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Abstract 

The continuous need for greater bandwidth and capacity to support existing and 

emerging technologies, such as fiber-to-the-home (FTTH) and Internet Protocol 

Television(IPTV), drive optical-communication systems to higher and higher data 

rates per wavelength channel, from 10 to 40  Gbps and above. Degrading effects 

that tended to cause non catastrophic events at lower bit rates have become 

critical concerns for high-performance networks. Among them, polarization-mode 

dispersion (PMD) is perhaps the largest concern and, therefore, has garnered a 

great amount of attention. 

The PMD arises in an optical fiber from asymmetries in the fiber core that induce 

a small amount of birefringence that randomly varies along the length of the fiber. 

This birefringence causes the power in each optical pulse to split between the 

two polarization modes of the fiber and travel at different speeds, creating a 

differential group delay (DGD) between the two modes that can result in pulse 

spreading and intersymbol interference. PMD becomes a unique and challenging 

hurdle for high-performance systems mainly due to its dynamic and random 

nature. The polarization state is generally unknown and wanders with time. In 

general, PMD effects are wavelength (channel) dependent and can vary over a 

time scale of milliseconds. As a random variable, the DGD follows a Maxwellian 

distribution for which high-DGD points in the tail of the distribution can lead to 

network outages. 

Typically, system designers require the outage probability for high-performance 

networks to be 10−5 or less (penalty > 1dB for <30 min/yr). Clearly, the most 

straightforward approach to overcoming the effects of PMD is to employ newly 

manufactured low-PMD optical fibers, which have PMD values < 0.1
��

√���  . 

However, much of the previously embedded fiber has high PMD values between 

0.5 and 1  
��

√���  or even higher. The reality of deploying new systems over the 

embedded fiber means that the PMD monitoring and compensation are important 

for PMD mitigation. Unlike other degrading effects such as chromatic dispersion, 

the PMD is a time-varying random process making compensation difficult. 
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The aim of this work is to study the trend of PMD effects over two different 

system, at 10 and 40 Gbps with two kind of fiber with high (0.5  
��

√��� ) and low 

(0.1  
��

√��� ) PMD coefficient. The first one corresponds to an old fiber’s type, 

that is used in the majority in the current transmission system; while the second 

one corresponds to a new fiber’s type, designed to have a lower response to the 

PMD phenomenon, making possible the transmission over long distances at high 

bit-rates. 

This work is structured as follows: 

After a short introduction, the second chapter is a review of PMD theory; where 

the PMD is faced from a theoretical point of view. It’s reported how the PMD 

arises in a fiber, how the DGD has a  Maxwellian probability distribution, and the 

outage limits to design a system under the influences of PMD. 

In the third chapter there is a literary review over the PMD mitigation. Over the 

years, research groups from around the globe have proposed and/or 

demonstrated different strategies for PMD compensation. In this chapter an 

overview of these strategies shall be given, mentioning their relative merits and 

demerits. Following that, methods to increase the tolerance of a fiber-optic 

communication system to PMD, will also be discussed. 

 

After this theoretical introduction the central part’s of this study starts. In the 

fourth chapter the limitations imposed by the PMD are investigated. 

We starts probing the theoretical distance limits imposed by the only PMD, 

setting all other fiber’s impairments and attenuation to be negligible. Sequentially 

two single span optical transmission systems are compared on the basis of fiber 

PMD coefficient and bit-rates, to find the maximum distance that can be reached 

with a bit error rate of 10-10, taking in account or not  the PMD and setting only the 

attenuation of the fiber. After this first investigation, the real impact of PMD was 

reported, performing a simulation of a multi span system, where the fiber’s 

attenuation of each section is compensated by an amplifier, so to find the 

maximum reachable distances over long-haul transmission and clearly see how 

is the PMD impact.  
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In the last chapter a first-order polarization compensator is tested. Firstly in order 

to show how the compensator could works, the monitor signal’s simulation 

(based on the analysis of the Power Spectral Densities at selected frequency) is 

made, to show how the PMD level is related to the PSD. After that, the 

compensator is tested, performing two simulations at 10 and 40 Gbps with 

different value of DGD reached at the end of the fiber, to demonstrate the real 

capability of the compensator. 

The last study done is over the compensation applied to the previous multi-span 

system, to study how the performance of a system get increasing with a PMD 

compensation, and what is the system tolerance to PMD with or without 

compensation. 

All the simulation of this work are made with the use of a software package (1) 

used in the optical laboratory of Universitat Politècnica de Catalunya. 
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1. CHAPTER 1 

INTRODUCTION 

 

In spite of the recent telecom bubble, statistics show that the net traffic growth 

(combined Internet, data and voice traffic)  remains at the same level as it was 

four years ago and network capacity is being exhausted at the same rate as it 

was during the pre-bubble time. Applications such as videoconference, 

telephony, movies on demand, distance learning, telemedicine  and technologies 

like fiber-to-the-home (FTTH) and fiber-to-the-premise (FTTP) are expected to 

fuel the future bandwidth demand and soon the existing infrastructure will run out 

of capacity and new capacity will have to be added to accommodate the ever-

growing need for bandwidth. One way to add capacity is to increase the 

transmission speeds. However, certain technical challenges need to be 

addressed to enable long-haul high-speed transmission. Two such challenges 

are polarization-mode dispersion (PMD) and chromatic dispersion variability, and 

of these two, PMD is the more difficult one because of its stochastic nature. While 

there are PMD challenges facing carriers at 10 Gb/s, these challenges are not as 

severe as originally feared. A marked improvement in the PMD tolerance of 10 

Gb/s long-reach receivers will likely satisfy most length demands, obviating the 

need for PMD mitigation in many systems. However, transmission speeds of 40 

Gb/s and beyond will most likely require some  form of PMD mitigation in long-

haul applications.  

PMD is caused by optical birefringence  and is a fundamental property of single-

mode optical fiber and fiber-optic components in which signal energy at a 

wavelength is resolved into two orthogonal  polarization modes of slightly 

different propagation velocities. PMD  results in pulse broadening and distortion 

thereby leading to system performance degradation. Unlike the chromatic 

dispersion, PMD varies stochastically in time making it particularly difficult to 

assess, counter or cope with. Active research is being conducted by different 

groups on different issues of PMD for more than a decade.  The key issues of 

PMD research can be broadly classified into three categories: (i) fundamental 

understanding of the phenomenon and its impact, (ii) measurement, and (iii) 
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mitigation strategies. The objective of the PMD research is to understand the 

stochastic nature of PMD thoroughly through analytical analysis, simulations 

and/or analysis of measured data and determine an efficient means for mitigating 

PMD effects on long-haul fiber networks. To ensure signal quality on their fiber at 

higher rates, network engineers must anticipate the impact of PMD on various 

fiber routes. Design of a reliable network requires a good model of the PMD 

characteristics on each link. An understanding of the temporal and spectral 

variability of both the differential group delay (DGD) and principal states of 

polarization (PSPs) is required to specify appropriate transmission parameters 

and also the required speed of PMD compensators. Factors such as the mean 

DGD, PMD correlation time and bandwidth, as well as second-order effects 

together with performance prediction models can provide  this understanding. 

Also, a solid understanding of PMD-induced system outages will help engineers 

and researchers to develop new and cost-efficient mitigation alternatives to PMD 

compensators. 
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2. CHAPTER 2 

POLARIZATION MODE DISPERSION 

 

2.1 PMD FONDAMENTALS 

 

Polarization mode dispersion (PMD) is a form of modal dispersion where two 

different polarizations of light in a waveguide, which normally travel at the same 

speed, travel at different speeds due to random imperfections and asymmetries, 

causing random spreading of optical pulses. Unless it is compensated, which is 

difficult, this ultimately limits the rate at which data can be transmitted over a 

fiber. 

In an ideal optical fiber, the core has a perfectly circular cross-section. In this 

case, the fundamental mode has two orthogonal polarizations (orientations of the 

electric field) that travel at the same speed. The signal that is transmitted over the 

fiber is randomly polarized, i.e. a random superposition of these two 

polarizations, but that would not matter in an ideal fiber because the two 

polarizations would propagate identically. 

In a realistic fiber, however, there are random imperfections that break the 

circular symmetry, causing the two polarizations to propagate with different 

speeds. In this case, the two polarization components of a signal will slowly 

separate, e.g. causing pulses to spread and overlap. Because the imperfections 

are random, the pulse spreading effects correspond to a random walk, and thus 

have a mean polarization-dependent time-differential ∆τ (also called the 

differential group delay, or DGD) proportional to the square root of propagation 

distance L: 

LD=∆τ PMD                                                                         2.1 

Where DPMD is the PMD parameter of the fiber, typically measured in ps/√km, a 

measure of the strength and frequency of the imperfections. 
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The symmetry-breaking random imperfections fall into several categories. First, 

there is geometric asymmetry, e.g. slightly elliptical cores. Second, there are 

stress-induced material birefringences, in which the refractive index itself 

depends on the polarization. Both of these effects can stem from either 

imperfection in manufacturing (which is never perfect or stress-free) or from 

thermal and mechanical stresses imposed on the fiber in the field moreover, the 

latter stresses generally vary over time. 

 

2.2 Birefringence in Optical Fibers 

 

In optical fiber communication systems, although we call the optical fiber as 

single mode fiber (SMF), there actually exist two orthogonally polarized HE11 

modes. If the fiber has not only perfectly symmetric core and cladding geometry 

but also perfectly isotropic material, these two modes have the same group 

delay. However, in the real world, symmetry of the fibers is broken according to 

the internal perturbation and/or the external perturbation. So that the degeneracy 

of the two orthogonally polarized modes is broken: birefringence exists, or in 

other words the phase and group velocities of the two modes are different. 

 

2.1 Figure anatomy of a real fibre 
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The internal perturbation comes from the manufacturing process and has two 

kinds. One kind is that the core is elliptical. In this case, geometric birefringence 

arises and the two HE11 modes have different propagation constants. The other 

kind is that though the core is circular, there exist asymmetric internal stress, 

which causes the material density difference, and thus the difference of the 

propagation constant of the two modes (1; 2) 

The external perturbation includes Lateral stress, bending, and twist. The first two 

have the similar effects as the internal asymmetric stress, so they cause linear 

birefringence by introducing material density difference. Unlike all the other 

perturbation, fiber twist creates circular birefringence. 

The birefringence of single mode fibers is on the order of 10	
 � 10	�, which is 

small compared to the refractive index of the core (~1.5), but in the long 

communication optical fiber it can cause large differential group delay between 

fast mode and slow mode compared to the pulse width of optical signal. The 

perturbation on single mode fiber is randomly distributed along the length. Ideally, 

in a short section of single mode fiber, the birefringence can be considered 

uniform. In this case, it can be viewed as a wave plate. 

