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Abstract

The NTRUEncrypt is a public-key cryptosystem based on the shortest vector problem. Its main
characteristics are the low memory and computational requirements while providing a high
security level.

This document presents an implementation and optimization of the NTRU public-key cryptosys-
tem for constrained devices. Specifically the NTRU cryptosystem has been implemented on the
ATMega128 and the ATMega163 microcontrollers.

This has turned in a major effort in order to reduce the consumption of memory and op-
timize the computational resources. The different resulting optimizations have been compared
and evaluated throught the AVR Studio 4 [1]. The final outcome has also been compared
with other published public-key cryptosystems as RSA or ECC showing the great performance
NTRUEncrypt is able to deliver at a surprising very low cost.
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Chapter 1

Introduction

Cryptography is intrinsically linked to data communications so that, in addition to authenti-
cation and authorization, integrity and confidentiality can be guaranteed. This has obvious
applications for specific sectors, such as banking or military, but in fact we use cryptography in
our daily mundane actions. It is used from making a mobile phone call to withdrawing cash
from an ATM, watching a DVD movie or opening a car with the remote.

In the current globalized world, cryptography is increasingly necessary as it allows us to extrap-
olate many processes to the electronic world in a safe way, making management easier. This
can be observed in the rise of new applications for integrated circuits (IC), as they get improved
and their capabilities are upgraded. For example, the smart ID cards used for immigration
applications, digital signatures and as library cards. Or the new electronic medical cards which
store one’s medical records and issued prescriptions.

These applications deal with very sensitive data and require a high security level. But the
requirements to provide enough security can be very expensive in terms of hardware. Depending
on how ambitious our application is, this need may increase the product costs notably, or may
be simply too high to be implemented in an embedded device.

This is where NTRU Encrypt [2] plays a leading role since it is capable of providing adequate
levels of security at an extremely low cost. The NTRU public key cryptosystem [2], PKC,
features reasonably short keys, high speed, and low memory requirements. NTRU Encrypt,
compared to other PKC, offers an excellent trade-off between the memory consumption and the
operational complexity. RSA [3], for example, has bigger keys and the operations to encrypt and
decrypt are more complex, requiring more memory and time to provide with a similar security
level. ECC [4], on the other hand, has smaller keys but it is more complex computationally,
which means spending more time. For more detailed information please refer to section 6.4.

This characteristic makes NTRU extremely suitable to be implemented on embedded devices.
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1. Introduction

1.1 Goals

In this master’s thesis, we focus on the implementation and the optimization of NTRU public-
key cryptosystem for the ATMega 163. The main hardware specifications of the microcontroller
ATMega 163 are very restrictive, especially in terms of memory.

Achieving an efficient implementation of NTRU Encrypt in this device has been the main
purpose of this master’s thesis.

Over the implementation, some notes are given referring to data reduction. We also propose
some optimizations relating the addition of binary polynomials and the modulus reduction
using efficient logic operators.

Additionally, two algorithms for the star multiplication have been developed and tested. The
first star multiplication is suitable for polynomials with ternary coefficients (which can be ported
very easily to binary polynomials) providing a potential cost of N · 4 · d additions and N AND
operations during encryption, where N is the degree of the polynomial and d the parameter
which defines the space for this polynomial. The second star multiplication is customized for a
particular form of the private key f of the NTRU cryptosystem, featuring a theoretical cost of
2 ·N multiplications, N · (4 · d) additions and N AND operations during decryption. Finally,
the last implementation of the cryptosystem is compared to RSA, ECC and HECC [5].

1.2 Structure

This thesis is structured as follows,

• Chapter 2 reviews the mathematical background necessary to understand how NTRU
Encrypt works.

• Chapter 3 describes how the cryptosystem works. In addition, some security directives
regarding the NTRU PKC are analyzed.

• Chapter 4 describes the software implementation. First, we introduce the code specifi-
cations describing the functionality structure of the code and the required inputs and
outputs. Finally, in the code reference section, the implemented function headers in the
first NTRU PKC developed in this thesis are described.

• Chapter 5 presents the hardware specifications. This specifications are necessary in order
to adequate the code to this specific platform, in this case the microcontroller ATmega
163.
• Chapter 6 explains the optimization proposed and implemented for an embedded device.

Most relevant aspects have been reducing the computational complexity of the encryption
and decryption processes while using as little amount of memory as possible to be able
to fit the cryptosystem into the device. Afterwards, the impacts of the optimizations
are evaluated. Finally, there is a comparison of our last version of the cryptosystem
containing all optimizations with other PKC published results.

• Chapter 7 presents the IEEE standards P1363.1 [6] proposed and approved during the
development of this thesis.

• Chapter 8 contains a summary and conclusion with suggestions for future research.
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Chapter 2

Mathematical Background

2.1 Description

The NTRU public-key cryptosystem (PKC) was published in [2]. It is a system based on
polynomial algebra, number theory and probability. This chapter is intended to give the
necessary mathematical knowledge to understand the NTRU PKC operations described in
chapter 3.

2.2 Modular Arithmetic

Modular (or clock) arithmetic is an arithmetic system for equivalence of integer numbers named
residue classes. A common example to describe the modular arithmetic behavior is a clock.
In a common analogue clock after 12 hours the hour hand will return to the same position
where it was before after this period of time. Twelve is then the modulo (see section 2.2.1)
in this scenario. We could describe the clock as a system limited to 12 integers (from 0 to
11) that increases to the next position or value until the maximum value is reached to cycli-
cally start again from the initial or smallest integer. This way twelve becomes zero. See figure 2.1

Figure 2.1: Clock

Analogously in a 24 hour clock, after 24 hours the value is again the initial one. In this case
the modulo would be 24. We can observe that in the 24 hour clock the value 13 equals 1 in the

3



2. Mathematical Background

12 hour clock (14 equals 2 and so on until the value 24). These numbering equivalences are the
so called congruence classes or residue classes. For more information see [7].

2.2.1 Modulo

In general a modulo n is defined as the resulting residue {0, 1, 2, . . . , n− 1} after the division of
a by n. For example 16 mod 12 equals 4. The classical definition is a ≡ b modulo n if a and b
are in the same residue class modulo n. This means that both a and b have the same residue
when divided by n or that a− b is a multiple of n. The notation used to express mathematically
the modulo was first introduced by Gauss [8].

2.2.2 Group

A group (G, ·) is a set of elements where a binary operation is defined satisfying the following
axioms:

• Closure: ∀ x, y ∈ G, the product xy ∈ G.

• Associativity: (xy)z = x(yz), ∀ x, y, z ∈ G.

• Identity element: ∃ a unique identity element e ∈ G such that ex = xe = x, ∀ x ∈ G.

• Inverse element: ∀ x ∈ G, ∃ y ∈ G such that xy = yx = x−1x = e.

Groups may also consider the addition operation (G,+) instead of multiplication. A common
example of an infinite group is the group Z formed by the integers.

2.2.3 Ring

A ring is a set (R,+, ·) with two binary operators, addition and multiplication, which satisfies
the following conditions:

• Additive associativity: (x+ y) + z = x+ (y + z),∀ x, y, z ∈ R.

• Additive commutativity: x+ y = y + x, ∀ x, y ∈ R.

• Additive identity element: ∃ an element 0 ∈ R such that 0 + x = x+ 0 = x, ∀ x ∈ R.

• Additive inverse element: ∀ x ∈ R ∃ − x ∈ R such that x+ (−x) = (−x) + x = 0.

• Left and right distributivity: ∀ x, y, z ∈ R, x · (y + z) = (x · y) + (x · z) and
(y + z) · x = (y · x) + (z · x).

4



Modular Arithmetic

• Multiplicative associativity: ∀ x, y, z ∈ R, (x · y) · z = x · (y · z).

Note that the ring multiplication does not have to be commutative, i.e. a · b 6= b · a. Rings that
also fulfill the axiom of multiplication commutativity , a · b = b · a, are called commutative
rings. The elements of a ring do not need to have multiplicative inverses. The elements that
are invertible are called the units of a ring. The set of all units in R form a group in the ring
multiplication. This group is denominated R∗. For more information see [9].

2.2.4 Field

The fields are a subset of the set of rings. In other words, all fields are rings but not all
rings are fields. Fields differ from rings most importantly by the requirement that division
may be possible and by the requirement that the multiplication operation in a field has to be
commutative.
A field is a set F with at least two binary operations, addition “+” and multiplication “·” that
fulfills the next axioms:

• Additive associativity: (x+ y) + z = x+ (y + z),∀ x, y, z ∈ F .

• Additive commutativity: x+ y = y + x, ∀ x, y ∈ F .

• Additive identity element: ∃ an element 0 ∈ F such that 0 + x = x+ 0 = x, ∀ x ∈ F .

• Additive inverse element: ∀ x ∈ F ∃ − x ∈ F such that x+ (−x) = (−x) + x = 0.

• Additive distributivity: x · (y + z) = x · y + x · z, ∀ x, y, z ∈ F .

• Product associativity: (x · y) · z = x · (y · z), ∀ x, y, z ∈ F .

• Product commutativity: x · y = y · x, ∀ x, y ∈ F .

• Product identity element: ∃ an identity element e ∈ F such that ex = xe = x, ∀ x ∈ F .

• Product inverse element: ∀ x ∈ F, ∃y ∈ F such that xy = yx = x−1x = e.

• Product distributivity: (x+ y) · z = x · z + y · z, ∀ x, y, z ∈ F .

A common example of a field is Q, the field of rational numbers. Other important examples
include the field of real numbers R, the field of complex numbers C and, for any prime number
p, the finite field of integers modulo p, denoted Z/pZ, Fp or GF(p).

If p is any prime number and n is a positive integer, we can have a finite field GF(pn) with pn

elements; this is an extension field of the finite field GF(p) = Z/pZ that has p elements.

Fields have also the property that may be extended having as a result a new field which satisfies
additional properties. These fields are called extension fields. The general idea of an extension
field is to start with a base field and construct in some manner a larger field, which contains

5



2. Mathematical Background

the base field. For example for any field K, the set K(X) of rational functions with coefficients
in K is also a field. On the other hand a subfield is a subset containing 0 and 1 that is closed
under the operations of addition, negation, multiplication and multiplicative inverses for its
nonzero elements.

It is common to construct an extension field of a given field K as a quotient ring of the
polynomial ring K[X] in order to “create” a root for a given polynomial f(X). Suppose for
instance that K does not contain any element x with x2 = −1. Then the polynomial X2 + 1 is
irreducible in K[X], consequently the ideal (X2 + 1) generated by this polynomial is maximal,
and L = K[X]/(X2 + 1) is an extension field of K which does contain an element whose square
is −1 (namely the residue class of X). For more information regarding fields see [10].

2.2.5 Lattice

A lattice [11] is a regular configuration of points in space with a periodic structure. Figure 2.2
shows some examples of 2 dimensional lattices.

Figure 2.2: Lattice examples

In particular, for a linearly independent vector v1, . . . , vn ∈ Rn, the lattice generated is the set
of vectors:

L(v1, . . . , vn) =

{
n∑
i=1

αivi | αi ∈ Z

}
.

The vectors v1, . . . , vn are known as the basis of the lattice. The absolute value of the determinant
of the vectors vi is denoted by d(L). One can think of a lattice as divisions of the whole Rn

into equal polyhedral copies of an n-dimensional parallelepiped, known as the fundamental
region of the lattice, then d(L) is equal to the n-dimensional volume of this polyhedron.

6



Truncated Polynomial Rings

2.3 Truncated Polynomial Rings

A polynomial ring is a ring formed by the set of polynomials with coefficients in a ring. In
this section we describe polynomials and polynomial rings in order to introduce the truncated
polynomial rings.

2.3.1 Polynomials

A polynomial in X with coefficients in a field K is an expression of the form:

F (X) = a0 + a1X + · · ·+ am−1X
m−1 + amX

m ,

where a0, . . . , am, the coefficients of F (X), are elements of K and X,X2, . . . , Xm are formal
symbols (“the powers of X”). Such expressions can be added and multiplied, and then brought
into the same form using the ordinary rules for manipulating algebraic expressions, such as
associativity, commutativity, distributivity, or take common factors. Any term akX

k with zero
coefficient, ak = 0, may be omitted.
Using the summation symbol the same polynomial can be expressed more compactly as follows:

F (X) =
m∑
k=0

akX
k .

It is understood that the number of terms is finite, i.e. ak is zero for all enough large values of
k, in our case, for k > m. The degree of a polynomial is the largest k such that the coefficient
ak is not zero.

