, 20 over 2000
is nearly nothing. We are not using the true power of “tf-idf”.

3.3.6 Collecting new data

A Data Mining problem can arise from two different directions: we may have some data
we want to classify or we may have some data to work with and we may think about

28

Support Vector Machines and similarities to work with heterogeneous data

using Data Mining. “Data” can be anything from documents to robot's movements; also
Data Mining has two different fields: “classification” and “regression”. We are classifying
now although SVM and most DM methods can be used in regression too.

The other different direction is when something theoretically is wanted to be proved. We
will do that in the next chapter while now we want to show a framework to classify
documents. We don't have the data, we have to search for it and that is probably one of
the most difficult task. It is not only about finding data, it is about finding good data.

Luckily in our problem “movie reviews” find new data is an easy task. We have been
working only with the corpus provided from NLTK and we want to test our system now
with a real world scenario. To collect the data we went to the website
“www.rottentomatoes.com”, in that website reviews are classified as positive and
negative. We chose 50 positive reviews and 50 negative ones without reading it. We only
focused on reviews with more than 400 words; from the same movie we chose positive
and negative reviews.

We kept the process already done: dividing the NLTK corpus in a 4-fold cross validation
and for each test we are checking it against our new corpus too, so our new corpus is not
part of the training set.

Each new review is a “txt” file containing “html” code copied from the website. We use
NLTK to “clean” the “html” code and then we use NLTK's tokenizer to convert that clean
document to a list of words. With that two easy steps we convert a document from the
real world to something useful for our system.

We will only show the results for the new set, the results for the NLTK are as showed
before for the same scenario. We are choosing 2000 features, removing stopwords and
non-alphanumeric words. We are using “be or not” to represent the documents:

w\C 0.5 1 10 100

1.5*w 0.82-0.83 0.78-0.82 0.77-0.83 0.77-0.83

2*w 0.82-0.83 0.8-0.82 0.77-0.83 0.77-0.82

5*w 0.83-0.85 0.82 0.82-0.83 0.82-0.83

These results are really interesting because they show that when dealing with real-world
data a soft margin performs better that a hard margin (it was the opposite with the training
set because the system was overfitted).

Now we are going the try the same set under the same constraints though now using “tf-
idf” weight to represent documents:

w\C 0.5 1 10 100

1.5*w 0.5 0.5 0.53-0.77 0.87-0.92

2*w 0.5 0.5 0.5 0.88

29

http://www.rottentomatoes.com/

Support Vector Machines and similarities to work with heterogeneous data

5*w 0.5 0.5 0.5 0.87-0.88

These results are again interesting. The 0.5 means no training although with a hard
margin we are getting the best performance we have ever had7.

We are getting no training with soft margins because “tf-idf” needs more documents and
more words to represent them correctly. If we look through the kernel matrix the values
are “0.999x” were x is where the entries are different. That means that the GK has to
classify everything with very little information, this is why with soft-margins “it gets
crazy”.

The results with other common kernels like “Chi^2 Kernel”, “Sigmoidal Kernel” or “Poly
Kernel” are very similar so we will not reproduce them because they are not giving any
new information.

This was all the work we did with the “movie review” corpus. The objective was learning
to use NLTK and Shogun to provide a way to classify documents. We worked only with
SVM but Shogun has other methods, these methods were not explored because the
objective was not to make a comparative study.

On average all the script files we used to make tests had around 100 lines.

3.4 Working with the “Brown corpus”

Our objective now is double: Test SVM with a multi class set and improve “tf-idf”.

We will not reproduce all the process as we did before because it would be redundant
however all those steps were done again for the new corpus. We will use the same
constraints as before if we don't say the opposite.

The Brown corpus is not prepared for DM: it is just a collection of documents about
different topics. We picked the five most populated topics (the most data the better
results). That five topics are: “learned”, “belles lettres”, “lore”, “news” and “hobbies”.

Then we removed, as usual, the stop words, the non-alphanumeric words and we used a
“lemmatizator”. We merged all the documents related to a topic and then we cut each 185
words, in this way we get 200 documents about each topic with 185 words each one, 185
words is not much but after removing all the “noise” it may be enough.

We merged all the documents in a big set, randomize it and made 4-fold cross validations.
What follows are the results for the “be or not” document representation, we start by
choosing a feature vector of 5000 features (as before, the 5000 most frequent words, they
represent about 90%):

w\C 0.5 1 10 100

1.5*w 0.224-0.292 0.688-0.784 0.696-0.796 0.696-0.796

7 The results for NLTK training/test set were as always, as we said “tf-idf” was not improving “be or not”

30

Support Vector Machines and similarities to work with heterogeneous data

2*w 0.352-0.392 0.72-0.808 0.756-0.82 0.756-0.82

5*w 0.692-0.748 0.756-0.82 0.804-0.852 0.804-0.852

It took around 32 minutes. The results vary more than usual because it is harder to
classify when you have more classes (in our case 5). Anyway the results can be
considered good. Also, only around 120 features were activated among the 5000. That
means that we are wasting around 97% of space, probably too much.

We will try now the same but with 3000 features instead of 5000. That top 3000 words
represent the 82%. It took around 17 minutes, around half time than the test before. On
average 110 features were activated. That means around 96% of wasted space, not much
improvement:

w\C 0.5 1 10 100

1.5*w 0.224-0.332 0.692-0.724 0.704-0.728 0.704-0.728

2*w 0.416-0.44 0.732-0.764 0.74-0.76 0.74-0.76

5*w 0.684-0.744 0.752-0.772 0.776-0.784 0.776-0.784

The results are worse. This feature reduction was not good because since we are dealing
now with 5 classes the number of features we need is bigger. We will try now 5000
features using the “tf-idf” representation for documents. In the previous corpus “tf-idf”
proved to be better for real-word corpus (that's what is really important) but it didn't offer
better results for the train/test set:

w\C 0.5 1 10 100

1.5*w 0.176-0.18 0.176-0.18 0.2-0.3 0.92-0.932

2*w 0.176-0.18 0.176-0.18 0.184-0.344 0.904-0.928

5*w 0.176-0.18 0.176-0.18 0.176-0.18 0.86-0.884

It took 28 minutes. We can see now the real power of “tf-idf”: the results are much better
than “be or not”. We also tried to use 3000 features although the results were worse so we
may need another kind of technique to improve our results.

3.4.1 Improving tf-idf

Although the results with tf-idf are good enough we think that the formulation itself has a
handicap [13]. With “tf-idf” we know if a word appears of not in a document (as the
binary representation), we also know how many times it appears and we also know if that
word is relevant or not in the corpus, all in one number. There is, however, something we
think that can be improved about “tf-idf” because it was created for IR not for DM.

IDF tries to say if a word is relevant or not. It is good in the sense that in the “movie
review” context it will mark as non-relevant words like “film”,”movie”,... but it is not
good in the sense that it will mark as non-relevant words like “good” or “bad” because

31

Support Vector Machines and similarities to work with heterogeneous data

those words are very common in the corpus.

If “good” appears in, let's say 700 documents, it will have a very low IDF, it will be
marked as low relevant feature but we know that it isn't. We know that in our context if a
document contains the word “good” we can say that that document is probably a positive
review. IDF makes relevant a lot of low frequent words and forgets a lot of high frequent
words that in our context should be considered very relevant.

We will create a new parameter called “idf class” that represents how important is a word
for a class. It is defined as number of appearances of a word (i) in a class (j, defined by
the label of the document containing that word) between the total number of appearances
of that word (i):

IDF classi , j=
∣ti , j∣
∣ti∣
=P {class=i∣word= j}

The more this number is near 1 the more this number is important for that class. If we are
dealing with two classes a IDF class over 0.5 will mean some kind of relevancy, with
three classes more than 0.33. We have to determine some kind of threshold to define what
makes it relevant and what not.

Tf-idf is rewritten as:

tf−idf i, j=
tf i , j×idf i

1−IDFclass

IDFclass can have a value of 1 that would make a division by zero and that also would
make the feature vector too sharp (big differences between values). That is why it may be
better to choose a bigger value than “1” like “1.5”. In that case at much we will double
the “tf-idf” value and we will also get an smoother feature vector. That value would
depend on the number of classes.

We can represent the documents with this new version of “tf-idf” but there is a problem
here: how we convert the documents in the test phase? In the test phase we receive
documents without a label, how can we calculate the IDFclass value if for a given word
in the new document we can't say which class it belongs to?

One solution is to use a normal “tf-idf” representation for the test phase, but that would
create different feature vectors and the results will not improve anything.

Another better solution is to use an statistic to predict given a word in the test phase and
the train set which class it can belong to. We will use the chi^2 statistic:

2t , c=
N×AD−CB2

AC×BD×AB×CD

This value for a term (t) and a class (c) where:

32

Support Vector Machines and similarities to work with heterogeneous data

– A is the number of times t and c co-occur.
– B is the number of times t occurs without c.
– C is the number of times c occurs without t.
– D is the number of times neither c nor t occurs.
– N is the total number of documents.

So for each of the 5000 features we calculate to which class they “belong”, by “belong”
we mean that it has a higher chi^2 value.

Later when we receive each word of the documents we will use that chi^2 value to decide
the best class and calculate the IDFclass. As we said in the beginning of this chapter we
are using a different feature selector depending on the phase.