 

2.2 Different type of perturbation 
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The slow mode and the fast mode have difference in the propagation constant: 

∆�
� � �

�� ������ � ������ � ∆����
� � ��∆����

��                            2.2 

Where   is the speed of light, ! is the angular frequency of light,  

"#$$ � "$%&' � "&()*  and "&()* ,    "$%&'  are the effective refractive index of the 

slow mode and the fast mode respectively; we can see that the first term is 

independent of frequency and the second term is the dispersion of ∆". 

The linear dependence of PMD could be applied only to short fibers length where 

the birefringence can be assumed to be uniform; instead of long-length fiber 

where the PMD has a square root of length dependence. 

If the input wave is linearly polarized along the birefringence axis, only one mode 

is excited, and the SOP is maintained along the length of the fiber. Otherwise, 

both of the fast and slow modes are excited, and the input SOP is decomposed 

to the two modes which are orthogonal; as shows in Fig. 2.3. 

 

 

Figure 2.3 (A) Decompose a sop to an orthogonal sop pair. (b)Sop on a circle on the poincarè sphere. 

 

 

Point A and point B denote the two orthogonal modes SOP1 and SOP2 on 

Poincarè sphere, and they are symmetric about the sphere centre. Point C 

denotes an arbitrary SOP3.  
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If we project C on the section AB, and cut it into two sections with length -. and 

-/, we get this relation: 

( ) ( )
213 Eea+Eea=E 2

jφ

2
1

iφ

1                                     
 2.3 

a1
2

a2
2
=

l2

l
1

                                                 2.4 

 where the Jones vector of SOP3 is written as the combinations of this orthogonal 

pair. The intensity ratio of each components is determined by the ratio of 1l  and 

2l . With fixed intensity ratio, if the phase difference of the two components 

changes, SOP3 evolves on a circle. We know that as the two excited mode 

propagate along the fiber, the phase difference between them increases while the 

intensity ratio remains the same. So the SOP evolves on the circle with line AB 

as its axis and return to its original SOP after a length named “Beat Length” along 

the fiber (3). 

The beat length is: 

 
∆n

λ
=

cω∆n
=

ββ
=L

fastslow

B
/

2π2π

−
                                          2.5 

  

For 1550nm wavelength and ∆"~10	�, the beat length is ~ 15m. 

 

Figure 2.4 Beat length 
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If the input SOP is fixed, but the light frequency varies, the output SOP for a fixed 

length short fiber evolves in a similar way. In the case that only one mode is 

excited, then the output SOP from this ideal short birefringence maintains the 

same with the input SOP for all frequencies. While when two modes are excited, 

the output SOP traces the circle on the Poincarè sphere surface as the frequency 

is varied. The circle also has line AB as its axis. 

 

2.3 Polarization-Mode Coupling long-length 

 

In the short length of single mode fiber, where the perturbation is considered 

uniform, the DGD is deterministic. However, in the long-haul optical fiber 

communication system, the perturbation on fiber is random. Not only the scale of 

the birefringence is not uniform, but also the axes of the birefringence are 

random. These random axes cause polarization mode coupling. The slow and 

fast polarization modes from one segment are both decomposed to the slow and 

fast mode in the next segment (4). People use the concatenation of wave plates 

with random oriented birefringence axes to model this long fiber, as shown in Fig. 

2.5. 

 

Figure 2.5 Model long fibers by concatenation of wave plates with birefringence oriented randonly 
along the fiber length 

 

In such a long fiber, DGD does not accumulate linearly with fiber length.  

The pulse launched in fiber is splitted into two orthogonal pulses that continues 

down the waveguide with different velocities until they arrive at the next 
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perturbation where both pulses became split and form four pulses. This splitting 

of the pulses continues as more and more perturbations are encountered until 

there are a large number of small pulses propagating down the waveguide. 

Because the relative distance traveled in the two modes is different for each 

pulse, the arrival times of the pulses at the output are different. The result is that 

the optical energy of the input pulse becomes dispersed in time at the output Fig. 

2.6. 

 

 

 
Figure 2.6 Pulse Propagation in a two-mode waveguide with random perturbations. 

 

PMD in long fiber spans is a special case of the general problem of modal 

dispersion in a multimode waveguide subjected to random perturbations. In 

finding a solution to this problem, one adopts either a high-coherence model or a 

low-coherence model. The second is usually referred to as the coupled-power 

model (1). 

To this point, no assumption has been made regarding the relative coherence of 

the individual pulses at the output of the waveguide. However, to determine the 

net pulse shape at the output, one must decide whether to add the pulses 

coherently or incoherently. If one assumes that the pulses at the output are 

incoherent, the power at any instant in time is given by the sum of the power in 

the individual pulses. This low-coherence approach which is the basis for the 

coupled-power model, predicts that in the long-length regime the net output pulse 

will be Gaussian in shape and broadened relative to the input pulse by an amount 
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proportional to the square root of the waveguide length L and the differential 

group velocity ∆1 of the two waveguide modes: 

( )ct Ll
∆V

=σ
2

1
,   

clL >>                                                2.6 

where 
tσ is the root mean square (rms) broadening and 

cl  is the coupling length 

(5). 

When the source coherence is high, the small pulses at the output of the 

waveguide interfere coherently. As a result, the shape of the net pulse depends 

on the relative phase of the constituent pulses and will be extremely different 

from Gaussian. In this situation the coupled-power model can predict only the 

average pulse shape at the output of a waveguide. It cannot predict the actual 

pulse shape that might be observed in a given waveguide, or how the pulse 

shape might change when the state of polarization or the wave-length of the 

source is changed. 

 

2.4 Principle State of Polarization 

 

In time domain, when pulse propagates along a long fiber, it has random mode 

coupling as the birefringence axes changes. The pulse splits at every axis 

change and thus become complicated. In frequency domain, the output SOP for 

different frequencies traces an irregular trajectory on Poincarè sphere. 

 

Figure 2.7 Output polarization evolution for (a) short and (b) long fibers under varying length, 
temperature or wavelength 
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In 1986, Poole and Wagner developed the Principle States Model for long fibers 

(6). It characterizes PMD both in time domain and frequency domain. In time 

domain, when people launch the signal of different SOP into the long fiber which 

has PMD much smaller than the pulse width and has no polarization dependent 

loss (PDL), there exist two orthogonal launch SOP so that the bit-error rate are 

minimum. In these two cases, the pulses are undistorted, and are the slowest 

and the fasted pulses of the entire different SOPs launched. These two SOP is 

called principle state of polarization (PSP). In frequency domain, input PSP is 

defined as the input SOP such that the output SOP is independent of frequency 

over a small span to the first order. 

The corresponding output SOP is called output PSP. Without PDL in system, the 

input PSPs and output PSPs are two orthogonal pairs. The output PSP is related 

to the input PSP by the transmission matrix of the fiber. In Jones calculus, the 

relation is  

( ) ( )ωJE=ωE inout                                               2.7
 

In stokes space, the relations is: 

 ( ) ( ) ( )ωSωR=ωS inout                                                  2.8 

For ideal short fibers, the PSPs are just the birefringence axes (Fig.2.8 a). The 

output PSP is the same for all the frequency. For a fixed input SOP, the output 

SOPs for different frequencies are on a circle that is symmetric about the 

birefringent axis. Though for long fibers, with a fixed input SOP the output SOP 

for different frequencies traces an irregular trajectory rather than a circular on 

Poincarè sphere, but within a small frequency span centred at certain frequency, 

the SOP is approximately on an arc which is a part of the circle symmetric about 

the PSP for this certain frequency (1).  

As shown in Fig. 2.8 (b) for a certain frequency 1ω  and a small span ∆ω , 








 −
2

1

∆ω
ωSOP  and 









2
1

∆ω
+ωSOP  are approximately on the circle symmetric 

about ( )1ωPSP  
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Figure 2.8 (a) output principle state of polarization for an ideal short fiber is the birefringent axis and 
is the same for all frequency. (b) output PSP of a certain frequency for a long fiber. 

 

Assume that the angle of the arc between 






 −
2

1

∆ω
ωSOP and 









2
1

∆ω
+ωSOP is  

dφ , then the DGD between the two orthogonal PSP of frequency 1dω  is:  

( ) 





dω

dφ
=ωτ                                                          2.9 

 

2.5 Higher order dispersion effects  

 

The Principal States Model assumes that the optical loss in the fiber does not 

depend on polarization and that the coherence time of the source is greater than 

the PMD-induced time shift involved. This assumption is equivalent to assuming 

that the net time delay caused by PMD in the span is small compared with the bit 

period. But when the coherence time of the source became comparable to the 

differential delay time, we have higher order dispersion. This means that the 

differential delay time and the dispersion vector are themselves frequency 

dependent and may vary over the bandwidth of a source. 

In the frequency domain, second-order dispersion manifests as a linear 

frequency dependence of the dispersion vector, and in the time domain its 
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manifest as a linear frequency dependence in the polarization vectors and in the 

delay items +τ , -τ of the output electric field formula: 

( ) ( ) ( )-1--+1++2 τ+tEεc+τ+tEεc=tE                                   2.10 

where ( )tE1 is the time-varying input field, +c and -c are the complex weighting 

coefficient, and +ε and -ε are the unit vectors specifying the output polarization 

states of the two components. 

The time domain effects, act as an effective chromatic dispersion that is opposite 

in sign for the two principal states (7; 8). 

 

2.6 Statistical treatment of PMD 

 

Modeling the PMD using a three-dimensional dispersion vector Ω , and allowing 

this vector to grow in a random-walk-like process along the fiber, we can 

demonstrate theoretically that the average delay time has a square root of length 

dependence (Fig. 2.8), and that the probability density function is Maxwellian (1) 

(Fig. 2.9). 

  

 

Figure 2.9 Length dependence of PMD in a concatenated cable span. (9) 
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Figure 2.10 Measured distribution of differential delay times in 10 Km spooled fiber subjected to 
varying temperature. Dashed curve is a Maxwellian fit. (10) 

 

Knowing that the polarization-dispersion vectors Ω  provides a representation of 

PMD, and it could be related to the birefringence in a fiber through the vector 

equation 

 WXΩ
ω

W
=

z

Ω
⊕

∂
∂

∂
∂

                                                2.11 

(where z represent the position along the fiber, and W is a three-dimensional 

vector representing the local birefringence of the fiber), if the birefringence is 

treating as a stochastic process, the PMD of a long span could be related to the 

statistical properties of the local fiber birefringence (11). 