2.3.2 Polynomial Rings

Polynomials rings are essential in the NTRU public-key algorithm in order to generate random
polynomials. A polynomial ring is defined by a ring which contains the values the coefficients can
obtain and a delimiter or maximum degree when polynomials over one variable are represented.
A polynomial ring R[X] over the ring R in one variable X is formed by the set of all polynomials
with coefficients in R. The elements of R[X] are the polynomials with the form:

F (X) = a0 + a1X + a2X
2 + . . .+ anX

n =
n∑
i=0

aiX
i, where ai ∈ R and 0 ≤ i ≤ n .

The symbol X is commonly called the variable, and the ring R[X] is also called the ring of
polynomials in one variable over R, to distinguish it from more general rings of polynomials
in several variables. In general, X and its powers Xi are treated as formal symbols, not as
elements of the field R. In order for R[X] to form a ring, all powers of X have to be included,
and this leads to the definition of polynomials as linear combinations of the powers of X, with
coefficients in R for the ring R[X].

7



2. Mathematical Background

A ring has two binary operations, addition and multiplication. In the case of the polynomial ring
R[X], these operations are explicitly given by the following formulas 2.1 and 2.2 respectively:

(
n∑
i=0

aiX
i

)
+

(
n∑
i=0

biX
i

)
=

n∑
i=0

(ai + bi)Xi . (2.1)

(
n∑
i=0

aiX
i

)
·

 m∑
j=0

bjX
j

 =
m+n∑
n=0

(
n∑
k=0

akbn−k

)
Xn . (2.2)

In the formula 2.1 one of the polynomials may be extended by adding terms with coefficients
values equal to zero, such that the same set of powers formally appears in both summands.

2.3.3 Truncated Polynomial Rings

As introduced in section 2.2.4, extension fields let us define polynomial rings. The NTRU
public-key algorithm, explained in chapter 3, uses random polynomials which are generated
from a polynomial ring of the form R[X] = Z[X]/(XN − 1). The polynomials that form the
ring R[X] have a degree smaller than N . The polynomials in the truncated ring R[X] are
added in a regular way by adding their coefficients. The equation 2.1 shows the polynomial
addition which stands in a truncated polynomial ring. The polynomial multiplication is a bit
different since the resulting polynomial requires to satisfy the rule XN ≡ 1. Said differently,
the maximum degree of the resultant polynomial of a multiplication between two polynomials
of the ring can not be greater than N − 1. The product operation of two polynomials in R[X],
shown in formula 2.2, is defined as c(X) = a(X) ∗ b(X) where ck is the kth coefficient of c(X)
and is computed as shown in formula 2.3:

ck = a0bk + a1bk−1 + . . .+ akb0 + ak+1bN−1 + ak+2bN−2 + . . .+ aN−1bk+1 . (2.3)

The product of polynomials in R[X] is also called the star multiplication.

2.4 Möbius Functions

2.4.1 Möbius Function

The Möbius function µ(n) [12] is an important multiplicative function in number theory and
combinatorics. The Möbius function is a special case of a more general object in combinatorics.
The µ(n) function is defined for all positive integers n and has its values in {-1, 0, 1} depending
on the factorization of n into prime factors. It is defined as follows:
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µ(n) =


1 if n is a positive integer composed of an even number of distinct prime factors
−1 if n is a positive integer composed of an odd number of distinct prime factors

0 if n is composed of one or more prime factor repeated

Figure 2.3 represents the firsts 50 values of the Möbius function:

Figure 2.3: The Möbius function

The figure 2.3 shows the different values of µ(n) (-1, 0 or 1) in the y-axis for first fifty natural
numbers in the x-axis.

2.4.2 Möbius Inversion

When a partially ordered set of natural numbers (ordered by divisibility) is replaced by other
locally finite partially ordered sets, one has other Möbius inversion formulas [13]. The classic
version states that if g(n) and f(n) are arithmetic functions both conditions are equivalent:

f(n) =
∑
d |n

g(d) ∀ n ∈ N (2.4)

then,

g(n) =
∑
d |n

µ(d)f(
n

d
) ∀ n ∈ N (2.5)

where µ is the Möbius function and the sums extend over all positive divisors d of n. In effect,
the original f(n) can be determined given g(n) by using the inversion function µ(d). In the
notation above, f is called the Möbius transform of g, and formula 2.5 is called the Möbius
inversion formula.

To proof the relation between Möbius transform and Möbius inversion it should be assumed
n ∈ N having:

∑
d |n

µ(d)f(
n

d
) =

∑
d |n

µ(d)
∑
e |n/d

g(e) =
∑
k |n

∑
d | k

µ(d)g(
n

k
) =

∑
k |n

g(
n

k
)
∑
d | k

µ(d) = g(n). (2.6)

9



2. Mathematical Background

2.5 Invertibility in Truncated Polynomial Rings

In order to be able to compute the inverse of a randomly chosen polynomial in a certain
polynomial ring Rq defined as

Rq = (Z/qZ)[X]/(XN − 1) ,

it is important to take into account that not every polynomial might be invertible in the
ring. The NTRU cryptosystem key generation is based on the computation of the inverse of a
randomly generated polynomial from a polynomial ring.
It is then necessary to know the probability that a randomly chosen polynomial in the ring Rq
has an inverse. The goal of the probability calculus is to be able to generate a ring with as
many invertible elements as possible and how to choose randomly a polynomial to assure it has
an inverse. The section starts explaining how this probability can be calculated and continues
describing different methods to increase the chances that a random polynomial f(X) has an
inverse in Rq. The content beneath has been extracted from [14].

Assuming the ring of truncated polynomials Rq = (Z/qZ)[X]/(XN − 1), where N ≥ 2 and q is
a positive integer. And having R∗q as the group of inverses of elements in the ring Rq

R∗q = {f ∈ Rq : f ∗ g = 1 for some g ∈ Rq} .

Then the probability of choosing a polynomial that is invertible is the ratio between the

cardinality of the group of inverses and the number of all polynomials in the ring,
#R∗q
#Rq

.

If q = q1q2 and gcd(q1, q2) = 1, the Chinese Remainder theorem [15] allows us to state:

Rq = Rq1 ×Rq2 and R∗q = R∗q1 ×R
∗
q2 .

Finally if q is a power of a prime p, then the following theorem holds.

Theorem

Let p be a prime, q be a power of p (q = pk) and N ≥ 2 be an integer where gcd(p,N) = 1. If
n is the smallest positive integer n ≥ 1 that fulfills:

pn ≡ 1 (mod N) , (2.7)

10
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and if for each integer d that divides n, d|n, we have

vd =
1
d

∑
e|d

µ

(
d

e

)
gcd(N, pe − 1) , (2.8)

where µ represents the Möbius function (see section 2.4.1) . Then,

#R∗q
#Rq

=
∏
d|n

(
1− 1

pd

)vd

. (2.9)

Now if N is selected to be a prime number, then vd = 0 for 1 < d < n, obtaining:

#R∗q
#Rq

=
(

1− 1
p

)(
1− 1

pn

)(N−1)/n

. (2.10)

Remark 1

Some of the non-invertible elements in the ring Rq are easy to identify. The evaluation map:

Rq → Z/qZ f(X) 7−→ f(1) ,

is a homomorphism of rings, i.e: f1(1) ∗ f2(1) = f1 ∗ f2(1) and f1(1) + f2(1) = f1 + f2(1) since
f1 and f2 are polynomials satisfying this properties for X = 1 or as expressed for f(1). This
induces a group homomorphism R∗q → (Z/qZ)∗. Since it is well-known that

(Z/qZ)∗ ∼= {a ∈ Z/qZ : gcd(a, q) = 1},

it can be observed that if f(1) has a common factor with q, then it cannot be invertible.
Thus, when choosing a polynomial randomly it should be required that gcd(f(1), q) = 1. The
polynomials with f(1) = 0 must be avoided. So the selected polynomials might be in the subsets
of Rq and R∗q satisfying f(1) = 1. These subsets are referred as Rq(1) and R∗q(1) respectively.

The values of f(1) are equidistributed in Z/qZ as f ranges over Rq. From this it can be observed
that:

#Rq(1) = q−1#Rq .

Values of f(1) are also equidistributed when f ranges over R∗q . In this case:

#R∗q(1) = ϕ(q−1)#Rq,

11



2. Mathematical Background

where ϕ is the Euler phi function. Particularly if q = pk, then

ϕ(q) = pk − pk−1 .

So if f is “intelligently” chosen, satisfying that f(1) = 1, then

#R∗q(1)
#Rq(1)

=
(

1− 1
p

)−1 #R∗q
#Rq

.

Since a smaller p is desirable in applications due to resource savings, for N being prime it is
obtained that:

#R∗q(1)
#Rq(1)

=
(

1− 1
p

)−1 #R∗q
#Rq

≈ 1− N − 1
npn

.

Remark 2

From equation 2.10 in order to maximize the probability of getting a unit (see subsection
2.2.3 for unit definition) in Rq, it is desirable to choose N and p such that the order n of p
in (Z/NZ)∗ is as large as possible. The value of n is easy to obtain from values of N and p.
Although for cryptographic purposes n should be large for a single N and two values of p,
typically p = 2 and p = 3.
The possible orders of elements in (Z/NZ)∗ are divisors of ϕ(N), so if N is prime, the possible
orders are divisors of N − 1. For this reason N should be selected such that N − 1 has few
divisors.
A systematical way to achieve this is as follows. If N has the form N = 2M + 1 with M being
prime, then divisors of N − 1 are 1, 2,M and 2M . M is known as a Sophie Germain prime [16].
Hence if N does not divide p2 − 1, the corresponding n might be M or 2M . The probability
that a randomly chosen polynomial satisfying f(1) = 1 is invertible is:

1− N − 1
MpM

= 1− 2
pM

.

For example, if N is chosen 103, then M is 51, since 103 = 2 · 51 + 1. And since p ≥ 2, the
probability of having an invertible polynomial is almost 1:

1− 2
2103

.

Table 2.1 shows some values for the parameters N, p, np (np being the smallest integer that
satisfies pn ≡ 1 (mod N)) and Probp that represents the probability that a random f(X) in
Rq is not invertible in this ring.

The values of N printed in bold in the table 2.1 are the ones with the form 2M + 1, being M a
Sophie Germain prime [16]. Values for N with this form have a bigger set of invertible elements
or units.
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Table 2.1: Probability f(X) is not invertible in Rpk

N p np Probp N p np Probp

47 2 23 10−7.22 47 3 23 10−11.27

59 2 58 10−17.46 59 3 29 10−14.14

71 2 35 10−10.84 71 3 35 10−17.00

107 2 106 10−31.91 107 3 53 10−25.59

127 2 7 10−3.36 127 3 126 10−60.12

167 2 83 10−25.29 167 3 83 10−39.90

229 2 76 10−23.36 229 3 57 10−27.80

349 2 348 10−104.76 349 3 174 10−83.32

503 2 251 10−75.86 503 3 251 10−120.06

1019 2 1018 10−306.45 1019 3 509 10−243.16

1093 2 364 10−110.05 1093 3 7 10−5.53
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Chapter 3

NTRU Cryptosystem

The NTRU Public Key Cryptosystem (PKC), also known as NTRUEncrypt, is an asymmetric
key encryption algorithm for public key cryptography. NTRU Cryptosystems, Inc. was founded
in 1996 by Joseph H. Silverman, Jeffrey Hoffstein, Jill Pipher and Daniel Lieman. The name
NTRU is an abbreviation for N-th degree truncated polynomial ring. The main characteristic
is that during the encryption and decryption the polynomial multiplication is the most complex
operation, which is much faster than other asymmetric cryptosystems, such as RSA, El Gamal
and elliptic curve cryptography. This chapter presents the NTRU PKC as described in [17].
First, we describe the parameters of the cryptosystem in order to afterwards explain how the
cryptosystem works. Main operations involve polynomial algebra, as the computation of a
polynomial inverse for the key generation or the multiplication in a truncated polynomial ring
for encryption and decryption. Finally, we discuss the security provided by the polynomial
operations and the difficulty of finding a very short vector in a lattice.

3.1 Algorithm Description

3.1.1 Notation

NTRU public-key algorithm is well described using the ring of polynomials

R = Z[X]/(XN − 1) .

The polynomials conforming R have integer coefficients:

a(X) = a0 + a1X + a2X
2 + . . .+ aN−1X

N−1 ,

that are multiplied together using the extra rule XN ≡ 1. The product

c(X) = a(X) ∗ b(X)

is given by
ck = a0bk + a1bk−1 + . . .+ aN−1bk+1 =

∑
i+j≡k mod N

aibj .