We tried this new document representation and the results were slightly better (against the
5000 features tf-idf), but not enough and not so constant to say that they are really better.
That is why the results will not be reproduced on a table. Getting the same results is good
in the sense that it means that our method is working, however it is bad in the sense that
we expected to get better results. We believe that this new document representation would
produce better results although we didn't get them, maybe because we are working with a
little set.

Now, with the chi^2 statistic we can perform another feature selection based on
information gain. The chi^2 statistic tells us how relevant a word is to each class, so we
can remove from our features that words that are not much relevant for any class. We will
perform this feature selection after the top 5000 words are selected. Between that 5000
words we will remove those that are marked as non-relevant by chi^2. Different
thresholds can be tested, for example if we remove that words that had less than “2” as
best chi^2 (between all the results for all 5 classes, we saved the best) only 500 features
of 5000 will be removed, if we set that threshold to 3, 1000 features will be removed (so
we will work with 4000 features).

We will only focus on the results for C=(10,100) because we know that for the other
values the results will be bad. These are the results we get after removing stopwords, non-
alphanumeric words, selecting the top 5000 words and removing from them that with a
chi^2 best score below 3. We use the tf-IDFclass (our version) as document
representation:

w\C 0.5 1 10 100

1.5*w 0.692-0.704 0.936-0.944

2*w 0.356-0.504 0.94-0.948

5*w 0.172-0.188 0.92-0.936

We can see that the results are slightly better and the process much faster (4000 features
vs 5000 features). We are removing noise and we are using the chi^2 statistic twice, that's
maybe creating some synergy between the results. Anyway these results are not enough
good and further analysis should be required. Sadly in this Master thesis we can't stay

33

Support Vector Machines and similarities to work with heterogeneous data

here longer and we have to move forward to the next topic because we don't have extra
time. Improving the tf-idf is a “side quest”. What is really important about improving
would be shown in the next chapter.

3.5 Chats

After working with two corpus, we have the experience to repeat this process faster. We
know the best way to represent a document, how to extract features, how to select them.
We will not repeat all of this again.

The chat corpus will be 2-classed: one will have chats where sexual predators are
involved and the other will have normal chats. The chats are divided in documents each
one containing 70 words; in this way we obtain 400 documents, 200 for each class.

Stopwords and non-alphanumeric words are removed, we lemmatize it and we also
remove common words for chats, like “room”, “leave”, “enters”,...

If we chose of that 400 documents 100 to be the test and 300 hundred to be train we get
an accuracy of 99.99%, this means that it is missing only 1 from 100.

Our objective will be different now. We want to have a training set much smaller than the
test set because that is what is happening in real world. We would have a SVM receiving
chat logs and it has to say if that chat logs are about predators or not so the test set will be
much bigger. From that 400 documents we chose 40 to be the train, 360 to be the test. We
get a result around 95%, quite good.

Of course our set is not the best one: we are comparing sexual predators with normal
conversations, they are a completely separated worlds. How will SVM work comparing
sexual predators with legal chat logs? That would really be a good answer.

3.6 More about document representation

We have talked about four ways to represent a document: “be or not”, “term
appearances”, “term frequency” and “tf-idf” (with our own version). “Tf-idf” proved to
be the best.

All this four ways have something in common: they are only focusing on the words. It
doesn't matter if the documents make no sense (although this is good for cryptography).
Also, they are not working with the relation between words inside a document and they
also don't care that some “entities” can have different names. The results are good, but it
can be clearly seen that our tools are not the best and actually “tf-idf” was not created for
DM. It was created for IR.

A quick fix would be to use a windows of 2 words instead of one. In that way we will
also save the information about which words are usually together. The bad part is that the
number of collisions is much lower although a mixed method can be tried.

Another better way to fix it is to use a sentence as window. Which words usually occur in

34

Support Vector Machines and similarities to work with heterogeneous data

the same sentence? The number of collisions is much lower and also the computation
time is bigger. But in that way we could get a better feeling about the relation between
words.

Finally, we compute the documents doing “intersections”, roughly searching for how
many words they have in common, but we know that the words can be related without
being the same (having the same lexeme). For example if we have three documents: one
talking about trees, the other talking about flowers and the other talking about cars; our
method would produce no similarity while we know that the documents about flowers
and trees are more similar.

There is a web of words called “Wordnet” that has some functionalities about words. The
ones that are important here is that Wordnet has different ways to say how similar two
words are based on their hierarchy of concepts; usually how much of the hierarchy tree
they share.

We tried to implement this, however the implementation of Wordnet is quite slow
nowadays. If just doing the intersection took some minutes in most cases, for each pair of
words searching how much they share in the hierarchy tree was too much. We let the
program work for one day without getting any results, it was still calculating it. We think
that with a faster implementation and caching techniques this method can be reproduced,
but as it happened before we don't have time to stop here.

With this we finish now this chapter. In the next chapter we will move our point of view
from end-user to developers. While this chapter was full with tables about results next
chapter will be more about design decisions.

3.7 Summary

To end this chapter we will review the NLP process again:

35

Support Vector Machines and similarities to work with heterogeneous data

We start with some documents in some format (HTML, pdf, doc,...). We use some tool
(sometimes called cleaner) to convert it to a “.txt” file (plain text document where each
byte contains an ASCII code).

We tokenize that “plain text” document. This means that we separate that “long string” in
words and store them in a list or some structure we can work with in our programming
language.

Now starts the NLP part (although the NLP we are doing here is very basic, actually this
process may not be called NLP). We select to work only with the top XXX most frequent
words. We remove some noise (stopwords and non-alphanumeric words), at this point we
can say that we have not lost any information and that the results should be the same
before this process.

In our next step we try to get more collisions by only saving the lexemes (or lemmas,
lemma is the entry in the dictionary, a convention to represent several words with the
same lexeme). In some language like Spanish where all the words have different
morphemes depending on the context this process is highly important. Most of the time
with this process we have not lost information, we may gain it, but sometimes we may
lose because two different words representing two different entities with different lexeme
(or lemma) can get the same lexeme if our “lexeme extractor” is not the best, and it is
impossible to make a perfect lexeme extractor because that would mean to add some rules
that only apply to a word.

36

raw “txt” List of wordsclean tokenize

List of words

List of lexemes

List of words

List of words

Feature selectionList of words List of words

List of words List of words

lemmatization

Less stopwords

Less [^(a-Z0-9)]

List of lexemes

List of lexemesInf. gain

Support Vector Machines and similarities to work with heterogeneous data

For example in Spanish in some cases both English and Spanish words are accepted for
the same entity and we don't mean jargon words, we mean truly accepted words by our
normalizer institution. Examples are “parking” and “aparcamiento”, “computadora” and
“ordenador”, “whisky” and “guiski”, that may do this process as harder as impossible.

Finally we have the most risky process: feature selection about their “information gain”
or “how important is a word for our problem”. We try to find the words that are better to
classify documents. In our case (movie reviews) it was clear that “film” is a bad word,
however in other scenarios “film” can be a very good word.

As we said before we can extract more information from a document like relations
between words, definitions, syntax,... that process are a lot harder than what we did and
we still got good results.

37

Support Vector Machines and similarities to work with heterogeneous data

4. Making texts similar

Until now we have worked with SVM as a user; SVM were a black box that magically
would classify everything for us. In the introduction we explained in a very basic way
how SVM work. The most important concept about SVM related to our work is the
Kernel. A Kernel has two objectives:

– Transform the data from an input space to a feature space (where the next objective
can be performed).

– Compute the inner product between training points.

The hard part creating a Kernel is the transformation. It is where we have to use our
imagination (or our knowledge). We have some data in an input space. In that input space
we can probably solve the problem, but we don't know how to make a machine to solve it
so we project it to a space solvable by a machine.

Theory about SVM says: The kernel projects the data from an input space where the
problem can't be solved to a feature space when it can be solved. They usually call this
“to simplify the problem”. By simplify they mean “to use a feature space when the
problem can be solved by a linear function”. Although SVM are part of DM, and DM is
part of AI, it is really more the kind of work a math person would do. That is why we
have this kind of formulations.

They consider that an input space must be projected to a new feature space if they can't
(or don't know how to) apply a linear function in the input space. What usually happens is
that we have a problem that is human solvable, but theory says that we need a linear
function so we don't care if a human can solve it or not. We use our theory that has been
proved to be valid, project it and solve it

Also we need an space that can perform inner products because that is the way SVM says
how “similar” two training points are. Maybe in the input space a human can say how
similar two training points are and it can be something more complex and better than an
inner product.

Most SVM problems can be solved by a human without doing the two steps required by
SVM. Of course machines are a lot faster so we need them, but maybe we can tell the
machine how a human would solve the problem and let the machine do the hard work for
us. This kind of formulation is more similar to AI (the AI computer people like). Give the
machine a human behavior, let it do the hard work for you.

Would that work? That's what this thesis is about.