For example, a fiber with uniform birefringence ∆β  subjected to random 

perturbing birefringence, has mean square differential delay time between the 

principal states in the long-length regime given by: 

 cLl
dω

d∆∆
=∆τ

2

2







 ;      
clL >>                                       2.12 

where L  is the fiber length and 
cl ,is the correlation length defined previously. 
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The frequency derivative of the birefringence in Eq. (2.10) is just the intrinsic 

PMD of the fiber.  

Comparison of Eq. (2.10) and (2.4) shows that the principal states model and the 

coupled-power model results are related through a simple numeric constant: 

 22
4 tσ=∆τ ;  

clL >>
                                         2.13

 

As noted previously, the correlation length 
cl  in Eq. (2.10) is highly sensitive to 

mechanical stresses induced by spooling or cabling fiber. Because of the 

dependence of PMD on the correlation length, PMD is also dependent on such 

perturbations. As a result, a single timer may show varying levels of PMD 

depending on whether it is spooled or cabled. Recent measurements indicate 

that cabling may tend to increase 
cl , and, thus, PMD levels by reducing the 

mechanical stresses relative to those on the spool. 

 

2.7  PMD POWER PENALTIES AND PMD LIMITS 

 

As we have already said, PMD is a time-varying stochastic effects, so also the 

system penalties are time-varying. It can be seen in the figure 2.6.1 where is 

plotted the variation of the bit error rate during a day, from the sunrise to the 

sunset.  

This is an experimental demonstration of PMD induced variation in bit error rate 

performance in a digital lightway system. 

Under this observation, a system designed with adequate margins for normal 

conditions, can have unacceptable penalties under  condition of extremely high 

PMD. To obtain an estimation of the limitation imposed by PMD is assumed that 

the pulse bifurcation is the dominant mechanism for pulse broadening (as 

described in Eq. 2.10) the power penalty for a NRZ digital system is: 

 

 ( ) ( )
2

2 1

T

γγ∆τ
AdBε

−
≈

                                             2.14
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Figure 2.11 Bit error Fluctuations in a digital system caused by PMD and changing ambient 
temperature. (12) 

 

where A is a dimensionless parameter that depends on the optical pulse shape 

receiver filter characteristic (table 2.6.1 shows some value of A for several pulse 

shapes) , T is the full width at half maximum of the optical pulse, and γ (that vary 

between 0 and 1) is the power-splitting ratio between the two components. 

This equation shows that the system penalty has a quadratic dependence on 

both the differential delay time and bit rate. The penalty goes to zero only when γ

is 0 or 1, specifically in the case where all the power is in one of the component 

pulses. 

Pulse Shape A 

Gaussian 25 

Raised cosine 22 

Square 12 

25% rise-fall 15 

Triangular 24 
 

Table 2.1 Values for Various pulse shape 

 

As said before the power penalty caused by PMD will vary in a random way, 

owing to the random variation of the parameters γ and ∆τ , so for the purpose to 

establish a PMD limit, its stipulated that penalties in excess of 1 dB are 
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unacceptable; and that the allowable probability for such outage is less than 1 in 

18'000. This probability correspond to σ4 on a Gaussian distribution, and in term 

of cumulative outage time this probability correspond to 30 minutes per year.  

The probability of observing a penalty greater than 1 dB is determined by the 

probability density function for ε . Assuming a Maxwellian distribution for ∆τ  and 

a uniform distribution of γ , and statistical dependence for the two parameters, the 

Eq. (2.12) leads to a simple exponential probability density function for the power 

penalty: 

( ) ( )ηεηe=εP −

                                                     2.15 

Where                                          3 � 165/
678Δ:;/�                                                     2.16 

and 8Δ:; denotes the average differential delay. 

The probability of observing a penalty greater than 1 dB is obtained by integrating 

the above equation (2.13) from 1 to infinity: 

 ( ) ηηε
e=eη=εProb

−−
∫≥ 1}{                                      2.17 

In Fig. 2.12 its shown the distribution of power penalties obtained in a computer 

simulation of a digital system in which fiber PMD is modeled by a concatenation 

of 1000 uniformly birefringent fiber sections having randomly oriented fiber axes. 

Chirp-free Gaussian pulses were sent through PMD and detected by a receiver 

with a fourth-order Bessel shape filter characteristic.  The points in the figure 

show the logarithmic of frequency of occurred penalties in10'000 simulated fibers. 

The solid curve demonstrates the expected dependence according to the Eq. 

(2.13). 

Because the model used for PMD included all higher order dispersion effects, the 

agreement between the data in Fig. 2.12 and Eq.(2.13) demonstrate the validity 

of assuming that first-order effects are the dominant source of pulse broadening 

under small penalty conditions. 
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Figure 2.12 Distribution of power penalties and exponential fit for a simulated digital system 
containing PMD 

 

To obtain a PMD limit, the left-hand side of the Eq. (2.15) is set equal to the 

allowable probability of 1 in 18'000 that correspond to the outage time of 30 

minutes per year. 

This leads to the condition 9.8=η , or assuming Gaussian pulse shape with 

25=A : 

<8∆=;
> ?

@ABAC
� D. FG                                             2.18 

This equation indicates that for a digital system to avoid incurring a power penalty 

greater of 1 dB for a fractional time of 30 minutes per year, the average 

differential time between the principal states must be less than th 14% of the bit 

period. 

To generate a bit-rate limit curve using the previous equation, we make use of 

the length- normalized parameter L∆τ=PMD /  a and the bit rate T=B /1  so 

that equation becomes: . 

 
( )2

2 0.020

PMD
=LB                                                           2.19 

In Fig. 2.13 is shown the plot of PMD limit corresponding to the previous formula 

Eq. 2.19 for an example system of 100km long span. This system should have a 

PMD of less than kmps /1.4 to operate with a bit rate of 10 Gb/s. But this limit is 
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not a hard limit, because a system operating at the PMD limit would operate 

normally for the majority of time; it's only during the outage events that the 

system would experienced significant performance degradation. 

 

Figure 2.13 PMD limit for a digital system 

 

2.8 Jones vector and stokes vector 

 

As the light beam propagates in the z direction, the electric field, which lies in the 

x-y plane, can be viewed as the superposition of two orthogonal linearly polarized 

fields: x and y components.  

As the light beam propagates in the z direction, the electric field, which lies in the 

x-y plane, can be viewed as the superposition of two orthogonal linearly polarized 

fields: x and y components.  

In time domain, for any point in space, the electric field is: 

( ) ( ) ( )yy0yxx0x φ+ωtEa+φ+ωtEa=tε coscos
rrr

                        2.20 

In the previous equation, 
x0E  

and 
y0E  are the amplitudes of the x  and y  

component respectively, while 
xφ and 

yφ  are the phase of these two 
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components. We can see that the electric field varies with time, but the variations 

are different due to the difference in amplitudes and phases of the components.  

We use State of Polarization (SOP) to name this variation. In the case 
yx φ=φ , 

the field direction, which is determined by the ratio of 
x0E and 

y0E , is constant, 

and we get linear polarization. 

In the case 
yx φφ ≠  , we get elliptical polarization, which means that the end of the 

electric field vector evolves on an ellipse in the x-y plane with time. If 
yx φ>φ  , the 

ellipse is left-handed, which means the evolution is counter-clocked wise, while if 

yx φ<φ , the ellipse is right-handed, which means the evolution is clock wise. (We 

always assume that the observer looks towards the propagation direction of the 

light.). 

Conditions φx= φy  yx φ>φ  
yx φ<φ  

SOP linear polarization,

x0

y0

E

E
=θtan  

( θ is the field direction 

from +x axis ) 

 

Left-handed elliptical 

polarization. 

 

Right-handed elliptical 

polarization. 

 

If 
2

π
+φ=φ yx

 
and 

y0x0 E=E , left-hand 

circular (LCH) 

If 
2

π
+φ=φ xy and 

y0x0 E=E , right-hand 

circular (RCH) 

 
Table 2.2 SOPs in different cases 

 

Jones calculus is a simple and clear way to describe SOP and the media where 

the light propagate and its SOP evolves. Jones calculus includes 1×2 Jones 

vectors which describe the SOP, and 2×2 Jones matrices which describe the 

media. In Jones calculus, the electric field of a certain SOP is written as: 
























y
jφ

y0

x
jφ

x0

y

x

eE

eE
=

E

E
=E

                                         2.21 

If we normalize the Jones vector, all the SOP can be written as: 
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( )











−

xy
φj φ

θxe

θ

sin

cos

                                         2.22 

The normalized Jones vector for horizontally and vertically linear polarization and 

the right-hand and left-hand circular polarization are: 










−
























j
;

j
;;

1

2

11

2

1

1

0

0

1

                                     2.23 

If the two SOPs 1E and 2E  are orthogonal, this means these two Jones vector 

satisfies: ( ) 01 =E,EDot 2  , where 
2E  is the conjugate of 2E .  

Obviously, Horizontal linear polarization and vertical linear polarization, RHC and 

LHC are two orthogonal pairs. Any SOP can be decomposed to the combination 

of two orthogonal SOP pairs. When the light propagate in a media, its SOP 

evolves. We use Jones matrix to describe how this media changes the input SOP 

into the output SOP.  

The relationship is : 
































y

x

out
y

out
x

E

E

JJ

JJ
=

E

E

2221

1211

                                    2.24 

where 








2221

1211

JJ

JJ
=J is Jones Matrix. For example, here we introduce two simple 

but frequently used Jones matrix. One is for the retarder (or wave-plate) which 

has the fast axis at x axis: 

( )





















20e

02

φ

φ

e
=φR

j

j

                                                  2.25 

it retard the phase of y  field component by φ  . The other one is for rotating the 

coordinates by angle θ  relative to the x+  axis: 
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( ) 








− θθ

θθ
=φS

cossin

sincos

                                              2.26 

For a complicated or composite optical device, to get its Jones matrix, we can 

just multiply the Jones matrix of the simple operations or the individual elements 

in order. In a system with no loss, the Jones matrix can be simply expressed as 

the products of the Jones matrix for retarders and axis rotations. 

