
TREBALL DE FI DE CARRERA

TÍTOL DEL TFC: Shibboleth and the challenge of authentication in multiple
servers on a e-learning environment

TITULACIÓ: Enginyeria Tècnica de Telecomunicació, especialitat Telemàtica

AUTOR: Humberto Gonzalez Gonzalez

DIRECTOR: J. Manuel Yúfera / Michael Praetorius

DATA: 18 de gener de 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41798163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Títol: Shibboleth and the challenge of authentication in multiple servers on a e-learning
environment

Autor: Humberto Gonzalez Gonzalez

Director: J. Manuel Yúfera / Michael Praetorius

Data: 18 de gener de 2006

Resum

L' objectiu d’aquest treball és l’estudi, implementació i prova d'un sistema de
autentificació compartida per a múltiples servidors. Encara que des d'un principi es
sabia que es treballaria amb Shibboleth també s’han tingut en compte altres possibles
solucions. Shibboleth és un projecte desenvolupat per els membres de les universitats
que formen el consorci Internet2 amb l’ objectiu de desenvolupar un nou middleware
per a realitzar les funcions d’autentificació compartida en múltiples servidors i pensat
específicament per facilitar la col·laboració entre institucions i l’accés a continguts
digitals.

Shibboleth és una solució complerta ja que contempla des de l’autentificació ,
autorització i accounting, fins al sistema de login i els atributs a emprar. La qual cosa fa
que es converteixi en un entorn de treball molt segur però amb l’avantatge d’aportar
privacitat als usuaris.

El primer objectiu ha estat identificar les peculiaritats i requeriments dels entorns de e-
learning distribuïts, per això s’ha estudiat conceptes específics de seguretat així com la
manera d’adaptar-los a l’entorn requerit. Desprès s’ha fet una comparativa de les
solucions existents al mercat amb una funcionalitat similar a Shibboleth, per tal de
presentar els avantatges i desavantatges de Shibboleth vers aquests.

Posteriorment, el treball ha consistit en entendre la estructura i els principis de
funcionament de Shibboleth, quin tipus de requeriments tenia, el funcionament i
objectius de cada part, estudiar els requeriments de l’entorn específic per al qual ha
estat dissenyat (e-learning) i donar una idea general de com s’ hauria de fer la
implementació. També s’han estudiat totes les tecnologies i requeriments necessaris
per desenvolupar Shibboleth.

Una vegada estudiat Shibboleth i l'entorn específic en el que s’hauria d’integrar, s’ha
muntat un escenari per a la posada en marxa i proves d’aquest, provant específicament
cada part i entenent amb les proves reals el funcionament. Amb l’escenari en
funcionament, la idea era integrar Shibboleth amb Sakai i Blackboard, els CMS (Course
Management System) utilitzats a on-campus, el campus virtual de la Fachhochschule
Lübeck.

Per a finalitzar i a mode de conclusions s'ha fet una petita explicació dels resultats
obtinguts, una valoració de com Shibboleth resoldria les necessitats plantejades i
algunes propostes de millora.

Title: Shibboleth and the challenge of authentication in multiple servers on a e-learning
environment

Author: Humberto Gonzalez Gonzalez

Director: J. Manuel Yúfera / Michael Praetorius

Date: January, 18th 2006

Overview

The subject of this work is a study, implementation and test of a shared authentication
in multiple servers system. Although it was thought that Shibboleth would be the final
studied and deployed system, other solutions were considered too at the beginning.

Shibboleth is a project developed by members of universities participating in Internet2
partnership with the objective to develop and to deploy new middleware. This
middleware facilitates the authentication functions of shared resources in multiple
servers and makes easier the collaboration between institutions and access to digital
contents and e-learning environments in university surroundings. Shibboleth is a
complete solution because it enables the authentication, authorization, accounting,
system login and the attributes to use. It makes the scenario very secure without
compromising the privacy of the users.

The first part of the work explores the peculiarities of distributed requirements
surroundings of e-learning environment, so specific concepts of security as well as the
way to apply them were studied.

The next part of the work was a comparison among Shibboleth and other solutions
available in the market and in this way the advantages of Shibboleth are described.
After that, the work shows the structure and the main issues of Shibboleth and its
operation and objectives. The surrounding requirements were also studied, specifically
those used in e-learning, and a general concept of the work and of the basis of the
technologies implied in Shibboleth were also considered.

Once the technical part was studied and documented, an scenario to test the system
was constructed. Each part was proved, and when the basic example proves finished
some CMS existing in the market were integrated to the project too. Basically Sakai and
BlackBoard, the ones used in on on-campus (the e-learning environment at the
Fachhochschule Lübeck) and Moodle as new proposal of use.

The last part is a conclusion and evaluation of how to deal with Shibboleth needs and
some improvement suggestions.

Dedico aquest treball a tota la gent que ha estat al
meu costat durant aquests anys de estudi, als
pares, als amics, als companys i al grup de rdv.

També a tothom que m'ha ajudat en la elaboració
de aquest treball tant a Lübeck com a Barcelona.

Per finalitzar, no em voldria oblidar de la gent que
d'una manera o un altre col·labora en la
elaboració i difusió del programari lliure.

ZUSAMMENFASSUNG

Die Zielsetzung dieser Arbeit, ist die Studie, die Implementierung und der Test einer
geteilten Authentisierung im mehrfachen Bedienersystem. Obgleich vom Anfang ich weiß,
dass die Zielsetzung Shibboleth sind, auch andere mögliche Lösungen haben betrachtet.

Shibboleth ist ein Projekt, das von den Mitgliedern der Universitäten von der
Teilhaberschaft Internet2 mit der Zielsetzung, um neues middleware zu entwickeln
entwickelt wird und zu entfalten, um Funktionen von Authentisierung geteilten
Betriebsmitteln in den mehrfachen Bedienern und hauptsächlich für
Universitätsumlagerungen und vom e-Lernen mit der Zielsetzung zu bilden, eine einfache
Weise zu verbessern, die Zusammenarbeit zwischen Anstalten und dem Zugang zum
digitalen Inhalt zu handhaben gedacht ist. Shibboleth, ist eine komplette Lösung, da es
von der Authentisierung erwägt, Ermächtigung und Acounting zum System LOGON und
zu den Attributen, um zu verwenden also bildet das Drehbuch, das sehr ohne das
Privatleben der Benutzer sich zu vergleichen gesichert wird.

Der Erste Schritt der Arbeiten, die, die Eigenheiten und die Anforderungen der verteilten
Umlagerungen des e-Lernens, für dieses zu kennzeichnen seiner sind, habe ich
spezifische Konzepte der Sicherheit sowie die Weise, sie an den erforderlichen
Umlagerungen anzuwenden studiert.

Der Folgende Schritt, obgleich ich freies dass die Software habe, die, alle Erwartungen zu
erfüllen Shibboleth, da ein Vergleich diese Software/vorhandenen Lösungen im Markt
studiert haben, haben eine Funktionalität waren, die Shibboleth und sich die diese Anzeige
darzustellen/Vorteile von Shibboleth ähnlich ist. Später hat die Arbeit bestanden, die
Struktur und die Grundregeln von Shibboleth zu verstehen, denen Art von Anforderungen
a, den Betrieb und Zielsetzung jedes Teils haben, um die Anforderungen der
Umlagerungen zu studieren, die ich spezifiziere für, welches gewesen es entwerfen lässt
(e-erlernend) und ein allgemeines Konzept sollte von, wie man zu bilden arbeiten ist. Auch
ist im Detail allen Technologien studiert worden, auf denen Shibboleth basiert.

Einmal studiertes Shibboleth und die Umlagerungen, in denen sein muss integtated,
entfalte ich ein scenerio für den Anfang und die Tests von Shibboleth und prüfe spezifisch
jedes Teil und das Verstehen auf realen Tests des Betriebes, prüfen einmal in einer realen
Szene, ist der Folgende Schritt gewesen, wie die Integrierung irgendeines CMS von das
Bestehen im Markt zu studieren, damit es mit Shibboleth funktionierte, im Allgemeinen ich
studieren Sakai und Tafel, welches sie die sind, das in on-campus des Fachhochschule
Lübeck verwendet wird.

Das Letzte ist Zusammenfassungen ist geworden eine Auswertung von, wie man die
Shibboleth Notwendigkeiten und einige Anträge der Verbesserung löst.

INDEX

INTRODUCTION.. 1

CHAPTER 1: THE FACT. SHARED AUTHENTICATION... 3

1.1 Introduction... 3

1.2 The new scenarios (e-learning, course management systems, libraries, etc.)................................... 3

1.2 Security Concepts and the e-learning environments.. 5
1.2.1 AAA. Authentication, Authorization and Accounting... 5
1.2.3 Anonymity.. 6

1.3 Federations... 7

1.4 Why shared/attribute based authentication... 9

CHAPTER 2: OVERVIEW OF SOLUTIONS.. 11

2.1 Introduction... 11

2.2 Kerberos.. 11

2.3 Single Sign On Solutions... 12
2.3.1 Shibboleth.. 14

CHAPTER 3: SHIBBOLETH IN DEPTH.. 17

3.1 Introduction... 17

3.2 History and development facts.. 18

3.3 The actors in Shibboleth.. 18
3.3.1 IdP (Origin)... 18
3.3.2 SP (Target)... 19
3.3.3 WAYF and Federations.. 20

3.4 Shibboleth goals... 21

CHAPTER 4: SHIBBOLETH. BASED CONCEPTS AND REQUIREMENTS....................23

4.1 Introduction... 23

4.2 HTTP.. 23

4.3 HTML Forms.. 24

4.5 SOAP.. 26

4.6 PKI. Public Key Infrastructure... 28

4.8 XML (eXtensible Markup Language)... 29

4.9 SAML (Security Assertions Markup Language)... 32

4.10 Attribute-Based Authorization... 36

4.11 User attributes.. 36

CHAPTER 5: SHIBBOLETH IMPLEMENTATION.. 39

5.1 Introduction... 39

5.2 Requirements.. 40

5.3 Deploying.. 42
5.3.1 IdP (Origin)... 43
5.3.2 SP (Target)... 45
5.3.3 Federation and WAYF.. 47

CHAPTER 6: E-LEARNING APPLICATIONS AND SHIBBOLETH.................................. 49

6.1 Introduction to the CMS (Course Management Systems)... 49

6.2 Shibbolize a e-learning application... 50

6.3 Blackboard.. 51

6.4 Sakai.. 52

6.5 Moodle... 53

CHAPTER 7: CONCLUSIONS AND IMPROVEMENT SUGGESTIONS...........................55

7.1 Discussion... 55

7.2 Conclusion.. 55

7.3 Future Work and improvement suggestions.. 56

REFERENCES... 57

APPENDIXES.. 61

APPENDIX A: GLOSSARY.. 61
A.1 Abbreviations.. 61
A.2 Terminology.. 62

APPENDIX B: Security Overview Solutions... 67

APPENDIX C: SAML Assertion schema.. 69

APPENDIX D: Step by step Shibboleth work flow.. 71

APPENDIX E: IdP Installation procedure and configuration files... 77

APPENDIX F: SP Installation procedure and configuration files.. 81

APPENDIX G: WAYF Installation instructions.. 87

APPENDIX H: Shibbolize Blackboard... 89

APPENDIX I: Shibbolize Moodle.. 93

LIST OF FIGURES

Fig. 1.1: Overview of the Federation Concept.. 7
Fig. 2.2: Kerberos authentication process.. 12
Fig. 2.3: SSO Overview.. 13
Fig. 2.4: Shibboleth procedure... 15
Fig. 3.5: Shibboleth working procedure.. 17
Fig. 3.6: Identity Provider block diagram.. 18
 Fig. 3.7: Service Provider block diagram.. 20
Fig. 4.8: SSL Details... 25
Fig. 4.9: Public Key Infrastructure components.. 28
Fig. 4.10: SAML Diagram... 32
Fig. 5.11: Scene of tests... 39
Fig. 5.12: Software Layering... 40
Fig. 5.13: Scenario Overview... 42
Fig. 5.14: IdP Software Structure... 43
Fig. 5.15: SP Software Structure.. 45
Fig. 5.16: InQueue WAYF Service... 47
Fig. 6.17: CMS Snapshot... 49
Fig. B.18: Overview of Security Solutions.. 67
Fig. C.19: SAML Assertion Schema... 69
Fig. D.20: Shibboleth. Phase A.. 71
Fig. D.21: Shibboleth. Phase B.. 72
Fig. D.22: Shibboleth. Phase C.. 73
Fig. D.23: Shibboleth. Phase D.. 74
Fig. D.24: Shibboleth. Phase E.. 75
Fig. E.25: IdP Software Prerequisites... 77
Fig. F.26: SP Software Prerequisites... 81

Introduction 1

INTRODUCTION

The objective of this work is the study and implementation of a shared authentication
system for Web servers. The aim is to fulfill the on-campus (e-learning environment of the
Fachhochschule Lübeck) requirements, the objective is to design a system that avoids the
multiple actions of login for the student when access to content distributed across different
servers.

With this objective, a first study of the specific requirements of e-learning environments,
and also of some necessary concepts of security, needed for the Shibboleth correct
operation, was made.

First of all, and although Shibboleth had already been chosen as the definitive solution, a
comparative among different likely systems has to be made. After that, a study of the
individual components of Shibboleth, the ways to integrate them, and the software needed
to make it work, has to begin.

Once finished the Shibboleth theoretical knowledge and before start with the practical
work, Is also necessary to study the requirements that Shibboleth needs to work, the
software under which works and some concepts and technologies in which is based.

The next step in the project is to implement, in a practical way, the knowledge acquired in
the early stages, materializing it all in a physical scenario to develop each part of
Shibboleth. When a simple example of authentication has been implemented, and works
properly, the study of the CMS (Course Management System) would begun. With the idea
to integrate Shibboleth with it.
A study will become of some CMS in particular and the way of Shibbolize (integrate the
authentication system so that it works with Shibboleth) Sakai and Blackboard, the CMS
used in on-campus (The e-learning environment on the Fachhochschule Lübeck)

The next part of the introduction talks about how this paper is organized.

The first chapter is an introduction to the e-learning environments, to their peculiarities and
requirements. It also explains basic subject security concepts, like federation. It also
shows the main concept to work at: the authentication based on attributes.

The second chapter is an overview of the existing solutions for the exposed requirements
and a comparison of Shibboleth with other systems.

In the third chapter there is an explanation and a complete perspective of Shibboleth:
basic concepts, development facts and procedures to explain every part of the scenario in
depth. And also some of the goals that Shibboleth has to fit in the proposed solution are
explained.

The fourth chapter presents a perspective of all software and concepts based on
Shibboleth. Mainly it is an introduction to the concept and later how Shibboleth is used .

An exhaustive explanation of the implementation in the chosen scenario can be found in
the fifth chapter.

Introduction 2

The sixth chapter explains how to use Shibboleth as a system of authentication in CMS
(Course Management System) and a guide for the implementation.

The last chapter, the seventh, shows the general conclusions of the work as well as some
improvement proposals for development.

In the appendixes, there is a glossary with some of the abbreviations used in this paper
and a short description of some concepts to use as reference. As well there are a
explanation about an example of Shibboleth in action and concluding the appendixes
there are some explanations about how to install the software.

The Fact. Shared Authentication 3

CHAPTER 1: THE FACT. SHARED AUTHENTICATION

1.1 Introduction

Shared authentication is the fact of once the user is authenticated in the system and
verified the privileges, that although this user access to another resources and the new
server not require again him to authenticate. The idea is the servers interchange some
attributes and based on some polices grants the access to the resources.

Authorization mechanisms require an authorizing agent to query some type of database to
check the privileges of the concerned user. Nevertheless, in a panorama of the cross-
domain, this requirement can be heavy. In the first place, given the number of users in the
several domains, the great data bases would be unmanageably. Secondly, the users and
the administrators of system would be equally reluctant to have sensible information of the
user stored in so many diverse locations. This makes a new mechanism necessary to
handle with effectiveness the authentication and the authorization of the cross-dominion.
Authorization based in attributes, whereas not a new concept, are winning quickly in
reputation.

Attribute based authorization essentially considers more granularity in the process of the
authorization, because one can choose what information to assert, and considerably
simplifies the tasks of the administrators of the network since they don't have to maintain
accounts for foreign users. Basing decisions of the authorization on the qualities or the
“papers” of the users, the lists of complex control of access are needed not more for each
resource. Everything is required that it's a system of mappings simple that they contain the
several respective papers and their privileges. Thus, also primary targets are to avoid
copies of the file of passwords between different servants and to guarantee the safe
access to the resources without invading the privacy of the user.

1.2 The new scenarios (e-learning, course management systems,
libraries, etc.)

Every time more the education, remote or face to face, it's nourished of contents on-line
and these normally aren't centralized, the necessity arises to regulate the access to the
information is of the own institution or as which they serve firstly like support to teaching
because sometimes they are resources with copyright and in other occasions for audit
questions. For this reason, one of the recent fields of investigation is like allowing the user
to access to all the necessary resources in an easy way (for example with same login and
password) without the disadvantages of having to distribute files of password between all
the servers.

Scholarship and higher education students increasingly depend on digital information, and
the on-line sources that provide them, for research and teaching. These sources vary
greatly in size, focus, function, and scope. Valuable teaching and research materials might
be found in a dataset collection on a departmental web site, in a repository of images run
by a university library, or in a licensed commercial database of journal articles. Large

4 Shibboleth and the challenge of authentication in multiple servers

numbers of these data sources, often known as digital repositories, now exist, and a
scholar is likely to require materials drawn from multiple repositories to support research or
teaching on a particular topic.

There are also, a growing interest among academic institutions in collecting, preserving,
reusing and creating value-added services from digital content produced in and for
research, teaching and learning.

The emphasis on research outputs and collaboration, and distance, flexible and on-line
learning, together with developments in information technology, has led to an increased
awareness that the digital content being created by members of the academic community
is an institutional asset. At the same time many academic libraries are responding to the
challenges of new technologies by taking the opportunity to redefine their fundamental role
in the creation, distribution and provision of access to information. Over the past decade
libraries have moved almost completely towards a digital platform for management of the
information (both print and electronic) that they acquire or subscribe to. They have built
significant digital collections of material published by others, and they are increasingly
producing new content themselves. Often this content originates from, or is the intellectual
property of, their own institutions.