14



Algorithm Description

In particular, if we write a(X), b(X), and c(X) as vectors

a = [a0, a1, . . . , aN−1], b = [b0, b1, . . . ; bN−1], c = [c0, c1, . . . , cN−1],

then c = a ∗ b is the convolution product of two vectors having c a size of N positions.

The NTRU public-key algorithm is defined by the following parameters:

N The degree parameter. Defines the degree N − 1 of the polynomials in R.
q Large modulo. Polynomial coefficients are reduced modulo q.
p Small modulo. The coefficients of the message are reduced modulo p in decryption.
df Private key space. Fixes the polynomial form defining the number of positive ones for the

private key f , the negative ones are fixed by df − 1.
dg Public key space. Fixes the polynomial form defining the number of positive and negative

ones for the random polynomial g used to calculate the public key.
dr Blinding value space. Fixes the polynomial form defining the number of positive and

negative ones of the random polynomial r used in the encryption process.
dm Plaintext space. NTRUEncrypt requires the message to be in a polynomial form, therefore

the need of dm to define the form of the message to be encrypted.

The more relevant properties of NTRU PKC are the following:

1. The parameters (N, p, q) are public and p and q must satisfy gcd(p, q) = 1.
2. Coefficients of polynomials are bounded modulo p and modulo q.
3. The inverse of a(X) mod q is the polynomial A(X) ∈ R satisfying a(X) ∗ A(X) ≡ 1

mod q.

3.1.2 Key Generation

The key generation consists in the generation of the private key (f, fp) and the public key h.

Choose random polynomials f and g from R with “small” coefficients. Meaning “small” much
smaller than q, typically {-1,0,1} for p = 3. Then compute fp, i.e. the inverse of f (mod p)
defined by

f ∗ fp = 1 (mod p) .

Compute fq, the inverse of f (mod q) that analogously satisfies the requirement:

f ∗ fq = 1 (mod q) .

Compute the polynomial

h = g ∗ p · fq .

The public key is h and the private key is the set (f, fp).
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3. NTRU Cryptosystem

3.1.3 Encryption

The plaintext m is a polynomial with coefficients taken mod p. Note that convert the message
m to a polynomial form is not part of NTRU public-key algorithm. Choose a blinding message
r randomly from R with small coefficients. The ciphertext is

e = r ∗ h+m (mod q) .

3.1.4 Decryption

The decryption returns the message m from the encrypted message e using the private key (f, fp).

Compute

a = e ∗ f (mod q) ,

choosing the coefficients of a to satisfy −q/2 ≤ ai < q/2.

Reduce a modulo p:

b = a (mod p) .

Compute

c = b ∗ fp (mod p) .

Then c mod p is equal to the plaintext m.

3.1.5 Mathematical Principle

The private key (f, fp) is used on decryption to cancel fq from the encrypted message and be
able to cancel r and g reducing modulo p. The mathematical principle of decryption of the
NTRU public-key algorithm is based on the following equations:

a = f ∗ e (mod q) = f ∗ (r ∗ pfq ∗ g +m) (mod q) = pr ∗ g + f ∗m (mod q) .

Multiplying the encrypted message by f cancels fq but leaves f multiplied by the message.
To get rid of pr ∗ g it is just necessary to reduce modulo p. This is possible since r and g are
“smaller” polynomials with coefficients much smaller than q. This assures that if c = pr ∗ g, any
coefficient ck is smaller than q, which means all coefficients of c have p as a common divisor.
Then,

a = pr ∗ g + f ∗m (mod q) ≡ f ∗m (mod p) .
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The final step cancels f to obtain m modulo p. For this reason fp is calculated in order to state
the following,

c = fp ∗ a (mod p) = fp ∗ f ∗m (mod p) = m (mod p) .

This is how NTRU Cryptosystems, Inc. describes how to recover m. For this matter f have to
satisfy the next properties:

1. f is invertible mod p

2. f is invertible mod q

3. f is small

3.2 Parameter Selection

The selection of the NTRU PKC parameters defines the different levels of security. It is very
important that p and q have no common factors. This is indispensable as explained in section
2.5 to be able to compute the inverse of a certain polynomial. In table 3.1 is shown the
recommended parameters for NTRU PKC security levels.

Table 3.1: NTRU Security parameters.

N q p

Moderate Security 167 128 3
Standard Security 251 128 3
High Security 347 128 3
Highest Security 503 256 3

Typical parameter sets that yield security levels similar to 1024-bit RSA and 4096-bit RSA
respectively are (N, p, q) = (251, 3, 128) and (N, p, q) = (503, 3, 256).

The public parameters (N, p, q) define the level security together with the parameters df, dg and dr.
The parameters df, dg and dr define different spaces. In NTRUEncrypt for the parameter p = 3
a space L is defined as follows,

L(d1, d2) = {F ∈ R : F has d1 coefficients equal 1, d2 coefficients equal − 1 and the rest 0} .

Choosing the integer values for the parameters df, dr, dg set the spaces:

Lf (df, df − 1), Lg(dg, dg), Lr(dr, dr),

where f ∈ Lf , g ∈ Lg and r ∈ Lr. The standard values have changed over the past years and
they may be susceptible to changes in the future. In an effort to create a method to design
the security parameters, NTRU Cryptosystems, Inc. has published in [18] an algorithm which
computes all the parameter values from an input k. The parameter k is the security parameter.
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The algorithm computes the parameter values with binary underlying polynomials (p = 2).
This algorithm also holds for ternary polynomials (p = 3).

We proceed to explain how this algorithm works.
The algorithm receives as input the security parameter k.

1. First N is searched to be the first prime greater than 3k + 8.

2. Then d is fixed to be the smallest integer that satisfies:

1√
N

(
N/2
d/2

)
> 2k .

Now it is set df = dr = d and dg = N/2.

3. For the message parameter dm has to be the largest integer that:

2N−1
dm∑
i=0

(
N

i

)
< 2−40 .

If
1√
N

(N/2
dm

)
< 2k then N should be increased to the next greater prime and the

procedure is restarted to step 2.

4. Next q is set to be the first prime greater than 4d+ 1

5. Verify that the order of q (mod N) is (N − 1) or (N − 1/2). If the order of q is different,
then increase q to the next prime number until this statement holds.

6. Calculate c =

√
4πe
√
d(N−d)/N

√
dm0(N−dm0/N

q

From table 3.2 obtain values A and B and check,

AN −B −max

log2

1−

(
1−

d−1∏
i=0

(
1− r√

N − i

))N+Ar/2

 < k .

Finally output {N, q, p = 2, dF , dr, dg, dm0}. Otherwise increase N to the next largest
prime and return to step 2.

More information on A and B constants can be found in the subsection 3.3.2.

Table 3.3 summarizes the parameter sets.
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Table 3.2: Extrapolated bit security constants depending on (c, a).

c a A B

1.73 0.53 0.3563 -2.263
2.6 0.8 0.4245 -3.440
3.7 2.7 0.4512 +0.218
5.3 1.4 0.6492 -5.436

Table 3.3: NTRU recommended parameters.

N p q df dg dr

NTRU167:3 167 3 128 61 20 18
NTRU251:3 251 3 128 50 24 16
NTRU503:3 503 3 256 216 72 55
NTRU167:2 167 2 127 45 35 18
NTRU251:2 251 2 127 35 35 22
NTRU503:2 503 2 253 155 100 65

3.3 Security Analysis

The NTRUEncrypt PKC is based on the shortest vector problem, SVP, in a lattice. When the
lattice is large enough it is difficult to guess a random chosen polynomial and even harder to
calculate this polynomial from its inverse. The process of solving this problem is called “Lattice
Reduction”. Although the hypothetical hardness of any public key cryptosystem can only be
measured by the most effective known attack against it. Additionally, the attack efficiency
is most of the times related with the parameter generation algorithm of the cryptosystem.
As an example RSA is weak if (p, q, e) are chosen such that d = e−1 (mod (p− 1)(q − 1)) is
relatively small, or if p, q values are too close. In the NTRU PKC the security level depends
directly on the public parameters N , p and q. However it is important to note that the value
associated to the parameters df , dg and dr are crucial in order to achieve a certain security
level. Until relatively recently, the hardness of NTRU PKC was subject to the lattice and
meet-in-the-middle attacks. Per contra, the hybrid attack introduced in 2007 combining both
attacks it has been proven to be the best known attack against NTRU PKC. The following
sections explain the main ideas behind these attacks.

3.3.1 Meet-in-the-middle Attack

The meet-in-the-middle attack due to Odlyzko [19] has been one of the most effective known
attacks against NTRUEncrypt (with the parameters recommended by NTRU). The attack
relies on very particular properties of the NTRU lattice, more specifically in the structure of the
short vectors and the presence of orthogonal q-vectors. Like most meet-in-the-middle attacks it
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essentially reduces the time of an exhaustive search to the square root. The meet-in-the-middle
attack attempts to find a value in each of the ranges and domains of the composition of two
functions such that the forward mapping of one through the first function is the same as the
inverse image of the other through the second function. Let us take a look to the mentioned
attack as described in [20]. The idea is to search for f in the form of f = f1 + f2, where f1 and
f2 are both of length N/2 and have df/2 ones. Using the properties that:

f ∗ h = g (mod q)

(f1 + f2) ∗ h = g (mod q)

f1 ∗ h = g − f2 ∗ h (mod q) .

Since g is a small polynomial, with binary {0, 1} or trinary {−1, 0, 1} coefficients, f1 ∗ h and
−f2 ∗ h can only differ by 0 or 1. With this in mind the attack searches for the pair (f1, f2)
such that the corresponding coefficients have approximately the same value. Note that f does
not have the property that half of its ones falls in the first N/2 entries, but is known that at
least one rotation of f satisfies this property.

The attack first enumerates all f1, which takes
(N/2
d/2

)
steps. This also occupies about

(N/2
d/2

)
coefficients. If we call Tl the time of a lookup, read or write a f1 into a table, and Tc is time
that takes a star multiplication (see formula 2.3) we have that the cost in time is:

T1 =
(
N/2
d/2

)
(Tc + Tl) .

The vectors f2 are enumerated, which takes also
(N/2
d/2

)
steps. Then f2 is check against f1

susceptible to have the same coefficients or that might have changed by adding 1 (if g binary)
or also subtracting 1 in the case of g being trinary. Then a candidate f = f1 ∗ f2 is formed and
f ∗ h (mod q) is checked. If it is binary or ternary then returns f . This second part costs in
time:

T2 = #f2 ∗ (Tc + (expected f1 for f2) ∗ Tl + (expected hits per f2) ∗ Tc) =

=
(
N/2
d/2

)Tc +
2k
q
Tl +

(N/2
d/2

)
2k

Tc

 .

Several improvements can be done to reduce T2, as storing f1 ∗ h (mod q) when storing f1 that
let us calculate f1 ∗h−f2 ∗h (mod q) instead of calculating f ∗h (mod q) reducing convolution
time approximately to Tc/d. Improvements described in [20] end up with the next time and

storage requirements

(N/2
d/2

)
√
N

.

3.3.2 Lattice Attack

Lattices have been recently introduced in cryptography taking advantage of the shortest vector
problem, SVP. The SVP is the main problem associated to Lattices. The procedure to solve
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the SVP is named Lattice reduction. A lattice has many bases that normally contain very large
vectors compared to the shortest nonzero vector. The SVP should output the shortest nonzero
vector of a given lattice. However is generally more interesting to obtain the nonzero lattice
vector with a norm greater than the shortest nonzero vector norm bounded by some tolerance
factor, reducing the complexity.

From the Laticce-based attack article of Oded Regev [21] we extracted some time costs referring
to the SVP. The well-known polynomial time algorithm of Lenstra, Lenstra, and Lovász
(LLL) [22] from 1982 achieves an approximation factor of 2O(n), where n is the dimension of
the lattice. In 1987, Schnorr presented an improved algorithm obtaining an approximation
factor that is slightly subexponential, namely 2O(n(log logn)2/ logn). This was recently improved
to 2O(n log logn/ logn) [23]. We should also mention that if one insists on an exact solution to SVP,
the best algorithm has a running time of 2O(n) [23]. One might expect SVP to be NP-hard
to approximate to within very large factors. However, the best known result only shows that
approximating SVP to within factors 2(logn) 1

2
−ε is NP-hard (under randomized quasi-polynomial

time reductions)[24]. Moreover, SVP is not believed to be NPhard to approximate to within
factors above

√
n/ log n [25, 26, 27], since for such approximation factors it lies in classes such

as NP ∩ coNP . On the practical side, it is difficult to say the dimension n where solving the
SVP becomes infeasible with today’s computing power. A reasonable guess would be that
taking n to be several hundreds make the problem extremely difficult. To conclude, the problem
of approximating SVP to within polynomial factors nc for c ≥ 1

2 seems to be very difficult,
however it is not believed to be NP-hard.