Similar to Jones calculus, stokes vector and Müller matrix in stokes space is 

another way to describe SOP and the media. Stokes parameters ( s0 , s1 , s 2 , 

s3 ) are measurable parameters: 

2

yo

2

x0LCHRCH13545900 E+E=I+I=I+I=I+I=s0                       2.27 

2

901 y0

2

x00 EE=II=s −−
                                          2.28 

( )xyy0x045 φφEE=II=s −− cos21352                                   2.29 

( )xyy0x0LCHRCH φφEE=II=s −− sin23                                 2.30 

where 
0I  is the intensity of the horizontal component, and the meaning of 

90I , 
45I  

, 
135I  , 

RHCI  and 
LHCI  are similar. The stokes vector is the normalization of the 

vector ( )32 s,s,s1 . This vector is always plotted on the unit sphere known as 

Poincarè sphere in 3-D space. By this tool, SOP can be visualized and 

conveniently analyzed.  
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Figure 2.14 Pintcarrè Sphere 

 

 

The table below shows the stokes vector for some special SOPs: 

( )32 s,s,s1  SOP 

( )1,0,0  Horizontal linear polarization 

( )1,0,0−  Vertical linear polarization 

( )0,1,0  45 degree linear polarization 

( )1,00,−  135 degree linear polarization 

( )0,0,1  Right-hand circular polarization 

( )10,0,−  Left-hand circular polarization 

03 =s  Linear polarization 

03 <s  Right-hand elliptical 

polarization 

03 >s  Left-hand elliptical polarization 

 

Table 2.3 Stokes vector for different SOPs 
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On the Poincarè sphere, all the linear polarizations lie on the equator. The north 

pole and the south pole are LHC and RHC respectively. SOPs are left-hand 

elliptical on the north of the sphere, and right-hand elliptical on the south. Every 

pair of orthogonal SOPs are the two points symmetric about the center of the 

sphere. 

In stokes space, a 3 × 3 matrix called Müller matrix describe the media’s effect on 

the SOP evolution. 

Jones calculus and the stokes vector have their own advantage comparing to 

each other. Jones vector and matrix are smaller in size, and they describe the 

field directly. However, Jones vector can only describe polarized light, while 

stokes vector can also describe partially polarized light and unpolarized light. 

Moreover, visualization is also an advantage of stokes space. 
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3. CHAPTER 3 

PMD MITIGATION 

 

3.1 Introduction 

 

As explained in the previous chapter, PMD can cause several undesirable effects 

that could be obstacles to high speed telecommunication through optical fibers. 

Such effects are not limited to digital communication systems but affect analog 

communication systems as well.  

With the evolution of specialized manufacturing methods, PMD in present day, 

telecommunication grade fibers is kept very low (< 0.1ps/√km). Still, no matter 

how good the fiber may be, at some bit-rate-length product, PMD will be an issue. 

Hence, there is need to investigate strategies for PMD mitigation.  

Over the years, research groups from around the globe have proposed and/or 

demonstrated different strategies for PMD compensation. In this chapter an 

overview of these strategies shall be given. Their relative merits and demerits will 

also be mentioned. Following that, methods to increase the tolerance of a fiber-

optic communication system to PMD, will also be discussed. 

 

3.2 PMD compensation strategies 

 

The more widely researched PMD compensation techniques are summarized in 

the next section, followed by a summary of other techniques.  

 

3.2.1 Optical PMD compensation techniques 

 

Optical PMD compensators (Fig. 3.1) typically comprise of a polarization 

controlling device, an optical delay element (fixed or variable) and allied 
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electronics which provide control signals to the optical components based on 

feed-back information about the link’s PMD.  

 

Figure 3.1 Structure of an optical PMD compensator 

 

 

3.2.2  Classification based on PMD monitoring techniques 

 

PMD is a randomly changing entity. Adaptive techniques are necessary to 

continually track the changing DGD and PSPs and perform effective PMD 

compensation. It is also necessary to provide reliable estimates of the DGD and 

PSPs to the PMD compensator. The control signals to the variable delay element 

and the polarization controller can be generated using different PMD monitoring 

techniques. A summary of the monitoring techniques used in feed-back based, 

optical PMD compensation systems is given below.  

One of the earliest techniques used for monitoring PMD is the observation of the 

power levels of specific tones in the received RF spectrum of the base-band 

signal (13). The monitor signal, based on which a control signal to the 

polarization controller is generated, is proportional to the expression: 

1 � 4γ�1 � γ�sin/�πfΔτ�                                    3.1 

where, γ  is the ratio of power-splitting between the two input PSPs, Q  is the 

center frequency of the band-pass filter for extracting the monitor signal and  ∆R is 

the net DGD, from the start of the link up to and including the delay element used 
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in the compensator (13). The principle behind this technique is the following. 

PMD causes reduction of power in the main lobe of the received baseband 

spectrum. Therefore, the amount of PMD to be compensated for can be 

estimated by measuring the power level of the received baseband spectrum. The 

power level of a single tone (corresponding to half the bit-rate), that can give an 

unambiguous estimate of PMD, has been used as the monitor signal in (13). The 

band-pass filter is used to extract the monitor signal from the baseband 

spectrum. The adjustments to the compensator are made with the goal of 

maximizing the monitor signal, which would happen when PMD effects are 

effectively nullified.  

One drawback of using the above described technique is that the required 

hardware is bit-rate dependent. The photo-detector, band-pass filter, RF 

amplifiers etc can be used for one data rate only.  

Another recently developed PMD monitoring technique is based on the degree of 

polarization (DOP) of the received optical signal. PMD can depolarize the optical 

signal. This in turn reduces the DOP (since DOP is a measure of the amount of 

optical power that is in the polarized state). The  reasons  for reduction in DOP 

due to PMD effects in digital communication systems have been identified and 

described in (14) and (15).   

 

 

 

Figure 3.2 Depolarization in digital optical signals due to pmd. Comparison of cases (a) without pmd 
and (b) with pmd 
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Figure 3.2 illustrates the role of PMD in causing depolarization in digital optical 

signals. The merits of using DOP evaluation in the PMD monitoring mechanism 

are several in number. DOP is bit-rate independent and largely modulation format 

independent. To a good extent, techniques based on DOP evaluation reduce 

hardware complexity. On the other hand, since DOP is also affected by amplified 

spontaneous emission (ASE) noise and non-linear effects, it's sensitivity to PMD 

may get reduced in long distance fiber-optic links.  

 

 

Figure 3.3 Simulated DOP versus γ, the power splitting ratio between the two input PSPs of a PMD 
device, for a 10-Gb/s, lithium niobate-Mach-Zehnder, NRZ (non-return to zero) modulation, for 

different DGD values 

 

Figure 3.3 is a plot showing the sensitivity of DOP to DGD. It is significant for 

more than one reason. Firstly, it confirms that DOP can be a good indicator of 

PMD. Also, it shows that the sensitivity of DOP to DGD is greatest when the 

power splitting ratio, γ, is 0.5. 

Another monitoring technique is based on inter-symbol interference caused by 

PMD in digital fiber optic systems. The received eye diagram is monitored and a 

control signal based on the amount of eye opening is generated. 

For example, this technique should  uses an integrated SiGe circuit, consisting of 

two decision circuits, as the eye monitor (16). The correlation between the bit 

error rate (BER) and the signal generated by the eye monitor has been reported 
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to be good. The goal of PMD compensation in digital systems is the minimization 

of BER. However, the BER by itself cannot be directly used as a quantity 

representative of PMD, because it cannot be measured with high accuracy in a 

short period of time. Methods such as the eye monitor technique help to 

overcome such difficulties by providing a control signal which is correlated to the 

BER.  

In principle, eye opening monitoring enables the most precise feedback signal, 

but it requires high-speed electronics 

 

3.2.2.1 Classification based on order of compensation 

 

Depending on the versatility and compensation capability, PMD compensators 

can be classified as half-order, first-order and second-order compensators.  

A half-order compensator comprises of a polarization controller and a fixed 

optical delay element. In addition, there is a feed-back control mechanism to 

provide appropriate control signals to the polarization controller. The principle of 

operation is that the polarization controller is adjusted so as to minimize the 

combined DGD of the link and the compensator. The delay element is fixed. 

Since this compensator can only compensate for a fixed amount of DGD, rather 

than varying delays, it is sometimes referred to as a half-order compensator. A 

half-order compensator configuration, consisting of a polarization controller and a 

segment of high-birefringence fiber (fixed delay element) has been described in 

(13). 

The polarization controller adjustment was made based on a feed-back signal 

which was the power level of the tone corresponding to half the data rate in the 

received base-band spectrum. Figure 3.4 is a reproduction of the PMD 

compensator configuration described in (13). 
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Figure 3.4 Half-order PMD compensator. (OS: optical source, PC: polarization controller, LPF and 
BPF :low-pass and band-pass filters, ( )2: square-law detector, OR: optical receiver) 

 

A first-order PMD compensator is slightly more complex than a half-order 

compensator since it has a variable delay element instead of a fixed delay 

element. A feedback mechanism provides control signals for adjusting both the 

polarization controller and the delay element. The first-order compensator can be 

employed to counter different amounts of DGD values. 

The first-order configuration described in (17) uses a polarization controller and a 

variable delay element. Based on the feedback signal (which is similar to the one 

adopted in (13) ), polarization and delay adjustments are executed so as to 

minimize the PMD effects. In order to increase the accuracy of the PMD 

compensation, the SOP of the optical signal may be scrambled before the signal 

is launched into the fiber link. Figure 3.5 is a block diagram of the PMD 

compensation system described in (17). 

 

 

Figure 3.5 First-order adaptive PMD compensator functional block diagram. (LPF and BPF: low-pass 
and band-pass Filters, ( )^2: square-law Detector) 
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Another approach for first-order PMD compensation is called the PSP 

transmission method. It was first described in (18). The PSP transmission method 

is a pre-compensation method in which a polarization controller is used to align 

the SOP of the optical signal with a PSP of the fiber link. Figure 3.6  (19) shows 

the block diagram of a first-order PMD compensator based on the PSP 

transmission method.  

 

Figure 3.6 First-order PMD compensation with PSP method 

  

Given the increasing data-rates and the expanding bandwidth, importance has 

been attached to second-order PMD compensation also. One proposed 

configuration uses two polarization controllers and two pieces of high-

birefringence fiber . The compensator's PSPs are made to vary linearly with 

frequency so as to compensate for PMD over a larger bandwidth. The principle of 

changing the PSPs of the compensator as a linear function of frequency is made 

use of in the configuration described in (20) also. However, the set-up adopted in 

(20) includes three polarization controllers and two variable delay lines (or one 

variable delay line and one Faraday rotator). Figure 3.7 is a block diagram of the 

compensator described in (21).  

 

 

Figure 3.7 Second-order PMD compensator block diagram. (PC1 and PC2: polarization controllers) 
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3.2.3 Electrical PMD Compensation 

 

The first demonstration of PMD compensation was made by equalizing the 

electrical signal before the receiver with a Electronic distortion equalizers (EDEs). 

