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(BSc in Air Navigation Systems and

Technologies)

Institute for Communications and Navigation

Prof. Dr. Christoph Günther

Supervised by Prof. Dr. C. Günther
Dipl.-Ing. K. Giger

July, 2010

Institute for Communications and Navigation Technische Universität München
Theresienstrasse 90

80333 Munich





Abstract

This work introduces, implements and evaluates different adaptive Kalman fil-
tering techniques based on the innovation autocorrelation function. The reason
of considering these adaptive techniques is the effect of a wrong noise statistics
initialization in a Kalman filter and the resulting estimation errors. Of course,
different noise statistics than the actual for the stochastic process under estima-
tion would lead to significant errors. For that reason, it is interesting to have
a meaning of the effect of wrong noise statistics and to adapt these quantities
when necessary.
The adaptive techniques considered within this work are the innovation autocor-
relation based methods. The particularity of these methods is that the innova-
tion sequence, defined as the new information introduced by the measurements,
is a stationary Gaussian white noise sequence for an optimum filter. Moreover,
an estimate of the autocorrelation function of that innovation sequence is ob-
tained easily by using the ergodic property of a stationary sequence.
Finally, the Kalman filter is applied to the problem of carrier-phase tracking in
a GNSS receiver. Some of the algorithms are evaluated for the case of carrier-
phase tracking. Different scenarios from different measurement campaigns are
used in this later implementation. The results demonstrate the estimated values
of the noise variances for a carrier-phase tracking loop.



Zusammenfassung

Diese Arbeit beschreibt und evaluiert verschiedene adaptive Kalman Filter Ver-
fahren, welche auf der Autokorrelationsfunktion der Innovationssequenz ba-
sieren. Die Motivation adaptive Techniken zu untersuchen, ist der Effekt ei-
nes suboptimal initialisierten Kalman Filters und den daraus resultierenden
Schätzfehlern. Natürlich ergeben unterschiedliche Werte für die Rauschkovari-
anzmatrizen im Prozess und Schätzmodell signifikante Abweichungen. Deshalb
ist es zuerst interessant die Bedeutung von falsch gewählten Statistiken zu ken-
nen und diese Werte, wenn nötig, adaptiv anzupassen.
Die adaptiven Verfahren, welche in dieser Arbeit diskutiert werden, basieren auf
der Korrelation der Innovationssequenz. Für ein optimales Filter kann gezeigt
werden, dass diese Innovationssequenz, definiert als die neue Information ein-
geführt durch Messdaten, normalverteilt und weiss ist. Durch Ausnützen der
Ergodizität einer stationären Sequenz, kann zudem eine Schätzung der Korre-
lationsfunktion der Innovationssequenz berechnet werden.
In dieser Arbeit wir der Kalman Filter zusätzlich für die Regelung der Trägerphase
in einem GNSS Empfänger eingesetzt. Einige der diskutierten Algorithmen wer-
den am Beispiel der Trägerphasen-Regelung getestet. Dazu werden Messdaten
unterschiedlicher Messkampagnen verarbeitet. Die Resultate liefern einen Hin-
weis auf die Statistiken der Rauschprozesse im Trägerphasenregelkreis.
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Chapter 1

Introduction

The main purpose of GNSS signal tracking is to achieve a fine synchronization
between the receiver and the incoming signal for later processing stages such
as the navigation message demodulation and the pseudorange/phase measure-
ment. There exist different approaches in the problem of tracking. Despite the
diversity of approaches and techniques involving tracking, this study is focused
in those related with carrier-phase tracking. The interest in carrier-phase track-
ing is that it represents the weakest link at the receiver after acquisition and
needs a particular processing.
The traditional carrier-phase tracking architecture consists of a first-, second-
or third-order phase lock loop (PLL) filter and a proportional controller re-
sponsible for adjusting the locally generated signal copy to that received at the
antenna. The carrier-phase steering of the local copy is achieved by means of a
numerically controlled oscillator (NCO) and a discriminator provides a measure
of the phase error between the signals. Figure 1.1 shows a typical carrier-phase
tracking loop in a GNSS receiver. The relative simplicity of such a tracking
architecture should be contrasted with its main limitation; a filter of this form
assumes a deterministic signal dynamics model which is not the actual case.
The recent software-defined GNSS receivers and the increasing computing power
of these receivers have made possible more robust and powerful tracking solu-

Figure 1.1: Typical carrier-phase tracking loop
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tions to that discussed above. The Kalman filter-based tracking architecture
is an example. The signal dynamics are modeled as a linear stochastic process
and the problem of tracking turns mainly into an estimation problem.
In Chapter 2, several simulations were aimed to evaluate the performance of
a Kalman filter for wrong parameter initialization, i.e., wrong noise statistics
parameters and state vector dimension mismatch. Furthermore, large estima-
tion errors appear when the performance of the Kalman filter is suboptimum.
For that reason, it is necessary to apply some self-correcting technique when
the performance of the Kalman filter is suboptimum, i.e., a method of adaptive
filtering. The purpose of an adaptive filter is to reduce the large estimation
errors due to wrong a priori noise statistics in a Kalman filter.
There exist different adaptive techniques. The multiple model adaptive estima-
tion (MMAE) is composed of multiple elemental parallel Kalman filters, each
using the same measurements but under different statistical filter matrices, i.e.,
the process and measurement noise covariance matrices Q and R, respectively.
The conditional probability associated to each estimate is obtained based on the
measurements. Finally, the scheme forms the adaptive optimal estimate as a
weighted sum of the estimates produced by each of the individual Kalman filters
using that conditional probability. Figure 1.2 illustrates a MMAE scheme. For
the problem of phase tracking, a MMAE scheme would imply to have a bank
of filters for each satellite signal, resulting in a large quantity of filters. There-
fore, that scheme has been not considered within this work. Other approaches

Figure 1.2: Multiple model adaptive estimation

in adaptive filtering are discussed in [1]. The innovation correlation adaptive
methods are of particular interest as they make use of the zero-mean Gaussian
white noise property of the innovation sequence defined as:

νk = yk −Cx̂−
k (1.1)

Some of these innovation correlation methods are discussed in Chapter 3.
Different adaptive algorithms were implemented and tested for a simulated
stochastic process with different parameter initialization (see Chapter 3). The
design parameters of some of the algorithms were also considered and evalu-
ated. The results served as guidelines for the later implementation in a GNSS
software-defined receiver in Chapter 5.
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Chapter 2

Kalman Filter Performance
For Wrong Parameter
Initialization

2.1 Discrete-time system (signal) dynamics and
Kalman filter form

The discrete-time signal dynamics model considered in this evaluation of the
Kalman filter performance is described by the equations:

xk+1 = Axk +wk (2.1)

yk = Cxk + vk (2.2)

where xk is the n-dimensional state vector, A is the state transition matrix, wk

is the process noise vector, yk is the p-dimensional measurement vector, C is
the observation mapping matrix, and vk is the measurement noise vector. The
sequences vk and wk are uncorrelated Gaussian white noise sequences with the
properties:

E {vi} = 0, E
{
vivj

T
}
= Rδij (2.3)

E {wi} = 0, E
{
wiwj

T
}
= Qδij (2.4)

E
{
viwj

T
}
= 0pxn, for any i and j (2.5)

where Q and R are the process and measurement noise covariance matrices,
respectively, 0pxn denotes the pxn zero matrix, and δij is the Kronecker’s delta
defined as:

δij =

{
1 if i = j,

0 if i ̸= j
(2.6)

The derivation of the particular matrix expressions used in this evaluation of
the Kalman filter is left for Appendix A.
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Given an initial a priori estimate of the state x̂0 and its state error covariance
P̂0, the optimum linear unbiased estimate for the system defined by (2.1) and
(2.2) is:

State propagation: x̂−
k = Ax̂k−1 (2.7)

P̂−
k = AP̂k−1A

T + Q̂ (2.8)

Kalman gain: Kk = P̂−
k C

T
[
CP̂−

k C
T + R̂

]−1

(2.9)

State estimation: x̂k = x̂−
k +Kkνk (2.10)

P̂k = (I−KkC) P̂−
k (2.11)

Innovation sequence: νk = yk −Cx̂−
k (2.12)

where x̂−
k and P̂−

k are the n-dimensional propagated state estimate vector and
nxn error covariance matrix conditioned on observation prior to k, respectively,
x̂k and P̂k are the estimated same quantities after using the observation yk and
Kk is the Kalman gain. R̂ and Q̂ denote the estimated quantities of the noise
statistics in Eqs. (2.4) and (2.3), respectively.

