
Universitat Politecnica de Catalunya
Escola Tecnica Superior D’Enginyeria de Telecomunicacio

Departament D’Enginyeria Electronica

MASTER THESIS

of

Adam Sokolnicki

Supervised by PhD. Jordi Madrenas & M.Sc. Giovanny Sanchez Rivera

Graphical representation of data for

a multiprocessor platform emulating spiking

neural networks

Barcelona, July 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41797687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

First of all I am greatly thankful to my parents Jan and Malgorzata
Sokolniccy in whom I could always find support and help.

Dziekuje Wam bardzo.

Secondly to prof. Jordi Madrenas who approved my arrival and work in the
Universitat Politecnica de Catalunya.

Moltes gracies.

And lastly to Giovanny Sanchez Rivera with whom I mostly worked with,
and who made my stay in Barcelona even more vivid experience.

Muchas gracias.

Abstract

Research in the field of simulating large-scale spiking neural networks (SNN)
has been carried out within the frame of Perplexus a European-funded re-
search project based on a university consortium. In this project, a semi-
custom electronic device called Ubichip has been designed. The mode of
interest of this chip to emulate SNNs is based on a SIMD (Single-Instruction
Multiple-Data) multiprocessor machine. The software for generating the as-
sembly containing simulation of Iglesias-Villa spiking neural network model
was also developed within that project and it is currently being successfully
used for running neural network emulation on Ubichip.

The tools developed so far are useful for debugging by simulation, but in
order to evaluate the behavior of SNN being emulated, two needs arose: real-
time monitoring of the network evolution and a higher-level, understandable
visualization solution. First, the existing software that was developed in the
Perplexus project has been analyzed. After examining all available solutions,
including writing a standalone dedicated program, it was finally decided to
develop the so-called Ubiplot plug-in. The reason was to take advantage of
the existing Ubimanager environment. The development started by verifying
the communication with the Ubichip, so simple waveforms for data in a
given address in the Ubichip’s RAM were implemented. Then the plug-in
was extended with histogram and raster plots that are accessing multiple
locations of the memory in each execution step. This led to the creation
of the variable map that defines the program’s variables and their precise
placement in the RAM. At the end simple logging facility and possibility to
save and restore the layout of the plots were added.

This thesis describes the Ubiplot and the development effort put in its
creation.

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Spiking Neural Networks . 2
1.3 Ubichip . 5
1.4 Spiking Network Development Kit 7

2 Implementation details 11
2.1 Software base . 11

2.1.1 Qt . 12
2.1.2 Ubimanager interface 13

2.2 Overview . 14
2.2.1 Operation principle . 14
2.2.2 Handling Ubimanager interface 15
2.2.3 Inheritance of the main classes 15

2.3 DataRequest class . 16
2.4 Storing data . 18

2.4.1 Raster plots . 19
2.4.2 Histogram plots . 20
2.4.3 Waveforms plots . 22

2.5 Usage of yaml format . 22
2.5.1 Serialization . 23
2.5.2 Implementing variable’s map feature 23

3 Results 25
3.1 Visualisation of Iglesias-Villa model 26

4 Conclusions 33

Appendices 36

v

A User’s guide 37
A.1 Using the program . 37

A.1.1 Common tasks . 37
A.1.2 Variable’s map . 44

A.2 Building process . 47
A.3 Creating new kind of plot . 48

B Example source code for a new kind of plot 51
B.1 FooPlotWidget class . 51
B.2 FooPlotData class . 51
B.3 FooPlot class . 52
B.4 PlotWindow class’ slot for creating FooPlotWidget 53

C Initial values of the SpiNDeK’s implementation of Iglesias-
Villa model 54

D Assembler code of the SpiNDeK’s implementation of Iglesias-
Villa model 55

E Implementation of the algorithm for filling map of Histogram-
PloData class 65

F Ubiplot’s variables’ map for Iglesias-Villa model 67

Chapter 1

Introduction

In modern days science tries to increase the level of knowledge in already
exhaustively researched fields as well as in the evolving one or experiencing a
specific resurgence of interest. That is the case with neural networks. In the
turn of the nineteenth and twentieth century the neural networks became a
target for a new wave of studies hoping to find new domains for theirs usages.

Neural networks are mathematical models inspired by biological nervous
systems. The interconnected neurons process the information based on learn-
ing. This stands in the opposition to traditional CPUs which execute pre-
cisely specified set of instructions. Instead the network dynamically adapts
and responds dependently on previous processed information. This makes
them suitable for tasks very difficult to fulfill by conventional microproces-
sors. Neural networks found the usage in the fields of pattern recognition,
data processing, studies on artificial intelligence.

As mentioned before they are inspired by the way the brain is built and
works. It seems that, because of its complexity, for many years to come the
human brain will remain impossible to emulate processing unit. But still
creating and researching neural networks can bring us closer to the under-
standing of its inner-workings. It can help in diagnosing and healing the
diseases and disorders of the neural system in progressively understanding
it, and in implementing some simple perception functions. And maybe even
in the future to fully reverse engineer brain.

There is an ongoing research in the field of simulating neural networks that
was spawned by Perplexus project. Perplexus was a European Commission-
funded research project. It aimed to develop hardware platform endowed
with bio-inspired capabilities and to use it in studying complex behaviours
in a large scale, biologically-inspired neural network. Since the hardware
architecture is inspired by the real nervous systems the main interest of the
project are spiking neural networks which are the closest ones to the real

1

biological processes.

1.1 Objectives

The objective of my work was to create a solution that addresses the need
of observing current state and change in the time domain of the variables of
spiking neural network models being emulated by the Ubichip - a dedicated
hardware device for such tasks.

The main goals of this project were to communicate with the hardware
emulating the spiking neural network (SNN), and to provide three kinds
of charts - a waveform, histogram and raster plots. As well as to deliver
some data logging feature. One of the tasks to perform, was the choice
of the possible approaches to way of the communication with Ubichip and
used technology. The solution should allow to use it on Windows operating
system.

The last, but not the least significant objective, was for the eventual
application to be user-friendly and still functionally complete.

1.2 Spiking Neural Networks

In the structure of neural networks there are interconnected units that receive
the stimuli, called action potential, that can be propagated further depending
on some conditions. Using neuroscience terminology this units are called
neurons and the connections - synapses.

The aforementioned condition for spiking neural networks is the mem-
brane potential threshold. What it means is that neurons do not fire at each
propagation cycle but only when membrane potential of a neuron reaches
some value. The effect of the crossing of the threshold is a spike (action po-
tential). During it the potential increase to the peak value and then decrease
to its resting value. The spike is projected via synapses to all connected
neurons causing change in theirs membrane potentials.

2

Figure 1.1: Phases of a spike[2]

A large variety of mathematical models of neural network had been cre-
ated. Each of them used under different conditions and bringing different
level of realism in the simulation. The most accurate to the inner-workings
of the biological neuron is a HodgkinHuxley model. But the exactness of
it is occupied with high computation cost. That is why it is not used for
emulating big networks like the ones targeted by the Perplexus project. The
one used by the project is a spiking neuron model, in particular the model
created by Iglesias and Villa. This model has been analyzed and it has been
made suitable to work on Ubichip.

Characteristics of Iglesias-Villa model

Iglesias and Villa falls into category of models of spiking neural networks.
At each time step the membrane potential of a neuron is calculated from

formula 1.1.

Vi(t+1) = Vrest[q]+Bi(t)+(1−si(t))∗(Vi(t)−Vrest[q])kmem[q]+
∑
j

wji(t) (1.1)

where Vi(t+1) is a membrane potential of neuron type [q], Bi(t) background
activity, si(t) the state of output spikes, kmem[q] = e−1/τmem[q] the time con-
stant associated with the leakage of current and wji(t) is a post-synaptic
potentials of the jth neuron projecting to the ith neuron.

When the threshold value of membrane potential θ[q] is reached neuron

3

generates spike.

si(t) =

{
0 : Vi(t)− θ[q]i < 0

1 : Vi(t)− θ[q]i ≥ 0
(1.2)

Equation 1.3 defines the synaptic weight of synapse. This variable de-
termines the amplitude of the post-synaptic response to an incoming action
potential.

wji(t+ 1) = sj(t) ∗ Aji(t) ∗ P[qj ,pi] (1.3)

Where existence of a spike depends on sj(t), P[qj ,qi] is the post-synaptic weight
of synapse and Aji(t) is the activation level. There are 2 types of synapses:

• excitatory - when neuron of Type I project to neuron of Type I or II -
P[1,1] or P[1,2]

• inhibitory - when neuron of Type II project to neuron of Type I or II
- P[2,1] or P[2,2]

Type I of neurons are the ones which make excitatory connections while Type
II make inhibitory. Type of the neurons is defined as a preliminary setting.
Perplexus project defines the proportion of the neurons of each type on the
level of 80% for excitatory to 20% for inhibitory. And the Gaussian density
function describes the distribution with the σ parameter set to 10 for neurons
of Type I and 75 for neurons of Type II.

The activation level used in the last formula reflects the activity of a
synapse. It has got 4 states numbered as follows: 0, 1, 2, 4. The state 0th
indicates that synapse is not active where synapse in 4th state will increase
neuron’s membrane potential the most.

Aji(Lji) =



0 : (Aji = 1) ∧ (Lji < Lmin)

1 : [(Aji = 0) ∧ (Lji > Lmax)] ∨ [(Aji = 2) ∧ (Lji < Lmin)]

2 : [(Aji = 1) ∧ (Lji > Lmax)] ∨ [(Aji = 3) ∧ (Lji < Lmin)]

4 : [(Aji = 2) ∧ (Lji > Lmax)] ∨ [(Aji = 3) ∧ (Lji < Lmin)]

Aji : (Lji ≥ Lmin) ∧ (Lji ≤ Lmax)

(1.4)
The Lmax and Lmin are boundaries defined by user. The activation level
strongly depends on Lji which is so called real-valued variable. It implements
spike-timing-dependent synaptic plasticity and is defined by equation 1.5.

Lji(t+ 1) = Lji(t) ∗ kact[qj ,qi] + si(t) ∗Mj(t)− sj(t) ∗Mi(t) (1.5)

Where Mi and Mj are memory of the latest inter-spike interval.

Mi(t+ 1) = si(t) ∗Mmax[qi] + (1− si(t)) ∗Mi(t) ∗ ksyn[qi] (1.6)

4

Mi stands for the memory of the latest presynaptic spike.

Mj(t+ 1) = sj(t) ∗Mmax[qj] + (1− sj(t)) ∗Mj(t) ∗ ksyn[qj] (1.7)

Mj is the memory of the latest post-synaptic spike and refers to the projected
neuron. The memories are being set to its maximum values when spikes occur
but when no spikes are projected they will decayed by the synaptic plasticity
time constant ksyn.

By the time of developing Ubiplot the Iglesias-Villa model was the only
available model, used by the Perplexus project. But there is also ongoing
work to introduce others namely much simpler Izhikevich model. That is
why the plug-in is intended to be a flexible tool suited to work with different
models.