Some services may be made available to restricted user groups only, such as the
database provided to medical students by the scientific library. On the other hand, the
networking of institutions has lead to a situation where the service provider and the user
are not from the same organization.

Teaching itself is increasingly supported by software applications, both to support distance
education and to supplement traditional face-to-face instruction. In particular, many
colleges and universities have deployed or are developing learning management systems,
also known as “courseware,” to support instruction. These systems are often used to
deliver information drawn from internal or external digital repositories. Smaller, specialized
learning applications also take advantage of content from digital repositories, such as
electronic course reserve systems, personal bibliographical databases, digital portfolio
managers, and presentation and analysis tools.

To make the most effective use of digital content in teaching, learning applications need to
be able to easily interoperate with digital repositories so that teachers and students can
discover, access, view, quote, adapt, and evaluate appropriate learning material. Because
this, grows the necessity of improve distributed learning where the resources, the students
and the teachers are located in different server/organizations.

The Fact. Shared Authentication 5

1.2 Security Concepts and the e-learning environments.

1.2.1 AAA. Authentication, Authorization and Accounting

Any discussion regarding access to and use of information resources must, at some point,
consider the primary concepts of authentication, authorization and accounting.

-Authentication: Authentication refers to the process by which a user’s claim to an
identity is checked and verified.
In a e-learning environment, authentication is needed in order to guarantee that only
registered students of the participating institutes can access the on-line courses.

-Authorization: Authorization is the process of giving someone permission to do
something.
In a e-learning environment, after a successful authentication phase the student is
given access to some of the resources and based on an on-line timetable the
students can reserve timeslots for accessing certain parts of the application.

-Accounting: Accounting is the process which measures the resources a user
consumes or plans to consume during his session. Accounting is used for
authorization control, billing, trend analysis and capacity planning activities. Due to
the limited resources, accounting has to be used for authorization control.
In a e-learning environment, this means that students cannot access the whole
application at once but are just given access to a certain module based on their on-
line reservations.

For the implementation of the AAA, in an e-learning environment is needed an application
to manage this action, one of the solutions is the authentication and authorization
infrastructures. The Authentication and Authorization Infrastructures are middleware
systems, consisting of a set of protocols that enable the delegation of authentication and
authorization issues to different instances. The infrastructures provide all the necessary
mechanisms that let users, organizations, and resources collaborate in the system. An
authentication and authorization infrastructure requires three entities in order to provide its
functionality; Home organization, resources and users.

Home Organizations are universities or other entities, where the potential users (students
or staff members) are registered. The home organization is responsible for the
authentication of their respective users. The users possess at least one account at a home
organization. Resources exist in two forms: either they are web-based, or they act as
services for authentication and authorization infrastructure users. If a user wants to access
a resource, the authentication and authorization component of the resource asks the
user’s home organization for the authentication. Upon successful authentication, the home
organization sends back a set of attributes containing the information about the user’s
home organization role.

It is a precondition in authentication and authorization infrastructures that user information
released by home organizations is reliable and accepted by the resource providers. Based
on these attributes, the resource authorization system decides if the access should be
granted or denied.

6 Shibboleth and the challenge of authentication in multiple servers

Authentication and authorization infrastructures bring advantages for all the involved
entities in the process of accessing protected resources. The home organizations can
increase the quantity of accessible resources by their members with a minimal overhead.
The users take advantage of a simplified resource access procedure. The advantage for
the resources consists in a decreased administration overhead (they do not need to create
accounts for their users), and the reliable user information, since the attributes sent by the
home organization are trustful.

An authorization process is based on the exchange of user authorization attributes in the
form of name/value pairs. A policy which allows controlling this exchange of attributes is
desirable. Some authentication and authorization infrastructures provide such a
functionality which enables the users to make a trade-off between access and privacy.
This mechanism is enforced by the Attribute Release Policy (ARP). In order to authorize
users, resources need a policy which defines a minimal amount of attributes they must
receive. This policy is called Attribute Acceptance Policy (AAP). Based on users attribute
release policy and resources’ attribute acceptance policy, users are able to access
resources. Only users providing the required attributes are granted access to the resource.

Privacy is conceptually feasible, though impractical, as it would require isolating one’s self
from the world. Beyond such simplistic definitions, it seems prudent to shy away from
making definitive statements, in that privacy has a very subjective nature. Privacy
advocates, however, often appear to treat the subject in a similarly simplistic manner.
Statements are made claiming some action will result in a loss of privacy. Yet, defining that
loss is often avoided or subjectively stated.

Privacy is a function of the prevailing culture, social context, political context and the
individual ideals. Concerns widen from purely physical equivalents (such as unauthorized
distribution of personal photos), to include more intimate details of one’s self. These
changes speak in a different way, for in an electronic world one’s identity is captured easily
in reproducible bits of information.

Given the above discussion, we see difficulty in defining privacy without tying it to a
specific attributes and individuals. In the anonymity discussion that follows, we describe a
means of providing this connection.

1.2.3 Anonymity

Systems that allow users to control the amount of personal information (IP address, email
address, physical address, real name, etc.) revealed to different entities on the Internet
can be used to reclaim an individual’s on-line privacy. We consider two forms of on-line
privacy, anonymity and “pseudonymity” (although in practice both are normally referred to
as anonymity). A system that provides anonymity hides the user’s identity unless the user
chooses to reveal their identity. “Pseudonymity” is a type of anonymity; however, with
“pseudonymity” the user maintains one or more distinct identities (pseudonyms) that are
not connected to the user’s physical identity.

The Fact. Shared Authentication 7

Most systems use some secret that only the user who created the pseudonym knows to
ensure that people with whom the user interacts using a given “nick” can be assured that,
although they do not know the physical identity behind the “nick”, it's in fact the same
person each time. However, more than one person may “share” a single “nick” simply by
sharing the secret. In contrast, anonymous systems that provide strong or unlinkable
anonymity do not leave any persistent information that lets someone link any transaction to
another transaction preformed by the same user.

1.3 Federations

Federation means a group of organizations or service providers which have built trust
among each other and enable sharing of user identity information amongst them. One
proposal is a flexible approach to establish a Single Sign-On (SSO) ID in the federation.
Then show how a user can leverage this SSO ID to establish certified and un-certified user
identity attributes without the dependence on PKI for user authentication. This makes the
process more usable and privacy preserving. The figure (Fig. 1.1) presents and overview
of a Federation concept. The basic purpose is the access possibility to any resource
(hosted in SP) inside the Federation using the authentication service (IdP) from any of the
Institutions that belongs to the Federation.

Practical applications of federated identities are represented by large multinational
companies which have to manage several heterogeneous systems at the same time. An
effort in this sense is represented by the notion of SSO, which enables a user to login to

Fig. 1.1: Overview of the Federation Concept

Federation

Service providersIdentity providers

ORG 1

ORG 2

…

ORG 4

Digital resource or database
(DSP)

VLE in ORG 2
(e.g. WebCT)

A national portal
(e.g. MyAthens)

VLE in ORG 3
(e.g. Blackboard)

A national virtual university
portal

A national research portal

ORG 3

…

8 Shibboleth and the challenge of authentication in multiple servers

multiple organizations or Service Providers (SP's) by using the same Username and
password. This approach increases usability and adds security by reducing the number of
passwords that need to be managed. Emerging standards are currently extending the
notion of federated identity to other user information referred to as identity attributes. The
main goal of such extensions is to enable interoperability and link together redundant user
identities maintained by different SP’s. An important requirement in this context is that the
federation environment should enable SP’s to exchange user data in a secure and
trustworthy manner while also enforcing the original privacy preferences of the user.

Current federation solutions are built on top of Secure Assertion Markup Language (SAML)
specification which depends on Public Key Infrastructure (PKI) with additional trust
relationships for it's security. As such, federations have to rely on PKI for exchanging data
among SP’s, and between users and SP’s authentication. However, PKI has experienced
numerous implementation problems because of it's technical complexities. It is also
oriented towards strong identity granted through Registration and Certification Authorities,
which is not always suitable for user privacy. Hence, the assumption of relying on PKI for
all types of interaction in the federation is not realistic. It's needed articulated identity
solutions supporting multiple complementary options for digital identity.

A serious concern related with identity management, whatever solution is chosen, is the
risk of identity theft. Despite guidelines have been provided on how to protect against
identity theft, not many identity theft protection solutions have been proposed so far.
Sensitive information in the Internet is currently hard to track and also consistent usage of
the proposed solutions is extremely hard to achieve. In a federation environment it's
possible to develop protocols able to achieve identity theft protection. As noted above, the
security and privacy of the user identity information, both certified and uncertified, are of
utmost importance today. Security prevents theft and impersonation when the identity
attributes are used and privacy protects against the disclosure of identity when the user
has the right or expectation of anonymity.

If are expected to work with federations, two criteria for trustworthy attribute assertions by
Credential Providers are: that the identity management system fall under the purview of
the organization’s executive or business management, and the system for issuing end-
user credentials (ex. PKI certificates, user-id's/passwords, Kerberos principals, etc.)
specifically have in place appropriate risk management measures (for example
authentication and authorization standards, security practices, risk assessment, change
management controls, audit trails, etc.).

At last but not at least, it's important to remark that one institution or institutions can be
member of more than one Federation.

The Fact. Shared Authentication 9

1.4 Why shared/attribute based authentication.

One way of forming a federation is to assert an attribute and have this attribute examined
by the authority of the remote resource. Attribute based authorization entails just such an
assertion by an authorization service of attributes associated with an identity. These
attributes describe the 'role' or 'roles' of the identity of member at a university. An assertion
for that principal identity might state that they have the ‘role’ of a faculty member. This
allows role-based authorization to offer a very compelling privacy and anonymity solution.
Identity becomes one more attribute of an assertion that may or may not be shared with
various destinations.

10 Shibboleth and the challenge of authentication in multiple servers

Overview of Solutions 11

CHAPTER 2: OVERVIEW OF SOLUTIONS

2.1 Introduction

Although from the beginning already was determined that Shibboleth is the technology to
use, I want to compare Shibboleth with other existing solutions in the market. Thus for
example Kerberos and the Single Sign-On (SSO) solutions. Kerberos is a solution based
on tickets; the main idea is that when the user tries to accede to a resource, this it's turned
aside to a server in whom after login and password provides ticket to him valued to accede
to the resource during an assigned period. Kerberos is a solution very used and that has
demonstrated it's functionality during long time. The other possibility is the Single Sign-On
systems, (Shibboleth incorporates an SSO), The operation principle is easy: the
authentication systems interchange information among them of a safe way so that it's not
necessary that they are sent literally the login and the password.

2.2 Kerberos

Kerberos is a system for authentication in distributed computer systems. It provides strong
authentication of clients and server using conventional cryptography. It also protects the
confidentiality and integrity of communications over an insecure network. Kerberos
operates on the application layer, providing end-to-end security.

The Kerberos system was developed at Massachusetts Institute of Technology as a part of
project Athena. One implementation of Kerberos is freely available from MIT, and
Kerberos has also been integrated into commercial products such as Windows 2000.
Kerberos is actively developed; the current version is version 5.

Kerberos is designed to operate in an environment where the network itself and the
workstations are not trustworthy. An adversary is assumed to be able to read, insert and
modify packets on the network. The Kerberos architecture is designed around a data
element called a ticket.

The ticket is a set of cryptographically sealed data that lets a client authenticate to a
server. The Kerberos system uses two trusted on line services. These services are the
authentication service and the ticket-granting service.

The Authentication Server (AS) implements the authentication service, and is responsible
for authenticating users and giving them tickets usable for contacting the Ticket-Granting
Server (TGS). The ticket-granting server implements the ticket-granting service, and is
responsible for issuing tickets usable with servers implementing other services on the
network. The combination of the AS and the TGS is called the key distribution center
(KDC). This figure (Fig. 2.2) shows the different stages of the authentication process.

12 Shibboleth and the challenge of authentication in multiple servers

Both the TGS and the AS are trusted services, and are assumed to be physically secure.
Each organizational unit has one TGS and one AS. Each such unit is called a realm or
domain. Kerberos supports authentication of users across realm boundaries. The realm of
a user belongs to is a part of the user’s name. Trust between realms can be established
through inter-realm keys.

One of the disadvantages of Kerberos and the main disadvantages compared to
Shibboleth is that Kerberos needs a centralized organization that manages the tickets and
because this, it does not fulfill the requirements.

2.3 Single Sign On Solutions

Another solution is a Single Sign-On System, this minds that the user only are asked for a
login the first time that they enters in the system. Actually, most of the times when the user
enter in the system are required to authenticate them, which is usually done by giving the
user an account with an associated user name and password. The website could be an
on-line shop where users need to be authenticated to see their current orders. Other
examples of websites could be: news sites, game sites or libraries. This means a user
could, potentially, have lots of accounts, each on different websites. It is tedious for a user
to remember many user names and passwords, and often a user will resort to using only a
single user name and password for every website.

The basic idea is the connection of the authentication mechanism of all the servers, this
minds they are allowed to interchange some attributes and allow the access to the
resources.

From a security point of view, this is not a wise strategy. If a single login is in some way
cracked and thereby compromised, all logins are compromised. Furthermore, it has a cost
to the websites to manage the many accounts for their users. Each website needs their
own system to issue new accounts, remove unused accounts, handle lost passwords and

Fig. 2.2: Kerberos authentication process

Overview of Solutions 13

other administrative tasks associated with the accounts. Also the accounts are often
created ad-hoc, websites cannot truly rely on the identity information stated, when an
account is created. Websites could be stricter and require valid identity information, but as
it could exclude or scare some of their users this is often not an option.

These problems have motivated the development of new ways to authenticate users, of
which Single Sign-On protocols are one. The purposes of these protocols are to allow
users to authenticate themselves to several websites using one account (Fig. 2.3), and if
visiting more websites simultaneously or in quick succession, a single log on information is
passed thought the servers. At the same time, when using a Single Sign-On protocol, each
website does not have to manage accounts for users. Account management can be
carried out at a central authentication site. As the users only have to use one account it
should be easier to use and remember the associated password. Using a Single Sign-On
protocol the user only should create one account, to authenticate themselves to the
authentication site used by the websites providing the services.

The Internet2 consortium, have a group to develop SSO solutions called WebISO. The
WebISO Working Group is investigating the realm of "web initial sign-on" (WebISO)
packages: systems designed to allow users, with standard web browsers, to authenticate
to web-based services across many web servers, using a standard, typically
username/password-based central authentication service. The objective is to share
experience in this field and work towards in common solutions. The group output may take
the form of: recommendations for best practice and architecture; recommendations for
interfaces between services and WebISO infrastructure; common WebISO protocols
and/or common implementations. Web ISO is not software, are only recommendations and
drafts to developers like the Pubcookie project. One of these recommendations is the
Shibboleth projects that include a SSO and some other features.

Fig. 2.3: SSO Overview

14 Shibboleth and the challenge of authentication in multiple servers

2.3.1 Shibboleth

Shibboleth is a project of Internet2/MACE with the aim of develops architectures, policy
structures, practical technologies, and an open source implementation to support inter-
institutional sharing of web resources subject to access controls. In addition, Shibboleth
will develop a policy framework that will allow inter-operation within the higher education
community. Key concepts within Shibboleth include:

-Federated Administration: The Identity Provider (origin) campus (home to the
browser user) provides attribute assertions about that user to the Service Provider
(target) site. A trust fabric exists between campus, allowing each site to identify the
other speaker, and assign a trust level. Identity Provider sites are responsible for
authenticating their users, but can use any reliable means to do this.

-Access Control Based on Attributes: Access control decisions are made using
those assertions. The collection of assertions might include the identity, but many
situations will not require this (ex. accessing a resource licensed for use by all
active members of the campus community, accessing a resource available to
students in a particular course).

-Active Management of Privacy: The Identity Provider (origin) site, and the browser
user, control which kind of information is released to the Service Provider (target). A
typical default is merely "member of community". Individuals can manage attribute
release via a web-based user interface. Users are no longer at the mercy of the
target's privacy policy.

-Standards Based: Shibboleth will use OpenSAML for the message and assertion
formats, and protocol bindings which is based on Security Assertion Markup
Language .

-A Framework for Multiple, Scalable Trust and Policy Sets (Federations): Shibboleth
uses Federations to specify a set of parties who have agreed to a common set of
policies. (A site can be in multiple Federations.) This moves the trust framework
beyond bi-lateral agreements, while providing flexibility when different situations
require different policy sets.

-A Standard Attribute Value Vocabulary: Shibboleth has defined a standard set of
attributes; the first set is based on the eduPerson object class that includes widely-used
person attributes in higher education. It's not a closed list, can be possible add new
attributes.

When a user from one institution tries to use a resource of another, Shibboleth sends
attributes about the user to the remote destination before login the user. The destination
can use the attributes to decide whether or not grants the user access. Shibboleth lets
each user choose which kind of information about them can be released to every
destination. In particular, a user may choose whether or not their name is sent to the
remote site as an attribute, protecting privacy in scenarios where a users name is not
necessary and with some other attribute, such as being affiliated with an institution, can be
enough.

Overview of Solutions 15

A simplified view of the Shibboleth authentication is shown in the figure (Fig. 2.4). On
receiving a request, the target site establishes a handle for the user, then requests
attributes for that handle, and makes an authorization decision based on the attributes
passed to the Attribute Authority (AA) so it can decide which attributes to release, based
on Attribute Release Policies. The attributes will likely be non-identifying, like confirmation
of institution membership, or age, so the sites do not receive any personal information
about the user. The AA at the SP however does see which sites (including URLs) are
asking for attributes for the user, and if server at the AA wished to do so, they could log
this information.

