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1 INTRODUCTION  

In measurements of any nature, the objective is to determine as accurately as possible some characteristics of an object, 
material or living being. To be precise, the instrument used to measure needs to be as perfect as possible. i.e., the 
readings that provides need to be determined or adjusted. That is exactly the meaning of calibration.  
 
Calibration is a crucial step in a SAR (Synthetic Aperture Radar) mission, where the main objective is Earth Observation 
(EO). The measured data is translated into SAR images, and from these images information on the ocean’s salinity, wind 
speed, terrain deformation, or urban sprawl, among others, is extracted. Depending on the calibration quality, these SAR 
images would be more or less reliable.  

 
One of the most critical tasks in the calibration of a SAR is the definition of an antenna model taking into account in a 
dynamical way all the possible variations in the active antenna array based on the information coming from the 
instrument internal calibration. To do so, many radiometric parameters need to be considered and need to be properly 
related to antenna parameters. 
 
The model has to be capable of optimizing the excitations (complex) in order to predict the antenna patterns on-earth 
and used to compute the desired instrument behaviour before being launched and without needing in-flight 
measurements. This will help to compute on-ground the compensations to apply to the excitations of the antenna system 
caused by some of the active elements fail or degradation. 

 
This extreme importance and necessity of an antenna model comes from the fact that the huge antenna arrays physical 
dimensions used in SAR and the high number of beams which can be generated make highly difficult their complete 
characterization on-earth.  
 
Although the aim of this Master Thesis is developing the beam optimizer of an antenna model for a generic SAR mission, 
during that development we have the exclusive opportunity of applying the tool to a practical test case such as the 
Spanish mission SEOSAR/PAZ. This mission is in the framework of the Spanish Earth observation program (SEOSAR) and 
includes the design of an X-band synthetic aperture radar. 

1.1 Framework of the Master Thesis work 

The origin of the work presented in the present Master Thesis comes from collaboration between Universitat 
Politècnica de Catalunya (UPC) and the Spanish contractor EADS Casa España (ECE), responsible for the satellite 
development and construction. Two different investigation groups within the Signal Theory and Communications 
Department (TSC Department) at UPC take part in the project: the antenna laboratory (AntennaLab) and the remote 
sensing laboratory (RSLab). Since the UPC is providing a multidisciplinary technical support to ECE, not all the 
members involved in the project have a theoretical domain of all the covered areas.  
 
The Antenna Modeller is developed by the AntennaLab investigation group; the group in which the author of this 
thesis is involved. As its name indicates, the main group activity is centred in the design and characterization of 
antennas and antenna materials and/or radiating systems. The RSLab main activity is the Earth observation by 
means of radar sensors and the image processing for different applications (cartography, environment protection…). 
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1.2 Motivation 

One of the main missions of the antenna model is to generate all the possible antenna beams required to calibrate. 
Starting from a set of radiometric parameters previously defined, the antenna model has to generate the complex 
excitations from which the different satellite operating swaths are obtained. It is indispensable to verify the 
coincidence between the numerically generated patterns and the measurements which will be carried out once the 
satellite is in-flight. Another of its main functions is to optimise the beam excitation coefficients of the antenna array. 
These excitation parameters can be optimised to create an antenna pattern with high gain, or a desired pattern with 
suppressed side-lobes, for instance. The optimisation is also important to re-compute the excitations in case of 
failures or drifts in the transmission and reception modules (TRMs) with which the antennas forming the array are 
fed. It is also important to determine the errors in the patterns caused by phenomena such as thermal drifts or offsets 
in the subarrays positioning.  
 
It is necessary to duly formalize the procedures involved in the design of an antenna model for the present and also 
future SAR missions. This should be done with the sufficient efficiency and reliability, really necessary in this kind of 
missions. To do so, practical and complete software is developed to be used from earth. It will be used to apply 
corrections once the satellite is in-orbit. 

1.3 State of The Art 

During the last decade, many SAR missions have been planed, designed and carried out by different countries. Their 
main objective is the Earth Observation (EO), for different purposes. Some recent SAR missions, sorted by order of 
satellite launch date are: ENVISAT (Environmental Satellite), ALOS (Advanced Land Observing Satellite), TerraSAR-X, 
RADARSAT-2 (RADAR Satellite), COSMO-SkyMed (Constellation of Small Satellites for Mediterranean Basin 
Observation) and, of course, the one to which the present work is applied, SEOSAR/PAZ (Spanish Earth Observation 
Synthetic Aperture Radar). 
 
Regarding the antenna model, in the case of Envisat/ASAR instrument the SAR system uses in-orbit antenna pattern 
measurements for correction in calibration process. This is possible because ASAR acquires SAR images with only 
eight different antenna beams (a low number of beams). At ASAR an antenna model was implemented and the 
method used to optimise has been the Genetic Algorithm approach. Further the approach in which is based the 
Envisat antenna model was applied to TerraSAR-X.  In the ALOS/PALSAR case, the number of beams is 23, still being 
a low number of beams. However, there is no public information found on the antenna modeller used. There is some 
information on a developed antenna model in the RADARSAT-2 and COSMO-SkyMed missions. These antenna models 
are also based in Genetic Algorithm in order to perform the antenna pattern optimisation.  
 
Further information on the different mentioned missions and the antenna models developed for them can be found in 
Appendix A, devoted to describe in a more extensive way than in this introduction the state of the art in SAR 
missions. 

1.4 Scope 

The antenna model definition and the associated software development is one of the thousands of tasks to be carried 
out during the different steps on which consists a SAR mission. A SAR mission implies a huge amount of professionals 
in different disciplines from different institutions and companies or contractors working in parallel and even 
replicating work in order to ensure the validity of the data provided by the satellite, for the sake of reliability. 
However - and precisely because the wide range of issues that this kind of missions implies - , the present Master 
Thesis cannot describe deeply the whole process. The reader is encouraged to consult the references and 
bibliography in order to have a general perception of the hazards that implies a mission of such a magnitude. 
 
This Master Thesis document includes the definition and implementation description of an antenna model. In 
particular, this antenna model is being used in the SEOSAR/PAZ mission, which is a Spanish Earth Observation 
mission (more information is provided in Appendix A). The antenna model, however, comprises many functions; i.e.: 
antenna pattern analysis, error computation, or antenna pattern optimisation, for instance. The present document 
focuses in the part specially developed in the Master Thesis work; i.e.: the antenna pattern optimisation.  
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1.5 Organization of the Dissertation 

The present Master Thesis dissertation is divided in 5 chapters. In this chapter the thesis goal is introduced; i.e. the 
development of an optimizer software for the antenna model developed for SAR missions. In the second chapter, the 
specific antenna model designed for the Spanish mission is briefly introduced. This includes a description of its 
functions as well as an introduction to the formulation used to generate the theoretical antenna patterns needed.  
 
The main work developed during the thesis is presented in Chapter 3. The optimiser is described in detail, both from 
the functional and the algorithmic point of view. In addition, this chapter shows some results obtained with the 
optimiser once integrated in the antenna model software and relative to the SEOSAR/PAZ mission in the pre-
calibration stage. In Chapter 4 the folder tree and main routines of the code of the antenna modeller optimisation 
software are briefly described. 
 
The concluding remarks and the work to be done in the future are issued in Chapter 5. Appendices with detailed 
information on some topics treated or mentioned during the thesis are found at the end of the document, right before 
the references and bibliography, which close it. Appendix A is devoted to introduce the state of the art in SAR 
missions worldwide, with special interest on the antenna models developed in each of them. Additional results 
complementary to the ones presented in Chapter 3 are located in Appendix B. In Appendix C one can find useful 
information needed in Chapter 3 when analysing the obtained results. Finally, Appendix D contains information on 
published work related with this Master Thesis. At the end of the document, a list of the acronyms used throughout 
the chapters is presented for reference.  
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2 ARCHITECTURAL MODELLING OF AN 

ANTENNA MODELLER  

Before dealing with the antenna patterns optimisation, it is important to describe the overall antenna model where the 
optimizer is embedded and understand the mathematical basis which uses to analyse antenna patterns, since this 
mathematical basis for the antenna pattern generation is used in the optimizer as well. Therefore, the purpose of this 
chapter is to describe and explain the functionalities and the software mathematical basis implementing the antenna 
model developed in this Master Thesis. Its name is AMOR (Antenna MOdelleR) and is used to:  
 
 theoretically characterize a generic SAR antenna instrument from a set of ideal or measured subarray patterns 
 synthesize the different beams supported by the satellite operational modes in order to fulfil the SAR mission 

expected performance 
 evaluate the influence of mechanical and/or thermoelastic errors in the fabrication or set-up procedure of the 

antenna instrument, and on the instrument performance characteristics 
 
Another aspect that is duly explained is the algorithmic for computing the elevation and azimuth pattern planes for the 
satellite operational modes. Firstly, the array coordinate system and the mathematics required for computing the fields 
radiated by the satellite antenna are presented. Secondly, the directivity computation is also indicated. 
 
Finally, there is also a section devoted to explain the mechanical and thermoelastic errors considered in the Antenna 
Modeller. The failures in the transmit/receive modules to be accounted for are also explained. 
 
The procedure to optimize the excitation coefficients feeding the TRMs will be described in detail in the next chapter. 

2.1 The Antenna Modeller 

The antenna model is the antenna mathematical description. It should allow the antenna radiation patterns 
reconstruction from a set of on-ground characterized parameters and excitation coefficients. Then, the antenna 
model will help to reduce the number of beams to be measured and, once in-flight, to update them as a function of 
measured information. 
 
The on-ground parameters used to design and improve the model are the measured data of a single subarray in free 
space. The present version of the software (AMOR 4.0) is able to work with the measured patterns of 32 embedded 
subarrays of a panel. However, measured data was not available at the moment the present MT document was 
finished to be written. 

 
In this section the functionalities of AMOR will be enumerated, and the antenna modeller Graphical User Interface 
(GUI) of the optimiser is presented. For the instrument description, please refer to Annex A. 

2.1.1 Brief Description of the Antenna Modeller Functionalities 

In order to fulfil the radar instrument best performance and to correct the SAR radiometric images, different 
functionalities are provided by the Antenna MOdelleR (AMOR). These functionalities are listed in Table 2.1. 
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The Antenna MOdelleR 

 Allows the antenna radiation patterns reconstruction by means of superposing the measured (or 
simulated) embedded subarray patterns weighted by beam excitation coefficients. To this end, it is 
necessary to consider the antenna geometry and the elements location. The current version of the 
Antenna Modeller, AMOR 4.0, works at panel level. Hence, it uses the measured patterns of 32 
embedded SAs. In this way, the antenna modeller will provide an accurate estimate of the actual 
antenna pattern for each of the multiple beams that can be generated by the different instrument 
operating modes. 

 
 Computes the beam excitation coefficients in order to optimize the instrument SAR performance. This 

optimization can currently be made in terms of range ambiguities, antenna gain, antenna beamwidth, 
and null deep at Nadir. Nonetheless, other antenna and radiometric parameters could further be 
defined to get the excitation coefficients. 

 
 Allows excitation coefficients re-computation in case of TRM failure or degradation. 

 
 Makes possible the analysis of the effects caused by subarray misalignment and planarity errors, 

favouring in this way to better fit the patterns generated to the actual ones. Other effects like the 
influence of thermo-elastic deformations are assessed.  

Table 2.1: AMOR functionalities. 
 

 
AMOR is a flexible antenna model since all of the previous analysis and computations can be done: 
 at any frequency 
 taking into account any number of subarrays and any disposition of these subarrays within the antenna array 

(whit the only restriction that the antenna is bidimensional and planar) 
 considering any measured or simulated subarray patterns (the electric field radiated by each SA conforming the 

antenna is read by the software) 
 
The functionalities of AMOR are distributed through several GUI windows (that will be further introduced in the next 
section). Figure 2.1 summarizes these previous functionalities in the corresponding window where they can be 
found. 

2.1.2 The Antenna Modeller GUI 

The AMOR GUI is intended to design the antenna patterns for all the foreseen SAR antenna operational modes. This is 
done with the objective of achieving maximum performance sensing data in an operational basis. For this reason, the 
GUI makes a distinction between the Synthesis and Analysis procedures, subsequent to an Array Description 
definition procedure. In addition, the influence of errors (mechanical, electronic, and/or thermoelastic) in the 
antenna performance can also be considered (some of them mot in AMOR 4.0 but in future versions) through inputs 
in the Errors window. An Error Analysis tool will be included in the code in the Errors window. 

 
The toolbar in the Antenna Modeller main window shown in Figure 2.2 is the link to the windows performing the 
previously mentioned functionalities (Figure 2.1). The antenna modeller is being implemented using Matlab® and is 
designed to run on personal computers. 
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Figure 2.1: Functionalities of AMOR. 

 

AMOR

• Description of the array: basic element (in trasmission and reception), polarization (in 
transmission and reception), operating frequency, nominal location of basic elements  
phase center, nominal operating mode.

Array Description

• Allows choosing the actual state of the TRMs to consider the failing ones when computing 
patterns and/or optimizing.

• Allows choosing the type of error to be considered by clicking in the correspondent radio 
button. In current version only mechanical panel errors are considered.

• Future versions will allow considering subarray mechanical errors, antenna mechanical 
errors, thermoelastic deformations and TRM deviations.

Errors

• Plots  the TX, RX and combined 2W directivity patterns for the elevation and azimuth 
planes. Shows relevant information on the screen: cuts maxima, beam centers, 
beamwidths, beam maxima, SLLs and both estimated and accurate copolar directivities 
(computed using spherical mode expansion).

• Plots the TX, RX, and combined 2W directivity patterns of the antenna for a chosen 
azimuthal cut. Shows relevant information of these patterns: beam maxima, maxima 
levels, beam centres, beamwidths and SLLs.

• Plots the TX, RX and combined 2W directivity patterns both in the theta-phi and uv-
domains of the antenna.

• Computes the total directivity of the TX and RX patterns and the combined directivity of 
the 2W pattern. The method used to compute these total directivities requires pattern 
integration in all the space.

Analysis

Synthesis

• Synthesizes excitation coefficients for the operating modes of the instrmument. It 
acounts for the TRM failures and mechanical deviations of the subarrays from their 
nominal positions. In the current version of AMOR it synthesizes the coefficients for the:

 Spotlight mode: to steer the beam to a specified azimuthal steering angle.

 Stripmap mode: to generate a specified stripmap beam steered in elevation.

Preprocessing • Allows choosing the folder where raw (measured) pattern data from the subarrays is 
stored and converts these data into AMOR-formatted data.

• Direct access to the User Manual of the software.Help

• Displays information about the authors of AMOR GUI.About
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Figure 2.2: Antenna Modeller main window (Array Description Window). In the upper side of the window there are the 
buttons that make visible the windows performing the different functionalities of the tool. Some of them are the Error 

analysis tool, the array Analysis tool and the Synthesis of excitation coefficients tool. 
 

 
AMOR allows the computation of the copolar and crosspolar transmitting (TX) and receiving (RX) antenna patterns of 
the SAR instrument together with the copolar and crosspolar two-way (2W) antenna patterns. The subarrays 
patterns can be different in transmitting or receiving modes due to the chosen polarization, being either vertical or 
horizontal depending on the instrument operating mode. The resulting patterns can be visualized in a standard 
Cartesian presentation for the elevation and azimuth planes and the pattern main parameters automatically 
determined for a quick analysis of the results. Also, three dimensional power patterns plots can be generated to 
assess the absence of notorious secondary lobes out of the main elevation (EL) and azimuth (AZ) plane cuts. The 
accurate antenna directivity computation for the TX and RX pattern is an additional functionality included in AMOR. 
 
To compute these patterns the software current version (AMOR 4.0) uses several measured (or simulated, if desired) 
SA patterns simultaneously in order to account for the slight differences in the SAs radiation patterns when 
embedded in different positions in the whole array. More precisely, the software uses the measured radiation pattern 
of 32 embedded SAs (that is, a whole panel). In the current version of AMOR the SAs patterns are stored as far-field 
samples in the uv-domain.  
 
As previously mentioned, and by means of its Analysis Window (Figure 2.3), the software is able to analyze the 
different instrument operational modes (Stripmap, ScanSAR, Spotlight), and also a User Defined set of coefficients for 
designing and/or testing purposes. The coefficients that generate a given antenna configuration are the combination 
of TRM TX/RX phase and RX gain values stored in look up tables like in the satellite. In Figure 2.5 a snapshot of the 
Analysis tool and some of its results are shown when characterizing a Stripmap beam, while Figure 2.6 highlights the 
resulting 3D pattern. The 3D power patterns are useful to assess that no grating lobes are present in the EL and AZ 
cuts. 
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Figure 2.3: Summary of inputs and functionalities of the Analysis Window. 

 
Mechanical errors due to imperfections in the antenna manufacturing and its deformation in-flight due to the 
variation of thermal conditions at panel and antenna level (modelled as shifts along x, y, and/or z-axis with respect to 
their nominal positions and a rotation along each of their axis –yaw, roll, pitch) are going to be considered in future 
versions of AMOR when computing the SAR instrument radiation pattern. The influence of failing TRMs or 
mechanical deviations of SA phase centres from their nominal values is already implemented in the current version 
of AMOR. 

 
An important objective of the code is the capability of synthesizing (or re-synthesizing) the excitation coefficients to 
be applied to the TRMs through its Synthesis tool (Figure 2.4). This synthesis procedure has to derive an optimized 
2W antenna pattern matching a given template. The template is related with several instrument gain and main lobe 
beamwidth, side lobe levels, elevation and azimuth beam pointing directions, gain variations within the swath, range 
ambiguity level, null positions in certain directions and higher gain towards higher elevation angles within the main 
lobe (R3 compensations). The possibility to include deviations in the TRM settings or failing modules either in TX and 
RX or both is also considered when computing the coefficients. The optimisation is applied to radar parameters, each 
one weighted with an assigned coefficient. The weighting is used in order to translate to the template the relevance of 
each parameter. These radar parameters are directly related with antenna parameters. 
 
In addition the Synthesis tool is able to compute the excitation coefficients to steer (spotlight) beams toward a given 
spatial direction in the AZ plane. 

 

 
Figure 2.4: Summary of inputs and functionalities of the Synthesis Window. 

• Plots  the TX, RX and combined 2W directivity patterns for the 
elevation and azimuth planes. Shows relevant information on 
the screen: cuts maxima, beam centers, beamwidths, beam 
maxima, SLLs and both estimated and accurate copolar 
directivities (computed using spherical mode expansion).

• Plots the TX, RX, and combined 2W directivity patterns of the 
antenna for a chosen azimuthal cut. Shows relevant 
information of these patterns: beam maxima, maxima levels, 
beam centres, beamwidths and SLLs.

• Plots the TX, RX and combined 2W directivity patterns both in 
the theta-phi and uv-domains of the antenna.

• Computes the total directivity of the TX and RX patterns and 
the combined directivity of the 2W pattern. The method used 
to compute these total directivities requires pattern 
integration in all the space.

• Data are saved in text or .mat files.

• Basic element filename (in TX and 
RX). It has information about the SA 
such as polarization and operating 
frequency.

• Nominal location of basic elements  
phase center.

• Nominal operating mode.

Array Description Window

• State of TRMs: operating/failing 
ones.

• Selection of error type to be 
considered when computing the 
radiation pattern. In current version  
‘Panel Mechanical’ errors are 
considered: phase center shifts of 
SAs from nominal values.

Errors Window

Analysis 
Window

• Computes and saves excitation coefficients 
for azimuthal steering of Spotlight beams.

• Basic element filename (in TX and 
RX). It has information about the SA 
such as polarization and operating 
frequency.

• Nominal location of basic elements  
phase center.

• Nominal operating mode.

Array Description Window

• State of TRMs: operating/failing 
ones.

• ‘Panel Mechanical’ errors are 
considered: phase center shifts of 
SAs from nominal values.

Errors Window

• Input azimuthal steering angle.

Synthesis 
Window: Spotlight 
Beam Generation

Synthesis 
Window: Stripmap 
Beam Generation

• Choose beam to synthesize 
(through excel type file).

• Input PRF.

• Computes and saves excitation coefficients 
for an Stripmap beam.
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Figure 2.5: Analysis window of AMOR. The main parameters of interest for the resulting patterns are shown in the 
Analysis window. Some of the resulting pattern cuts (for the TX azimuth plane, RX elevation plane and 2W elevation and 

azimuth plane) are shown on the bottom.  
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Figure 2.6: Analysis window of AMOR. Two ways of showing the three dimensional TX, RX and 2W copolar and crosspolar 

power patterns. 
 

2.2 Computing Radiation Patterns with AMOR 

The mathematics of pattern and directivity computations is described in this section. How the elevation and azimuth 
planes are chosen will also be described. 

2.2.1 Patterns Computation from SA patterns 

The antenna modeller calculates radiation patterns by superposition of the on-ground measured patterns of 
subarrays (embedded) weighted by beam excitation coefficients and taking into consideration the antenna 
geometrical dimensions (in fact the subarrays accurate positions with respect to the antenna coordinate system). For 
the mathematical modelling of the problem a coordinate system local to the satellite antenna array (antenna 
reference system) has to be defined. The antenna reference system is also used to define the SAR subassemblies 
locations and orientations. The antenna coordinate axes side view is depicted in Figure 2.7. 

 



Antenna Modeller for SAR Applications  

 

16  

 
Figure 2.7: Antenna Reference System. In SAR terminology, θB is named the antenna tilt angle, and the observation angle 

θOBS name is look angle. 
 