1.3 Ubichip

The primary achievement of the Perplexus project is the Ubichip. Ubichip is
a flexible, reconfigurable device capable of implementing bio-inspired mech-
anism such as growth, learning and evolution.[3] It is a customizable hard-
ware for emulating neural networks that thanks to its inherent parallelism
has tremendous gain over the software solutions.

The target implementation is to emulate network of thousands of neu-
rons. Each of the Ubichip is supposed to model 100 neurons with maximum
of 300 synapses per neuron. And the series of Ubichips will be connected
with each other, propagating spikes using a hardwired AER (Address Event
Representation) bus, the Ethernet or wi-fi.

Ubichip works within Ubidule that is a board which purpose is to make
communication and controlling of Ubichip possible. It is equipped with Col-
ibri board with high-end XScale embedded processor. It runs Linux operating
system.

5

Figure 1.2: Ubidule schema

The building blocks of Ubichip seen in the Figure 1.3 are as follows:

• Macrocell - consists of 4 4-bit ubicells, dynamic reconfiguration unit and
self replication unit. A Macrocell features a 16-bit Processing Element
(PE) that is the basic element used to emulate the SNNs.

• Macrocell array - an array of Macrocells.

• Configuration unit - it configures the Ubichip’s blocks

• Memory controller - communicates with external RAM

• Sequencer - fetches and decodes the instructions stored in the memory
then broadcast them to the array of PEs.

For running spiking neural network’s Ubichip is configured in Single Instruc-
tion Multiple Data (SIMD) mode. In this mode each of the aforementioned
Ubicells in the Macrocell implements a 4-bit ALU. The 16-bit PE (or Macro-
cell) consists of 4 Ubicells. All of them process synchronously the same

6

Figure 1.3: Ubichip schema

instruction but with different data. The execution is governed by the se-
quencer. each of the Macrocells is regarded as a single neuron and a single
processing element (PE) for the sequencer.

The execution on Ubichip can be divided in two phases. In the first
one the code is executed by the PEs until the STOP instruction has been
encountered. Then second phase begin. In it the sequencer is disabled and
control is given to the CAM controller. The Content Addressable Memory
(CAM) stores the information about connectivity of the network. The CAM
controller scan the array in search of fired neurons. When such are found the
spikes are being propagated to appropriate neurons.

1.4 Spiking Network Development Kit

The Spiking Network Development Kit (SpiNDeK) was created by Michael
Hauptvogel[6] and extended by Marc Hortas[7]. It is a desktop application
that generates assembly for Ubichip. The assembler code includes the imple-
mentation of the Iglesias-Villa model. The initial values of the variables are
listed in the appendix C. To overcome the 16 bit limitation of the Processing
Element of Ubichip the program operates on integer types instead of floats.
SpiNDeK also generates the memory map with variables placements that is

7

loaded to Ubichip’s RAM.
Important from the point view of the visualisation software is the memory

structure. The map for 100 neurons with 300 synapses each is shown as an
example in the Figure 1.4.

To pack data effectively in one 32 bits row there are two 16 bits sections
with the variables. These sections are SP1, SP2 for synapse variables and
NP1, NP2, NP3, NP4 for neuron variables as shown in the Figure 1.5

The first 317 addresses depicted in the map are pointers. Next there
is block of instructions, then block of synapse parameters and the block of
neuron parameters. The last block holds common variables.

The pointer at address 0 is used as PC. Each of the pointer from address
1 to address 300 point to a block of synapse parameters. The block is built
in such way that it holds variables from SP1 and SP2 sections of the ith
synapse of every neuron. Next pointer at address 301 points to the block
of neuron variables from NP1 sections of each neuron. Pointers under 302
and 303 defines position of variables from NP2 and NP3 sections in the same
manner. Data in addresses from 304 to 317 hold addresses for common
variables. Details of all the parameters can be found in [6].

8

Figure 1.4: Memory map generated by SpiNDeK for 100 neurons with 300
synapses each.

9

Figure 1.5: Variables’ placement within memory row.

10

Chapter 2

Implementation details

In this chapter firstly the existing software created for work with Ubichip
will be presented and its influence on the project. Later it will focus on the
implementation strategies, the structure and collaboration between Ubiplot’s
classes. It can proof useful for anyone wanting to alter or extend the plug-in
with some new features. It should be noted that adding new kind of chart
to Ubiplot as an example is shown in the User’s guide appendix (section
A.3). Also this chapter will not elaborate on the implementation in depth it
will rather give valuable overview for understanding the source code. It will
mention used Qt’s classes[8] namely the container classes, QWidget, QTimer,
QPaint so some basic knowledge of them and Qt is advised.

2.1 Software base

The software stack called Ubimanagertools was developed for work with
Ubichip - to configure the hardware, manage the simulation and more. This
programs were developed using Qt framework. Notably two of the applica-
tion written as a part of it was a base for Ubiplot development - Ubicolibri,
the server that runs on the Ubidule and Ubimanager.

Ubimanager is application that connects to this server by means of an
Ethernet connection. Its purpose is to control, observe simulation and to
configure it as well. It instructs server to do variety of things, execute the
code, alter PE array, read and write to RAM. It has got also a plug-in
facility, which means it can load dynamically during runtime code written
by 3rd party.

These plug-ins can benefit from the interface between Ubidule and Ubi-
manager. That means that no extra effort has to be taken in establishing the
communication between board and user’s PC. In the planning phase of the

11

development of Ubiplot few scenarios were taken under consideration. One
was to write a server that would run on the board and a desktop application
for the PC. But that server would essentially duplicate the functionality of
Ubicolibri. Also, Ubimanager guarantees that in the future when the hard-
ware would change the Ubimanager’s interface for plug-in would stay the
same keeping the already written software working. For that reason creating
plug-in for Ubimanager was chosen eventually, which among other mentioned
benefits had also cut the development time significantly.

Deciding on writing the plug-in results in the necessity of using the Qt
framework. Although it could be possible to write Ubiplot in python or ruby
that are supported by Qt, but C++ as a ”native” framework’s language
seemed the less cumbersome choice and such was taken.

2.1.1 Qt

Qt is a cross-platform development framework[8] primarily for GUI but also
for console application. It is written in C and C++. The creator of Qt was
company named Trolltech that later changed its name to QtSoftware and
now is a part of Nokia corporation. It is licensed under the terms of the
GNU Lesser General Public License (LGPL).

Qt supports wide range of platforms, namely: GNU/Linux, Microsoft
Windows, Mac OS X and embedded operating systems Windows CE, Sym-
bian, Embedded Linux QWS. The GCC compiler is a main supported com-
piler, but Qt programs can be compiled with Visual and Intel compilers
among others.

From the user’s point of view the framework consists of:

• qmake - the building tool

• moc - the C++ preprocessor

• library - rich API

qmake is tool that aids programmer in the build stage of the application.
It reads the project file (the one with the pro extension) in the directory
with source files and creates makefile accordingly. The project file can have
numeral options that influence the generated makefile - whether the software
is a plug-in, library or ordinary executable program, to include debugging
symbols in the target file, external libraries to link to and many others. The
makefile thus created also invokes the moc program.

moc is a preprocessor used in the early compilation phase. It reads source
files and looks for Qt macros and is using them to generate additional code

12

that provide extra features not available in native C++. These are signal/slot
mechanism, introspection and asynchronous function calls.

Ubiplot is written using common Qt classes like QString, QVector<>,
QMap<>(Java style containers), QObject.

QScriptEngine an engine for ACMEScript (commonly known as JavaScript)
was clean and simple solution for creating variables memory map parser. It
is used in the ScriptEngine class.

Ubiplot also uses signals/slots mechanism, and Ubimanager plug-in in-
frastructure is based on Qt’s introspection.

2.1.2 Ubimanager interface

Plug-in have to inherit from UbiSimplePlugin class. This class implements

UbiSimplePluginInterface

processData(array: ubichiparray_t)
initialize()
end()
name(): QString
description(): QString

UbiSimplePlugin
m_running: RunningInterface
setRunningInterface(inter: RunningInterface)
runningInterface(): RunningInterface

Figure 2.1: UML representing UbiSimplePlugin class

UbiSimplePluginInterface which has two pure virtual methods: name() and
description(). These methods have to be implemented in the plug-in as they
are used by Ubimanager to probe for name and description. The initilize()
and end() are methods called when loading and unloading the plug-in.

The method processData() is called every time new data from server have
arrived. That is when the Ubimanager establish connection with the server,
execution of steps has finish, break or reset command have been instructed by
user. In the body of this method plug-in can access the running simulation us-
ing data types defined in ubitypes.h header (taken from Ubimanager’s source
code). It accomplishes it by the means of the RunningInterace* m running
variable.

Some of the methods of RunningInterface that are used by Ubiplot:

13

• Run() - used to instruct board to do continuous run.

• rBreak() - used to instruct board to execute break.

• ramRead() - used to read RAM memory (see SRAM in Fig. 1.3) from
specified address (it is blocking operation).

• ramWrite() - used to write RAM memory to specified address.

• chipRead() - used to read from chip (see Ubichip in Fig. 1.3) from
specified address (it is blocking operation).

• chipWrite() - used to write to chip to specified address.

The methods for accessing the SRAM and Ubichip accepts the parameters
for specifying the RAM/chip location and the variable’s pointer to read to or
to store the data. The first kind of parameters consists of address, number
of rows (nb) and the delta (delta). The call with default parameters (nb =
1, delta = 1) will result in accessing single row. The nb greater then 1 will
result in accessing more than one row. And the value of delta tells server
what is a difference between the current address and next one while accessing
multiple rows.

As stated in the list reading methods are blocking - the execution of whole
application is blocked until the server responds to them. After call to ram-
Read() and chipRead() the content of RAM can be extracted from UbiSRAM
object that is populated with requested data. The object is retrieved using
call:

runningInterface()->getUbichipArray()->ubichip()->ram
The Ubicolibri code for this methods is the same code as used by ubichiptester

which can be found in the Ubimanagertools. And is used on the Ubidule for
accessing the RAM and chip.

2.2 Overview

When Ubimanager loads the plug-in, it creates an instance of PlotPlugin.
Next it calls PlotPlugin::initialize(). In this method PlotWindow is being
created and stored as a class variable. It is a main window of the plug-in and
an interface for creating plots, controlling the simulation and logging data.

2.2.1 Operation principle

The assumption is that the code executed on the Ubichip is going into STOP
state right after execution cycle finishes (when the control is given back to

14

CAM controller by means of a STOP instruction). When CAM has control
the computation of variable have finished and the propagation of spikes occur.
It is an appropriate time for prompting the server for data. The state of the
sequencer is stored in RAM. 1 means it is stopped 0 otherwise. By classical
polling the plug-in is checking the state of sequencer. If it is in halt if fetches
the data and escapes the halt by writing value 1 to the location in the chip.