Many variations of this idea have been proposed, including opto-electrical 

compensator that are based on polarization diversity detection, so that two or 

several electrical signals can be combined to yield a compensated signal. More 

recent approaches have focused on various kinds of prediction schemes and 

references therein.  

In general, however, electrical schemes are robust and will improve the signal 

against all kinds of transmission impairments; and thanks to their integration as a 

simple electronic chip into an optical receiver board, they offer a promising and 

potentially low-cost alternative or complementary approach to adjustable optical 

means for reach and bit-rate upgrade . 

On the drawback side is that they do not perform as good as optical PMD 

compensator due to the loss of optical phase and polarization information after 

detection by a photo-diode. 

Nevertheless, a single, low- cost EDE chip implemented in each receiver will 

potentially enable progress toward extended reach lengths, or toward higher bit 

rates. Moreover, it relaxes the design constraints on the optical infrastructure. In 

certain cases it can allow the removal of expensive, finely tuned optical distortion 

compensator inserted at the receiver side (22).  

Two different basic types of electronic equalizers exist, using either analog or 

digital processing means (fig. 3.8). Both equalizer types can be realized as an 

application-specific integrated circuit (ASIC), on a chip area of a few square 

millimeters, and adapt automatically to any slowly varying distortion without the 

need for a training sequence.  
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Figure 3.8 Analog and digital electronic distortion equalizers. 

 

 

Analog electronic equalizers include multi-tap feed-forward equalizers (FFE), 

decision feedback equalizers (DFE), and combinations of both. The DFE includes 

the decision gate. This type of equalizer processes several consecutive bits at 

the same time, but the data then will be decided bit-by-bit.  

Different techniques are available for the automatic adaptation of analog 

electronic equalizers. In systems using FEC, the count of the corrected errors can 

be used as the feedback signal for the adaptation algorithm. The error count is 

applied in a dither algorithm for adaptation of the FFE and the decision circuit, 

where each tap and the decision threshold, respectively, are optimized 

independently to minimize the error count. Due to the random occurrence of bit 

errors, a sufficiently high number of errors must be evaluated in order to obtain a 

stable feedback signal.  

An alternative method (23) is to insert an eye monitor in parallel with the decision 

circuit. This eye monitor evaluates the vertical eye opening of the received data 

signal by measuring the mean and rms values of ones and zeros. Two versions 

are possible:  

• The serial eye monitor consists of a decision circuit, where the threshold 

and sampling phase are continuously tuned.  
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• The parallel eye monitor uses an analog-to-digital converter (ADC).  

Both eye monitors provide a parameter that is related to the eye opening or the 

Q-factor of the eye diagram of the equalized signal. This parameter is then used 

in the same dither algorithm as with the error count feedback. Since the eye 

monitor works independently of the decision circuit, it enables a faster adaptation 

speed than obtained by using the FEC error count.  

Digital electronic equalizers use the maximum likelihood sequence estimation 

(MLSE) by implementation of the Viterbi algorithm (22). They require more 

complex signal processing compared with the analog equalizer. First, it converts 

the received data signal into digitized samples using an analog-to-digital 

converter with 3–4 bit resolution. Then it calculates the most probable received 

sequence in a digital processor using the Viterbi algorithm: i.e., it simultaneously 

processes and decides a data sequence resulting in a potentially higher 

performance compared to the analog type. The adaptation of the digital equalizer 

is done by a statistical analysis of the formerly received data signals, which are 

available within the digital equalizer. The adaptation speed is then comparable to 

that of the analog equalizer using the parallel eye monitor.  

 

3.3 Increasing PMD tolerance in a fiber-optic system 

 

In addition to compensating for PMD, there are methods by which a fiber optic 

communication system's tolerance to PMD can be enhanced. A well researched 

such method is the use of PMD resistant modulation formats. Forward-error 

correction (FEC) coding is another example. FEC can help increase the tolerance 

of a system to effects of noise, chromatic dispersion and PMD. An experiment 

described in (23) uses Reed-Solomon error-correcting codes along with a first-

order PMD compensator to effectively increase the PMD tolerance of a 10-Gb/s 

system.  
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3.3.1 Modulation formats resistant to PMD effects  

 

The most widely adopted signaling format in contemporary fiber optic 

communication systems is the NRZ (non return-to-zero). However, in recent 

years, novel modulation formats and their resistance to signal degrading 

phenomena, such as PMD, have also been studied widely.  

Return-to-zero (RZ) signals are considered more resistant to penalties caused by 

broadening than NRZ. The reason for the increased resistance of RZ can be 

explained as follows (1). In the case of RZ modulation, the signal energy is more 

confined to the centre of each bit duration. As DGD increases, the power in 

isolated zeros rises only slowly. Whereas in the case of NRZ, this power rises 

quickly and combines with the ones to cause greater penalty (1). In addition to 

RZ, there are the chirped RZ (CRZ), classical solitons and dispersion-managed 

solitons (DMS). which are known to be more resistant to PMD effects. Classical 

solitons and DMS are considered more resistant to birefringence induced break-

up. Just as dispersion and non-linearity balance each other to prevent pulse 

broadening, the non-linear attraction between the two polarization components 

prevents the break-up of a soliton or DMS pulse due to birefringence. 

A comparison of the penalties incurred by NRZ, RZ, CRZ and DMS signals in the 

presence of high PMD, in a 10-Gb/s terrestrial system, has been made using 

computer simulation (24). The results showed that RZ, DMS and CRZ signals 

performed better than NRZ for spans of up to about 600 km. For longer spans, 

CRZ provided the best system performance. Examples of other modulation 

formats that have been studied and that are known to be more resistant to PMD 

than NRZ are, the phase-shaped binary transmission format (PSBT) (25) and 

optical duo-binary modulation which has been reported to be more resistant to 

higher order PMD effects also (26). 
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3.4 Simulation’s Compensator 

 

The structure of the compensator used in this study is shown below. 

 

Figure 3.9 Block diagram of transmission link including the PMD compensator 

 

The transmission is made through a NRZ modulator, @1553 nm in the third 

windows; and the power-splitting is set to 0.5, in order to obtain the worst 

waveform distortion.  

At the compensator side (Fig.3.10) there is  a polarization angle rotator, that 

rotates SOP of the incoming light, in front of a variable delay line; by rotating the 

SOP of the incoming lightwave it’s possible to controls which component of the 

light is to be delayed.  

In this setup the monitor is made through an eye opening monitor used as a 

feedback signal, but there isn’t a control algorithm, that is made handily, by 

setting the better combination of SOP and delay, to controls the polarization 

rotator and the delay line. 
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Figure 3.10 PMD Compensator Scheme 

 

 

The compensator is composed by: 

• 3 stage controller 

• polarization beam splitter 

• delay compensator 

• polarization beam combiner 

 

The 3-plate polarization controller (28) is a polarization transformer, 

implemented as a hierarchical structure. It consists a half waveplate between two 

quarter waveplates, as shown in Figure 3.11 . 

All of the waveplates are endlessly rotatable, but the two quarter waveplates 

have a fixed angular offset of 90°. This offset reduces the number of control 

variables, while still providing access to all polarization states. Although any 

angle can be entered for Control1, its functional range is from 0° to 360°. 

Similarly, the functional range for Control2 is from 0° to 90°. As shown in Fig. 

3.11, Control1 rotates all of the waveplates, while Control2 provides an additional 

rotation to the half waveplate. The mapping of the two control angles to specific 

polarization changes is complex. Generally, values of Control2 near 0° and 90° 

give small changes in ellipticity, while values near 45° give large changes. 

Control2 also determines the range of azimuths that can be reached. On the 

other hand, values of Control1 near 90° and 270° give large changes in azimuth, 
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while values near 0°, 180° and 360° give smaller changes. Control1 also 

determines the range of ellipticities that can be reached. 

In this case the ellipticity was set to 0 in the PMD emulation, so Control2 is 

always set to 0, and only Control1 varies in order to change the SOP of the 

incoming lightwave. 

 

Figure 3.11 Polarization controller 

 

The polarization beam splitter module simulates an ideal polarization beam 

splitter that divides the two polarization equally. 

The operation of the polarization beam splitter is explained in Fig. 3.12. It can be 

considered to consist of two ideal linear polarizers oriented orthogonal to each 

other. The polarization components of the input optical signal, corresponding to 

the x- and y- axis of the device, are output at the ports OutputX and OutputY.  

 

Figure 3.12 PBS Scheme 

 

The delay compensator module imposes a variable time delay on an optical 

input signal. The original signal after that is splitted into the two polarization 
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mode, come to this device, where the fast axis is delayed, while the slow axis 

remains unalterated. 

The polarization beam combiner (fig. 3.13) consists of two ideal linear 

polarizers at the input ports inputX and inputY, which are oriented orthogonally to 

each other. The polarizers are used to select the appropriate polarization 

components of each input signal and are followed by an ideal multiplexer, which 

adds the selected polarization components.  

After the multiplexer, the signal is given to the input of the Signal-Converter 

module. When one Parameterized Signal is at the inputX port and another one 

with the same frequency is at the inputY port, the output spectrum of the 

multiplexer contains two signals with equal frequencies.  

 

Figure 3.13 PBC Scheme 
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4. CHAPTER 4 

PERFORMANCE LIMITATION DUE TO PMD 

 

In this chapter is studied how the Polarization Mode Dispersion influences the 

performance of an optical communication systems, in a single or multi span 

system.   

 

4.1 Introduction 
 

Polarization Mode Dispersion, or PMD for short, is an important  linear 

phenomenon occurring inside optical fibers that affects the performance of 

modern fiber-optic communication systems adversely. For a given fiber, PMD is 

supposed to be fixed. However, this is not the case in real communication 

systems because environment fluctuations cause PMD to vary randomly in time, 

which makes it difficult to compensate for PMD. Therefore, it is important to 

understand the statistical properties of pulse propagation induced by PMD.  While 

the phenomenon of Polarization Mode Dispersion (PMD) has been known for 

years, it has only been recently that it has posed a serious, realistic problem for 

optical networks. PMD’s negative effects result in a limitation of a networks 

bandwidth or length that is, of course, undesirable to say the least.   As laser light 

is generally highly polarized, the digital bits that they emit contain light that is also 

highly polarized. Couple this with the birefringence present in the fiber and the 

result is that different components (polarizations) of the digital bits travel at 

different velocities (27). In other words some of the light in the bit travels faster 

and some of the light travels slower. This causes the digital bit to spread in time; 

this is termed dispersion. Moreover, the residual birefringence is not constant 

along the length of the fiber but changes with distance in a random way, not only 

in amount, but also in its local principal axes. For a given fiber, PMD is supposed 

to be fixed. However, this is not the case in real systems because environment 

fluctuations cause PMD to vary randomly in time. Therefore, it is important to 

understand the statistical properties of pulse propagation induced by PMD. 
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4.2 Impacts of Polarization Mode Dispersion on the performance 
of Optical communication system 

 

In this part, two systems at different bit-rate are studied, to show how the PMD 

can degrade a system performance; the first system is built using an older fiber 

with an high PMD coefficient, while the second one is built with new fiber with 

less PMD coefficient than the previous one. 