In the NTRU PKC lattice-based attacks [28] may lead the attacker to recover the private key
from public key h, or recover the plaintext from the ciphertext.

The NTRU lattice Lh is a lattice of dimension 2N generated by the row vectors of a matrix of
the following form:

Lh = {(f, g) ∈ R2 : g ≡ h ∗ f/p (mod q)}, satisfying

dim(Lh) = 2N and Disc(Lh) = qN .



α 0 . . . 0 h0 h1 . . . hN−1

0 α . . . 0 hN−1 h0 . . . hN−2
...

...
. . .

...
...

...
. . .

...
0 0 . . . α h1 h2 . . . h0

0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q


where h = (h0, . . . , hN−1) is a known list of integers and the constant α is a balancing constant
chosen to maximize the efficiency of the search for small vectors in the lattice. The attacker
knows the lattice contains a short vector v = (αf0, . . . , αfN−1, g0, . . . , gN−1). And also knows
the public key h = f−1g. When f is of the form f = 1 + pF the best lattice attack on the
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private key involves resolving the Close Vector Problem, CVP. An NTRU lattice of this form
has been found empirically to be characterized by these two parameters:

a = N/q, c =
√

4πe‖F‖‖g‖/q .

Running times T for lattice reduction have report experimentally that it is exponential in
AN +B:

T = 10AN+B

for some empirically defined constants A and B that can be observed in table 3.2.

The bit security in terms of computational complexity is AN +B and can be converted to time
in MIPS-years using the equality 80 bits ∼ 1012 MIPS-years [29].

3.3.3 Hybrid Attacks

In the 27th International Cryptology Conference, CRYPTO 2007 [30], Nick Howgrave-Graham
presented a new attack against NTRUEncrypt, combining lattice reduction and a meet-in-the-
middle strategy [31].

The closest vector problem (CVP) can be solved efficiently in the case that the given point
in space is very close to a lattice vector [32]. The CVP algorithm takes a time t and a set
S that has the property that it includes at least one point v0 ∈ S which is very close to a
lattice vector. Therefore v0 can be found in time O(|S|t) by exhaustively enumerating the set
S. In [31] it is shown that if the points of S can be represented as S = S′ ⊕ S′, i.e. for every
(v, v′) ∈ S · S′ there exists a v′′ ∈ S′ such that v = v′ + v′′, then there exist conditions under
which there is actually an efficient meet-in-the-middle algorithm on this space to find the point
v0 in time O(|S|1/2t). We can translate this CVP result to a result about lattice basis reduction
by defining the set S to be some linear combinations of the last n−m rows of a given basis
{b1 . . . , bn}, and then using the CVP algorithm on the elements of S and the basis {b1, . . . , bm}.
It is also pointed that a similar approach is taken by Schnorr in [33] for reducing generic lattices
with the SHORT algorithm. Schnorr also suggests that “birthday” improvements might be
possible for his method (generalizing results from [34]) but concludes that generally storage
requirements may be prohibitive.

In the case of searching for the NTRUEncrypt private key, meet-in-the-middle techniques
are possible as explained in section 3.3.1 but [31] shows that Odlyzko’s storage ideas may be
generalized to remain efficient even when used after lattice reduction, optimizing the set S for
the structure of the NTRUEncrypt private key.
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Chapter 4

Software Implementation

4.1 Code Specifications

This section gives an overall view of the implementation of the NTRU PKC. Sections are
divided by the three major functionalities of the NTRU PKC: Key Generation, Encryption and
Decryption. These three processes are characterized together with the necessary functions to
implement them.

4.1.1 Key Generation

Key Generation creates the private key set (f, fp), and the public key h as shown in figure 4.1.

Figure 4.1: Key Generation

4.1.1.1 Random Polynomial

During Key Generation the process Random Polynomial is invoked to generate the polynomial
f , part of the private key. Also Random Polynomial is required to generate the polynomial g in
order to calculate the public key h. These polynomials are generated with random coefficients
from a truncated ring of polynomials R. Random Polynomial receives the number of positive
and negative ones and generates the random polynomial of N coefficients.

As it can be observed in figure 4.2 Random Polynomial takes the number of positive and
negative ones and outputs a randomly generated polynomial r. The distinction between positive
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4. Software Implementation

Figure 4.2: Random Polynomial

and negative ones is necessary because the polynomial f has different values for these, having
df positive ones and df − 1 negative ones.

4.1.1.2 Inversion modulo p

Inversion modulo p computes the inverse of a polynomial f in modulo p such that f ∗ fp ≡ 1
(mod p) illustrated in figure 4.3.

Figure 4.3: Inversion modulo p

For the calculus of fp, the addition and the subtraction of polynomials modulo p are necessary.

4.1.1.3 Addition modulo p

The Addition modulo p calculates the sum of two given polynomials as in formula 2.1 reducing
the coefficients modulo p, addPol = pol1 + pol2 (mod p). Figure 4.4 specifies the inputs and
output parameters.

Figure 4.4: Addition modulo p

4.1.1.4 Subtraction modulo p

The Subtraction modulo p represented in figure 4.5 calculates the difference of two given
polynomials modulo p, subPol = pol1− pol2 (mod p).
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Figure 4.5: Subtraction modulo p

4.1.1.5 Inversion modulo q

During Key Generation the polynomial fq, the inverse of f modulo q, is also computed. The
polynomial fq is necessary, together with g, to calculate the public key h as shown in figure 4.6.
Inversion modulo q computes the inverse of a certain polynomial f modulo q in fq, computing
fq = f−1 (mod q) which satisfies f ∗ fq ≡ 1 (mod q).

Figure 4.6: Inversion modulo p

Analogously to the Inversion modulo p, the Inversion modulo q requires to perform the addition
of polynomials but in this case modulo q.

4.1.1.6 Addition modulo q

Addition modulo q performs the addition addPol = pol1 + pol2 (mod q). Figure 4.7 specifies
the required inputs to obtain the output addPol.

Figure 4.7: Addition modulo q

4.1.1.7 Star Multiplication modulo q

Star Multiplication modulo q is required in Key Generation, Encryption and Decryption. The
Star Multiplication modulo q computes in mulPol the polynomial product, see formula 2.2,
given two polynomials, pol1 and pol2, and the parameter q. Having mulpol = pol1 ∗ pol2
(mod q) as shown in figure 4.8 where each coefficient is computed as in formula 2.3.

25



4. Software Implementation

Figure 4.8: Star Multiplication modulo p specification

Note that q is generally a power of two (q = 2k) when using ternary polynomials (p = 3). When
q has the form 2k the Inverse modulo q computes first the inverse modulo 2 to later convert it
to the inverse in modulo 2k or q through Newton’s iterations. This requires reducing modulo
different values (powers of two) during the Newton Iteration when computing the polynomial
multiplication. This is the main reason why multiplication receives the parameter denoted q
since when computing the inverse this parameter might be a power of 2 smaller than q.
Finally we note that the resulting polynomial mulPol has no more than N coefficients since the
multiplication is done in the truncated polynomial ring R, where g = XN − 1 is the irreducible
polynomial.

The figure 4.9 summarizes the Key Generation process modular structure.

Figure 4.9: Diagram of processes invoked by Key Generation
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4.1.2 Encryption

Encryption is the simplest part in the NTRU PKC. Encryption only requires to generate a
random polynomial r from the ring R that obscures the message. Then the polynomial r is
multiplied by the public key h. And finally the product of r and h is added to the the desired
message to encrypt. This means Encryption just needs to receive a message in the polynomial
form m and the public key h illustrated in figure 4.10.

Figure 4.10: Encryption specification

The encrypted message e = r ∗m+ h (mod q) is the output.

The figure 4.11 illustrates the modular structure of the Encryption process.

Figure 4.11: Diagram of processes invoked by Encryption

Random Polynomial which has been introduced in section 4.1.1.1 is used to generate r.

4.1.3 Decryption

The Decryption process requires the encrypted message e and the private key set (f, fp) to
decrypt the encrypted message e into the clear message c. Figure 4.12 specifies the required
inputs and output parameters.
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Figure 4.12: Decryption

4.1.3.1 Star Multiplication modulo p

Star Multiplication modulo p receives polynomials pol1 and pol2 and outputs in mulPol as it
can be observed in 4.13. Star Multiplication modulo p ensures the product modulo p of both
polynomials in mulPol as described in formula 2.3, mulPol = pol1 ∗ pol2 (mod p).

Figure 4.13: Star Multiplication modulo p

The Decryption process is summarized in the figure 4.14.

Figure 4.14: Diagram of processes invoked by Decryption

The Decryption first computes the star multiplication of the private key f by the encrypted
message e reducing modulo q the coefficients. This product is calculated with the Star
Multiplication modulo q and stored in the polynomial a, having a = f ∗ e (mod q). The
coefficients ai of a a are then centered in the range −q/2 ≤ ai < q/2 to subsequently reduce
modulo p the coefficients of a obtaining as a result the polynomial b, where b = a (mod p). At
the end b is multiplied modulo p by the inverse of f modulo p obtaining the original message
m stored in c, having c = fp ∗ b (mod p) = m.
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4.2 Reference Code

Our first implementation of NTRU PKC has been developed in standard ANSI C, more precisely
ISO/IEC 9899:1999 standard [35], on a x86/Linux platform. This implementation has been
very useful to later on optimize the code for a constrained device. Actually, this implementation
was ported to the ATmega128 [36] microcontroller. This section describes the code functions
defined in first place following the code specifications in previous section.

The developed algorithms were mainly extracted from [2] referring to the Key Generation,
Encryption and Decryption while the Inverse modulo p and Inverse modulo q functions have
been extracted from [37].

Major changes have been implemented in the code structure and in the code functions which
are reflected in chapter 6.

4.2.1 Header File

In the header file we can find all the defined parameters and all the shared function headers.
The implementation has been designed for the security parameter values recommended by
NTRU Cryptosystems, Inc., presented in table 3.1, where p is chosen to be 3 while N and q
parameters are chosen to be 167 and 128 respectively. In order to make the software scalable for
the different security levels recommended by NTRU Cryptosystems, Inc., the parameters have
been predefined in the header file with the directive #define provided in C. For NTRU:167:3
we have the following,

#define N 167
#define MOD Q 128
#define MOD P 3
#define df 61
#define dg 20
#define dr 18

where N represents the number of coefficients of the polynomial, which bounds the degree of
the polynomial to N − 1. As an exception the polynomial g used in the inversion functions is
the irreducible polynomial of the ring and therefore has a degree N and consequently N + 1
coefficients. The parameters q and p are defined in the code as MOD Q and MOD P. Also
the parameters df , dg and dr indicating the number of positive and negative ones for the
polynomials f , g and r respectively are predefined and should match the parameters set in
table 3.3.

Finally, for a more intelligible code and easy modification, the types char and unsigned char
are defined as int8 t and uint8 t respectively.

#define int8 t signed char
#define uint8 t unsigned char

The explanation of the functions proceeds in the following order: Key Generation, Encryption
and Decryption.
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4.2.2 KeyGeneration

The KeyGeneration function generates the private key set (f , fp) and the public key h. The
polynomials are stored in arrays of size N which are initialized to zero. The degree of a
polynomial is stored independently on a separate variable of the type uint8 t. The function
header is:

void KeyGeneration(int8 t *f, uint8 t *fdeg, int8 t *f p, uint8 t *f pdeg, int8 t *h, uint8 t
*hdeg).

4.2.2.1 RandPol

The first step is to generate f randomly from a ring of truncated polynomials R. For this
matter we developed the function RandPol, equivalent to the Random Polynomial process
presented in the Code Specifications section 4.1.. The header of RandPol is:

uint8 t RandPol (int8 t *r, uint8 t num pos 1, uint8 t num neg 1).

RandPol receives the pointer to the array r and two variables. Since the function is called
to generate f, g and r it is also necessary to pass the spaces di to indicate the number of
positive and negative ones. Note this function generates the so-called “small” polynomials with
coefficient values {−1, 0, 1}. At last but not least, RandPol returns the degree of r.