The antenna reference system origin is at the geometric centre of the antenna radiating plane. The x-axis direction is 
parallel to the antenna largest dimension and is pointing towards the satellite flight direction. The y-axis direction is 
in the antenna plane and is parallel to the shortest antenna side in the opposite direction to the nadir. Finally, the z-
axis direction is pointing along the antenna mechanical boresight, which is normal to the antenna plane. The main 
beam nominal pointing is at boresight when the antenna beam points towards the z-axis. This direction is at θB=33.8º 
from nadir. The yz-plane defines the elevation plane, and the xz-plane defines the azimuth plane. The antenna beam 
rotation about the x-axis is defined as elevation, whilst the antenna beam rotation about the y-axis is defined as 
azimuth rotation. The PAZ antenna should have the possibility to point its main beam towards a given direction in the 
elevation plane. This direction is called observation angle θOBS, and is measured with respect to the nadir. This 
observation angle is named elevation angle θEL when measured with respect to the antenna coordinate system z-axis. 
 
In Figure 2.8 (upper) another view of the coordinate system of the PAZ satellite antenna is shown. The rectangle in 
the figure represents the antenna aperture. The x-axis, as above mentioned, is the satellite flight direction. In Figure 
2.8 (lower) the standard definitions of a spherical coordinate system are also shown. 
 

 
Figure 2.8: PAZ satellite array coordinate system (upper). Spherical coordinate system (lower) [2.1]. 

 
As seen in Figure 2.8 the coordinate system used for the antenna analysis is centred in the array aperture. The 
antenna angles θ and φ are related with these coordinates by Equation 2.1: 
 

 

�
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0 ≤ 𝑠𝑠 ≤ 𝜋𝜋

0 ≤ 𝑠𝑠 ≤ 2𝜋𝜋
0 ≤ 𝑟𝑟 ≤ ∞

� Equation 2.1 

 

However is very common to use the sin θ-space coordinates (u,v) defined as Equation 2.2: 
 

 

�𝑢𝑢𝑣𝑣� = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�   𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏  �−1 ≤ 𝑢𝑢 ≤ 1
−1 ≤ 𝑣𝑣 ≤ 1

�    𝑎𝑎𝑠𝑠𝑎𝑎   𝑢𝑢2 + 𝑣𝑣2 ≤ 1 Equation 2.2 

 

The pattern  �⃗�𝐹𝑤𝑤𝑠𝑠𝑤𝑤𝑎𝑎𝑡𝑡 (𝑢𝑢, 𝑣𝑣) of the PAZ satellite is computed as a superposition of the fields radiated by the N x M 
(elevation x azimuth) subarray patterns �⃗�𝐹𝑚𝑚𝑠𝑠𝑆𝑆𝑆𝑆(𝑢𝑢, 𝑣𝑣) weighted by 𝑎𝑎𝑚𝑚𝑠𝑠  the complex excitation coefficients given by the 
TRM setting. Subindex m and n specify a subarray by column and row, respectively, in the antenna array. The 
subarray patterns are considered to be embedded in the total antenna so all relevant effects are considered in the 
simple formula of Equation 2.3. 
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�⃗�𝐹𝑤𝑤𝑠𝑠𝑤𝑤𝑎𝑎𝑡𝑡 (𝑢𝑢, 𝑣𝑣) = � � 𝑎𝑎𝑚𝑚𝑠𝑠 �⃗�𝐹𝑚𝑚𝑠𝑠𝑆𝑆𝑆𝑆(𝑢𝑢, 𝑣𝑣)
𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑠𝑠=1

 Equation 2.3 

 

In case that the measured subarray was not embedded in the total antenna, Equation 2.4 takes into account the phase 
shift of the subarray pattern due to the position. 

 

 

�⃗�𝐹𝑤𝑤𝑠𝑠𝑤𝑤𝑎𝑎𝑡𝑡 (𝑢𝑢, 𝑣𝑣) = � � 𝑎𝑎𝑚𝑚𝑠𝑠 𝑏𝑏𝑗𝑗𝑘𝑘
�⃗ 𝑟𝑟𝑚𝑚𝑠𝑠 �⃗�𝐹0

𝑆𝑆𝑆𝑆(𝑢𝑢,𝑣𝑣)
𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑠𝑠=1

 Equation 2.4 

 

In Equation 2.4 vector k


 is the wave vector that can be defined as a function of the spatial angles or in the uv-domain 
(Equation 2.5). The position of each subarray measured in the antenna coordinate system is given by the vector mnr . 

 

 
𝑘𝑘�⃗ =

2𝜋𝜋
𝜆𝜆

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) =
2𝜋𝜋
𝜆𝜆 �𝑢𝑢, 𝑣𝑣,�1 − 𝑢𝑢2 − 𝑣𝑣2� Equation 2.5 

2.2.2 Computing Directivities with AMOR 

To compute the partial directivity of a pattern (copolar component), four procedures have been implemented in the 
Antenna Modeller. Two of them are not time consuming but less accurate than the third and fourth methods, both 
based on the 3D pattern integration of the array under test. 

2.2.2.1 Directivity Estimate for a Directional Pattern from Beamwidths 

To avoid the time consuming computation of the maximum directivity an estimate of its value can be found using 
Equation 2.6, valid for directive antennas: 
 

 

𝐷𝐷𝑠𝑠𝑠𝑠𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 =
4𝜋𝜋

Δ𝑠𝑠𝑆𝑆𝐴𝐴  Δ𝑠𝑠𝐸𝐸𝐸𝐸
 Equation 2.6 

 

being ∆θAZ the -3 dB beamwidth in the azimuth plane and ∆θEL the -3 dB beamwidth in the copolar pattern elevation 
plane. Both angles are given in radians. If beamwidths are known in degrees, Equation 2.7 can be used: 

 

 

𝐷𝐷𝑠𝑠𝑠𝑠𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 =
41253

Δ𝑠𝑠𝑆𝑆𝐴𝐴  Δ𝑠𝑠𝐸𝐸𝐸𝐸
 Equation 2.7 

 

For planar arrays [2.2] indicates that Equation 2.8 is a better approximation. 
 

 

𝐷𝐷𝑠𝑠𝑠𝑠𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 =
32400

Δ𝑠𝑠𝑆𝑆𝐴𝐴  Δ𝑠𝑠𝐸𝐸𝐸𝐸
 Equation 2.8 

 

The difference between Equation 2.7 and Equation 2.8 is 1.05 dB. In the present version of AMOR the equation 
implemented is Equation 2.6. 

2.2.2.2 Directivity Estimate from Subarray Radiated Power Integration 

The TX and RX copolar patterns directivity is computed by calculating the antenna array total radiated power. This 
radiated power is obtained by summing up the radiated power of each subarray [2.3], as done in Equation 2.9. 
 

 

𝐷𝐷𝑠𝑠𝑠𝑠𝑐𝑐 = 4𝜋𝜋
�𝐸𝐸32𝑥𝑥12

𝑠𝑠𝑠𝑠𝑐𝑐 (𝑠𝑠,𝑠𝑠)�2

∫ ∫ ��𝐸𝐸𝑆𝑆𝑆𝑆
𝑠𝑠𝑠𝑠𝑐𝑐 (𝑠𝑠,𝑠𝑠)�2 + |𝐸𝐸𝑆𝑆𝑆𝑆𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠,𝑠𝑠)|2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠∑ ∑ |𝑎𝑎𝑚𝑚𝑠𝑠 |212

𝑚𝑚=1
32
𝑠𝑠=1

𝜋𝜋
0

2𝜋𝜋
0

 Equation 2.9 

 

In Equation 2.9, amn are the excitation coefficients that feed the TRMs; �𝐸𝐸32𝑥𝑥12
𝑠𝑠𝑠𝑠𝑐𝑐 (𝑠𝑠,𝑠𝑠)� is the copolar field magnitude 

radiated by the whole antenna �𝐸𝐸𝑆𝑆𝑆𝑆
𝑠𝑠𝑠𝑠𝑐𝑐 (𝑠𝑠,𝑠𝑠)�  and  |𝐸𝐸𝑆𝑆𝑆𝑆𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠,𝑠𝑠)|  are, respectively, the copolar and crosspolar field 

magnitudes of the subarray; n is the subarray number inside a panel (1≤n≤32); and m is the panel number (1≤m≤12). 
 
The partial directivity accuracy computed with Equation 2.9 depends on the accuracy on the subarray radiated 
power computation, and this depends on the sampling interval given in the subarray measurement. Unfortunately, 
this formula is not accurate when SAs are coupled, being the case in the modeller. 
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2.2.2.3 Directivity Computation by Integrating the Total Array Pattern 

The directivity for the TX and RX copolar patterns can be accurately computed by integrating the total field radiated 
by the subarray using Equation 2.10: 

 

 

𝐷𝐷𝑠𝑠𝑠𝑠𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 4𝜋𝜋
�𝐸𝐸32𝑥𝑥12

𝑠𝑠𝑠𝑠𝑐𝑐 (𝑠𝑠,𝑠𝑠)�2

∫ ∫ ��𝐸𝐸32𝑥𝑥12
𝑠𝑠𝑠𝑠𝑐𝑐 (𝑠𝑠,𝑠𝑠)�2 + |𝐸𝐸32𝑥𝑥12

𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠,𝑠𝑠)|2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝜋𝜋
0

2𝜋𝜋
0

 Equation 2.10 

 

In Equation 2.10, �𝐸𝐸32𝑥𝑥12
𝑠𝑠𝑠𝑠𝑐𝑐 (𝑠𝑠,𝑠𝑠)� and |𝐸𝐸32𝑥𝑥12

𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠,𝑠𝑠)| are the copolar and crosspolar field magnitudes radiated by the 
whole antenna. 
 
As aforementioned, this computation is time consuming because it requires a fine grid step in the spatial directions 
domain to integrate the array total pattern. 

2.2.2.4 Directivity Computation Using the Spherical Mode Expansion 

This computation directivity approach is based in the formulation proposed by Hansen in [2.4]. According to this, the 
electric field in a source-free region of space can be written as a weighted sum of two spherical wave functions, �⃗�𝐹𝑠𝑠𝑚𝑚𝑠𝑠

(𝑠𝑠) , 
which are closed and known expressions (s indicates which of the two spherical wave functions is used  �⃗�𝐹1𝑚𝑚𝑠𝑠

(𝑠𝑠)   or 
 �⃗�𝐹2𝑚𝑚𝑠𝑠

(𝑠𝑠)  ). Hence the electric field can be written as in Equation 2.11: 
 

 

𝐸𝐸�⃗ (𝑟𝑟,𝑠𝑠,𝑠𝑠) = 𝑘𝑘�𝜂𝜂��� � 𝑄𝑄𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠
(𝑠𝑠)

𝑠𝑠

𝑚𝑚=−𝑠𝑠

∞

𝑠𝑠=1

2

𝑠𝑠=1

4

𝑠𝑠=3

�⃗�𝐹𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠
(𝑠𝑠) (𝑟𝑟,𝑠𝑠,𝑠𝑠) Equation 2.11 

 

The variable c indicates whether the travelling modes are standing waves (c=1 and c=2), outward travelling waves 
(c=3) or inward travelling waves (c=4). The m and n variables indicate the number of modes considered in the 
electric field computation from the spherical wave functions.  
 
The expression for the power radiated by outward travelling modes is then as simple as: 
 

 

𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎 =
1
2�� � �𝑄𝑄𝑠𝑠𝑚𝑚𝑠𝑠

(3) �
2

𝑠𝑠

𝑚𝑚=−𝑠𝑠

∞

 𝑠𝑠=1

2

𝑠𝑠=1

 Equation 2.12 

 

In practice the summations will always be truncated to a maximum value of n and m; N and M respectively. The way 
to choose these values can be consulted in [2.4], but the basic idea is that for a given N and M, using higher n and m 
values than N and M, respectively, has no significant effect in the electric field computation because with N and M it is 
sufficiently well approximated. In AMOR M is considered equal to N, and N is found from the diameter D of the 
minimum sphere enclosing the whole antenna array plus an integer found empirically: 
 

 

𝑁𝑁 = �𝑘𝑘
𝐷𝐷
2� + 100 Equation 2.13 

 
Where the symbol ⌈•⌉ in Equation 2.13 yields the ceil integer of the mathematical operation between brackets. 
 
The Q coefficients are obtained from Equation 2.11, following the procedure described in [2.4] and implemented in 
Sub_SN2FFT_ModesComputation.m (described in Chapter 4), since the known information is the electric field and the 
spherical wave functions. From the former expression the directivity can then be computed through the known 
expression in Equation 2.14. 
 

 
𝐷𝐷 =

4𝜋𝜋
𝑟𝑟2

�𝐸𝐸�⃗ �
2

2𝜂𝜂𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎
 Equation 2.14 

 

This method is slower but more accurate than the one explained in Section 2.2.2.2.  

2.2.3 Elevation (EL) and Azimuth (AZ) Planes 

Elevation (EL) and azimuth (AZ) radiation pattern planes of the antenna beams are required to fully characterize the 
SAR instrument radiometric performance. 
 
The definitions of the azimuth and elevation planes are done according to document [2.5]. For a given beam scanning 
direction, defined by the pair (u0, v0) in the sinθ-space, the azimuth and elevation pattern cuts are: 
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�⃗�𝐹𝑤𝑤𝑠𝑠𝑤𝑤𝑎𝑎𝑡𝑡 ,𝑆𝑆𝐴𝐴(𝑢𝑢, 𝑣𝑣0) = � � 𝑎𝑎𝑚𝑚𝑠𝑠 𝑏𝑏
𝑗𝑗 �𝑘𝑘�⃗ �𝑣𝑣=𝑣𝑣0

𝑟𝑟𝑚𝑚𝑠𝑠 �⃗�𝐹0
𝑆𝑆𝑆𝑆(𝑢𝑢,𝑣𝑣0)

𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑠𝑠=1

 Equation 2.15 

 

 

�⃗�𝐹𝑤𝑤𝑠𝑠𝑤𝑤𝑎𝑎𝑡𝑡 ,𝐸𝐸𝐸𝐸(𝑢𝑢0,𝑣𝑣) = � � 𝑎𝑎𝑚𝑚𝑠𝑠 𝑏𝑏
𝑗𝑗 �𝑘𝑘�⃗ �𝑢𝑢=𝑢𝑢0

𝑟𝑟𝑚𝑚𝑠𝑠 �⃗�𝐹0
𝑆𝑆𝑆𝑆(𝑢𝑢0, 𝑣𝑣)

𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑠𝑠=1

 Equation 2.16 

 
An example of these cuts for a hypothetical beam pointing towards the direction (θ0,φ0)=(21°,1°), that is, 
(u0,v0)=(0.358,0.006) is shown in Figure 2.9. 

Figure 2.9:  Example of azimuth (green) and elevation (red) pattern cuts for beam scanning at (θ0,φ0)=(21°,1°): (left) 
pattern cuts in the uv-domain (or sin θ-space domain) and (right) projection of the direction samples in a unity radius 

sphere. 
 

The algorithm implemented in AMOR for computing and plotting the EL and AZ radiation patterns is in Figure 2.10. 
The algorithm required for finding the beam centre of a two way (2W) power pattern is in Figure 2.11.  

 
In these figures, θELmax and ∆θEL define the angular range in which the pattern has to be computed in the elevation 
plane being, respectively, the angular span with respect to the boresight direction and the spacing between the 
angular samples. Meanwhile θAZmax and ∆θAZ are used to define the angular range in the azimuth plane. Accordingly to 
the algorithm described in Figure 2.10 the beam centre of the 2W pattern in the uv-doamin is found first, that is, it is 
found the direction where the beam centre is pointing. Once this direction is found, the spatial directions 
corresponding to the EL and AZ planes are found in the θф-domain and the power patterns for the TX, RX and 2W 
computed. The range centre where the beam is 3 dB below the beam maximum is considered to be the direction 
where the beam is pointing, as shown in Figure 2.11. 
 
A detailed description on how the beam centre of a 2W pattern is computed is shown in Figure 12. Basically it is an 
iterative procedure that makes a zoom of the 2W pattern in the uv-domain starting from a range of values 
corresponding to the region where maxima are expected. In each iteration, the uv-region is meshed and the 2W 
pattern computed for this region. The -3dB contour below the beam maximum is found and the beam centre 
calculated. The angular shift (for θ and ф) between the current spatial direction of the beam centre and the spatial 
direction computed for the previous iteration is used to stop the iterative procedure of the zoom. Specifically, the 
zooming is stopped when the beam centre variation between iterations is below the angular resolution of the pattern 
to be plotted. 
In Figure 2.12, the angles θkbeam_center and θkbeam_maximum refer to beam centre and beam maximum pointing directions at 
iteration k in the plane under consideration, when computed in the whole space. Angles θkbeam_center  and фkbeam_center  

refer to the beam centre direction when computed in the whole space, at iteration k. The associated values in the uv-
domain are ukbeam_center and vkbeam_center. 
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Figure 2.10: Algorithm for azimuth and elevation pattern cuts computation; Tx: transmission, Rx: reception, 2W: two-

way, EL: elevation, AZ: azimuth, 3D: all the spatial directions.  
 
 
 
 
 
 
 

  
Figure 2.11: Beam maximum and beam centre in an angular domain, θ or ф (left) and in the uv-domain (right). 
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Figure 2.12: Algorithm for finding the beam centre (and also beam maximum) of a two way pattern; k: iteration, ∆: 

movement of beam centre between iterations. The angular values used in the first iteration (𝑢𝑢𝑡𝑡𝑠𝑠𝑚𝑚0 = sin(1𝑠𝑠) and 
𝑣𝑣𝑡𝑡𝑠𝑠𝑚𝑚0 = sin(8𝑠𝑠)) are used because there is an a priori knowledge of the beam widths which can be obtained in a practical 

situation. 
 

 
Figure 2.13: Algorithm for beam steering spotlight modes. 



Antenna Modeller for SAR Applications  

 

22  

2.2.4 Computing the AZ Beam Table for a Spotlight Beam 

The beam tables used for steering spotlight beams in the AZ plane can also be computed using AMOR. These tables 
are obtained by steering a boresight beam. The algorithmic for getting the beam table is shown in Figure 2.13. 

 
The algorithm is iterative and corrects inaccuracies in the solution of the equation that models the steering of a 
uniform isotropic array of isotropic radiators. The equation for the initial estimate progressive phase α0 for the 
theoretical array of isotropic elements is given by: 
 

 
𝛼𝛼0 = −

360
𝜆𝜆 𝑎𝑎𝑥𝑥sin�θdesired  steering � Equation 2.17 

 

where λ is the operating frequency wavelength, dx is the separation between subarrays in the azimuth direction, and 
θdesired_steering is the angle in the AZ-plane where the beam centre should be pointing after the steering. 

 
 

The inaccuracies between the desired steering angle and the resulting steered angle are compensated using Equation 
2.18: 

 

 

𝛼𝛼𝑘𝑘 =
𝛼𝛼𝑘𝑘−1 − 𝛼𝛼𝑘𝑘−2

θbeam  centre
k−1 − θbeam  centre

k−2 �θbeam  centre
k−1 − θdesired  steering � Equation 2.18 

 

 
The specific phase to be applied to each TRM follows the Equation 2.19, taking into consideration the progressive 
phase solution of the iterative procedure and the panel number m: 

 
 

 
𝛼𝛼𝑚𝑚𝑠𝑠 =

(2𝑚𝑚− 1) −𝑀𝑀
2 𝛼𝛼𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠  Equation 2.19 

 

Phases are discretized to 8 bits prior to their storage in the AZ beam table. However when computing the patterns 
after applying the AZ beam table to a given beam the phase shifters resolution is reduced by taking the first 6 bits of 
the solution (starting from the MSB).  

2.3 Computing Errors with AMOR 

The influence of two error types has to be considered when simulating the SAR instrument performance with the 
antenna modeller: mechanical errors due to imperfections in the antenna manufacturing and its deformation in-flight 
due to the thermoelastic conditions variation; and errors due to TRM failures or deviations from their nominal 
values. 

2.3.1 Mechanical and Thermoelastic Errors 

Mechanical deformations can be simulated at different levels. These levels are presented and explained in Table 2.4: 
 

Subarray level 

This deformation is introduced by thermal variations and affects only the subarray largest dimension. It can 
only be simulated theoretically as a displacement of each of the annular slots along the z-axis following a 
parabolic shape within the subarray edges affected by a maximum deviation chosen by the user. 

Panel level 

It consists in a deviation of the subarrays positions with respect to their theoretical positions in x, y, and z due 
to different subarray width or mounting in the structure and a rotation of each subarray along each of their 
axis (roll, pitch and yaw). It can be simulated as a variation of the individual position when computing the 
array factor and a rotation of each of the measured subarray patterns along the three axes. The user should be 
able to define individually, for each subarray, the displacements and rotations through a format to be 
determined. Initial separation in the z-axis is around ±0.5mm. 
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Antenna level 

Consisting of a displacement of each of the panels, especially in the z-axis direction and a rotation in each of the 
three axes (i.e. a rotation of all subarray patterns). These values need to be specified independently from the 
previous errors and added up when computing the final antenna patterns. Initial values can be taken as 0.2° 
rotation in elevation and azimuth (yaw, pitch) and ±1 mm deviations along the z-axis. 

Table 2.4: Different levels to simulate mechanical deformations. 
 

The thermoelastic deformations are panel parabolic torsions or the complete antenna. Along the x-axis (flight 
direction) the panel torsion is equivalent to the subarray deformation. The antenna torsion is equivalent to a 
parabolic deformation of a maximum value at the edges with respect to the SA center. Along the y-axis, this 
deformation can be simulated as a displacement of the subarray positions also following a parabolic shape. 