2.2.2 Handling Ubimanager interface

PlotPlugin is the name of the Ubiplot’s class that inherits from UbiSim-
plePlugin. Although the intention of the authors of the Ubimanager was
for plug-ins to use UbiSimplePlugin::processData() method for handling the
data from the server, Ubiplot does not make use of it. This is because as
explained in the section 2.2.1 Ubiplot is using a polling technique to check
if it is the right moment to ask for data. PlotPlugin class has got two slot
methods in which it is communicating with server:

• stepPoll()

• runPoll()

The QTimer object is being connected to them. To which of these meth-
ods the QTimer will be connected depends on what type of execution user
selected in the main window. If single step - stepPoll() - if run was chosen
runPoll() will be used. They accomplish the same tasks. First they check
the halt flag. If it is set they ask UbiSimplePlugin::RunningInterface object
for ram read. Then they escape the halt. The difference between them is
that stepPoll() stops the timer since only one execution step was meant.

The parameters for the call in polling methods to RunningInterface::ramRead()
are taken from the DataRequest object of every PlotWidget. More can be
read about DataRequest later in this chapter in the section 2.3. The most
obvious strategy would be to ask PlotWindow instance for DataRequest ob-
jects. But since the execution of the polling methods have to be vary fast
the number of functions calls in them had to be minimized. So the PlotPlu-
gin is storing QVector object with pointers to DataRequest instances. The
new elements to this vector are being appended when new plot is created.
There is connection between PlotWindow::newDataRequest(DataRequest*)
signal and PlotPlugin::newDataRequestSlot(DataRequest*) slot that serves
this purpose.

2.2.3 Inheritance of the main classes

Classes responsible for creating the plots are:

15

• PlotWidget - QWidget that is a parent for every other object in this
list. From PlotWindow perspective it encapsulates whole plot.

• Plot - QWidget that have QWidget::paintEvent() overloaded. In that
method the painting of data is taking place.

• PlotData - QObject that incoming data is passed to and stored. Used
by Plot to draw the data, LogWindow to log the data.

• DataRequest - object that represents the request for data - address and
other arguments, more on this can be found in the section 2.3.

The collaboration between them is depicted in the Figure 2.2. The tasks of
each class is simple. PlotWidget holds all objects of other classes. Plot is
used for painting. PlotData is saving the sample and DataRequest holds the
information needed for a request for RunningInterface.

The plot is created in the manner that first the DataRequest is cre-
ated using variable map (see subsection ”Variables menu” in A.1.1) or by
manually specifying the address. Then PlotWidget is being created. Ev-
ery needed information is passed to its constructor. In the constructor ap-
propriate Plot and PlotData are instantiated. The last step is to call set-
ter PlotWidget::setDataRequest(DataRequest*). It sets the created before
DataRequest and also connects DataRequest::newData(unsigned short int*)
signal to PlotWidget::newDataSlot(unsigned short int*) slot. Via this con-
nection the fetched data is passed from server. Moreover it also sets the
widget as a parent for the DataRequest object so it will be destroyed with
it.

Ubiplot supports three kinds of charts. For every kind there is equivalent
derived class. Generally the names of these classes are constructed by adding
prefix to the name of the parent. Although with children of PlotData class
there are exceptions.

Later in this chapter each of this classes will be presented. Every time
class specialised for the raster plot will be the first one since it is the most
straightforward and conceive.

2.3 DataRequest class

Objects of this class encapsulates the request for data and manipulation of it
before serving to PlotWidget objects. Most important methods of DataRe-
quest are:

16

PlotPlugin

PlotWindow

PlotWidget Plot

PlotDataDataRequest

1

1

1

0..*

Figure 2.2: UML Figure shows collaboration between classes responsible for
plotting.

PlotWidget

Plot

PlotData

WaveformPlotWidget HistogramPlotWidget RasterPlotWidget

WaveformPlot HistogramPlot RasterPlot

AbstractWaveformPlotData AbstractHistogramPlotData RasterPlotData

Figure 2.3: Family of the plotting classes

17

Figure 2.4: Inheritance of DataRequest class.

• bool respond(UbiSRAM &) - the downloaded data is passed to it and
is being masked out.

• void newData(unsigned short int*) - signal that is being emitted to
PlotWidget with new data.

In the polling methods of PlotPlugin the respond() method is called. The
request can be made for a pointer or directly to an address. If the call to
respond() returns false the PlotPlugin will recall it second time. In that
case it means that this is request for pointer. So first call to respond() will
derefence the pointer and second one will passed the data on. response()
method also is masking out the memory row.

As seen in the Figure 2.4 there are two classes - DataRequest and Multi-
pleDataRequest that inherits from it. Simple DataRequest is used when plot
has to access single location in the memory, like in the case of a waveform
type. But since histogram and raster plots needs more than one value each
execution step they are using MultipleDataRequest. It holds DataRequest
objects in the QVector<DataRequest* >. The respond method of it is us-
ing the same code as DataRequest::respond() to copy data from UbiSRAM
instance and then it is emitting newData().

2.4 Storing data

Plot’s data is stored in the object of classes derived from PlotData. PlotData
is an abstract class. It constitutes following interface:

• void newData(unsigned short int*) - new data is passed through this
variable.

• void toYML(YAML::Node) - writes the state of its variables to yaml
format.

18

• QString toHtml() - returns html table filled with stored data, it is used
by LogWindow object.

• QString desc() - returns short description about itself used for updating
the PlotWindow status bar.

The primary method is newData(). Through it the data is passed (from an
object of DataRequest) to the plot.

Every derived class stores the data in different container and before saving
it manipulates it some way appropriate for the type of the plot. If the
container’s length exceeds the value of ”loggingLimit” variable (defined in
PlotData) it is truncated accordingly.

While creating this classes it had to be taken under the account that
except for raster plot the rest can be interpreted data as coded simple or
twos complement. That is why there are template classes for histogram
and waveform plots. While developing the plug-in template classes were the
obvious choice but they got two disadvantages.

One of it is that the moc preprocessor does not work with them so there
are no signal/slot mechanism. To tackle this problem first the approach with
boolean variable indicating used code and C macros was tried. The source
code thus written was not elegant and very hard to maintain. But since it was
possible to boil down the signals emitting to only one by WaveformPlotData
this problem faded away.

The second ”con” against template classes is that it would change the
simple composition of the classes depicted in the Figure 2.2 because PlotWid-
get and Plot would have to store pointer to two objects of PlotData. The
workaround for this problem was the introduction of an AbstractWaveform-
PlotData and AbstractHistogramPlotData. They are non template classes
that adequate PlotData classes derive from. In this way only pointer to these
classes is stored in the WaveformPlot and HistogramPlot but the pointer ac-
tually points to the object of a template classes.

2.4.1 Raster plots

The simplest approach of the inheritance of PlotData was taken to the
RasterPlotData.

To the newData() method pointer to an array of unsigned short ints is
passed. Because raster plots shows many values for each execution steps that
is why (in opposition to the waveform’s PlotData) this array is bigger than
1 element. It is of size equal to the ”values” variable of RasterPlotData. In
order to save the data the array is being iterated and the data is being stored

19

Figure 2.5: HistogramPlotData inheritance graph.

in the QVector<bool* >. It should be read as follows, the vector is storing
arrays of boolean values. Each array reflects the passed data for each of the
execution step.

The toHtml() method creates html table. The columns of the table are
execution steps and rows represents each values on the y axis of the plot.

2.4.2 Histogram plots

More complicated inheritance can be observed when viewing the PlotData
for histogram plots. It is depicted in the Figure 2.5

Before the HistogramPlotData there is AbstractHistogramPlotData that
hides the templateness when storing pointer to it in the HistogramPlot ob-
ject. This approach was discussed earlier in the section 2.4.

HistogramPlotData stores the data in the map QMap<float, unsigned
int>. As with waveform counterpart the data passed to the objects of this
class can be interpreted as twos complement or simple coded. The keys of
this map represents the ranges and values the number of occurrences. Each
key is the inclusive beginning of the range:

keyi ≤ sample < keyi+1

The number of entries in the map is equal to resolution defined by the user
upon creation of the plot. The values parameter passed to the constructor
indicates how big the array passed via newData() will be. In this method
filling of the map is taking place.

The creation of the keys is drafted in pseudo code in algorithm 1. Keys
are calculated using the extremes so they will cover all of the possible values.
The implementation differs with this pseudo code in the way that all of the
values of the map are set to 0, except for the first one which is set to 1

20

Algorithm 1 Pseudo code for filling the map

sort(data)
min = data[0]
max = data[1]
repeat

step = abs(max-min)/resolution
map.insert(min + step*i, 0)
i = i + 1

until i < data.size and max 6= min

because it is known that there will be at least one value in this range - the
minimum.

The pseudo code that matches values to ranges is shown in algorithm 2.
In the implementation index variable dataIndex is set to 1 to omit the first

Algorithm 2 Pseudo code for filling the map with keys, step is a variable
from previous algorithm, values is a size of the passed array of data

keyIndex = 0
dataIndex = 0
while dataIndex < values do

key = map.keys[keyIndex]
if map[key] ≤ data[dataIndex] < data[dataIndex] + step then

map[key]++
dataIndex++

else
keyIndex++

end if
end while

data since it was taken care of while creating ranges. Another improvement
in the implementation for this algorithm is that when looping through the
array of data if the keyIndex is the last index of the map it means that all
the remaining elements can be assign to this last range and the execution is
terminating the loop with the break instruction. The whole implementation
is listed in the appendix E.

The most important features of these algorithm is that the data array is
already sorted so finding the correct range is fast. If the value does not match
the current range it means that every possible values for this range have been
found, so it increments keyIndex thus omitting it in next iterations.

21

Figure 2.6: Inheritance of PlotData for waveform plots.

2.4.3 Waveforms plots

User can choose to create plot with automatic scale that will auto adjust
its scale while new samples income. Or fixed scale and define the mini-
mum, maximum and the desired resolution that is the height of the plot in
pixels. Depending on the desired type of scale AutoScalePlotData<T>or
FixedScalePlotData<T>is used.

Most of the logic is placed in common parent. AbstractWaveFormPlot-
Data and the derived classes override newData() method. Reason for using
template is the same as with HistogramPlotData - because of the two way
of interpreting the data in simple or twos complement code. Data is being
stored in QVector<T >.

For other kind plots the task of PlotData is to simply store the samples
that will be later retrieved by an object of Plot. But since WaveformPlot
object holds pointer to AbstractPlotData it does not know the used template
and as oppose to HistogramPlot it would have to fetch data in container
holding <unsigned short int> or <short int> data types. That is why
it has got additional task - to draw the data in methods paintData() and
paintLabels().

2.5 Usage of yaml format

The yaml format is used by the plug-in for two tasks: providing the serial-
ization feature for plots and defining variables in the variables’ map.

The yaml format was used in favor to xml because it is easier for humans

22

to use it. This is most important advantage in the case of variables’ map
that have to be created by the user of Ubiplot.