Fig. 2.4: Shibboleth procedure

16 Shibboleth and the challenge of authentication in multiple servers

Shibboleth in Depth 17

CHAPTER 3: SHIBBOLETH IN DEPTH

3.1 Introduction

Shibboleth is a system designed to exchange attributes across realms with the primary
purpose of authorization. It provides a secure framework for an organization to send
attributes using the web-browser across security domains to another institution. The first
time, when the user attempts to access a resource in a domain outside the home
institution, the user own home security domain sends certain information about that user to
the service provider site in a trusted exchange. These attributes are used by the resource
server to help determine if grants the user access. The user have the possibility to decide
release specific attributes to certain sites by specifying personal Attribute Release Policies
(ARP's), preserving the own privacy while still granting access based on trusted
information. This drawing (Fig. 3.5) shows an overview of the Shibboleth working
procedure. The Appendix C explains step by step working procedure with a real scenario.

There are several controls on privacy in Shibboleth, and mechanisms are provided to allow
users to determine exactly which information about them is released. A user's actual
identity isn't necessary for many access control decisions, so privacy often is needlessly
compromised. Instead, the resource often utilizes other attributes such as faculty member
or member of a certain class. While these are commonly determined using the identity of
the user, Shibboleth provides a way to mutually refer to the same principal without
revealing that principal identity. Because the user is initially known to the service provider
site only by a randomly generated temporary handle, if sufficient, the service provider site
might know no more about the user than that the user is a member of the identity provider
organization. This handle should never be used to decide whether or not to grant access,
and is intended only as a temporary reference for requesting attributes.

Fig. 3.5: Shibboleth working procedure

18 Shibboleth and the challenge of authentication in multiple servers

3.2 History and development facts

Shibboleth is being developed by members of Internet2 with guidance from the
Middleware Architecture Committee for Education (MACE) group of higher education
architects and a major contribution of work from IBM. Alpha and beta development were
spearheaded by Carnegie Mellon University, Ohio State University, and IBM.

The version 1.0 of the Shibboleth System was released in June 2003. As of this writing the
current version, 1.3 (released in July, 2005) is in use or in test by more than 150
organizations, including universities, research labs, commercial service providers, and
software vendors. Internationally, Shibboleth is deployed throughout Switzerland by
SWITCH (the Swiss Education and Research network, EDINA in the UK, HAKA in Finland
and many other university and research networks.

During the next year is expected to release the 2.0 version, the new version would be
SAML 2.0-compliant and Single Sign-On logout support.

Several non Web-based projects such as instant messaging, peer-to-peer resource
sharing, and grid systems are actively exploring Shibboleth integration. A joint effort with
Microsoft is under way to provide interoperability with the IBM-Microsoft Web Services
Security Model. Finally, Shibboleth is in the process of being certified for use with the U.S.
Federal E-Authentication Initiative.

3.3 The actors in Shibboleth

3.3.1 IdP (Origin)

There are four primary components to the identity provider side (Fig. 3.6) in Shibboleth:
the attribute query handler, the SSO handler, the directory service, and an authentication
mechanism. The attribute query and SSO handlers are provided with Shibboleth, and an
open-source WebISO solution, the directory is provided by the organization. Shibboleth is
able to interface with a directory exporting a JDBC or JNDI interface containing user
attributes, and is designed such that programming interfaces to other repositories is
straightforward. Shibboleth relies on standard web server mechanisms to trigger local
authentication. A <Location> block is used to trigger either an authentication mechanism
such as local WebISO system, Kerberos, or the web server's own basic auth.

Fig. 3.6: Identity Provider block diagram

Single
Sign-On
Service

Attribute
Authority

Authentication
 Authority

IdP

Artifact
 Resolution

Service

Shibboleth in Depth 19

-Authentication Authority: The authentication authority issues authentication
statements to other components. The authentication authority is integrated with the
IdP's authentication service.

-Single Sign-On Service: A single sign-on (SSO) service is the first point of contact
at the IdP. The SSO service initiates the authentication process at the IdP and
ultimately redirects the client to the inter site transfer service. The inter-site transfer
service issues HTTP responses conforming to the Browser/POST and
Browser/Artifact profiles. The inter-site transfer service interacts with the
authentication authority behind the scenes to produce the required authentication
assertion.

-Artifact Resolution Service: If the Browser/Artifact profile is used, the IdP sends an
artifact to the SP instead of the actual assertion. (An artifact is a reference to an
authentication assertion.) The SP then sends the artifact to the artifact resolution
service at the IdP via a back-channel exchange. In return, the IdP sends the
required authentication assertion to the SP.

-Attribute Authority: The attribute authority processes attribute requests; that is, it
issues attribute assertions. The attribute authority authenticates and authorizes any
requests it receives.

From the identity provider site's point of view, the first contact will be the redirection of a
user to the handle service, which will then consult the SSO handler to determine whether
the user has already been authenticated. If not, then the browser user will be asked to
authenticate, and then sent back to the assertion consumer service URL with a handle
bundled in an attribute assertion. Next, a request from the Shibboleth daemon, shibd, will
arrive at the attribute query handler which will include the previously mentioned handle.
The IdP then consults the ARP's for the directory entry corresponding to the handle,
queries the directory for these attributes, and releases to shibd all attributes the service
provider is entitled to know about that user.

3.3.2 SP (Target)

A Service Provider (formerly a Shibboleth target) is a deployment of SAML software that
validates assertions issued by Identity Providers and uses them to create a security
context and assists in the enforcement of access control based on the information.

In Shibboleth, the Service Provider software is in C++ (and soon Java), and is provided as
a set of libraries, services, and web server pluggins that implement the Shibboleth
Specifications in a flexible way. A web server can use the software to handle user
authentication and security session management for any web content and applications that
it hosts.

A service provider (formerly called a target) (Fig. 3.7) manages secured resources. User
access to resources is based on assertions received by the service provider (SP) from an
identity provider. Note that the service provider has access control in place that prevents
access by clients without a security context.

20 Shibboleth and the challenge of authentication in multiple servers

-Assertion Consumer Service: The assertion consumer service (formerly called a
SHIRE) is the service provider endpoint of the SSO exchange. It processes the
authentication assertion returned by the SSO service (or artifact resolution service,
depending on the profile used), initiates an optional attribute request, establishes a
security context at the SP, and redirects the client to the desired target resource.

-Attribute Requester: An attribute requester (formerly called a SHAR) at the SP and
the attribute authority at the IdP may conduct a back-channel attribute exchange
once a security context has been established at the SP. That is, the SP and IdP
interact directly, bypassing the browser.

From the service provider's point of view, a browser initially makes a request for a
Shibboleth-protected resource. The resource manager allows the service provider to step
in, which will use the Were Are You From (WAYF) to acquire the name of an identity
provider to ask about the user. The IdP will then reply with a SAML authentication
assertion containing a handle, which the assertion consumer service then hands off to
shibd. Shibd uses the handle and the supplied address of the corresponding attribute
query handler to request all attributes it's allowed to know about the handle. The resource
manager performs some basic validation and analysis based on attribute acceptance
policies (AAP's). These attributes are then handed off to the application or used internally
to decide whether to grant access.

3.3.3 WAYF and Federations

An optional WAYF service is operated independent of the SP and IdP. The WAYF can be
used by the SP to determine the user's preferred IdP, with or without user interaction. The
WAYF is essentially a proxy for the authentication request passed from the SP to the SSO
service at the IdP.

The WAYF service can be either outsourced and operated by a federation or deployed as
part of the service provider. It is responsible for allowing a user to associate themselves
with an institution of their specification, then redirecting the user to the known address for
the handle service of that institution.

A Shibboleth federation provides part of the underlying trust required for function of the
Shibboleth architecture. A federation is a group of organizations(universities, corporations,
content providers, etc.) who agree to exchange attributes using the SAML/Shibboleth

Fig. 3.7: Service Provider block diagram

Attribute Requester
(SHAR)

Assertion
Consumer Service

(SHIRE)

SP

Shibboleth in Depth 21

protocols and abide by a common set of policies and practices. In so doing, they must
implicitly or explicitly agree to a common set of guidelines. Joining a federation is not
explicitly necessary for operation of Shibboleth, but it dramatically expands the number of
service providers and identity providers that can interact without defining bilateral
agreements between all these parties.

A federation can be created in a variety of formats and trust models, but must provide a
certain set of services to federation members. It needs to supply a registry to process
applications to the federation and distribute membership information to the identity
provider and service provider sites. This must include distribution of the PKI components
necessary for trust between identity providers and service providers. There also needs to
be a set of agreements and best practices defined by the federation governing the
exchange, use, and population of attributes before and after transit, and there should be a
way to find information on local authentication and authorization practices for federation
members.

3.4 Shibboleth goals

One of the goals of Shibboleth is protect user's privacy in a different ways. A user can
choose which of their attributes can be released to any specific destination. This means
that a user may choose to send only that they are a member of a certain class to a
collaborational project, may choose to send their name to the research group site they
belong to, and may also choose to release that they are a student to a digital library.

Frequently in current designs, identity is mapped backwards to determine attributes such
as member of a particular working group, which is then used to govern access to
resources. Shibboleth reverses this process, allowing attributes to be sent with an identity
optionally included only if it's necessary. The target site will only know the attributes and
information necessary to perform an access control decision, protecting users' anonymity
in cases where their identity is not necessarily important. This gives users a large amount
of control and flexibility
about how their attributes are released and known. Administration has the
capability to develop default guidelines for attribute release for users.

Another goal is that provide a way to exchange attributes in a secure environment.
Shibboleth has been extensively designed to protect attributes while in transit from many
potential attacks. Hosts in all communications are authenticated, and vulnerable
transactions are protected using secure channels. Other techniques are employed to
protect user privacy and defend against replay attacks.

It is important to note that Shibboleth does not provide any limitations on what the target
can do with received attributes or what the origin can submit as a presumably accurate
representation. Trust agreements are necessary to define the population, retention, and
use of attributes out of band.

Also provide a useful federated administration. Federated administration is a way of
making authentication, authorization, attributes, etc. useful to other domains . This allows
for items of information that are established in one domain to be trusted in another domain
based on the trust relationship between the two domains.

22 Shibboleth and the challenge of authentication in multiple servers

Doing so can reduce administrative burdens for all parties concerned without relying on a
central authority or similar service to perform extensive operations. A registry service is
often still needed to host agreements reached by the federation, trusted information about
which members are in the federation, or who is authoritative for which entity.

And the last, Shibboleth emphasis on user privacy and control over information release.
Shibboleth is a system for securely transferring attributes about a user from the user's
origin site to a resource provider site. Again, Shibboleth allows users to determine what
information is released about the user and to which site. Thus, the job of balancing access
and privacy lies ultimately with the user, where it belongs. Shibboleth also keeps
information local, meaning that a user does not have to worry (as much) about who has
access to their user information and browsing behaviour.

Shibboleth. Based Concepts and Requirements 23

CHAPTER 4: SHIBBOLETH. BASED CONCEPTS AND
REQUIREMENTS

4.1 Introduction

Because Shibboleth is a Middleware, it needs layers on which base the work and facilitate
that upper layers can work, it's why in this section are explained some basic concepts like
HTTP, HTML Forms, SSL as well as applications on which work depend Shibboleth like
SOAP, PKI, XML and SAML and finally some concepts of operation of Shibboleth like
Attribute-Based Authentication and User attributes that although are not specific of
Shibboleth, it's needed to explain.

4.2 HTTP

Found everywhere on the Internet, HTTP (HyperText Transfer Protocol) is a ubiquitous
protocol for data connections between Web browsers and servers.
This protocol is the current standard for transferring HTML documents, although it's
designed to be extensible to almost any document format like XML for example. HTTP
Version 1.1 is documented in RFC 2068.

It operates over TCP connections, usually to port 80, though any other port can be used.
After a successful connection, the client transmits a request message to the server, which
sends a reply message back.
The simplest HTTP message is "GET url", to which the server replies by sending the
named document. If the document doesn't exist, the server may send an HTML-encoded
message stating this. This form of communication represents a typical request/response
mechanism. A client sends a request for a specific document to the server and waits for a
response. If the server does not respond with the requested document it's up to the client
to wait for the time-out and request the same document again. This loosely coupled type of
communication is very common in client-server architectures.

In addition to GET requests, clients can also send HEAD and POST requests, of which
POST's are the most important. POST's are used for HTML forms and other operations
that require the client to transmit a block of data to the server. After sending the header
and the blank line, the client transmits the data.

This way Web services utilize the HTTP protocol to transmit both data payload and service
request to a Web service.

24 Shibbolet h and the challenge of authentication in multiple servers

4.3 HTML Forms

The main of the HTML Forms is submit a form to the destination specified by their action
attribute. How the submission takes place is specified in the method and encoding type
attributes. Most HTML forms use method="POST" to transmit their data, because
method="GET" has a 255-byte restriction in the content size. Unfortunately most portal
engines treat POST requests differently than GET requests.

GET requests are transmitted as name-value pairs encoded in URL parameters and can
be extracted easily. These parameters can be forwarded to the remote site by constructing
a new URL. Portals may use their own request parameters, like portal-request-counter.
These portal specific request parameters must be stripped from the request sent to the
remote site, as they may result in unexpected results.

POST requests usually contain the form data in the request body not in the URL, but
exceptions are the norm. There are three cases of form definitions which need different
treatments:

-Forms with a definition like <form action="mailto:..."> are email forms. The action
URLs of these forms must not be encoded by the portal, because it's directly
processed by the web browser which sends an email upon submission.

<form action="mailto:user@domain.com">

-Forms with a definition like <form method="POST" enctype="application/x-www-
form-urlencoded"> must be treated like GET requests, because the browser
encodes the form values into the request URL.

<form method="POST" enctype="application/x-www-form-urlencoded">

-Forms with an attribute method="POST" and without attribute
enctype="application/x-www-form-urlencoded" are "regular" POST requests and
require the request body to be forwarded to the remote resource by issuing a new
POST request. POST requests can contain huge amounts of data that will add load
to the server where the portal is running on.

Shibboleth uses the HTML Forms to transfer information between the different servers and
clients.

The Secure Sockets Layer Protocol (SSL) is a protocol developed by Netscape designed
to provide privacy between two communicating applications (a client and a server) by
using public key cryptography. Second, the protocol is designed to authenticate the server
and, optionally, the client. SSL requires a reliable transport protocol (for example TCP) for
data transmission and reception.

An advantage of the SSL protocol is that it's application protocol independent (Fig. 4.8).
An application level protocol (for example HTTP, FTP, Telnet, etc.) can layer on top of the
SSL protocol transparently. The SSL protocol negotiates an encryption algorithm and a
session key as well as authenticates a server before the application protocol transmits or
receives it's first byte of data.

Shibboleth. Based Concepts and Requirements 25

Fig. 4.8: SSL Details

All application protocol data is encrypted before transmission, ensuring privacy. The
connection provided by the SSL protocol has three main properties:

-The connection is private. All messages are encrypted using secret key
cryptography (for example DES, RC4, etc.) with a session key that is decided at the
beginning with an initial handshake.

-The identities can be authenticated using public key cryptography (for example
RSA, DSS, etc.). The server endpoint of the conversation is always authenticated,
while client endpoint authentication is optionally.

-The connection is reliable. The protocol includes a message integrity check using a
Message Authentication Code (MAC) ensuring that package alteration between
client and server is detected. The MAC is calculated using secure one-way hash
functions (for example SHA, MD5, etc.).

26 Shibbolet h and the challenge of authentication in multiple servers

Transport Layer Security (TLS) is the latest enhancement of SSL. The TLS protocol is
based on the SSL 3.0 protocol specification as published by Netscape. The differences
between this protocol and SSL 3.0 are not dramatic, but they are significant enough that
TLS 1.0 and SSL 3.0 do not interoperate. The major changes are cryptographically
stronger MAC computation, larger padding (up to 256 instead of 63 bytes) and some
protocol clean-up (for example ignoring unknown record types, improved alert messages,
etc.).

The OpenSSL project offers an Open Source implementation of the SSL/TLS protocols.
Shibboleth use SSL to transfer information between servers encrypted and protect the
“sensible” information.

4.5 SOAP

SOAP is very new and there is not much history to it but I will go into how it was initiated
and got the support of several big vendors in the business. SOAP began at Microsoft as
XML-RPC, created by Dave Winer back in 1998. It was developed to replace the existing
RPC's on the market that were not suited for use over the Internet.

Other protocols (such as DCOM) required a significant dedicated runtime support. They
also had problems with several firewalls that didn’t support access via non- HTTP
protocols. Later on they changed the name from XML-RPC to the more generic Simple
Object Access Protocol. The first draft was heavily linked to Microsoft technology and used
Microsoft’s Biztalk server software but in the later version 1.1 it supported the W3C’s XML
schema standard.

SOAP is a XML based way to send and receive information over a network such as the
Internet. With the right software support such as the Jakarta Tomcat server you will get the
ability to do Remote Procedure Call (RPC) with your XML messages and receive the
information back to you in a XML message. There are different ways to use this; in it's
easiest form you use a web browser to access an on-line site that provides you with an
interface to call the objects. The technical solutions are hidden behind the web interface.
Another way to utilize SOAP is to incorporate it in an application and use the XML
messages to send information to a server containing the objects used in the application.
The application is then only an empty shell that resides on your local computer allowing
the calls to be made to the server where the objects and the data are stored. In this way all
the clients don’t have to be replaced when changes in the objects are done. Also it's
possible to ensure that the data is stored in a safe environment and accessed only as
intended.

SOAP was developed with two major design goals:

-Provide a standard object invocation protocol built on Internet standards, using
HTTP as the transport and XML for data encoding.

-Create an extensible protocol and payload format that can evolve.

Shibboleth. Based Concepts and Requirements 27

HTTP was chosen as the primary application layer protocol for SOAP since it works well
with today's Internet infrastructure, specifically, SOAP works well with network firewall .
XML was chosen as the standard message format because of it's widespread acceptance
by major corporations and opensource development efforts. Additionally, a wide variety of
freely available tools significantly ease the transition to a SOAP-based implementation.

The somewhat lengthy syntax of XML can be both a benefit and a drawback. it's format is
easy for humans to read, but can be complex and slow down processing times. For
example, GIOP and DCOM use much shorter, binary message formats. On the other
hand, hardware appliances are available to accelerate processing of XML messages.
Binary XML is also being explored as a means for streamlining the throughput
requirements of XML.