 
Figure 2.14: Normalized azimuth and elevation pattern cuts for a one-way boresight array having a theoretical 

subarray of rectangular patches as basic element [2.3]. Thermoelastic distortion following a parabolic shape along the z-
axis has been considered with different maximum deviations in the borders of the PAZ array. 

2.3.2 Transmit-Receive Module Errors 

Errors in the TR modules can be considered at two levels: by a failure of the module in transmit, receive or both, or by 
a statistical module amplitude and phase deviation. 

 
TRM failures 

Specified through the GUI by the selection of any of the 384 modules either in transmit receive or both. There 
shall be the possibility to perform an iteration of M simulations of N random TRM failures to get a worst case 
mask. 

TRM deviations 

This shall be simulated as a Gaussian distribution centered in zero with an expected 3σ value to be determined 
by the user (in principle 0.5 dB, 5°) which will be added to the commanded values. Other errors such as 
deviations due to voltage or temperature variations will also be modelled through the 3σ value. TRM settings 
variations due to variations with temperature when the temperature compensation is not activated will 
directly be considered as variations of the TRM coefficients. 
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3 OPTIMISATION  TOOL FOR AMOR: DESIGN 

AND RESULTS 

 
The aim of the present chapter is to present and explain the optimisation tool embedded in AMOR, both from the 
functional and the algorithmic point of view.  
 
In the next sections the Genetic Algorithm (GA) optimization technique is briefly described. The use of the GA applied to a 
SAR mission is addressed, and the connection between the instrument specification and GA variables explained. In a SAR 
mission the fitness function combines both antenna and radiometric parameters, like in the case of the SEOSAR/PAZ 
mission where the optimizer presented in this thesis could be used. 

 
Next, the pattern requirements to be optimized for getting the instrument best performance are introduced and the 
fitness function definition is presented. Actually, the abovementioned requirements combination is what defines the 
fitness function to be minimised by the optimiser. This combination and the procedure followed to get the best solution 
for the excitation coefficients are explained in detail in the last sections of this chapter. 

 
Finally, the specifications for three test cases are presented to define the examples that will be used in order for the 
reader to completely understand the optimization tool. 

3.1 Brief Description of the Optimiser Functionalities 

In Table 3.1 there are listed the functionalities offered by the optimiser developed in this Master Thesis. 
 

The Optimiser for AMOR 

 Allows the optimisation of all the possible antenna patterns in order to reach a maximum gain in the 
swath, reduce the gain variation within the swath, enforce gain nulls on certain directions (for instance in 
the nadir direction), and reduce the range ambiguities in the swath. 

 Makes possible to optimise the antenna beams generated by the antenna in case of any deviation or error 
in the operation of the antenna elements. 

 Permits to adjust the generated beams to the real ones after measurements. 

Table 3.1: AMOR optimizer functionalities. 
 

These functionalities are reflected in the Synthesis window of the Antenna MOdelleR GUI, as shown in section 3.2.8. 

3.2 AMOR Optimisation Tool for PAZ 

The optimization tool designed for AMOR is implemented using genetic algorithms. In the next sections the 
relationship between the electromagnetic and SAR parameters and the genetic algorithm variables are described. 
Additionally, the input and output parameters of the tool are overviewed, together with the way it operates to reach a 
solution. The objective is such that the instrument performances are optimised. 

3.2.1 Genetic Algorithm Overview 

In SAR applications the instrument array pattern has to reach certain goals, not only according to typical antenna 
parameters (gain, steering, crosspolar levels, null positions...) but also some SAR parameters (range ambiguity level, 
flatness in the swath). One example of these parameters is the gain variation within the swath, which determines the 
acquired image degradation caused by the gain variation in the main lobe borders. 
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In a scenario where the pattern shape is conditioned by many practical constraints, optimization techniques should 
be used. The optimization objective is to reach a trade-off (which is mathematically represented by a global 
maximum or minimum, depending on the algorithm) having into account absolutely the whole set of constraints. 
There exist a copious number of optimisation techniques devoted to find a function maximum or minimum: trial and 
error techniques, combinatorial methods, gradient descent or ascend, Newton’s method, etc. Genetic algorithms (GA) 
are a particular case of evolutionary optimization technique, such as Particle Swarm Optimization, Ant Colony 
Optimization or Bacteria Foraging Optimization algorithms. All of them mimic natural selection and evolution 
concepts. 
 
The reasons to use GAs as the optimization technique have been: the proven reported success in many 
electromagnetic applications, such as antenna design or pattern synthesis [3.1]; and the rapid implementation of the 
optimization tool by using an existent MatLab® GA Toolbox. 
 
Genetic algorithms operate on a group of trial solutions in parallel. This group of solutions is called population. Each 
solution in the group is named individual. An individual is any point where the optimisation function is evaluated, 
and is sometimes referred to as a genome. The vector entries of an individual are referred as genes. The vector can 
be composed of double type numbers or bits. The initial population can be chosen in a more or less effective and 
determined way; i.e., the initial population can be left to be totally random or partially determined in case the effect 
of introducing a specific characteristic in an individual is known to be positive. 

 
A member of a current generation is named parent, while a member of the next one is called child. The generations 
are populations created iteratively (hence also referred as the algorithm iterations). A chromosome is a coded form 
of a trial solution or individual. Finally, the fitness is the positive number assigned to an individual in order to 
compare it with the other individuals in a population and represents a measure of goodness of each solution.  
 
A generic GA is explained through Figure 3.1. In the reproduction cycle individuals with best fitness (parents) are 
selected to combine their genes creating a new solution (child) for the next generation. The parameter to control the 
crossover, or combination, is the crossover probability. The higher the crossover probability, the higher the number 
of individuals coming from crossover in the next generation is. Another mechanism to create the next generation is 
mutation. Mutation randomly introduces new “genetic material” in the new population individuals. The parameter 
controlling this mechanism is the mutation probability. Finally, another mechanism is the elitism, by which the bests 
(or best, depending on the elitism parameter) individuals in a given generation directly go through the next one 
without changing its chromosomes. 

 

 
Figure 3.1: Genetic algorithm optimizer block diagram [3.1]. 

 
More detailed information on genetic algorithms and their applications can be found in [3.1]. 
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3.2.2 Variables of the GA 

In this section the electromagnetic and SAR parameters used by the genetic algorithm and their translation into 
genetic algorithm variables are explained. 

3.2.2.1 General parameters 

For the GA proper operation some general parameters need to be specified; for instance the GA stopping criterion, 
and the number of individuals per generation. 
In many cases these parameters cannot be intuitively deduced but can be matched from a series of trial and error 
tests, such as the variables involved with the crossover, mutation and elitism probabilities. For this reason, these 
parameters will not be open for the user to be modified. 

3.2.2.2 Individuals 

The goal of the optimization tool is that the EL plane of the 2-way (2W) radiation pattern of a given satellite mode of 
operation (Boresight, Stripmap, Scansar or Spotlight) meets user-defined specifications in order to acquire high 
quality Earth images. Hence, during the GA optimization procedure, the GA should test several 2W gain patterns until 
specifications are met. Because each 2W gain pattern is defined by a set of complex excitation coefficients, this will be 
the individual of the Genetic algorithm. 
 
In the present implementation of the optimizer, the set of excitation coefficients will be coded in binary format to be 
in concordance with the problem we are dealing, as it will be explained in the following lines. 

 
Previously, let us consider again the SAR array physical structure. As shown in Figure A.13, the antenna has 12 panels 
along the azimuthal (AZ) flight direction. In each panel there are 32 subarrays (SA) in rows (in the elevation 
direction, EL). There is one Transmit-Receive Module (TRM) feeding each subarray. The TRMs set-up is represented 
by a complex excitation coefficient. The excitation coefficients have a magnitude and phase with discrete values in the 
range from 0dB to -31.5dB and 0º to 360º, respectively. However, the temperature correction applied during the in-
flight calibrations reduces the amplitude ranges from 0dB to -20dB. Anyway, the optimisation is performed using 6 
out of 8 bits (starting from the MSB) to discretize both magnitude and phase in steps of 0.5dB and 5.625º, 
respectively. 
 
The previously mentioned set-up is stored in two look-up tables, one for the TX pattern and another one for the RX 
pattern. In the optimization tool each table is represented by a matrix of 32 rows per 24 columns (odd columns 
represent magnitudes and even columns represent phases). The format of these matrices is seen in Figure 3.2. 

 

 
Figure 3.2: Look-up tables format containing the TRMs coefficients. Magnitudes are stored in dB and phases in degrees. 

Given that no steering is considered in the AZ direction, all the columns are equal by pairs. 
 

Therefore, a given antenna configuration is obtained by superposition of measured embedded subarray patterns 
weighted by beam excitation coefficients. These coefficients are the combination of 384 amplitude and phase 
excitation coefficients to be applied to the TRMs in transmission and reception, with the constraint that TRMs in 
transmission always work around the saturation point (maximum transmission gain) so that the TX gain cannot be 



Antenna Modeller for SAR Applications  

 

28  

commanded (TX and RX gain and phase values stored in the look-up tables like the ones on-board PAZ satellite). 
Tables are decoupled in elevation (left and right looking independent tables) and azimuth directions. This means 
that, for a given antenna configuration, 32 values must be selected for elevation and 12 for azimuth. For TX and RX 
separate beam tables are used, and consequently the beam shaping can be different for TX and RX for the same beam 
pointing direction [3.2]. 
 
Since (magnitude) tapering and steering is only possible in the EL plane (for the operating beams considered), all the 
column vectors (taken by pairs) are equal. TX magnitudes are always set to 0dB for the instrument to work with 
maximum radiated power. The TRM phases can be different in TX and RX. 
 
Therefore, to generate each of the look-up tables described above (TX and RX) only a column vector of 32 complex 
coefficients is needed. Let us call the coefficients in this vector Ai. The total generated 32x12 coefficient matrix can be 
expressed as shown in Equation 3.1. 
 

 
⎝

⎜
⎜
⎛

𝑆𝑆1
𝑆𝑆2
·
·
·
𝑆𝑆32⎠

⎟
⎟
⎞

(𝐵𝐵1 𝐵𝐵2 · · ·  𝐵𝐵12) = �

𝐶𝐶1,1 𝐶𝐶1,2 … 𝐶𝐶1,12
𝐶𝐶2,1 𝐶𝐶2,2 ⋯ 𝐶𝐶2,12
⋮ ⋮ ⋱ ⋮

𝐶𝐶32,1 𝐶𝐶32,2 ⋯ 𝐶𝐶32,12

� Equation 3.1 

 

Being A a 32x1 column vector and B a 1x12 row vector where all Bj coefficient phases are set to 0° and modules to 0 
dB (1 in lenear). The resultant is the matrix [C], with the same format than the look-up tables containing the TRMs 
modules and phases in TX or RX. 

 
The Ai coefficients are generated by the GA and for each element of the population the matrices [C]TX and [C]RX are 
therefore extracted. The pattern cuts are computed from these matrices (using the same procedure than in the 
analysis case, with the difference that in the analysis the [C] matrices are read from a file), and hence the fitness 
function is evaluated. With this fitness value, the algorithm evolves and generates another individual if it’s the case. 
 
Magnitudes are coded with 6 bits (the more significant bit is the latest) in steps of 0.5 dB, and the dynamic range is 
limited from 0dB to -20dB. Phases are defined in a range from 0° to 360°, and also coded with 6 bits in steps of 
5.625°. 
 
Considering that the magnitude and the phase of an excitation coefficient is codified with 6 bits, each pattern can be 
generated using a chromosome of 576 bits (see a clarifying sketch in Figure 3.2) where: 

 
 the TX pattern magnitudes are always 0 dB (ATX modules) 
 32x6 bits correspond to the RX pattern magnitudes  (ARX modules ) 
 32x6 bits correspond to the excitation coefficient phases for the TX pattern (ATX phases) 
 32x6 bits correspond to the excitation coefficient phases for the RX pattern (ARX phases) 
 

 
Figure 3.2: Sketch of the chromosome of the individuals considered in the GA implementation used in AMOR. 

 
Aside from the excitation look-up tables (Figure 3.2), error tables containing information of possible TRMs failure or 
phase drifts are available. There are four tables: phase drifts in the TRMs in Tx, phase drifts in the TRMs in Rx, TRMs 
amplitude in Tx, and TRMs amplitude in Rx. The amplitude matrices are masks formed by zeros and ones (zeros for 
the failing TRMs and ones for the operative TRMs).   
 
These error tables are used in the optimisation process in order to recompute the excitation coefficients when TRM 
failures occur. These matrices are combined with the nominal excitation matrices to obtain the actual pattern for a 
failing TRMs scenario. This pattern is degraded with respect to the nominal one. Both patterns are compared, and the 
degraded pattern is enforced to evolve to the nominal one. 
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3.2.3 Optimization Tool Variables 

This section describes the parameters taken into account when the AMOR Synthesis tool was designed. The input 
parameters of the optimization tool designed for AMOR are mainly related to SAR parameters. As specified in [3.3], 
the instrument parameters that drive the antenna pattern synthesis are: 

Table 3.2: Parameters used in the antenna pattern optimisation process. 
 
In order to have a clearer idea of each of the above described parameters meaning, a detail of the mask in the main 
lobe region is depicted in Figure 3.3: 

 

 
Gain of the main lobe 

The main lobe gain requirement implicitly affects the instrument 
sensitivity across the swath (i.e. NEσ0 specification). The gain shall be 
achieved within the  main lobe width. The main lobe gain is intended to 
reach the theoretical maximum, that depends on the operating frequency 
and the  antenna effective aperture (considered to be the  array whole 
surface). 

 

Width of the main lobe in 
elevation 

The -3dB beamwidth is basically defined by the on-ground swath 
projection in terms the angular coordinates. The swath width will be 
provided by the user as an elevation angle Δθ in order to keep the same 
incidence angle on-ground along the orbit, taking into account the  
satellite altitude variation. 

 

Gain variation within the 
swath 

The peak-to-peak gain variation represents the gain difference between 
the maximum and the minimum within the swath specified in [dB]. In 
order to optimize the final images quality, the 2-way elevation antenna 
pattern needs to be as flat as possible, since in the calibration process the  
elevation antenna pattern inverse is applied and the noise distribution in 
the images directly follows that modulation. 

 

Higher gain towards 
higher elevation angles 

The signal power received by the instrument depends on the R4 
(transformed to R3 after azimuth compression), so the image intensity 
falls towards far range; this effect can be compensated by applying an 
antenna pattern with a positive slope in gain towards far range within 
the main lobe.    The compensation law (proportional to R3 shape) shall 
be applied in AMOR Synthesis tool in the angular range covering the 
main lobe and be transparent with respect to the user, which is given 
only the choice to trigger or not this option. This additional gain shall be 
added to the one specified under point 1 taking as reference the near 
range angle. 

 
Range ambiguity 

The antenna sidelobes level directly impacts on the range ambiguities, so 
the Synthesis tool shall have the capability to compute the Range 
Ambiguity-to-Signal Ratio (RASR) during the optimization process. The 
user is given the possibility to specify a RASR level in [dB] and the 
number of the ambiguities to be calculated. 

 

Elevation and azimuth 
pointing direction 

The elevation pointing direction is defined by the swath geometrical 
parameters, thus the look angle respect to the antenna boresight 
direction. In the azimuth direction the antenna pattern shall always be 
pointed towards zero degrees (i.e. zero-Doppler geometry) except for 
Spotlight mode where the azimuth squint angle determines a Doppler 
frequency different from zero. The elevation angle with respect to 
boresight will be input by the user. This  will correspond to the swath 
centre. 

 

Null position on certain 
directions 

In order to avoid ambiguous nadir echoes the instrument commanding is 
designed such that the reception window is not open when the Nadir 
return reaches the satellite. However, this cannot be ensured for all 
combination of satellite altitudes and terrain heights, so the option to 
include a null in the nadir direction shall be provided. The user shall be 
able to select the direction (in elevation) of the desired antenna pattern 
null and the level of this null. 
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Figure 3.3: Mask detail in the main lobe [3.3]. 

 
All the above identified parameters are used as constraints in the synthesis process and the user is able to stress 
some of them by means of weights through the implemented fitness function. The use of these parameters is 
explained in the next section. 

 
Since the optimization could be performed for different polarization combinations (i.e. HH, VV, HV, VH) only one of 
them (chosen by the user) will be considered in the process. However results for all possible combinations should be 
computed and displayed in order to evaluate the different trade-offs against the masks requirements. 
 
Additionally, the possibility to include deviations in the TRM settings or failing modules either in transmission, 
reception or both shall be considered when computing the coefficients. The module shall consider the nominal 
elevation pointing based on nominal antenna pointing plus the pointing accuracies or shifts. 
 
Different coefficients shall be obtained for right and left looking, by modifying the antenna nominal pointing 
parameter. 

3.2.4 Fitness Function 

The fitness function is the function helping to decide which the best solution to the optimization is. This function has 
to be minimized and should combine anyhow the parameters mentioned in the previous section into a single number. 
This process can be done by means of: 

 A combination of the aforementioned parameters into a mask or template that the solution has to fit 
closely; 

 or by means of the definition of a fitness function based in the proper weighting of these parameters.  
 
The current version of AMOR considers a weighted combination of parameters to define the fitness function. 
However, finding the adequate combination of parameters to define the fitness function is not trivial, and is the most 
difficult task in the GA application to any problem. The fitness function has to be tailored to the specific problem, and 
this is really hazardous since there is not a unique manner to define it.  
 
In the following sections some solutions applied to our particular scenario are presented.  

3.2.4.1 Template  

Obtaining the fitness function value from a template is quite simple. The defined template consists on the definition 
of the desired gain value for each angle in the elevation angle range considered [-90º, 90º]. The possibility to define a 
high and a low template is offered. These kinds of templates impose restrictions in the gain. Different scenarios are 
possible for each elevation angle in the range: 
 
1. High template: a high template (HT) is defined to limit the antenna gain pattern (GP) to a maximum value in a 

region of the antenna pattern; GP<HT. 
2. Low template (LT): to enforce the gain to reach a minimum value for some elevation angles; GP>LT. 
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3. High and low template: the gain must be between the values specified by the templates; LT<GP<HT. 
4. Specific template (ST): the gain must equal the most as possible a template with the desired antenna pattern; 

GP=ST.  
 
From these four cases, number 3 is used in the Delimiting Template approach, and number 4 corresponds to the 
Fitting Template approach (both described next). 
 
The criterion to evaluate the fitness function depends on the kind of template used, as shown in Table 3.3: 

 

 Delimiting template 
 
The fitness function is defined following the third criterion of the above mentioned, as sketched in Figure 3.4. 
Examples of optimised patterns obtained using this template description can be seen in Figure 3.5. 

 
Figure 3.4: Partial fitness function assignation. The fitness function is denoted by ff, and the partial fitness functions 

(partial because it is computed for each elevation angle sample) are denoted by ffk. k is the number of angular samples in 
the angular range considered. 

Figure 3.5. Examples of optimised EL patterns using the delimiting template technique.  
 

Figure 3.5 (left) shows the algorithm convergence, from a random initial population, to a pattern similar to the 
desired one. The template used is very simple and does not correspond to the application of any specific criterion 
based in radiometric quality parameters. In this figure the high template is marked in blue, while the low template is 
red. The final algorithm solution is the red dash-dotted line, while the green lines correspond to the intermediate 
solutions or the solutions of each generation. 
 
In Figure 3.5 (right) the cyan pattern is the best within the initial population, yellow patterns are the best results of 
the consecutive generations, and the blue pattern is the best individual in the last generation. The red template (high 
template) defines the antenna pattern side lobe region, where the antenna gain must be below to reduce the 
ambiguities level. The green template (low template) in the main lobe region indicates the minimum gain providing 
sufficient energy to illuminate the swath.  

Fitting template 
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The objective is to obtain an antenna pattern as similar as possible to a given pattern (the fourth of the type of 
objectives described before). The fitness function is then obtained as simply as computing the sum of all the squared 
difference between the template and the candidate patterns at each generation for all the angles in the elevation 
range (Equation 3.2).  
 

 

𝑓𝑓𝑓𝑓 = �[𝑤𝑤𝑏𝑏𝑚𝑚𝑐𝑐𝑡𝑡𝑎𝑎𝑤𝑤𝑏𝑏(𝑠𝑠𝑘𝑘) − 𝑐𝑐𝑎𝑎𝑤𝑤𝑤𝑤𝑏𝑏𝑟𝑟𝑠𝑠(𝑠𝑠𝑘𝑘)]2
𝑁𝑁

𝑘𝑘=1

 Equation 3.2 

 
Being p the number of elevation angle samples considered. 
 
This technique is suitable to optimise patterns after TRM failures to obtain a new pattern as equal as possible to the 
original one (before the TRM failure). 

Table 3.3: Fitness function definition using templates. 