The plug-in is linked to the yaml-cpp library for handling the yaml. It
is available under the MIT license and the version 0.2.5 of it is shipped with
the Ubiplot’s source code. It can be found in the yaml-cpp directory.

2.5.1 Serialization

The layout of the plots can be saved to yaml file and then later restored.
Classes that constitute plots have got toYML() methods. These methods
saves the state of variables needed to later recreate the Plot. To deserialize
objects static methods fromYML() are used. They parse the yaml nodes and
returns instantiated objects.

2.5.2 Implementing variable’s map feature

As described in section A.1.2 it is possible to use variable’s map to create a
menu in the plug-in’s main window. By triggering one of the menu’s entry
the plot for specified variable of neuron or synapse will be created.

This is accomplished by the ScriptEngine class. It is a wrapper around
QScriptEngine object. It parses the yaml file and stores information that de-
fines a variable in the VariablePath objects. PlotWindow while creating the
menu asks ScriptEngine for names of the neuron and synapse variables and
it populates its menu accordingly. Then it connects QActions in the menu
to appropriate slots. These slots call ScriptEngine’s createDataRequest() or
createMultipleRequest().

23

�

24

Chapter 3

Results

In this chapter experimental results will presented using available facilities
of Ubiplot. First simple program will be used to test waveform plots and
communication with the board. And next some variables of the SpiNDeK’s
implementation of Iglesias-Villa model will be plotted.

Manually specified address

The program that simply increases two variables in the RAM had been loaded
to the Ubichip. If one wants to observe these counters it is possible to
manually specify the address and mask for RAM’s request. The result is
depicted in the Figure 3.1.

25

Figure 3.1: The plug-in plotting two counters.

3.1 Visualisation of Iglesias-Villa model

Now the program simulating Iglesias-Villa model will be the subject of the
observation. The array is 4 neurons with 3 synapses each. The connectivity
created by SpiNDeK is depicted in the figure 3.2. The whole program that
Ubichip was executing is listed in the appendix D.

Figure 3.2: The connectivity of the observed network.

26

Raster plots

In the Figure 3.3 raster plot is used to check the types of the neuron. The
plot is showing variable Nt that is holding the type of the neuron, 1 stands
for excitatory and 0 for inhibitory.

Figure 3.3: Raster plot showing types of the neurons.

Histogram plots

Figure 3.4 shows an example usage of the histogram plots. The plot is de-
picting the state of the synapse variables of all the neuron in the current
step.

27

Figure 3.4: Histogram plot for synaptic weights. The resolution is set to 10.

Waveform plots

The Figure 3.5 shows the plot visualising the the membrane potential of
first neuron while emitting spike. The list on the left shows values for the
fragment of the plot when the spike occur.

28

Figure 3.5: Waveform showing Vi of first neuron while spiking, list on the
left shows values in the decimal base.

Figure 3.6: Waveform showing Vi of first neuron while spiking, list on the
left shows values in the hexadecimal base.

Showing multiple plots at the same time

Ubiplot displaying four plots in the main window and one plot in the separate
window is showed in the Figure 3.7. The plots in the the main window

29

Figure 3.7: Visualising membrane potentials in the waveforms and spikes
using raster plot in the separate window.

are waveforms for membrane potentials, where spikes are visualised in the
separate window using raster plot.

There one can observe that the first and fourth neurons emitted spikes
twice. The raster plot simultaneously shows the occurred spikes. It should
be noted that part of the spikes are caused by background activity and not
by neurons. It is necessary to keep the network working.

Logging data

The part of the logs in the html format of this session is attached in the
Figure 3.8. The headers are the number of steps. They start from 69 since
the limit for logs was set to 1000 and 1069 steps were executed.

30

Figure 3.8: Part of the logs.

31

�

32

Chapter 4

Conclusions

At the end, the created software is being used successfully and is pushing the
research forward. It is also looking promising in the context of future usages.

It does it thanks to the Ubimanagertools, namely the server and Ubi-
manager. Those two constituted rich interface that programmers can ex-
ploit. Although plug-ins’ facility of Ubimanager was not intended for such
applications, but it was possible to cooperate with by using slots triggered
by QTimer for communication instead of original processData() method
of UbiSimplePlugin interface. Overall software available in the Perplexus
project turned out to be good base to work with.

Also the Qt framework, as expected, proved its usefulness. It is very
reliable, easy to use and its API complete. Every time there was a need for
some feature the ready solution that can be used or in some way altered could
be found in the Qt library. That was the case when implementing variables’
map feature. The only thing missing was the support for yaml format and
the external yaml-cpp library have been introduced. In fact xml that is
supported by Qt could have been used instead of yaml, but the readability
was prioritized. And of course thanks to Qt Ubiplot is cross platform, which
obviously is an advantage for end users since they can use it not only on one
operating system. Moreover it was possible for development to take place in
the unix userspace, which in the author’s opinion is superior for such task to
widely used windows environment.

During the development question concerning the used language arose.
Although writing Ubicolibri and Ubichiptester in C++ was an obvious choice,
since these applications run very close to hardware, in the case of Ubimanager
and Ubiplot was not. I have many doubts if it was the best language to
use. For sure it is very fast. But on the modern computers really the only
bottleneck of Ubimanager was the operation on sockets. Other were not so
crucial. It is possible that usage of other language together with bindings for

33

Qt, like Java (QtJambi) or Python (PyQt), would be a better choice.
That is why I think at the beginning of the development of Ubiplot more

time could have been put on the research of the available technologies. Es-
pecially use of Python language that integrates easily into C, together with
PyQt looks promising. Substitution C++ with less verbose and error-prone
language would benefit in shorter development time and more maintainable
code.

Also the decision about implementing plots had to be made. Eventually
writing own solution from scratch was chosen. But as it turned out amount
of time needed for that task was bigger than expected. Now, incorporating
some library like for example ”qwt” seems a faster and more reliable solution.

To summarize, the pursued objectives have been successfully achieved.
The Ubiplot plug-in communicates correctly with hardware and displays the
waveforms of the user-selected variables in three different kinds of plots,
waveform, raster and histogram. Several experimental verifications have been
successfully performed and reported.

Future work

As future work, replacing polling with some callback technique is suggested.
That would require contacting the development team of Ubimanagertools
and implementing this in Ubicolibri and Ubimanager code.

In the meantime, the way Ubiplot is checking the state of the stop flag
could be made more customizable with the use of the QScriptingEngine. The
engine might parse user-inputed expressions that would instruct the plug-in
how to check and escape the flag, and when to fetch the data.

Another enhancement in the communication part of the Ubiplot might
be replacing QTimer objects with QThread, that is starting new thread for
polling process. It should give considerable boost of the performance.

Also user interface could be further enriched by giving the user possibility
to save plots in the context of variables shown and not, like in the current
implementation, precise addresses in the memory. That would require devel-
oping slightly more robust serialization facility than is right now.

As for other extensions they should be easy to implement since Ubiplot’s
structure is a straightforward and simple one, but still sufficient for future
work on it.

34

Bibliography

[1] Report originator: Andreus Upegui Deliverable 3.1: Specification of the
computing module’s main electronic board, November 2007.

[2] Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Encyclo-
pedia on-line. Available at http://en.wikipedia.org/wiki/Action potential.
Internet. Retrieved 20 July 2010, 20:30 UTC.

[3] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. Moreno, and J.
Madrenas, The Perplexus bio-inspired recongurable circuit, in Proceedings
of the 2nd NASA/ESA Conference on Adaptive Hardware and Systems,
T. Arslan et al, Ed. Los Alamitos, CA, USA: IEEE Computer Society,
August 2007, pp. 600605.

[4] Report originator: Jordi Madrenas ”Pervasive computing framework for
modeling complex virtually-unbounded systems”, 18 November 2008

[5] Lukasz Kotynia, Supervisor: J. Manuel Moreno Arostegui ”Design of
CAM memories using FPGAs for implementing the encoder/decoder mod-
ules for PERPLEXUS”

[6] Michael Hauptvogel ”Design of a bio-inspired spiking network environ-
ment” (MSc dissertation) Universitat Politecnica de Catalunya, 17 March
2008, p. 19-34, 88

[7] Marc Hortac ”Desenvolupament de software i algorisme per a xarxes neu-
ronals spiking inspirades” (MSc dissertation) Universitat Politecnica de
Catalunya, September 2009, p. 61-62

[8] Qt Reference documentation http://doc.qt.nocia.com/4.6

35

Appendices

36

Appendix A

User’s guide

This chapter is a user guide. It shows how Ubiplot can be used. Beginning
with some common tasks and later will show how to create a variables’ map.
It will also elaborate on the building process and give example how new kind
of plots can be written.

A.1 Using the program

A.1.1 Common tasks

Loading the plug-in

First of all Ubimanager have to be started. From its ”Simulate” menu the
entry ”Connect to simulation as a observer” has to be selected. Then it
is possible to choose the board user wish to connect to. After connecting
state of the simulation is downloaded and entry ”Connect to simulation as
a master” in the menu ”Simulation” becomes enabled. In order to load
the plug-in and have control over the simulation user have to disconnect
and connect to the same board again but this time using the just enabled
entry in the ”Simulation” menu. While connecting the dialog is showed with
loadable plug-ins that are placed in the special directory. This directory can
be set from ”Tools”->”Plugins directory”. The directory should be the one
with Ubiplot’s file, on windows it is called ”ubi plotplugin.dll” and on unixes
”libubi plotplugin.so”.

After loading the plug-in main window of Ubiplot will be shown.

37

Figure A.1: Main window of Ubiplot

File menu

There user can choose from the ”File” menu:

• ”Save plots layout” - save the layout in which the plots are displayed
and address from which they read the data.

• ”Restore plots layout” - restores the layout of plots from the file.

• ”Log data to a file” - logs data of all plots to a file as the html tables.

• ”Load variables’ map” - Loads the variables’ map.

”Log data to a file”

When user clicks on this action he will be presented with dialog where he
can input the name of the file where the logs in the form of html tables will
be placed.

”Load variables’ map”

The action with label ”Load variables’ map” shows a dialog.

38

Figure A.2: Variables’ map loading menu of Ubiplot

There user can point the desired map to load and the size of the network
- number of neurons and synapses per each. If the name of the file has got
two leveled extension the first one will be parsed in the search of the network
size. For example file with name ”map.4x3.yml” will be interpreted as map
for network of 4 neurons with 3 synapses each. How to create a map is
described in the section A.1.2.

View menu

Under ”View” menu there are two actions ”increase splitter size” and ”de-
crease splitter size”. When plots are created there are placed in the so called
splitter in the main window. These actions will change the sizes of the plots.
They are also accessible from the toolbar. A note, while creating plot it is
also possible to not store the plot in the splitter but in the separate window.
In that case the described actions will not affect the size of the plot.

Settings

The ”Tools” menu holds one action ”Settings” that shows dialog for config-
uring the plug-in.