Chromatic dispersion and Non linear effects have been disabled, so that all the 

variation of the results is due to PMD . 

The bit rate is varied from 10 Gbps to 40 Gbps and the simulations are made with 

or without PMD coefficient, to show how the polarization mode dispersion affect a 

communication system. 

It is shown that the impact of PMD increases with the bit rate of system. It is also 

observed that the impact of PMD becomes intolerable at the bit rate of more than 

40 Gbps. Also the PMD produces very minute impact on the system performance 

for same bit rate with the variation in the fiber length.  

 

4.2.1 Simulation Setup  

 

The system architecture shown in Fig. 4.1, is build to study the impacts of 

Polarization Mode Dispersion over different bit rates. In the setup two simple 

optical transmission systems are compared on the basis of fiber PMD coefficient 

and bit-rates, to find the maximum distance that can be reached with a bit error 

rate of 10-10 and 10-4. It’s taken in account also the a value of 10-4 for the BER, 

because with the FEC (Forward Error Correction) it could possible to improve the 

BER from a value of 10-4 to 10-10.  

In the transmission side the signal generator generates a pseudo random data 

sequences in order to emulate a real data transmission; subsequently the data 

sequence is coded by a NRZ Coder that generates for each input bit, an electrical 

Non Return to Zero coded signal. At this point the coded signal is filtered by a 
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Gaussian filter that transforms, rectangular electrical input pulses into 

smoother output pulses with a user-defined rise-time. Its effect is to band-limit 

the modulated optical signal, which is required to avoid numerical artefacts 

when resampling to higher sample rates.  

After these steps, a Mach Zehnder modulator modulates the optical carrier 

signal from the laser source with the electrical signal from the signal generator, in 

order to obtain an optic source that comes through the fiber.  

 

The two fibers type, that are used in this simulation, have a PMD coefficient of 

0.5 �� √���   and 0.1 �� √���  respectively; and the PMD emulation is made 

under the worst case condition, that is with the power-splitting of the two 

polarization set equal to 0.5, that provides the worst waveform distortions.  Only 

the attenuation (0,2 dB/Km) is taken in account, while chromatic dispersion and 

non linear effects are sets to be negligible. 

 

At the receiver side, the fiber is connected to a PIN photo detector that converts 

the optical signal into an electrical one. The electrical output of the photo detector 

is filtered by a Bessel Low-pass filter; the aim of this module is to remove all 

spectral components located beyond a corner frequency, passing only a defined 

band of frequencies. 

The filter’s output is connected to a Ber estimator, that estimates the bit error 

ratio (BER), and the results are plotted by the graphical analyzer. 

 

Figure 4.1 Simulation setup 
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Figure 4.2 Transmitter's scheme 

 

 

Component Parameter Value 

Transmissor 

Bit-rate 10 - 40 Gbps 
Laser Frequency 193.1 THz 
Laser Average 
Power 

1 – 2 mW 

Laser ellipticity 0 
Rise time 0.25/Bit-rate 

Fiber 

Attenuation 0.2 dB/Km 
Chromatic Disp. 0 
Disp. Slope 0 
Non linear index 0 
Core Area 80e-12 m2 

PMD coefficient 0.5 – 0.1 
��

√���  

Power split ratio 0.5 

Receiver 
Photodiode type PIN 
Responsivity 1 

Electrical filter 

Filter type Low pass 
Transf. function Bessel 
Bandwith 0.7*Bit-rate 
Order 4 

Table 4.1 Scheme parameters 
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4.2.2 Simulations results and comments 

 

In this section are been reported the impacts of Polarization Mode Dispersion 

over the length (at different bit-rate) in an optical network transmission. 

 

4.2.2.1  Only PMD 

 

As mentioned in Section 2.7, according to equation 2.17,  
( )2

2 0.020

PMD
=LB  the 

maximum reachable length of a fiber with only PMD and without other 

impairments, is inversely proportional to the bit-rate and to the PMD coefficient. 

In this first simulation these theoretical limits are investigated to see how the 

maximum achievable distances are reduced significantly with increasing bit-rate 

of the system or increase the PMD coefficient of the fiber. These distances are a 

theoretical one, that is impossible to reach in real system. 

 

Figure 4.3 PMD = 0.5 ps/sqrt(Km) Bit-rate = 10  Gbps 
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Figure 4.4 PMD = 0.1 ps/sqrt(Km) Bit-rate = 10  Gbps 

 

 

Figure 4.5 PMD = 0.5 ps/sqrt(Km) Bit-rate = 40  Gbps 
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Figure 4.6 PMD = 0.1 ps/sqrt(Km) Bit-rate = 40  Gbps 
 

Bit- rate 
[Gbps] 

Maximum Length [Km] 
PMDc=0.5 

Maximum Length [Km] 
PMDc=0.1 

10 717 19800 

40 47 1144 

Table 4.2 Theoretical PMD limits 

 

As it can be seen from the results of this first simulation, the theoretical limits 

imposed by PMD vary widely depending on the bit-rate. This initial result can be 

explain  how  PMD can affect a transmission, reducing  the maximum achievable 

distance, at which a proper reception of the signal could be done. 

At 10 Gbps the maximum distance varies of a value of 19000 Km changing the 

PMD coefficient  from 0.5 �� √���   to 0.1 �� √��� ; while at 40 Gbps, respect the 

previous case with a coefficient of 0.5 �� √���  the maximum achievable distance 

cannot exceed the distance of 47 Km, with a difference of almost 670 Km; and 

with a coefficient of 0.1 �� √���  the difference with the transmission at 10 Gbps 

is about 18600 Km. 
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These data are not a real one, because in reality we have to face with some 

stronger limitation like the fiber’s attenuation, chromatic dispersion and non linear 

effects. On the base of this assertion, a more real simulation is performed, to see 

the real effects, and the real limitation imposed by polarization mode dispersion. 

 

4.2.2.2 Effects of Attenuation and PMD 

 

After a first completely theoretical simulation, it will be to investigate the 

performance of the transmission with only fiber’s attenuation before, and then will 

also be added the PMD. 

Simulations were made with a transmitting power of 0dBm and 3dBm in order to 

assess whether the benefits vary linearly or less, depending on the transmitted 

power. 

 

 

Figure 4.7 Bitrate=10 Gbps, No PMD 
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Figure 4.8 Bitrate=10 Gbps, PMD=0.5 ps/sqrt(km) 

 

 

Figure 4.9 Bitrate=10 Gbps, PMD=0.1 ps/sqrt(km) 
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Figure 4.10 Bitrate=40 Gbps, no PMD 

 

 

Figure 4.11 Bitrate=40 Gbps, PMD=0.5 ps/sqrt(km) 
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Figure 4.12 Bitrate=40 Gbps, PMD=0.1 ps/sqrt(km) 

 

In the table below are summarized the simulation's results.  

 
Bit Rate 
[Gbps] 

Transmission 
Power [dBm] 

PMD 
Coefficient 

TUV √WB� X 

Ber Vs Length Ber Bs Received Power 

L [Km] 
@Ber=10

-3
 

L [Km] 
@Ber=10

-10
 

L [Km] 
@Ber=10

-3
 

L [Km] 
@Ber=10

-10
 

10 

0 

0 87 77 -17,4 -15,5 

0.5 72 65 -14,5 -13 

0.1 87 77 -17,4 -15,4 

3 

0 99 75 -16,8 -15 

0.5 89 68 -14,8 -13,6 

0.1 99 74 -16,8 -14,8 

40 

0 

0 64 56 -12,8 -11,3 

0.5 40 35 -7.9 -7 

0.1 59 51 -12.4 -10,3 

3 

0 83 59 -13,6 -11,8 

0.5 57 37 -8,4 -7,4 

0.1 75 53 -12 -10,5 
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From the obtained results, the first thing that can be noted is that in function of 

the optical power transmitted , the distance varies linearly in both cases, with or  

without PMD. Henceforth, for simplicity, all simulations will be performed by 

transmitting a power of 1 mW. 

The second thing that can be noted is how the PMD affects a transmission 

system, especially at high bit-rate. 
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In the system with bit-rate of 10 Gbps, it can be seen how the PMD affects the 

transmission distance only with high coefficients (0.5 ps / √ km) where it begins to 

reduce the maximum achievable distance compared to the case without PMD or 

with low coefficient (0.1ps / √ km). 

Instead in the previous case, in the system with bit rate of 40 Gbps, the effect of 

PMD starts to become much more important. In fact, this impairments can 

paralyze an optical communication system with high PMD coefficient (0.5 ps / √ 

km), blocking transmissions over distances of greater than 40 km, while 

beginning to reduce even slightly the maximum distance reached by fiber with a 

low PMD coefficient (0.1ps / √ km) in a single span. 

Except the transmission at 40 Gbps with a fiber’s PMD value of 0.5ps / √ km, in 

all other cases tested, the major limitation on the maximum achievable distance 

is given from the fiber’s attenuation, because the maximum attainable value 

distance have the same level. 

For this reason, in the next part of this chapter, it will be analyzed the maximum 

lengths obtained by compensating the attenuation of the various sections of fiber, 

so as to study the real performance of the effect of PMD. 

 

4.2.3 Multispan 

 

4.2.3.1 Simulation setup 

 

 

Figure 4.13 Multi span setup 
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In the previous figure above is represented the simulation’s scheme; instead of 

the simple optic fiber there is a loop, that simulates a system with fiber and an 

amplifier in series. The amplifier’s gain is set to recovery the attenuation gives 

from the previous fiber’s section. At the end of the entire series of fiber-amplifier 

there is an optical Gaussian band-pass filter, that remove the out of band 

amplified spontaneous emission (ASE) noise, coming from the amplifier; and at 

the end, like in the previous simulation there is a ber estimator. 