4.2.2.2 Rand

The pseudo random core engine has been separated into the function Rand. This allows to
improve the pseudo random generation independently without modifying RandPol. The main
purpose of this function is to generate random numbers in the range 0 to N − 1. The generated
random numbers indicate the positions where the positive and negative ones are placed.

uint 8 rand ().

With the set of these two functions the program is able to generate a random polynomial for
an specific ring. In the Key Generation process RandPol is called to generate the private key f
and the polynomial g, required to calculate the public key h. RandPol is also called during
Encryption to generate the blinding polynomial r.

4.2.2.3 InverseGFp

The header for InverseGFp is:
void InverseGFp ( int8 t *f p, uint8 t *f pdeg, int8 t *f, uint8 t fdeg).

The parameters are passed by reference to avoid unnecessary memory usage and also hence
they are necessary in contiguous parts of the cryptosystem.
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4.2.2.4 Sum2PolP and Sub2PolP

The addition and subtraction of polynomials modulo p are both necessary for the computation
of the inverse modulo p. Heathers are defined as:

void Sum2PolP(int8 t *pol1, uint8 t *pol1deg, int8 t *pol2, uint8 t pol2deg)
void Sub2PolP(int8 t *pol1, uint8 t *pol1deg, int8 t *pol2, uint8 t pol2deg).

These two functions implement the addition and subtraction respectively. The value of p is
not required since it has been previously defined in MOD P with the #define statement, so
before compilation time this string is replaced for the defined value for MOD P. Also the
degree pol1deg is passed by reference to recycle pol1 since the addition result is stored in this
polynomial in order to save memory.

4.2.2.5 InverseGFq

During the Key Generation the inverse of f modulo q, referred to as f q in the code, is also
required (the polynomial fq is necessary together with g to calculate the public key h). The
header of the function InverseGFq is very similar to the header of the function InverseGFp:

void InverseGFq( int8 t *f q, uint8 t *f qdeg, int8 t *f, uint8 t fdeg).

Parameters are passed exactly the same way as before obtaining the inverse of f modulo q in
the array f q.
The main difference respect to InverseGFp, rather than the modulo reduction, are the final
steps. Computing the inverse modulo a power of a prime is done in two parts. First the inverse
modulo the prime (in this case modulo 2) is computed. Then the inverse modulo the prime is
converted to the desired modulo power of the prime (modulo q or 27 for q = 128). In chapter
6 is explained how finally this function has been split in half in order to compute the inverse
modulo two with binary coefficients saving computational and memory resources.

4.2.2.6 Sum2PolQ

Sum2PolQ receives pol1, pol2 and pol1deg by reference whereas pol2deg and mod are passed by
parameter as defined in the header:

void Sum2PolQ ( int8 t *pol1, uint8 t *pol1deg, int8 t *pol2, uint8 t pol2deg, uint8 t mod ).

The modulo value is passed by parameter in the variable mod since Sum2PolQ is recursively
called for different values when executing InverseGFq. This is due in order to reuse the function
in the conversion from an inverse modulo a prime to the inverse modulo a power of a prime.
The addition of the two polynomials is stored in pol1 and the degree of resulting polynomial in
pol1deg.

4.2.2.7 PolMulQ

In order to compute the public key h we need to compute the star multiplication of polynomials
fq and g. The star multiplication modulo q is also necessary in our first implementation during
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Encryption and Decryption. For this function three array pointers and a variable are passed,
uint8 t PolMulQ ( int8 t *mul pol, int8 t *pol p, int8 t *pol2, uint8 t mod ).

Note that the variable mod holds the value of the modulus. This is required as in Sum2PolQ in
order to reuse this function during KeyGeneration to obtain the inverse of f modulo q. During
the inversion process when q is a power of a prime is first computed the inverse of f modulo
the prime to later obtain the inverse modulo q. This last step involves having to compute the
multiplication modulo based on different powers of two when q = 128. Hence the need to pass
the variable mod despite we have set the value of q in the file headers. For more information
referring to the inversion please refer to [37].

For a better understanding of the KeyGeneration function figure 4.15 shows the hierarchical
structure of the invocated functions.

Figure 4.15: Key Generation functions
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4.2.3 Encryption

For the Encryption function we pass the polynomial e, the degree of e, the clear message m
and the public key h as shown in the header:

void Encryption(int8 t *e, uint8 t *edeg, int8 t *h, int8 t *m).

To generate the blinding message r the function RandPol is used as described in section 4.2.2.1.
The polynomial r is declared locally because is just used in the encryption process. Then, once
r is obtained it can be computed the multiplication by h modulo q with the function PolMulQ
presented in section 4.2.2.7. The result is stored in the array e. At last m is added to e with
the function Sum2PolQ, introduced in section 4.2.2.6, obtaining the final encrypted message in
the array e.

The diagram of the Encryption functions invocations is shown in figure 4.16.

Figure 4.16: Diagram of functions invoked by Encryption

4.2.4 Decryption

The Decryption function decrypts the encrypted message e into the array c, both in polynomial
form. For this reason the Decryption function requires us to pass the encrypted message e, the
private keys f and fp and the array where to store the decrypted message, c.

void Decryption(int8 t *e, uint8 t *edeg, int8 t *f, int8 t *c).

First step is to multiply one of the private keys, f , by the encrypted message e, see section
3.1.4. This is stored in the array a created locally and it is computed in the function PolMulQ
presented in section 4.2.2.7. Then the a coefficients are centered lying between −q/2 and q/2
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and reduced modulo p. To implement this, a loop goes through all coefficients centering the
coefficients and reducing them to minus one, zero or one.

4.2.4.1 PolMulP

Last step of Decryption is the product modulo p of a by the private key, fp to obtain the
original message m. For this last step a new function has been coded to implement efficiently
the modulo p star multiplication. The header of this function is:

uint8 t PolMulP ( int8 t *mul pol, int8 t polynomial *pol p, int8 t polynomial *pol2 ).

Three arrays are passed as in PolMulQ and the degree is returned. Note that arrays are alway
passed by reference in C.

The diagram of the Decryption function invocations is shown in figure 4.17.

Figure 4.17: Diagram of functions invoked by Decryption
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Chapter 5

Hardware

Embedded devices are designed to do some specific task. The memory and computational
resources on an embedded device are much more limited compared to a workstation. This
chapter intends to overview the most relevant aspects of the device where the NTRU PKC has
been implemented in the development of this thesis.
The device in question is the ATmega163 [38] microcontroller. The ATmega163 is a low-power
CMOS 8-bit microcontroller running up to 8 MHz. based on the AVR architecture. It can
execute powerful instructions in a single clock cycle. The AVR core combines a rich instruction
set [39] with 32 general purpose working registers. All the 32 registers are directly connected
to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one
single instruction executed in one clock cycle.
The AVR uses a Harvard architecture, with separate memories and buses for program and data.
The Program memory is executed with a two stage pipeline. While one instruction is being
executed, the next instruction is pre-fetched from the Program memory. This architecture
enables instructions to be executed in every clock cycle. The Program memory is In-System
Re-programmable Flash memory. It also has 1 KB of SRAM and 512 bytes of EEPROM
memory.
Specifically, the ATmega163 has 1280 Data Memory locations as shown in figure 5.1 from [38].

Figure 5.1: Data Memory

The firsts 32 locations are for the Register file where the register addresses are mapped, the
next 64 locations are for the standard I/O memory, there are also 160 locations of Extended
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I/O memory, and finally 1024 location addresses for the internal SRAM data.

The memory access time are 2 clock (clk) cycles as it can be observed in figure 5.2 from [38].

Figure 5.2: Data SDRAM Access Cycles

The ATmega163 contains 512 bytes of EEPROM memory. It is organized as a separate data
space in which single bytes can be read and written. The write access time for the EEPROM is
3.3 ms considering an 8 MHz clock is used; more precisely it takes 26.368 CPU cycles. This
performance is much slower than the SRAM memory.

The ATmega163 also contains 16K bytes On-chip In-System Reprogrammable Flash memory
for program storage. Timing diagrams for instruction fetch and execution are presented in
figure 5.3 from [38].

Figure 5.3: The Parallel Instruction Fetches and Instruction Execution

Although program memory is much more than enough to store the NTRU PKC, the SRAM is
quite small for the data required to manage. For more information about this device refer to
[38].
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Chapter 6

Optimizations

Our first implementation of NTRUEncrypt, introduced in chapter 4, for the parameter set
NTRU:167:3 took around 176 ms for encryption and 405 ms for decryption on the ATmega128
microcontroller, refer to section 4.2. This first version was implemented on the ATmega128
microcontroller due to design restrictions. Specifically, the data memory necessary in the first
version exceeded the hardware specifications of the microcontroller ATmega163.
We chose this option because the ATmega163 and the ATmega128 microcontrollers have very
similar RISC architectures along with the instruction set. This made the transition easier to
finally implement NTRUEncrypt on the ATmega163.
The source code size of the first version was about 5746 bytes, but the biggest problem was the
memory RAM used, around 1 KB.
From this starting point, we adapted and improved the source code to consume fewer resources
and be able to run it on the ATmega163 efficiently. The following sections refer to optimizations
in order to save memory resources, algorithmic optimizations and the proper usage of the
arithmetic operators to make our NTRU PKC implementation even faster.

6.1 Memory Optimizations

The memory in a constrained device is typically very limited. The software developed in
this thesis has been customized and optimized for the ATmega163 microcontroller. The
ATmega163 is an 8-bit microcontroller running up to 8 MHz with 1024 bytes of SRAM, 512
bytes of EEPROM and 16 KBytes of flash memory. These specifications are extremely reduced,
therefore an extra effort has been done to port the NTRU PKC to its minimum expression in
terms of SRAM consumption.

6.1.1 Variable Types

The AVR-GCC compiler for the ATmega163 microcontroller the default size of an integer is 16
bits. For an improved performance all variables have been defined as uint8 t or int8 t whenever
possible. Both types are 8 bit size and store unsigned or signed values respectively. These types
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have been defined on the header file.

#define int8 t signed char
#define uint8 t unsigned char

As a result of using char as variable type instead of integer, besides the memory data reduction,
the application works faster since the ATmega163 has an 8-bit data bus.

6.1.2 Parameter Passing

To avoid unnecessary memory usage the majority of the parameters have been passed by
reference as it can be observed in the function headers presented in section 4.2, except for the
variables of eight bit size. This decision is due to the fact memory addresses in an 8 bit CPU
are 8 bit large. This means that passing a pointer occupies the same as a variable of such a
type. Having in mind the code might be executed or ported to a higher bit CPU, a 32-bit for
example, then is even more costly to pass the address than the value itself.

6.1.3 Storing Random Polynomials

Random polynomials used in NTRU PKC have ternary coefficients in our implementation.
Since the values of the coefficients are {1, 0, -1} (binary polynomials can also be used but
the system turns out to be more vulnerable to lattice attacks) we could store them with two
binary digits as {01, 00, 11}, instead of using eight bits for each coefficient. Using two bit
coefficients instead of eight bit coefficients reduces the size of the polynomial a 75%. However,
we have used a different technique to store the coefficients for the polynomials g and r. The
technique is to store the position of the coefficients which differ from zero (one or minus
one in this case). Imagine we have a random polynomial g of degree nine with the following
coefficients, g = [1, 0,−1, 0, 0,−1, 1, 0, 1,−1]. Storing the positions we obtain polynomial
g = [0, 6, 8,2,5,9]. To allow efficient processing of the polynomial the positive ones are stored
in the first half of the array while the negative ones are stored in the second half. When working
with polynomials of N = 167 or N = 251 coefficients we need to use at least 8 bits to store each
position. For the spaces defined by dg and dr in general stands that the percentage of zero terms
is around a 75%. Consequently storing the positions provides a similar reduction in memory
terms as storing using two bits per coefficent. In addition, we benefit of a faster multiplication for
both polynomials, see section 6.2.4.2. This is reflected in the code with a new RandPol function.
For scalability the generation is done with a temporal array of N positions which afterwards
is stored as described in a new array of 2·d positions while the temporal polynomial is wiped out.

void RandPol (uint8 t *r, uint8 t d )

Where d is the parameter that defines the space of the polynomials since g and r have even
amounts of positive and negative ones.
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6.1.4 Storing the Private Key

The way of storing the private key f is stored in a similar way as described for the random
polynomials g and r in the previous section 6.1.3. However, when applying the form of
f = 1 + pF some singularities are taken into account, please refer to section 6.2.1 for more
information regarding the form of f .
Since F has integer coefficients between one and minus one, the form of f = 1 + pF is pseudo
deterministic in the sense that assures us all coefficients, excluding the first one, acquire the
values −p, zero or p. More exactly we have three possible scenarios since f(0) can assume the
values {1− p, 1 or, 1 + p}. For f(0) = 1− p we might have df − 1 coefficients with the value
+p and df − 2 coefficients with −p. For f(0) = 1 we obtain df − 1 coefficients with value p
and df − 1 coefficients with value −p. And for f(0) = 1 + p results in df − 2 coefficients p and
df − 1 coefficients with value −p. Being concerned about these three possibilities we store the
polynomial f assigning the coefficient value to the first array position. So for p = 3 we assign
the values f(0) = −2, f(0) = 1 or f(0) = 4 depending on the random generation. For the
rest of the array we store the coefficients as we did with the random polynomials g and r in
previous section 6.1.3. Let us see a practical example. If p = 3 we may have:

1. f = [1, 0,−3,3, 0,3, 0, 0,3,−3,−3] = [1,3,5,8, 2, 9, 10] .
2. f = [4,3,−3, 0, 0,−3, 0,3, 0, 0,−3] = [4,1,7, 4, 5, 10] .
3. f = [−2, 0,3, 0,−3, 0,3,−3, 0,3, 0] = [−2,2,6,9, 4, 7] .