A SOAP message is contained in an envelope. Within this envelope are two additional
sections: the header and the body of the message. SOAP messages use XML
namespaces. The header contains relevant information about the message. For example,
a header can contain the date the message is sent, or authentication information. It is not
required, but must always be included at the top of the envelope when it's present.

An example of how a client might format a SOAP message requesting product information
from a fictional warehouse web service. The client needs to know which product
corresponds with the ID 827635.

 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getProductDetails xmlns="http://warehouse.example.com/ws">
 <productID>827635</productID>
 </getProductDetails>
 </soap:Body> </soap:Envelope>

Here is how the warehouse web service might format it's reply message with the
requested product information.

 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getProductDetailsResponse xmlns="http://warehouse.example.com/ws">
 <getProductDetailsResult>
 <productName>Toptimate 3-Piece Set</productName>
 <productID>827635</productID>
 <description>3-Piece luggage set. Black Polyester.</description>
 <price>96.50</price>
 <inStock>true</inStock>
 </getProductDetailsResult>
 </getProductDetailsResponse>
 </soap:Body> </soap:Envelope>

Shibboleth use SOAP as a definition of how to use XML to transfer data between the
servers.

28 Shibbolet h and the challenge of authentication in multiple servers

4.6 PKI. Public Key Infrastructure

In the physical world, face-to-face transactions, photo identification and even written
signatures offer some protection against fraud. However, the Internet remains relatively
anonymous, making it harder to know who is at the other end of the network. The
challenge is to translate the trust conventions from the physical to the on-line world. A
Public Key Infrastructure (PKI) (Fig. 4.9) has become the de facto standard for
establishing this trust over electronic networks.

Public Key Infrastructure (PKI) is a system of digital certificates and Certificate Authorities
that verify and authenticate the validity of each involved party.

Certificate Authority (CA) is an authority in a network that issues and manages security
credentials and public keys for message encryption and signature verification.

A digital certificate consists of the public key and the identity of an entity, rendered
unforgeable by digitally signing the entire information with the private key of the issuing
Certificate Authority (CA).

The name Public Key Infrastructure is used because Certificate Authorities issue digital
certificates by signing public keys.

A public key is a value that can be used to effectively encrypt messages and verify
digital signatures.
The public key can be made publicly available, it does not contain secret
information. All secret information is stored within the corresponding private key.
A private key is a value - known only to one party - that can be used to decrypt
encrypted messages, issue digital signatures and compute the corresponding public
key.

Fig. 4.9: Public Key Infrastructure components

Shibboleth. Based Concepts and Requirements 29

The private key must be kept private and must not be made publicly available.
Together, a private and a public key form a key pair.

The most important services of a Certificate Authority are:

-Key Registration: Issuing a new Certificate for a public key after verifying the
identity of the person demanding the Certificate.

-Certificate Revocation: Cancelling a previously issued Certificate. This is usually
done when a private key is corrupted.

-Key Selection: Obtaining a party's public key. The CA provides the corresponding
public key if someone asks for a specific identity.

-Trust Evaluation: Determining whether a Certificate is valid and what operations it
authorizes.

Shibboleth use a PKI infrastructure to establish a trust environment where the federations
can work.

4.8 XML (eXtensible Markup Language)

XML, an acronym for eXtensible Markup Language, was derived from Standard
Generalized Markup Language (SGML). A document written in XML is said to be well
formed if the tag structure is equivalent to a balanced tree. Unlike HTML, the tag
vocabulary of XML is unrestricted. Users can create arbitrary tags that can have arbitrary
meanings.

The only syntactic constraint XML imposes on it's users is that valid XML documents must
conform to a pre-defined Document Type Definition (DTD) or XML Schema. DTD's and
XML Schemas describe the structure of an XML document. XML processors (or parsers)
perform XML document validation using the schema to reference tag structure
descriptions. XML Schemas were recently introduced by the World Wide Web consortium.
The syntax is similar to XML documents in that they must represent balanced trees.
However, the tag vocabulary of schemas is restricted to well defined set of tags. This
thesis primarily deals with XML files that use schemas rather than DTD's.

A schema is composed of entities known as schema components. In all, there are 13
different schema components that fall into three different groups namely, primary
components, secondary components and helper components.

Primary components include the following:

-Simple Type Definitions: determine constraints on element and attribute
declarations. The content model of simple types can contain pre-defined datatypes
as well as other simple types. Simple type definitions, if named, must be unique.

30 Shibbolet h and the challenge of authentication in multiple servers

-Complex Type Definitions: also constrain element and attribute declarations. Unlike
simple types, the content model of a complex type can include other simple and
complex type definitions or declarations in addition to pre-defined datatypes.
Complex types also introduce the notion of type derivation.
Every complex type definition is derived either by restricting a complex type
definition or by extending a simple or complex type definition. Type derivation will be
discussed shortly. Complex type definitions, if named, must be unique.

-Element Declarations: associate a name with a simple or complex type definition.

-Attribute Declarations: associate a name with a simple type definition.

Secondary components include the following:

-Notation declarations: associate a name with an identifier for a notation.

-Model group declaration: is an association between a name and a model group.
Model groups constrain the order and cardinality of a list of element declarations.
There are three different types of model groups, namely:

·Sequence: Element declarations in the XML file must follow a specific
sequence defined by the sequence model group.

·Choice: Element declarations in the XML file can have an arbitrary order and
cardinality. This is the equivalent of a logical disjunction.

·All: Element declarations in the XML file must have all elements specified in
this model group. This is the equivalent of a logical intersection.

-Attribute group definitions: associate names with attribute groups. An attribute
group contains a set of attribute declarations that are included in complex type
definitions as a group.

-Identity-constraint definitions: associate names with uniqueness and
reference constraints.

Helper components are the following:

-Particles: include an element, wildcard or group declaration followed by occurrence
constraints. They impose cardinality constraints on content model declarations.

-Wildcard: is a special case of a particle definition that includes an additional
namespace constraint.

-Attribute Uses: used in an attribute declaration to specify whether that particular
attribute is required or allowed.

-Model Groups: provide for a more refined definition of complex content models.

XML Schemas use a restricted tag set to describe the structure of an XML document. XML
schemas are syntactically constrained to form a balanced tree (for example, every starting

Shibboleth. Based Concepts and Requirements 31

tag must have a corresponding closing tag). XML schemas encompass a wide range of
features.

-Type Derivation: This is similar to class-subclass relationships. A type derivation
that has the same schema components as another type definition and restricts the
range values of these entities is said to be a restriction. Restriction applies to both
simple and complex types. A type derivation that includes additional content in
addition to the content model of an existing type is said to be an extension. As
simple types cannot have additional simple or complex content types, only complex
types can be derived by extension. An element of type A that has been derived from
a type B, by restriction is also an element of type B. This mirrors class-subclass
relationships where a class A is said to be a subclass of class B if every member of
class A is also a member of class B. However, this similarity is limited to type
derivations by restrictions. An element of a type A, derived by extension of type B, is
not necessarily an element of type B.

-Namespaces: XML schemas require that the set of type definitions and elements
are said to be locally unique in a domain name known as a namespace.
Namespace is known as a qualified name and must be globally. Such namespaces
are known as target namespaces. If no namespaces are defined, then a default
namespace (www.w3.org/2001/XMLSchema) is assumed by a schema validator. A
namespace identifies the location of the schema document that contains the precise
definition of the element declaration or type definition. As XML does not have any
restriction on the XML tag vocabulary, it's entirely possible for different users to
conjure up tags with different meanings but identical names. However, using the
namespace facility, each user can define the element/type definition in a schema
that serves as a namespace. Prefixing the namespace schema to element names
ensures that a schema validator can access the proper definition and perform an
accurate validation.

XML allows any type of data to be encoded as there are no restrictions on XML tags. The
only constraint it enforces is that a well formed and valid XML document conform to an
DTD or schema, for example, it requires that the XML file adhere to a pre-defined
grammar. In any communication protocol, both sides must have a consistent protocol
description. In the case of XML, both sides need access to the schema to process XML
data. Note that the schema only provides a syntactic description of data.

The semantics provided by a schema is extremely limited. If we assume that web users all
over the world will use the same terms to describe entities, then parsing a XML file will
yield both syntactic and semantic information. In the context of controlled domains where
users agree on common standards, this however becomes a reasonable assumption. This
is a naive assumption to make for the web. As we shall see in the following section, RDF
overcomes these limitations to a great extent and can represent semantics more efficiently
than XML.
Shibboleth uses the XML file format in all the configuration files.

32 Shibbolet h and the challenge of authentication in multiple servers

4.9 SAML (Security Assertions Markup Language)

SAML, an OASIS standard, is a standard XML-based framework for the exchange of
attributes, authentication and authorization information. Prior to SAML, there was no XML
based standard that enabled exchange of security information between a security system
(such as an authentication authority) and an application that trusts the security system.
SAML provides a standard XML schema (Fig. 4.10) for specifying authentication, attribute,
and authorization decision statements, and it additionally specifies a WS-based
request/reply protocol for exchanging these statements.

SAML is designed to keep your information with only a few selected parties and allowing
those parties to share that information with other interested parties, if required, after your
explicit approval. This means that your information is safe in the hands of parties you trust,
plus you can have access to a range of higher-level services offered by vendors that bring
together a multitude of lower-level services.

The primary objectives of SAML are:

-Create an authentication and authorization exchange mechanism that is protocol-
and platform-independent (SSO).

-This should be independent of the deployment environment and should work with
centralized, decentralized, and federated deployment scenarios.

-The SAML framework should be XML-based. SAML is a mechanism for controlling
access to resources for authenticated principals. Access to resources is managed
based on specific policies. Two key actions are required for such a mechanism:

- Decisions about access control based on policies.
- Enforcing those decisions.

Fig. 4.10: SAML Diagram

Shibboleth. Based Concepts and Requirements 33

SAML provisions two roles to handle these actions: Policy Decision Points (PDP's) and
Policy Enforcement Points (PEP's).

Scenario: The subject is interested in accessing some secured content from a target Web
site. The subject goes to the source Web site that recognizes the subject or has already
authenticated the subject. From the source site, the user tries to access secured content
on the target Web site, taking the following steps:

1. Subject authenticates to the source site and requests a link to target site’s
secured resource.

2. Source site redirects to the subject using the authentication token.

3. Subject makes a request to the target site for the secured resource using the
token.

4. Target site’s PEP checks permission with the PDP.
5. PDP may internally request the source site for the SAML authentication

assertion using the token.
6. The source site provides an SAML authentication assertion to the target site

based on the token.
7. Target site provides the secured resource to the subject.

In all, a subject having been authenticated at the originating site gets a token from the
SAML authority that it provides to the target site. The target site uses the token to request
the information it needs from the originating site without having to get it explicitly from the
subject.

The SAML specification is made up of the following components:

-Assertion and protocol: This specification addresses the syntax and semantics for
defining XML-encoded assertions as well as the request and response protocols.

-Bindings and profiles: This specification addresses the mapping of SAML
request/response message exchange onto lower layer communication protocols like
SOAP or SMTP. A set of rules that govern embedding and extracting the SAML
information from lower layer communication protocols is called a profile.

-Conformance specifications: Different SAML implementations may only implement
part of these specifications. Conformance specifications set the basic standards to
which an implementation of the SAML specification must conform before it can be
called a conformant implementation. This helps with interoperability and
compatibility.

-Security and privacy considerations: This specification covers the security risks in
the SAML architecture specifically, the way SAML addresses those risks and the
risks that are not addressed.

Assertions provide information about the authentication performed by the subjects,
attributes of subjects, and authorization decisions about whether or not subjects are
allowed to access certain resources.

34 Shibbolet h and the challenge of authentication in multiple servers

A set of assertions makes a profile of a subject. Assertions in a profile set may be from
different organizations. The three assertion types are:

-Authentication: Authentication assertion deals with authentication of a
subject by a specific mechanism at a particular time.

-Attribute: Attribute assertion provides a mechanism for associating specific
attributes with a given subject.

-Authorization decision: Authorization decision assertion manages a given subject’s
authority to access resources.

SAML authorities produce assertions. SAML authorities can be further specified as
authentication authorities, attribute authorities, or PDP's. Consumers of assertions can
either be clients or SAML authorities themselves. This is an example of a SAML
Response. The fields are explained after.

<Response>
<ResponseID>dynadi:2003-02-20:5aff53b33d7a78c4</ResponseID>
<InResponseTo>access:2003-02-20:1e5638a2bbd3180a</InResponseTo>
<IssueInstant>2003-02-20T09:12:15</IssueInstant>
<Assertion>
<AssertionID>dynadi:2003-02-20:777a35f6b3ac638b</AssertionID>
<Issuer>urn:com:ibm:zurich:dynadi</Issuer>
<IssueInstant>2003-02-20T09:11:07</IssueInstant>
<SubjectStatement>
<Subject>
<NameIdentifier>john_smith@domain.org</NameIdentifier>
</Subject>
</SubjectStatement>
<AuthenticationStatement>
<AuthenticationMethod>urn:ietf:rfc:2246</AuthenticationMethod>
<AuthenticationInstant>2003-02-20T09:10:59</AuthenticationInstant>
</AuthenticationStatement>
</Assertion>
</Response>

IDType. This basic data type declares identifiers for assertions, requests and responses.
Values of this type are supposed to be chosen uniquely such that no party accidentally
assigns the same identifier to a different data object. The IDReferenceType is used to refer
to instances of IDType.

Assertion. An Assertion is a package of information that supplies one or more statements
made by an issuer. An Assertion contains the following major elements:

-AssertionID [IDType, required] Identifies the assertion.

-Issuer [String, required] The name of the issuer of the Assertion.

-IssueInstant [UTC, required] The time instant of issue.

-Statement [Statement, one or more] A Statement about a subject made by the
issuer.

Shibboleth. Based Concepts and Requirements 35

Statement. The Statement element is an abstract extension point for different kinds of
concrete Statements. The most important derived concrete elements are Subject
Statement and Authentication Statement.

Subject Statement. This Statement contains a Subject element that
allows an issuer to describe a subject. The Subject element itself has the following
structure:

-Name Identifier An identification of a subject by a name and security domain.

-Subject Confirmation Information that allows the subject to be authenticated. If the
Subject contains the Subject Confirmation in addition to a NameIdentifier, the
relying party can perform the Subject Confirmation to verify that the entity
presenting the assertion is the one that the issuer identifies with the Name Identifier.

Authentication Statement. The issuer states that the subject was authenticated by a
particular means at a particular time.

Attribute Statement. The issuer states that the specified subject is associated with the
specified attributes.

Request. The requester sends a message of type Request to a SAML responder. The
Request inherits different elements from Request Abstract Type.

-RequestID [IDType, required] Identifies the request. If present the Response
corresponding to the Request must contain it's value in the InResponseTo element.

-IssueInstant [UTC, required] The time instant of issue of the request.

-Query Specifies the query to be answered by the SAML responder.

-AssertionArtifact [String, one or more] Contains a so-called SAML artifact, which is
a String handle and represents a specific assertion.

Response. The Response element specifies the message sent back by the SAML
responder.

-ResponseID [IDType, required] Identifies the response.

-InResponseTo [IDReferenceType, optional] Refers to the Request the Response
corresponds to. If the RequestID of the Request can be determined, it must be
present.

Shibboleth is a set of SAML profiles, is a functioning SAML instantiation for federated
administration, with privacy management built into the design. The Appendix C shows the
assertion schema.

36 Shibbolet h and the challenge of authentication in multiple servers

4.10 Attribute-Based Authorization

Typical user authentication methods only provide the application with the permanent user
identifier (user_id) of the person who has authenticated. This simple approach won’t
suffice in modern systems. Applications need additional information about users-user
attributes to make proper authorization decisions. Providing this information as part of the
sign-on process is especially useful in multi-organizational situations where an application
probably won’t have access to user information through other means such as a directory
service. Shibboleth is designed specifically to provide user attributes to applications with
the flexibility, extensibility, security, and privacy required in federated scenarios.
Organizations can use Shibboleth’s built-in attribute support (based on the
Internet2/EDUCAUSE eduPerson directory schema or create new attributes to meet the
needs of applications. For example, attributes can represent “entitlements” such as “user
is authorized to access resource collection X.”

The Attribute Based Authorization is the main concept that Shibboleth is based. The
Shibboleth IdP software plugs in to existing institutional identity management and user
information services (typically Lightweight Directory Application Protocol, or LDAP-based,
directories), extending them to work inter-organizationally.

4.11 User attributes

User attributes are the basis for how the target site makes it's authorization decisions. In
Shibboleth, attributes are usually name/value pairs relevant to the user. Shibboleth also
provides for hidden attributes relevant to the origin and target site, but not necessarily to
the user.

Shibboleth places a large emphasis on user privacy. However, Shibboleth target sites are
greedy and will try to obtain as many of the user’s attributes as possible. To balance
access and privacy, Shibboleth allows it's users a choice in what information gets released
about them and to which site. To achieve this balance, Shibboleth lets each user have an
Attribute Release Policy (ARP).

When the SHAR at the target site asks the AA at the origin site for attributes for the user
with a specific handle, the AA retrieves that user’s ARP and only releases attributes
consistent with that policy. Shibboleth ARP's consist of a list of entries, each with three
main fields: a destination SHAR name, a resource URL, and a list of attributes that can be
released to this SHAR and URL (if the user has these attributes and the SHAR wants
them). The SHAR is usually the Website where the URL resides and which hosts the
resource. As noted earlier, the origin site might have hidden attributes, such as a contract
number, and an institution-specific ARP to specify when they should be released. Thus,
the AA may serve to add additional attribute values into the Attribute Response Message
(ARM) sent to the SHAR.

Since is not possible for a user and her institution to be able to provide ARP's for every
possible target resource on the Internet, and every SHAR and URL pairing, Shibboleth
permit's default and wildcarded ARP's.

Shibboleth. Based Concepts and Requirements 37

The Shibboleth standard requires that the AA must provide users at the origin side a
configuration file by which they can specify their Attribute Release Policies, this is usually
done using a GUI such as a web browser and enables the user to control his own privacy.
The downside, of course, is that a user’s choice of ARP may not be proper to be able to
grant him access to a target resource. Due to this problem, it's often preferable for the user
to be aware of each site’s attribute requirements, possibly shown on the interface.