39

Figure A.3: Settings dialog of Ubiplot

There it is possible to change the address where the stop flag is stored and
the address to which it is necessary to write in order to escape it. Besides
that there is also possibility to change number of the execution steps for
which data will be stored in the plots. The default value is 1000.

Besides the ”Ok” button that applies current settings there is also ”Save”
button. Pushing it results in storing current settings, so they will be the same
next time the plug-in is loaded.

Variables menu

After loading the variables’ map the ”Variables” menu becomes enabled.
There user can pick type and for which units he wants to create a plot.

40

Figure A.4: ”Variables” menu of Ubiplot

Creating waveforms

Below the toolbar there is an input for creating waveform plot manually.
There user can input the address and desired mask. After pushing apply
button the start up dialog for waveforms will appear.

41

Figure A.5: Start up dialog for waveforms.

There it is possible to fine tune the plot more. Choose whether it should
auto scale, or to have fixed scale with inputed values (minimum, maximum
and resolution). Choice of the used binary code is also available along with
possibility to open the plot in the separate window. Plus the so called mag-
nitude can be set which is the number by which the incoming values will be
multiplied. The same dialog will be shown after clicking on waveform plot
from ”Variables” menu.

42

Creating histograms

Figure A.6: Start-up dialog for histograms.

Adding histograms is possible only from the ”Variables” menu. The start-up
dialog for them enables one to choose the binary system, the magnitude and
to create separate window for this plot. These are the same options as for
waveform plots. There is also field for specifying the desired resolution.

Creating raster plots

Figure A.7: Start-up dialog for raster plots.

Here the start-up dialog only asks if the plot should be placed in new window
or in the main window.

Execution

In the toolbar user can find three buttons.

Figure A.8: Execution buttons.

43

As labeled in the Figure they are responsible for:

• 1 - executing one step.

• 2 - breaking.

• 3 - continuous run.

Context menu

The plots have got context menu available under the right click of a mouse.
For histogram and raster plots menu has got only one entry which is ”Close
the plot”. But for waveforms there are also ”Connect points” and ”Show list
of data”. Triggering the first of these entries will result in connecting the
samples with each other. The second one will open a list with appended data
to left of the plot. Then when right clicking on the list there is possibility to
toggle the base system of the values between decimal and hex.

A.1.2 Variable’s map

The map is needed by the plug-in to create the ”Variables” menu. From this
menu it is possible to choose to observe variable of given unit (neuron or
synapse) or for all units (all neurons or all synapses of given neuron).

Depending on the indices of neuron and synapse, the address and mask for
the request is different. The map holds expressions that are being evaluated
by the plug-in to calculate the address, mask and other data needed for the
request. The file where the map is placed is an yaml file. This format is both
easy for software to parse and for humans to write and read. The map’s file
consists of three yml hashes whose keys are:

• define

• neuron

• synapse

They can be considered as a sections of the file and every one them is optional.
The value of the first hash is the list of strings. These strings are expres-

sions that will be evaluated. They can be used to create JavaScript variables
that can be used in the later expressions for not repeating the same code
twice.

Next two hashes define the variables of neurons and synapses. Theirs keys
are sequences of hashes. Each of the hash constitutes variable as follows:

44

• name - a name for identification

• mask - mask to use for masking out from the memory row

• delta - the difference between addresses of the each row if creating plot
for more than one neuron/synapse

• binary code - binary code used

• magnitude - number to multiply the data by

Of course the above lacks the address. Since it is possible to access the
variable by absolute address or by pointer two possible set of entries have to
be added:

• address - direct address to variable

or:

• pointer - address to the pointer variable

• offset - how much to add to received address after dereferencing pointer

Only one of them should be used.

An example

Next an example map will be presented that defines two variables a neuron
variable Mi and synapse variable Lji.

neuron :
− name : Mi

po in t e r : SYNAPSES + 1
o f f s e t : (N + 1)/2 − 1
mask : ”N%2 == 0 ? 0xFFFC0000 : 0x0000FFFC”
de l t a : 1
binary code : s imple

synapse :
− name : L j i

po in t e r : S
o f f s e t : NEURONS/2 + (N + 1)/2 − 1
mask : ”N%2 == 0 ? 0xFFFC0000 : 0x0000FFFC”
de l t a : NEURONS
binary code : s imple

There are 4 JavaScript’s variables that are set by the plug-in and can
be used by the user - ”NEURONS”, ”SYNAPSES”, ”N” and ”S”. The
”NEURONS” and ”SYNAPSE” are equal to the number of neurons and

45

synapses of the network. While evaluating expression ”N” and ”S” are the
indices of the neuron and synapse for which the request is being created.

Assuming user wants to plot Lji for 1st synapse of 3rd neuron in the
network of 4 neurons each having 3 synapses, the definition of Lji should be
read as follows:
Pointer to the variable is located at address that is equal to the index of the
synapse (1 in this example).
After dereferencing it add 4/2 + (3 + 1)/2− 1 = 3 to get final address.
The mask will be 0x0000FFFC since the condition N%2 == 0 for N == 3
is not met.
The difference between each address when plotting for more than one unit is
equal to number of neurons in the network (4).
Treat data as coded in twos complement.
And multiply it by 0.01.

The quotation marks are needed when the string contains reserved key-
words according to yaml specification (expression for mask in this case). If
the entries ”delta”, ”magnitude” or ”binary code” will be omitted the sensi-
ble default values will be used (1, 1.0, ”simple” respectively).

Above map can be less verbose if the ”define” section will be used and
the entries with default values will be omitted:

de f i n e :
−

” odd even neuron idx = (N + 1)/2 − 1”
−

” s i x t e en b i t s ma sk = N%2 == 0 ? 0xFFFF0000 : 0x0000FFFF”
neuron :

− name : Mi
po in t e r : SYNAPSES + 1
o f f s e t : odd even neuron idx
mask : s i x t e en b i t s ma sk

synapse :
− name : L j i

po in t e r : S
o f f s e t : NEURONS/2 + odd even neuron idx
mask : s i x t e en b i t s ma sk
de l t a : NEURONS

If user do not wants to use pointer he can input direct address in the
map, making the entry for Mi even smaller:

neuron :
− name : Mi

address : 5 + (N + 1)/2 − 1
mask : ”N%2 == 0 ? 0xFFFC0000 : 0x0000FFFC”

46

Whole variable’s map for code generated by SpiNDeK for Iglesias-Villa
model is located in the appendix F. It is reflecting memory structure drowned
in the figures 1.4 and 1.5.

The way the placement of the variables is defined by the map is very
flexible. If in the future the memory structure will change writing new map
should be a trivial task.

A.2 Building process

To build Ubiplot GNU g++ was tested but the code should be compile-able
with any C++ compiler.

Ubimanager’s plug-ins have to be linked with static library compiled from
the part of the Ubimanager’s source code. Within UbiManager’s source code
there is ubipluginfiles directory. In it, it is possible to execute make program
for creating this library. The library is sufficient for most of the plug-ins.
But for Ubiplot not all of the necessary symbols are included. That is why
for development of this particular plug-in custom ubipluginfiles directory was
created.

The building process consists of three steps:

• Compiling custom ubipluginfiles

• Compiling yaml-cpp library

• Compiling the plug-in itself

The first two are essential because Ubiplot have to be linked to these libraries.
The easiest way to build it would be to use git. Git is a source code

management system. Although it is very easy to use on the Unix based
systems but, by the time of writing this document, it is not on Windows. So
first example with using git on Linux will be shown. Later without it on the
Windows systems.

Building in GNU/Linux environment

The needed software on debian based Linux distribution can be obtained by
typing these commands:

‘ sudo apt−get i n s t a l l qt4−dev bui ld−e s s e n t i a l s g i t ‘

Then:

47

‘ g i t c l one git@asok : / ub ip l o t / ub ip l o t . g i t ‘
‘ g i t submodule i n i t && g i t submodule update ‘
‘ cd u b i p l u g i n f i l e s && qmake && make ‘
‘ cd . . / ub ip l o t /yaml−cpp && qmake && make ‘
‘ cd . . && qmake && make ‘

The first command fetches Ubiplot’s code to the new local git repository.
It will have as a submodule under the ubimanagertools directory that is a
Ubimanager’s repository. It is needed to build ubipluginfiles library. Next git
commands initialize ubimanagertools with the newest code. Next commands
build the ubipluginfiles and yaml-cpp library, and the plug-in itself.

Ubimanager’s and Ubiplot’s code is hosted on the gitorious.org website.

Building in windows environment

On windows the easiest approach would be to download the Qt SDK from
the Qt’s website. Its installer should install the Qt framework, the QtCreator
which is an IDE and the minimalistic GNU for windows (MinGW) a toolchain
for building C++ programs.

Next the source code would have to be obtained. Since it is cumbersome
to use git on windows the best would be to get in some other way.

QtCreator can be used to compile the libraries and the plug-in. First the
”ubipluginfiles/PluginLib.pro” would have to be opened with QtCreator and
”Build project” should be chosen from the menu. This step would have to be
repeated with ”ubiplot/yaml-cpp/yaml-cpp.pro” and ”ubiplot/ubiplot.pro”
files. Thus created plug-in can be used on windows with the MinGW in-
stalled or with ”QtScript4.dll” availale to the Ubimanager executable. Plac-
ing ”QtScript4.dll” in the same directory as ”Ubimanager.exe” will satisfy
the last condition.

Final notes

It has to be noted that in order for plug-in to work with Ubimanager it has
to be linked against the same version of it. Besides that both of them have to
be compiled in debug or release mode (with or without debugging symbols)
and Qt version used for compiling plug-in cannot be higher than the one used
for Ubimanager.

A.3 Creating new kind of plot

To extend Ubiplot with new kind of plot one have to create three classes,
for example: FooPlotWidget, FooPlot, FooPlotData. The inheritance should

48

look like the existing one, that is FooPlotWidget should inherit from PlotWid-
get, FooPlot from Plot and FooPlotData from PlotData. As with already
existing classes FooPlotData might have to be split in smaller classes that
would abstract the used binary code or for other reason.

FooPlotWidget would have to implement the PlotWidget::toYML() method,
FooPlot - Plot::paintEvent(), FooPlotData have to override PlotData::newData(),
PlotData::toHtml() and PlotData::toYML().

The written code for this classes is placed in the appendix B. This ex-
ample for simplicity sake do not log the data so toHtml() method returns
empty string. Neither it is serializable so the methods toYML() have empty
body.

That example will in every time step visualise which neurons fired. The
constructor to FooPlotWidget accepts parameter values that indicates how
many neurons there are to plot. Again for the sake of simplicity FooPlotData
stores only spikes for the last step. And the task of FooPlot is to split
available space in to rectangles that are red if spike occur or white otherwise.