Note that in the first case we have the same amount of positive and negative threes but in the
last two cases we have one extra zero term and one missing negative or positive three depending
on f(0). For this reason we coded a dynamic way of storing f based on the value of f0. The
new function FGen is coded with the next header:

void FGen(struct polynomial *f, uint8 t *fdeg )

Where f is the polynomial and fdeg the polynomial degree. This storage modification not
only reduces the array where we store f to have a maximum size of 2 · df − 1 bytes but also is
fundamental to save computational resources when computing the optimized multiplication for
f presented in section 6.2.4.3.

6.1.5 Binary Compression

During the key generation the inverse of f modulo q is computed. This is actually done in two
main steps. First we compute the inverse modulo two which can be achieved in a very fast way
through the Extended Euclidean Algorithm [37] to later compute the inverse of f modulo q
through a method based on Newton iteration. This last step is the most complex part during
the key generation since involve a loop with two polynomial multiplications. Despite this fact,
we get a very simple polynomial inverse function. Working with coefficients reduced modulo
two means we can work with binary coefficients which only require one bit each. For this reason
after generating the private key f we convert f into modulo two and store it in the bit array
fbin which occupies ceil(N/8) bytes of data. After obtaining fbin the original f is stored, in
the form introduced in section 6.1.4, in the EEPROM memory and the memory space occupied
by f in the SRAM is freed.
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6.1.6 Inverse modulo two

The InverseModTwo function is computed using the Extended Euclidean Algorithm. Algorithm
1 shows the pseudo code of the InverseModTwo function.

Algorithm 1 Inverse of a(x) mod two
Require: a(X) = f(x), g(X) = XN − 1, b(X) = 1, c(X) = 0, k = 0;
Ensure: The inverse of a(X) stored in b(X).
1: loop:
2: while a0 = 0 do
3: for all i such that 0 ≤ i < floor(N/8) do
4: ai = ai >> 1 {a = a/X }
5: ai = ai + (ai+1&1) << 7
6: end for
7: aN/8 = afloor(N/8) >> 1
8: for all i such that 0 < i ≤ floor(N/8) do
9: ci = ci << 1 {c = c ∗X }

10: ci = ci + ci−1 >> 7
11: end for
12: c0 = c0 << 1
13: k + +
14: end while
15: if a = 1 then
16: return k
17: end if
18: if deg(a) < deg(g) then
19: exchange a and g and b and c
20: end if
21: SumPolBin(a,m, deg(a), deg(b))
22: SumPolBin(b, c, deg(b), deg(c))
23: go to loop

Exchanging a for g and b for c in line 19 it is done by switching pointers to avoid copying each
array position over a loop. Implementing the division and multiplication of X in the while
loop in line 3 through 11 is done by making a right bit shift and a left bit shift respectively.
But most remarkable for memory savings is the usage of bit arrays to store the polynomials
f , a, b and g as described in section 6.1.3. This has lead to code a function which adds two
polynomials with coefficients of one bit.

6.1.6.1 Binary Addition

The function SumPolBin calculates the addition of two polynomials reducing the coefficients
modulo two. This function has been developed for the addition operations during the computa-
tion of the InverseModTwo. Since coefficients can be represented with one bit, consequently an
array position stores eight coefficients. Therefore, all polynomials involved in the Algorithm
1 and Algorithm 2 have a size of ceil(N/8). This not only reduces the memory data, but the
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complexity of the operations thanks to the SumpolBin function shown in Algorithm 2. Using
the XOR operator enables us to add in one instruction eight coefficients, reducing approximately
by eight the complexity of the polynomial addition. More precisely, Algorithm 2 shows we
iterate ceil(deg(a)/8) times to add two polynomials.
For example, if we have the polynomials a(X) and b(X) where,

a(X) = X7 +X5 +X4 +X3 + 1

and,

b(X) = X6 +X5 +X3 +X2 + 1 .

Then we store the eight binary coefficients of a(X) in one byte array position in decimal,
a[0] = 185 ⇒ 10111001. We do the same for b(X) storing b[0] = 109 ⇒ 01101101. Since
performing the addition with the “+” operator we obtain bit carries in the addition a[0] + b[0],
we use the XOR operator instead.

a[0] XOR b[0] = 185 XOR 109 = 212⇒ 10111001 XOR 01101101 = 11010100 .

Binary masks can also be used to calculate bit by bit additions. Instead we decided to make a
byte by byte addition and using the XOR operator we obtain the desired result.

Algorithm 2 SumPolBin
Require: a(X), b(X), deg(a), deg(b);
Ensure: The sum of a(X) and b(X) modulo two is stored in a(X).
1: if deg(a) < deg(b) then
2: deg(a) = deg(b)
3: end if
4: for all i such that 0 ≤ i < ceil(deg(a)/8) do
5: ai = ai XOR bi
6: end for

In this case to update the degree the cost associated is the same as the degree search in SumPolQ
function but with some extra code lines, see section 6.2.3. The loop goes form floor(N/8) to
zero but some conditions are needed to differentiate the coefficients values.

6.2 Computational Optimizations

6.2.1 The Form of f

In section 3.1.5 we explained how NTRU public-key algorithm works. Now we explain an
optimization for the private key f [40] recommended by NTRU Cryptosystems, Inc. for
commercial applications. NTRU PKC requires f to satisfy the following properties:

1. f is invertible mod p,

41



6. Optimizations

2. f is invertible mod q,
3. and f is small.

If f is taken with the form

f = 1 + pF ,

where F is a “small” polynomial, then

f = 1 + pF ≡ 1 (mod p) .

Therefore,

f−1 (mod p) ≡ 1 (mod p) .

This algorithmic optimization has two major consequences. First it eliminates the computation
of the inverse of f modulo p in the key generation process and second it is no longer necessary
to store fp since we know is 1. Furthermore it eliminates the last step of decryption since f is
canceled out when reducing modulo p:

a = f ∗ e (mod q) = pr ∗ g + f ∗m (mod q) = pr ∗ g + (1 + pF ) ∗m (mod q) .

c = a (mod p) = pr ∗ g + (1 + pF ) ∗m (mod p) = (1) ∗m (mod p) = m (mod p) .

When reducing modulo p the product pr ∗ g equals zero but also pF , obtaining directly the
plaintext of the message m without the last multiplication by fp. This lets decryption timings
approach to encryption timings since only one star multiplication is processed, refer to version
3 results in table 6.1. This fact reduces the memory data required because fp is not stored,
but also reduces the memory data for decryption because computation of fp ∗ e (mod p) is no
longer necessary which permits us calculate all operations in one polynomial, c. Moreover, code
data is also reduced since functions InverseGFp, Sum2PolP, Sub2PolP and MulPolP are not
required anymore.
Note that for the generation of f = 1 + pF is necessary a new random function just for f ,
already introduced in section 6.1.4. Since f now equals 1 + pF , df is used to define the number
of ones and also the number of negative ones of F , giving as a result F (1) = 0 and f(1) = 1.
Where f(1) represents the sum of all coefficients of f in order to “assure” is invertible, see
section 2.5 for more details. As a result the parameter df is not longer needed in the header of
the function since is defined as a constant.

6.2.2 Modulo Operation

ANSI C provides the operator “%” to calculate the modulus. The syntax is value%mod. This
operation is very costly since it basically divides the value by the modulo and returns the
remainder. For this reason the modulo operator “%” is avoided whenever possible.
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We have taken the parameter q to be a power of two when p is a prime number greater than
2 in order to satisfy the axiom that q and p must be coprime. Particularly for integers, the
modulus powers of two can be calculated in a very simple way in binary. If we compute the
values in binary and throw away the bits equal or greater than the modulo value we obtain the
modulo operation. With an AND operator we can accomplish the modulo computation. For
example:

35 ≡ 3 (mod 32) expressed in binary is 100011 ≡ 00011 .

As observed in this example the most significant bit is thrown away considering its value equals
to thirty two. As said, this applies to any modulo power of two.

325 ≡ 5 (mod 64)⇒ 101000101 ≡ 000101 .

In this last example we are throwing the first three more significant bits since their values are
greater or equal to the modulo value. We can say then that reducing modulus of a power of
two can be achieved computing the next logic operation: element AND (modulo-1).

325 ≡ 5 (mod 64)⇒ 325 AND (64− 1) = 5⇒ 101000101 & 111111 = 000101 .

So for all operations involving q instead of using the “%” operator we use the AND operator
represented in C by the operator “&”.

6.2.3 Addition Modulo q Operation

The ATmega163 microcontroller is able to perform the addition of two bytes in one clock cycle.
The addition of polynomials algorithm has been optimized in two ways as observed in figure 3.
First the degree is used to reduce the sum of coefficients, the addition of two polynomials only
requires as many additions as the greater degree of both polynomials, often smaller than N .
Second, the modulo operation is done as described in previous section 6.2.2.
Remark the modulo operator as the division is not natively present in the assembler instructions
of the ATmega163. To accomplish a division operation six assembler instructions are required.
For this reason in the addition we use the “&” operator instead of the “%” operator.

Algorithm 3 SumPolModQ
Require: a(X), b(X), deg(a), deg(b);
Ensure: The sum of a(X) and b(X) modulo q is stored in a(X).
1: mod=mod-1
2: if deg(a) < deg(b) then
3: deg(a) = deg(b)
4: end if
5: for all i such that 0 ≤ i < deg(a) do
6: ai = (ai + bi)&mod
7: end for
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On the other hand, after the complete operation between two polynomials the degree of the
resulting polynomial is updated. For this purpose a loop checks the positions of the vector to
determine the degree.

In figure 4 we can see that to reduce this search the loop sequence has been inverted since most
polynomials have a degree close to N .

Algorithm 4 Degree Search
Require: r(X), deg(r);
Ensure: deg(r) stores the degree of the polynomial r.
1: for i = N to 0 do
2: if r(i) 6= 0 then
3: deg(r) = i
4: break
5: end if
6: end for

This loop evaluates approximately the positions between N and the degree value of the greatest
polynomial involved in the operation. It might be possible the addition of two polynomials
of the same degree return zero for the highest coefficient. In this case the loop searches until
reaches a coefficient with a non zero value.

6.2.4 Multiplication

The Multiplication of polynomials is a key factor during the different processes of the NTRU
PKC. Multiplication is used in the key generation when calculating the Newton iteration
method to obtain the inverse (from binary to modulo q form) and in the calculus of the public
key h. But also it is the operation most costly during Encryption and Decryption. Improving
the multiplication turned out to be one of the premises of this thesis.

NTRU Cryptosystems, Inc. proposed two solutions for the multiplication of polynomials. The
technical note High-Speed Multiplication of Truncated Polynomials [41] suggests an algorithm
based on Karatsuba multiplication done recursively for polynomials of arbitrary coefficients.

This algorithm saves coefficients multiplications at the cost of extra additions compared to the
schoolbook multiplication. But still there are multiplications on the calculus.

The second option that NTRU Cryptosystems, Inc. proposed for embedded devices is the
usage of the Fast Convolution Algorithm [40], a fast algorithm for the multiplications where
the private key f with the form 1 + pF is involved.