The Problem is that Shibboleth defines the basic structure and use of an ARP. However,
how the AA retrieves a user’s ARP is not part of the Shibboleth standard and is left open to
interpretation. The user may have a single ARP or multiple ARP's. They may be dispersed
throughout the organization or they may be collected in one place. How the user’s ARP is
retrieved, validated and enforced is left to the implementers. The Shibboleth draft states:
“AA implementers are free to support many different kinds of ARP's with varying semantics
as long as the AA can efficiently process requests and determine the effective policy to
apply...Shibboleth doesn’t specify or constrain how an AA can answer these kinds of
questions.”

In a typical Higher Education Institute (HEI), the lines of administrative control are
dispersed Furthermore, the structure of this distribution will vary from user to user. In a
typical HEI, it also likely that the decision procedure for attribute release will follow such
administrative lines.

<user-attribute>
 <description>User Given Name</description>
 <name>user.name.given</name>
 </user-attribute>
 <user-attribute>
 <description>User Last Name</description>
 <name>user.name.family</name>
 </user-attribute>
 <user-attribute>
 <description>User eMail</description>
 <name>user.home-info.online.email</name>
</user-attribute>

38 Shibbolet h and the challenge of authentication in multiple servers

Shibboleth Implementation 39

CHAPTER 5: SHIBBOLETH IMPLEMENTATION

5.1 Introduction

Now we know more in depth about Shibboleth, the goal is to develop a real scenario (Fig.
5.11) where to be able to put the characteristics of Shibboleth on approval, so we left from
a scene with 3 machines.

The first machine lodged the services of identification (IdP), the second machine lodged
the content that we want to protect (SP) and the third machine acted properly as a client.
The requirements of the last one are simply to have a navigator and connection to the
network in which the rest of machines are. The machines act like IdP and SP are the one
that runs properly Shibboleth, these are the machines which needs special characteristics.

These 3 machines are x86 all of them and they do not require special hardware
characteristics. We left from the base that the 3 are connected through their respective
networks to Internet although in this case the institution and network are common, it's not
mandatory.

Fig. 5.11: Scene of tests

LDAP

IdP

Shibboleth
Shibboleth

SP

User

vfhmapc46.fh-luebeck.devfhmapc45.fh-luebeck.de

40 Shibboleth and the challenge of authentication in multiple servers

In this chapter, first I start to explain the pre-requirements and co-requisite to install
Shibboleth in IdP and SP (I have already commented previously the client does not have
special characteristics) and later the configuration of the machines to work with, in the
desired scenario.

5.2 Requirements

Since Shibboleth is middleware, needs of software on which runs (O.S.) and that upon
does interaction with system / client (Web server, web applications, database, another
middleware, etc.). The (Fig. 5.12) shows the working layering for Shibboleth.

Beginning by the low layer, we needed system operative where to work, normally for
implementation of Shibboleth is used Freebsd or Linux, also it allows that some of their
functions run on machines under Windows, Solaris and Mac-Os.

For the scenario, I use Linux (Gentoo 2005.1) for the Service Provider and BSD (Freebsd
RC5.4) for the Identify Provider.

The SP runs with Linux (Gentoo) because it's the OS that I have in my machine and I'm
more close to them. (For the SP it's necessary some requirements and some of them are
in portage and the another's are only possible to install from scratch). I use this machine
for the SP because in this machine is were are going to run the applications for the student
(e-learning environment contents, etc) and for me it's more easy install and deploy this
applications in a familiar environment.

The IdP runs under BSD (Freebsd) because it was a new machine and Freebsd allows me
a fast installation of the system and also a good support on case of difficulties, another
added reason was the fact of test Shibboleth running under Freebsd because the
institution for which I'm developing the project normally works in most of her machines with
them.

Fig. 5.12: Software Layering

O.S.

Webserver

Apps. Server

Shibboleth-IdP

Webserver

Shibboleth-SP

 SAML -Middelware

Shibboleth Implementation 41

About the web server, I start to work with the Apache branch 1.3 because in the
Shibboleth documentation recommends the use of 1.3 for best support but I quickly switch
to 2.0 due to the incompatibility of 1.3 with some Apache new modules needed for the
deployment and the absence or instability of some of them with the 1.3 branch (now, in the
last versions of the Shibboleth docs also speak about 2.0).

In the SP the Web server is necessary to be able to offer the contents to the users (page
Web, document, graph, etc.) and to allow to establish rules of access to this content, later
is through these rules where grants/deny Shibboleth the access.

In the IdP the Web server is necessary for the remote authentication in the system
(campus, library, etc.) and to pass the password of the SSO to Tomcat. For the rest of
Web server functions Tomcat replaces Apache. If it's necessary, is possible to work
without Apache in the IdP.

About Tomcat, the branch has been used is the 5.0 although according to the
documentation also it's possible to use branch 5.5, I chose the first because have better
support in the used systems. Tomcat, only is necessary in the IdP, and the purpose it's to
manage the jar applications where Shibboleth are deployed.

Another of the requisites for the implementation is the LDAP server. In this database are
located the login, password and attributes of the user of the system. It's the base of
Shibboleth, is where we will be able to know who is that user, its roll, the resources who
can access, etc.

I choose Openldap because have an easy implementation and are available in the portage
packages of Gentoo. The ldapserver runs in the IdP machine but it's possible to use a
existing ldap server of the institution or use another database like Mysql, Postgres, etc.

This is the Idif I use to fill the database:

dn: dc=fh-luebeck,dc=de
dc: fh-luebeck
objectClass: dcObject
objectClass: organization
o: VFH-Luebeck

dn: cn=anne, dc=fh-luebeck,dc=de
userPassword:: e1NIQX1YQzNaUk4zcDRJaUJ2dkNKVCtleUtseWNTd1k9
description: biology
objectClass: top
objectClass: person
sn: lenna
cn: anne

For the Shibboleth development I use 3 attributes:

-cn and userPassword: Used by the SSO to login in the system.

-description: This field contains the courses where the user are joined.

42 Shibboleth and the challenge of authentication in multiple servers

5.3 Deploying

In order to test the implementation of Shibboleth I improve a simplified solution is shown in
the figure (Fig. 5.13). Although it was in the beginning a bit complex, especially by the
subject of the service of WAYF and the Federation, once finished the installation and for
the final tests, both have been suppressed. The objective is the control of the access to
the resources (document, webpage, image, etc.) hosted in the SP, the policy and the
attributes for the access to the resource are defined in Apache in the httpd.conf
configuration file.

The names of user, passwords and attributes are located in a LDAP server. This minds all
the specific data about the users is located in a centralized database this allows a better
control of “the sensible” data of user with which it improves the privacy. To this database,
that circumstantially located in the SP machine it's possible can be defined access policies
so that it could be accessible from the IdP machine as well as from the SP for his
management.

Fig. 5.13: Scenario Overview

ldap

/resources

User

AA

SSO

SHIRE

SP

IdP

Shibboleth Implementation 43

5.3.1 IdP (Origin)

For the development of the IdP, after the Freebsd installation, and all the requirements
(openssh, apache+modules, Tomcat), and the configuration of Tomcat and the Apache
modules, the Shibboleth install program copies the .war to the directory of webapps, is
when Tomcat starts when the war file is installed and appears the resource /Shibboleth-
idp/. In the figure (fig 5.14) can be observed a scheme of the IdP installation.

The following step is properly the configuration of Shibboleth that consists of 3 files:

-idp.xml: Contains the main configuration of the IdP. Aside the configuration of
federation and the certificates the important points are the situation of the AA

AAUrl="https://vfhmapc45.fh-luebeck.de:8443/shibboleth-idp/AA"

and the file used to access to the attributes.

resolverConfig="file:/usr/local/shibboleth-idp/etc/resolver.ldap.xml"

Fig. 5.14: IdP Software Structure

APACHE2

TOMCAT5

mod_auth_ldap
OPENLDAP

mod_jk

httpd.conf

Username
password

course_joinedOPENSSL

mod_ssl

arp.site.xml

AA
SSO

resolver.ldap.xml

idp.xml

Shibboleth-IdP

44 Shibboleth and the challenge of authentication in multiple servers

-resolver.ldap.xml: In this file, is configured that I want to use an LDAP server for
get the attributes and the location of the server.

<JNDIDirectoryDataConnector id="directory">
<Search filter="cn=%PRINCIPAL%">
<Controls searchScope="SUBTREE_SCOPE" returningObjects="false" />
</Search>

<Property name="java.naming.factory.initial"
 value="com.sun.jndi.ldap.LdapCtxFactory" />
<Property name="java.naming.provider.url" value="ldap://vfhmapc46.fh-
luebeck.de:389/dc=fh-luebeck,dc=de" />
</JNDIDirectoryDataConnector>

 and which attributes they must be available. In the file I ask for all the registries
available but the really important ones are these (initials and description).

<SimpleAttributeDefinition id="urn:mace:dir:attribute-def:initials">
<DataConnectorDependency requires="directory"/>

</SimpleAttributeDefinition>

<SimpleAttributeDefinition id="urn:mace:dir:attribute-def:description">
<DataConnectorDependency requires="directory"/>

</SimpleAttributeDefinition>

-arp.site.xml: This file contains the sending policy attributes from the IdP. This
allows send the attributes to any target (any SP).

<Target>
<AnyTarget/>

</Target>

I define send 3 attributes (cn, sn and description). Its also possible to define another
attributes depending the rules or the scenario.

<Attribute name="urn:mace:dir:attribute-def:sn">
 <AnyValue release="permit"/>
</Attribute>

<Attribute name="urn:mace:dir:attribute-def:cn">
 <AnyValue release="permit"/>
</Attribute>

<Attribute name="urn:mace:dir:attribute-def:description">
 <AnyValue release="permit"/>
</Attribute>

It's also possible to define policies depending on the user or SP who ask for them.
For example if the SP is from the own institution its possible to release more details
of the user than if the SP is a public library that only needs if this user have grants
or not.

In the Appendix E there are some explanations about how to install and configure the IdP
side of Shibboleth.

Shibboleth Implementation 45

5.3.2 SP (Target)

For the SP deployment, the steps are a bit complicated because the SHAR of Shibboleth
depends of a lot of other software:

-Xerces-C: Is a validating XML parser designed to give an application the ability to
read and write XML data. Provides a shared library for parsing, generating,
manipulating, and validating XML documents. Shibboleth uses this to work with
XML files.

-Log4cpp: Is a library of C++ classes for flexible logging to files, syslog, and other
destinations. Shibboleth uses this to log the activities.

-XML-Security: Library developed by the Apache project with the aim of work with
XML in a secure way. Shibboleth use this to manage secure XML files.

-Opensaml: Is a set of open-source libraries in Java and C++ which can be used to
build, transport, and parse SAML messages. OpenSAML is able to store the
individual information fields that make up a SAML message, build the correct XML
representation, and parse XML back into the individual fields before handing it off to
a recipient. OpenSAML supports the SOAP binding for the exchange of SAML
request and response objects (C++ supports requesting only). Shibboleth use this
to support the SAML assertions.

The last step is compile the Shibboleth source code. If everything was ok, now to start the
server it's necessary to start the shar always before start apache.

<path_shibboleth_install>/bin/shar -f &

A detail of the SP software structures is shown in the figure (Fig. 5.15).

Fig. 5.15: SP Software Structure

SHAR

Shibboleth-SPmod_jk

aap.xml
httpd.conf

OPENSSL

APACHE2

shibboleth.xml

mod_ssl

46 Shibboleth and the challenge of authentication in multiple servers

The 3 basic files of configuration are:

-shibboleth.xml: This file contain the basic configuration of the SP, the session
lifetime, the wayf location (In this case, there are no wayf and this points to the SP)
and the location of the shire.

<Sessions lifetime="7200" timeout="3600" checkAddress="true"
wayfURL="https://vfhmapc45.fh-luebeck.de/shibboleth-idp/SSO"
shireURL="/Shibboleth.shire" shireSSL="false"/>

-aap.xml: This file contain the configuration of the attributes to receive and the bind
with the local attributes. Also this configuration allows to release this attributtes to
any SP.

<AttributeRule Name="urn:mace:dir:attribute-def:description"
Header="Shib-Person-enrolled" Alias="enrolled">

<AnySite>
 <AnyValue/>
 </AnySite>
</AttributeRule>

In the file binds the attribute description with the alias enrolled. This binding is
needed for apache. Binds is the “attribute that apache knows.”

-http.conf: This file, aside the configuration of the webserver contains the
configuration of the folders to protect.

These are the lines concerning to Shibboleth.

<Location /electronics>
 AuthType shibboleth
 ShibRequireSession On
 require enrolled electronics
</Location>

“enrolled” it's the bind of the description in the ldap database and electronics the
attribute needed for grant the access to the electronics folder

In the Appendix F there are some explanations about how to install and configure the SP
side of Shibboleth.

Shibboleth Implementation 47

5.3.3 Federation and WAYF

I start the deploying joining to a federation called InQueue, InQueue it's a test federation
environment and it's helps to test the deploy (provide some tools that for example show
with kind of attributes are send, etc). In the beginning, every time I want to access to a
resource the browser shows this screen and the user needs to select the own IdP. This
drawing shown a snapshot of the wayf service for InQueue (Fig. 5.16).

Because in the scenario are only one IdP, i don't use federation and the wayf check is
omitted. Now the SP knows in which IdP are needed to login, because this, in the SP
configuration, instead of point to a wayf service, point directly to the IdP.

The configuration files in the Appendixes are also valid for the InQueue Federation.

Fig. 5.16: InQueue WAYF Service

48 Shibboleth and the challenge of authentication in multiple servers

Shibbolize e-learning environments 49

CHAPTER 6: E-LEARNING APPLICATIONS AND SHIBBOLETH

6.1 Introduction to the CMS (Course Management Systems)

Many universities have been using a Course Management System (CMS) for a few years
now. A Course Management System is a web based application (Fig. 6.17) through which
students and teachers can interact. Course documents such as presentation sheets and
assignments are made available to the students by the teacher, and students can work on
assignments in groups and take on-line tests.

There is no agreed upon definition or even one single term for CMS's. Other terms used
are Virtual Learning Environments (VLEs), Managed Learning Environment (MLE),
Learning Management System (LMS) and Learning Support System (LSS).

Fig. 6.17: CMS Snapshot

50 Shibboleth and the challenge of authentication in multiple servers

6.2 Shibbolize a e-learning application

Shibbolize is the process of adding Shibboleth to an application. Primary should be
possible to Shibbolize most of the web applications with the condition of knows how works
inside and the availability of the source code.

Shibboleth has been mainly designed for exchanging authorisation attributes across
institutions using a secure and devolved model, where users are authenticated and
authorised against their own institutional access management system (IdP). Its scope is
wider than an institution itself, being very suitable for scenarios where the universe of
users does not necessarily belong uniquely to one institution.

Within an institutional context, integration of Shibboleth into CMS or portal (Most of them
are linked with the access portal of the institution) might be done in at least two different
approaches. The easiest way it's natively but most of the times it's not possible because
this software exists before Shibboleth. A second option is the integration with the
institutional authentication system explained in the chapter 2 (WebISO, PubCookie and
authorisation system (for example role-based authorisation supported by LDAP).

The former approach uses Shibboleth in a WebISO fashion and extends the default
mechanisms. Shibboleth is powerful enough to be used as a native system to provide SSO
authentication and authorisation within an institution.

The latter approach typically uses a WebISO system already deployed and integrated with
the institutional Portal and other resources and services. This leaves the WebISO system
to provide SSO across the institution for the Portal as if it was any other SSO-enabled
Web-based resource/ service. The WebISO authentication point has to be 'Shibbolized'
(acting as a SP), at least for all users not coming from a security domain internal to the
institution.

For users succeeding to authenticate, all the attributes associated with the user might
have to be fetched and associated with the WebISO SSO session. In the case of a portal,
one of the attributes has to be a unique and permanent identifier such as username, e-mail
address or something more pseudonymous (like an e-mail address).

The purpose of this chapter is explore the possibilities of Shibbolize two of the CMS
applications used in on-campus and others like Moodle that should be a good alternative.

Shibbolize e-learning environments 51

6.3 Blackboard

Blackboard CMS is a software product from Blackboard Inc. Blackboard develops and
licenses enterprise software applications and related services to over 2200 education
institutions in more than 60 countries. These institutions use Blackboard software to
manage e-learning courses.

Blackboard is used to support flexible teaching and learning in face-to-face and distance
courses. It provides tools and facilities for on-line course management, content
management and sharing, assessment management, and on-line collaboration and
communication.

Blackboard provides instructors with the following functions:

• Announcements
• Course Content
• Tests/Quizzes
• Surveys
• Discussion Boards
• Chat Rooms
• Broadcast Email
• Grade book Management
• Assignment Collection

Some of the advantages of Blackboard are:

– Customizable Course Menu & Buttons.

– Content Types:

– Assignments

– Learning Units

– Copy and Move Course Content: Course content can be copied or moved to
another place within the course, or to another course entirely.

– Linking Content and Tools: Content and tools can be linked to other areas within
the course.

– External Link Editor. Allows URLs for external links to be placed anywhere in
content areas.

– WYSIWYG (rich text) editor available for PC users.

Regarding the Blackboard documentation, Shibboleth is fully supported as a custom
authentication option for Blackboard Learning System on UNIX operating systems. In the
Appendix H there are some explanations about how to configure Blackboard to use
Shibboleth.

52 Shibboleth and the challenge of authentication in multiple servers

6.4 Sakai

The Sakai Project is a community source software development effort to design, build and
deploy a new Collaboration and Learning Environment (CLE) for higher education. The
Project began in January, 2004.

The Sakai Project has it's origins at the University of Michigan and Indiana University,
where both universities independently began open source efforts to replicate and enhance
the functionality of their existing CMSs .Soon after, MIT and Stanford joined in and, along
with the Open Knowledge Initiative (OKI) and the uPortal consortium, and a generous
grant from the Mellon Foundation, they formed the Sakai Project. The Sakai Project's
primary goal is to deliver the Sakai application framework and associated CMS tools and
components that are designed to work together. These components are for course
management, and, as an augmentation of the original CMS model, they also support
research collaboration. The software is being designed to be competitive with the best
CMS's available.