We are not defining a new DM method. We are only changing a bit the formulation about
SVM. Our objective is to use a SVM tool (Shogun) and apply our method. This has to be
done with the less number of changes possible, the less we change the most probably it
will work (we use this idea in the SVM theory and in the SVM implementation). We will
start talking about what will be changed in SVM theory:

38

Support Vector Machines and similarities to work with heterogeneous data

In the introduction we explained how to go from the problem basic formulation:

minimisew ,b 〈w⋅w 〉
subject to yi 〈w⋅xi〉b≥1,

i=1,... ,l

To something easier to solve:

maximise W =∑
i=1

l

i−
1
2 ∑i , j=1

l

yi y ji j 〈 xi⋅x j 〉

subject to ∑
i=1

l

y ii=0

i≥0, i=1,. .. ,l

This is easier to solve because the solution is a linear combination of the training points.
It was explained with “more” detail in the introduction and it is very well explained in
[4]. The problem with that formulation is that it only solves the problem if it is linear
separable (with a linear function). So, what happens if the problem is not linear
separable? (or we don't know if it is). Since we have this formulation that works, theory
says that we must transform our problem to something linear separable and that means
projecting the data. The kernel is doing so and it requires to rewrite the formulation:

maximise W =∑
i=1

l

i−
1
2 ∑i , j=1

l

yi y ji j K xi , x j

subject to ∑
i=1

l

y ii=0

i≥0, i=1,. .. ,l

But there may be another solution because there are two things we can play with: the
space or the separable function. SVM theory chose to change the space while we choose
to change the separable function:

maximise W =∑
i=1

l

i−
1
2 ∑i , j=1

l

yi y ji j Sxi , x j

subject to ∑
i=1

l

y ii=0

i≥0, i=1,. .. ,l

S(x,y) is a function that is computing the similarity value between the training points in
the input space. S(x,y) says how a human would say how similar that two points are.
SVM would acquire that knowledge and solve the problem. S(x,y) can be anything if it
returns a value about the similarity. That value can be anything like a new image or a text
description if we want to compute the similarity between two pictures. That is what a
human would do.

39

Support Vector Machines and similarities to work with heterogeneous data

Since that idea is beyond this thesis we will make S(x,y) return the same that a kernel
would return: a real value. This makes the problem simpler although we are losing some
information8. That is how things are working and rewriting it would require probably
years of works and new theories.

4.1 Can we use any similarity with SVM?

Not all, but most of them are good.

SVM mathematical formulation has two big constraints related one with the other: We are
working in a space with inner product (the feature space) and we have to satisfy Mercer's
Conditions9. So we can say that the similarity function must be a “masked” inner product
and that constraints it quite a bit. It has to be an inner product in the usual formulation
because it is using an Euclidean space (the feature space; an inner product space).

What we are calling “similarity” is commonly called “proximity index” or “proximity
function”. There are two kinds of proximity indexes: similarities si , j or
dissimilarities i , j  .

As said in [14] a proximity index  pi , j  has to fulfill the following properties:

1. Non-negativity. The  pi , j  cannot be negative.

2. Symmetry. The  pi , j  do not depend on the order of i,j.

3. Boundedness. There is a maximum similarity and a minimum dissimilarity.

4. Minimality. The extreme values are attained for equal objects, and only for them.

5. Semantics. The semantic of si , jsi, k is that object i is more similar to object j
than is to object k. The semantic of i , ji ,k is that object i is more dissimilar
to object j than is to object k.

8 See Further Work.
9 Mercer's Conditions says for which kernels exists a pair (Euclidean Space, mapping function) with the

properties described. (We didn't described much, again for more information [2])

40

si , j0
i , j0∀x i , x j∈X

si , j=s j , i

i , j= j , i∀ xi , x j∈X

si , jsmax

i , jmin∀ x i , x j∈X

si , j=smax⇔x i=x j

i , j=min⇔xi=x j∀ xi , x j∈X

Support Vector Machines and similarities to work with heterogeneous data

An index that satisfies this properties is a proximity index (similar or dissimilar).

Another interesting property is:

sij=smax⇔xi=x j=x k ∀ xi , x j∈X

That is, two objects are regarded as more similar, the more similar they are with one
another and with reference to a third “ideal” or prototypical object.

Finally, a space X where a proximity index  pi , j  has been defined forms a semi-metric
space, denoted (X,p), being p either s or  .

So we have usually two spaces: the input space and the feature space. Usually SVM work
with Kernels, the Kernel requires the feature space to be an inner product space. But
when using a similarity function it is not required any projection so there is no feature
space.

Both kernels and similarities work with points in the input space. If we can define a
proximity index with that points we can say that the input space is “semi – metric” and
that allows us to use a similarity function. That similarity function will not be a “masked”
inner product.

A good thing about similarities is that it is not required for them to be “Positive-
definite”10 (as Kernels are required to), this means that we have a bigger semantic
freedom to define what our similarity will do.

About Mercer's condition, [4] says (4.1) that even for kernels that do not satisfy Mercer's
condition (and we don't know if it satisfies or not), one might still find that a given
training set results in a positive semidefinite Hessian11.

Can SVM work with a similarity function that would return descriptions instead of
numbers? It should.

That descriptions should define features and our space has n dimensions (one dimension
per feature); so given the description from a similarity function we should be able to
allocate it in our space. Once everything is allocated we should be able to draw an
hyperplane that would separate it in classes. It is easy to say, it is hard to implement. The
core idea is the same that is using SVM: find an hyperplante. The formulation would
probably not be the same.

Our objective is not to make the mathematical formulation easier, our objective is to
make the problem easier from a practical point of view.

10 That is good and also bad. Being “positive-definite” means that the surface of the function to minimize
is convex, this means that the problem has only one solution. This will not happen with similarities and
we may have some local minimums, but if one local minimum is good enough that should be enough
for us to solve the problem.

11 The square matrix of second-order partial derivatives of a function; that is, it describes the local

curvature of a function of many variables.

41

file:///Users/joanmanel/wiki/Function_(mathematics)
file:///Users/joanmanel/wiki/Partial_derivative
file:///Users/joanmanel/wiki/Square_matrix

Support Vector Machines and similarities to work with heterogeneous data

4.2 Why using a Similarity function instead of a Kernel?

Because it finds a solution in a human state and because we know how to solve most of
the problems so we don't need to reformulate our solution to make the machine solve it.
We can use our own knowledge. That's artificial intelligence. The bad point is that a
kernel matrix can probably solve more problems than a similarity function. We don't say:
stop using Kernels, use Similarity. We say that there are some problems more suitable for
our solution.

When someone reads books or papers about SVM all the problem they try to solve are
about maths because they are math people. They usually talk about points in spheres with
some radius or points generated by some statistical distribution... that kind of problems
can't be solved with a similarity function. A similarity function can solve real problems;
the type of problems someone who is working in DM with real world data has to solve
like classifying documents, images, blood analysis, weather conditions... all these
problems have a human solution because they were solved before computer existed (or
before computers were so cheap that everybody could use them).

We say: you don't need to project it to some space, to use statistical values,... the human
knowledge is enough for human problems.

This new formulation provides a new way to get the same solution. The good point is that
it is easier to define a similarity than defining a kernel, the bad point is that kernels work
with less work because the environment is prepared for them. In most cases actually is
not necessary to create a kernel. The already done kernels like “Gaussian kernel”, “Chi
squared kernel”,... would solve most of our problems. We only need to convert our input
to some range of real numbers and that is usually a very easy task. In the chapter before
we proved how that works.

A user can choose between converting everything to real numbers and let the magic flow
or create a similarity function and have a bigger control about the process.

Showing a new way to work with SVM is not our main objective, that is actually a side-
effect: using a similarity function makes easier finding a solution to the problem where
this thesis started. The problem we will try to solve in this thesis is about finding an easier
and better way to work with heterogeneous data. We achieve that with similarity
functions and we will show how in the next pages.

4.3 What is heterogeneous data?

As computer people when we think about a problem we think about a real world problem;
math people use to not care about this kind of problems because they find them easy. It is
easy to find a math theorem about how to solve “weather prediction12” or “how to predict

12 “Weather prediction” in a DM context. Provided some data to predict the future. Emulate the Earth
requires the most powerful computers. That is not an easy problem. It is probably more related with
“Simulation”.

42

Support Vector Machines and similarities to work with heterogeneous data

what the people buy in supermarkets13”. Sometimes they call it “toy examples”: easy
examples they use to show the surface of a theorem to people like me. Math problems are
usually like “classifying sequences of numbers”, “classifying physic properties”,
“classifying statistical distributions”,...

But we know that predict what the people buy in supermarkets is not as easy as it seems.
While the math solution is easy getting a real good solution is not because we have to
struggle with some problems they don't care about. One of them is heterogeneous data,
real world problems require different types of data. Our supermarket problem is not only
about the most popular products; there is also some other useful information like the
information related to the buyer: sex, age, money, studies, also time he/she spent in the
supermarket, schedule,... More information can be related like: which products were
cheaper, which were on sale, preferred brands,...

Another example about heterogeneous data is predicting the movement of a robot. The
robot is receiving information from different channels: sound waves, pictures, position of
other robots, weather conditions, the map,...

A usual example is related to medicine when a doctor has to predict the sickness by some
different inputs: blood analysis, ray-x images, what the patient feels,...

Dealing with heterogeneous data has usually been a problem without a proper solution in
DM and this kind of data is very common in real world problems. That is why a better
solution is needed and that is what we try to show here.

What is usually done is: convert all the data to the same type (real numbers), work with it.
So we would need to convert the ray-x images, the blood analysis and the description
given by the patient and throw everything to SVM. That uses to work. But in that step is
easy to see that we are losing a lot of information.