3.2.4.2 Weighting  

The input parameters mentioned in the last section are used in the optimization tool to define a fitness function, that 
is, to assign a fitness figure to each individual analyzed during the GA evolution. This figure summarizes the 7 
parameters described in section 3.2.3 and is computed in four steps, each throwing a partial fitness ff1, ff2, ff3 and ff4, 
respectively, as exposed in Equation 3.3: 
 

 

𝑓𝑓𝑓𝑓 = �𝑤𝑤𝑐𝑐 · 𝑓𝑓𝑓𝑓𝑐𝑐

4

𝑐𝑐=1

 Equation 3.3 

 

From all the optimization variables presented in 3.2.3, the different partial fitness functions are extracted, as 
explained in Table 3.4: 
 

 ff1 

Computes the distance between simulated gain and the maximum gain achievable in the main 
beam. 
This partial fitness function has the following input parameters: 
 

 the main lobe minimum achievable gain (depends on the whole antenna aperture size and the 
operating frequency) 

 the elevation beamwidth 
 the swath centre or pointing direction 
 the R3 gain compensation values (for a given number of points inside the main beam) 

 
With these parameters a Patterndesired is defined in the main beam area. A ff1 value from the patterns 
generated in each algorithm generation is computed as shown in Equation 3.4: 
 

 

𝑓𝑓𝑓𝑓1 = Ψ𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑤𝑤 �𝐷𝐷𝐷𝐷, 𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑏𝑏, 𝑎𝑎,𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑏𝑏𝑎𝑎 ;�
∑ 𝑓𝑓𝑓𝑓1(𝑠𝑠𝑘𝑘)∀𝑘𝑘

𝑠𝑠𝑢𝑢𝑚𝑚𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠2� Equation 3.4 

 

Where ff1(θk) is computed as indicated in Equation 3.5: 
 

 

𝑓𝑓𝑓𝑓1(𝑠𝑠𝑘𝑘) = |𝑃𝑃𝑎𝑎𝑤𝑤𝑤𝑤𝑏𝑏𝑟𝑟𝑠𝑠𝑎𝑎𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑏𝑏𝑎𝑎 (𝑠𝑠𝑘𝑘) − 𝐺𝐺𝑃𝑃(𝑠𝑠𝑘𝑘)|2 Equation 3.5 

 

Somehow, we are also using a template and the criterion is the fourth of the explained in section 3.2.4.1. GP 
is the pattern generated by the GA that is being evaluated, and Ψlimit the function (Equation 3.9) used to 
limit the dynamic range of the ffk’s that is explained (together with the DR, slope, a and Paramdesired) further 
in this section. The variable numpoints is the number of angular samples considered in the main beam that 
depend on the angular resolution chosen for the optimisation tool (by default 0.1º). 
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 ff2 

Computes the gain ripple in the swath. 
To compute this value the considered parameters are: 

 the gain variation within the swath  
 and the slope in the main lobe (defined by the  compensation law proportional to R3 shape)  
 

The gain GP variation within the swath, ∆G, is computed from the corrected swath (with the R3 
compensation law) and used to derive ff2:  

 

 

𝑓𝑓𝑓𝑓2 = Ψ𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑤𝑤 (𝐷𝐷𝐷𝐷, 𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑏𝑏, 𝑎𝑎,𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑏𝑏𝑎𝑎;  Δ𝐺𝐺) Equation 3.6 

 

ff3 

Computes the worst RASR in the swath. 
The worst RASR value is computed for the pattern generated by the GA. Then the third partial fitness 
function value is computed using Equation 3.7: 

 

 

𝑓𝑓𝑓𝑓3 = Ψ𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑤𝑤 (𝐷𝐷𝐷𝐷, 𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑏𝑏, 𝑎𝑎, 𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑏𝑏𝑎𝑎;  RASRworst ) Equation 3.7 

 

ff4 

Computes the null to maximum gain ratio. 
The null value with respect to the GP maximum gain value is computed and used directly to obtain the ff4 
value: 

 

 

𝑓𝑓𝑓𝑓4 = Ψ𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑤𝑤 (𝐷𝐷𝐷𝐷, 𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑏𝑏, 𝑎𝑎, 𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑏𝑏𝑎𝑎;  𝑁𝑁𝑢𝑢𝑡𝑡𝑡𝑡) Equation 3.8 

 

Table 3.4: Partial fitness function definition. 
 

The Ψlimit function is used in order to have a limited dynamic range for each partial fitness function ffk. In fact, the 
partial fitness ranges are limited from 0 to 1. This is very important to have balanced partial costs for each of the four 
parameters according to the weighting values wp. 
 
The mentioned Ψlimit function is the following: 
 

 

Ψ𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑤𝑤 =
𝐷𝐷𝐷𝐷
𝜋𝜋 ·  �atan�

𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑠𝑠𝑤𝑤𝑢𝑢𝑎𝑎𝑡𝑡 − 𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑏𝑏𝑎𝑎

𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑏𝑏 � + 𝑎𝑎� Equation 3.9 

 
The arctangent function is used to limit the dynamic range from -π to π. Four parameters should be defined to get the 
output of Ψlim in the range from 0 to 1 for the expected values of Paramactual, DR, Paramdesired, slope and α. The 
resulting parameters after tuning are summarised in Table 3.5: 
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 Parameter Values Graphical Representation of the Limiting Function  

ff1 

Distance to maximum achievable gain in 
the swath. 
 Maximum gain is computed from the 

area Ageom of the whole array. If an 
aperture efficiency of 100% is 
considered the maximum achievable 
gain in the swath is found as: 
Gmax=10*log(4πAgeom/λ2). 

 It is considered that when the mean 
difference between maximum and 
actual gains is 5dB fitness should be 
0.7.  

 Then: Paramdesired=Gmean_diff=5 and 
Ψlimit(DR, slope, a, Paramdesired=5)=0.7.  

 Finally: 
o DR=2 
o slope=3 
o a=0 
o Paramdesired=0 

 

 
The slope, DR, and a parameters are fixed in order to obtain a rapid 
fitness decrease when “better” values of 𝑓𝑓𝑓𝑓1(𝑠𝑠𝑘𝑘) are reached. The 
increase of the ff1 value when the input parameter increases its value 
is softer. 

 ff2 

Ripple ∆G in the swath. 
 The user input is ∆G. In this example it 

is considered that ∆G =2dB is the 
maximum value allowed. 
 

 Consequently: Paramdesired=∆G =2 and 
Ψlimit(DR, slope, a, Paramdesired=2)=0.5. 

 Then: 
o DR=2 
o slope=1 
o a=0 
o Paramdesired=0 
 

 

 
The slope, DR, and a are tuned to obtain a high descending slope for 
values approaching  Δ𝐺𝐺 =0dB (the desired ones). The slope is softer 
in the undesired region, because in this region it does not matter the 
worst the value is but the fact that it is a bad value. 

ff3 

Maximum RASR in the swath. 
 In this example the desired maximum 

value of RASR in the swath is -20dB. 
 It is always considered that when the 

worst RASR in the swath is -80dB 
fitness is 0.05. 

 Then, Paramdesired=RASRworst=-20 and  
Ψlimit(DR, slope, a,; Paramdesired=-
20)=0.5. 

 Finally: 
o DR=1 
o slope=10 
o a=π/2 
o Paramdesired=-20 

 

 
Higher values than -20 are considered worst, and lower values 
better. However, obtaining a very low value implies negative effects 
on other parameters such the maximum obtainable gain, and is not 
as important as obtaining a value  lower than -20dB. For this reason 
the slope, DR, and a parameters are adjusted to have: 

 a steep slope around the desired value  
 and a saturation of the ff3 value when the RASR input value 

is further from the desired one. 
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ff4 

Null to maximum gain ratio. 
 In this example the desired null gain 

wrt maximum gain is -60dB. 
 Then: Paramdesired=Nulllevel=-60 and  

Ψlimit(DR, slope, a,; Paramdesired=-
60)=0.5. 

 It is always considered that when the 
null gain wrt maximum gain is 0dB 
fitness is 0.99. 

 Then: 
o DR=1 
o slope=10 
o a=π/2 
o Paramdesired=-60 

 

 
In this case, the curve is adjusted to reach a 0.5 value when Null=-
60dB.  
 
The curve has been tuned to have: 

 As the value obtained in the studied pattern is better, the 
slope quickly descends. 

 And, on the contrary, as this value is worse the slope 
ascends slowly. 

Table 3.5: Partial fitness function adjustments. 
 

 
 
An optimization procedure block diagram when the weighting approach is applied is shown in Figure 3.6: 

 
 

 
Figure 3.6: Optimiser block diagram. Fitness function weighting method approach. The weights wk are user defined. 
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In the figure the input parameters and their connection with the optimization process are sketched. The soft blue 
boxes indicate actions that are made in the routine that performs the fitness function computation, ff. Therefore these 
actions are executed (#individuals_per_population) x (#generations+initial_generation) times. 

 
Once the fitness function is obtained, the algorithm internally waits to the end of each generation to compare the 
fitness of the individuals and therefore perform elitism, mutation and crossover and hence create the next 
population. The best individual of the next generation will have a better, or at least equal, fitness than the one in the 
previous generation. 
 
Whereas the stopping condition is not met, the algorithm goes on with the iterations. The stopping criteria are 
diverse: a maximum number of generations, a given fitness value, a lasting time for the optimization process, a 
stopping order given by the user, or any combination of the previous conditions (see next section).   
 
Although the former Figure refers to the weighting method, it is quite general. If the template approach is used, w2, 
w3, and w4 are set to 0 and w1 to 100. The ff1 term input is the defined template and is computed depending on the 
definition of fitness function used (Figure 3.4 or Equation 3.2). Irrespective of the chosen weights and template 
definition, the historic of all the parameters involved in the optimisation is stored for further analysis. 
 
In addition if null to maximum gain ratio does not need to be fulfilled, just assigning a value of 0 to w4 cancels its 
influence in the algorithm evolution. 

3.2.5 Algorithm Stopping Criteria 

The best way to stop the algorithm would imply results active monitoring for each generation by a skilled user. This 
is not a convenient solution, because it makes the optimising process non automatic. There are plenty of conditions 
through which the algorithm can be commanded to stop, some of the most intuitive and used are:  

 
Algorithm Stopping Approaches 

 Maximum number of generations. The algorithm can be stopped if the number of generations exceeds a 
fixed limit. A drawback of this stopping method is that there is not an intuitive rule to determine the 
convenient number of generations before stopping the algorithm. The number must be established after 
studying the particular optimisation case in order to avoid stopping the algorithm before having reached a 
sufficiently good solution or to avoid spending too much time optimising when the optimal solution is 
reached many generations before. However, it can be considered as a stopping method in our particular 
case. 

 Fitness value limit. In this case the algorithm stops when the fitness value obtained for a given solution is 
less than or equal to a specified fitness limit. Similarly to the former method, in some situations it is 
difficult to establish that limit in the fitness function value. In our particular case, the obtained fitness value 
meaning is highly difficult to relate with the algorithm inputs and outputs (as explained in the former 
section), hence making unsuitable this stopping criterion.  

 Time limit. The algorithm stops after running for an amount of time equal to a specified time limit. This is 
a dangerous stopping method. Beforehand, it is practically impossible to know the time the algorithm will 
need to reach a solution susceptible of being qualified as truly optimal for a given problem. Therefore, this 
method is not used in AMOR. 

 Manually. This option can be used to stop the algorithm when checking its progression and a sufficiently 
optimal solution is found. 

Table 3.6: Different possible algorithm stopping criteria. 
 
The method used in the AMOR software is the limit number of generations. This value is accessible to the user 
although, as abovementioned, this number is not intuitive and it must be carefully determined in the design of the 
optimiser. Additionally, there is an option to stop the algorithm manually. 
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3.2.6 Initial Population 

One of the initial steps while running a Genetic Algorithm is providing the code with an initial population of 
individual for the algorithm to evolve towards an individual with the lowest fitness as possible. Typically the initial 
population generation is random. However, it is possible to feed the initial population with a set of individuals known 
to or expected to have low fitness values, or even with individuals having certain properties expected to be in the 
algorithm best solution. 
 
In AMOR, the individuals of the initial population are generated using different criteria: 
 Some of them are generated fully randomly. 
 Others are generated considering a boresight solution steered towards the direction of the desired steering one 

(specified by the user). 
 Another group of individuals is generated using a squinted beam in RX steered towards the direction of the 

desired steered direction. The squinted beam is generated adding two beams: one is the resulting beam from 
shifting a boresight beam +α degrees from the desired steering angle, and the other is the resulting beam from 
shifting a boresight beam -α degrees from the desired steering angle. These individuals have a flat response in 
the main beam of their RX pattern whereas have a pencil beam in their TX pattern. 

 Finally the individual that is the solution for a planar array of equally spaced subarrays of ideal resonators has 
also been considered. This array is assumed to have all its subarrays working properly. Albeit not exact in terms 
of SAR parameters, this optimised solution is very similar to the one obtained considering embedded subarrays. 

 
The solution for the actual array having subarrays at nominal positions and maybe some failing TRMs is expected to 
be close to the ideal one (meaning that excitation coefficients would not be much different). A light version of the GA 
code has been implemented to find this solution. This light version of the code is especially implemented to solve an 
array of equally spaced set of subarrays of ideal resonators being its execution times faster than the code solving the 
actual array. That is the reason why the optimization tool is configured to run the lite version of the GA code during 
more generations than the actual array GA code and with a higher number of individuals in the initial population. 

 
Figure 3.7 summarizes the tasks carried out by the optimization algorithm. The inputs to the algorithm are the SAR 
parameters to be considered and the working/failing TRMs (both through external files). First the template for 
having maximum gain at swath and all the range ambiguities are computed. The individuals for the initial population 
to be used in the lite GA code (for the case of an equally-spaced array of ideal subarrays) are generated. The solution 
for this lite GA is computed and included in the set of individuals that describe the initial population to be used in the 
GA that will find the solution for the actual array of embedded subarrays. The resonator radiation power pattern is 
given by Equation 3.10. 

 

 

t(θ,ϕ) = (0.05 + 0.95cosθ)2 Equation 3.10 

 
Due to its computation speed to calculate the actual subarrays pattern directivities the GA uses the method of 
subarray radiation power integration (section 2.2.2.2). Once the GA best solution is found the pattern directivity is 
accurately computed using the spherical mode expansion (section 2.2.2.4). 
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Fig. 3.7: Optimizer algorithm. 

 
 
 
 
 
 

3.2.7 Optimiser Development Procedure 

The optimisation is based in the Genetic Algorithm approach. This algorithm is iterative, and reaches a solution after 
an intensive tuning of the consecutively intermediate solutions. In parallel, the development of the optimisation tool 
is an iterative process itself in which the inputs are fixed by quality parameters that the outputs have to fulfil.  
 
The way these quality parameters are translated to the optimizer core can need to be redefined in successive steps. 
Many modifications in the definition of the fitness function inputs and the fitness function itself have been needed in 
order to obtain sufficiently accurate results within a reasonable time slot.  
 
In the former section the optimiser design and implementation process are described in detail, making special 
emphasis on the most hazardous parts of the design and the solutions proposed. The optimiser development is based 
on an iterative process in which some definitions and parameters are refined in order to obtain an optimiser 
sufficiently tuned to our particular needs. The overall optimiser development procedure is sketched in Figure 3.8: 

 

Generating Template for 
Maximum Gain at Swath

Computing All Ambiguities

Computing the Radiated 
Power of an Ideal SA

Initial Population Generation: Steered 
Boresight, Steered Squinted Beams, 

and Random Beams

GA for Equally-Spaced Array 
of Ideal SAs

GA for Actual Array of 
Actual SAs

Computing the Radiated 
Power of Actual SAs

Loading Field Samples in EL plane 
of each Actual SA

Adding Ideal Array Solution to 
Initial Population

Best Solution Ideal Array

Best Solution Actual Array

SAR Constraints
Reading Working TRMs from file
(\AMOR\Errors\Actual_Working_TRMs\filename.txt)

Directivity is computed 
using the subarray 
pattern integration



 3. Optimisation Tool for AMOR: Design and Results 

 

39 

 
Figure 3.8: Optimisation development block diagram. 

 
 
The comparison between ECE’s supplied patterns and the AMOR optimiser obtained ones is part of the optimisation 
development procedure. It is necessary and useful as a means to pre-validate the software (although the complete 
prelaunch validation will not be complete until some of the synthesised beams are compared with the correspondent 
measured ones). However, it does not tight the AMOR optimiser to obtain any specific result previously obtain with 
the ECE tool. Moreover, the AMOR optimisation tool has been designed to overcome the ECE tool restrictions and 
trying to improve its results. 
 
In this process, the results obtained using AMOR are compared to the ones supplied by ECE. Some of the most 
important difficulties found in the adjustment procedure of the AMOR optimiser are related with the fact that UPC 
does not know the way the ECE tool derives its results. It is neither known the analytical expression of the basic 
element used, nor the kind of algorithm used. Moreover, some important details like the planes used to define the AZ 
and EL plane of the beams are unknown. Therefore, whenever the AMOR optimisation tool performed worse than the 
ECE tool it has been difficult to determine if the patterns compared were exactly the same and under the same 
conditions. 
 
Anyway, these difficulties are not completely a drawback, since the objective is to develop a new and better Antenna 
Model tool. To do so, the tool needs to be designed and developed completely independent to any other existent tool.  
 
Hence, the main goal is that, fixed the desired design parameter values the GA optimum pattern has to fulfil them. 
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3.2.8 AMOR Optimiser GUI 

This section is aimed to demonstrate the operation of the optimiser GUI, and specifically concerning to the Stripmap 
beams optimization, through the simulated results of the Stripmap SM1 beam. The Spotlight and ScanSAR beam 
generations are easier and quicker and fall out of the scope of this thesis. The Spotlight beam generation objective is 
to steer a given pattern to a specified angle in AZ, while the ScanSAR beam generation will be based in the Stripmap 
one, steering a given Stripmap beam in AZ and without needing to apply GAs. 
 
First of all, the basic element to be taken into account in the optimizer as the actual SA has to be selected in the Array 
Description window, as depicted in Figure 3.9. In this case the WA_NS_01_32_PH_09650_COSGUV.mat element, both in 
TX and RX. This basic element data is based in an ideal model of the SA pattern, based in a cosines-like shape as 
observed in Equation 3.10. The other possibility is WA_NS_01_32_PH_09650_ISOGUV.mat, taking an isotropic element 
as a basic element of the phased array antenna. AMOR allows considering as basic element any kind of radiating 
element. In future versions of the software another configuration is planned to be added: the one considering 
measurements.  

 

 
Fig.3.9: AMOR Array Description window. The desired TX and RX antenna configurations have to be chosen. 

 
Then, in the Errors window, a file containing the description of the failing TRMs can be selected if needed. In addition, 
another kind of errors can also be taken into account: mechanical errors made when assembling the antenna, or 
detected deviations in the nominal values of the phase shifters or amplifiers, among others. An example can be 
observed in Figure 3.10. In this example and the simulations performed in the rest of the chapter, no errors are 
considered. Those errors, if selected, are taken into account in the second part of the optimisation process, when 
considering the actual SA. 
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Fig.3.10: AMOR Errors window. The desired errors to be taken into account can be chosen. 

 
After these preliminary adjustments, the Synthesis window of the AMOR simulator has to be selected. The Stripmap 
optimisation tool is placed in the left part of the window. Figure 3.11 depicts the initial state of the Stripmap 
optimisation window. 

 
There are some hints indicating the required action to be done anytime in order to carry out the optimisation using 
the AMOR GUI. These hints appear when placing the pointer over a pushbutton, or an edit text box, for instance. In 
the Figure 3.11, the first step is to decide whether the swath filename to be used is the default one or not. The Load 
Swath File pushbutton has the hint “Press to load the chosen swath file” associated. The swath file, which is an excel file 
with a predefined format, contains information on the possible swaths of the Stripmap operating mode, such as the 
default PRF or the desired pointing direction. This information defines the main characteristics of the desired 
Stripmap beams, and is part of the information required to optimise each of them.  
 
Once the chosen file containing information on the swath is loaded, some beam characteristic parameters are printed 
on the window, along with the more relevant GA parameters. This is shown in Figure 3.12. 
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Fig.3.11: AMOR Synthesis window. The Stripmap optimisation is placed in the left part of the window, under the name 

Stripmap beam generation, and is marked in blue. 
 

 
Fig.3.12: AMOR Synthesis window. Beam information of the first Stripmap beam , SM-S_1, (second blue square), and 

relevant GA parameters (third blue square) appear in the Stripmap Beam Generation window right after pushing the 
Load Swath File button. Since the SM1 may not be the desired beam to be optimised, a popup menu to select the desired 

one also appears. By means of selecting the strip beam name and pushing the Refresh button, the information printed on 
the window relative to the beam characteristics is actualised. 
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After pushing the Load Swath File button, information on the first Stripmap mode, SM-S_1, appears printed in the 
Stripmap Beam Generation window (blue square 2 in Figure 3.12). The SM-S_1 is the default value for the strip beam, 
but one might want to optimise another beam. For this reason, a popup menu with a list of the possible beams for the 
swath defined also appears (blue square 2 in Figure 3.12). Choosing the desired Stripmap beam and pushing the 
Refresh button, the beam information printed in the window changes. Finally, some relevant GA parameters are also 
printed in the window inside edit text boxes. These parameters are editable by the user. These values are made 
editable in order to allow the user to interact with the algorithm, but they need to be chosen carefully since, as 
explained in previous sections, its values are not easily deduced by mere intuition. 
 
Note that the design parameters are neither editable nor visible. Remember that these parameters are: the mean gain 
in the swath, the RASR, the ∆G within the swath (considering the R3 correction) and, optionally, the gain at nadir with 
respect to the gain at maximum. The objective is to achieve the maximum mean gain in the swath, the minimum 
possible value of RASR in the swath, the minimum gain variation within the swath and, if specified, the minimum 
possible gain in nadir. The GA is a global optimizer, and hence the pattern best fitting all the mentioned requirements 
at the same time (or reaching a convenient trade-off of its values) will be the optimal.  
 