Last thing to do would be to create a menu or toolbar entry in main
window that would create a DataRequest object for spikes. Then call the
FooPlotWidget constructor and setter for DataRequest on it. And lastly call
PlotWindow::addPlotWidget() with newly created FooPlotWidget object as
a parameter. Such method as an example is shown in the appendix B.4.

49

50

Appendix B

Example source code for a new
kind of plot

B.1 FooPlotWidget class

#ifndef FOOPLOTWIDGETH
#define FOOPLOTWIDGETH
#include ” p lotwidget . h”
#include ” foop l o tda ta . h”
#include ” f o op l o t . h”
#include ”math . h”

class FooPlotWidget : public PlotWidget{
public :

FooPlotWidget (int values ,
QWidget∗ parent) : PlotWidget (” Spikes v i s u a l i s a t i o n ” , parent){

FooPlotData∗ plotData = new FooPlotData (values , this) ;
p l o t = new FooPlot (sq r t (va lue s) , s q r t (va lue s) , plotData , this) ;
plotData = plotData ;

}

void toYML(YAML: : Emitter&){ }
} ;
#endif

B.2 FooPlotData class

#ifndef FOOPLOTDATAH
#define FOOPLOTDATAH
#include ” p l o t . h”
#include <QVector>

51

class FooPlotData : public PlotData{
int va lue s ;
public :
QVector<bool> s p i k e s ;

FooPlotData (int values , QWidget∗ parent) : PlotData (parent){
this−>va lue s = va lues ;

}

void newData (unsigned short int∗ data){
s p i k e s . c l e a r () ;
for (int i = 0 ; i < va lue s ; ++i)

sp i k e s . append (data [i]) ;
}

void toYML(YAML: : Emitter&){ }
QString toHtml (){

QString s ;
return s ;

}
} ;
#endif

B.3 FooPlot class

#ifndef FOOPLOTH
#define FOOPLOTH
#include ” p l o t . h”
#include ” foop l o tda ta . h”

class FooPlot : public Plot {
int rows , c o l s ;
FooPlotData∗ plotData ;

public :
FooPlot (int rows , int co l s , FooPlotData∗ plotData , QWidget∗ parent) :

Plot (parent){
this−>rows = rows ;
this−>c o l s = c o l s ;
this−>plotData = plotData ;

}

void paintEvent (QPaintEvent∗ /∗ ev t ∗/){
QVector<bool> s p i k e s = plotData−>s p i k e s ;
i f (s p i k e s . isEmpty ())

return ;

52

QPainter pa in t e r (this) ;
QBrush redBrush (Qt : : red) ;
QBrush whiteBrush (Qt : : white) ;
QPen pen (Qt : : b lack) ;
pa in t e r . setPen (pen) ;

int width = QWidget : : width ()/ rows ;
int he ight = QWidget : : he ight ()/ c o l s ;

int i = 0 ;
for (int r = 0 ; r < rows ; ++r){

for (int c = 0 ; c < c o l s ; ++c){
i f (s p i k e s . at (i ++))

pa in t e r . setBrush (redBrush) ;
else

pa in t e r . setBrush (whiteBrush) ;
pa in t e r . drawRect (r ∗width ,

c∗height , (r+1)∗width , (c+1)∗ he ight) ;
}

}
}

} ;
#endif

B.4 PlotWindow class’ slot for creating FooPlotWid-

get

void PlotWindow : : s p i k eV i sS l o t (){
i f (! engine−>isMapLoaded ())

return ;
QString s i (” S i ”) ;
DataRequest∗ req = engine−>createMult ip leDataRequest (s i , QPoint (1 , 0)) ;
FooPlotWidget ∗widget = new FooPlotWidget (engine−>getNeurons () , this) ;
widget−>setDataRequest (req) ;
addPlotWidget (widget) ;

}

53

Appendix C

Initial values of the SpiNDeK’s
implementation of Iglesias-Villa
model

Variable Precision/Range Initial Value (dec/hex) Annotation
Vi(Vi) 16/-32768..32767 -7800/0x8800 Viinitial = Vrest
SumWeights(

∑
wji) 16/-32768..32767 -7800/0x8800 SumWeightsinitial = VRest

si(si) 1/0..1 X 1 bit for postsyn. spike
VRest1(Vrest[1]) 16/-32768..32767 -7800/0xE188 scaled: -78mv = -7800
VRest2(Vrest[2]) 16/-32768..32767 -7800/0xE188 scaled: -78mv = -7800
Theta1(θ[1]) 16/-32768..32767 -4000/0xF060 scaled: -40mv = -4000
Theta2(θ[2]) 16/-32768..32767 -4000/0xF060 scaled: -40mv = -4000
Dmem1 16/0..65535 61309/0xEF7D stands for Kmem1: 14.99
Dmem2 16/0..65535 61309/0xEF7D stands for Kmem2: 14.99
Mi(Mi) 14/0..16383 819/0x0333 Miinitial: MMax/2
wji(wji) 8/-128..127 - no initial value needed
si(si) 1/0..1 X 1 bit for presyn. spike
Aji(Aji) 2/0..3 3/0x0003 Ajiinitial = 3
Lji(Lji) 14/0..16383 8191/0x1FFF Ljiinitial = LMax/2
Mj(Mj) 14/0..16383 819/0x0333 Mjiinitial = MMax/2
LMax(Lmax) 14/0..16383 16383/0x3FFF
MMax(Mmax) 14/0..16383 1638/0x0666 MMax = 1/10 of Lji
Pot1 8/-128..127 84/0x0054 scaled: 0,84mv = 84
Pot2 8/-128..127 -80/0xFFB0 scaled: -0,80mv = -80
Dsyn1 16/0..65535 63918/0xF9AE stands for Ksyn1: 40
Dsyn2 16/0..65535 63918/0xF9AE stands for Ksyn2: 40
Dact1 16/0..65535 65530/0xFFFA stands for Kact1: 10922
Dact2 16/0..65535 65530/0xFFFA stands for Kact2: 10922
Uno 1/- 1/0x0001 needed for increment

54

Appendix D

Assembler code of the
SpiNDeK’s implementation of
Iglesias-Villa model

; 4 Neurons , 3 Synapses
d e f i n e s i z e x 4
de f i n e s i z e y 4
de f i n e synapses 2

.DATA

SYN−0=”0 cce0ccc , 0 ccc0ccc , 7FFE7FFE,7FFE7FFE”
SYN−1=”0 cce0ccc , 0 ccc0ccc , 7FFE7FFE,7FFE7FFE”
SYN−2=”0 cce0ccc , 0 ccc0ccc , 7FFE7FFE,7FFE7FFE”

NEU−1=”0 ccc0cce , 0 cce0ccc ” ; Mi + Neuron Type + Si
NEU−2=”E188E188 , E188E188” ; Vi
NEU−3=”00000000 ,00000000 ” ; Wji
NEU−4=”1FFF1FFF,1FFF1FFF” ; Tref + exponent ia l

AMAX=”00000003”
DACT1=”0000FFFA”
DACT2=”0000012C”
DBACK=”0000FEB9”
DMEM1=”0000EF7D”
DMEM2=”0000EF7D”
DSYN1=”0000F9AE”
DSYN2=”0000F9AE”
LMAX=”00003FFF”
MASK1=”0000E000”
MASK2=”0000C000”
MMAX=”00000666”
POT1=”00000054”
POT2=”0000FFB0”
PROB=”00001FFF”
SEED=”A553A75A ,A554A75A”
THETA1=”0000F060”
THETA2=”0000F060”
UNO=”00000001”
VREST1=”0000E188”
VREST2=”0000E188”
MASC=”00000003”
MASC1=”000000FF”

.CODE

RST R0
SWAP R0
RST R0

RST R1

55

SWAP R1
RST R1

RST R2
SWAP R2
RST R2

RST R3
SWAP R3
RST R3

RST R4
SWAP R4
RST R4

RST R5
SWAP R5
RST R5

RST R6
SWAP R6
RST R6

RST R7
SWAP R7
RST R7

; −−−−−−−−−−−−−−−−−−−−−−−−−−INIT SOME VARIABLES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LDALL R4 ,PROB
MOVA R4
SETMP SEED
RANDINI
RANDON
LOAD R1
RANDOFF
AND R1
MOVR R1
SWAP R1 ; SR1 <−− a c t i v a t i on p r obab i l i t y
; −−

GOTO MAIN

; −−
; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ PROCEDURES BEGIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− NEURON LOAD −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.NEURONLOAD

SWAP R6
LOAD R6 ,NEU−2 ; SR6 <−− Vi
SWAP R6

SWAP R0
LOAD R0 ,NEU−3 ; SR0 <−− SUM WEIGHTS
SWAP R0

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Neuron Type + Si −−−−−−−−−−−−−−−−−−−−−−−−−−−

LOAD R2 ,NEU−1 ;R2 <−− Mi + Neuron Type + Si
MOVA R2
LDALL R3 ,MASC
AND R3
SWAP R5
MOVR R5 ; SR5 <−− Neuron Type + Si
SWAP R5

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Mi −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MOVA R2
SHR
SHR
SWAP R4
MOVR R4 ; SR4 <−− Mi
SWAP R4

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Tref + exponent ia l −−−−−−−−−−−−−−−−−−−−−−−−−−

LDALL R3 ,MASK1 ;MASK1=”0000E000”
SWAP R5
MOVA R5
SWAP R5
SHR
SHR
FREEZENC

56

LDALL R3 ,MASK2 ;MASK2=”0000C000”
UNFREEZE

LOAD R1 ,NEU−4 ;R1 <−− Tref + exponent ia l
INV R3 ;MASK1 −−> 1FFF ; MASK2 −−> 3FFF
AND R1
MOVR R7 ;R7 <−− 1FFF
SWAP R7 ; SR7 <−− exponent ia l
MOVA R1
AND R3 ;MASK1 = E000 ; MASK2 = C000
MOVR R7 ;R7 <−− Tref

RET
; −−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− MEMBRANE VALUE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.MEMBRANEVALUE

RST R1
RST R2

SWAP R5 ; SR5 −−> NEURON TYPE + Si

LDALL R3 ,DMEM1 ;R3 <−− DECAY DONATOR 1
LDALL R4 ,VREST1 ;R4 <−− Vres1

MOVA R5
SHR
SHR ; IF NEURON TYPE = TYPE II (CONDITIONAL LOAD)
FREEZENC

LDALL R3 ,DMEM2 ;R3 <−− DECAY DONATOR 2
LDALL R4 ,VREST2 ;R4 <−− Vres2

UNFREEZE

;−−−−−−−−−−−−−−−−−−−−−−− R2 <−− (1−Si (t))∗ (Vi (t)−Vres)∗ (Kmem) −−−−−−−−−−−−−−−−−

MOVA R5
SHR
FREEZEC ; IF (S i = 0) THEN R2 <−− ((1)∗ (Vi (t)−Vres)∗ (Kmem)