This is exactly what we did in chapter 2. We converted our data (strings) to real numbers.
We focused on if a word appeared or not, its frequency,... with real numbers it was easy to
create features and finally send them to SVM. We were only focusing in morphemes and
we lost all the other information related with documents.

13 As before. The human behavior is not usually an easy problem. If we go that deep it would be more
related with psychology, not with DM.

43

Input data x

Input data z

Input data y

Real numbers x

Real numbers z

Real numbers yconvertconvert

convert

convert

Features

Support Vector Machines and similarities to work with heterogeneous data

In case we have different kinds of data the process is the same, although is not that easy
to create the features. We have two solutions:

– Put all our work in finding a way to represent our data using numbers and later throw
everything to a working kernel (like Gaussian). [Bad solution]

– Create a new kernel that projects the data to a working feature space. “Finding a way
to represent our data” is usually part of this projection. [Good solution]

4.4 Our solution

At first we focused on Neural Nets. We thought about adding a new input layer where
each neuron on that input layer will have a different type (based on the input data). The
next neuron's layer would compute their input with a different calculation rule based on
the input layer. The rest of the neural net will have the normal behavior.

If our data is about images and documents our first layer will contain some neurons that
will store images and some neurons that will store documents (instead of storing a real
number, which is the usual data stored by neurons). The input of the next neuron instead
of being a linear combination of its inputs applying later a sigmoidal function (this is one
of the multiple ways to calculate it) will calculate the neural value related to the type of
input it has. If the input is a document, for example, it may calculate the “tf-idf”.

The above image shows the basic idea (of course more calculation is required apart from
“tf-idf”, this is a simplification to show the core). We started to work on that solution but
it would require some big changes about Neural Nets. For example if we use

44

Document 1

Image 2

Image 1

Document 2

Real
value 2

Real
value 1

tf-idf

tf-idf

edges

edged

As usual

As usual

Support Vector Machines and similarities to work with heterogeneous data

“Backpropagation”, how can we do that last step when returning? How can we compare
results? Is our function differential? How? There may be a solution but it was not easy to
find it.

Later we found that all the problems we had when working with Neural Nets were not
there if we used a SVM. Instead of adding that extra layer we only need to add a
similarity function as explained before.

So the solution is: if you have to deal with different types of data you should provide a
similarity function for all of them (there are known similarity functions for documents,
images,... and we can easily create new ones). How to mix all that similarity functions?
With a global similarity function.

We will use as example face descriptions and face images. We know how to say if two
face descriptions are similar and we know how to say if two face images are similar. Now
we have to define the new global similarity. We have to use our human knowledge, it can
be something like:

– If document A and B are talking about eyes, return the similarity between image A
and B in the region where the eyes are.

– If image B doesn't have a mouth (the image can be cut) return the similarity between
documents A and B were they talk about mouth (this is a new side effect to deal with
missing data).

– If hair in image A is yellow and hair in image B is black, return a 0 (so global
similarity is not only dealing with similarities, it can check also directly the data).

And so on...

This way of working with heterogeneous data is easier and we are not losing information
because we don't need to convert the input data to anything. We only have to define how
the similarities will be, nothing more, and the problem is solved.

45

Support Vector Machines and similarities to work with heterogeneous data

4.5 Other (new) solutions

While we were working on this solution (by working we mean to wait for me to finish the
mandatory courses and do the final thesis, everything started around three years ago) the
DM community focused on solving the way to work with heterogeneous data. They
provided a good solution called MKL (multiple kernel learning).

When we said to use a different similarity function for each type of data they use a
different kernel for each type of data.

When we define a global similarity function to solve the problem they try to find the best
linear combination within all the kernels. They combine the kernels and try to find a
parameter that will say how important each kernel is to find the solution.

MKL are better in the sense that they don't need an expert, we only need to define the
different kernels and MKL will find the best solution for us. Our solution is better
because we can define more complex ways to mix the results than a linear combination
and that would give better results. The example we explained before with images and
documents about faces would be impossible in MKL. Our solution is also better in the
sense that we don't need to define anything new and that everything that worked with
simple kernels will work with similarity functions. It is said that some MKL can achieve
this too [7].

As showed in the “image-descriptions” quick example our solution also is useful when

46

Global similarity

Documents similarity

documents

Images similarity

images
SVM

S(x,y)

Support Vector Machines and similarities to work with heterogeneous data

dealing with missing data. Missing data is probably the other big issue in DM when
working with real world examples.

4.6 Implementation

My personal objectives for this part are:
– Learn better C++ [17]
– Understand the Shogun Library as a developer

Our idea has been shown; the objective now is to show it working. As said in the chapter
before we decided to work with Shogun. Shogun is a +80K lines library, it has around
200 classes and 9 active developers. The project started nearly three years ago and the last
update was one month ago. It is a powerful DM tool that focuses on SVM (it has other
several methods) and it specially focuses on MKL because Shogun's developers are part
of it. MKL is related to what we try to solve.

The first step when developing software is to study the facts. It requires a couple of hours
searching through the library website, reading the author's pages, checking if it is
outdated, if it has an active community working behind, checking the quality of the
code...

After studying Shogun's facts one thing was clear: it must provide most of the things we
need because we are trying to solve the same problem. We don't need to write much code
because it may already be written by them, it is a matter of studying the code. We need to
adapt our theory to their library. We have to design how to do it and we have to use the
two most important object oriented ideas: polymorphism and inheritance. The most code
we write the most our design is bad. Inherit classes, rewrite only required lines.

We don't consider ourselves good coders while Shogun's developers are quite good, the
less we write and the most we use their code, the better. We spent most of the time in our
implementation reading the Shogun's library, collecting tools they did, making designs to
their tools, reading again, simplifying the design.

4.6.1 Implementing similarities

At first we focused on implementing the concept of similarity. Once this is working we
will make it work with heterogeneous data. Our first solution was the direct one: the
design that would make someone that has not read deeply the library.

From now until the end in the class diagrams a square will mean a class owned by us
while a circle will mean a class owned by Shogun. So squares are modifications. Finally,
it is a convention that in C++ class names start with a “C” like “CPerson”; the next
diagrams are not a C++ class representation, they are a design representation. That is why
we will call classes by they name so “CPerson” will be “Person”.

47

Support Vector Machines and similarities to work with heterogeneous data

Shogun has a class called Kernel. That class has a lot of children defining a lot of
different kernels. The class Kernel contains almost everything and each layer is
specializing the layer before: inheritance. If we wanted to use a Similarity function where
a Kernel is we have to create the same kind of hierarchy. The class “Similarity” will be at
the same level as “Kernel”.

48

Simple

Kernel

Kernel

String
Kernel

...
Kernel

Gauss,
chi^2,

...

Common
word,

histogram,
...

Similarity

Documents
similarity

Images
similarity

...
similarity

Tf-idf,
BeOrNot,

...

Edges,
colors,

...

Support Vector Machines and similarities to work with heterogeneous data

The design seems simple. The problem here is that the Kernel Class (the basic parent) has
around 2000 lines and it is doing a lot of things we also have to do with our Similarity
Class if we want Shogun to be able to use it. The same can be applied to Kernel's
children. Anyway that can be solved with some copy/paste and luck. The real problem
about this implementation was that we also needed to change the SVM tree.

Everything from “Kernel machine” class should be fresh new code. That means several
thousand of new lines not only defining SVM with similarities but also making
everything workable with Shogun's library. That would mean to redefine part of the core
of Shogun, like 30% of what is already done during years by good developers. This
design was not an option, we must read the library carefully and use some of what it is
already done, not only the “classifier” base class.

49

Classifier

...

Kernel
machine

Perceptron,
krr,...

SVM

libSVM

other classifiers:
linear-based,

distance-based,...

other
implementations

Support Vector Machines and similarities to work with heterogeneous data

The next design was as follows:

The idea was to create a new class called Metric that will contain both Similarity Class
and Kernel Class (both classes with a tree as showed earlier). We still have to do some
work here, actually a bit more because we will need to rewrite some lines in Kernel tree
and create all the Similarity tree, but this new design will allow us to not having to define
anything new in the SVM tree because using the already done code where SVM was
waiting for a Kernel object we would send there a Metric Object. With this design only
some lines would have to be rewritten in case SVM is expecting the results from a Kernel
or from a Similarity. This design is far better, but not the best because too much work is
still required, specially in the SVM part.

When studying Shogun and different designs one important problem arises about
Similarity functions that will also be the key for the final (and best for us) solution. A
Kernel is a matrix. It is usually filled quickly only doing the inner product between
feature vectors, later when SVM start to train it is only grabbing the results from that
matrix. We know that accessing an array is in most languages a very fast operation. That
access is done millions of times.

A Similarity is a function so each time SVM needs some results it has to call the
similarity function between two training points. Imagine having to calculate a function
value millions of times. What is worse is that the same results have to be calculated
several times. It is obvious that we need a caching system and by the definition of our
problem the best structure is a matrix, exactly the same as Kernels.

Why not to create a new Kernel called “Similarity Kernel” that will have a similarity
function to calculate what kernel does with inner products? We only need to create a new
kernel, make it to store a function (a similarity) and change how it calculates its values to
call that function. We only need to rewrite one line: the calculation line. Everything else
will work out from the box.