Once the desired strip beam is selected (in this example SM-S_1) and the GA parameters are checked, by pressing the 
Optimize Coeffs button the algorithm described in Figure 3.7 begins to run. During the optimisation, the following 
information is printed in the Matlab® command window: 
 
1 Stripmap Optimization: Defining templates. 
2 Stripmap Optimization: Computing ambiguities. 
3 Stripmap Optimization: Computing radiated power of the ideal subarray of resonators. 
4 Stripmap Optimization: Generating the GA initial population. 
5 Stripmap Optimization: Starting the GA for an antenna having the subarray of ideal 
resonators. 
6 Stripmap Optimization: ideal Subarray, computed generation: 1 of 50 
… 
54 Stripmap Optimization: ideal Subarray, computed generation: 49 of 50 
55 Stripmap Optimization: ideal Subarray, computed generation: 50 of 50 
56 Optimization terminated: maximum number of generations exceeded. 
57 Elapsed time is 145.316804 seconds. 
58 Stripmap Optimization: Computing the patterns of THE BEST RESULT for the antenna having 
the subarray of ideal resonators. 
59 Stripmap Optimization: Computing the radiated power of the actual subarrays. 
60 Stripmap Optimization: Loading the elevation patterns of each actual subarray. 
61 Stripmap Optimization: Adding the best solution of the ideal antenna to the GA initial 
population of the actual antenna. 
62 Stripmap Optimization: Starting the GA for the actual antenna. 
63 Stripmap Optimization: actual Subarray, computed generation: 1 of 5 
64 Stripmap Optimization: actual Subarray, computed generation: 2 of 5 
65 Stripmap Optimization: actual Subarray, computed generation: 3 of 5 
66 Stripmap Optimization: actual Subarray, computed generation: 4 of 5 
67 Stripmap Optimization: actual Subarray, computed generation: 5 of 5 
68 Optimization terminated: maximum number of generations exceeded. 
69 Elapsed time is 96.335307 seconds. 
70 Stripmap Optimization: Computing the best result for the actual antenna. 
71 Stripmap Optimization: Plotting ALL THE ANALYZED excitations for the antenna having the 
subarray of actual resonators. 
72 Stripmap Optimization: Plotting THE BEST excitation for the antenna having the subarray of 
actual resonators. 
73 Stripmap Optimization: Saving the resulting coefficients from optimization. 
74 Stripmap Optimization: Computing accurate patterns for GA solution. 
75 Computing the spherical mode expansion for the TX beam... 
76 Max. Directivity TX Pattern [dBi] (spherical modes, coarse sampling): 45.479 
77 Max. Directivity TX Pattern [dBi] (pattern integration, coarse sampling): 45.479 
78 Computing the spherical mode expansion for the RX beam... 
79 Max. Directivity RX Pattern [dBi] (spherical modes, coarse sampling): 42.595 
80 Max. Directivity RX Pattern [dBi] (pattern integration, coarse sampling): 42.596 
81 Stripmap Optimization: Plotting TX, RX and 2W patterns. 
82 Stripmap Optimization: Results saved in text file... 
83 Stripmap Optimization: Erasing variables. 
84 Stripmap Optimization: GA optimization ended. 
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The lines 3-61 are the correspondent to the initial quick optimisation from ideal SAs. In this example, the 
parallelization is not used; however there is the option of using it. Parallelisation is used to make the optimiser more 
efficient in time consumption. The Matlab® parallelisation tool1

 In the upper part of the figure:  

 evaluates the parallelisation possibilities of the 
hardware used to perform the optimisation and decides if the parallelisation is possible and which number of labs 
the hardware allows working with. 

 
The lines 62-72 correspond to the optimisation using actual SAs. Since the computations using measured data are 
slower and the coarse optimisation using ideal SAs is quite precise, only 5 generations are carried out. Note that 5 
generations using actual SAs take around 96s while the 50 generations using ideal SAs take around 145s, in this 
example. Therefore, the total time to optimise is approximately 4 minutes.  
 
The most time consuming part is the one described in lines 73-80; i.e. the computation of the exact directivities of the 
beams using the spherical mode expansion. It can take more than 10 minutes, depending on the computer used. + 
 
During the optimisation, many figures are plotted. The first figure appearing is the one containing information on the 
progress of the optimisation using ideal SAs, as shown in Figure 3.13. While running the optimization code the best 
solution of the more recent iteration is plotted together with its predecessors: 

• in blue, the present iteration solution;  
• in green, the former solutions. 

 Down:  
• in blue, the present iteration solution swath without R3 correction;  
• in red the present iteration swath with R3 correction;  
• in green the past iterations solution swaths without R3 correction;  
• and in magenta, the past iterations solutions with R3 correction.  

In addition, information on the maximum gain within the swath, the worst RASR value, the gain at nadir with respect 
to maximum gain within the swath, the difference in dB between the maximum possible gain and the average gain in 
the swath, the gain variation within the swath with R3 correction and the same variation without R3 correction is 
provided for the present iteration. 
 
During the optimization process, this figure is replaced by the one containing exactly the same information but for 
the GA using the actual SA, as further explained. The only of both figures remaining on the screen when the 
optimization process terminates is the corresponding to the evolution of the GA using the actual SA. 

 
 
 

 
Fig. 3.13: Figure containing information on the evolution of the first optimisation, using ideal SAs. The figure shown is a 
screenshot of the evolution of the beam for the GA using the ideal SA, although at the end of the optimization the figure 

remaining on the screen is the one corresponding to the algorithm using the actual SA. 

                                                             
1 To use the Matlab® parallelization tool it is necessary to have acquired the correspondent toolbox, which is optional and has to be 
bought apart.  
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At the end of the first optimisation, the one with the GA using the ideal SA, the optimization using the actual SA 
begins. The figure above shown is replaced by the one showing the evolution of the second phase of optimization 
(Figure 3.14), which remains present in the screen at the end of the whole optimization process together with 5 more 
figures. 
 

 
Fig. 3.14: Figure containing information on the evolution of the second optimisation, using actual SAs.  

 
In this case, the evolution can not be appreciated (there are no different beams in green or magenta) just because 
there is no evolution. Since no errors and no measured data are introduced in the considered actual SA, this SA is 
exactly the same as the one considered in the ideal GA optimisation. Therefore, little evolution with respect to the GA 
using the ideal SA is expected. 
 
Another of the resulting figures contains information on the mean ∆G wrtmax, RASRworst, and ∆Gain wR3 of all the 
individuals in all generations (Figure 3.15), and the one shown in Figure 3.16 contains information on the same 
parameters commented on the former figure, but only for the best individual of each iteration. Only one result is 
observable in Figure 3.16, for the reason explained in the last paragraph. 
 

 
Fig. 3.15: Figure containing information on the evolution of the first optimisation, using ideal SAs. It shows the values of 

the mean ∆Gwrtmax, the RASRworst and the ∆GainwR3 for all the individuals in the population and for all the iterations 
carried out. 
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Fig. 3.16: Figure containing information on the evolution of the first optimisation, using ideal SAs. It shows the values of 
the mean ∆Gwrtmax, the RASRworst and the ∆GainwR3 only for the best individuals in the population and for all the iterations 

carried out. 

 
Finally, three figures with information on the optimum beam for the optimisation using both the ideal SA and actual 
SA are plotted: one figure with the TX beams, another figure with the RX beam, and a figure with the 2W beams - with 
R3 compensation (Figure 3.17).  
 
In all them, directivities for the ideal SA are quickly computed using the method described in 2.2.2.2, while for the 
actual SA are computed using the methods described in 2.2.2.3 (pattern integration) and 2.2.2.4 (spherical modes 
expansion). 

  

 
Fig. 3.17: Optimised beam: TX (left up) RX (right up) and 2W (down) gain EL pattern cuts. Both the result for the GA 
considering the ideal and the one considering the actual SA are presented. For the one considering the actual SA, the 

result is presented using two different methods for the directivity computation. 
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In addition, important information on the solution is printed in the Stripmap Beam Generation window. This 
information is highlighted in a blue rectangle in Figure 3.18. 
 
 

 
Fig. 3.18: Information on the optimised beam is printed in the Stripmap Beam Generation window: the mean 2W gain, 

the gain variation within the swat (with and without R3 correction), the worst RASR value and the nadir gain with 
respect to the maximum gain in the swath. 

 
In the example, the requirement of obtaining a variation of the gain within the swath less than 2dB is not fulfilled. In 
the next section, solutions to the eventual problems encountered when optimising a beam are presented after a 
detailed study on the effect of some GA options modifications. 

3.3 Optimisation Tool Results and Guidelines 

The use of the optimiser is not trivial. Although the main decisions are taken by the optimiser, the final decision on 
whether the result is optimal or not (it matches the specifications) has to be taken by the user. This does not mean 
that the optimizer is not doing its job, but that the user could have introduced wrong values in the input editable text 
boxes of the Synthesis window of AMOR. Therefore, at the end, the user has to do the effort of tuning the input 
parameters according to the beam synthesized. To tune correctly the algorithm helps in reducing the execution time 
needed to reach the optimal solution. 
 
A sufficiently fulfilled set of specifications for a far range swath, for instance, would be to reach a reduced gain level at 
Nadir with respect to the maximum gain (under -60dB), an acceptable maximum gain (not too low knowing that the 
boresight maximum for the PAZ specific antenna is 92.8dB approximately – see Equation 3.10), a good variation of 
the gain within the swath (maximum 2dB) but a bad RASR level. In far range swaths the RASR is expected to be bad 
(well above the restriction of -20dB taken as design parameter in the examples – see Figures 3.24 and 3.25). As 
mentioned in previous sections, all this terms contribute to extract an overall fitness value, the lower the better 
(since the objective is to minimize the cost). None of the solutions is dismissed if some of the parameters determining 
the fitness value do not fulfil the specifications; all of them contribute to the optimizer convergence to an optimal 
result. 
 
The aim of this section is to establish the guidelines to make the most of the optimiser. The SM-S_1 strip beam 
optimisation is studied by means of observing its repeatability, and changing different GA parameters. At the light of 
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the results, the AMOR optimiser is characterised and some hints to efficiently use it are listed. At the same time, by 
reading this section, the AMOR potential user can discover the eventual hazards that he or she might face during the 
optimisation procedure. 
 
After establishing a methodical procedure, it is applied to three test cases based on real specifications for three 
different strip beams. The proposed examples are described in terms of radiometric parameter constraints. They will 
help the reader to completely understand the meaning of the different steps of the optimization tool design described 
in recent sections. They also help extracting conclusions which could be applied in further revisions of the optimizer 
in order to continue improving its performance. 

3.3.1 Characterisation of the Optimiser Behaviour 

As mentioned before, this section intends to characterise the Optimiser behaviour by means of varying the mean 
parameters modifiable by the user. This study is aimed to save time to a potential user of the software, performing 
first attempt simulations. The objective is to demonstrate which the adequate changes to be applied to the initial 
settings are in order to quickly converge to a fairly adequate solution. 
 
The initial simulation, carried out with the default configuration of the different input parameters, referred as 
Simulation 1 hereinafter, is the starting point of all the variations examined in the following sections. Its GA 
configuration parameters are gathered in Table 3.7: 

 
 

GA weights (Maximum gain in swath, gain variation in swath, 
RASR, nadir gain wrt maximum gain in swath) 

20% 45% 25% 10% 

Number of individuals per generation 80 
Number of generations for ideal SA GA 50 
Number of generations for actual SA GA 5 

Table 3.7: Default GA configuration parameters. 
 
 

The results when executing the optimizer code can be found in Table 3.8:  
Maximum 2W gain (computed using spherical modes) 85.38 dBi 
Gain variation in swath (without R3 correction) 3.23 dB 
Gain variation in swath (with R3 correction) 2.36 dB 
Worst RASR in swath -37.54 dB 
Nadir gain with respect to maximum gain -67.51 dB 

Table 3.8: Results of Simulation 1. 
 

The figures obtained from this execution of the optimizer are gathered in Table 3.9. The first two figures show all the 
results obtained corresponding to the main design parameters for all the individuals assessed (first figure)  and for 
only the best individuals (second figure), only for the GA using the actual SA. The third figure shows the evolution of 
the optimized beam while the GA using actual SA evolves: in the upper part of the figure, the blue beam is the solution 
one while the green beams are the best of previous generation; in the lower part of the figure, the blue line 
corresponds to the solution pattern swath without R3 correction, the red line to the solution pattern swath with R3 
correction, the green lines to the previous best individuals swaths  in their correspondent generations without R3 
correction, and the magenta lines to the previous best individuals swaths in their correspondent generations with R3 
correction. The fourth, fifth and sixth  figures show the resulting 2W, TX and RX beams: in green the resulting beam of 
the GA using ideal SA, in blue the resulting beam of the GA using the actual SA, and in black the resulting beam of the 
GA using the actual SA with the directivity computed using the spherical mode expansion method. 
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Simulation 1 

  

  

  
Table 3.9: Resulting figures after executing Simulation 1. They show all the results obtained corresponding to the main 

design parameters,  for the GA using the actual SA; the evolution of the optimized beam while the GA using actual SA 
evolves; and the resulting 2W, TX and RX beams both for the algorithm considering the ideal and the actual SA. 

 
As previously mentioned, one of the outputs of the GUI is a text file containing the feeding coefficients to obtain the 
optimised beam pattern. They are plotted and presented in Table 3.10 for Simulation 1: 
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Simulation 1 TRM excitations in EL 

  
Table 3.10: Representation of the optimal feeding coefficients magnitudes and phases (TX and RX) in Simulation 1. The 
first figure shows the TX magnitudes for the TRMs in EL plane. The second figure shows the RX excitation magnitudes in 

the EL plane. Finally, the third and fourth figures show the TX and RX excitation phases in the EL direction. 
 
Remember that the TRM excitation magnitudes and phases are constant in the AZ direction, and for this reason they 
are not represented in the former figures. In the phase plots it is evident the linear component of the phase, which 
indicates the beam steering applied.  
 
As explained in previous sections, the specifications fix that the maximum tolerable gain variation in swath (since the 
specifications are from the radiometric point of view, this gain variation is specified taking into account the R3 
correction) is 2dB. In Simulation 1 the value obtained is 2.36 dB, and does not fulfil the mission needs. The RASR has 
to be below or equal to -20dB, and the worst RASR value in this case is -37.54 dB. Therefore, the RASR specification is 
widely fulfilled. The nadir gain with respect to the maximum gain is considered sufficiently low reaching a -60dB 
value. In this case it is considered that there is a null in the nadir direction. In Simulation 1, the null condition is 
fulfilled even having assigned a 10% to the correspondent weight of the fitness function. A priori, it is difficult to say 
which the adequate gain is. It can only be assured that the maximum gain possible is desired, and that the maximum 
achievable gain for the considered array antenna is the one in Equation 3.10 (as mentioned in section 3.2.4.2): 
 

 

𝐺𝐺𝑚𝑚𝑎𝑎𝑥𝑥 1 𝑊𝑊𝑎𝑎𝑦𝑦 = 10 · 𝑡𝑡𝑠𝑠𝑏𝑏10 �
4𝜋𝜋 ·𝑆𝑆𝑏𝑏𝑏𝑏𝑠𝑠𝑚𝑚

𝜆𝜆2 �~10 · 𝑡𝑡𝑠𝑠𝑏𝑏10 �
4𝜋𝜋 ·(4.8𝑚𝑚  𝑥𝑥  0.7 𝑚𝑚)

𝜆𝜆9.65𝐺𝐺𝐺𝐺𝑧𝑧
2 � =

46.40 𝑎𝑎𝐵𝐵  
Equation 3.10 

 
This implies that the maximum achievable 2-Way gain is approximately 92.80 dB. However, this value is the 
maximum achievable at boresight, and the steering of the beam implies degradation in the gain value. In addition, this 
value is the maximum achievable having a uniform feeding distribution, and with this kind of distribution a pencil-
beam like pattern is obtained. Since a maximum gain variation in the swath is imposed, and this implies a certain 
flatness of the swath, the maximum gain will be also affected for this condition and will be even lower. The gain 
obtained in Simulation 1 is 85.38 dBi, and hence 7.42 dB under the maximum achievable value. However with only 
one optimisation it can not be affirmed if this is a good or a bad value. 
 
 Starting from Simulation 1 different simulations are performed in order to determine whether the results obtained 
can be improved, and, if so, how can they be improved. In the following sections the variations performed are the 
following: 
 Repeatability of the experiment: 9 new simulations under exactly the same conditions than in Simulation 1 are 

performed. This is made in order to evaluate the repeatability of the same experiment, knowing that the GAs are 
intrinsically random, and to establish if a huge or a little variation in results is obtained between different 
realizations of the same experiment. In principle, a huge variation is not desired. This can imply that the fitness 
function is not well designed and that the optimizer user would be exposed to uncertainty or that little iterations 
have been performed. 

 GA weights variation: 7 new simulations varying the GA weights controlling the importance of fulfilling each of 
the four principle radiometric specification parameters (maximum 2W gain, maximum gain variation in the 
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swath, worst RASR in swath, and gain of the null in Nadir with respect to the maximum gain in swath) are 
performed.  

 GA number of generations’ variation: increasing progressively the number of ideal generations in the 9 first 
simulations (the ones considering the ideal SA pattern), and also of actual generations in the last 9 simulations 
(the ones considering the actual SA pattern), the objective is to determine if the results can be improved by 
doing so2

 GA number of individuals in the population variation: according to Rahmat-Samii [3.4], approximately four or five 
times the binary individual length is the adequate number of individuals in the population in order to quickly 
converge to an optimal solution in a GA binary problem. This means that in our case, having individuals of 384 
bits, the ideal number of individuals would be between 1536 and 1920. By default, this parameter is set to 80 in 
our tool, which is very far from the indicated one. This number is varied progressively along 9 new simulations, 
up to 1600. The objective is to determine whether this parameter has a high or a low influence in the 
improvement of results obtained in Simulation 1. 

.  

 
With this 35 simulations a preliminary optimizers’ behaviour statistical study is carried out. From them, conclusions 
on the optimizer performance can be extracted and some utilization guidelines can be indicated. 

3.3.1.1 Repeatability of the experiment 

First of all we compare the results of Simulation 1 with 9 more different sets of results under the same conditions (no 
changes in the editable parameters in the Stripmap Beam Generation window). All the results are gathered in Table 
3.11 in order to facilitate the comparison of the different simulations.  

 

Simulation 
number 

Maximum 2W gain 
(computed using 
spherical modes) 

[dBi] 

Gain variation in 
swath without R3 

correction  
[dB] 

Gain variation 
in swath with 
R3 correction 

[dB] 

Worst 
RASR in 
swath  
[dB] 

Nadir gain 
wrt 

maximum 
gain  
[dBi] 

Total 
fitness 

1 85.38 3.23 2.36 -37.54 -67.51 34.49 
2 85.55 3.14 3.67 -40.44 -82.07 37.98 
3 84.88 2.43 1.99 -34.76 -80.22 33.87 
4 84.34 1.67 1.16 -34.64 -42.98 36.85 
5 85.38 3.23 2.36 -37.54 -67.51 34.49 
6 85.55 3.14 3.67 -40.44 -82.07 37.98 
7 84.88 2.43 1.99 -34.76 -80.22 33.87 
8 84.34 1.67 1.16 -34.64 -42.98 36.85 
9 84.51 2.25 1.72 -33.99 -67.49 33.45 

10 85.38 3.23 2.36 -37.54 -67.51 34.49 
Table 3.11: Main resultant parameters when repeating the same simulation (different realisations of the same 

experiment). Results  which are equal between them are marked with the same colour. In blue, results 1, 5 and 10 are 
equal between the, result 6 is equal to result 2, results 4 and 8 are equal between them, and result 9 is not equal to any 

other result. 
 
All the results have been generated in different hours and some of them in different days. However, the results are 
not totally different between them. In fact there are only 5 different results out of 10 simulations. This may seem 
surprising because the GA behaviour is random. But in fact, ideally (if the algorithm would have been run a sufficient 
amount of time) the result must be always the same, because the GA is a global optimisation technique. Indeed, the 
obtained result is not negative at all. It means that although the algorithm to find the optimal solution is random, 
given the same algorithm settings (number of generations, number of individuals in the population, GA weights, etc) 
there is a closed set of possible solutions in the short-term. This is positive in the sense that the user has not a high 
uncertainty in knowing whether if repeating the same experiment highly better results may be obtained.  
 

                                                             
2 Remember that using the ideal SA configuration means that the GA uses a cut of the ideal SA pattern described by Equation 3.10, 
and equally spaced SAs without any failure in the TRMS or positioning error. Using the actual SA configuration means that the whole 
pattern generated by the array is considered (3D pattern), and all kind of possible errors are included (positioning of the SAs in the 
antenna, failures in the TRMs, etc.).  
Another different thing is if the SA pattern considered in the analysis when using the actual SA comes from measures or from an 
analytical formulation. In the present study the SA considered patterns are created analytically, since measures were still not 
available in the moment that the Master Thesis document was prepared. 
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Figure 3.19: Colour plots representing the magnitudes of the different evaluated parameters for the different number of 

simulation. 
 

But let’s take a look to the results obtained in detail. In Figure 3.19, four different colour plots representing the 
magnitudes of the evaluated parameters for the different number of simulation can be observed. The first colour plot 
represents the maximum 2-Way gain, from Simulation 1 –the reference one- to Simulation 10. In this case the RASR is 
always better than the specified. Simulation 2 has the major number of best results (3 stars), except for the gain 
variation in the swath (3.67 dB) which is notably worse than the 2dB specified. If we concentrate in finding a good 
gain variation value, simulation 4 would be the best.  
 
However, the null gain and the maximum gain values are poor in this case. Nonetheless, the simulation having a 
lower overall fitness function value is Simulation 9. Therefore it has to be considered as the best one. In fact, when 
paying attention to the values reached in this simulation, it turns out that it is the solution reaching the best trade-off 
between the different design parameters. This means that the fitness function is well designed, and represents 
mathematically through a single value (the total fitness value) the quality of a solution from a multiple-objective 
optimisation problem. 
 