The tools are being built by designers, software architects and developers at different
institutions, using an experimental variation of an open source development model called
the community source model. To provide a support system for institutions that want to be
involved in the Sakai Project, either by adopting Sakai tools or by developing tools for
inter-institutional portability, the Sakai Project has also formed the Sakai Educational
Partners Program (SEPP) and the Sakai Commercial Affiliates Program.

The Sakai Project follows what is called the community source model, which is an
extension to the already successful, economically feasible, open source movement forged
by projects such as Apache, Linux, and Mozilla. Based on the goal of addressing the
common and unique needs of multiple institutions. community source relies more on
defined roles, responsibilities, and funded commitments by community members, than
some open source development models.

To date, the Sakai Project has put out three major software releases (1.0, 1.5 and 2.0),
developed an Educational Partner's Program which now has around 80 members around
the world with 14+ active discussion groups and five commercial affiliates, organized three
highly successful SEPP conferences, and successfully demonstrated a model for
community source software development among colleges and universities.

Some of the advantages of Sakai are:

– easy-to-use interface.

– notify users of new content via email .

– export calendar events as PDF.

– create online assignments: allow students to submit text based assignments or
upload a file for review .

– subscribe to RSS feeds: allows instructors to display syndicated content from
other websites.

Shibbolize e-learning environments 53

– manage multiple files simultaneously: allows instructors to upload or delete more
than one file at a time .

– display web content from within the course site: provide easy access to web
resources by adding links to the navigation panel.

In the future, the Sakai Project expects to continue it's effort to build out it's interoperable
framework and develop many new tools and extensions. In addition, the Partner's Program
will continue to grow and the development model used for Sakai is expected to become
more broadly applicable.

About Shibbolize Sakai, the only information that I found is that there are some efforts to
Shibbolize but at the end of this work the results are not published.

6.5 Moodle

Moodle is a course management system, designed specifically to manage internet-based
educational courses. The design is influenced strongly by progressive ideas of educational
theory such asocial constructionism. Is the creation of Martin Dougiamas, PhD student at
Curtin University, Perth, Australia. This research project started in 2000. The first public
release of Moodle, version 1.0, was released on August 20, 2002. In 2003 the company
moodle.com was launched, offering professional support and management of Moodle
installations. Currently, the project is at version 1.5, with a large number of features added
since the first release.

Moodle can be used in a very wide range of environments, ranging from fairly restrictive
web hosting providers to institutional servers. It requires PHP 4.1.0 with GD to work
properly, and is regularly tested on Linux, Unix, Windows, Mac OS X and Netware servers.
It contains complete support for MySQL and PostgreSQL, and support for other databases
is very easy to add. Only a single database is required, and Moodle can share this with
other applications (using table prefixes). The PHP code has been designed to be readable
and hackable by people with only medium programming skills. Administration is made
easy with a unique self-upgrading system (no more .sql files!).

A modular authentication design allows Moodle to be "hooked up" to external
authentication services such as LDAP, IMAP, POP3, NNTP, or arbitrary database tables
(for example a Postnuke user table). It also supports traditional email authentication and
instant guest accounts.

The site itself is very customisable. Themes allow you to customise the look using CSS
and HTML. The front page can consist of a blog-style news forum, or a list of course
descriptions, or a list of course categories (departments) with abbreviated course names.

Courses themselves can be one of three predesigned layouts (weekly, topics, or social)
and are built up by the teacher by adding activity modules using an intuitive interface.
Activities include assignments, choices, forums, journals, resources, quizzes, and surveys.
Chat and peer-graded assessments are in development, with a tracker module coming

54 Shibboleth and the challenge of authentication in multiple servers

soon after that. Each of these modules is very customizable and contains a range of
expanding features.

Other features include comprehensive user profiles with pictures, centralised gradebook,
detailed logging and displays of user activity, teacher forums, and teacher customisation of
things like access policies, naming (for example instead of "teacher" and "student" a
teacher might prefer using "professor" and "participant") and so on.

Lastly, Moodle features complete localization has already been translated into 20
languages including Arabic, Catalan, Chinese, Dutch, English (UK and US versions),
Finnish, French, German, Indonesian, Italian, Japanese, Norwegian, Portuguese, Spanish
(Spain, Mexico and Caribbean versions), Swedish, Thai and Turkish.

The project has grown substantially, with many users and developers participating in the
community at Moodle.org.

Using Moodle with Shibboleth authentication has the following advantages:

-Access to Moodle can be restricted very accurate.

-User accounts are created automatically as soon as a user login the first time.

-The user profiles are set up automatically.

-The user profiles can automatically kept up-to date all the time.

-So you don't have to care anymore for user management issues because this is
basically handled by the Identity Provider of the Shibboleth user.

-Once Shibboleth users are authenticated, they can access other Shibboleth-
enabled resources without login in another time. Due to this single sign-on
mechanism, they for example can jump from one Moodle installation to another or
the can access a Shibboleth-protected library or a web shop, always being
authenticated.

-Future automatic course enrollement according to Shibboleth attributes.

According to the last documentations, Moodle is Shibboleth enabled. Just needs some
configurations and teach the users. There are some guidelines in the Appendix I.

Conclusions and Improvement Proposals 55

CHAPTER 7: CONCLUSIONS AND IMPROVEMENT
SUGGESTIONS

7.1 Discussion

During the development of this work, a first approach, reading and learning about the
possible and suitable scenarios for Shibboleth, was made. Furthermore, the software
requirements that could help to understand how to deploy an scenario with this type of
technology were studied. Some important concepts of security in networks were studied,
and it helped to understand why Shibboleth was the correct solution for the expected
requirements of on-campus (The e-learning environment at the Fachhochschule Lübeck).

But to be able to have a general overview of the solutions, some alternatives to Shibboleth
were studied. Even though these ones did not fulfil the requirements or were already
implemented in Shibboleth.

Later, a deeper Shibboleth study was made, which included all components and the
function of every one of them. Once understood Shibboleth, since is a global solution and
include in its development some other technologies it was necessary to explore this other
protocols and software on which it was based, is for this reason that I had to learn about
each one of the technologies before start the Shibboleth deployment.

After the theoretical study of Shibboleth, the deployment and the test of each one of the
components was made to evaluate their performance in a separately way. When the
different parts worked separately, all the design was deployed together. This was one of
the most complicated parts, which finished when a basic example work using this
scenario. The main challenge now was that Shibboleth offers very powerful surroundings,
it was necessary to make it work with applications of CMS and thus to be able to
demonstrate all its power.

Then a learning about the CMS concept was needed and the integration with a CMS
started. Later specific efforts in commercial CMS, were made, in terms of learning about
how to Shibbolize (integrate with Shibboleth) a CMS. Finally, and once tested all, some
captures of the traffic were made to evaluate the behaviour of Shibboleth, placing special
attention to the lower levels of Shibboleth.

7.2 Conclusion

Shibboleth is a complex piece of software, and its installation is likely to stretch many
institutions, particularly when it comes to set up the infrastructure needed for it. It is
essential to plan the process carefully, and to ensure that enough time is allocated.

The skills required are an advanced knowledge of system admin, experience in installing
software, and also in handling a Web server configuration. The difficulty of understanding
Shibboleth is heightened by the out-of-date nature of the documentation of the
architecture. Most of the information is in the distribution mailing-list.

56 Shibboleth and the challenge of authentication in multiple servers

The Shibboleth software generally seems to work fine, once configured correctly. The
obvious area to improve with respect to make easier the software installation is the
documentation, some time it was difficult to found answers because its in deployment and
normally the people works and solve the problems themselves.

About the last test and the capture traffic, there is not much to explain because all the
traffic captured was encrypted through the TLS protocol, the only remarkable thing would
be some packets of the requests to the LDAP server.

Having worked during some months with Shibboleth, one of the conclusions is that
Shibboleth it’s a very good system for big universities, groups of investigation or big users
networks since it allows, for example, to work with a structure of common data base
(eduPerson), the different management of IdP by means of the WAYF and the possibility
of being upgradeable. It does not have limits in the number of SP and IdP. Another goal is
the possibility to create federations so that networks of trust settle down.

However, and although once the system was mounted, everything worked without hardly
maintenance, the implementation in small surroundings, like the one that has been
created, is not so advantageous; firstly because all the potential does not take advantage
of Shibboleth and also because the assembly is a laborious process.

A good point of start is if all the servers of the network in which is wanted to mount
Shibboleth are administered by the same people I believe that he is not worth the trouble
Shibboleth and should be better use more simple systems. The potential of Shibboleth is
in administrating groups that are different, because it establishes really good bases to
manage it all, and it is much more easy to reach compatibility and a mutual working.

7.3 Future Work and improvement suggestions

During the development of this project and after working for a couple of months there are
some improvement proposals.

One of the things that has not been fully implemented is the integration of Shibboleth with
Sakai since it's not yet finished. Although this should not be very difficult because Sakai is
open software and there is a lot of people working on that.
At the other side Blackboard is already Shibbolized, maybe because there are lots of
economic motivations behind them. Nevertheless, there are some other tools like Moodle
that has been Shibbolized, provably in not so much time there are available the code to
Shibbolize Sakai.

Another of the things to improve, is the change of version 1.2 to version 1.3 since many
concepts have been deprecated and much has been simplified, one of the biggest
changes has been the adaptation to complain with the standard OpenSaml v. 2.0, this
has caused that many concepts of base totally must be reformulated and the
documentation not yet reflects it.

References 57

REFERENCES

[1] Eve Maler. OASIS Security Services TC.
http://www.oasisopen.org/committees/security/faq.php. Mar. 2005.

[2] Abhilasha Bhargav-Spantzel, Anna C. Squicciarini, Elisa Bertino. Establishing and
protecting digital identity in federation systems.
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/
2005-48.pdf. 2005.

[3] T. Bray, J. Paoli. Extensible Markup Language (XML) 1.0 (Third Edition).
http://www.w3.org/TR/REC-xml. Feb. 2004.

[4] M. Gudgin, M. Hadley, N. Mendelsohn, JJ. Moreau, H.F. Nielsen. Simple Object Access
Protocol(SOAP)1.2, (W3C). http://www.w3.org/TR/soap12. Jun. 2003.

[5] Mi. Linden, J. Kanner .Identity management as part of the infrastructure of higher
education. CSC News (Vol,16, No.2).
http://www.csc.fi/lehdet/cscnews/cscnews2_2004.pdf. Apr. 2004.

[6] A.O. Freier, P. Karlton, P.C. Kocher. The SSL Protocol Version
3.0.http://www.netscape.com/eng/ssl3/draft302.txt. Nov. 1996.

[7] W. Yeong, T. Howes, S. Kille. Lightweight Directory Access Protocol.
http://www.ietf.org/rfc/rfc1777.txt. Mar. 1995

[8] G. Good. The LDAP Data Interchange Format (LDIF). Technical Specification.
http://www.ietf.org/rfc/rfc2849.txt. Jun. 2000

[9] Thomas Groß. Context-based Access Control.
http://www.akiras.de/publications/papers/Gross03a.Context-
based_Access_Control.Master_Thesis_01-31-03.pdf. Mar. 2003.

[10] A. Iliev, S.W. Smith. Privacy-Enhanced Credential Services. 2nd Annual PKI Resarch
Workshop. NIST, Gaithersburg.
http://www.cs.dartmouth.edu/~sws/papers/ilsm03.pdf. Apr. 2003.

[11] S. Nazareth, S.W. Smith.Using SPKI/SDSI for Distributed Maintenance of Attribute Release
Policies in Shibboleth.Proceedings of the IADIS International Conference WWW/Internet
2004.Volume 1. 218--226
http://www.cs.dartmouth.edu/~sws/abstracts/nazareth04.shtml. Oct. 2004.

[12] Ian Goldberg. A Pseudonymous Communications Infrastructure for the Internet, PhD
Thesis.http://www.isaac.cs.berkeley.edu/~iang/thesis-final.pdf. 2001

[13] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen. SPKI certificate
theory.IETF RFC 2693.http://www.faqs.org/ftp/rfc/rfc2693.txt. Sep. 1999.

[14] C.Platezer . Trust-based Security in Web Services.
www.infosys.tuwien.ac.at/Staff/sd/DA/ChristianPlatzer.pdf. May. 2004.

58 Shibboleth and the challenge of authentication in multiple servers

[15] Moodle. Moodle Documentation
http://moodle.org/course/view.php?id=29. Apr. 2005.

[16] Karin van der Berg. Finding Open Options
http://www.karinvandenberg.nl/Thesis.pdf. Aug. 2005.

Shibboleth Project.
http://shibboleth.internet2.edu

Shibboleth Identity Provider Deployment Guide.
http://shibboleth.internet2.edu/guides/idp

Shibboleth Service-Provider Deployment Guide.
http://shibboleth.internet2.edu/guides/sp

shib-users mailing list: archive.
https://mail.internet2.edu/wws/arc/shibboleth-users

Shibboleth Development and Support Services Federation (UK).
http://sdss.ac.uk/

Blackboard
http://www.blackboard.com

Sakai
http://www.sakaiproject.com

Moodle
http://www.moodle.org

Pubcookie.
http://www.pubcookie.org

EDINA
http://edina.ac.uk/

OASIS Security Services TC.
http://www.oasisopen.org/committees/security/faq.php

RFC 2828 Internet Security Glossary.
http://www.faqs.org/rfcs/rfc2828.html

Apache HTTP Server Project.
http://httpd.apache.org

Apache Module Registry.
http://modules.apache.org.

OpenSSL: The Open Source Toolkit SSL/TLS.
http://www.openssl.org

http://www.karinvandenberg.nl/Thesis.pdf

References 59

mod_ssl: The Apache Interface to OpenSSL.
http://www.modssl.org

OpenSSH.
http://www.openssh.org

Open Source Implementation of the Lightweight Directory Access Protocol.
http://www.openldap.org/.

Kerberos.
http://web.mit.edu/kerberos/www

Role Based Access Control, National Institute of Standards and Technology.
http://csrc.nist.gov/rbac/

eduPerson Home Page.
http://www.educause.edu/content.asp?PAGE_ID=949&bhcp=1

InQueue Federation Home Page
http://inqueue.internet2.edu/

InCommon Federation Web site
http://www.incommonfederation.org/

Pubcookie.
http://pubcookie.org

Log for C++.
http://log4cpp.sourceforge.net

Xerces C++ parser.
http://xml.apache.org/xerces-c

Opensaml.
http://www.opensaml.org

XML-Security.
http://xml.apache.org/security/index.html

60 Shibboleth and the challenge of authentication in multiple servers

Appendixes 61

APPENDIXES

APPENDIX A: GLOSSARY

A.1 Abbreviations

AAA Authentication, Authorization, Accounting

ACL Access Control List

CMS Course Management System

HEI Higher Education Institute

LDAP Lightweight Directory Access Protocol

LDIF LDAP Data Interchange Format

OASIS Organization for the Advancement of Structured Information
Standards

PKI Public Key Infrastructure

RFC Request for Comments

SAML Security Assertion Markup Language

SOAP Simple Object Access Protocol

SSL Secure Socket Layer

SSO Single Sign-on

TGS Ticket Granting Service

TLS Transport Layer Security

XML Extensible Markup Language

62 Shibboleth and the challenge of authentication in multiple servers

A.2 Terminology

AAP The Attribute Acceptance Policy define the rules that
map attributes and information out of the SAML attribute assertion into simpler forms that
are usable by the application for policy decisions. These rules may also provide filters on
who is allowed to assert certain information.

AA The Attribute Authority (deprecated) is the portion of the
IdP responsible for issuing attributes on behalf of an organization. This term has been
deprecated, and the AA is now the attribute query protocol handler function in the IdP.

Access Control Access control is the process of denning and enforcing
(rules, procedures) to prevent unauthorized access to resources. Authentication and
authorization are central parts of access control.

Access Control List Format for specification of an Access Matrix. The Access
Control List is attached to a resource. It contains users, groups and permissions
that they have on the resource.

Assertion A statement that is taken as being correct or true.

Authentication Authentication is the process of providing assurance
regarding the identify of a subject or an object.

Authorization Authorization is the process of determining whether a
particular subject has permission to manipulate a certain object in a certain way.

Attribute An attribute is an atom of information which is defined by
the intersection of attribute name and attribute value. Attributes must be considered in
terms of the subject about which they are asserted and the authority who is asserting the
atom of information is true.

Attribute Assertion A SAML attribute assertion carries attribute information
about a subject such as a browser user. In Shibboleth, the attribute assertion conveys
attributes once a context is established from the IdP to the SP.

ARP Attribute Release Policies are rulesets regarding attribute
release. These are combined and matrixed against the requester to compute an effective
ARP. The effective ARP filters the set of attributes supplied by the directory released to a
given relying party by the IdP.

Attribute Resolver The component of the IdP responsible for retrieving
attributes from various data sources or computing advanced attributes and performing the
necessary transformations for SAML transport.

Authentication Assertion SAML authentication assertions carry information
regarding the act and results of the authentication of a principal by an authority. In
Shibboleth, this is used to transport the handle or other form of name identifier to the SP
for authentication or subsequent attribute request.

Appendixes 63

Certificate A certificate consists of the public key and the identity of
an entity rendered unforgeable by digitally signing the entire information with the private
key of the issuing Certificate Authority (CA).

Certificate Authority A Certificate Authority (CA) is an authority in a network
that issues and manages security credentials and public keys for message encryption.

Digital Certificate A digital certificate is an electronic means of establishing
your credentials when doing business or other transactions on the Internet. It
is issued by a certification authority (CA). It contains your name, a serial number,
expiration dates, a copy of the certificate holder's public key (used for encrypting and
decrypting messages and digital signatures), and the digital signature of the certificate-
issuing authority so that a recipient can verify that the certificate is real.

Digital Signature A digital signature is an electronic signature that can be
used to authenticate the identity of the sender of a message or the signer of a document
and, possibly, to ensure that the original content of the message or document is
unchanged. Digital signatures are easily transportable and cannot be imitated by someone
else. The ability to ensure that the original signed message arrived means that the sender
cannot repudiate it later.