50

Metric

Similarity Kernel

... ...

Support Vector Machines and similarities to work with heterogeneous data

In our code “Similarity function” is called “Similarity”. It is handmade; it is a class that
defines how to compute the similarity between two training points. It has to return a real
value. “Similarity kernel” is a son of Kernel. It defines two methods: the creator and the
compute. The creator stores the similarity object, the compute calls the similarity object
for its output. The similarity accepted by “Similarity Kernel” can be anything.

1. CSimilarityKernel::CSimilarityKernel(int32_t size, CSimilarity*
sim)

2. : CKernel(size), similarity(sim)
3. {
4. ASSERT(similarity);
5. SG_REF(similarity);
6. }
7. # SimilarityKernel.cpp

This is the creator of our class (in the header file it is declared as CKernel's son), we only
require two parameters: size and similarity. Size is something that will be managed by
CKernel. We assign the similarity object provided to our attribute called “similarity”.
Line 5 is required by how Shogun manages references. We will not go deep as how to
develop to Shogun or how the library works. That would require dozens of appendix's
pages and Shogun itself has a very good documentation. It is enough to say that in the
class destructor we will use a function called “SG_UNREF”.

1. float64_t CSimilarityKernel::compute(int32_t idx_a, int32_t idx_b)
2. {
3. float64_t result = similarity->similarity(idx_a, idx_b);
4. return result;
5. }

51

...
kernel

Kernel

Similarity
kernel

Similarity
function

uses

Images,
docs,...

sims

Support Vector Machines and similarities to work with heterogeneous data

6. # SimilarityKernel.cpp

That is how we fill our matrix: getting the results from the similarity function. Variables
“idx_a” and “idx_b” are the indexes to the current training points. This is how Shogun
works: the similarity function will be the responsible to grab the real data using that
indexes. The class has more code (between .cpp and header file around 150 lines)
required by Shogun's but that's the core. We will never show the full code, only what is
required to follow our design.

The similarity class (CSimilarity as seen in the first piece of code) requires more classes:
first of all the “Similarity.cpp/h” base class (around 600 lines of code, we will not put that
code here, it is mostly code required by how Shogun works). Then we wrote different
templates 14 to define different kinds of similarities. In our case we created one called
“Single” to work with a similarity that will use numbers, one named “String” to work
with a similarity that will use strings, one named “BagOfWords” to work with a similarity
that will use lists of strings (similar to what we get after tokenizing a document) and
finally a similarity called “Combined” to combine different similarities; we will talk
about this one later.

From any of these templates we can create new similarities. Usually only the “compute”
function is required to be rewritten (in case one needs to work with different data a new
template must be created). For example from “SingleSimilarity” we created a similarity
called “DocIntersectionSimilarity”. This similarity receives a list of numbers (0's or 1's as
in the examples we worked before) and computes the intersection between both
documents. The compute function is as follows:

1. float64_t CDocumentIntersectionSimilarity::compute(int32_t idx_a,
int32_t idx_b)

2. {
3. int32_t alen, blen;
4. bool afree, bfree;
5.
6. float64_t* avec=
7. ((CsimpleFeatures<float64_t>*)lhs)->

get_feature_vector(idx_a, alen, afree);
8. float64_t* bvec=
9. ((CsimpleFeatures<float64_t>*)rhs)->

get_feature_vector(idx_b, blen, bfree);
10.
11. ASSERT(alen==blen);
12.
13. float64_t result=0;
14.
15. for (int32_t i=0; i<alen; i++)
16. {
17. if ((avec[i] > 0) && (bvec[i] > 0)) {
18. result++;

14“template” as used in C++

52

Support Vector Machines and similarities to work with heterogeneous data

19. }
20. }
21.
22. ((CSimpleFeatures<float64_t>*) lhs)-

>free_feature_vector(avec, idx_a, afree);
23. ((CSimpleFeatures<float64_t>*) rhs)-

>free_feature_vector(bvec, idx_b, bfree);
24.
25. return result;
26. }
27. # DocumentIntersectionSimilarity.cpp

We compute the similarity in lines 15-20. It is doing the intersection so it is quite easy. All
the other lines are how Shogun works: from the indexes we grab the real data and later
we free it.

4.6.2 Similarities or Kernels

We talked a lot about how nice similarities are and now we are using a Kernel. We are not
really using a Kernel, we are using a matrix to store the similarity results. By design it
was the best to use what Kernel class offers to us. The Kernel itself is empty, we only use
its matrix (and its name) to make everything easier.

If instead of using a Kernel we tried the first solution the results would be the same. From
the point of view of the user he/she only has to define new similarity functions and use
the similarity (empty) Kernel. Our Kernel is not projecting and is not calculating the inner
product. Theoretically our “Similarity Kernel” can't be called Kernel, practically it makes
everything easier.

4.6.3 Making it work with Python

End users are supposed to use Shogun with Python15. Each super-class in Shogun
contains a configuration file to create bindings from C++ to the other languages (in the
appendix there is a full example about how to run Shogun with Python). That
configuration file was one of our hardest tasks because we had to modify some existing
files and create news (for CSimilarity, for example). We talk about this because we spent
here a lot more time than we predicted. It is the kind of slacks you get in software
engineering cycles.

Our objective in this section is to show how easy is to work with similarities. Shogun is
quite simple and powerful to use: with a dozen of lines you can have a complex DM
algorithm running. We tried to make similarities as easy to use as in general Shogun is:

1. feats_train_0or1 = RealFeatures(array(train_set_0or1).T)
2. feats_test_0or1 = RealFeatures(array(test_set_0or1).T)
3. similarity = DocIntersectionSimilarity()

15 Shogun can also be used as an end-user in C++, R, Octave,.. but Python is the recommended way.

53

Support Vector Machines and similarities to work with heterogeneous data

4. kernel = SimilarityKernel(feats_train_0or1, feats_train_0or1,
similarity)

5. svm = LibSVM(10, kernel, labels)
6. svm.train()
7. out = svm.classify(feats_test_0or1).get_labels()
8. #Python test file

A lot of code is omitted (that script has more than 100 lines) but that contains the
essential. Lines 1 and 2 are creating the feature objects as required by any Shogun
method. Line 3 is creating a similarity, that similarity must use the same kind of features
we declared before, in this case “RealFeatures” otherwise it will not work. Line 4 creates
our kernel (sigh). As we said this is not really a kernel: it is a matrix storing the results
from our similarity function using the same name. The kernel requires three parameters:
the features to train16 and the similarity to calculate the matrix. Once this information is
provided we start the SVM process, line 6 is doing the hard job here. Line 7 is the output
from new points.

The only new thing we have to do is to create a similarity object while all the other code
is the usual code when working with Shogun. We only need one new line and the process
is intuitive as it is when working with Shogun.

To check the output we used the accuracy as in the chapter before. The results were
around 0.80 in all the similarities we tried17.

An 80% is not a better result that the ones offered in the chapter before, it is actually quite
similar. Our objective is not to provide a better way to work with documents (intersection
and union are the most basic similarity calculations that can be done with documents).
Our objective is to provide a different way to calculate it. An 80% is enough to prove that
our idea is working and that it is not just random luck. We are sure that with proper
similarities function the results can be better that the ones offered by the common kernels.

One interesting thing is that if someone checks the matrix after using a Kernel the results
there will be very cryptic because they come from “complicated formulas” and it is hard
to read it and to understand it.

If someone reads the matrix after using a Similarity function it is easy to read. It will
contain (in our case) integer numbers representing how many words the document share
(intersection, for example). We can check which are the support vector and understand
why. Reading our kernel we can also improve our results or we can know why we are
failing. We can understand every step while Kernels are a black box; they are not
providing any more information than the solution in case we are not experts on maths or
statistics.

While a Kernel tries (usually) to emulate an statistical behavior a similarity tries to
emulate a human behavior, that's AI. We make all the process “humanable”.

16 Rows and columns.
17 Intersection/union of documents represented by numbers or strings.

54

Support Vector Machines and similarities to work with heterogeneous data

4.6.4 Combining similarities

All that we have explained until now about the implementation was about using
similarities instead of kernels. As we said in the theoretical part that is not our main
objective, it is the key concept about how we are going to solve our main objective: deal
with heterogeneous data.

It is interesting how the “idea's path” went from A to B and the implementation went
from B to A. The path started with: “We have to find a better way to work with
heterogeneous data”, later we said: “each kind of data has to have its own method to
classify it, that method must be part of the DM algorithm, not a pre-process”. Finally we
said “that method will be a similarity function, we will use this with SVM”.

In the implementation we started by making SVM work with similarity. Now we will try
to combine different similarities and in the next step we will make it work with the
heterogeneous data.

Similarity is the key concept. It was the hardest part to design and implement and now
that everything is working it provides an easier framework to finish the rest.

In the previous example we were using “SingleSimilarity”: in our example
“DocIntersectionSimilarity” is a “SingleSimilarity”. We also prepared the templates to
combine similarities and from that templates any kind of similarities that require a
combination of them can be created.

SimilarityKernel doesn't care whether the Similarity function we provide is Single or
Combined or whatever. It has to be an object from the Similarity tree (inheritance) and it
has to provide a function called compute (polymorphism) that will return a number as
value. So when we will have to create combined similarities nothing has to be modified:
we only have to extend our code.