From this study it can be concluded that, as expected, when a good gain variation value is obtained (flat-top beam like 
pattern) the secondary lobes increase its value (therefore poorer null gain with respect to maximum gain values and 
also poorer RASR values are obtained) and the main lobe value is decreased.  Another important conclusion is that 
the repeatability is fair good, which seems to confirm (even considering a low number of individuals in the 
population) that the algorithm does searches a fitness function global minimum, as desired. 

3.3.1.2 GA weights variation  

In this case the GA weights are varied in the 7 new simulations performed. Each variation of the weights performed 
in the different simulations has a reason (see Table 3.12), and the procedure is below explained: 
 Since in Simulation 1, and as mentioned in the former section, the gain variation in swath is too high, the first 

weight that can be varied is the one related to the gain variation, w2. In Simulation 2 w2 is increased a 10%, and 
hence the rest of the weights need to be readjusted. We choose to decrease in a 10% the weight w3, related to the 
RASR, since in Simulation 1 the RASR condition is widely fulfilled. With that change, the gain variation in the 
swath is slightly improved (from 2.36 to 2.16 dB) but the maximum 2W gain is also decreased (from 85.38 to 
85.04 dB).  

 Simulation 3 is intended to even outperform the results in Simulation 2. In this case, w2 is increased in a 10% 
while w3 and w4 are decreased a 5%. This is an example of having surpassed the limit of weighting the gain 
variation in swath parameter in front of the rest. In this case the gain variation in swath obtained is very good, at 
the expense of having an extremely low maximum gain and a very bad RASR (although concordant with the 
weight assigned to this parameter in the optimization, of only a 10%). The fact that the nadir gain wrt max gain 
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is too high is not important, because it is also concordant with the weight assigned to this parameter in the 
optimization (5%). 

 Simulation 4: at the light of the previous results, w1 is increased a 5% and w2 decreased a 10%, and w3 is 
increased a 5% to compensate the total weighting that needs to be 100%.  In this case it can be stated that all the 
results are satisfactory with respect to the weights assigned. The maximum gain is better (but not better than 
the initial 85.38 dB), the gain variation has not a good value, 3.34 dB, and the RASR is well below the maximum 
allowed (-20dB). In the case of the null gain, it has a good value with respect to the maximum considering that its 
correspondent weight has been set to only a 5%. 

 Simulation 5: making less important the maximum gain and more the gain variation. Still too high gain variation 
value is obtained. 

 Simulation 6 makes even more important the gain variation value, but compensates the high weight assigned to 
this parameter increasing the weight of the RASR. This is done knowing that the weights in simulation 3 have led 
to very bad results. Still too high gain variation. 

 In simulation 7 the gain variation weight is even more increased. The gain variation is finally good enough, but 
the maximum gain is unacceptable, because it is more than 10dB below the maximum one reached in former 
simulations. 

 Simulation 8 tries to improve the former results increasing a 5% the maximum gain weight, ending with even 
worse results. 

 

Simulation 
number 

w1, w2, w3, w4 
[%] 

Maximum 2W gain 
(computed using 
spherical modes) 

[dBi] 

Gain variation in 
swath without R3 

correction 
[dB] 

Gain variation 
in swath with R3 

correction 
[dB] 

Worst RASR in 
swath 
[dB] 

Nadir gain wrt 
max gain 

[dBi] 

1 20, 45, 25, 10 85.38 3.23 2.36 -37.54 -67.51 
2 20, 55, 15, 10 85.04 2.49 2.16 -37.57 -65.64 
3 20, 65, 10, 5 68.82 1.30 0.58 -2.22 -18.75 
4 25, 55, 15, 5 84.91 2.46 3.34 -39.64 -75.64 
5 20, 60, 15, 5 85.39 3.13 2.38 -39.28 -64.82 
6 20, 65, 15, 0 85.01 2.59 2.44 -37.65 -44.59 
7 15, 70, 15, 0 80.72 1.38 1.01 -27.14 -37.39 
8 20, 70, 10, 0 74.66 0.78 0.54 -12.72 -41.70 

Table 3.12: Main resultant parameters when varying the GA weights controlling the importance of each design 
parameter in the optimization process. 

 
From Figure 3.20 it can be affirmed that in this case the simulation having the maximum best results is simulation 4, 
with 2 stars corresponding to the RASR and null gain. However, the ΔG value is unacceptable. In general, Simulation 2 
and Simulation 1 are the ones with the best overall results; although from Table 3.12 we know that the gain variation 
in swath is 2.16 dB and 2.36 dB, respectively, above the maximum tolerated. 

 
Figure 3.20: Colour plots representing the magnitudes of the different evaluated parameters for the different 

simulations. 

Legend
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In conclusion it can be stated that it is frankly difficult to adjust the GA weights. In this case, however, the starting 
weights (the default ones) have been previously adjusted when designing the optimizer. So the results confirm that 
the default values are the correct ones. 

3.3.1.3 GA number of generations variation 

First of all, the number of generations considered in the optimization which is varied is the correspondent to the ideal 
SA GA optimization, maintaining the rest of the default values (reference case, Simulation 1: Table 3.7). The starting 
number of generations is 50. Since the ideal optimization is, as previously mentioned, the quicker one, this number 
can be increased with less time consumption increment than in the GA using the actual SA. For this reason the 
simulations increase progressively the number of generations from 50 to 300, as briefed in Table 3.13: 

 

Simulation 
number 

Number of  
generations 
for ideal SA 

GA 

Maximum 2W gain 
(computed using 
spherical modes) 

[dBi] 

Gain variation in 
swath without R3 

correction 
[dB] 

Gain variation 
in swath with R3 

correction 
[dB] 

Worst RASR 
in swath 

[dB] 

Nadir gain 
wrt max gain 

[dBi] 

1 50 85.38 3.23 2.36 -37.54 -67.51 
2 60 84.64 2.24 2.19 -34.08 -85.46 
3 70 84.69 2.77 2.24 -34.28 -96.41 
4 80 84.01 1.54 1.09 -32.67 -64.26 
5 90 85.24 3.20 2.52 -36.56 -73.22 
6 100 84.58 2.51 1.70 -37.24 -39.72 
7 150 83.81 2.08 1.43 -29.19 -74.18 
8 200 84.31 1.58 1.10 -36.80 -39.33 
9 250 84.40 2.15 2.31 -34.19 -77.47 

10 300 84.57 2.55 1.77 -34.10 -77.43 
Table 3.13: Main resultant parameters when varying the number of generations in the GA using ideal SA. 

 
In this case the analysis of the results is simpler: the increment of the number of generations in the ideal SA GA 
process has a fair effect in the improvement of the final results. As easily observed from Figure 3.21, as the number of 
generations increases, a trade-off between the different parameter values is reached: the maximum gain is not as 
high as initially, but the gain variation value is acceptable and the other parameters also fulfil the specifications.  

 
Figure 3.21: Colour plots representing the magnitudes of the different evaluated parameters for the different 

simulations. 
 
If the number of generations increased is the corresponding to the GA using the actual SA, maintaining the number of 
generations of the GA using the ideal SA equal to the default one (Table 3.7), the results obtained are the ones 
gathered in Table 3.14 and Figure 3.22: 
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Simulation 
number 

Number of  
generations 
for actual SA 

GA 

Maximum 2W gain 
(computed using 
spherical modes) 

[dBi] 

Gain variation in 
swath without R3 

correction 
[dB] 

Gain variation 
in swath with R3 

correction 
[dB] 

Worst RASR 
in swath 

[dB] 

Nadir gain 
wrt max gain 

[dBi] 

1 5 85.38 3.23 2.36 -37.54 -67.51 
2 6 85.55 3.14 3.67 -40.44 -82.07 
3 7 85.73 3.66 2.94 -36.89 -74.64 
4 8 84.80 2.97 3.08 -38.66 -76.47 
5 9 84.82 3.07 2.78 -31.54 -71.73 
6 10 84.37 1.99 1.19 -31.99 -67.66 
7 15 85.47 2.91 2.37 -39.91 -44.12 
8 20 84.83 2.79 3.12 -37.79 -66.04 
9 25 85.57 3.48 2.85 -35.30 -74.56 

10 30 84.93 2.24 1.67 -33.03 -41.54 
Table 3.14: Main resultant parameters when varying the number of generations in the GA using actual SA. 

 

 
Figure  3.22: plots representing the magnitudes of the different evaluated parameters for the different  simulations. 

 
At the light of the results, it can be affirmed that increasing the number of generations in the GA using the actual SA 
has a good impact in the results obtained. The improvement of the results is slow but similarly to the ones obtained 
increasing the number of generations of the GA using ideal SA, reach a good trade-off between the different 
parameters. 
 
Reaching similarly good results, it is preferable to increase the number of generations in the part of the optimization 
process using ideal SA, because it is less time-consuming.  

3.3.1.4 GA number of individuals in the population variation  

Ideally, the more individuals in the population, the quicker -in number of generation terms- the algorithm converges. 
The ideal number of individuals per generation is, as previously mentioned, between 1536 and 1920. In this section, 
the initial number of individuals, 80, is increased progressively up to 1600 in order to determine whether this 
parameter affects the improvement of the results obtained. The obtained results for the different simulations are 
gathered in Table 3.15. 
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Simulation 
number 

Number of  
individuals 

per 
generation 

Maximum 2W gain 
(computed using 
spherical modes) 

[dBi] 

Gain variation in 
swath without R3 

correction 
[dB] 

Gain variation 
in swath with 
R3 correction 

[dB] 

Worst RASR in 
swath 
[dB] 

Nadir gain wrt 
max gain 

[dBi] 

1 80 85.38 3.23 2.36 -37.54 -67.51 
2 100 84.73 2.95 3.12 -34.64 -70.27 
3 150 85.10 2.63 2.76 -35.31 -72.92 
4 200 84.69 2.13 1.88 -38.94 -92.72 
5 250 84.60 2.27 1.54 -33.15 -83.12 
6 300 85.15 2.64 2.09 -38.38 -91.75 
7 350 85.38 2.70 2.22 -36.10 -70.33 
8 400 85.10 2.91 2.76 -40.72 -90.79 
9 800 84.87 2.31 1.63 -32.08 -77.89 

10 1600 83.89 1.55 0.81 -30.65 -86.68 
Table 3.15: Main resultant parameters when varying the number of individuals in the population. 

 
In this case, the last result is highly better in terms of ΔG than the ones obtained varying the number of generations. 
The maximum gain is not as good as desired, but it is the price to pay to obtain such a low gain variation in the swath 
value. In Figure 3.23 it can be easily appreciated that absolutely all the simulations fulfil the RASR and nadir null 
specifications. Then, concentrating on the other two parameters, it is observable that the maximum gain reduction is 
associated to the ΔG reduction. A good trade-off is reached in Simulation 9, where ΔG = 1.63 dB and Gmax = 84.87 dBi. 

 
Figure  3.23: plots representing the magnitudes of the different evaluated parameters for the different  simulations. 

3.3.2 Optimiser Guidelines 

At the light of the results obtained in the study undertaken in the last section, the guidelines to be followed when 
optimising a Stripmap beam are the following: 
 
1. Set the number of individuals per generation at least to 400 or 800. Ideally the more the better, however 400 or 

800 provide sufficiently evolved results in an acceptable period of time considering a trade-off between 
algorithm performance and time consumption.  

2. Start optimizing using the default parameters (Table 3.7), except for the number of individuals per generation 
and the number of generations in the GA using the actual SA, where the recommendation is to set it at least to 10. 

3. If the results are not satisfactory enough, reasonably vary the GA weights in order to find the adequate 
combination which provides the more adequate results. 

4. If the results are still not satisfactory enough increase the number of generations for the GA using the ideal SA up 
to 300 (in order to save simulation time). 
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It is important to note that some specifications are impossible to fulfil when optimising determined beams. For 
instance, there is a limit in optimising the RASR parameter when the beams optimized are far range. To exemplify the 
situation, Figures 3.24 and 3.25 contain the RASR vs. incidence angle for the 26 different SM-S beams (Stripmap 
single polarization beams) for minimum and maximum orbit altitude, respectively.  This parameter increases 
monotonously up to 0 dB at 60º of incidence angle (the SM-S_26 beam at an altitude of 536 Km). As the internal 
document on the instrument performance analysis (elaborated by the ECE team [3.5]) from where the figures have 
been extracted explains, the data has been simulated using SAR Tool (© EADS Astrium, UK) because this functionality 
has still not being completely implemented into the PAZ Antenna Model when the document was redacted. 
 
In AMOR, the input swath file used in the Stripmap optimisation tool contains the geometric and signal parameters 
for an orbital height of 505 Km, and hence the reference figure to compare our results with is Figure 3.24. The basic 
element polarization used is H. As seen in the SM-S_26 case in Figure 3.24, the worst RASR in the swath can be worse 
than -2dB in H polarization for an altitude of 536 Km. For an altitude of 505 Km, this RASR for the Stripmap beam 26 
is not as worse as -10 dB. 

 

 
Figure 3.24: RASR vs. Incidence angle for an orbit height of approximately 505 Km. Figure extracted for an internal 
report written by the ECE team on the instrument performance analysis. This figure is valid only for the SM-S mode 

(Stripmap Single polarization mode) [3.5]. 
 

 
Figure 3.25: RASR vs. Incidence angle for an orbit height of approximately 536 Km. Figure extracted for an internal 
report written by the ECE team on the instrument performance analysis. This figure is valid only for the SM-S mode 

(Stripmap Single polarization mode) [3.5]. 
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3.3.3 Guidelines Application 

Finally, the guidelines and knowledge extracted in the former section are applied to three specific Stripmap beams. 
Since the first one has been deeply studied in the former section, its results are directly presented. 

3.3.3.1 Test Cases Definition 

The beams on which one will focus are three Stripmap (SM) beams (out of 26), namely: SM-S_1, SM-S_10 and SM-
S_26. In this way, the study is done for a near-range swath (SM-S_1), a near-boresight swath (SM-S_10), and a far-
range swath (SM-S_26). All the optimisations are applied to the 2W (two-way) EL (Elevation) antenna patterns of 
each SM mode. 2W because optimising TX and RX separately and independently does not always, not saying almost 
never, result in an optimal 2W pattern. EL plane because in the AZ (azimuth) plane the beams are very directive, 
because of the higher number of radiating elements in the AZ direction (which means very narrow beamwidths or 
good side lobe levels, for instance), and only beam steering is performed in this plane (in Spotlight mode). 
 
In Table 3.16 the three test cases reference patterns provided by ECE are presented, along with the reference quality 
parameters they have to fulfil. The reference patterns are provided by ECE from an internal antenna simulator with 
reduced functions: it cannot consider deviations in the position of the TRMs; it only computes the patterns based on 
an ideal SA (not measured) and considering the SAs equal between them. In this way, this simulator can assume some 
simplifications in the computations that lead to a less time consuming optimisation, comparing with the optimiser 
developed in this Master Thesis. 
 
Therefore, it is important to remark that the below presented reference patterns are generated from an ideal SA 
pattern. Hence, it is important to have in mind that the comparisons between the optimised patterns which are 
generated by the optimiser developed in this MT –UPC patterns hereinafter– and the ECE ones are not exactly under 
the same conditions.   
 
 2W EL Reference Pattern Quality Parameters  

SM1 

 

 Gain of the main lobe > 83 dB 
o Peak Gain achieved 85 dB 

 Width of the main lobe in elevation > 3.145º 
 Gain variation within swath (or peak-to-peak 

sensitivity) :  
o Required < 2 dB  
o Achieved = 0.70 dB 

 Range Ambiguity 
o  Required < -20 dB  
o  Achieved = -49.4 dB 

 Elevation and azimuth pointing direction:  
o Beam Maximum: (θEL; θAZ) = (-17.6; 0)º 
o Estimated Beam centre (θEL; θAZ) = (-18.7; 0)º  

SM10 

 

 Gain of the main lobe > 90 dB 
o Peak Gain achieved 92.3 dB 

 Width of the main lobe in elevation > 2.185º 
 Gain variation within swath (or peak-to-peak 

sensitivity) :  
o Required < 2 dB  
o Achieved = 4.70 dB 

 Range Ambiguity 
o  Required < -20 dB  
o  Achieved = -33.9 dB 

 Elevation and azimuth pointing direction:  
o Beam Maximum: (θEL; θAZ) = (0.61; 0)º 

Estimated Beam centre (θEL; θAZ) = (0.49; 0)º 
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SM26 

 

 Gain of the main lobe > 90 dB 
o Peak Gain achieved 90.9 dB 

 Width of the main lobe in elevation > 0.94º 
 Gain variation within swath (or peak-to-peak 

sensitivity) :  
o Required < 2 dB  
o Achieved = 1.24 dB 

 Range Ambiguity 
o  Required < -20 dB  
o  Achieved = -11.2 dB 

 Elevation and azimuth pointing direction:  
o Beam Maximum: (θEL; θAZ) = (19.5; 0)º 

Estimated Beam centre (θEL; θAZ) = (19.5; 0)º 

Table 3.16: Reference EL 2W patterns for the three cases of study, and quality parameters to fulfil. All the data in the 
table has been provided by ECE. 

3.3.3.2 Simulation Results 

The objective of the tool is to generate the excitations for the 26 Stripmap planned beams, according to the specified 
input parameters. The beams need to be optimum respect to the specified quality parameters.  
 
In this section, the three cases formerly presented are optimised based on the guidelines established in 3.3.2. After 
the optimization process, the beams generated by the AMOR optimization tool are compared to the ones provided by 
ECE.  
 
Even knowing that the comparison between ECE beams and AMOR ones is not totally fair, it can be useful to give a 
general idea on how right or wrong is each tool when optimizing a beam. 
 
 
SM_S-1  
 
Since the SM_S-1 beam has been sufficiently studied in Section 3.3.1, the results of the best simulation are directly 
presented. 
 
With a number of individuals per generation equal to 800 and the rest of the default parameters, we obtain the 2-
Way pattern in Figure 3.26 and the results in table 3.17 compared with the ones provided by ECE. 
 

Figure 3.26: Comparison of the optimization results of the SM-S_1 beam: ECE vs. UPC beam. The green line corresponds 
to the ECE beam, the red line to the UPC resulting from the optimization using ideal SA patterns, and the black one 

resulting from the UPC’s optimization with actual SA patterns. 
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Parameter ECE UPC 

Maximum 2W gain (computed using spherical modes) 85 84.87 
Gain variation in swath  0.70 1.63 
Worst RASR in swath -49.40 -32.08 
Nadir gain with respect to maximum gain -67.68 -77.89 

Table 3.17: Comparison of the resulting parameters after optimizing the SM-S_1 beam: ECE results vs. UPC results. 
 

In the SM-S_1 optimization process, remember that the critical parameter has been the gain variation within the 
swath. The AMOR beam fulfils all the specifications. The ECE one has approximately the same Gmax but with a lower 
∆G. How can it be possible is explained by an inconsistence of the AZ and EL cuts found in the ECE SAR Tool3. If the 
ECE Gmax is not the one in the EL plane defined as it is defined in AMOR, and the gain level is also not computed in the 
same way and from ideal SAs instead of actual ones,  the comparison is not fair at all and this kind of phenomena can 
occur. The logical thing would have been that a sharper AMOR beam would had a higher Gmax and worse ∆G.  But 
another issue that has to be taken into account is that the considered beam is a 2-Way one, and hence the former 
reasoning can not be made as directly as if the beam was from a single antenna (1-Way). 
 
The magnitudes and phases of the excitations to obtain the pattern optimized are plotted both for TX and RX (see 
Figure 3.27). In this case the magnitudes in RX follow a quasi-cosine like shape, and the phases slope is the same in 
TX and RX, which denotes the beam steering.  

 
Simulation 3 TRM excitations in EL 

  
Figure 3.27: Comparison of the AMOR (in red) and ECE SAR Tool (in green) excitation RX magnitudes and TX and RX 

phases. 
 
SM_S-10 
 
In this case we need to start from the beginning: point 1 in the guidelines (although the number of individuals per 
generation is maintained equal to 80 in order to save time). The SM-S_10 optimization using the AMOR optimization 
tool fulfils all the specifications from the very beginning. However, since the ECE provided results have achieved a 
gain of 92.3dB, a couple of additional simulations are performed to enhance the gain in Simulation 1 of SM-S_10. In 
the case of ECE, however, the gain variation within the swath obtained for a gain of 92.3 dB has been more than 4dB 
which is, from the specifications point of view, unacceptable. Note that SM-S_10 mode is the more boresight-like 
mode, and hence its maximum achievable gain in swath is very close to the theoretical one (92.8 dB). 
 
The effort in this beam is concentrated in reaching the higher maximum gain possible while having good ΔG and 
RASR values. The last simulation is performed assigning a 100% to w1, in order to evaluate which is the maximum 
possible gain for the SM10 and the correspondent ΔG value using the AMOR optimizer.  
 
In the following table, the results obtained in the different simulations are gathered. Note that in the SM-S_10 case, to 
save time and since the initial result with default input parameters fulfils specifications, the only parameters that 
have been varied are the GA weights.  

                                                             
3 Explained in Appendix C. 
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UPC Simulation 
number 

GA Weights 
w1, w2, w3, w4      [%] 

Gmax 

[dBi] 
Gain variation 
in swath [dB] 

RASR  
[dB] 

Nadir gain wrt 
maximum gain [dBi] 

1 20, 45, 25, 10 86.43 0.76 -23.28 -71.19 
2 30, 35, 25, 20 85.97 0.64 -23.91 -78.52 

3  65, 20, 10, 5 86.76  1.01 -22.02 -71.50 
4 85, 5, 10, 0 89.70 4.47 -29.80 -59.35 
5 100, 0, 0, 0 91.79 6.11 -19.20 -59.48 

ECE simulation 92.3 4.70 -33.90 -82.75 
Table 3.18: Comparison between the different optimization results between them and with the ECE reference ones for 

the SM-S_10 beam case. 
 