2.2 Noise statistics effect

The effect of a priori unknown noise statistics on the estimation process is
reviewed here. The noise statistics refer to:

• The process noise covariance, Q.
• The measurement noise covariance, R.

This evaluation was performed by first simulating a trajectory described by Eqs.
(2.1) and (2.2). The measurements yk obtained from this simulation, the initial
a priori estimate x̂0 and its associated state error covariance P̂0 were the initial
conditions for starting the estimation process.
As long as the noise statistics are assumed stationary (do not change over time),
the Kalman gain converges to a steady-state gain denoted by K (the subscript
k is omitted). Similarly, the error covariance matrices are also steady and the
subscripts can be dropped.
The availability of the actual state vector xk allowed to compute the actual
error covariance matrix, i.e.:

Pactual = E
{
(xk − x̂k)(xk − x̂k)

T
}

(2.13)

Moreover, the Kalman filter provides an estimate of this quantity (see Eq.
(2.11)). Then, an element-wise comparison between these two matrices is inter-
esting, in particular between the (1,1) elements, as they are the error variance of
the first state vector component. Therefore, the effect of a wrong noise statistic
in the initialization of the Kalman filter can be observed with these quantities.
In addition, two quotients between the (1,1) elements of the error covariance
matrices are interesting. The first refers to the reliability of [P̂]1,1, i.e.:

[P̂]1,1
[Pactual]1,1

(2.14)
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This quantity indicates in how much the estimated error variance by the Kalman
filter differs from the actual. Of course, if this quotient is larger than 1, that
would indicate that the estimated error variance is larger than the actual.
Similarly, another interesting quotient is that comparing the actual error vari-
ance to the optimum error variance, i.e., the error variance resulting from esti-
mating using the actual noise covariances:

[Pactual]1,1
[Poptimum]1,1

(2.15)

This last quotient is a measure of the performance loss because of using wrong
noise covariances in the estimation.

2.2.1 Trajectory simulation

Prior to the estimation process, it was necessary to generate a trajectory with
known noise statistics and state vector. That was achieved by implementing
Eqs. (2.1) and (2.2) in MATLAB for a n = 2-dimensional state vector and a
p = 1-dimensional measurement vector. The length of the trajectory was cho-
sen to be 104 samples. The integral time Ti is 1 ms to make it similar to the
minimum predetection integration interval in a GPS receiver tracking loop for
the L1 carrier.
For that particular case of a p = 1-dimensional measurement vector, the mea-
surement noise statistical properties are given by:

E {vi} = 0, E
{
vivj

T
}
= rIpδij , (2.16)

where r is the measurement noise variance and Ip denotes the p-dimensional
identity matrix.
For the process noise vector wk, it must be satisfied that:

wk ∼ N (0,Q), (2.17)

where Q is defined as the process noise covariance matrix. Then, a way of
obtaining wk is by:

wk = LT zk, (2.18)

where L is a lower triangular matrix with strictly positive diagonal entries ob-
tained by the Cholesky decomposition of Q (i.e., Q = LTL) and zk ∼ N (0, I)
for k = 1, . . . , 104.

2.2.2 Different process noise evaluation

Once a trajectory was generated, the estimation process was performed for
different process noise covariances. These different process noise covariances
were in fact scaled versions of the actual process noise Q used in the generation
of the trajectory. Therefore, a process noise scale factor q was defined as:

Q̂ = qQ, (2.19)

where Q̂ denotes the a priori estimated process noise covariance matrix. As
explained above, the effect of this scaling factor q can be observed by comparing
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the estimated error variance to the actual. Figure 2.1 illustrates the Kalman
filter’s P̂ reliability for different scale factors. As expected, the estimated error
variance [P̂]1,1 is equal to the actual when estimating using the correct process
noise variance. Furthermore, it is more desirable to perform the estimation for
q > 1 as the estimated error variance does not degrade that much from the actual
error variance. Similarly, Figure 2.2 shows the performance loss when using a
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Figure 2.1: Estimated error variance reliability ([P̂]1,1/[Pactual]1,1) when using
a wrong process noise covariance averaged for 20 trajectories; 50 scale factors
evaluated

wrong process noise. Of course, the optimum performance is for the actual
process noise, but a different scaled version of it would result in a significant
degradation of the performance.

2.2.3 Different measurement noise evaluation

It would be also interesting to plot the same quantities as in Figs. 2.1 and 2.2 for
different scaled versions of the actual process noise variance r (i.e., r̂ = ρr) and a
fixed process noise covariance equal to the actual one (i.e., Q̂ = Q). Figures 2.3
and 2.4 are the resulting plots. The reliability of the estimated error variance
is more affected compared to before, while the performance loss still appears
whenever the measurement noise is different from the actual. The reason that
Figs. 2.2 and 2.4 look identically but mirrored is because a non-trivial property
of the Kalman gain. An alternative expression for Eq. (2.11) is [3]:

P̂k = A

(
P̂k − P̂kC

T
(
CP̂kC

T + R̂
)−1

CP̂k

)
AT + Q̂ (2.20)

8



10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

q

P
er

fo
rm

an
ce

 lo
ss

Figure 2.2: Performance loss ([Pactual]1,1/[Poptimum]1,1) for a Kalman filter
when using a wrong process noise covariance averaged for 20 trajectories; 50
scale factors evaluated
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Figure 2.3: Estimated error variance reliability ([P̂]1,1/[Pactual]1,1) when using
a wrong measurement noise covariance averaged for 20 trajectories; 50 scale
factors evaluated

For a scaled version of the noise covariance matrices (i.e., R̂′ = αR̂ and Q̂′ =
αQ̂):

P̂k|α = A

(
P̂k|α − P̂k|αC

T
(
CP̂k|αC

T + αR̂
)−1

CP̂k|α

)
AT + αQ̂

= αP̂k (2.21)
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Figure 2.4: Performance loss ([Pactual]1,1/[Poptimum]1,1) for a Kalman filter
when using a wrong measurement noise covariance averaged for 20 trajecto-
ries; 50 scale factors evaluated

Similarly, Eq. (2.8) for a scaled version of the noise matrices is:

P̂−
k|α = αP̂−

k (2.22)

Substituting (2.22) in (2.9):

Kα = P̂−
k|αC

T
[
CP̂−

k|αC
T + αR̂

]−1

= K (2.23)

Therefore, the scaling of R and Q by α results in a scaled error covariance
matrix P scaled by α, but the scaling has no impact on the Kalman gain.

2.3 State-vector dimension mismatch effect

Another particular evaluation is that regarding a different dimension between
the state estimate vector and the actual process state vector, i.e., ntraj ̸= nestim.
For a higher dimension in the state estimate vector than in the process state
vector (dim(x) < dim(x̂)), it is interesting to quantify the effect of the exceeding
component(s) on the first state vector component. Similarly to Section 2.2.2,
Figure 2.5 shows the performance loss for a ntraj = 2-dimensional trajectory
state vector and nestim = 3-dimensional state estimate vector and different pro-
cess noise covariances. For dim(x) > dim(x̂), Figure 2.6 shows the same quotient
for a ntraj = 2-dimensional trajectory state vector and nestim = 1-dimensional
state estimate vector.
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Figure 2.5: Performance loss for a ntraj = 2-dimensional trajectory state vector
and nestim = 3-dimensional state estimate vector and different process noise
covariances (averaged for 20 trajectories; 50 scale factors evaluated)
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Figure 2.6: Performance loss for a ntraj = 2 = 2-dimensional trajectory state
vector and nestim = 1-dimensional state estimate vector and different process
noise covariances (averaged for 20 trajectories; 50 scale factors evaluated)
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Chapter 3

Adaptive Kalman Filtering

Chapter 2 has demonstrated that a Kalman filter requires an exact knowledge
of the process noise covariance matrix Q and the measurement noise covariance
matrix R. Moreover, the use of wrong a priori statistics in the design of a
Kalman filter can lead to large estimation errors. Therefore, these statistics
should be checked at regular intervals and adapted accordingly. Otherwise the
Kalman filter would be said to perform suboptimally. Different approaches in
adaptive filtering are discussed in [1]. These adaptive methods are divided into:

• Bayesian estimation. For a vector α of unknown parameters in the system,
recursive equations for the a posteriori probability density of xk and α are
obtained for p(xk,α|Yk) = p(xk|α,Yk)p(α|Yk), where p(xk|α,Yk) is
Gaussian with mean x̂k and covariance P̂k(α) obtained from the Kalman
filter, and Yk = {y1, . . . , yk} is the measurement set until the time
instant k.