One of the combined similarities we created is called “DocumentCombinedSimilarity”. It
will calculate the Tanimoto Similarity [15], which is:

Tanimoto Similarity=
d1∧d2

d1∨d2

Given two documents their intersection over their union. We may have a similarity to
calculate the intersection between documents and another to calculate the union between
them. We use a combined similarity that will... combine the results:

1. float64_t CDocumentCombinedSimilarity::compute(int32_t idx_a,
int32_t idx_b)

2. {
3. float64_t result1 = intersectionSimilarity->similarity(idx_a,

idx_b);
4. float64_t result2 = unionSimilarity->similarity(idx_a, idx_b);
5. float64_t result = result1 / result2;

55

Support Vector Machines and similarities to work with heterogeneous data

6. return result;
7. }
8. # DocumentCombinedSimilarity.cpp

As can be checked we are using a compute function, the same function used before (with
different code). This code is doing the obvious (and expected): grabbing the intersection
and the union and returning one over the other. It is simple but this way of combining the
input data is much more powerful than most of the methods used today.

That simple division is something that MKL can't perform. That code can be anything,
instead of a division it can be one hundred lines of code and instead of calling an
intersection and union similarities it can call whatever; it may be computing 10
similarities at the same time... it can do whatever is required. We can also check that in
that function we have direct access to the data, not only to the similarity results.

1. CDocumentCombinedSimilarity::CDocumentCombinedSimilarity(CSimilari
ty* sim1, CSimilarity* sim2)

2. : CCombinedSimilarity<float64_t>(), intersectionSimilarity(sim1),
unionSimilarity(sim2)

3. {
4. ASSERT(intersectionSimilarity);
5. SG_REF(intersectionSimilarity);
6. ASSERT(unionSimilarity);
7. SG_REF(unionSimilarity);
8. }
9. #DocumentCombinedSimilarity.cpp

The creator is extending the “CCombinedSimilarity” template (in this case the template is
typed to floats). The only thing this subclass is doing is storing the similarities that will
later be used in the compute function. DocumentCombinedSimilarity is probably a too
wide name that can create confusion because this similarity can't combine anything to
calculate how similar two documents are. A better name is probably
“CDocumentCombinedTanimotoSimilarity”.

It requires the first similarity to compute the intersection and the second similarity to
compute a union. The header file stores that similarities as “CSimilarity”:

1. CSimilarity* intersectionSimilarity;
2. CSimilarity* unionSimilarity;
3. # DocumentCombinedSimilarity.h

This means that these similarities can be anything (single, combined,...). So we can use
combined similarities to calculate a combined similarity and so on.

What follows is a Python example showing this working:

1. feats_train_0or1 = RealFeatures(array(train_set_0or1).T)
2. feats_test_0or1 = RealFeatures(array(test_set_0or1).T)
3. similarity1 = DocIntersectionSimilarity()

56

Support Vector Machines and similarities to work with heterogeneous data

4. similarity2 = DocUnionSimilarity()
5. similarity = DocCombinedSimilarity(similarity1,similarity2)
6. kernel = SimilarityKernel(feats_train_0or1, feats_train_0or1,

similarity)
7. svm = LibSVM(10, kernel, labels)
8. svm.train()
9. out = svm.classify(feats_test_0or1).get_labels()
10. #Python test file

We only have to create the sub-similarities (single or combined), the combined similarity
and give that last one to the kernel. The kernel will call the compute function and that tree
of similarities will provide the result. The user only has to define how that compute
function will be in all the cases and as we proved inside that code anything can be done.
If a Turing Machine that writes 1's and 0's in a tape has been proved to calculate anything
a computer can a C++ function can too.

That script using the combined similarity has an average accuracy of 85%. Enough to say
that we can combine similarities to make SVM work.

4.6.5 Finally: heterogeneous data

Idea's design went from A to B. Implementation went from B to A. We have arrived to A
again. We have created all the tools we need and they have proved to work. SVM worked
with similarities and we said how to combine them; SVM worked with combined
similarities.

Before, we said: “each input will have its own similarity”. That's what we did before with
combined similarities but there is still one last step because we were using the same kind
of data for all the inputs: all the similarities we have been working until now worked with
the same feature vector, over the same positions. Since Shogun is prepared to work with
MKL it has to have a way to work with heterogeneous data. Shogun provides the perfect
tool we need: CombinedFeatures.

CombinedFeatures is a class that will contain all the data we need. It doesn't care about
the kind of data because it can contain at the same time documents, images,... Now it is
time to think how to design a solution given that tool.

After reading carefully again Shogun's code paying attention to how they work with
MKL we decided that each similarity will keep care of its own features (they do
something very similar). It was enough to add the following attributes to CSimilarity (that
will be inherited by all the sub-similarities):

1. /// feature vectors to occur on left hand side
2. CFeatures* lhs;
3. /// feature vectors to occur on right hand side
4. CFeatures* rhs;
5. #Similarity.h

The type is Cfeatures and it means that it can contain anything: documents, numbers,

57

Support Vector Machines and similarities to work with heterogeneous data

images,... combined features too.

We decide that it will be CombinedSimilarity's responsibility to provide each sub-
similarity with the features required:

1. bool CDocumentCombinedSimilarity::init(CFeatures* l, CFeatures* r)
2. {
3.
4. bool result=CCombinedSimilarity<float64_t>::init(l,r);
5. ASSERT(l->get_feature_class()==C_COMBINED);
6. ASSERT(r->get_feature_class()==C_COMBINED);
7. ASSERT(l->get_feature_type()==F_UNKNOWN);
8. ASSERT(r->get_feature_type()==F_UNKNOWN);
9.
10. CFeatures* lf=NULL;
11. CFeatures* rf=NULL;
12.
13. CListElement<CFeatures*>* lfc = NULL;
14. CListElement<CFeatures*>* rfc = NULL;
15.
16. lf=((CCombinedFeatures*) l)->get_first_feature_obj(lfc);
17. rf=((CCombinedFeatures*) r)->get_first_feature_obj(rfc);
18.
19. result = intersectionSimilarity->init(lf,rf);
20.
21. if (!result) {
22. SG_INFO("Initialising first sim failed\n");
23. }
24.
25. lf=((CCombinedFeatures*) l)->get_next_feature_obj(lfc) ;
26. rf=((CCombinedFeatures*) r)->get_next_feature_obj(rfc) ;
27.
28. result = unionSimilarity->init(lf,rf);
29.
30. if (!result) {
31. SG_INFO("Initialising second sim failed\n");
32. }
33. #CdocumentCombinedSimilarity.cpp

We can see that CombinedFeatures is a list of features so it iterates over the list sending
to each similarity its corresponding features. In this way each similarity can work with
different kind of features. Also some similarities can work over the same set. We have a
total control over it. This code can be done with a loop easily but we preferred to show it
without a loop to make clear how each similarity is receiving its features.

We just showed how to solve our initial problem, what follows is a Python working
example:

58

Support Vector Machines and similarities to work with heterogeneous data

1. # Get the features RAW, they are strings
2. featuresets_raw = [' '.join(set(document_features_string(d))) for

(d,c) in documents]
3. train_set_raw,test_set_raw= featuresets_raw[300:1000],

featuresets_raw[:300]
4. feats_train_raw = StringCharFeatures(train_set_raw, RAWBYTE)
5. feats_test_raw = StringCharFeatures(test_set_raw, RAWBYTE)
6.
7. # Get the features 0 or 1, they are number
8. featuresets_0or1 = [document_features(d) for (d,c) in documents]
9. train_set_0or1, test_set_0or1 = featuresets_0or1[300:1000],

featuresets_0or1[:300]
10. feats_train_0or1 = RealFeatures(array(train_set_0or1).T)
11. feats_test_0or1 = RealFeatures(array(test_set_0or1).T)
12.
13. combined_feats_train=CombinedFeatures()
14. combined_feats_test=CombinedFeatures()
15.
16. combined_feats_train.append_feature_obj(feats_train_raw)
17. combined_feats_test.append_feature_obj(feats_test_raw)
18. combined_feats_train.append_feature_obj(feats_train_0or1)
19. combined_feats_test.append_feature_obj(feats_test_0or1)
20.
21. #this similarity works with strings
22. similarity1 = DocIntersectionStringSimilarity()
23. #this similarity works with numbers
24. similarity2 = DocumentUnionSimilarity()
25. similarity = DocumentCombinedSimilarity(similarity1, similarity2)
26.
27. kernel = SimilarityKernel(combined_feats_train,

combined_feats_train, similarity)
28. #kernel.get_kernel_matrix()
29. svm = LibSVM(10, kernel, labels)
30. res = svm.train()
31. out = svm.classify(combined_feats_test).get_labels()
32. # Python final test example

The first lines, from line 2 to 5, are extracting features from documents (d is a list of
documents). The features extracted are strings. It is just saving each word as a feature in
its string format. That similarity will receive is a list of strings.

Lines from 8 to 11 are doing the classic conversion from documents to 0's or 1's
depending if that word appears or not.

Lines 13 and 14 are creating the objects CombinedFeatures for training and test. Later, on
lines from 16 to 19 that objects are filled. We can check that it is adding both the list of
strings and the list of numbers. Heterogeneous data.