6.2.4.1 Fast Convolution Algorithm

Assuming the polynomial f has binary coefficients, NTRU Cryptosystems, Inc. has developed
an algorithm to compute the multiplication of a binary polynomial by another polynomial.
Scanning the b array permits calculate only the inner product terms which may be different
from zero.
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The algorithm begins by zero-initializing an array of coefficients which holds the result c(X) =
fi(X) · a(X). For each entry of the f array, the algorithm calculates the N inner product terms
corresponding to a non-zero coefficient in fi(X). Since fi(X) is binary, each non-zero inner
product term is simply a coefficient of a(X). These terms are individually accumulated in
their corresponding location in the c array. Repeating this process for all non-zero coefficients
computes fi(X) ∗ a(X) at the cost of diN additions of log2 q bit numbers. The Algorithm 5
presents the pseudo code.

Algorithm 5 Fast Convolution Multiplication
Require: b an array of d1 + d2 + d3 nonzero coefficient locations representing the polynomial

f(X) = 1 + p ∗ (f1(X) ∗ f2(X) + f3(X)), a the array a(X) =
∑
ai, N the number of

coefficients in f(X); a(X).
Ensure: c is the array where c(X) = f(X) ∗ a(X)
1: for j = 0 to d1 − 1 do
2: for k = 0 to N − 1 do
3: tk+bj = tk+bj + ak {t(X) = a(X)f1(X)}
4: end for
5: end for
6: for j = d1 to d2 − 1 do
7: for k = 0 to N − 1 do
8: ck+bj = ck+bj + tk {c(X) = t(X) ∗ f2(X) = a(X) ∗ f1(X) ∗ f2(X)}
9: end for

10: end for
11: for k = 0 to N do
12: tk = 0
13: end for
14: for j = d2 + 1 to d3 − 1 do
15: for k = 0 to N − 1 do
16: tk+bj = tk + bj + ak {t(X) = f3(X) ∗ a(X)}
17: end for
18: end for
19: for k = 1 to N − 1 do
20: ck = ck + tk (mod q) {c(X) = ck + tk mod N = f3(X) ∗ a(X) + f1(X) ∗ f2(X) ∗ a(X)}
21: end for

6.2.4.2 Optimized Multiplication Algorithm

Our proposed algorithm has been developed for the computation of the star multiplication
when the random polynomials r or g are present. Storing the polynomials as described in
section 6.1.3 permits the algorithm only compute the coefficients that differ from zero. More-
over, the algorithm does not computes the product operation since coefficients are ternary.
The addition or subtraction is computed for coefficients with value one or minus one respectively.

These two factors speed the computation. The product of two coefficients takes two clock cycles
while addition or subtraction takes only one clock cycle for the AVR ATmega microcontrollers
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family. Finally having in mind the polynomials involved in the NTRU PKC we observe the
random polynomials g and r have around a 70% of zero coefficients. Since the zero coefficients
are not even stored and therefore computed, the clock cycles are also reduced around this
percentage. How it works? Let’s take a look to the pseudo code in the Algororithm 6.

Algorithm 6 Optimized Multiplication
Require: a(X), b(X), c(X) = 0, sizepos;
Ensure: polynomial c(X) = a(X) ∗ b(X).
1: sizeneg = 2 ∗ sizepos− 1
2: for k = 0 to N − 1 do
3: for i = sizepos− 1 to 0 do
4: y = k − ai
5: if y < 0 then
6: y = y +N
7: end if
8: ck = ck − by
9: end for

10: for i = sizeneg to sizepos do
11: y = k − ai
12: if y < 0 then
13: y = y +N
14: end if
15: ck = ck − by
16: end for
17: ck = ck&(q − 1)
18: end for

The requirements of this algorithm are that the polynomial a(X) must be stored as described
in section 6.1.3. The polynomial, b(X), is expected to have coefficients reduced modulo q. The
restrictions for the coefficients of the polynomial b(X) are given by the variable type used in
the array declaration where is stored the polynomial.
The main calculus is done as usual in the truncated polynomial product going through all the
N coefficients of the resulting polynomial c. The only difference is that the Algorithm 6 just
adds or subtracts bk instead of multiplying ai · by. This is possible since ai is one or minus one,
ck = ck + (1)by or ck = ck + (−1)by.
The first nested loop computes the product of the coefficients of ai · by where ai equals to one.
The next nested loop computes the terms of by that are multiplied by the negatives ones of ai.
Finally the resulting ck coefficient is reduced modulo q with an AND operation, ck AND q − 1.
Note that instead of going through all the coefficients of a and b to do the product operation
it just goes over the space d, represented by the variable sizepos for the positive coefficients
of a and sizeneg = 2 · d for the negative coefficients. This process is done N times for all the
ck coefficients. So at the end, assuming we have a polynomial of N coefficients and a space
defined by d, the potential cost of the Algorithm 6 is N · 4 · d since there is an extra addition to
calculate the index y. This algorithm is a fast solution for the random polynomials r and g
with ternary coefficients, also denominated as small polynomials.
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6.2.4.3 Optimized Multiplication Algorithm for f = 1 + pF

To compute the star multiplication with f = 1 + pF we can use a similar algorithm than with
ternary polynomials. In section 6.1.4 we introduced the way of storing f which is fundamental
for the computation. First step is to make sure we compute the multiplication operation only
the essential number of times. When computing e ∗ f (e+ pF ∗ e) we should multiply by p no
more than N times. As an example if we have the polynomials f = [1, 0,−3, 3, 0, 3,−3] and
r = [5, 16, 9, 32, 29, 18, 1] and we want to compute c = f ∗ r, the first coefficient of c results in,

c0 = 1∗5+0∗1+(−3∗18)+3∗29+0∗32+3∗9+(−3∗16) = 5+(−3∗18)+3∗29+3∗9+(−3∗16) .

The previous Algorithm 6 eliminates the zero-term computations which is enough with ternary
coefficients. But with f = 1 + pF we want to reduce multiplication of p over all the coefficients
so we can write,

c0 = 1 ∗ 5 + 3 ∗ (−18 + 29 + 9− 16) .

As it can be observed we can reduce the number of times we multiply p in one coefficient to
one. For this reason we compute the coefficients like if f had only values between {−1, 0, 1}
and at the end we multiply ck by p and add the corresponding coefficient of bk by f0. The
pseudo code is shown in the Algorithm 7.

This multiplication reduces the cost to 2 ·N multiplications, 2 · (N − 1) · df additions and N
AND operations.

6.3 Evaluation

The major optimizations applied to the NTRU PKC have been implemented in different code
versions, making it easier to compare empirically the CPU and memory optimizations. The
optimizations are structured as follows:

• Version 1: Version with classical setup and 8 bit variables.
• Version 2: Implements the reduction modulo q operation using the “&” operator.
• Version 3: Takes f with the form of f = 1 + pF together with version 2 optimizations.
• Version 4: Implements the Optimized multiplication, the new RandPol function plus

version 3 optimizations.
• Version 5: New f storage, the Optimized f multiplication together with version 4 opti-

mizations.

The code has been tested in the AVR Studio simulator for the ATmega128 and ATmega163
microcontrollers running at 4 MHz.

6.3.1 ATmega128

The developed software was first implemented on the ATmega128 due to its larger memory
resources which made easy the platform portation. The table 6.1 shows the results of the key
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Algorithm 7 Optimized Multiplication for f
Require: f(X), b(X), c(X) = 0;
Ensure: polynomial c(X) = a(X) ∗ b(X).
1: if f0 = 1 then
2: sizepos = df − 1
3: sizeneg = 2 · df − 2
4: else if f0 = 4 then
5: sizpos = df − 2
6: sizeneg = 2 · df − 3
7: else
8: sizepos = df − 1
9: sizeneg = 2 · df − 3

10: end if
11: for k = 0 to N − 1 do
12: ck = 0
13: for i = sizepos to i = 1 do
14: y = k − fi
15: if y < 0 then
16: y = y +N
17: end if
18: ck = ck + by
19: end for
20: for i = sizeneg to i = sizepos+ 1 do
21: y = k − fi
22: if y < 0 then
23: y = y +N
24: end if
25: ck = ck − by
26: end for
27: ck = ck · p
28: ck = ck + (signed)f0 · bk
29: ck = ck&(q − 1)
30: end for

generation, encryption and decryption for the security parameters N=167, q=128 and p=3 and
N=251, q=128 and p=3 described in table 3.3 on this device.

To clarify the optimizations impacts the figure 6.1 shows the evolution along the different
versions of Key Generation.

From figure 6.1 we observe how the operator “&” versus “%” reduces a 25% the timing of key
generation for the parameter set NTRU167:3 since is used in several operations. The functions
which get more benefit from this operator are the Inverse Modulo Two and the Newton iteration
method. Furthermore the multiplication of fq by p and the computation of h involve modulo q
reduction.
Applying the form of f = 1 + pF has a major impact for Key Generation. This is due to the
fact the inverse fp is no longer required, saving up to a 33% for the parameter set NTRU167:3
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Table 6.1: Results on ATMega128 @ 4Mhz.

Version
Security Key generation Encryption Decryption

Parameters Code Size Time Code Size Time Code Size Time
1 NTRU167:3 3236 Bytes 6.062 s 1382 Bytes 177 ms 934 Bytes 406 ms

2
NTRU167:3 3236 Bytes 4.435 s 1382 Bytes 156 ms 934 Bytes 396 ms
NTRU251:3 3236 Bytes 9.543 s 1382 Bytes 313 ms 934 Bytes 784 ms

3
NTRU167:3 2850 Bytes 2.953 s 856 Bytes 158 ms 714 Bytes 221 ms
NTRU251:3 2850 Bytes 6.008 s 856 Bytes 315 ms 714 Bytes 398 ms

4
NTRU167:3 3132 Bytes 2.849 s 970 Bytes 52 ms 714 Bytes 221 ms
NTRU251:3 3132 Bytes 5.764 s 970 Bytes 64 ms 714 Bytes 398 ms

5
NTRU167:3 3556 Bytes 2.272 s 970 Bytes 52 ms 786 Bytes 124 ms
NTRU251:3 3556 Bytes 4.315 s 970 Bytes 64 ms 786 Bytes 157 ms

and almost a 40% for the NTRU251:3.
On the other hand the Optimized multiplication in version 4 reduces slightly the key generation
timing improving the computation of h while version 5 optimization affects the Newton iteration
method to convert the inverse of f .
Analogously figure 6.2 and figure 6.3 show the evolution of Encryption and Decryption respec-
tively.

Figure 6.2 shows a reduction around a 12% during the encryption when we compare version
2 versus version 1 since the multiplication to encrypt the message is reducing modulo q the
coefficients, see section 3.1.3.
The other major optimization in encryption is produced in version 4 when is applied the
Optimized multiplication. Reduction is around a 66% for the parameter set NTRU167:3. This
is possible since multiplication is the most complex operation during encryption and the space
of the random polynomial r has around a 78% of zero coefficients.
More interesting is the reduction around an 80% of the total cost of encryption in version 4 for
the parameter set NTRU251:3 since r has around an 87 % of zero terms. From these results we
can conclude the Optimized multiplication developed is highly scalable. Although the total cost
for Algorithm 7 is higher than 4 ·N · dr additions; but the computational reduction cost is very
significant compared to previous versions.

In figure 6.3 we see how decryption is also affected by the modulo implementation in version 2 but
only around a 3%. This is due to the fact that Decryption in version 2 has one multiplication
and a centering process which computes the modulo p not taking advantage of the AND
operation. On the other hand version 3 eliminates the last multiplication modulo p, see section
6.2.1. This is reflected with a time reduction of almost a 50% for Decryption for both security
levels because the multiplication reduced modulo p is more costly than reduced modulo q.
At last but not least version 5 shows how the Optimized Multiplication for f shrinks the
decryption cost around a 40% and more than a 60% for the security levels NTRU167:3 and
NTRU251:3 respectively. The Optimized Multiplication for f function for the private key f has
a similar behavior to the Optimized Multiplication for the random polynomial. Although the
final cost of the Optimized Multiplication for f is still not yet 2 ·N multiplications and 4 ·N · df
additions.
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Figure 6.1: Key Generation timings on ATMega128 @ 4 Mhz.

6.3.2 ATMega163

In this section we presented the final results of the implementation done for the ATmega163
microcontroller. Table 6.2 presents the results for computational cost.

Table 6.2: NTRU167:3 on ATMega163 @ 4Mhz.