• Maximum likelihood (ML) estimation. The ML likelihood of α can be
obtained by maximizing the marginal density p(α|Yk) with respect to α.

• Correlation methods. These methods are mainly applicable to constant
coefficient systems and consider the autocorrelation function of the output
yk or the autocorrelation function of the innovation sequence νk. The
estimates from considering the innovation sequence are more efficient than
those obtained from the output yk since the innovation sequence is less
correlated.

• Covariance-matching techniques. These techniques make the innovation
sequence consistent with its theoretical covariance and modify the noise
statistics accordingly to bring the actual covariance to the theoretical.

Only the innovation correlation methods are considered here.

3.1 Innovation correlation methods

In Kalman filtering, the innovation sequence (also known as observational resid-
ual or residual sequence) is defined as:

νk = yk −Cx̂−
k (3.1)

This quantity appears in Eq. (2.10) and it is said to bring the new information
(i.e., the innovation) from the measurement yk into the state estimate of x̂k.

12



The interest in this quantity is that, for an optimum filter, this sequence appears
to be zero-mean Gaussian white noise.

Proof. (After [4]). Let e−k = xk− x̂−
k denote the error in estimating the a priori

state. Then,
νk = Ce−k + vk (3.2)

The innovation autocorrelation function is defined as:

Γl ≡ E
{
νkν

T
k−l

}
= E

{
(Ce−k + vk)(Ce−k−l + vk−l)

T
}

= CE
{
e−k e

−
k−l

}
CT +CE

{
e−k v

T
k−l

}
, for l > 0 (3.3)

Using (2.1), (2.2), (2.7) and (2.10),

e−k = xk − x̂−
k = Axk−1 +wk−1 −Ax̂k−1

= Axk−1 +wk−1 −A
(
x̂−
k−1 +K

(
yk−1 −Cx̂−

k−1

))
= A(I−KC)e−k−1 −AKvk−1 +wk−1 (3.4)

Iterating as in (3.4) l times,

e−k = [A(I−KC)]
l
e−k−l −

l∑
j=1

[A(I−KC)]
j−1

AKvk−j

+
l∑

j=1

[A(I−KC)]
j−1

wk−j (3.5)

Postmultiplying (3.5) by e−k−l

T
and calculating the expected value:

E
{
e−k e

−
k−l

T
}
= [A(I−KC)]

l
P− (3.6)

where P− is the steady-state a priori error covariance matrix defined as:

P− = A(I−KC)P−(I−KC)TAT +AKRKTAT +Q (3.7)

The previous equation is the algebraic Riccati equation for an optimum filter.
The recursive equations in a Kalman filter converge the error covariance matrix
P̂−

k satisfying this Riccati equation. Postmultiplying now (3.5) by vT
k−j and

calculating the expected value:

E
{
e−k v

T
k−l

}
= − [A(I−KC)]

l−1
AKR (3.8)

Notice that the term: ∑l
j=1 [A(I−KC)]

j−1
AKvk−j

in Eq. (3.5), when postmultiplied by vT
k−l, makes a contribution only when

j = l.
Inserting Eqs. (3.6) and (3.8) into (3.3):

Γl = C [A(I−KC)]
l−1

A
[
P−CT −K(CP−CT +R)

]
, l > 0 (3.9)

When l = 0,

Γ0 = CP−CT +R (3.10)
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From (3.9) and (3.10), it is seen that the autocorrelation function of νk does
not depend on k. Therefore, νk is a stationary random sequence.

For an optimum gain Kop, i.e., Kop = P−CT
[
CP−CT +R

]−1
, Eq. (3.9)

equals 0 for all l ̸= 0. Then, for this assumption of optimum gain, νk is white
noise.
Finally, since νk is a linear sum of Gaussian random variables (i.e., vk), it is
also Gaussian.

As an example, Figure 3.1 illustrates the normalized autocorrelation func-
tion and power spectral density function of an innovation sequence νk for an
optimum Kalman filter. Clearly, the autocorrelation peak appears for a time
lag l = 0, while the correlation vanishes rapidly for all l ̸= 0.
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Figure 3.1: Normalized autocorrelation function and power spectral density of
an innovation sequence for an optimum Kalman filter

3.1.1 Whiteness test for the innovation sequence

In Section 3.1, it has been demonstrated that the innovation sequence νk is
a zero-mean stationary white noise Gaussian sequence for an optimum filter.
However, for a suboptimum filter, the innovation sequence is correlated as in
Eqs. (3.9) and (3.10).
For an innovation-based adaptive algorithm, it would be necessary to check the
statistics of this innovation sequence in order to determine the performance of
the Kalman filter. A reliable measure is to check whether or not the sequence is
white. Therefore, a test of whiteness should be performed upon the innovation
sequence. The statistical hypothesis test from [6] is an example. Hypothesis
testing is a process of establishing the validity of a hypothesis and to decide
whether or not a hypothesis holds for a certain set of parameters of a statistical
model.
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For the particular case of a one-dimensional innovation sequence νk = {ν1, . . . , νN}T ,
the Ljung-Box test states that the test statistic [6]:

QLB = N(N + 2)
m∑
l=1

(N − l)−1

(
Γ̂l

Γ̂0

)2

(3.11)

where

Γ̂l =
1

N

N∑
j=l

νjν
T
j−l (3.12)

would for a large sample size N be distributed as χ2
m since the estimates of the

autocorrelation function
{
Γ̂1/Γ̂0, . . . , Γ̂m/Γ̂0

}
are multivariate normal with

zero mean, Var(Γ̂l/Γ̂0) = (N−l)/(N(N+2)) and Cov(Γ̂i, Γ̂j) = 0 for i ̸= j. The
hypothesis that the innovation samples ν1, . . . , νN are independent and iden-
tically distributed (i.i.d.) is rejected at a significance level α if QLB > χ2

1−α,m,
where χ2

1−α,m is the 1 − α quantile of the chi-squared distribution with m de-
grees of freedom.
For the purpose of determining the whiteness of the innovation samples ν1, . . . , νN ,
it was enough to consider a number of lags m significantly smaller than the sam-
ple size (m ≪ N), but larger than 1. The value of this number of lags used in
the implementation is m = 15 for a sample size of N = 1000.

3.2 Estimation of Q and R

For the estimation of Q and R, different algorithms were implemented for a
Kalman filter of the form (2.7-2.11) for a n = 2-dimensional state vector and p =
1-dimensional measurement vector. For both the simulation of the trajectory
and the Kalman filter estimation, the noise statistical properties are:

E {vi} = 0, E
{
vivj

T
}
= rIpδij (3.13)

E {wi} = 0, E
{
wiwj

T
}
= Qδij (3.14)

E
{
viwj

T
}
= 0pxn, for any i and j (3.15)

where r is defined as the measurement noise variance in units of rad2, Q is the
process noise covariance matrix and Ip denotes the p-dimensional identity ma-
trix. From Eq. (3.15), it is assumed an uncorrelated noise model. Finally, the
integral time Ti is 1 ms (minimum predetection integral time in a GPS receiver
phase tracking loop for the L1 carrier).
For a N sample size of the innovation sequence, an estimate of the autocorre-
lation function is obtained as in Eq. (3.12). The estimates Γ̂l are biased for a
finite sample size according to:

E
{
Γ̂l

}
= (1− l/N)Γl (3.16)

However, this estimate is preferable since the mean-square error is smaller than
for the unbiased estimate ([5]).
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3.2.1 Estimation of r from Mehra ([4])

For the algorithm in [4], an estimate of the measurement noise variance, r, is
obtained from Eq. (3.10):

r̂ = Γ̂0 −C(P−CT ) (3.17)

The problem of obtaining an estimate of r from Eq. (3.17) is that there is no
availability of the actual steady-state error covariance matrix P−, but to the
Kalman filter estimate of it, P̂−. However, an estimate of r can be obtained by
inserting (3.10) in (3.9) for l = 1 and l = 2, leading to:

P−CT = KΓ0 +D+

[
Γ1

Γ2

]
(3.18)

where

D =

[
CA

CA(I−KC)A

]
(3.19)

and ( · )+ denotes the pseudo-inverse matrix. Using the estimates of the auto-
correlation function Γ̂0, Γ̂1 and Γ̂2 in Eq. (3.18), the matrix product P−CT is
estimated and it can be substituted back in Eq. (3.17). Figure 3.2 shows the
estimates of r from the algorithm in [4].
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Figure 3.2: r̂ estimates from the algorithm in [4]. Each adaptation stage is
performed after 1000 samples. The actual value is r = 10 rad2.