From line 22 to line 25 we are creating the similarities as we did before. Line 27 is

59

Support Vector Machines and similarities to work with heterogeneous data

creating a SimilarityKernel as we did in the very beginning; the difference now is that the
features are combined. Nothing else is changed: the code from SimilarityKernel is the
same as in the first example.

This is a “silly toy example”. It is extracting two different kind of features from the same
dataset, but this example is enough to prove that it works. It is easy to see that it can be
adapted to bigger problems where each feature comes from a different source.

Also, what it is very important, we are using SVM without any change. It doesn't matter
if we are working with heterogeneous data or combined similarities or single similarities:
libSVM will work as usual because our design provided the matrix and the compute
function. As we said in theory we just showed that our new method will not require any
change to SVM algorithms. Not one, nothing.

That example had an accuracy around 85%. Enough to say that it worked and that we
proved a new working way to work with heterogeneous data.

Finally we can also check that “DocumentCombinedSimilarity” is working as before. No
change there was done. It is irrelevant for this class the kind of features the other
similarities are using.

4.6.6 Some extra work was required...

In the last example we saw that we used “StringCharFeatures” to represent the documents
as strings. “StringCharFeatures” is a feature provided by Shogun and it was not created to
work with lists of strings: it was created to work with long single strings like DNA
sequences. That required the similarity to do some extra work.

The result was that the execution was very slow. Just one execution took around 20
minutes so we needed to create a new kind of features that would perform better with our
problem. We created the feature type “BagOfWords”.

This is where we lost most time coding and where we spent more time implementing it.
Something that we didn't expect to do at the beginning was by far the hardest part. We
still had to use “StringCharFeatures” to get the information from the “outside” and then
tokenize it to our bag.

1. feats_train_raw = StringCharFeatures(train_set_raw, RAWBYTE)
2. feats_test_raw = StringCharFeatures(test_set_raw, RAWBYTE)
3.
4. feats_train_bw = BagWordsFeatures(feats_train_raw)
5. feats_test_bw = BagWordsFeatures(feats_test_raw)
6. #BagOfWords example

The rest of this script is the same as before but using the right similarity that suits with
“bag of words”.

One thing we decided was to use in that new feature the structure

60

Support Vector Machines and similarities to work with heterogeneous data

“std::tr1::unordered_set”. Although it is not 100% compatible the “tr1” library comes
with most of the system and “unordered_set” makes the execution even faster. It has to be
noted that it is still slower than working with number.

4.6.7 Complete Design

What follows is a some kind of class design, but more like it would be drawn in paper not
in UML because the objective is to show how we integrated our ideas with Shogun. We
don't focus on attributes or functions. The idea is to do a simple diagram as done in
Shogun's documentation. A circle means our class, a rectangle means a class owned by
Shogun, a triangle means more classes that we are not going to draw because they are
obvious and in that way we would save some paper and focus the diagrams in the
interesting things.

We started by the changes done to Features. To test heterogeneous we needed to create a
new kind of feature, we called it “BagWordsFeatures”. We didn't had much time and We
needed a solution, that is why we used an object from “StringFeatures”. That is a very
bad OO decision generating “coupling”, but if I would have tried to create an independent
new feature we would probably still working on it.

As explained why we added a similarity kernel, the final design was showed before. And
we created some new similarities to work with, in the next diagram what is called just
“Similarity” is the same as called in the diagram above “Similarity function”. Combined
similarity needs at least one similarity to work with. I made an “use” relation; UML
would probably call this kind of relation “composition”.

61

Features

StringFeatures
BagWords
Features coupling Lots of other

features

Support Vector Machines and similarities to work with heterogeneous data

4.7 Comparing it with MKL

It is not easy to compare what we did here with MKL because what we did here is the
work of one person for 4 months while MKL is the work of top scientists for several
years. It is like trying to compare a Premier League team with a regional team from the
University League. We say this because usually when you want to compare something is
to provide better results, it is not the case since we only provided a toy example. We can't
compare to MKL.

Theoretically it was explained before both approaches. MKL combines kernels, our
method combines similarities. MKL needs to use a different kernel for each kind of data
(actually each input) once that is provided, it will offer results. Our method needs to use a
different similarity function for each input (something that is easier that creating new
kernels) and then provide how to mix them (MKL does not need this step).

MKL works with all the kernels that are working nowadays, out method requires to write
similarities from zero but that similarities already exists applied to other problems.

With MKL it is easier to get results (if you don't have to define new kernels) and it is
faster, with out methods we are sure than you can get better results because it is a more
powerful way.

Our method can actually be used with MKL because as explained we are using “kernels”
to store similarities, we can use our similarities or combinations in MKL.

62

Similarity

StringCombinedSingle
Bag of
words

use

unionintersection intersectionintersection unionunion

Support Vector Machines and similarities to work with heterogeneous data

5. Conclusion

As usually happens with theses (especially with a 4 months thesis), the initial objectives18
have to be simplified to be able to finish some work and present some results.

Each chapter was written in the same way we did it practically: from the basic idea until
the final results. All the results and conclusions are spread inside the three big chapters so
we will not reproduce all here again. We will talk about what we did and what we missed.

At first my knowledge about SVM was basic, I got the idea about “using similarities with
SVM to deal with heterogeneous data” more or less, but I didn't fully understand what
that meant. After some background work I understood what that really meant. That is
explained in the introduction.

The next objective was to use Shogun and some NLP library to show a framework to
classify documents. That is shown in the middle chapter. I managed to do that but with
some missing points: I was not able to improve “tf-idf” or to find a better way to
represent documents. I had in mind to do an application about this part but it was totally
impossible.

Something I skipped was to develop new kernels for Shogun. I had to choose between
developing a new kernel or focusing on the similarity idea, I chose the second one.

Finally, we managed to develop our similarity idea using Shogun's library. As we showed
on the last big chapter we had to use a very simple design to be able to finish that in time.
We got good results and we are happy to see our prototype working.

The authors from the Shogun's library would like to add what we did and that is the best
feedback we can get.

18 They are in the introduction.

63

Support Vector Machines and similarities to work with heterogeneous data

6. Further work

The work we are doing in this thesis probably finishes here, since it is not part of a big
project no more people will work on it although the DM field is under big development
and that means finding better ways to work with heterogeneous data. SVM community is
busy with MKL. So we doubt no one will work ever on what we did here but as a
developers some new questions or problems arose and although they will get unanswered
it is our duty to express them here:

About what we did in the middle chapter (NLP + Shogun to classify documents):

● To implement the framework described in the middle chapter in an fully
functional application.

● Work with different document representation.
● Try to use more information from documents, like syntax.

About what we did in the last chapter (similarities + heterogeneous data):

● Explore some interesting side-effects, like how combined features can work with
missing values and how to use similarities for more than two training points. This
last problem seems very hard because it would require practically to redo what is
done about SVM.

● Make similarities return some kind of complex data, not a number. Usually the
way a human uses to describe how something is similar is by a description and we
know how to calculate the similarity between descriptions (documents). It can be
nice to try to adapt this to SVM. It also has to be studied if this is possible.

● Check how using a description (or an image or...) instead of a number as returning
value from a similarity condition makes us lose less information.

● Check Mercer's condition to see how a similarity function should be to apply it.
● Check Euclidean Space and Metric Space more deeply to see what is allowed.
● Try this with a real world example not with that “silly toy example”. We talked

about some examples like criminal analysis, sickness prediction, robot's
movement... We are sure that this will work.

● Create a good “BagOfWords” features not using “StringCharFeatures”.
● Implement all this in a optimal way not using the word “kernel”.

64

Support Vector Machines and similarities to work with heterogeneous data

7. Bibliography

[1] C.Cortes and V.N. Vapnik. Support-vector networks. Machine Learning, 20(3):273--
297, 1995.

[2] N.Cristianini and J.Shawe-Taylor, An introduction to Support Vector Machines and
other kernel-based learning methods, 2000. Cambridge, UK: Cambridge University Press.

[3] M.A.Hearst, Support Vector Machines, 1999. IEEE Intelligent Systems, 13(4), 18–28.

[4] C.Burges, A tutorial on Support Vector Machines for Pattern Recognition, 1998. Data
Mining and Knowledge Discovery, 2(2), 121–167.

[5] KR.Müller, S.Mika, G.Rätsch, K.Tsuda and B.Schölkopf, An Introduction to Kernel-
Based Learning Algorithms, 2001. IEEE Transactions on Neurla Networks, Vol. 12, NO.
2.

[6] G.Tsoumakas and I.Katakis, Multi-Label Classification: An Overview, 2007.
International Journal of Data Warehousing and Mining, 3(3):1-13.

[7] S.Sonnenburg, G.Raetsch, C.Schaefer and B.Schoelkopf, Large Scale Multiple Kernel
Learning. Journal of Machine Learning Research,7:1531-1565, July 2006, K.Bennett and
E.P.-Hernandez Editors.

[8] S.Bird, E.Klein and E.Loper, Natural Language Processing with Python - Analyzing
Text with the Natural Language Toolkit, 2009. O'Reilly Media.

[9] T.Joachims, Text Categorization with Support Vector Machines: Learning with Many
Relevant Features, 1997. Springer.