EduPerson This object class was defined by MACE-Dir to handle
standard educational attributes in a way that would facilitate collaboration. Shibboleth is
often used to transport eduPerson attributes, but the two are distinct entities and each can
be used individually with full functionality.

Entitlement Entitlements form a specialized class of attributes
important enough to call out separately. They can be used to identify specific group
membership or eligibility to use a given resource. One method of deploying Shibboleth
insulates the decision making logic used by the IdP from the SP by expressing
entitlements instead of several individual attributes.

Handle A handle is one form of name identifier and is used in an
authentication assertion to establish a referential identifier for attribute query in classic
Shibboleth. The handle itself is completely opaque and temporary and should never be
directly used for authentication purposes, as it corresponds only to a particular unknown
browser user.

HS Handle Service (deprecated) is, the portion of the IdP
responsible for handling single sign-on interoperability and functionality.

Federation A federation is a collection of organizations that agree to
interoperate under a certain ruleset. Federations will usually define trusted roots,
authorities, and attributes, along with distribution of metadata representing this information.
Shibboleth treats federations -- representing multiple relying parties -- like single relying
parties. Federations are not required for the use of Shibboleth but can facilitate exchange
greatly.

64 Shibboleth and the challenge of authentication in multiple servers

IdP/Origin The Identity Provider is the authority responsible for
generating and asserting authentication, authorization, and identity information about
principals in a security domain.

LDAP Lightweight Directory Access Protocol, a protocol for
accessing directory services. Set of protocols used to access a hierarchical directory of
information on a directory server. LDAP is considered to be lightweight because it's based
on a simplified version of X.500 directories. Directories may contain phone numbers,
electronic mail addresses, Public Key's, computer names and addresses, or any other
information that can be conveniently arranged hierarchically.

Metadata Shibboleth relies on metadata to identify and distribute
trusted IdP, SP, and certificate authority information. Prior to 1.3, this took the form of
sites.xml and trust.xml; now only sites.xml, based on the new SAML 2.0 metadata
standards, is used.

Name Identifier There are several different name identifiers, each one
representing a different meaning for the Subject field of the SAML authentication assertion,
and often, a different set of flows as well. Handles are the name identifier in traditional
Shibboleth flows, and actual identities or persistentID's may also be used either for
attribute transport or as standalone sign-on assertions.

Principal The individual being authenticated and about whom
assertions are being issued. Note the principal of an assertion is only the subject of the
assertion in cases where identity is directly expressed.

Private Key A private key is a value - known only to one party - that
can be used to decrypt encrypted messages, issue digital signatures and compute the
corresponding public key. The private key must be kept private and must not be made
publicly available. This term is most often used in the context of public key cryptography
and not in the context of traditional cryptography.

ProviderID The atom of trust implementation for both the SP and IdP
is the providerID of the corresponding partner in a transaction. Often this will be assigned
by federations, but at other times individual providers will define their own. Common
names may be used in addition to providerID's for UI purposes.

Public Key A public key is a value that can be used to effectively
encrypt messages and verify digital signatures. The public key can be made publicly
available, it does not contain secret information.

Public Key Cryptography Public key cryptography is the science of information
security that uses private key and public key pairs for encryption, decryption and signature
creation and verification. The problem of the key distribution is solved because the public
key can be made publicly available, just the private key is kept as a secret. RSA is an
example of a public key crypto system.

Relying Party The relying party is defined per-flow and is always the
provider receiving and utilizing information from another entity in a given flow. Generally,
this will be a particular SP.

Appendixes 65

Role The actions and activities assigned to or required or
expected of a person or an entity.

Resource A resource in our sense can be a piece of data or a
service provided by a system.

SAML Artifact A small piece of data that refers non-ambiguously to a
SAML Assertion.

SAML Assertion A piece of data that formalizes an assertion about a
subject’s identity or attributes. It regards either an act of authentication performed on a
subject, attribute information about the subject, or authorization permission applying to
the subject with respect to a specified resource.

SP/Target The Service Provider is an entity authorized to request
attributes about IdP users on behalf of a relying organization.

SHAR The Shibboleth Attribute Requestor (deprecated) was the
component of the SP responsible for requesting attributes about a browser user with
whom a handle had already been associated, but is now a part of the SP package as a
whole.

SHIRE The Shibboleth Indexical Reference Establisher
(deprecated) is responsible for helping to associate a browser user with an identifier that
the IdP and SP can both refer to. It is now part of the SP package.

Sign-on The process of authentication to a system.

Single Sign-on A user logs in at a Source Site and authenticates to that
site. The Source Site confirms an identity of the user to other sites (Destination Sites). The
user only needs to authenticate to the Source Site and does not need to identify at each
Destination Site.

Transport Layer Security A protocol that generates secure point-to-point
connections. The connections provide confidentiality and integrity as well as freshness and
robustness measures. Unilateral or bilateral authentication is possible. The successor of
SSL.

Web Service A Web Service is a self-describing, self-contained,
modular application. It provides some functionality to other applications through an Internet
connection.

66 Shibboleth and the challenge of authentication in multiple servers

Appendixes 67

APPENDIX B: Security Overview Solutions

Fig. B.18: Overview of Security Solutions

68 Shibboleth and the challenge of authentication in multiple servers

Appendixes 69

APPENDIX C: SAML Assertion schema

Fig. C.19: SAML Assertion Schema

70 Shibboleth and the challenge of authentication in multiple servers

Appendixes 71

APPENDIX D: Step by step Shibboleth work flow

Phase A:Connect to Resource

1.-The user Timo, connect her browser with a WBR (fh-
hambourg.de/resource.pdf) located in another university.

2.-The server hands the request over SHIRE and redirect the webbrowser to the
WAYF list (fh-germany.de/list_of_univ.html).

3.-The user selects from a list her university (vfh.luebeck.de).

Fig. D.20: Shibboleth. Phase A

AAI-Authentication and Authorization Infrastructure

userDB

ARP
Attribute
Release

Policy

SSO
Single Sign On

HS
Handle Server

SHIRE
Shibboleth Indexical

Reference Establisher

SHAR
Shibboleth
Attribute

Requestor

WAYF
Where are you

from

AA
Attribute
Authority

Timo

ACM
Access Control
Management

WBR
Web Based

Resource

IdP (Origin)
vfh-luebeck.de

SP (Target)
fh-hambourg.de

fh-germany.de

SP
fh-bremen.de

1

3

2

2

72 Shibboleth and the challenge of authentication in multiple servers

Phase B:Authentication in the home University

4.-WAYF redirects (depending of the option selected) the browser to the HS of
the university.

5.-The HS send the login screen that Timo normally use for access to the
contents of her lessons (SSO).

Fig. D.21: Shibboleth. Phase B

userDB

ARP
Attribute
Release

Policy

SSO
Single Sign On

HS
Handle Server

SHIRE
Shibboleth Indexical

Reference Establisher

SHAR
Shibboleth
Attribute

Requestor

WAYF
Where are you

from

AA
Attribute
Authority

TimoTimo

ACM
Access Control
Management

WBR
Web Based

Resource

IdP (Origin)
vfh-luebeck.de

SP (Target)
fh-hambourg.de

fh-germany.de

SP
fh-bremen.de

4

5

5

Appendixes 73

Phase C:Redirection to the University Resource

6.-Timo send to the server the credentials (login and password).

7.-If the credentials are ok the HS generate a Handle containing info about the
resource (no user data) and its send to the SHIRE.

Fig. D.22: Shibboleth. Phase C

userDB

ARP
Attribute
Release

Policy

SSO
Single Sign On

HS
Handle Server

SHIRE
Shibboleth Indexical

Reference Establisher

SHAR
Shibboleth
Attribute

Requestor

WAYF
Where are you

from

AA
Attribute
Authority

TimoTimo

ACM
Access Control
Management

WBR
Web Based

Resource

IdP (Origin)
vfh-luebeck.de

SP (Target)
fh-hambourg.de

fh-germany.de

SP
fh-bremen.de

Login, password

Handle

Handle

76

6

74 Shibboleth and the challenge of authentication in multiple servers

Phase D:Shibboleth Authentication

8.-The SHIRE receive the Handle and its send to the SHAR and the SHAR sends
via https to the AA.

9.-The AA verifies the Handle and ask to the ARP with attributes its possible to
send (are digitally signed).

Fig. D.23: Shibboleth. Phase D

userDB

ARP
Attribute
Release

Policy

SSO
Single Sign On

HS
Handle Server

SHIRE
Shibboleth Indexical

Reference Establisher

SHAR
Shibboleth
Attribute

Requestor

WAYF
Where are you

from

AA
Attribute
Authority

TimoTimo

ACM
Access Control
Management

WBR
Web Based

Resource

IdP (Origin)
vfh-luebeck.de

SP (Target)
fh-hambourg.de

fh-germany.de

SP
fh-bremen.de

Handle

Handle
Handle

Atributes
(KIm-student,...)

9

8

9

Appendixes 75

Phase E:SP Authorized Access

10.-The SHAR passes the attributes to the ACM ant this authorize Timo the
access to the WBR (fh-hambourg.de/resource.pdf.) now, Timo can access the
(authorized) resources in another university in a transparent way (until the
auth. expires).

Fig. D.24: Shibboleth. Phase E

userDB

ARP
Attribute
Release

Policy

SSO
Single Sign On

HS
Handle Server

SHIRE
Shibboleth Indexical

Reference Establisher

SHAR
Shibboleth
Attribute

Requestor

WAYF
Where are you

from

AA
Attribute
Authority

TimoTimo

ACM
Access Control
Management

WBR
Web Based

Resource

IdP (Origin)
vfh-luebeck.de

SP (Target)
fh-hambourg.de

fh-germany.de

SP
fh-bremen.de

atrb
10

76 Shibboleth and the challenge of authentication in multiple servers

Appendixes 77

APPENDIX E: IdP Installation procedure and configuration files

idp.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Shibboleth Identity Provider configuration -->

<IdPConfig
xmlns="urn:mace:shibboleth:idp:config:1.0"
xmlns:cred="urn:mace:shibboleth:credentials:1.0"
xmlns:name="urn:mace:shibboleth:namemapper:1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:mace:shibboleth:idp:config:1.0

../schemas/shibboleth-idpconfig-1.0.xsd"
AAUrl="https://vfhmapc45.fh-luebeck.de:8443/shibboleth-idp/AA"
resolverConfig="file:/usr/local/shibboleth-idp/etc/resolver.ldap.xml"
defaultRelyingParty="urn:mace:inqueue"
providerId="urn:mace:inqueue:fh-luebeck.de">

<RelyingParty name="urn:mace:inqueue" signingCredential="inqueue_cred"
schemaHack="true">

<NameID nameMapping="shm"/>
</RelyingParty>

<ReleasePolicyEngine>
<ArpRepository

implementation="edu.internet2.middleware.shibboleth.aa.arp.provider.FileSystemAr
pRepository">

<Path>file:/usr/local/shibboleth-idp/etc/arps/</Path>
</ArpRepository>

</ReleasePolicyEngine>

 <Logging>
<ErrorLog level="DEBUG" location="file:/usr/local/shibboleth-

idp/logs/shib-error.log" />
<TransactionLog level="INFO" location="file:/usr/local/shibboleth-

idp/logs/shib-access.log" />
</Logging>

Fig. E.25: IdP Software Prerequisites

FreeBSD R5.4

“Shibboleth”

Tomcat 5.x
Openssl

O.9.6/0.9.7Apache 2.X

78 Shibboleth and the challenge of authentication in multiple servers

<!-- Uncomment the configuration section below and comment out the one
above if you would like to manually configure log4j -->
 <!--

<Logging>
<Log4JConfig location="file:///tmp/log4j.properties" />

</Logging> -->

<NameMapping
xmlns="urn:mace:shibboleth:namemapper:1.0"
id="shm"
format="urn:mace:shibboleth:1.0:nameIdentifier"
type="SharedMemoryShibHandle"
handleTTL="28800"/>

<ArtifactMapper
implementation="edu.internet2.middleware.shibboleth.artifact.provider.MemoryArti
factMapper" />

<Credentials xmlns="urn:mace:shibboleth:credentials:1.0">
<FileResolver Id="inqueue_cred">

<Key>

<Path>file:/usr/local/etc/apache2/ssl.certs/server.key</Path>
</Key>
<Certificate>

<Path>file:/usr/local/etc/apache2/ssl.certs/server.crt</Path>
</Certificate>

</FileResolver>

</Credentials>

<ProtocolHandler
implementation="edu.internet2.middleware.shibboleth.idp.provider.ShibbolethV1SSO
Handler">

<Location>https?://[^:/]+(:(443|80))?/shibboleth-idp/SSO</Location>
</ProtocolHandler>
<ProtocolHandler

implementation="edu.internet2.middleware.shibboleth.idp.provider.SAMLv1_Attribut
eQueryHandler">

<Location>.+8443/shibboleth-idp/AA</Location>
</ProtocolHandler>
<ProtocolHandler

implementation="edu.internet2.middleware.shibboleth.idp.provider.SAMLv1_1Artifac
tQueryHandler">

<Location>.+8443/shibboleth-idp/Artifact</Location>
</ProtocolHandler>
<ProtocolHandler

implementation="edu.internet2.middleware.shibboleth.idp.provider.Shibboleth_Stat
usHandler">

<Location>https://[^:/]+(:443)?/shibboleth-idp/Status</Location>
</ProtocolHandler>

<MetadataProvider
type="edu.internet2.middleware.shibboleth.metadata.provider.XMLMetadata"
 uri="file:/usr/local/shibboleth-idp/etc/IQ-metadata.xml"/>
</IdPConfig>

Appendixes 79

resolver.ldap.xml

<AttributeResolver xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:mace:shibboleth:resolver:1.0"
xsi:schemaLocation="urn:mace:shibboleth:resolver:1.0 shibboleth-resolver-
1.0.xsd">

<SimpleAttributeDefinition id="urn:mace:dir:attribute-def:cn">
<DataConnectorDependency requires="directory"/>

</SimpleAttributeDefinition>

<SimpleAttributeDefinition id="urn:mace:dir:attribute-def:sn">
<DataConnectorDependency requires="directory"/>

</SimpleAttributeDefinition>

<SimpleAttributeDefinition id="urn:mace:dir:attribute-def:descritption">
<DataConnectorDependency requires="directory"/>

</SimpleAttributeDefinition>

<JNDIDirectoryDataConnector id="directory">

 <Search filter="cn=%PRINCIPAL%">
 <Controls searchScope="SUBTREE_SCOPE" returningObjects="false" />
 </Search>

<Property name="java.naming.factory.initial"
value="com.sun.jndi.ldap.LdapCtxFactory" />

 <Property
name="java.naming.provider.url"value="ldap://vfhmapc46.fh-luebeck.de:389/dc=fh-
luebeck,dc=de" />
 </JNDIDirectoryDataConnector>

</AttributeResolver>

arp.site.xml

<?xml version="1.0" encoding="UTF-8"?>
<AttributeReleasePolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:mace:shibboleth:arp:1.0"
xsi:schemaLocation="urn:mace:shibboleth:arp:1.0 shibboleth-arp-1.0.xsd" >

<Description>Simplest possible ARP.</Description>
<Rule>

<Target>
<AnyTarget/>

</Target>
<Attribute name="urn:mace:dir:attribute-def:eduPersonAffiliation">

<AnyValue release="permit"/>
</Attribute>
<Attribute name="urn:mace:dir:attribute-

def:eduPersonScopedAffiliation">
<AnyValue release="permit"/>

</Attribute>
 <Attribute name="urn:mace:dir:attribute-def:sn">
 <AnyValue release="permit"/>
 </Attribute>
<Attribute name="urn:mace:dir:attribute-def:cn">
 <AnyValue release="permit"/>
 </Attribute>
<Attribute name="urn:mace:dir:attribute-def:description">
 <AnyValue release="permit"/>
</Attribute>

</Rule>
</AttributeReleasePolicy>

80 Shibboleth and the challenge of authentication in multiple servers

Appendixes 81

APPENDIX F: SP Installation procedure and configuration files

Installation Procedure with gentoo

XERCES-C
export XERCESCROOT=<full path to xerces-c-src2_6_0>
cd $XERCESCROOT/src/xercesc
autoconf
/runConfigure -p linux -c gcc -x g++ -r pthread -b 32 -P /opt/shibboleth
make
make install

LOG4CPP
 ./configure --prefix=/opt/shibboleth --with-pthreads --disable-static
make
make check
make install

XML-Security
./configure --prefix=/opt/shibboleth --without-xalan
make
make install

OPENSAML
./configure --prefix=/opt/shibboleth --with-curl=/usr/lib --with-
xerces=/usr/local/include --with-log4cpp=/opt/shibboleth --with-
openssl=/usr/lib -C
make
make install

SHIBBOLETH
./configure --prefix=/opt/shibboleth --with-log4cpp=/opt/shibboleth --
with-xerces=/opt/shibboleth --with-saml=/opt/shibboleth --enable-apache-
20 --with-apxs2=/usr/sbin/apxs2 -C

make
make install

Fig. F.26: SP Software Prerequisites

log4-cpp
0.3.5rc1

Xerces-c
2.6.1

Openssl
O.9.6/0.9.7Gcc 3.x xml-security

1.1.0Libcurl 7.13.1

GENTOO

OpenSAML 1.1rc1(1.3)

ShibbolethApache 2.x

82 Shibboleth and the challenge of authentication in multiple servers

shibboleth.xml

<ShibbolethTargetConfig xmlns="urn:mace:shibboleth:target:config:1.0"
 logger="/opt/shibboleth/etc/shibboleth/shibboleth.logger" clockSkew="180">

 <Extensions>
 <Library path="/opt/shibboleth/libexec/xmlproviders.so" fatal="true"/>
 </Extensions>

 <SHAR logger="/opt/shibboleth/etc/shibboleth/shar.logger">

<!--
 <Extensions>
 <Library path="/opt/shibboleth/libexec/shib-mysql-ccache.so"
fatal="false"/>
 </Extensions>
 -->