3.2.2 Estimation of r from Myers et al. ([7])

Similarly, the algorithm described in [7] computes an empirical estimator for the
noise statistics from a sample realization of the measurements yk. At a given
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observation time k, the measurement vector yk is given by yk = Cxk + vk,
where vk ∼ N (0,R). Then, an intuitive approximation for vk is given by:

v̂k = yk −Cx̂−
k (3.20)

An unbiased estimator for r is obtained by first computing the sample mean
and then an estimate of the covariance according to:

v̄ =
1

N

N∑
j=1

v̂j (3.21)

and

Cov(v̂k) =
1

N − 1

N∑
j=1

(v̂j − v̄)(v̂j − v̄)T (3.22)

Of course, the sample mean would tend to 0 for a large sample size N and the
estimator of the covariance is biased with the expression:

E {Cov(v̂k)} =
1

N

N∑
j=1

CP−
j C

T +R (3.23)

Solving the previous equation for R and considering the estimated quantities of
each term, an unbiased estimate of R is given by:

R̂ =
1

N − 1

N∑
j=1

[
(v̂j − v̄)(v̂j − v̄)T −

(
N − 1

N

)
CP̂−

j C
T

]
(3.24)

For the particular case of a one-dimensional measurement vector, Figure 3.3
shows the estimates of r using this algorithm.

3.2.3 Estimation of Q from Mehra ([4])

The adaptive algorithm in [4] presents also a method for obtaining an estimate
of the process noise covariance matrix Q.
According to [4], an estimate of Q can be obtained with the set of equations:

i−1∑
j=0

CAjQ(Aj−i)TCT = CP−(A−i)TCT −CAiP−CT

−
i−1∑
j=0

CAjΩ̂(Aj−i)TCT , i = 1, . . . , n (3.25)

where
Ω̂ = A

[
−KCP− −P−ĈTKT +KΓ̂0K

T
]
AT (3.26)

The term P−CT in (3.25) is the same as in (3.18) and it is treated and esti-
mated as a single term. For that reason, Eq. (3.25) can be completely solved

for Q because of the property
(
P−CT

)T
= CP−.

The expression (3.25) is obtained by substituting back for P− (i.e., the actual
steady-state error covariance matrix) in Eq. (3.7) 2 times and premultiplying
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Figure 3.3: r̂ estimates from the algorithm in [7]. Each adaptation stage is
performed after 1000 samples. The actual value is r = 10 rad2.

and postmultiplying both sides by C and A−kCT , respectively. By perform-
ing these multiplications, the right-hand side of (3.25) is completely determined
from P−CT and Γ̂0. However, the set of equations resulting is not linearly in-
dependent and a linear independent subset of these equations should be chosen.
For the particular case of a n = 2-dimensional state vector,

CQ(A−1)TCT =ĈM̂(A−1)TCT −CAP−CT

−CΩ̂(A−1)TCT (3.27)

Substituting in Eq. (3.27) Q by qwQ0 defined as (A.7):

Q0 =

T
3
i

3

T 2
i

2
T 2
i

2
Ti

 (3.28)

and solving for the left-side part the product CQ0(A
−1)TCT equals to:

CQ0(A
−1)TCT =

qwT
3
i

12
(3.29)

Despite the relative simplicity of Eq. (3.29), the results from several simulations
showed that this algorithm fails to compute a consistent estimate of Q. The
reason would be probably in the effect of dealing with such a small integral time
Ti (1 ms = 0.001 s). It should be recalled that the process noise covariance
matrix is defined as:

Q = qw

T
3
i

3

T 2
i

2
T 2
i

2
Ti

 (3.30)
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Therefore, the components of this matrix take really small values compared to
the noise variance qw. Also, the state transition matrix A is defined as:

A =

[
1 Ti

0 1

]
≈
[
1 0
0 1

]
(3.31)

By doing this approximation, the state transition matrix is a diagonal matrix.
This would indicate that the i -th component in the state vector at time instant
k+1 is only related with the i -th component in the state vector at time instant
k, so there is not much contribution from the state noise vector (or at least its
contribution is obscured).

3.2.4 Estimation of Q from Myers et al. ([7])

For the algorithm in [7], an intuitive approximation of the process noise statistics
is obtained from a sample realization of x̂ by:

ŵk−1 = x̂k −Ax̂k−1 (3.32)

As previously, the unbiased estimator for Q is obtained by:

Q̂ =
1

N − 1

N∑
j=1

[
(ŵj − w̄) (ŵj − w̄)

T − N − 1

N

(
AP̂j−1A

T − P̂j

)]
(3.33)

where w̄ is the unbiased sample mean of ŵk and P̂k the estimated error covari-
ance matrix from the Kalman filter.
Assuming that the process noise is stationary over N samples and unbiased (w̄
= 0), another expression for Q̂ from (3.33) can be obtained [8]. Recalling (3.32):

ŵk−1 = x̂k −Ax̂k−1

= x̂k − x̂−
k = Kνk (3.34)

The biased estimator of Q in (3.33) becomes:

Q̂ =
1

N

N∑
j=1

[
ŵjŵ

T
j −

(
AP̂j−1A

T − P̂j

)]
(3.35)

Substituting (3.34) into (3.35):

Q̂ =
1

N

N∑
j=1

[(
Kνjν

T
j K

T
)
−
(
AP̂j−1A

T − P̂j

)]
(3.36)

Both estimators did not perform well probably because of the same reasons as
in Section 3.2.3.

3.2.5 Estimation of Q and r from Bélanger ([9])

The last algorithm considered for the estimation of Q and R is that in [9]. This
method is also an innovation correlation method and it states that if the covari-
ance matrices are linear in a set of parameters, then the correlation function
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of the innovation sequence is also a linear function of this set of parameters.
Therefore, Q and R are regarded as linear functions of the M components of a
vector α = [α1, . . . , αM ], i.e.:

R =

M∑
i=1

Riαi; Q =

M∑
i=1

Qiαi (3.37)

with Ri and Qi known constant matrices. The problem is to find an estimate
of α. The particular derivation of the algorithm in [9] is left for Appendix B.
The estimates of α depend on the algorithm design parameters, namely the
number of shifts, L, and the sample size, N . Figure 3.4 shows the components
of α for different number of shifts for an innovation sample realization of 1000
samples and averaged for 10 trajectories. Similarly, Figure 3.5 shows the vari-
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Figure 3.4: Components of α from the algorithm in [9] for L = 2, 4, . . . , 50.
The actual values are r = 10 rad2 and qw = 100 rad2/s3. The sample size
considered is N = 750. A standard deviation is plot in each side of the estimate.

ance estimates for different sample sizes. The dependency on this sample size
is very intuitive: for a large sample size, the estimator of the innovation se-
quence autocorrelation function is less biased and the information contained in
the innovation sequence is greater.

3.3 Direct estimation of the optimal gain

Section 3.1 has demonstrated that a filter is optimum when the innovation se-
quence is a zero-mean Gaussian white noise sequence. In addition, the Kalman
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Figure 3.5: Components of α from the algorithm in [9] for different K between
100 and 2500 in steps of 500. The actual values are r = 10 rad2 and qw =
100 rad2/s3. The number of time lags was set to L = 25. A standard deviation
is plot in each side of the estimate.

gain for such a filter is also optimal.
The algorithms explained so far did not consider the optimality of the Kalman
gain but the whiteness of the innovation sequence in order to obtain the esti-
mates of the noise statistics. Therefore, the direct estimation of the optimal
gain differs from the rest of adaptive filtering techniques. Moreover, it will be
shown that the identification of this optimum gain does not involve Q or R and
then the interest in these algorithms.
For the estimation of the optimal gain, the algorithms in [4] and [10] were con-
sidered.