Version EEPROM Keygeneration Encryption Decryption
# SRAM Time SRAM Time SRAM Time
3 334 Bytes 674 Bytes 2.953 s 672 Bytes 159 ms 506 Bytes 222 ms
4 334 Bytes 674 Bytes 2.852 s 541 Bytes 53.3 ms 506 Bytes 222 ms
5 334 Bytes 625 Bytes 2.307 s 541 Bytes 53.3 ms 457 Bytes 131 ms

The small difference from the results on table 6.2 and table 6.1 are due to the EEPROM access.
For the ATmega163 in our implementation the EEPROM is required for the storage of the
keys due to the lower SRAM resources. Besides the EEPROM memory used, table 6.2 also
shows the maximum SRAM peak in each process of the NTRU scheme. It is interesting to
note that Key Generation requires to store during the Newton iteration method a minimum
of four polynomials plus some extra bytes for counters. On the other hand, Encryption and
Decryption can be implemented storing three polynomials in SRAM if the private and public
keys are stored in EEPROM. Although in our implementation, Encryption requires enough
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Figure 6.2: Encryption timings on ATMega128 @ 4 Mhz.

space in SRAM for four polynomials in order to pass the clear message and the public key
as input parameters of the Encryption function. This is done since Encryption may require
different public keys depending on the user or entity we want to address. In addition, we avoid
extra readings from the EEPROM, making the process faster.

Finally is shown in figure 6.4 a comparison between Encryption and Decryption for the different
versions running on the ATmega163 microcontroller for the parameter set N=167, q=128 and
p=3.

From figure 6.4 we obtain encryption is 3x faster in version 3 than in version 4 while decryption
is 1.7x faster from version 4 to version 5 when using NTRU167:3. Also the maximum SRAM
required is reduced around a 10% during the Key Generation and Encryption, and a 20% for
Decryption. But most significant is the average SRAM utilization which decreases in a higher
percentage during the inverse process. Also the multiplications presented in this thesis are highly
scalable. Still Decryption seems to be much slower than expected compared to Encryption.
This is due to the parameter sets, even both multiplication implemented in encryption and
decryption have similar costs, the parameter df is around three times greater than dr having
consequently a higher number of operations in the Optimized Multiplication for f.
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Figure 6.3: Decryption timings on ATMega128 @ 4 Mhz.

6.4 Comparison with RSA, ECC and HECC

This section compares the performance of our implementation of NTRUEncrypt versus the
published implementation results for other public key cryptosystems when providing similar
security. More precisely we compare NTRUEncrypt with RSA, ECC and HECC. The RSA and
ECC timings for encryption and decryption have been extracted from [42] and can be observed
in table 6.3.

Table 6.3: ATmega128 @ 8MHz

Code Data mem Time
ECC secp160r1 3682 Bytes 282 Bytes 0.81 s
RSA-1024 public-key e = 216 + 1 1073 Bytes 542 Bytes 0.43 s
RSA-1024 private-key w. CRT 6292 Bytes 930 Bytes 10.99 s
NTRU251:3 encryption 970 Bytes 804 Bytes 32 ms
NTRU251:3 decryption 786 Bytes 618 Bytes 78 ms

The published results for ECC and RSA in table 6.3 has been executed on the ATmega128
microcontroller with the clock frequency set to 8 MHz (ATMega128 can be set up to 16 MHz).
Table 6.4 shows the result published for HECC running on an 8051 microcontroller at 12 MHz
in [43]. While Table 6.5 results for HECC on an ARM7 published also in [43] and originally
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Figure 6.4: Encryption and Decryption timings on ATMEga163 @ 4 Mhz.

published in [44] and [45].

Table 6.4: HECC on 8501 microcontroller plus Keil C51 @ 12 MHz.

Implementation ROM XRAM FPGA Performance
C (Inversion SW) 11754 Bytes 820 Bytes 3300 191.7 s
C+ASM (Inversion SW) 12284 Bytes 820 Bytes 3300 64.9 s

Table 6.5: HECC on ARM7

Field Frequency Perf.

GF(283) 80 MHz 71.56 ms
GF(280) 80 MHz 374 ms

For reference it is assumed RSA-1024, ECC secp160r1 and HECC GF(283) and HECC GF(280)
provide a key strength of 80 bits. It is also assumed NTRU251:3 provides 80 bits key security
strength. Although some research point to NTRU167:3 with the right spaces can provide a
security strength of 80 bits different techniques which take advantage of decryption failures or
the implementation of an hybrid attack may question this strength even for NTRU251:3.
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From table 6.3 we can observe memory data for RSA-1024 encryption is a bit smaller than
NTRU251:3 SRAM usage. Concerning memory requirements ECC presents very small keys
which are reflected in the data memory consumption, only 282 bytes for ECC secp160r1 for
both, the encryption and the decryption. For RSA-1024 the memory data during decryption is
incremented over passing the memory required in NTRU251:3 which is 618 bytes in version 5.
Table 6.4 shows HECC requires 820 bytes in XRAM and more than 10KB in ROM making
impossible to implement it in such a device as the ATmega163.

On the other hand to compare the computational cost it has to be considered the NTRU
results presented in table 6.1 are tested simulating ATmega128 µC running at 4 MHz instead
of 8 MHz. When running at 8Mhz we obtain the 32 ms for Encryption and 78 ms for
Decryption. Compared to the 810 ms of ECCsecp160r1 there is one order of magnitude of
difference. The closest approach is RSA-1024 in encryption which takes 430 ms but decryption
goes up to almost 11 seconds which is very far from NTRU’s 78.5 ms HECC is even further from
NTRU’s efficiency in computational resources taking up to 64.9 seconds. HECC encryption
and decryption timings are only in the NTRU performance when using a microcontroller with
a 10x higher frequency and a 32-bit architecture as shows table 6.5.
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Last security standards

During the development of this thesis new security standards have been released in the IEEE
P1363.1/D10 draft, see [6]. This draft defines new standards based on the best known attack
techniques until July 2008.

More specifically the draft considers an hybrid attack defined in section 3.3.3. This hybrid
attack combines the lattice reduction and the meet-in-the-middle attack in order to reduce the
total amount of work.

The lattice reduction work has been defined in the draft as Wlatt while the meet-in-the-middle
work is referred as Wmitm. To have an efficient attack these phases should be balanced to take
the same amount of time.

In an hybrid attack the lattice reduction algorithm is implemented using a selected sublattice
of the main lattice. The sublattice should not include any vector with length shorter than a
certain Gaussian value. Since the Gausian heuristic assures with a high probability no short
vector is present is then measured the amount of reduction that can be performed in a given
amount of time.

Empirically is obtained the running time t to remove a given number Nq of q-vectors using the
best known currently method. It is given by

t = 0.9501Nq − 3 ln 2Nq − 123.58 .

The running time to obtain a slope d if there is no cliff can be related directly to the time to
remove Nq q-vectors: if there is no cliff, the reduction is symmetric about N (in order to keep
the determinant constant) so the slope d = 1/(y2 − y1) = 1/2Nq resulting time t,

t = 0.4750/d+ 3 ln 1/d− 123.58 .

Since lattice attacks are improving constantly the parameter sets in the draft IEEE P1363.1/D10
assume the following extrapolation line,

t = 0.2/d− 3 ln 1/d− 50 .
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In the combinatorial phase the attacker searches a space of size K for a trinary polynomial
with c1 + 1s and c2 − 1s. The calculated amount of work the attacker must do to search this
space using a standard collision search method is:

Wsearch =

(
K
c1/2

)(K−c1/2
c2/2

)√(
c1
c1/2

)(
c2
c2/2

) .
Wagner’s generalized birthday paradox search [34] may highly reduce the search to

Wsearch =

(
K
c1/2

)(K−c1/2
c2/2

)(
c1
c1/2

)(
c2
c2/2

) .

Even it is not known how this attack could be implemented, the draft P1363.1 contemplates
this possibility when assigning a given security level k.

It is also considered the probability that the search might not be successful which depends on
the probability that the lattice reduction allows a correct guess to be confirmed, Ps. Where,

Ps =
(
c1
c1/2

)(
c2
c2/2

)
.

Also is considered the probability that the attacker has guessed the right values for c1 and c2
for a single rotation of the key is,

Psplit,1 =

(
N−K
d1−c1

)(N−K−(d1−c1)
d2−c2

)(
K
c1

)(
K−c1
c2

)(
N
c1

)(
N−c1
c2

) .

If the attacker is able to take advantage that the lattice contains N rotations of the key the
probability Psplit improves as follows,

Psplit,N = 1− (1− Psplit,1)N .

Although is considered the private key f = 1 + pF requires to solve the closest vector problem,
CVP, where there is only one single rotation of the key, the draft in order to avoid future
improved reduction algorithm considers Psplit = Psplit,N instead of Psplit,1.

Finally for the lattice reduction using Babai’s method involves multiplying by a 2Nx2N
transformation matrix. Empirically has been obtained a bit security around Wreduction =
N2/21.06 for this multiplication. Still hence the matrix is the same in the different cases the bit
security estimated is Wreduction = N/21.06 due to a possible optimization.

Having all this considerations the amount of work for certain c1, c2 given the values K, a, y1

and y2 obtained from the lattice reduction is

Wmitm(c1, c2) = Wreduction ∗Wsearch ∗WPs/Psplit .
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For the security parameters the draft P1363.1/D10 considers the meet-in-the-middle cost to be,

Wmitm = min(c1, c2)Wmitm(c1, c2) .

The resulting security parameters presented in the standard P1363.1 [6] are given in table 7.1.
Each security parameter set shown in the first column is defined by the parameters N , q and df .
These parameters provide a security level offered against an attacker using the best techniques
known in July 2008 shown in column “Known Strength”. The column “Recommended security”
gives the security level recommended in this standard [6] considering more powerful new attacks
against the NTRU PKC may appear.

Table 7.1: IEEE P1363.1/D10 standards

Parameter set N q df Known strength Recommended security
ees401ep1 401 2048 113 154.88 112
ees541ep1 541 2048 49 141.766 112
ees659ep1 659 2048 38 137.861 112
ees449ep1 449 2048 134 179.899 128
ees613ep1 613 2048 55 162.385 128
ees761ep1 761 2048 42 157.191 128
ees653ep1 653 2048 194 276.736 192
ees887ep1 887 2048 81 245.126 192
ees1087ep1 1087 2048 63 236.586 192
ees853ep1 853 2048 268 376.32 256
ees1171ep1 1171 2048 106 327.881 256
ees1499ep1 1499 2048 79 312.949 256
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Chapter 8

Conclusions and Future Lines

NTREncrypt makes it possible to achieve high security levels without requiring a great in-
vestment in hardware. Encryption and Decryption have been the primary focus in which to
implement computational optimizations. Key Generation has also taken some research to
reduce its complexity along with the reduction of SRAM consumption to be able to run the
NTRU PKC on the AMTEL ATMega163.

The final version of our implementation is able to generate the keys on the ATMega163, taking
no more than 2.3 seconds and encrypting a message in close to 25 ms while decrypting in 62 ms
for the parameter set NTRU167:3. The difference between the encryption and the decryption
is remarkable; despite the fact both operations only have one polynomial star multiplication.
This asymmetry between the encryption and the decryption is primarily due to the polynomial
structure. Using the parameters NTRU167:3 involves using dr = 18 and an ideal total cost of
the Optimized multiplication of 4 ·N · dr = 4 · 167 · 18 = 12024 additions. While in decryption
the parameter df = 60 means having cost around 2 ·N = 2 · 167 = 334 multiplications and also
4 ·N · df = 4 · 167 · 60 = 40080 additions. The encryption and the decryption are highly scalable
due to the multiplication functions’ behavior, which depends not only in N but in the different
space parameters.

Regarding the SRAM requirements, our implementation demands at least 4 ·N · lg2 q bits of
memory space if wanted to generate the keys in the constrained device. The final conclusion
is that NTRUEncrypt seems to be very scalable and ideal for embedded devices, since the
decryption and encryption timings are incredibly fast.

Future changes to version 5 of our implementation would be optimizing the developed multipli-
cation functions into assembly to achieve the theoretical costs of the algorithms 6 and 7.
Regarding the key generation there is a bottleneck in the Newton iteration method to convert
the inverse modulo a prime to modulo q. In any case, the key generation can be executed in an
external machine and is not used as frequently as encryption or decryption.

Finally, it is very interesting to remark that the NTRU PKC has several advantages in con-
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strained devices. It is the fastest cryptosystem in the market making possible to provide
different security levels at high speed with very low resources. Its simplicity makes the NTRU
PKC ideal for low cost and low consumption devices.
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