 <UnixListener address="/tmp/shar-socket"/>

 <MemorySessionCache cleanupInterval="300" cacheTimeout="3600"
AATimeout="30" AAConnectTimeout="15"
 defaultLifetime="1800" retryInterval="300" strictValidity="false"
propagateErrors="true"/>
 <!--
 <MySQLSessionCache cleanupInterval="300" cacheTimeout="3600"
AATimeout="30" AAConnectTimeout="15"
 defaultLifetime="1800" retryInterval="300" strictValidity="false"
propagateErrors="true"
 mysqlTimeout="14400">
 <Argument>--language=/opt/shibboleth/share/english</Argume
nt>
 <Argument>--datadir=/opt/shibboleth/data</Argument>
 </MySQLSessionCache>
 -->
 </SHAR>

 <SHIRE logger="/opt/shibboleth/etc/shibboleth/shire.logger">
 <RequestMapProvider
type="edu.internet2.middleware.shibboleth.target.provider.XMLRequestMap">
 <RequestMap applicationId="default">

 <Host name="localhost">
 <Path name="secure" requireSession="true"
exportAssertion="true">

 <Path name="admin" applicationId="foo-admin"/>
 </Path>

 </Host>
 </RequestMap>
 </RequestMapProvider>

 <Implementation>
 <ISAPI normalizeRequest="true">

 <Site id="1" name="localhost"/>
 </ISAPI>
 </Implementation>
 </SHIRE>

Appendixes 83

 <Applications xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
 id="default" providerId="https://vfhmapc46.fh-luebeck.de/shibboleth">

 <Sessions lifetime="7200" timeout="3600" checkAddress="true"
 wayfURL="https://vfhmapc45.fh-luebeck.de/shibboleth-idp/SSO"
 shireURL="/Shibboleth.shire" shireSSL="false"/>

<!-- WAYF <Sessions lifetime="7200" timeout="3600" checkAddress="true"
 wayfURL="https://wayf.internet2.edu/InQueue/WAYF"

shireURL="/Shibboleth.shire" shireSSL="false"/>
-->

 <!--
 You should customize these pages! You can add attributes with values
that can be plugged
 into your templates.
 -->
 <Errors shire="/opt/shibboleth/etc/shibboleth/shireError.html"
 rm="/opt/shibboleth/etc/shibboleth/rmError.html"
 access="/opt/shibboleth/etc/shibboleth/accessError.html"
 supportContact="humbertog.shibboleth@gmail.com"
 logoLocation="/shibtarget/logo.jpg"
 styleSheet="/shibtarget/main.css"/>

 </CredentialUse>

 <AAPProvider
type="edu.internet2.middleware.shibboleth.target.provider.XMLAAP"
 <AttributeAcceptancePolicy xmlns="urn:mace:shibboleth:aap:1.0">
 <AttributeRule Name="urn:mace:dir:attribute-
def:eduPersonPrincipalName" Header="REMOTE_USER" Alias="user">
 <AnySite>
 <AnyValue/>
 </AnySite>
 </AttributeRule>
 </AttributeAcceptancePolicy>
 </AAPProvider>
 -->

 <FederationProvider
type="edu.internet2.middleware.shibboleth.common.provider.XMLMetadata"
 uri="/opt/shibboleth/etc/shibboleth/IQ-sites.xml"/>
 <FederationProvider
type="edu.internet2.middleware.shibboleth.common.provider.XMLMetadata">

<SiteGroup Name="https://example.org/shibboleth"
xmlns="urn:mace:shibboleth:1.0">

<OriginSite
Name="https://example.org/shibboleth/origin">

<Alias>Localhost Test Deployment</Alias>
<Contact Type="technical" Name="Your Name Here"

Email="root@localhost"/>
<HandleService

Location="https://localhost/shibboleth/HS" Name="localhost"/>
<AttributeAuthority

Location="https://localhost/shibboleth/AA" Name="localhost"/>
<Domain>localhost</Domain>

</OriginSite>
</SiteGroup>

84 Shibboleth and the challenge of authentication in multiple servers

 </FederationProvider>

 <TrustProvider
type="edu.internet2.middleware.shibboleth.common.provider.XMLTrust"
 uri="/opt/shibboleth/etc/shibboleth/IQ-trust.xml"/>

 <saml:Audience>urn:mace:inqueue</saml:Audience>

 </Applications>

 <CredentialsProvider
type="edu.internet2.middleware.shibboleth.common.Credentials">
 <Credentials xmlns="urn:mace:shibboleth:credentials:1.0">
 <FileResolver Id="defcreds">
 <Key format="PEM">
 <Path>/opt/shibboleth/etc/shibboleth/shar.key</Path>
 </Key>
 <Certificate format="PEM">
 <Path>/opt/shibboleth/etc/shibboleth/shar.crt</Path>
 </Certificate>
 </FileResolver>

 <!--
 <FileResolver Id="inqueuecreds">
 <Key format="PEM" password="handsoff">
 <Path>/opt/shibboleth/etc/shibboleth/inqueue.key</Path>
 </Key>
 <Certificate format="PEM">
 <Path>/opt/shibboleth/etc/shibboleth/inqueue.crt</Path>
 </Certificate>
 </FileResolver>
 -->
 </Credentials>
 </CredentialsProvider>

</ShibbolethTargetConfig>

aap.xml

<AttributeAcceptancePolicy xmlns="urn:mace:shibboleth:1.0">

<AttributeRule Name="urn:mace:dir:attribute-
def:eduPersonScopedAffiliation" Scoped="true" Header="Shib-EP-Affiliation"
Alias="affiliation">

<!-- Filtering rule to limit values to eduPerson-defined
enumeration. -->
 <AnySite>
 <Value Type="regexp">^[M|m][E|e][M|m][B|b][E|e][R|r]$</Value>
 <Value Type="regexp">^[F|f][A|a][C|c][U|u][L|l][T|t][Y|y]$</Value>
 <Value Type="regexp">^[S|s][T|t][U|u][D|d][E|e][N|n][T|t]$</Value>
 <Value Type="regexp">^[S|s][T|t][A|a][F|f][F|f]$</Value>
 <Value Type="regexp">^[A|a][L|l][U|u][M|m]$</Value>
 <Value Type="regexp">^[A|a][F|f][F|f][I|i][L|l][I|i][A|a][T|t][E|
e]$</Value>
 <Value Type="regexp">^[E|e][M|m][P|p][L|l][O|o][Y|y][E|e][E|
e]$</Value>

Appendixes 85

 </AnySite>
 <SiteRule Name="urn:mace:inqueue:shibdev.edu">
 <Scope Accept="false">shibdev.edu</Scope>
 <Scope Type="regexp">^.+\.shibdev\.edu$</Scope>
 </SiteRule>

</AttributeRule>

<AttributeRule Name="urn:mace:dir:attribute-def:eduPersonAffiliation"
Header="Shib-EP-UnscopedAffiliation" Alias="unscoped-affiliation">
 <AnySite>
 <Value Type="regexp">^[M|m][E|e][M|m][B|b][E|e][R|r]$</Value>
 <Value Type="regexp">^[F|f][A|a][C|c][U|u][L|l][T|t][Y|y]$</Value>
 <Value Type="regexp">^[S|s][T|t][U|u][D|d][E|e][N|n][T|t]$</Value>
 <Value Type="regexp">^[S|s][T|t][A|a][F|f][F|f]$</Value>
 <Value Type="regexp">^[A|a][L|l][U|u][M|m]$</Value>
 <Value Type="regexp">^[A|a][F|f][F|f][I|i][L|l][I|i][A|a][T|t][E|
e]$</Value>
 <Value Type="regexp">^[E|e][M|m][P|p][L|l][O|o][Y|y][E|e][E|
e]$</Value>
 </AnySite>

</AttributeRule>

 <AttributeRule Name="urn:mace:dir:attribute-def:eduPersonPrincipalName"
Scoped="true" Header="REMOTE_USER" Alias="user">

<!-- Basic rule to pass through any value. -->
 <AnySite>
 <Value Type="regexp">^[^@]+$</Value>
 </AnySite>
 </AttributeRule>

<AttributeRule Name="urn:mace:dir:attribute-def:eduPersonEntitlement"
Header="Shib-EP-Entitlement" Alias="entitlement">

<!-- Entitlements tend to be filtered per-site. -->

<AttributeRule Name="urn:mace:dir:attribute-def:eduPersonTargetedID"
Header="Shib-TargetedID" Alias="targeted_id">
 <AnySite>
 <AnyValue/>
 </AnySite>

</AttributeRule>
<AttributeRule Name="urn:mace:dir:attribute-def:cn" Header="Shib-Person-

commonName" Alias="usuari">
<AnySite>

 <AnyValue/>
 </AnySite>

</AttributeRule>

<AttributeRule Name="urn:mace:dir:attribute-def:sn" Header="Shib-Person-
surname">

<AnySite>
 <AnyValue/>
 </AnySite>

</AttributeRule>
<AttributeRule Name="urn:mace:dir:attribute-def:description"

Header="Shib-Person-enrolled" Alias="enrolled">
<AnySite>

 <AnyValue/>
 </AnySite>

</AttributeRule>

</AttributeAcceptancePolicy>

86 Shibboleth and the challenge of authentication in multiple servers

Appendixes 87

APPENDIX G: WAYF Installation instructions

To install the WAYF:

cd /opt/src/shibboleth-origin-1.2 ant package-wayf cp dist/shibboleth-
wayf.war /usr/share/tomcat5/webapps/

To configure it:

cd /usr/share/tomcat5/webapps/shibboleth-wayf/WEB-INF/classes/conf/
cp IQ-sites.xml sites.xml

This creates a basic list of two sites taken from the test federation, which we are just
putting in to make the drop-down list have more than one thing in it. To this file, add our
local test origin as follows:

<OriginSite Name="https://example.org/shibboleth/origin">
 <Alias>Localhost Test Deployment</Alias> <Contact Type="technical"

Name="Your Name Here" Email="root@localhost"/>

<HandleService Location="http://morbius.iay.org.uk/shibboleth/HS"
Name="CN=localhost, O=Shibboleth Project, C=US"/>

<AttributeAuthority
Location="http://morbius.iay.org.uk/shibboleth/AA"
Name="CN=localhost, O=Shibboleth Project, C=US"/>
<Domain>

localhost
</Domain>

</OriginSite>

At this point, it's possible to access the tomcat context directly to verify that something is
happening: http://vfhmapc48.fh-luebeck.de:8080/shibboleth-
wayf/WAYF?target=a&shire=b

To make the WAYF context live at the correct URL, add the following clause to the
/etc/httpd/conf/httpd.conf in an appropriate place:

<Location /shibboleth-wayf>
 JkUriSet worker ajp13:localhost:8009

</Location>

Finally, Is needed to make a change to the configuration of the local host “federation” from
the point of view of the origin, as otherwise the origin will notice a providerId discrepancy
and fail requests.
To do this, edit /usr/share/tomcat5/webapps/WEB-INF/classes/conf/localhost-sites.xml and
change the DestinationSite’s AssertionConsumerServiceURL. This starts out as
https://localhost/Shibboleth.shire but as I was browsing to my server from another host, Is
needed to include the proper machine name: http://vfhmapc48.fh-
luebeck.de/Shibboleth.shire.

http://vfhmapc48.fh-luebeck.de:8080/shibboleth-wayf/WAYF?target=a&shire=b
http://vfhmapc48.fh-luebeck.de:8080/shibboleth-wayf/WAYF?target=a&shire=b
https://example.org/shibboleth/origin

88 Shibboleth and the challenge of authentication in multiple servers

Appendixes 89

APPENDIX H: Shibbolize Blackboard

The following section explains how to install Shibboleth and how to set up Shibboleth with
the Installation.

1. Install Blackboard Learning System (Release 6) enable OpenSSL.

2. Configure SSL for Blackboard Learning System. Save the certificate files
under blackboard/apps/httpd/conf/certs/. These are formatted as .cer, .crt
and .key.

3. Download the correct Shibboleth package for the operating system and
install it.

4. Follow the Shibboleth v1.1 instructions to install the package. Check that the
most current libraries are installed. The Shibboleth directions contain detailed
instructions for updating libraries.

The institution needs a signed CA certificate, for example, from Verisign. This is the same
certificate used for SSL.

CONFIGURATION:
1. Edit the blackboard/apps/httpd/conf/httpd.conf to include the

/opt/shibboleth/etc/shibboleth/apache.config file. This step must be repeated
when PushConfigUpdates is run. PushConfigUpdates may overwrite this
setting.

2. Add the following to apache.config in the Shibboleth file system. This
instructs Shibboleth to protect all files beginning with ‘/webapps’. The
apache.confing and.ini files are located in /opt/shibboleth/etc/shibboleth

<Location /webapps>
AuthType shibboleth
require affiliation ~ ^member@.+$
This rule below accepts any valid principal name passed from the
Origin.
require user ~ ^.+$
</Location>

3. The value of the “require” directive is dependent on the Attribute Acceptance
and Attribute Release Policies for the Target and Origin, respectively. Check
with the Shibboleth federation administration for details on what attributes will
be released to your Target.

4. Add the following custom attributes to apache.config ShibMapAttribute urn
mace dir attribute-def eduPersonPrincipalName Shib-EP-BBUSER-NAME. If
you configure AJP13 as the Apache/Tomcat protocol, you may omit this
value. Edit the Blackboard Tomcat server.xml to use AJP13 as the connector
protocol. This should be done using the Ajp13Connector configuration. The
AJP12 protocol readers in Tomcat have a bug that prevents

90 Shibboleth and the challenge of authentication in multiple servers

REMOTE_USER from being properly propagated to Tomcat from Apache.
Additionally, the Coyote connectors have not been tested with Shibboleth.

For example (make sure you’ve disabled any other listeners that may be listening on the
same port)

<Connector
className="org.apache.ajp.tomcat4.Ajp13Connector"
port="8009"
minProcessors="50"
maxProcessors="100"
tomcatAuthentication="false"/>

5. Edit /opt/shibboleth/etc/shibboleth/shibboleth.ini file to point to the correct WAYF
server. Shibboleth should default to the correct location wayfURL = http
//servername.blackboard.com 8080/shibboleth/HS Point to the location of the
certificate file, the key file, calist and the password (omit the line breaks after the ‘=’)

certfile=
/usr/local/blackboard/apps/httpd/conf/certs/server.crt
keyfile=
/usr/local/blackboard/apps/httpd/conf/certs/server.key
calist=/usr/local/blackboard/apps/httpd/conf/certs/qa-b64.cer
keypass=‘password’

6. Add PEM-encoded HS certificate to the trust.xml file in
/opt/shibboleth/etc/shibboleth. This certificate is the one created as the signing
certificate of the origin.

<KeyAuthority>
<ds: KeyInfo>
<ds: X509Data>
<ds: X509Certificate>
Add PEM-encoded HS here
..
</ds: X509Certificate>
</ds: X509Data>
</ds: KeyInfo>
<Subject>qamigl2.qa.dc.blackboard.com</Subject>
</KeyAuthority>

7. Change the authentication type in Blackboard the Blackboard bb-config.properties
file. bbconfig.auth.type=shib

8. Uncomment all the Shibboleth Authentication Properties in the Blackboard
authentication.properties file.

9. Edit site.xml file under /opt/shibboleth/etc/shibboleth to point to a valid origin server.
See example below.

<OriginSite Name="qamigl2.qa.dc.blackboard.com">
<Alias>Blackboard QA Testing Origin</Alias>
<Contact Type="technical" Name="John Doe"
Email="jdoe@blackboard.com"/>
<HandleServiceLocation="http://qamigl2.qa.dc.blackboard.com
8080/shibboleth/HS" Name="qamigl2.qa.dc.blackboard.com"/>

Appendixes 91

<Domain>qa.dc.blackboard.com</Domain>
</OriginSite>

10.Start the shar executable on the Shibboleth server /opt/shibboleth/bin/shar
-f

11.Restart the Blackboard web services
 /usr/local/blackboard/tools/admin/ServiceController.sh services.restart

Some considerations about certificates and keys:

-Certificates that are needed for Shibboleth:

-The certificate must be signed by an authority.

-If a Test Certificate is used, then the Administrator must coordinate with
representatives from Shibboleth to be added to the trusted list of institutions (this is
referred to as In Queue)

Users of a system that participates in Shibboleth will go through the following steps to
login:

1. Click Login on the Blackboard Learning System Login page.

2. Choose the institution from the drop-down list.

3. Enter login and password information and click Login.

4. Users may enter the URL for another institution that participates in
Shibboleth and enter that school’s Web site.

92 Shibboleth and the challenge of authentication in multiple servers

Appendixes 93

APPENDIX I: Shibbolize Moodle

The changes that would be necessary to extend the moodle code and file structure are
(most of this is already described in moodle/auth/shibboleth/README.txt):

1. A new directory has to be created, e.g. moodle/auth/shibboleth/login
(alternatively the moodle/auth/shibboleth directory could be used for that
itself).

2. Within that directory there has to be a .htaccess file with

Shibboleth authentication required
AuthType shibboleth
ShibRequireSession On
require valid-user
Adapt the require statement to your needs

Furthermore there has to be an index.php file within that directory with the following
content:

3. The moodle/login/index.php file has to be extended by:

if ($CFG->shib_user_attribute && $_SERVER[$CFG-
>shib_user_attribute]) {$frm->username =
$_SERVER[$CFG >shib_user_attribute];
$frm->password = substr(base64_encode($_SERVER[$CFG-
>shib_user_attribute]),0,8);}

after every "$frm = data_submitted();" line. What the code actually does is to
"fill" the form data with the shib_user_attribute that is used in
moodle/auth/shibboleth/lib.php:auth_user_login($username, $password) to
check if this user is authenticated. The password line is not really necessary,
but may be useful if an admin decides to convert a shibboleth user account
into a manual one

4. In the moodle/login directory there should be a .htaccess file with the following
content (the statements have to be commented out per default because they may
cause problems on moodle instances on webservers that don't have Shibboleth
installed):

Shibboleth lazy session
#AuthType shibboleth
#ShibRequireSession Off
#require shibboleth

5. On the login page there has to be a link to the moodle/auth/sibboleth/login directory
(can be done manually by the moodle admin modifying the moodlelib strings).

94 Shibboleth and the challenge of authentication in multiple servers

Appendixes 95