3.3.1 Algorithm from Mehra ([4])

From [4], the estimation of the optimal gain Kop is based on the property that
for a suboptimum gain K0, the error covariance matrix P−

1 associated to K0

satisfies:

P−
1 = A(I−K0C)P−

1 (I−K0C)TAT +AK0RKT
0 A

T +Q (3.38)

Similarly:
K1 = P−

1 C
T (CP−

1 C
T +R)−1 (3.39)

The error covariance matrix P−
2 associated to the gain K1 satisfies:

P−
2 = A(I−K1C)P−

2 (I−K1C)TAT −AK1RKT
1 A

T +Q (3.40)
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Substracting (3.38) from (3.40):

(P−
2 −P−

1 ) =A(I−K1C)(P−
2 −P−

1 )(I−K1C)TAT

−A(K1 −K0)(CP−
1 C

T +R)(K1 −K0)
TAT (3.41)

It can be shown that [
P−

2

]
ii
<
[
P−

1

]
ii

(3.42)

Continuing with that gain and its associated error covariance matrix pair rela-
tionship:

K2 = P−
2 C

T (CP−
2 C

T +R)−1 (3.43)

and

P−
3 = A(I−K2C)P−

3 (I−K1C)TAT −AK2RKT
2 A

T +Q (3.44)

with
[
P−

3

]
ii

<
[
P−

2

]
ii

<
[
P−

1

]
ii
. These monotonically decreasing matrices

must converge since it is bounded from below (P− > 0) and the sequence
K0,K1,K2, . . . must converge to Kop. For convergence of the Kalman filter,
it is necessary that all the eigenvalues from (I −K1C)A to be inside the unit
circle1.
Based on that, an iterative algorithm is constructed for estimating Kop. Fol-
lowing the notation as in Sections 3.2.1 and 3.2.3, an estimate of K1 is obtained
by:

K̂1 = K0 +D+

[
Γ̂1

Γ̂2

]
Γ̂−1
0 (3.45)

An estimate of δP−
1 ≡ P−

2 −P−
1 is obtained using:

δ̂P−
1 = A

(
I− K̂1C

)
δ̂P−

1

(
I− K̂1C

)T
AT

−A
(
K̂1 −K0

)
Γ̂0

(
K̂1 −K0

)T
AT (3.46)

δ̂P−
1 can be calculated recursively as in a Kalman filter. Moreover, an estimate

of K2 and its associated error covariance matrix are obtained as follows:

P̂2
−CT = P̂1

−CT + δ̂P−
1 C

T (3.47)

K̂2 = P̂2
−CT

(
CP̂2

−CT + R̂
)−1

(3.48)

The implementation determined first if the innovation sequence was white or
not prior to the adaptation. In [10] it is mentioned that the algorithm would
not converge if the initial gain K0 is already the optimum gain. Moreover, as
long as the innovation is almost white even for a wrong noise statistics, the
adaptation was either not performed or converged to some destabilizing gain.

1The transfer function in the z-domain of a Kalman filter of the form in Eqs. (2.7 - 2.12)
is:

H(z) = [zI− (I−KC)A]−1 zK

Therefore, the stability condition is all the eigenvalues from (I−KC)A to be inside the unit
circle.
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3.3.2 Algorithm from Carew et al. ([10])

The scheme in [10] is also an iterative algorithm to determine the optimum
filter steady-state gain, Kop, and the innovation sequence covariance matrix,
W, according to:

W(Xm) = Γ̂0 −CXmCT (3.49)

Km(Xm) = (Θ+Z−AXmCT )W−1(Xm) (3.50)

Xm+1 = (A−KC)Xm(A−KC)T

+(K−Km(Xm))W(Xm)(K−Km(Xm))T (3.51)

where:
ΘT =

[
CT , ATCT

]
(3.52)

is the system observability matrix and:

Z =

[
Γ̂1 +CKΓ̂0

Γ̂2 +CKΓ̂1 +CAKΓ̂0

]
(3.53)

As in the algorithm of Mehra, the previous set of equations converge Km to
Kop and Xm to the minimum error covariance matrix associated.
A simple choice for X0 is the null matrix. This is justified by the fact that
X = 0 if K0 happens to be equal to Kop. Similar to the algorithm in [4], the
adaptation was either not performed or the resulting gain was destabilizing.

3.4 Conclusions

The estimation of the measurement noise variance r from [4] and [7] has been
shown to perform well. The first method requires to compute two lags of the
autocorrelation function to obtain r̂, which simplifies considerably the problem.
However, it is based on the estimated quantity of a matrix product, i.e., P−CT .
By contrast, the estimation of r from Myers et al. ([7]) is based on the actual
measurement sequence yk and the estimated error covariance matrix P̂−.
The direct estimation of the optimal gain (see Section 3.3) has been seen to be
sensitive to the computation of the autocorrelation of the innovation sequence.
Moreover, for a wrong noise statistics initialization, the innovation sequence is
almost white and thus the gain is close to the optimum gain, so for that reason
there is no need of adaptation of the gain.
Moreover, the estimation of Q from Eqs. (3.33) and (3.36) appeared not to
work. The reason would be probably the same as explained in Section 3.2.3.
Finally, the algorithm in [9] for the estimation of Q and R has demonstrated
a good performance. Nevertheless, the algorithm design parameters should be
chosen accordingly and their computational effort involved has to be considered.
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Chapter 4

Carrier-phase Tracking

After acquisition, the Doppler frequency and code phase of all visible satellites
are roughly determined. The purpose of signal tracking is to achieve a finer syn-
chronization in order to condition the incoming signal for later processing. One
method of tracking consists in tuning the carrier-phase of a locally generated
copy and to mix it with the incoming signal. The difference (or offset) between
the actual carrier-phase and that of the local copy is obtained from the output
of a discriminator. Then, the frequency of the local copy is proportionally ad-
justed to that measure of the discriminator. This tracking scheme falls into the
category of carrier-phase tracking.

4.1 Linearized digital second-order phase lock
loop

For carrier-phase tracking, the most common scheme used is a phase lock loop
(PLL). Figure 4.1 shows the block diagram of a linearized digital PLL. The

Figure 4.1: Linearized digital PLL model

transfer functions for the digital filter are:

F (z) =
(C1 + C2)− C1z

−1

1− z−1
(4.1)

N(z) =
K0z

−1

1− z−1
(4.2)

where F (z) is the transfer function of a second-order PLL filter and N(z) is the
transfer function of the NCO. The gain of the NCO is K0. The coefficients C1

24



and C2 from this filter are given by [11]:

C1 =
1

K0Kd

8ζωnTi

4(1 + ζωnTi) + (ωnTi)2
(4.3)

C2 =
1

K0Kd

4(ωnTi)
2

4(1 + ζωnTi) + (ωnTi)2
(4.4)

where ζ is the damping ratio and ωn is the natural frequency:

ωn =
8ζBL

4ζ2 + 1
(4.5)

where BL is the noise bandwidth of the filter. Figure 4.2 shows in particular the
form of a second-order PLL loop filter. The transfer function for the complete
digital linearized filter is:

H(z) =
KdF (z)N(z)

1 +KdF (z)N(z)
(4.6)

where Kd is the gain of the phase discriminator. A PLL filter of the previous
form contains different design parameters, namely the damping ratio ζ and the
noise bandwidthBL. The values of these quantities should be chosen accordingly
by considering the effects of either large or small values. For example, a large
value in the noise bandwidth BL would result in a large noise component in the
estimated phase, while a small value would slow the filter response and probably
the filter will not settle down.