SWAP R6 ; SR6 <−− Vi
MOVA R6 ;R0 <−− Vi
SUB R4 ;R0 <−− Vi − Vres
MOVR R2 ;R2 <−−(Vi (t)−Vres)
GOTO DECAY ;R2 = (Vi (t)−Vres) , R3 = DECAY DONATOR (1 or 2)

;R2 <−−(Vi (t)−Vres) ∗ (Kmem)
UNFREEZE

MOVA R5
SHR
FREEZENC ; IF (Si = 1) THEN R2 <−− ((0)∗ (Vi (t)−Vres)∗ (Kmem) = 0

RST R2 ;R2 <−− ((0)∗ (Vi (t)−Vres)∗ (Kmem)
UNFREEZE

;−−−−−−−−−− Vi <−− Vres + (1−Si (t))∗ (Vi (t)−Vres)∗ (Kmem) + SUM WEIGHTS −−−−−−−−−−

LDALL R4 ,VREST1 ;R4 <−− Vres1

MOVA R5
SHR
SHR

; IF NEURON TYPE = TYPE II (CONDITIONAL LOAD)
FREEZENC

LDALL R4 ,VREST2 ;R4 <−− Vres2
UNFREEZE

MOVA R4 ;R0 <−− Vres1 or Vres2
ADD R2 ;R0 <−− (Vres1 or Vres2) + (1−Si (t))∗ (Vi (t)−Vres)∗ (Kmem)
MOVR R2 ;R2 <−− (Vres1 or Vres2) + (1−Si (t))∗ (Vi (t)−Vres)∗ (Kmem)

SWAP R0 ;R0 <−− SUM WEIGHTS
ADD R2 ;R0 <−− (Vres1 or Vres2) + (1−Si (t))∗ (Vi (t)−Vres)∗ (Kmem) + SUM WEIGHTS

MOVR R6 ;R6 <−− Vi = (Vres1 or Vres2) + (1−Si (t))∗ (Vi (t)−Vres)∗ (Kmem) + SUM WEIGHTS
SWAP R6 ; SR6 <−− Vi

SWAP R5 ; SR5 <−− NEURON TYPE + Si

RST R0 ;SUM WEIGHTS = 0
SWAP R0 ; SR0 <−− SUM WEIGHTS

RET
; −−−

57

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− SYNAPSE LOAD −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

.SYNAPSE LOAD
; −−−
; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− SP1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; −−−
; −−−−−−−−−−−−−−−−−−−−−−−−−−−− Mj + Synapse Type + Sj −−−−−−−−−−−−−−−−−−−−−−−−−−
LDALL R1 ,MASC

SETC
SETMP SYN−0 ;LOOP INDEX
READMP 1
LOAD R2 ;R2 <−− Mj + Synapse Type + Sj

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Synapse Type + Sj −−−−−−−−−−−−−−−−−−−−−−−−−−−−
MOVA R2
AND R1
MOVR R6 ;R6 <−− Synapse Type + Sj

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Mj −−
MOVA R2
SHR
SHR
MOVR R5 ;R5 <−− Mj

; −−−
; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− SP2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; −−−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− L j i + Aj i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LOAD R2 ;R2 <−− L j i + Aj i

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Aji −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SWAP R3
MOVA R2
AND R1
RST R1
MOVR R3
SWAP R3 ; SR3 <−− Aji

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− L j i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MOVA R2
SWAP R2
SHR
SHR
MOVR R2 ; SR2 <−− L j i
SWAP R2
RET
; −−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− SYNAPTIC WEIGHT −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.SYNAPTIC WEIGHT

RST R1
MOVA R6
SHR

FREEZENC ; IF (Sj = 1) THEN R0 <−− wj i = Sj ∗ Aji ∗ P

LDALL R4 ,POT1 ;R4 <−− POT1
MOVA R6
SHR
SHR
FREEZENC

LDALL R4 ,POT2
UNFREEZE

;−− Aji ∗ P −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MOVFS R3
MOVA R3
SHR
MOVR R3
FREEZENC

MOVA R1
ADD R4
MOVR R1

UNFREEZE

MOVA R3
SHR

58

MOVR R3
FREEZENC

MOVA R1
ADD R4
ADD R4
MOVR R1

UNFREEZE

MOVFS R3
MOVA R3
SHR
FREEZENC

SHR
FREEZENC

MOVA R1
ADD R4
MOVR R1

UNFREEZE
UNFREEZE

UNFREEZE

SWAP R0
ADD R1 ; SR0 <−− wj i = Sj ∗ Aji ∗ P
SWAP R0

RET
; −−−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−− REAL VALUE VARIABLE −−−−−−−−−−−−−−−−−−−−−−−−−−
.REAL VALUE VARIABLE
;−−−−−−−−−−−−−−−L j i (t+1) = L j i (t) ∗ Kact + Si (t) ∗ Mj + Sj (t) ∗ Mi(t)−−−−−−−
LDALL R3 ,DACT1 ;R3 <−− DACT1
MOVA R6
SHR
SHR
FREEZENC

LDALL R3 ,DACT2 ;R3 <−− DACT2
UNFREEZE

MOVFS R2 ;R2 <−− L j i

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− L j i (t) ∗ Kact 1 or 2 −−−−−−−−−−−−−−−−−−−−−−−
GOTO DECAY ;R2 <−− L j i (t) ∗ Kact 1 or 2

SWAP R5
MOVA R5
SWAP R5
SHR ;R5 <−− Si
FREEZENC

MOVA R2
ADD R5 ;R0 <−− Mj
MOVR R2 ;R2 <−− (L j i (t) ∗ Kact) + (Si (t) ∗ Mj)

UNFREEZE
MOVA R6
SHR ;R6 <−− Sj
FREEZENC

MOVA R2
SWAP R4
SUB R4 ;R0 <−− Mi
SWAP R4
MOVR R2 ;R2 <−− (L j i (t) ∗ Kact) + (Si (t) ∗ Mj) + Sj (t) ∗ Mi(t)

UNFREEZE
MOVTS R2 ; SR2 −−> L j i
RET
; −−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ACTIVATION VARIABLE −−−−−−−−−−−−−−−−−−−−−−−−−−
.ACTIVATION VARIABLE

LDALL R1 ,UNO
SWAP R3
MOVA R3
FREEZEZ ; IF (Aj i = 0) THEN

LDALL R0 ,LMAX ; (LMAX−LJI) < 0 ?
SWAP R2
SUB R2
SHL
FREEZENC ; −−> YES

MOVA R3
ADD R1 ; Aj i + 1
MOVR R3 ; Aj i −−> SR3
LDALL R0 ,AMAX

59

SUB R3 ; R0 <−− Amax − Aji
SHL ; NEGATIVE?
FREEZENC ; Aj i − R1 = 0

LDALL R3 ,AMAX
UNFREEZE
LDALL R0 ,LMAX ; LJI=LMAX/2
SHR
MOVR R2

UNFREEZE
; ELSE IF (LJI [J] < LMIN) {

MOVA R2 ; LJI −−> ACC, LMIN=0
SHL ; (LJI−LMIN(=0)) < 0 ?
FREEZENC ; (LJI−LMIN) < 0 ? YES

MOVA R3
SUB R1 ; AJI−1, SR3 ACT.
MOVR R3 ; AJI −> R3
LDALL R0 ,LMAX ; LJI=LMAX/2
SHR
MOVR R2

UNFREEZE
UNFREEZE
MOVA R3
FREEZENZ ; IF CONNECTION IS INACTIVE

RST R2
UNFREEZE
SWAP R3
SWAP R2
RET
; −−−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− MEMORY OF LAST PRESYNAPTIC SPIKE −−−−−−−−−−−−−−−−−−−−−−−
.MEMORY OF LAST PRESYNAPTIC SPIKE

; −−−−−−−−−−−−−−−−− Mj(t+1) = (Sj (t) ∗ Mmax) + (1 − Sj (t)) ∗ Mj(t) ∗ Ksyn −−−−−−−−−−−−−−−−−

;−−−−−−−−−−−−−−−−−−−−−−−−−−− R2 <−− (1 − Sj (t)) ∗ Mj(t) ∗ Ksyn −−−−−−−−−−−−−−−−−−−−−−−−−−−−

LDALL R3 ,DSYN1 ; R3 <−− Ksyn1

MOVA R6 ; R6 <−− Synapse Type + Sj
SHR
SHR
FREEZENC

LDALL R3 ,DSYN2 ; R3 <−− Ksyn2
UNFREEZE

MOVA R5 ; R5 <−− Mj
MOVR R2 ; R2 <−− Mj

GOTO DECAY ; R2 <−− (1 − Sj (t)) ∗ Mj ∗ Ksyn1 or Ksyn2

MOVA R6 ; R6 <−− Synapse Type + Sj
SHR
FREEZENC ; IF Sj (t) = 1 THEN R2 <−− Mmax

LDALL R0 ,MMAX
MOVR R2 ; R2 <−− Mmax

UNFREEZE

MOVA R2
MOVR R5 ; R5 <−− (Sj (t) ∗ Mmax) + (1 − Sj (t)) ∗ Mj(t) ∗ Ksyn

RET
; −−−

; −−−−−−−−−−−−−−−−−−−−−−−−−−− SYNAPSE SAVE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.SYNAPSE SAVE

SETMP SYN−0 ;LOAD LOOP INDEX!
READMP 1 ;READMPX
; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1 . MJ+SI+TYPE ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
MOVA R6
SHR
SHL
MOVR R6

MOVA R5 ;<−−MJ
SHL
SHL
ADD R6 ;+TYPE+SJ
MOVR R3 ; composed DATA

RST R0

60

SHR
STNC R3 ;SAVE DATA

; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2 . LJI+AJI ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SWAP R2
MOVA R2 ;<−−LJI
SWAP R2
SHL
SHL
SWAP R3
ADD R3 ;+AJI
SWAP R3
MOVR R3 ; composed DATA
RST R0
SHR
STNC R3 ;SAVE DATA
RET
; −−−

; −−−−−−−−−−−−−−−−−−−−−−−− MEMORY OF LAST POSTSYNAPTIC SPIKE −−−−−−−−−−−−−−−
.MEMORY OF LAST POSTSYNAPTIC SPIKE

LDALL R3 ,DSYN1 ;TYPE=1
SWAP R5
MOVA R5
SHR
SHR ;−−> TYPE
FREEZENC

LDALL R3 ,DSYN2 ;TYPE=2
UNFREEZE
SWAP R4 ;R2=MI
MOVA R4
SWAP R4
MOVR R2
GOTO DECAY ;R2=OPERAND, R3=DECAY DONATOR −−> R2=RESULT DECAY
MOVA R5
SWAP R5
SHR ;−−>SI
FREEZENC

LDALL R0 ,MMAX
MOVR R2 ;OVERWRITE DECAY RESULT

UNFREEZE
MOVA R2
SWAP R4
MOVR R4 ;RES IN SR4
SWAP R4
RET
; −−−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−− SPIKE UPDATE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.SPIKE UPDATE