 

4.2.3.2 Multispan results at 10Gbps 

 

 

Figure 4.14 PMD= 0 ps/sqrt(Km) Bit-rate = 10 Gbps   
 

 

Figure 4.15 PMD= 0.5 ps/sqrt(Km) Bit-rate = 10 Gbps 
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Figure 4.16 PMD= 0.1 ps/sqrt(Km) Bit-rate = 10 Gbps 

 

 

4.2.3.3 Multispan results at 40Gbps 

 

 

Figure 4.17 PMD= 0 ps/sqrt(Km) Bit-rate = 40 Gbps 
 

 

Figure 4.18 PMD= 0.1 ps/sqrt(Km) Bit-rate = 40 Gbps 
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Bit Rate 
[Gbps] 

PMD 
Coefficient 

TUV √WB� X 

Length [Km]  N° of spans 

@Ber=10
-4

 @Ber=10
-10

 
Span 

length 
[Km] 

@Ber=10
-3

 @Ber=10
-10

 

10 

0 1690 1495 65 26 23 

0.5 550 450 50 9 7 

0.1 1495 1365 65 23 21 

40 

0 1080 990 45 24 22 

0.1 495 450 45 11 10 

Table 4.3 Multi-span results 
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From these data it can be demonstrated how, in a long-haul system, the PMD 

can affected the transmission capacity.  

In the first case, with a transmission’s bit-rate of 10 Gbps, in an old fiber with a 

coefficient of 0.5 UV √WB�  the performance are limited, and the maximum reachable 

distance is about an half respect of the other fibers, while in the system with a 

lower PMD coefficient the impact of PMD is less evident, with a decrease of 

maximum reach distance of a few kilometers. 

In the second case, when the transmission is made with a bit-rate of 40 Gbps, an 

high PMD coefficient in the fiber completely block the transmission, while limit in 

a quite strong manner the link with a PMD coefficient of 0. UV √WB� 1. 

4.3 Forward Error Control 

 

As said at the beginning of this chapter, in accordance with the theory of 

paragraph 3.3 it’s possible to extend the maximum achievable distance with the 

use of a Forward Error Control after the receiver. This electronic element can 

improve the Bit Error Rate, passing from a value of ~10-4 to 10-10; this means that 

the maximum achievable distance can be increased. In the following simulation is 

shown the Fec’s effects applied to the transmission at 10 Gbps with transmission 

power of 0  dBm and a PMD coefficient of 0.1UV
√WB� . 

 

4.19 Transmission comparison with and without FEC 
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From the previous graph (Fig. 4.19), it can be seen how the FEC works until a 

value of 10-3 improving the Ber, passing from ~10-4 to 10-10. Above a value of 10-3 

the FEC cannot works and gives a constant value of 0.5. 

With this technique is possible to have a little improve of the system performance, 

and in some cases its avoid the use of a PMD compensator, but in most cases, 

the use of this technique is not enough. 

 

4.4 Conclusion 

 

Form the above results it is observed that Polarization Mode Dispersion puts 

more impact over the system as the bit rate increases. The older fibers having 

the PMD coefficient of 0.5 UV
√WB� . shows the performance degradation with 

increase in bit rate. But as the new fibers have reduced PMD coefficient up to 0.1 

UV
√WB� . also puts impact to degrade the signal quality of the communication 

system. At 10 Gbps PMD is no more negligible however at higher bit-rates of 40 

Gbps and above, it represents the major limitation in optical transmission 

systems. So if we have to move further to the higher bit rates, the PMD mitigation 

is necessary. 
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5. CHAPTER 5 

PMD COMPENSATION  

 

5.1 Introduction 

 

As noted in the previous chapter, polarization mode dispersion is one of the 

major limiting factors for high-speed optical communication systems; it paralyses 

the transmission at 40 Gbps and also highly degrades the transmission at 10 

Gbps over long fiber spans.  

Due to this factor, in the new high-speed optical systems, a PMD compensation 

is needed. 

In the first section is simulated a first-order PMD compensator, and a monitor 

signal that can be used in an adaptative compensator,  in system with different 

bit-rate, in order to show how this compensator works. 

In the second one, the compensation is applied to the previous multi-span 

system, to study how the performance of a system get increasing with a PMD 

compensation; while in the last one the system tolerance to PMD with or without 

compensation is investigated.  

5.2 Compensator  
 

A technique design for compensation of first-order polarization-mode dispersion 

(PMD) is proposed. Simulations show that the effects of the high-PMD long-haul 

fiber are dynamically mitigated or minimized and that the data are recovered from 

the distorted signals. The resulting apparatus will enhance the transmission 

quality, and extend the maximum reachable distance. This system provide a 

dynamically reconfigurable functional control to mitigate the influence of PMD 

fiber on high-bit-rate optical data.  

 

 



 

5.2.1 PMD Monitor 

 

As a part of a feedback system, the PMD monitoring circuit is used to measure  

the PMD level and provide feedback to the control circuit of the compensator. For 

PMD monitoring, a widely used technique measures the power spectral densities 

(PSDs) at certain frequencies and uses those measurements as an indicator of 

the PMD level. 

The theory at the basis of this technique is that the PSD is proportional to the 

following expression: 

where, γ  is the ratio of power

center frequency of the band

the net DGD. The waveform distortion caused by first order PMD of the 

transmission line can be quantified  by a set of  the three parameters: group 

delay difference , power ratio 

polarization, and the center frequency 

monitor signal. 

The transmission is made 

case and a medium case,

into the two polarization gives the worst possible waveform distortion

and another case in which

( . 

The frequency component at the half

base-band signal spectrum by a narrow

the intensity of this signal (PSD) and the PMD coefficients is explored, to optimize 

the PSD as a function of PMD.

For this purpose the following schematic was designed, and each block 

represents the labeled device or subsystems whose characteristics and 

parameter can be modifi

of the real device and the respective response functions.
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5.2.1.1 Simulation setup 

 

For this simulation, to investigate the effects of the PMD over the PSD, the PMD 

coefficient in the fiber were changed in order to achieve different value of DGD, at 

the receiver from 0ps to 25ps; and the power ratio Y was set at 0.5 and 0.25 in 

order to see how the PSD varies, varying the power ratio between the two 

polarization axes.  

The monitor signal is taken at an half of the bit-rate frequency (for transmission at 

10Gbps the signal is taken at 5GHz, while at 40 Gbps is taken at 20 GHz). The 

PMD fiber model includes DGD and the higher orders of the PMD as well.  Since 

the signal is attenuated after propagating through the long-haul fiber, an amplifier 

is incorporated to boost the optical signal before the signal goes to the monitoring 

circuit. 

At the transmission side an NRZ signal is modulated trough a Mach-Zehnder 

modulator, at a rate of 10 or 40Gbps. 

At the end of this transmission line the photo-detector is a PIN type, and the 

band-pass filter is set to have the central frequency at an half of the bit-rate. After 

the filter a power meter measure the power level of the spectrum, and the results 

are plotted in a graph. 

 

Figure 5.1 Monitor signal setup 
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5.2.1.2 Result and discussion 

 

 

Figure 5.2 5-GHz intensity as a function of Z= 

 

 

Figure 5.3 20-GHz intensity as a function of Z= 

 

 As shown in the above figures,  the intensity of the monitor signal is decreasing 

for increasing PMD coefficients; and It is experimentally confirmed that a bit-

rate/2 signal intensity is proportional to P(fc), where fc is the frequency extracted 

from the baseband signal. 
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 This inverse proportionality between the half-bit-rate frequency intensity and the 

PMD coefficient is quite monotonic, the intensity is highest at Δ: � 0�� and 

decrease up to 25��.  

It’s expected that,  where  Z=  is  less than  25��, the  distorted waveform  caused  

by  PMD  will  be  recovered  by maximizing the half bit-rate intensity using a  

PMD compensator. 

 

5.2.2 Compensator 

 

In this system the compensation is made through a polarization rotator, and a 

fixed delay line. The polarization rotator is used to rotate the SOP of the 

lightwave, to controls which component of the light is to be delayed, as discussed 

above.  

Fig. 5.5 shows the schematic of this optical system. The schematic uses the PMD 

emulator shown in Fig. 5.4 that emulates the PMD effects in fiber. The delay line 

has a constant variable delay added to one of the components. The polarization 

controller rotates the SOP of the incoming light by different angles, and the effect 

of this rotation on the eye diagram of the received signal is observed on the 

oscilloscope. The simulation was run for different DGDs in the emulator, and for 

each DGD value, the rotation-angle of polarization rotator was swept from –90° to 

90° to cover the complete range of SOP.   
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5.2.2.1 Simulation setup 

 

To investigate the performance of a PMD compensator, two different series of 

simulation are made at different bit-rate (10 Gbps and 40 Gbps) and with different 

value of DGD. Only the effects of PMD is taken in account, all the other 

dispersion are set to be negligible..  

In the fig. 5.4 it can be seen the PMD emulator. The transmitter side is like in the 

previous simulation, a NRZ modulator is used with a laser that works in the third 

windows @1,553 nm with different bit-rate @10Gbps and 40 Gbps. 

The main target of this modulation format is to improve PMD compensation as 

said in chapter 2 when this problem was analyzed. 

In order to be able to works many times over the same transmitted data, the 

generated signals from the transmitter are not immediately processed by the 

compensator , but they are first saved to a file (Fig. 5.4). 

There were made several simulation varying the DGD value reached at the end 

of the fibers, in order to simulate at 10 an 40 Gbps a DGD value of 5, 10, 15, 20 

and 25 ps. 

 

 

Figure 5.4 Pmd Emulator  

 

After this first step, in the compensator setup (Fig. 5.5) the collected data are 

read from the file. After that, there is a signal bifurcations of the incoming signals, 

on one side the signals goes to the compensator, and after a compensation is 

received from a photodiode, filtered from a low-pass filter and re-clocked after 
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that it could be analyzed; when on the other side is the same, but the signal is not 

compensated. This is made due to compare the compensated signal with the 

uncompensated one. 

 

Figure 5.5 Compensator setup 

 

5.2.3 Simulation’s results and comments 

 

In this chapter the performance of a PMD compensator have been reported. 

For reference and comparison Fig. 5.6 shown the eye diagram of the signal 

before the segment of optical fiber. The attenuation parameters in the fiber were 

set to be negligible. 