Figure 4.2: Second-order PLL

4.2 GNSS carrier-phase tracking loop filter

The implementation of a PLL filter of the form discussed in Section 4.1 in a
GNSS receiver is by means of the scheme in Fig. 4.3. The purpose of a filter of
that form is to combine the signals from the I and Q arms into a discriminator
and obtain the phase error between the local carrier copy and the incoming
signal. By performing this, the filter is insensitive to 180o phase shifts because
of bit transitions and a direct measure of the phase error is obtained easily.
After the integral time [tk−1, tk], the in-phase and quadrature components at
the output of the correlators can be approximated as [14]:

Ik ≈ DkR(∆τk) · sinc
(
Ti

2
∆ωn

)
· cos

(
∆ϕk

)
+ nI,k (4.7)

Qk ≈ DkR(∆τk) · sinc
(
Ti

2
∆ωn

)
· sin

(
∆ϕk

)
+ nQ,k (4.8)

(4.9)
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where Dk refers to the navigation data sequence, R(∆τk) is the value of the
autocorrelation function of the C/A code sequence offset by ∆τk, ∆ϕk and ∆ωn

are the average phase and frequency offsets, respectively, and nI,k and nQ,k are
zero-mean uncorrelated Gaussian noise samples.
The discriminator combines the Ik and Qk components to obtain the phase error
between the local carrier copy and the incoming signal. There exist different
forms of combining Ik and Qk, but here it is assumed a discriminator of the
form:

D = tan−1

(
Qk

Ik

)
(4.10)

From Equation (4.10), it can be seen that the phase error is minimized when the
correlation in the quadrature-phase arm is zero and maximum in the in-phase.
Moreover, the discriminator output can be approximated by:

DO ≈ ∆ϕk + nD,k (4.11)

where ∆ϕk is the averaged phase error during the interval [tk−1, tk] and nD,k is
the measurement noise.
The steering of the local copy carrier-frequency fk is achieved by the NCO from
interval to interval in a continuous form, i.e.:

fk = fk−1 + δfk,NCO (4.12)

where δfk,NCO represents the steering component of the frequency.

Figure 4.3: GNSS receiver carrier-phase loop tracking implementation

4.3 Kalman filter-based phase loop filter

The PLL filter presented in Section (4.1) is probably the most widely used form
of a carrier-phase tracking architecture. Nevertheless, it could be seen that there
exists a noise component in every signal component and stage of this filter. This
noise component corrupts the deterministic part of the signal in order to model
it closer to the actual signal dynamics.
A more powerful solution of phase tracking to that explained above is to model
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the signal dynamics with a deterministic and non-deterministic component (the
later corresponds to the noise component) and applying a linear least-squares
filter accordingly. An example of a filter of that form is a Kalman filter (see
Chapter 2).
This architecture turns the problem of phase tracking mainly into an estimation
problem. Also, it is necessary to redefine the state propagation and estimation
equations, the NCO model and the measurement model.

4.3.1 State propagation equation and controller form

The signal dynamics for a Kalman filter-based tracking architecture is described
by Eq. (2.1). Nevertheless, the purpose of a tracking loop is to align the local
copy to the incoming signal. That is achieved by some feedback mechanism that
states the difference in either the carrier and code phase between copies. Thus
the state vector is redefined in terms of residual errors as (see [12]):

δxk =

[
δϕk

δfk

]
=

[
ϕk − ϕNCO,k

fk − fNCO,k

]
(4.13)

The state propagation equation becomes:

δxk+1 = Aδxk +Buδuk (4.14)

where δuk is the input update vector defined as:

δuk =

[
ϕ+
NCO,k − ϕ−

NCO,k

f+
NCO,k − f−

NCO,k

]
(4.15)

where ( · )−NCO,k denotes the NCO parameter at time k and ( · )+NCO,k denotes
the updated NCO parameter after applying the control input. This control
input contains the two states (phase and frequency) that the NCO steers upon
the copy. Thus a controller prior to the NCO is necessary and of the form:

uk = −ΓNCOδx̂k (4.16)

Similarly, the input propagation matrix Bu is:

Bu =

[
−1 0
0 −1

]
(4.17)

4.3.2 Measurement model

The measurement model can be described as in Eq. (2.2) but in terms of
residual errors. Moreover, a direct measurement is that from the output of a
discriminator of the form in Eq. (4.10), as it is directly the error in the phase
and an additive noise term.
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Chapter 5

Adaptive Kalman
Filter-Based Phase Lock
Loop GPS Receiver
Implementation

Chapter 4 introduced the Kalman filter-based phase lock loop architecture. The
scope of this chapter is to evaluate some of the adaptive algorithms presented
in Chapter 3 for the case of phase tracking. From the results and conclusions
in Chapter 3, only the following algorithms have been selected for the receiver
implementation:

- Estimation of r from Mehra ([4]).
- Estimation of qw and r from Bélanger ([9]).

5.1 Methodology

The algorithms implemented are innovation correlation methods of adaptive fil-
tering. That implies to consider a finite sample size of the innovation sequence.
Moreover, it will be demonstrated that the results depend on this sample size.
For that reason, it was necessary to evaluate the algorithms for different inno-
vation sample sizes. Of course, the larger the sample size, the more accurate
is the innovation autocorrelation function determined, but the more computing
effort necessary.
The algorithms were implemented in a software-defined GPS receiver in MAT-
LAB. The code performed the acquisition and tracking from recorded data con-
tained in a .sim format file. Both acquisition and tracking were performed
serially, i.e., one channel (satellite) at a time. After tracking, the results were
stored in a .mat file for later post-processing.
The recorded data corresponds to real GPS measurements from two different
measurement campaigns. Table 5.1 summarizes the date, place and some other
details from these measurement campaigns.
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Measurement

campaign

Measurement

campaign

corresponding to

the work of Giger

et al. [13]

Place and date: En-route flight near Hof

(DE) and Innsbruck (AT) -

15/12/2008

Scenarios: 2 - gnd/acft

Antenna: Antcom 42GO1116A2-XT-1

(acft) / Javad MarAnt (gnd)

Receiver/software: NordNav R-30/NordNav-Rx

Sampling freq.: 1.63676 [MHz] (L1 carrier)

Coordinates: long = 11.35, lat = 47.26,

height = 637 m (gnd)

Measurement

campaign around

the Technische

Universität

München (TUM),

München

Place and date: München (DE) - 28/06/2010

Scenarios: 5 - scenX

Antenna: AeroAntenna AT575

Receiver/software: NordNav R-30/NordNav-Rx

Sampling freq.: 1.63676 [MHz] (L1 carrier)

Coordinates: Variable (depending on the

scenario)

Table 5.1: Measurement campaigns details

The a priori noise statistics were selected suitable for the purpose of evalu-
ating each algorithm. These noise statistics refer to the noise covariance ma-
trix factor qw (see Appendix A) and the measurement noise covariance r. For
each algorithm, the state vector consisted of a n = 2 dimensional vector with
the second order derivative modeled as a white Gaussian noise sequence (i.e.,
ϕ(n)(t) = wϕ(t)). The integration interval is 1 ms as the minimum predetection
integral interval in a conventional GPS tracking loop.

5.2 Scenarios

Different scenarios were considered for evaluating the performance of the adap-
tive algorithms. Table 5.2 contains the description of each scenario. For each
scenario, two representative satellites were chosen. The satellites with the high-
est and lowest C/N0 at the acquisition stage were elected the representative
satellites. Figure 5.1 and 5.2 illustrate the scenarios from the second measure-
ments campaign in München.

5.3 Estimation of r

For the estimation of the measurement noise covariance r, the algorithm in [4]
was implemented. Section 3.2 demonstrated the easiness for obtaining an esti-
mate of this quantity based on the innovation sequence.
In order to compare the r estimates from this algorithm, the method for the
C/N0 estimation in [15] was considered. The estimation of the C/N0 is ob-
tained by computing the wide-band power (WBPk) and the narrow-band power

29



Figure 5.1: Scenarios 1-4

Figure 5.2: Scenario 5

(NBPk) from the I and Q arms over M samples as:

C/N0 = 10 log10

(
1

Ti

µ̂NP − 1

M − µ̂NP

)
(5.1)

where

µ̂NP =
1

K

K∑
k=1

NPk (5.2)
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Scenario Description

Static

measurements

(static receiver)

gnd Ground station at Flughafen Innsbruck-Kranebitten

(INN). Representative satellites: PRN06/PRN21

scen1 Receiver situated under a tree. Strong absorption and

scattering. Representative satellites: PRN08/PRN26

scen2 Receiver situated in the middle of a wide flat field (in front

of the Alte Pinakothek, München). Good LOS. Represen-

tative satellites: PRN18/PRN26

scen4 Standing pedestrian by the facade of the Alte Pinakothek,

München. Strong multipath. Representative satellites:

PRN12/PRN26

Dynamic

measurements

acft Antenna on the roof of a Beechcraft King Air

350. En-route flight between Flughafen Braunschweig-

Wolfsburg (BWE) and Flughafen Innsbruck-Kranebitten

(INN) (28.000 ft altitude). Representative satellites:

PRN06/PRN21

scen3 Walking pedestrian. Moderate dynamics with good LOS.