Having into account that it is desired to obtain the maximum gain while fulfilling the ΔG<2dB specification, the best 
result is the obtained in Simulation 3. The patterns obtained for Simulation 3 both in the GA using ideal SA and in the 
GA using actual SA (with directivity computed using the spherical modes expansion) are compared to the ECE 
provided one in Figure 3.28. Similar plots for the different simulations can be found in Appendix B, Figure B.1. As 
expected, less ∆G in the AMOR beam than in the ECE one implies higher secondary lobes and hence higher RASR 
levels, along with lower Gmax value.  
 

 
Figure 3.28: Comparison of the optimization results of the SM-S_10 beam: ECE vs. UPC beam. The green line corresponds 

to the ECE beam, the red line to the UPC resulting from the optimization using ideal SA patterns, and the black one 
resulting from the UPC’s optimization with actual SA patterns. 

 
The magnitudes and phases of the excitations to obtain the pattern optimized in Simulation 3 are plotted both for TX 
and RX (see Figure 3.29). In this case the magnitudes in RX follow a quasi-cosine like shape, like in SM-S_1, but the 
phases slope is very soft precisely because the beam is little steered. The phase in RX has an abrupt change in the last 
TRMs, superposed to the phase ramp which determines the beam steering. 
 

Simulation 3 TRM excitations in EL 

  
Figure 3.29: Magnitudes (left) and phases (right) for the excitation coefficients, both in TX and RX, obtained as a result in 

Simulation 3 of the SM-S_10 beam. 
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SM-S_26 
 
The starting point is the default configuration of the input parameters (Table 3.7). From the very beginning it can be 
observed that the ΔG obtained is well below the upper limit established by the specifications (in part, due to the fact 
that the swaths are narrower for far range beams than for the near range ones) and the maximum gain is fairly high 
(again, caused by the narrower beamwidth of the main lobe, requiring a less flat-top beam to fulfil the required ΔG in 
the swath, and hence the gain can be higher) - approximately 86dB. However, the RASR is tremendously high, even 
being higher than 0dB. 
 
From Figures 3.24 and 3.25 it is known that the RASR can not be as good as in nearer range beams, but in this case 
the optimization effort has to be centred in containing the RASR value while maintaining reasonable values of the 
gain variation in the swath and the maximum gain in the swath. 
 
In this way, around 5 simulations are needed to complete the optimization process for the SM-S_26 Stripmap beam. 
Note that the optimization can be stopped after it reaches its end, in order not to spend too much time with the exact 
computation of the directivity when the main parameter values that are observed in the GA window are very distant 
from the desired ones from the very beginning. 
 
Table 3.19 contains the main results of the different simulations carried out for the SM-S_26 beam, where the only 
parameters varied are the GA weights. 
 
UPC Simulation 

number 
GA Weights 

w1, w2, w3, w4      [%] 
Gmax 

[dBi] 
Gain variation 
in swath [dB] 

RASR  
[dB] 

Nadir gain wrt 
maximum gain [dBi] 

1 20, 45, 25, 10 85.63 0.06 0.84 -85.59 
2 30, 10, 50, 10 88.97 0.48 -1.05 -77.85 
3 20, 5, 70, 5 89.81 0.83 -2.01 -99.83 
4 20, 0, 80, 0 90.28 1.04 -2.68 -60.08 

5  0, 0, 100, 0 85.62 1.49 -3.49  -67.60 
ECE simulation 90.90 1.24 -11.2 -73.86 

Table 3.19: Comparison between the different optimization results between them and with the ECE reference ones for 
the SM-S_26 beam case. 

 
In this case the critical parameter is the RASR, and the simulation which best suits the RASR specifications is number 
5. The patterns obtained for Simulation 5 both in the GA using ideal SA and in the GA using actual SA (with directivity 
computed using the spherical modes expansion) are compared to the ECE provided one in Figure 3.30. Similar plots 
for the different simulations can be found in Appendix B, Figure B.2. 
 

 
Figure 3.30: Comparison of the optimization results of the SM26 beam: ECE vs. UPC beam. The green line corresponds to 

the ECE beam, the red line to the UPC resulting from the optimization using ideal SA patterns, and the black one 
resulting from the UPC’s optimization with actual SA patterns. 

 
 
In this case, the RASR specification is not fulfilled. It may be improved increasing the number of individuals per 
generation, but it will never be as good as the -20dB specified in the general requirements. Like in SM-S_1, the 
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comparison is paradoxical: in AMOR beam the Gmax is lower than in ECE, however, the beam is not wider but even 
narrower, leading to a worse ∆G value in the AMOR beam. It can be due to the fact that the secondary lobes are 
higher. In this way, although the main beam is wider, the ECE pattern is more directive because its secondary lobes 
are lower.  
 
The magnitudes and phases of the excitations to obtain the pattern optimized in Simulation 5 are plotted both for TX 
and RX (see Figure 3.31). In this case the magnitudes in RX do not follow any specific or identifiable shape. The 
phases slope is negative, oppositely to the ones of the SM-S_1 and SM-S_10 beams, because the beam steering is 
positive in the antenna angle domain. 
 

Simulation 5 TRM excitations in EL 

  
Figure 3.31: Magnitudes (left) and phases (right) for the excitation coefficients, both in TX and RX, obtained as a result in 

Simulation 5 of the SM-S_26 beam. 
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4 BUILDING BLOCKS OF AMOR 

The antenna model structure is described in the present chapter. The directory tree of the Antenna Model software 
package is explained, and the modeller main subroutines are introduced in order to better understand the way the 
software tool is implemented. 

4.1 Directory Tree 

The Antenna Modeller code uses the following tree of directories under the AMOR main folder: 
 

  Array_Descriptions 
Contains .mat files (Matlab® compressed file format) where several array 
descriptions are stored. 

  Basic_Elements 

Folder where all the measured subarrays (basic array elements) are stored in an 
individual .mat file. This .mat file is generated by combining into single file 
individual embedded SA measurements stored in the same subfolder. Raw 
subarray measurements are preprocessed (using the Preprocessing window) to 
increase the sampling, as required for further accurate computations of array 
directivity. 

 Controls Library of functions required to build the GUI of AMOR. 

 Docs 
This folder contains documents such as AMOR_Versions.doc (summary of 
differences between the several versions of AMOR) and the AMOR user manual. 

 Errors 

It stores the different input files for the mechanical and thermoelastic error 
computations. Error files are grouped into specific folders. Only a folder called 
Mechanical_Panel is found till now. Inside, different text files having different 
mechanical panel error configurations can be found. In the present version of 
AMOR (v4.0) a folder called Actual_Working_TRMs stores the matrices used to 
indicate which TRM are failing or working properly. 

 Excitations 

Inside the Excitation directories there are six folders containing text files 
describing the excitation coefficients for the several beams allowed by the 
different operating modes of the instrument. Namely: Boresight, Stripmap, 
Spotlight and ScanSAR. Also there is a folder containing the excitation 
coefficients for squinting the Spotlight beams, Squints4Spot. An additional folder 
named User_Defined allows having sets of excitation coefficients defined by the 
user for testing purposes. 

 Menu 

Contains scripts required to design the Graphical User Interface and build the 
windows used by the modeller tools, that is, the Array Description window, the 
Error window, the Analysis window, the Synthesis window, the Help window, and 
the About window. 

 Results 

It contains 6 folders:  

 Pattern_Cuts 

In this folder the text files having azimuth and 
elevation pattern cuts according to the 
definition given in Section 3.2.3, together with 
a text file summarizing the TX, RX and 2W 
antenna performance are stored. 

 AZ_Pattern_Cuts 
It contains the text files for an azimuth pattern 
cut (that is, the pattern cut for a plane with 
constant φ). 

 Directivity_Files 
It stores, in .mat file the antenna directivity 
using the pattern integration method. 
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 3D_Patterns 
It contains 3D antenna patterns stored in 
compressed MatLab files (.mat). 

 Stripmap_Optimisation 
Containing different folders where the TRMs 
excitation coefficients resulting from different 
optimisations of the Stripmap mode are stored.  

 Temp 
Intermediate results that involve spherical 
modes are stored in this folder. 

 Routines 

It contains 4 folders: 

 Run 
It contains scripts detailing the algorithmic of 
the several functionalities of AMOR. 

 Main 
In this folder, there are the main procedures on 
each of the algorithms under the Run folder. 

 Subroutines 

Here one can find scripts or subroutines that 
perform tasks required in several algorithms. 
These tasks are packed as functions and could 
be sorted adequately to build new 
functionalities not yet implemented. 

 Tools 
It contains routines with specific analysis 
utility that are not directly used in AMOR but 
could be used in the future. 

Table 4.2: AMOR directory tree. 
 
The specific format of the aforementioned input and output files is described in the modeller User Manual. 

4.2 Main Subroutines 

The tasks developed by the main subroutines included in folder Subroutines are summarized in the following 
paragraphs. These subroutines are the modeller engines and can be called independently to carry out specialized and 
repetitive functions which can be combined in a script to generate and analyze sequentially large number of beams. 
 

 
Sub_PAZ_PatternCuts_pSF 

Computes the far fields (copolar and crosspolar, or theta and phi 
components) radiated by a given antenna configuration at given 
spatial directions. The antenna configuration is defined by the chosen 
basic element matrix, operating frequency, separation between 
subarrays, positioning errors, excitation coefficients (including failing 
TRMs) and pattern to be computed (TX, RX or 2W). The spatial 
directions where the fields are computed are specified by a pair of 
vectors having the spatial θ and φ directions. To compute the patterns 
this subroutine uses the previously preprocessed fields radiated by 
each subarray element. The subroutine output provides the electric 
field intensities radiated by the whole array. 

 

Sub_PAZ_PatternCorrections_
pSF 

Computes the corrections to be added to the patterns obtained by the 
subroutine Sub_PAZ_PatternCuts_pSF to get directivity patterns (from 
the radiation intensities previously obtained). To compute the 
corrections the inputs to the subroutine are the basic elements matrix 
and the excitation coefficients feeding the basic elements. Also the 
malfunctioning TRMs are accounted for through a matrix that provides 
information about the ones. The corrections provide directivities 
based on the formulation of Section 3.2.2.2.  

 

Sub_PAZ_PatternCorrections_
SphericalModes_pSF 

Its function is the same as the abovementioned subroutine, except for 
the method used to compute the directivity. It uses the formulation 
presented in Section 3.2.2.4. It calculates directivity corrections in a 
more accurate way than the former routine, but taking more time to 
perform the computations. It is used by default in all the operations 
performed in the analysis window. 
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Table 4.3: AMOR main subroutines. 

  

 

Sub_PAZ_ReadingMeasureme
ntsGUV 

It reads on-ground measured radiation patterns of embedded 
subarrays stored in a GUV text file and allocates these data in a copolar 
and crosspolar matrix. GUV files contain copolar/crosspolar far field 
samples in the uv-domain whereas the data used by AMOR require 
sampling in a spherical domain (θф). 

 
Sub_PAZ_uvplanes 

Used to compute the spatial directions corresponding to the azimuth 
and elevation pattern cuts in addition with the angles required for 
plotting the resulting patterns. 

 

Sub_PAZ_PatternCharacteriz
ation 

It computes several pattern characteristics for a given pattern cut, 
such as maximum pattern level for the cut (directivity or fields, 
depending on the input vector), the beam pointing direction, the -3dB 
beamwidth and the side lobe level. Beam pointing direction is 
considered to be the beam maximum direction or the beam centre 
direction. By default, beam pointing direction is considered to be the 
beam centre as defined in Figure 3.9 in Section 3.2.3. 

 
Sub_PAZ_Find_BeamCenter 

Used to compute the spatial directions of the beam centre and beam 
maximum of a copolar pattern for a given antenna configuration (basic 
elements/s, separation between elements, and pattern –TX, RX, or 
2W). These directions are determined following an iterative procedure 
briefly described (for a two way pattern) in the algorithm of Figure 
3.12 (right), in Section 3.2.3. 

 
Sub_PAZ_DiscretizePhases 

It provides the discretized phases of the TRMs excitation coefficients to 
the given number of bits. 

 
Sub_PAZ_SavePatternResults 

Subroutine that stores a pattern cut (EL or AZ) in a text file. The 
pattern has been previously computed using Sub_PAZ_PatternCuts_pSF. 

 
Sub_PAZ_SaveTRMCoeffs 

This subroutine is used to store the excitation coefficients to be 
applied to the array in transmitting and receiving modes. 

 

Sub_PAZ_SN2FFT_ModesCom
putation 

Used to compute the spherical mode expansion (Q1nm and Q2nm) of a 
given field distribution, according to formulation in Equation 3.11 in 
Section 3.2.2.4. 

 

Sub_PAZ_CodifyingExcitation
s 

Codifies a given set of excitation coefficients according to the number 
of bits of phase shifters and amplifiers. 

 
Sub_PAZ_cpxp2thph 

It converts from copolar/crosspolar to theta/phi components (or the 
other way round) following the Ludwig 3 definition. 

 
Sub_PAZ_GA_FitnessFunction 

It computes the partial fitness of a given pattern array configuration 
and set of excitation coefficients. It also computes the partial fitness 
attending to a set of some radar parameter goals previously defined by 
the user. 

 

Sub_PAZ_ComputingAllAmbi
guities 

Returns the location of all the ambiguous zones required for further 
RASR computation given a normal satellite configuration and swath 
definition. 

 
Sub_PAZ_RASR_Computation 

Using the geometrical parameters provided by the function 
Sub_PAZ_ComputeAllAmbiguities.m it computes the RASR levels at a 
given number of samples in the swath. 
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5 CONCLUSIONS AND FUTURE WORK 

AMOR is in a constant evolution, and, though at the time this Master Thesis document is redacted there is still some 
work to do regarding the antenna model, one can clearly distinguish between present achievements and next-future 
work. 
 
At the present, a complete antenna model capable of analysing and synthesizing many different antenna beams has 
been developed. AMOR allows loading any antenna configuration and analysing or synthesizing it. The basic elements 
of the phased array antenna can be any (all equal or all different between them, isotropic, formula-based or 
measured), they can be placed at any location in the antenna (equally spaced –as ideally, or non-equally spaced 
accounting for positioning errors), and the antenna element number can be any (the only restriction is that the 
antenna must be planar –including the linear antenna case). All of this taking into account many possible errors: TRM 
failures and/or deviations, thermo-elastic errors, etc; and performing accurate directivity computations. 
 
The optimizing tool is capable of optimizing any Stripmap beam reaching an optimal trade-off solution between the 
different specified requirements. Therefore the major difficulty of the problem has been successfully overcome: 
adequately defining the fitness function to represent mathematically through a single value (the total fitness value) 
the quality of a solution from a multiple-objective optimisation problem. However, some points have to be improved: 
 The RASR levels are higher in the AMOR optimised beams when compared to the ECE SAR Tool ones. In addition, 

obtaining a comparable gain, the AMOR beams are narrower and sharper than the ECE SAR Tool ones. Although 
knowing that the comparison is not made in totally fair conditions, these discrepancies which make the SAR Tool 
results better (always speaking in the short term, with a time limitation in the optimization) are probably due to 
the difference in the initial population generation.  
Both tools apply techniques to widen the swath in RX. In AMOR initial population the swath is made wider by 
magnitude tapering of the RX pattern. However, while in the ECE case the TX pattern admits a phase tapering to 
widen the swath in TX and make it flatter, the AMOR initial population provides TX patterns with a phase 
tapering only to obtain the desired beam steering.  
In this sense a phase-spoiling technique is strongly recommended to improve AMOR initial population, helping 
by this to a quicker convergence of the algorithm to an optimal solution with wider and flatter swaths and lower 
RASR levels. At the time of writing this document, the mentioned technique is just been applied.  

 It has been detected that the tool would present a main difficulty to a potential user: adequately tuning the 
weights of the fitness function used by the GA to converge to the optimal solution, depending on the beam under 
test. These weights are very sensitive to changes, and an adjustment of the limiting function (which is used to 
have a limited dynamic range for each partial fitness function) is suggested as a future task in order to improve 
the algorithm functioning and to facilitate its tuning.  

 
Apart from the abovementioned improvements, there is still some verification to do regarding the optimizer 
behaviour: 
 To check the optimizer when using measured data. This is also being done at the time this document is written. 
 To make the optimizer capable of re-optimize a beam when, during in-flight measurements, any failure is 

detected. 
 
The work developed in this thesis benefits from a constant revision, multiple assessments and expertise derived from 
the people at ECE SEOSAR/PAZ mission. The final validation of the work done here will be through its application to a 
real-case scenario. 
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Appendix A STATE OF THE ART 

 
During the last decade, many SAR missions have been planed, designed and carried out by different countries. Their main 
objective is the Earth Observation (EO), for different purposes. Some recent SAR missions, sorted by order of satellite 
launch date are: 

 

 ENVISAT (Environmental Satellite) 
 ALOS (Advanced Land Observing Satellite) 
 TerraSAR-X 
 RADARSAT-2 (RADAR Satellite) 
 COSMO-SkyMed (Constellation of Small Satellites for Mediterranean Basin Observation) 
And, of course, the one to which the present work is applied: 
 SEOSAR/PAZ (Spanish Earth Observation Synthetic Aperture Radar) 
 

In the following sections, each one of the mentioned missions is briefly revised in order to have in mind both their main 
objective and the performance of their antenna model compared with the SEOSAR/PAZ one. 

A.1 Missions Overview 

All the reviewed SAR missions are intended for Earth Observation (EO). They are global; hence they observe ground, 
atmosphere, oceans and icecaps. The overall functionalities are to support science research, and also to facilitate the 
development of operational and commercial applications. In addition, they can offer products to support both civil 
and military applications. Specific tasks they develop are the monitoring of water, land cover, carbon and global 
climate. Some of the missions combine the SAR instruments, which provide all-weather and day-night observations, 
with optical sensors.  
 
These kinds of missions have made possible: 

 Cloud penetration, which allows the access to subtropical and tropical regions  
 Detection of man-made structures such as buildings and metal surfaces like bridges, roofs, power lines, 

fences, or wind energy parks, in order to exert control and territory survey 
 Generation of geographical maps at high resolution levels for commercial and military applications, 

wetlands mapping, geological mapping, and topographic mapping 
 Support to agricultural mapping and agricultural crop monitoring 
 Maritime surveillance: ship detection and tracking, oil spill and pollution detection, sea ice mapping, ship 

routing, iceberg detection 
 Region observations for environmental monitoring: flood extension mapping, burned extension mapping, 

land subsidence monitoring, assess coastal erosion and sea/river pollution 
 Information distribution for disaster mitigation: estimation of the spatial and qualitative extent of damage 

caused by hazardous events to help with logistics planning, long term prediction and trend analysis of 
events, development of early warning systems to track the real time evolution of events to avoid or reduce 
damage 

 Monitoring of surface deformation caused by earthquake-driven phenomena and volcanic activities 
 Research in the polar regions for ice sheet flow rate estimations 
 Terrestrial defence surveillance and target identification for national security applications 
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In the case of the Spanish mission, it is expected that PAZ will provide information in order to fight the piracy in 
Somalia waters, where in summer 2010 a Spanish fishing boat was kidnapped, as an example [A.1]. 
 
Not all the above mentioned applications have the same time requirements regarding data servicing. The most 
critical of them need short System Response Time (time between user’s demand and the information release). Some 
systems have the capability of being configured in different modes to satisfy the user’s needs. For instance, in the 
COSMO-SkyMed mission the system can operate in three different modes [A.2]: 

 

 Routine mode: the images to be acquired are requested to the constellation once a day. The system can 
satisfy the user request in 72 hours. 

 Crisis mode: the requests are sent twice a day and the user’s request is satisfied in 36 hours. 
 Very urgent mode: it is asynchronous and hence allows the servicing of an image acquisition request with 

the minimum possible latency. The requests can be satisfied in 18 hours. 
 
Different missions work at different frequency bands; for instance L band used in ALOS mission is better in terms of 
atmosphere penetration than working at higher frequencies. 
 
The considered SAR missions description is briefed in Table A.1, while the main characteristics of their available 
operational modes are gathered in Table A.2. In Table A.3 some images of the different missions are shown. 

 

 Mission Overview 

ENVISAT 

ENVISAT is an European advanced polar-orbiting EO satellite working at C-band built by the 
European Space Agency (ESA), launched as follow-on of the satellites ERS-1 and ERS-2.  While its 
predecessors acquired images being steered at a fixed angle of 23 degrees, ENVISAT is equipped with 
an instrument capable of being electronically oriented - ASAR (Advanced Synthetic Aperture Radar). 

ALOS 

ALOS is an L-band Japanese SAR mission. It became operational since its launch. It was developed as a 
demonstration satellite with improved performance in comparison to JAXA (Japan Aerospace 
Exploration Agency) previous Earth observation satellites (the Japan Earth Observing Satellite, JERS-1, 
or the Observing Satellites, ADEOS and ADEOS-II, for instance) and designed to fill the gap created by 
the termination of JERS-1 on October 12, 1998. 
 
ALOS development and operation project was realized as a joint project of METI (Japanese Ministry of 
Economy, Trade and Industry) and JAXA.  

TerraSAR-X 

The German satellite TerraSAR-X is built in a Public Private Partnership (PPP). Its objective is to allow 
EO with additional capabilities with respect to previous missions, providing value-added SAR data in 
the X-band for research and development purposes and for scientific and commercial applications.  
This is accomplished thanks to the number of operation modes available, different polarisations and 
resolutions.  
 