[10] T.Joachims. Making large-scale SVM learning practical. In B.Schoelkopf, C.J.C.
Burges, and A.J. Smola, editors, Advances in Kernel Methods - Support Vector Learning,
pages 169--184, Cambridge, MA, 1999. MIT Press.

[11] C.-C. Chang and C.-J. Lin, LIBSVM : a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

[12] Y.Yang and J.O.Pedersen, A Comparative Study on Feature Selection in Text
Categorization, 1997. Proceedings of the Fourteenth International Conference on
Machine Learning, pages 412-420, ISBN:1-55860-486-3.

[13] P.Soucy and G.W.Mineau, Beyond TFIDF Weighting for Text Categorization in the
Vector Space Model, 2005. International Joint Conference On Artificial Intelligence,
Proceedings of the 19th international joint conference on Artificial intelligence,
Edinburgh, Scotland, pages: 1130-1135.

65

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Support Vector Machines and similarities to work with heterogeneous data

[14] LL.Belanche, Heterogeneous Neural Networks: Theory and Applications, 2000. Tesi
doctoral de Universitat Politecnica de Catalunya, Departament de Llenguatges i Sistemes
Informatics.

[15] J.Turmo and H.Rodriguez, Learning rules for information extraction, 2002. Natural
Language Engineering 1, Cambridge University Press.

[16] R.Gonzalez, Python para todos, 2009. CC 2.5

[17] B.Eckel, Thinking in C++, 2000. 2nd ed. Volume 1. http://www.smart2help.com/e-
books/ticpp-2nd-ed-vol-one/Frames.html.

66

http://www.smart2help.com/e-books/ticpp-2nd-ed-vol-one/Frames.html
http://www.smart2help.com/e-books/ticpp-2nd-ed-vol-one/Frames.html

Support Vector Machines and similarities to work with heterogeneous data

8. Our contribution

Our contribution to the DM world is as we showed a new way to work with
heterogeneous data. We explained it theoretically and later we proposed a way to
implement it in a working library.

Our contribution can be summarized as follows: When dealing with heterogeneous data
create (or use) a similarity function for each type on input (or for each input) and then
create a similarity that will combine them all. Provide that functions to the SVM
algorithm and it will work.

Similarities are easy to construct because what we need is human knowledge and also
because we can make them to be a powerful tool. Similarities are more powerful than
kernels because they are not restricted to the inner product.

We would like to show the real power of this with a real world example dealing with
really different kind of inputs.

67

Support Vector Machines and similarities to work with heterogeneous data

A. Appendix – Sample test script

What follows is an example of script as the ones we used in the middle chapter to test the
results and different techniques. Comments are inside the code. No lines are removed and
if pasted that code would run and show the results in the console. As any Python code, it
can be run using the Python's interpret pasting the code in the interpret or saving the code
in a file and running “python name_of_file”. The last line should be properly indented.

1. import nltk
2. from nltk.corpus import movie_reviews
3. from nltk.corpus import stopwords
4. from nltk.corpus import wordnet as wn
5. import os
6.
7. from numpy import *
8. from numpy.random import randn
9. from shogun.Features import *
10. from shogun.Classifier import *
11. from shogun.Kernel import *
12.
13. # given a word we calculate its idf value that we will use in the

next function
14. def calculate_idf(word):
15. InDoc = 0
16. InDoc = sum(word in i for i in documents_as_set)
17. return math.log(float(1500./(1+InDoc)))
18.
19. # for each document returns its tfidf representation
20. def document_features_tfidf(document):
21. '''the document must be a list, not a set'''
22. document_words = set(document)
23. words_freqs = nltk.FreqDist(document)
24. features = []
25. for word in word_features:
26. if (word in document_words):
27. # tf x idf
28. features.append(words_freqs.freq(word) * total_idf[word])
29. else:
30. features.append(0.0)
31. return features/sqrt(sum(n*n for n in features))
32.
33.
34. # the bell's width, a quick way to calculate it
35. def calculate_gauss_width(train_set):
36. '''ugly and quick way to get a Gaussian width'''
37. ones = 0
38. for i in range(len(train_set)):
39. newones = sum(1 for feature in train_set[i] if feature > 0)

68

Support Vector Machines and similarities to work with heterogeneous data

40. ones = ones + newones
41. return ones/len(train_set)
42.
43.
44. stopWordsEng = set(stopwords.words('english'))
45. m = {'pos': 1., 'neg': -1.}
46.
47. # This is a powerful example of list comprehesion in Python
48. # we are removing non-alphanumeric words and stopwords
49. # we are also lemmatizing all the words with morphy
50. # and for each document we create a tuple with the words and the

label
51. documents = [([wn.morphy(word) for word in

movie_reviews.words(fileid)
52. if word.isalpha() and word.lower() not in stopWordsEng]
53. , m[category])
54. for category in movie_reviews.categories()
55. for fileid in movie_reviews.fileids(category)]
56.
57. # if a word does not exist morphy returns "None", we need to

remove
58. # all the "None" entries
59. documents = [([word for word in doc if word is not None],c)
60. for (doc,c) in documents]
61.
62. random.shuffle(documents)
63.
64. # working with a set makes calculate_idf faster, it was very very

slow
65. documents_as_set = [set(words) for (words, label) in documents]
66. categories = [c for (d,c) in documents]
67.
68. # this for is making the 4-fold cross validation
69. for x in range(0,2000,500):
70. print "CROSS VALIDATION",x/500.
71. start, end = x, x+500
72.
73. # we separate the labels between train and test
74. trainlab = categories[:start] + categories[end:]
75. testlab = categories[start:end]
76.
77. # for all the documents in the train set, we want to know the

frequency
78. # of their words
79. all_words = nltk.FreqDist(word for (words,labels) in

documents[:start] + documents[end:] for word in words)
80. # we choose the top 2000 words (the 2000 words more frequent)
81. word_features = set(all_words.keys()[:2000])
82. # for that top words we calculate its idf value

69

Support Vector Machines and similarities to work with heterogeneous data

83. total_idf = dict((w, calculate_idf(w)) for w in word_features)
84.
85. # we extract the features from each document, each document

will be
86. # represented by the tf-idf of its words
87. featuresets_tfidf = [document_features_tfidf(d) for (d,c) in

documents]
88. # we separate the features for training and test
89. train_set_tfidf = featuresets_tfidf[:start] +

featuresets_tfidf[end:]
90. test_set_tfidf = featuresets_tfidf[start:end]
91. feats_train_tfidf = RealFeatures(array(train_set_tfidf).T)
92. feats_test_tfidf = RealFeatures(array(test_set_tfidf).T)
93.
94. labels = Labels(trainlab)
95.
96. width = calculate_gauss_width(test_set_tfidf)
97.
98. ###################################
99. #REAL EXAMPLES FROM ROTTEN TOMATOES
100. rotten_tomatoes = []
101. for file in os.listdir("/home/juanma/rotten_tomatoes/neg"):
102. f = open("/home/juanma/rotten_tomatoes/neg/"+file, "r")
103. raw = f.read()
104. tokens = nltk.word_tokenize(raw)
105. text = nltk.Text(tokens)
106. rotten_tomatoes.append((text,-1.))
107.
108. for file in os.listdir("/home/juanma/rotten_tomatoes/pos"):
109. f = open("/home/juanma/rotten_tomatoes/pos/"+file, "r")
110. raw = f.read()
111. tokens = nltk.word_tokenize(raw)
112. rotten_tomatoes.append((tokens,1.))
113.
114. random.shuffle(rotten_tomatoes)
115.
116. rotten_formatted = [([wn.morphy(word) for word in review
117. if word.isalpha() and word.lower() not in

stopWordsEng] , c)
118. for (review,c) in rotten_tomatoes
119.]
120.
121. rotten_formatted = [([word for word in doc if word is not

None],c)
122. for (doc,c) in rotten_formatted]
123.
124. featureRotten = [document_features_tfidf(d) for (d,c) in

rotten_formatted]
125. rotten_test = RealFeatures(array(featureRotten).T)

70

Support Vector Machines and similarities to work with heterogeneous data

126. categoriesRotten = [c for (d,c) in rotten_formatted]
127. labelsRotten = Labels(array(categoriesRotten))
128. # END OF REAL EXAMPLES FROM ROTTEN TOMATOES
129. ###
130.
131. print "STARTING TEST....WIDTH: ", width
132.
133. # i will be used for Capacity
134. for i in (0.5, 1., 10., 100.):
135. #width goes from 1.5*width to 5*width
136. for j in (1.5, 2., 5.,):
137. actual_width = width * j
138. # we create the kernel with the train features and the

chosen width
139. kernel = GaussianKernel(feats_train_tfidf,

feats_train_tfidf, actual_width)
140. # this kerenel is used to create the svm object
141. svm = LibSVM(i, kernel, labels)
142. # the svm is trained, it finds the support vectors
143. res = svm.train()
144. # we check it against our test set
145. out = svm.classify(feats_test_tfidf).get_labels()
146. acc = sum(sign(out)==testlab)
147. print "C: ",i, "W: ", j, " ",round(acc/500.,2),
148. # we also check it against the documents from rotten

tomatoes website
149. outRotten = svm.classify(rotten_test).get_labels()
150. acc = sum(sign(outRotten)==categoriesRotten)
151.print round(acc/60.,2)

71

Support Vector Machines and similarities to work with heterogeneous data

72