LDALL R3 ,THETA1 ;R3 <−− THETA1 = ”0000F060”
SWAP R5 ; SR5 <−− Neuron Type + Si
MOVA R5
SHR
SHR
FREEZENC

LDALL R3 ,THETA2 ;R3 <−− THETA2 = ”0000F060”
UNFREEZE

MOVA R5
SHR
SHL
MOVR R5 ;R5 <−− Neuron Type + 0

SWAP R6 ; SR6 <−− Vi
MOVA R6 ;R0 <−− Vi
SUB R3 ;R0 <−− Vi − (THETA1 or THETA2)
SWAP R6

FREEZENC
MOVA R7 ;R0 <−− r e f r a c t a r y per iod
SHL
FREEZEC

MOVA R5
LDALL R3 ,UNO
ADD R3
MOVR R5 ;R5 <−− Neuron Type + 1
SET R7 ;R7 <−− a c t i v a t i on o f r e f r a c t o r y time

UNFREEZE

61

UNFREEZE
SWAP R5
RET
; −−−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−− BACKGROUND ACTIVITY−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.BACKGROUND ACTIVITY

SWAP R7 ; SR7 <−− exponent ia l
MOVA R7
SWAP R7

MOVR R2 ; R2 <−− exponent ia l
LDALL R3 ,DBACK ; R3 <−− DBACK = ”0000FEB9”

GOTO DECAY ; R2 <−− DBACK ∗ exponent ia l

SWAP R1 ; R1 <−− a c t i v a t i on p r obab i l i t y
LDALL R4 ,PROB ; R4 <−− PROB = ”00001FFF”
MOVA R4 ; R0 <−− PROB
SUB R2 ; R0 <−− PROB − (DBACK ∗ exponent ia l)
RANDON
CLRC
SUB R1 ; (PROB − (DBACK ∗ exponent ia l)) − Act ivat ion p r obab i l i t y
FREEZENC ; I f ((PROB − (DBACK ∗ exponent ia l)) > Act ivat ion p r obab i l i t y) then

LOAD R1 ; R1 <−− new a c t i v a t i on p r obab i l i t y
RANDOFF
MOVA R4 ; R0 <−− PROB = ”00001FFF”
AND R1 ; R0 <−− PROB = ”00001FFF” AND new a c t i v a t i on p r obab i l i t y
MOVR R1 ;/ R1 <−− PROB = ”00001FFF” AND new a c t i v a t i on p r obab i l i t y
MOVA R4 ; R0 <−− PROB = ”00001FFF”
MOVR R2 ;/ R2 <−− PROB = ”00001FFF”
MOVA R7 ; R0 <−− Tref
SHL
FREEZEC ; IF (C = 1) THEN Tref

SWAP R5 ; SR5 <−− Neuron Type + Si
MOVA R5
SHR
SHL ; SR5 <−− Neuron Type + Si = 0
LDALL R3 ,UNO
ADD R3 ; SR5 <−− Neuron Type + Si = 1
MOVR R5
SWAP R5
SET R7 ; R7 <−− a c t i v a t i on o f r e f r a c t o r y time

UNFREEZE
UNFREEZE
SWAP R1 ; SR1 <−− Act ivat ion p r obab i l i t y
MOVA R2
SWAP R7
MOVR R7
SWAP R7 ; SR7 <−− Decay term
RET
; −−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− REFRACTORY P −−−−−−−−−−−−−−−−−−−−−−−−−−−
.REFRACTORY P
MOVA R7
SHL ; −1ms
MOVR R7
RET
; −−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− NEURON SAVE −−−−−−−−−−−−−−−−−−−−−−−−−−−−
.NEURON SAVE

SWAP R4 ;R4 <−− Mi
SWAP R5 ;R5 <−− Neuron Type + Si
SWAP R6

RST R3
MOVA R4
SHL
SHL
ADD R5
MOVR R3 ;R3 <−− Mi + Neuron Type + Si

;−−−−−−−−−−−−−−−−−−−−−−−−−−− INDIVIDUAL DATA STORE −−−−−−−−−−−−−−−−−−−−−−−

RST R0
SHR
STNC R3 ,NEU−1 ;SRAM <−− Mi + Neuron Type + Si

RST R0
SHR

62

STNC R6 ,NEU−2 ;SRAM <−− Vi

SWAP R0
CLRC
STNC R0 ,NEU−3 ;SRAM <−− SUM WEIGHTS
SWAP R0

LDALL R3 , ;MASK1 = ”0000E000”
MOVA R5
SWAP R5
SHR
SHR
FREEZENC

LDALL R3 ,MASK2 ;MASK2 = ”00008000”
UNFREEZE

MOVA R7 ;ACC <−− Tref
AND R3
SWAP R7 ;R7 <−− exponent ia l
OR R7
SWAP R7
CLRC
STNC R0 ,NEU−4 ;SRAM <−− Tref + exponent ia l
RET
; −−−

;−−−−−−−−−−−−−−−−−−−−−−−−−ENABLE SPIKES PROPAGATION−−−−−−−−−−−−−−−−−−−−−−−
. SPIKES ENABLE

SWAP R5 ; ACC <== Spikes
MOVA R5
SWAP R5
SETC
SETMP SYN−0 ; Point to Sj
READMP

RET
;−−−

; −−−−−−−−−−−−−−−−−−−−−−−−−−−− EXPONENTIAL DECAY −−−−−−−−−−−−−−−−−−−−−−−−−−
.DECAY
RST R1
MOVA R2
MOVR R4
SHL
FREEZENC

RST R0
SUB R2
MOVR R2

UNFREEZE
LOOP 15

MOVA R2
SHL
MOVR R2
FREEZENC

MOVA R1
ADD R3
MOVR R1

UNFREEZE
MOVA R3
SHR
MOVR R3

ENDL
MOVA R1
SHR
MOVR R1
MOVA R4
SHL
FREEZENC

RST R0
SUB R1
MOVR R1

UNFREEZE
MOVA R1
MOVR R2
RST R1
RET
; −−−
; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ PROCEDURES END ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN PROGRAMME BEGIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
.MAIN
GOTO NEURONLOAD

63

GOTO MEMBRANEVALUE
LOOP synapses

GOTO SYNAPSE LOAD
GOTO SYNAPTIC WEIGHT
GOTO REAL VALUE VARIABLE
GOTO ACTIVATION VARIABLE
GOTO MEMORY OF LAST PRESYNAPTIC SPIKE
GOTO SYNAPSE SAVE

ENDL
GOTO MEMORY OF LAST POSTSYNAPTIC SPIKE
GOTO SPIKE UPDATE
GOTO BACKGROUND ACTIVITY
GOTO REFRACTORY P
GOTO NEURON SAVE
GOTO SPIKES ENABLE
STOP
HALT
GOTO MAIN
; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN PROGRAMME END ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

64

Appendix E

Implementation of the
algorithm for filling map of
HistogramPloData class

template<class T>
void HistogramPlotData<T> : : f i l lMap (T ∗data , QMap<f loat , uint> ∗map){

i f (magnitude != 1 . 0)
for (int i = 0 ; i < va lue s ; i++)

data [i] = ROUND(data [i] ∗ magnitude) ;
// i n s e r t keys
std : : s o r t (data , data + va lues) ;
T min = data [0] ;
T max = data [values −1] ;
map−>i n s e r t (min , 1) ;
f loat s tep ;
int i = 0 ;
do{

s tep = abs (max − min)/ static cast<f loat>(r e s) ;
map−>i n s e r t (min + (++i)∗ step , 0) ;

}while (i < r e s && min != max) ;
// i n s e r t va l u e s
QList<f loat> keys = map−>keys () ;
int l a s t I dx = map−>count () − 1 ;
u int keyIdx = 0 ;
//omit f i r s t sample s ince i t was taken care o f
// wh i l e i n s e r t i n g keys
uint dataIdx = 1 ;
while (dataIdx < va lue s){

f loat key = keys . at (keyIdx) ;
i f (keyIdx == la s t I dx){ // the r e s t matches the l a s t range

uint & value = (∗map) [key] ;
va lue = va lues − dataIdx ;

65

i f (va lue > maxQuantity)
maxQuantity = value ;

break ;
}
i f ((data [dataIdx] > key && data [dataIdx] < key + step) | |

data [dataIdx] == key){
uint & value = (∗map) [key] ;
++value ;
++dataIdx ;
i f (va lue > maxQuantity)

maxQuantity = value ;
}
else

++keyIdx ;
}

}

66

Appendix F

Ubiplot’s variables’ map for
Iglesias-Villa model

de f i n e :
−

” odd even neuron idx = (N + 1)/2 − 1”
−

” f i r s t b i t ma s k = N%2 == 0 ? 0x00010000 : 0x00000001”
−

” second bit mask = N%2 == 0 ? 0x00020000 : 0x00000002”
−

” s i x t e en b i t s ma sk = N%2 == 0 ? 0xFFFF0000 : 0x0000FFFF”
neuron :

− name : S i
po in t e r : SYNAPSES + 1
o f f s e t : odd even neuron index
mask : f i r s t b i t ma s k

− name : Nt
po in t e r : SYNAPSES + 1
o f f s e t : odd even neuron index
mask : second bit mask

− name : Mi
po in t e r : SYNAPSES + 1
o f f s e t : odd even neuron index
mask : ”N%2 == 0 ? 0xFFFC0000 : 0x0000FFFC”

− name : Vi
po in t e r : SYNAPSES + 2
o f f s e t : odd even neuron index
mask : s i x t e en b i t s ma sk
binary code : twos complement
magnitude : 0 .01

− name : Swji
po in t e r : SYNAPSES + 3
o f f s e t : odd even neuron index

67

mask : s i x t e en b i t s ma sk
binary code : twos complement

− name : Exp(−lambda)
po in t e r : SYNAPSES + 4
o f f s e t : odd even neuron index
mask : ”N%2 == 0 ? 0x1FFF0000 : 0x00001FFF”

− name : Tref
po in t e r : SYNAPSES + 4
o f f s e t : odd even neuron index
mask : ”N%2 == 0 ? 0xE0000000 : 0x0000E000”

synapse :
− name : Sj

po in t e r : S
o f f s e t : odd even neuron index
mask : f i r s t b i t ma s k
de l t a : NEURONS

− name : St
po in t e r : S
o f f s e t : odd even neuron index
mask : second bit mask
de l t a : NEURONS

− name : Mj
po in t e r : S
o f f s e t : odd even neuron index
mask : ”N%2 == 0 ? 0xFFFC0000 : 0x0000FFFC”
de l t a : NEURONS

− name : Aj i
po in t e r : S
o f f s e t : NEURONS/2 + odd even neuron index
mask : ”N%2 == 0 ? 0x00030000 : 0x00000003”
de l t a : NEURONS

− name : L j i
po in t e r : S
o f f s e t : NEURONS/2 + odd even neuron index
mask : ”N%2 == 0 ? 0xFFFC0000 : 0x0000FFFC”
de l t a : NEURONS

68