Representative satellites: PRN18/PRN26

scen5 Bicycle ride. High dynamics with sudden satellite shad-

owing. Representative satellites: PRN09/PRN26

Table 5.2: Scenarios

i.e., the mean of the normalized power (NPk) defined as:

NPk =
NBPk

WBPk
=

(∑M
i=1 Ii

)2
k
+
(∑M

i=1 Qi

)2
k(∑M

i=1 (I
2
i +Q2

i )
)
k

(5.3)

For this implementation, the wide-band power and narrow-band power was
considered and averaged within a 20 ms interval (M = 20, K = 20).
Furthermore, in the range of C/N0 (30-55 dB-Hz), the tracking error variance
(i.e., the measurement noise variance) can be approximated by [15]:

r =
1

2C/N0Ti

(
1 +

1

2C/N0Ti

)
(5.4)

Therefore, once an estimate of r was obtained using the adaptive algorithm, the
estimated C/N0 for it was obtained using (5.4).

5.3.1 Noise statistics initialization

The a priori measurement noise variance was set to the largest value for which
Eq. (5.4) is still valid with less than 1 dB error [15] (C/N0 = 30 dB-Hz). By
doing this, the initialization was assured to be wrong. Regarding the process
noise variance qw, there is no intuitive value and it was set to 1000 rad2/s3.

5.3.2 Results

Figure 5.3 and Figure 5.4 show the C/N0 estimation from [4] and from the
algorithm in [15] for the scenarios scen2 and scen3, respectively. These two
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scenarios contain the same representative satellites (PRN18 with a low C/N0

and PRN26 with a high C/N0), but the former is a static recording while the
second is a pedestrian walk. The sample size of the innovation sequence is 750
(0.75 s). Figure 5.3 shows that the algorithm provides an estimate of r similar
to that from the C/N0 for high C/N0 signals and a static receiver. From Figure
5.4, the algorithm still performs close to the C/N0 estimates even for a low
C/N0.
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Figure 5.3: C/N0 estimates obtained from the algorithm in [4] and [15] for the
scenario scen2
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Figure 5.4: C/N0 estimates obtained from the algorithm in [4] and [15] for the
scenario scen3
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5.4 Estimation of qw and r

The estimation of the process noise variance qw and the measurement noise
variance r is based on the algorithm in [9]. The particular derivation for a
n = 2-dimensional state vector is in Appendix B. For a Kalman filter-based
PLL architecture, this derivation is also valid.
For evaluating this algorithm, it has been considered the following cases:

- Innovation sample size of 750 samples with 10 and 25 correlation lags.
- Innovation sample size of 1500 samples with 10 and 25 correlation lags.

5.4.1 Noise statistics initialization

As previously, the a priori measurement noise variance was set to the largest
value for which Eq. (5.4) is still valid (C/N0 = 30 dB-Hz). The process noise
variance qw value is 1000 rad2/s3 in all cases.

5.4.2 Results

Due to the large quantity of scenarios and cases considered, it has been selected
the most repetitive and representative results that have been observed from all
the results. This section compares the variance estimates for some scenarios
and different signal strength. Of course, the purpose of a phase tracking loop is
to keep the phase error as minimum as possible and then it should be observed
a zero-mean noise-like discriminator output (refer to Eq. (4.11)). Nevertheless,
the discriminator output is not a good measure of the performance of a Kalman
filter-based tracking architecture because the magnitude of the measurement
noise variance is large compared to the phase error magnitude and the effect of
the discriminator noise shadows completely the phase error.
Figure 5.5 and 5.6 show the variance estimates of qw and r for the different sam-
ple sizes N and correlation lags l for the scenarios gnd and scen2 (for the high
C/N0 signal), respectively. The similarity between scenarios (see Table 5.2) is
also seen in the magnitude of the estimates of qw and r. Moreover, it can be
seen that there is no improvement for any component in α̂ when the correlation
lag l is increased. By contrast, when the sample size N is 1500, the estimate
of qw is smoothed in comparison with N = 750 at each adaptation stage. The
discontinuities in the estimates are due to negative values. Figure 5.7 show
the variance estimates for the dynamic scenario scen3 and the high C/N0 signal
(PRN26). It is interesting to note that the dynamics of the scenario are re-
flected in larger values of the qw and r when compared to the previous scenario
scen2. Figure 5.8 illustrates for the same scenario scen3 the variance estimates
of the low C/N0 signal (PRN18). Comparing Figs. 5.7 and 5.8, it is clear the
difference in the carrier-to-noise ratio between signals according to the variance
estimates.
Similarly, Figures 5.9 and 5.10 show the same variance quantities for the dy-
namic scenario acft. Finally, Figures 5.11 and 5.12 plot the same quantities
for the scenario scen5. In this case, the sudden shadowing can be also seen in
the large magnitude of the variances.
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Figure 5.5: qw and r estimates obtained from the algorithm in [9] for different
sample sizes N and correlation lags l and for the scenario gnd (PRN21)
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Figure 5.6: qw and r estimates obtained from the algorithm in [9] for different
sample sizes N and correlation lags l and for the scenario scen2 (PRN26)
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Figure 5.7: qw and r estimates obtained from the algorithm in [9] for different
sample sizes N and correlation lags l and for the scenario scen3 (PRN26)
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Figure 5.8: qw and r estimates obtained from the algorithm in [9] for different
sample sizes N and correlation lags l and for the scenario scen3 (PRN18)
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Figure 5.9: qw and r estimates obtained from the algorithm in [9] for different
sample sizes N and correlation lags l and for the scenario acft (PRN06)
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Figure 5.10: qw and r estimates obtained from the algorithm in [9] for different
sample sizes N and correlation lags l and for the scenario acft (PRN21)
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Figure 5.11: qw and r estimates obtained from the algorithm in [9] for different
sample sizes N and correlation lags l and for the scenario scen5 (PRN09)
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Figure 5.12: qw and r estimates obtained from the algorithm in [9] for different
sample sizes N and correlation lags l and for the scenario scen5 (PRN26)
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Chapter 6

Conclusions

Chapter 2 has shown the effects of a wrong noise statistics initialization and
a dimension mismatch between the actual state vector and the state estimate
vector for different simulated trajectories and estimation processes. The avail-
ability of the actual state vector made it possible to compare the actual error
covariance matrix to the estimated by the Kalman filter.
For a wrong process noise initialization, the error variance of the first state esti-
mate vector component out of the Kalman filter was slightly greater with respect
to the actual error variance when a larger scaled version of the process noise
covariance matrix than the actual was used (q > 1). Moreover, the performance
of the Kalman filter is suboptimally for any wrong process noise covariance.
Similarly, a wrong measurement noise would lead to the same suboptimal filter
performance and a larger error variance in the estimates even for a correct pro-
cess noise covariance initialization. Nevertheless, a measure of this value can be
obtained in a GNSS tracking architecture using the carrier-to-noise ratio C/N0.
As shown in Figs. 2.2 and 2.4, an initialization for a large scaled version of
the process noise covariance matrix would result in a better performance of the
Kalman filter and smaller estimation errors. Moreover, the effect of a different
dimension between the simulated trajectory and the state estimate vector is
also translated into large estimation errors because the process noise covariance
matrix would look very different for each dimension considered.
Some innovation based adaptive algorithms were implemented and evaluated in
Chapter 3 for a simulated trajectory and in Chapter 5 for a Kalman filter-based
tracking architecture. These methods consider a finite sample size of the innova-
tion sequence νk and the biased autocorrelation function of it. The estimation
of the measurement noise covariance R is straightforward when using any of
these methods. By contrast, the estimation of the process noise covariance ma-
trix Q is not reliable and consistent when using these innovation correlation
methods but for the algorithm in [9]. The reason would be probably that this
last algorithm considers more than 2 lags in the computation of the innovation
autocorrelation function for each N samples rather than just correlate once all
the sequence. Therefore, the fact of considering l lags through a N -length inno-
vation sequence when calculating the autocorrelation function seems to provide
more information. Similarly, the direct estimation of the optimum gain was
not a reliable method. The reason would be in the white-like spectrum of an
innovation sequence even for a wrong noise statistics.
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Finally, a numerical indication of the process noise variance qw was obtained
from the algorithm in [9] for a Kalman-filter carrier-phase tracking architecture.
Different scenarios were considered with different and common signal dynamics
and strength.