Figure 5.6 Eye diagram before the fibre 



Chapter 5 

PMD Compensation 

65 
 

5.2.3.1 Simulations at 10Gbps 

Figure 5.7 Eye Opening With or Without First Order Compensation  @10Gbps with a Mean DGD value 

of ~5 ps  

Figure 5.8 Eye Opening With or Without First Order Compensation  @10Gbps with a Mean DGD value 

of ~10 ps  
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Figure 5.9 Eye Opening With or Without First Order Compensation  @10Gbps with a Mean DGD value 

of ~15 ps  

 

Figure 5.10 Eye Opening With or Without First Order Compensation  @10Gbps with a Mean DGD 

value of ~20 ps 
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Figure 5.11 Eye Opening With or Without First Order Compensation  @10Gbps with a Mean DGD 

value of ~25 ps  
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5.2.3.2 Simulations at 40 Gbps 

 

 
Figure 5.12 Eye Opening With or Without First Order Compensation  @40Gbps with a Mean DGD 

value of ~5 ps 

 
Figure 5.13 Eye Opening With or Without First Order Compensation  @40Gbps with a Mean DGD 

value of ~10 ps 



Chapter 5 

PMD Compensation 

69 
 

 
Figure 5.14 Eye Opening With or Without First Order Compensation  @40Gbps with a Mean DGD 

value of ~15 ps  

 

 

Figure 5.15 Eye Opening With or Without First Order Compensation  @40Gbps with a Mean DGD 

value of ~20 ps  
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Figure 5.16 Eye Opening With or Without First Order Compensation  @40Gbps with a Mean DGD 

value of ~25 ps  

 

 

 

Figure 5.17 Simulation's results at 10 Gbps 
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Figure 5.18 Simulation's results at 40 Gbps 

 

The obtained PMD value at the end of the fiber varied from 5 to 25 ps with a step 

width of 5 ps, in order to obtain the performance of the compensator.  

Figure from 5.7 to 5.16 shows a sequence of eye-diagram traces for the signal of 

Fig. 5.6 through the same fiber at the other end with and without PMD 

compensation at 10  and 40 Gbps. 

The quality of the eye diagram is related to severity of PMD effects, the eye 

opening and quality of the eye diagram decrease as PMD value and the bit-rate 

get increased. As it can be seen from the eye diagrams, with the same value of 

PMD, the effects of this impairments are greater in the 40Gbps transmission. 

The results of the compensation performs always an increasing of the eye 

opening, but expecially for low value of DGD, it can be seen that the 

compensated signal perform an overcompensation that cause a distortion of the 

eye diagram. 
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5.3 Multi span compensation

 

After the investigation over the c

reported how with the presence of a compensator it’s possible to reach greater 

distances in the multi span system, studied in the second part of the previous 

chapter.  

 

5.3.1 System setup 

 

To compensate  the signal at the

scheme used in Section 4.1.3 was changed (Fig. 5.1

into a file, so that they can be read and analyzed by the compensator (fig. 5.2).

After the data generation, like in the previo

performed. 
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Multi span compensation 

After the investigation over the compensator's performance, is studied and 

reported how with the presence of a compensator it’s possible to reach greater 

distances in the multi span system, studied in the second part of the previous 

To compensate  the signal at the output of the various fiber-loop amplifier, the 

scheme used in Section 4.1.3 was changed (Fig. 5.19) in order to store the data 

into a file, so that they can be read and analyzed by the compensator (fig. 5.2).

After the data generation, like in the previous section a compensation is 

 

Figure 5.19 Modified schema  

72 

ompensator's performance, is studied and 

reported how with the presence of a compensator it’s possible to reach greater 

distances in the multi span system, studied in the second part of the previous 

loop amplifier, the 

) in order to store the data 

into a file, so that they can be read and analyzed by the compensator (fig. 5.2). 

us section a compensation is 
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5.3.2 Simulation results and comments 

 

 

Figure 5.20 0.5 @10Gbps Without Compensation 

 

Figure 5.21 0.5 @10Gbps With Compensation 
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Figure 5.22 0.1 @10Gbps Without Compensation 

 

 

Figure 5.23 0.1 @10Gbps With Compensation 

 



Chapter 5 

PMD Compensation 

75 
 

 

Figure 5.24 0.1 @40Gbps Without Compensation 

 

Figure 5.25 0.1 @40Gbps With Compensation 
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From the previous simulation the following data are extrapolated: 

Bit Rate 
[Gbps] 

PMD 
Coefficient 

TUV √WB� X 

Max Length without 
compensation 

 Ber after 
compensation 

Max Length with 
compensation 

[Km] 

Max 
Length 
[Km] 

Span 
Length 
[Km] 

N° of 
span 

Max Length 
[Km] 

Span earned 

10 

0.5 450 50 9 10
-16

 750 7 

0.1 1365 65 21 10
-11

 1495 2 

40 0.1 450 45 10 10
-16

 675 5 

 

 

 

From the obtained data can be observed, how, using a compensator, is possible 

to achieve greater distances while minimizing the effect of PMD. 

A 10 Gbps transmission with an high PMD coefficient it can be seen as it’s not 

able to exceed 750 km, while a fiber with low PMD coefficient is able to match the 

performance of the fiber without the effect of PMD. 
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At 40 Gbps the limitations imposed by PMD are much higher, even in th

fiber with low PMD coefficient (0.1 ps / km) which is barely more than half the 

length that reached without 

 

5.4 POWER PENALTY
 

After the investigation over the compensator efficiency, and the system 

improvement gave from

communications system, we are going to  study how a compensation can 

improve the system tolerance to the DGD. 

5.4.1 Simulation Setup

 

At this point is analyzed how

tolerance to the DGD, in the 40 Gbps system. The elaborated data are the one’s 

created for the study over the compensator performaces.

To do that is added a power

order to monitorize the change of power

the end of the fiber’s link

The simulation starts by measuring the optical power received with

of , in order to set the 0 on the powers

increased until a 60% of the bit period.

correlation between the 
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At 40 Gbps the limitations imposed by PMD are much higher, even in th

fiber with low PMD coefficient (0.1 ps / km) which is barely more than half the 

length that reached without PMD influences in the fiber. 

POWER PENALTY 

After the investigation over the compensator efficiency, and the system 

improvement gave from the utilization of a PMD compensator in a 

communications system, we are going to  study how a compensation can 

improve the system tolerance to the DGD.  

Simulation Setup 

At this point is analyzed how, with the use of a compensator, vary the system 

tolerance to the DGD, in the 40 Gbps system. The elaborated data are the one’s 

created for the study over the compensator performaces. 

added a power-meter at the end of the compensator’s scheme, in 

the change of power, in function of the DGD value reached at 

the end of the fiber’s link (Fig. 5.26). 

The simulation starts by measuring the optical power received with

, in order to set the 0 on the powers axis. Following the DGD values are 

60% of the bit period. The obtained data are the results of the 

correlation between the DGD value and the power penalty at the receiver.

Figure 5.26 Power penalty setup 
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At 40 Gbps the limitations imposed by PMD are much higher, even in the case of 

fiber with low PMD coefficient (0.1 ps / km) which is barely more than half the 

After the investigation over the compensator efficiency, and the system 

the utilization of a PMD compensator in a 

communications system, we are going to  study how a compensation can 

r, vary the system 

tolerance to the DGD, in the 40 Gbps system. The elaborated data are the one’s 

meter at the end of the compensator’s scheme, in 

function of the DGD value reached at 

The simulation starts by measuring the optical power received with a DGD value 

the DGD values are 

The obtained data are the results of the 

value and the power penalty at the receiver. 
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5.4.2 Results and discussion 

 

 

Figure 5.27 Power penalty with and without PMD compensation at 40Gbps 

 

Fig. 5.27 shows the power penalty  as a function of Δ: with and without PMD 

compensation. Here, Y is set to 0.5 assuming the worst possible waveform 

distortion caused by  PMD.  Without  PMD compensation,  the  allowable  Δ: for  

a  penalty less than  1-dB  (PMD  tolerance)  cannot overcame the 30% of the bit 

period instead of the compensated case, in which the allowable Δ:, for not 

exceed  a penalty of 1 dB, is the double with a limit of almost 60% of the bit 

period.  
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6. CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

 

6.1 Conclusion 

 

The work presented here is emphasized on the effects of Polarization Mode 

Dispersion (PMD) over the optical transmission.   

The impacts produced by the increase of PMD and bit-rate are analyzed through 

eye diagrams, output power evaluation and ber estimation. Through the eye 

diagrams the output signal is observed at different values of PMD.  

The second chapter provides an  introduction  to PMD. The  causes of PMD  and  

the  role of birefringence were described in detail. The characterization of PMD 

using the differential group delay (DGD) concept and the principal states of 

polarization (PSP) model was explained. The effects of PMD, especially on digital 

optical communication  systems  (where PMD manifests  as  inter-symbol  

interference or ISI) were described, following which  the need for compensating 

for PMD at 10 Gb/s and higher data rates was discussed.  

The third  chapter  provided  an  overview  of  the  existing  PMD  mitigation 

strategies. Their  relative advantages and disadvantages were also mentioned. 

Optical  PMD  compensation  strategies  and  electronic  PMD  mitigation 

techniques  were  individually  taken-up  and  described.  In  addition  to  PMD 

compensation,  steps  to mitigate or overcome PMD,  such as  the use of PMD 

resistant modulation formats, were also described. 

In the first simulative chapter, the impact of PMD on an optical communication 

system is studied. After a first investigation over the purely theoretical PMD limits 

at 10 an 40 Gbps, two more real ones are preformed. The results describe that 

PMD puts the hurdles to move to higher data rates, where puts a severe limits in 

transmission system with high PMD coefficient at 10 Gbps, until completely block 

a transmission at 40 Gbps; while, with a lower PMD coefficient, it starts to 
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seriously degraded the system performance at 40 Gbps; so a compensation is 

required to be able to transmit in those system.  

The fifth chapter focused entirely on the adaptive PMD compensation system. 

After the presentation of the compensator setup, it’s shown the monitor signal 

based on the Power Spectral Densities (PSD) and its performance in a 10 and 40 

Gbps system. 

A simulation over the PMD compensator is made, in order to evaluate its 

compensation capability in system at 10 and 40 Gbps with different value of DGD 

reached at the end of the fiber, from 5 to 25 ps with a step width of 5 ps; from the 

obtained results it can be seen how the eye diagram results more opened in 

comparison with the uncompensated one. 

Then this setup is applied to the previous multispan system, where the maximum 

reachable length is improved. 

In the last part of this chapter a study over the system tolerance over PMD is 

made; where it can be noted that the system tolerance is improved almost twice.  

 

6.2 Future work  

 

In this thesis is faced only the problem raised from first-order PMD effects, but 

with increasing bit rate also higher-order PMD played an important role in the 

optical system design. Also the compensator monitor is quite simple, and it isn’t 

an automatic one because it doesn’t have a control algorithm that controls 

automatically the polarization rotator and the delay line ; and the monitor suffers 

of a bit-rate dependency. 

As future works, it can be improved the efficiency of the compensator taking in 

account the higher-order effects, implementing a more flexible and accurate  

feedback monitor, with an adequate control algorithm. 
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