6.1 Future work

From this conclusion, it is suggested a new study of each algorithm based on
reproducible and known signal and constellation dynamics. This work has dealt
only with real GPS measurements in an urban environment and limited receiver
characteristics. Therefore, a more extensive reproducibility is necessary.
Moreover, the algorithm in [9] needs a large computation time and effort. An
efficient similar version of this algorithm has also presented in [16], but it has
not been considered. Thus another step would be the reimplementation of the
algorithm in a more efficient way.
Finally, the benefit of using an adaptive algorithm in the tracking accuracy
is necessary to be checked. Obviously, the effect of these adaptive techniques
can be seen upon the error covariance matrix and for that reason it would be
interesting to observe this quantity.
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Appendix A

Trajectory (Phase) Model

Through this work, the n-th order derivative of the phase ϕ(t) is modeled as
a white Gaussian noise sequence (i.e., ϕ(n)(t) = wϕ(t)). According to Taylor’s
theorem, ϕ(t) can be time-expanded according to [13]:

ϕ(t+ Ti) =
n−1∑
j=0

ϕ(j)(t)
T j
i

j!
+Rn(t, t+ Ti, n) (A.1)

where the remainder Rl is defined as:

Rl(t1, t2, l) =

∫ t2

t1

wϕ(u)
(t2 − u)l−1

(l − 1)!
du (A.2)

Carrying this expansion on the higher derivatives of ϕ(t), the resulting vector-
form of the phase model is: ϕ(0)(tk+1)

...
ϕ(n−1)(tk+1)


︸ ︷︷ ︸

x(tk+1)

= Anx(tk) +

Rn(tk, tk+1, n)
...

R1(tk, tk+1, 1)


︸ ︷︷ ︸

wϕ(tk)

(A.3)

with

(An)h,j =


T j−h
i

(j − h)!
, if j − h ≥ 0

0 otherwise

(A.4)

and Tk = tk+1 − tk For the particular case of n = 2, the covariance matrix
associated with the noise sequences wϕ(t) is defined as:

E
{
wϕ(ti)wϕ(tj)

T
}
= E

{[
R2(ti, ti+1, 2)
R1(ti, ti+1, 1)

] [
R2(tj , tj+1, 2) R1(tj , tj+1, 1)

]}
(A.5)

Substituting in Eq. (A.5) the corresponding expression of each remainder:

E
{
wϕ(ti)wϕ(tj)

T
}
=

{
Q if i = j

0 otherwise
(A.6)
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where

Q = qw

T
3
i

3

T 2
i

2
T 2
i

2
Ti

 (A.7)

and qw is the measurement noise variance in units of rad2/s3.

A.1 Measurement model

Similarly, the phase measurement model is defined in discrete-time as:

yk = Cnxk + vk (A.8)

where
Cn =

[
1 Ti

2 · · · Tn
i

n!

]
(A.9)

is defined as the observation or measurement mapping matrix and vk is the
measurement noise vector with covariance matrix R, i.e.:

E
{
vivj

T
}
=

{
R if i = j

0 otherwise
(A.10)

41



Appendix B

Bélanger’s Algorithm
Derivation

This appendix derives the algorithm in [9] for the particular case of a n = 2-
dimensional state vector. This method states that if the covariance matrices
are linear in a set of parameters, then the correlation function of the innovation
sequence is also a linear function of this set of parameters. Therefore, Q and R
are regarded as linear functions of the M = 2 components of a vector α, i.e.:

R = α1;

Q = α2Q0 (B.1)

For a n = 2-dimensional state vector and p = 1-dimensional measurement
vector, the noise sequences vk and wk covariances are:

E
{
vivj

T
}
= α1Ipδij (B.2)

E
{
wiwj

T
}
= α2Q0δij (B.3)

E
{
viwj

T
}
= 0pxn, for any i and j (B.4)

where Ip and 0pxn denote the p-dimensional identity and pxn zero matrix, re-
spectively, and δij is the Kronecker’s delta defined as:

δij =

{
1 if i = j

0 otherwise
(B.5)

Let’s define:
ek = xk − x̂k (B.6)

Substituting Eqs. (2.1), (2.2) and (2.10) in (B.6):

ek+1 = (I−KC)A︸ ︷︷ ︸
Φ

ek + (I−KC)︸ ︷︷ ︸
θ

wk −Kvk+1 (B.7)

More generally,

ek =
k−1∑
j=0

Φk−j−1 (θwj −Kvj+1) (B.8)
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where it is assumed a perfect initialization, i.e., e0 = 0. An alternative expres-
sion for the innovation sequence in Eq. (3.1) is:

νk = yk −Cx̂−
k =Cxk + vk −CAx̂k−1

=C(Axk−1 +wk−1) + vk −CAx̂k−1

=CAek−1 +Cwk−1 + vk

=CA
k−2∑
j=0

Φk−j−2 (θwj −Kvj+1) +Cwk−1 + vk (B.9)

Therefore,

E
{
νkν

T
k−l

}
= E

{CA

k−2∑
j=0

Φk−j−2 (θwj −Kvj+1) +Cwk−1 + vk


[
CA

k−l−2∑
i=0

Φk−l−i−2 (θwi −Kvi+1) +Cwk−l−1 + vk−l

]T }
(B.10)

The expression in (B.10) should be evaluated for each term separately as follows:

E
{
νkν

T
k−l

}
= E

CA
k−2∑
j=0

Φk−j−2θwj

k−l−2∑
i=0

wT
i θ

T
(
ΦT
)k−l−i−2

ATCT


+ E

CA
k−2∑
j=0

Φk−j−2θwjw
T
k−l−1C

T


+ E

CA

k−2∑
j=0

Φk−j−2Kvj+1

k−l−2∑
i=0

vT
i+1K

T
(
ΦT
)k−l−i−2

ATCT


− E

CA
k−2∑
j=0

Φk−j−2Kvj+1v
T
k−l


+ E

{
Cwk−1w

T
k−l−1C

T
}
+ E

{
vkv

T
k−l

}
(B.11)

Given (B.2) and (B.3), Equation (B.11) reduces for l ≥ 0 to:

E
{
νkν

T
k−l

}
= α2

k−l−2∑
j=0

CAΦk−j−2θQ0θ
T
(
ΦT
)k−l−j−2

ATCT

+ α2CAΦl−1θQ0C
T

+ α1

k−l−2∑
j=0

CAΦk−j−2KKT
(
ΦT
)k−l−j−2

ATCT

− α1CAΦl−1Ku(l − 1)

+ α2CQ0C
T δ(l) + α1δ(l) (B.12)

where δ(j) is the Dirac delta defined as:

δ(j) =

{
1 if j = 0

0 otherwise
(B.13)
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and u(l − 1) is the Heaviside (unit-step) function:

u(t) =

{
1 if t ≥ 0

0 otherwise
(B.14)

For k = 1, . . . , N and l = 0, . . . , L, the resulting set of equations is:

σ(k, l) = Fα+ ηk,l (B.15)

where

σ(k, l) =



νkνk−L

...
νkνk

...
νNνN−L

...
νNνN


(B.16)

Therefore, the least-squares solution is given by:

α̂ =
[
FTW−1F

]−1 FTW−1σ(k, l) (B.17)

where the weighting matrix W is defined as W−1 ≡ E
[
ηk,lη

T
k,l

]
, i.e., the co-

variance matrix of ηk,l. In all simulations, the weighted least-squares showed
almost the same results as with the unweighted least-squares solution. There-
fore the derivation of the weighting matrix is omitted here and the reader is
referred to [9] for more details.
The algorithm from Bélanger differs from the other innovation correlation meth-
ods in the fact that l = 0, · · · , L lags are considered for a innovation sequence
of length N (i.e., the vector σ(k, l)). Therefore, the innovation sequence is
analyzed in more detail and more information is extracted. Of course, this
procedure requires a large time-consuming computation.
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