The mission is carried out both by a public entity – the German Federal Ministry of Education and 
Research (Bundesministerium für Bildung und Forschung, BMBF) and the German Aerospace Centre 
(Deustches Zentrum für Luft- und Raumfahrt; DLR), and a private entity which is Astrium GMbH.  

RADARSAT-2 

The Canadian next-generation satellite RADARSAT-2 is the follow-on to RADARSAT-1. Working at C-
band, it has been designed with significant technical advancements: 3m high-resolution imaging, 
flexibility in selection of polarisation, left and right-looking imaging options, superior data storage, 
more precise measurements of spacecraft position and attitude , additional beam modes, more 
frequent revisits, and increased downlink margin enabling reception of data from lower-cost receiving 
antenna systems. 
 
The RADARSAT-2 is a commercial Canadian SAR satellite fruit of collaboration between government – 
the Canadian Space Agency (CSA), and industry - MacDonald, Dettwiler and Associates Ltd. (MDA).  
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COSMO-
SkyMed 

The COSMO-SkyMed system is an Italian EO mission which consists of a constellation of four LEO mid-
sized satellites, each equipped with a multi-mode high-resolution SAR that can operate under any 
weather conditions, visibility and with very short revisiting time. In 2007 and 2008 ASI (Agenzia 
Spaziale Italiana; the Italian Space Agency) launched three out of four X-band SAR satellites involved 
in the program. The fourth satellite to complete the constellation will be launched in 2010 (planned to 
be launched on October 30th, 2010 [A.3]). The mission is intended for both civil and military use.  
 
The Italian Earth Observation program COSMO-SkyMed, one of the most innovative Earth Observation 
programmes, is financed by the Italian Ministry of Education, some Universities and Scientific Research 
and by the Italian Space Agency (ASI) and the Ministry of Defence (MoD).  ASI in cooperation with MoD 
manages the contract assigned to an Italian industrial team, where Thales Alenia Space Italia (TAS-I), 
in charge to develop the project, is the Prime Contractor. 

SEOSAR / PAZ 

The PAZ Spanish satellite is equipped with an X-band SAR instrument, mounted in a hexagonal 
platform made of carbon fibre (inherited from TerraSAR-X) supplied by Astrium GmbH. The 
instrument radiating part (the antenna array) incorporates the printed radiator technology developed 
by Astrium in its centre in Madrid-Barajas, used with success in other programs like Envisat, Spainsat, 
Inmarsat or Galileo. 

 
The PAZ satellite will be the first of two satellites (the second is named Imagenio) to capture images 
which will compose the Spanish Earth Observation (SEOSAR) program (Programa Nacional de 
Observación de la Tierra, PNOT).  It has very diversified functionalities, since it is addressed to multiple 
defence and security applications as well as to civil applications. The second satellite, Ingenio, will 
incorporate an optical technology to basically cover civil necessities. This will lead Spain to be the first 
European country having a dual observation system with a double use (civil and military).  
 
EADS Casa España (Astrium España) is the main contractor, responsible for the development and 
satellite construction, with functions like being responsible of the system engineering, the integration, 
the satellite test and its validation and in-orbit delivery completely operative. INTA is responsible for 
the ground segment which includes two control ground stations (in Torrejón and Maspalomas). 
Hisdesat is the operator and the commercial exploitatory of the satellite, acting as its owner and with 
the Spanish Defence Ministry (Ministerio de Defensa) as its principal client. 

Table A.1: Overview of the most recent SAR missions 
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 ENVISAT ALOS TerraSAR-X RADARSAT-2 COSMO-SkyMed PAZ 

Launch Date March 1, 2002 January 24, 2006 June 15, 2007 December 14, 2007 

COSMO-
SkyMed-1 

COSMO-
SkyMed-2 

COSMO-
SkyMed-3 

COSMO-
SkyMed-4 

Planned for 
2012 June 7, 

2007 
December 

2007 
October 25, 

2008 

October 
30th, 2010 

[A.3] 
Launch vehicle Ariane 5 H-IIA Dnepr 1 Soyouz Delta II - 

Launch Site 
Korou Space 

Centre, French 
Guyana 

Tanegashima 
Space Centre, 

Japan 

Baikonur, 
Kazakhstan 

Baikonur, 
Kazakhstan 

Vanderberg Air Force Base (VAFB), California(US) - 

Launch Configuration 
Dimensions 

10.5 m (envelope 
Ø 4.57m) 

- 
4.88m (envelope 

Ø 2.4m) 
- - - 

In-orbit Configuration 26 x 10 x 5 m 27.8 x 9 x 6.7 m - - - - 
Satellite Mass 8211 kg 4000 kg 1230 kg  1700 kg 1200 kg 
Payload Mass 2050 kg - ~ 400 kg    

Expected Lifetime 5 years ≥ 3 year ≥ 5 year ≥ 7 year 5 year  
Orbit Altitude 780 km 691.5 km 514.8 km 797.7 km 619.6 km 510km 

Orbit Inclination 98º 98.16º 97.44 º 98.55º 97.86º 98.44º 
Recurrent Cycle or Period 35 days 46 days 11 days 24 days 16 days  

Frequency Band C (5.331GHz) L (1.27GHz) X (9.65GHz) C (5.405GHz) X X (9.65GHz) 

SAR Antenna Dimensions  - 
8.9m (azimuth) x 

2.9 m (range) 
0.7m (width) x 
4.8 m (length) 

15m x 1.47 m 5.7 m (long) / 1.4 m (high) 
0.7 m (width) x 

4.794 m (length) 
Table A.2: All the missions have a Sun-synchronous orbit configuration (polar, near-polar or circular), and their channel polarization is HH, HV, VH or VV ([A.4],[A.5], [A.6], [A.7], [A.8], 

[A.9], [A.10], [A.11], [A.1], [A.12]).  
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ENVISAT 
 (Environmental Satellite) 

ALOS 
 (Advanced Land Observing Satellite) 

TerraSAR-X 

 
 

Figure A.1: ENVISAT instruments sketch [A.13] (upper) and 
simulated image of the satellite in space (lower) [A.14]. 

 
 

Figure A.2: Advanced Land Observing Satellite [A.6A.6] 
(left), and artist’s concept of ALOS (right) [A.15]. 

 

 
 

Figure A.3: TerraSAR-X satellite artist view [A.16]. 
 
The solar panel is mounted on top of the satellite bus. The 
SAR antenna is visible on the bottom side. The X-band 
downlink antenna is mounted on a small boom in order to 
avoid interference with the SAR-antenna. 

 

RADARSAT-2  
(RADAR Satellite) 

COSMO-SkyMed  
(Costellation of Small Satellites for Mediterranean 

basin Observation) 

SEOSAR / PAZ 
 (Spanish Earth Observation Synthetic Aperture Radar) 

 
Figure A.4: RADARSAT-2 satellite artist concept view [A.10].  

  
 

Figure A.5: COSMO-SkyMed satellite Pictorial 
representation: deployed (left) and stowed (right) 

configurations. The green structure corresponds to the 
antenna while the pink one to the solar panels [A.11]. 

 

 
 

Figure A.6: Artist concept view of PAZ [A.17] 

Table A.3: Some images of the considered SAR missions. 
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A.2 Antenna Description 

In this section, the antennas used in the considered missions are described (Table A.4), and the operational modes 
which provide are listed together with their main characteristics (Table A.5).  

 

 Antenna Description 

ENVISAT 

ASAR, the broadest instrument 
onboard Envisat satellite, is an 
active phased array antenna 
formed by 320 TRMs, organized 
in 32 rows of ten modules to 
allow electronic beam steering 
in elevation. The 320 TRMs are 
grouped in 20 tiles. Each tile is 
a self-contained fully operating 
sub-system which includes four 
Power Supply Units, a Tile 
Control Interface Unit, two 
microstrip RF distribution 
corporate feeds and 16 

subarrays. Each subarray is connected to a TRM with independent connection for the two 
polarizations.  

 

Figure A.7: ASAR mounted on ENVISAT in the anechoic chamber 
(left) and ASAR instrument isolated (right) [A.13]. 

ALOS 

 
The PALSAR instrument is composed of four sub paddles, each 
of which is 2.9 m in range × 2.2 m in azimuth. Each sub paddle 
has 20 TRMs (1 TRM row in azimuth × 20 columns in range). 
Thus, it carries 80 TRMs, which allow incidence angle quick 
change and other functions like polarimetry and scanning SAR 
– ScanSAR) generating 2 kW of transmission power (each TRM 
has 25W transmission power).  

Figure A.8: PALSAR sensor [A.18] 

TerraSAR-X 

The antenna is 4.8 m long and 0.7 m wide 
and consists of 384 subarrays composed 
by pairs of 40 cm long slotted wave-
guides (see Figure A.10), one for each 
polarisation (horizontal and vertical).  
 
The subarrays are arranged in 12 panels 
in azimuth direction (columns) each 
composed of 32 subarrays (rows). The 
nominal antenna pointing in elevation is 
33.8º from nadir. Right and left looking 

acquisition is realised by satellite roll manoeuvres. Each individual subarray is driven by a TRM 
adjustable in amplitude and phase by applying complex excitation coefficients. This enables beam 
steering and adaptive beam forming both in azimuth and 
elevation direction. More than 12000 different beams can be 
commanded for the multitude of standard acquisition modes 
possible on TerraSAR-X.  
 

 
Figure A.9: TerraSAR-X S/C with SAR antenna [A.19]. 

 

Figure A.10: Dual polarised subarray 
with TRM [A.19]. 
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RADARSAT-2  

The RADARSAT-2 antenna is a 15 m by 1.47 m divided in two wings, each having two SAR panel 
assemblies (nominally 0.15 m thick).  It is hence formed by 512 subarrays with 20 element (patch) 
linear array with dual linear polarization capability. The subarrays are distributed in 32 rows in the 
elevation (range) direction and 16 columns (4 columns per panel, with 4 panels in total) in the 
azimuth direction. There are 512 TRM elements, as mentioned before, each one dedicated to excite 
one single subarray. Each TRM can switch between transmit and receive mode. Each subarray 
includes the 1:20 power dividing network to feed the 20 elements present in each subarray. The 
described antenna structure is depicted in Figure A.11. 

 
 

 

Figure A.11: SAR payload diagram of the RADARSAT-2 satellite (left) and the fabricated antenna 
structure [A.20]. 

COSMO-
SkyMed 

 
The antenna used is formed by 40 tiles each including 32 transmit/receive modules (TRMs) each one 
feeding a patch linear array (H and V polarisation). Figure A.13 helps to understand its structure, from 
the panels to the subarray formed by patches arranged forming tiles. 

 
Figure A.12: Image showing the SAR antenna structure. In blue, the 5 panels containing 8 tiles each. 
In each tile there are 32 subarrays consisting on a linear array formed by 10 patch antennas [A.21]. 

PAZ 

 
The PAZ array is 4.8 m long (along satellite flight direction) and 0.7 m wide. It consists of 384 
subarrays of 16 annular slots excited by two orthogonal striplines providing H and V polarization. The 
subarrays constitute a planar array with 12 panels in the azimuth direction (columns), each with 32 
SAs (rows). Four panels form a leaf. In Figure A.16 the SA referencing is shown. 
The individual subarrays are driven by (TRMs) that allow an adjustment in amplitude and phase of the 
beam excitation coefficients by applying complex excitation coefficients.  

 

Figure A.13: Antenna array for PAZ sketch. Subarray referencing at panel and leaf level [A.22]. 

Table A.4: Antenna description of the six issued SAR missions. 
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   Polarisation Spatial Resolution Swath Width Incidence angle Swaths 

EN
V

IS
A

T
: A

SA
R

 

ScanSAR 
Wide Swath (WS) VV or HH 150 x 150 m (nominal product) 400 km 

 

5 
Global Monitoring 

Mode (GMM) 
VV or HH 1 km 400 km 5 

Stripmap or Image Mode (IM) VV or HH 30 m (for precision product) 56 km (sw 7) – 100 
km (sw 1) 7 

Wave Mode (WM) VV or HH Vignettes of 10 km x 10 km spaced 
100 km 5 km - 

Alternating Polarisation (AP) 
(same imaging geometry than IM) 

2 simultaneous 
images from the same 
area in HH and VV, HH 
and HV, or VV and VH 

30 m (for precision product) - 7 

 

A
LO

S:
 

P
A

LS
A

R
 

High resolution 
HH or VV 7–44 m 40–70 km 8º-60º  

HH+HV or VV+VH 14-88 m 40–70 km 8º-60º 
ScanSAR HH or VV 100 m (multilook) 250–350 km 18º-43º 

Polarimetry HH+HV+VH+VV 24–89 m 20–65 km 18º-43º 
 

 Satellite Information  Azimuth Range    

T
er

ra
SA

R
-X

 High Resolution SpotLight (HS)  1 m 1.5–3.5 m 10 km 20º-55º  

SpotLight (SL) 2 m 1.5–3.5 m 10 km 20º-55º 

Stripmap (SM) 3 m 1.7–3.5 m 30 km 20º-45º 

ScanSAR (SC) 16 m 1.7 –3.5 m 100 km 20º-45º 
 

    Range  x  Azimuth    

R
A

D
A

R
SA

T
-2

 

Ultra-Fine Single Polarisation 3 x 3 m 20 km 30º- 49º   
Multi-Look Fine 8 x 8 m 50 km 30º- 50º  
Fine 

Single or Dual 
Polarisation  

8 x 8 m 50 km 30º- 50º  
Standard 25 x 26 m 100 km 20º- 49º  
Wide 30 x26 m 150 km 20º- 45º  
ScanSAR Narrow 50 x 50 m 300 km 20º- 46º  
ScanSAR Wide 100 x 100 m 500 km 20º- 49º  
Extended High Single Polarisation 18 x 26 m 75 km 49º- 60º  
Fine Quad-Pol Quad Polarisation 12 x 8 m 25 km 20º- 41º  
Standard Quad-Pol 25 x 8 m 25 km 20º- 41º  

 

   Muti-look Single-look    

CO
SM

O
-S

k
yM

ed
 

Hugeregion (ScanSAR) Single HH/HV/VH/VV 100 x 100 m 30 x 30 m 200 x 200 km 20º -59.5º  

Wideregion (ScanSAR) Single, 
HH/HV/VH/VV 30 x 30 m 16 x 16 m 100 x 100 km 20º -59.5º  

Himage (Stripmap) Single, 
HH/HV/VH/VV 5 x 5 m  3 x 3 m 40 x 40 km 20º -59.5º  

Pingpong (Stripmap) 
Alternating, 2 pol. 

Selectable among HH, 
VV, VH and HV 

20 x 20 m 15 x 15 m 30 x 30 km 20º -59.5º  

Mode-2 (Spotlight) Single, HH or VV - 1 x 1 m 10 x 10 km 20º -59.5º  
 

   Azimuth  Range    

P
A

Z 

SM-S HH, VV 2.5m  2.5m 10 km 20º - 45.365º 32 
SM-D HH-VV, HH-HV, VV-VH 5m 5m 5 km – 5.5 km 20º - 45.365º 34 

WSM-S HH,VV 2.5m 2.5m 25 km (except 1 
swath of 23.8 km) 20º - 45.969º 13 

WSM-D HH-HV, HH-VV, VV-VH 5m 5m 9.9 km 20º - 45.195º 32 

SC, 1 azimuth look HH, VV  14.3m 
 (1 azimuth look) 

15m 
(4 range looks, 
3.75m single 

look 
resolution) 

75 km (each swath 
formed by 3 

subswaths of 26.3 
km each, 2km 

overlap) 

20º - 45.598º 4 

SC, 2 azimuth looks HH, VV 
 15m 

 (2 azimuth 
looks) 

15m 
(2 range looks, 

7.5m single 
look 

resolution) 

75 km (each swath 
formed by 3 

subswaths of 26.3 
km each, 2km 

overlap) 

20º - 45.598º 4 

SL-S HH, VV 1m 
(single look) 

1m (@<29º) – 
1.48m (@20º ) 10 km 20º - 55.025º 24 

SL-D HH-HV, HH-VV, VV-VH 2m 2m 10 km 20º - 55.025º 19 

HR-S HH,VV 1m 0.67m (@ 55º) 
-1.6m (@ 20º) 10 km 20º - 55.025º 12 

HR-D HH-HV, HH-VV, VV-VH 1.3m 
1.34m (@ 55º) 

– 3.21m (@ 
20º) 

10 km 20º - 55.025º 13 

Table A.5: Main characteristics of the operational modes of each SAR mission ([A.23], [A.24], [A.7], [A.24], [A.9], [A.25], [A.26], [A.10], 
[A.2], [A.27], [A.28],[A.29],[A.12]). 

 
 
The PAZ satellite is designed to proportionate six different nominal operating modes namely: Stripmap single 
polarization (SM-S), Stripmap dual polarisation (SM-D), Stripmap single polarization wide swath (WSM-S), Stripmap 
dual polarization wide swath (WSM-D), ScanSAR (SC), Spotlight single polarisation (SL-S), Spotlight dual polarisation 
(SL-D), High Resolution Spotlight single polarisation (HR-S) and High Resolution Spotlight dual polarisation (HR-D). 
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The requirements described in Table A.5 come from a deep preliminary instrument performance study and will be 
confirmed by ECE as the different analysis tests will be done. 

A.3 Antenna Model 

Regarding the antenna model, in the case of Envisat/ASAR instrument the SAR system uses in-orbit antenna pattern 
measurements for correction in calibration process. This is possible because ASAR acquires SAR images with only 
eight different antenna beams (a low number of beams). Albeit at ASAR an antenna model was implemented, the 
more accurate antenna patterns were obtained from in-orbit measurements. There is some information on the 
Envisat antenna modeller in [A.30] and [A.32]; however it has been inaccessible to the author of this thesis. Although 
this inconvenience, it can be certainly affirmed that the method used to optimise has been the Genetic Algorithm 
approach. Further the approach in which is based the Envisat antenna model was applied to TerraSAR-X.  
 
In the ALOS/PALSAR case, the number of beams is 23, still being a low number of beams. There is no public 
information found on the antenna modeller used. There is some information on a developed antenna model in the 
RADARSAT-2 and COSMO-SkyMed missions. These antenna models are also based in Genetic Algorithm in order to 
perform the antenna pattern optimisation.  
 
The antenna model is of vital importance in modern SAR satellites, where novel calibration techniques have been 
developed to accomplish the objectives that imply the mission constraints. The novel SAR systems, which allow many 
different acquisition modes and hence a multitude of different antenna beams are needed for consistent calibration of 
the modes, have very tight accuracy requirements and the calibration process duration is limited to a short period of 
time. 

A.3.1 TerraSAR-X 

Some information on the TerraSAR-X antenna model can be found in [A.33]. The TerraSAR-X antenna model was 
used to derive the high number of different antenna beams (approximately 12000) generated by active antenna 
steering, necessary to perform accurate pattern correction during SAR processing. This makes possible to calibrate a 
high number of the used antenna beams with high accuracy and in a very time/cost effective way. The real 
measurement of all antenna beams in all operation modes, as performed for the ASAR instrument of ENVISAT across 
the rainforest, is too time-consuming.  
 
The Antenna Model mathematically calculates radiation patterns having into account diverse inputs. One important 
input is the on-ground measurement of patterns from the embedded subarray patterns. Then, the beam excitation 
coefficients (amplitude and phase) of each individual TRM are applied to these measured subarray patterns. It is also 
necessary to determine the exact geometrical array antenna dimensions of (including the actual distances between 
subarrays) and the actual SAR instrument state like drifting and/or failed individual TRMs.  
 
The antenna model has to generate antenna settings for optimal instrument performance, apart from the validation 
on-ground adjusting some of the simulated patters to the actual measured ones. It is important, for instance, to 
achieve high sensitivity over a large angular range as well as good suppression of ambiguities. The optimization is 
performed varying the antenna TRMs excitation coefficients, which are optimized comparing the actual pattern with 
a given template (defined from some given quality parameters) and the best pattern obtained up to that time. The 
obtained antenna pattern must not violate the template. This optimization is based on the algorithms already 
developed for the ASAR instrument of ENVISAT. The antenna model optimiser generates a set of excitation 
coefficients prior to the mission that can be adapted during the mission time by means of a re-optimisation in case of 
drifts or failures in the TRMs.  
 
After the Antenna Model validation and verification by an in-flight measurement of a limited number of beams, the 
thousands of reference patterns can be accurately derived. The complex excitation coefficients are stored in tables, 
one table for each possible beam, in form of amplitude and phase values row and column-wise. Another tables used 
are the ones describing drifting or failed antenna elements. These matrices are used to optimise the excitation 
coefficients in order to obtain an optimal antenna performance even having some TRMs failures. Both the excitation 
laws and the error matrix are different for transmit and receive. In case of the excitation coefficients, the 
differentiation between transmit and receive matrices allows greater flexibility for beam steering. The tables are 
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available on-board the satellite and can be updated if required (TRM failures, changes in the acquisition 
requirements, incorporation of new beams during normal operation, etc.). 

A.3.2 RADARSAT-2 

The APSW (antenna pattern synthesis workstation) is the antenna model designed for RADARSAT-2, and, like any 
other SAR antenna model should do, performs two main tasks: antenna pattern modelling and antenna pattern 
synthesis.  
 
From the conclusions extracted for the ASAR instrument [A.32A.32] on the convenience of using the Genetic 
Algorithm to perform antenna synthesis in detriment of algorithms such as the Woodward Synthesis or Fourier 
Method, Touzi et al. chose the Genetic Algorithm to be implemented in the APSW. Its main objective is to determine 
the excitation law to be applied to the TRMs in order to obtain a predefined antenna pattern, by fulfilling a set of 
requirements specified by the manufacturer. APSW outputs the optimum TRM excitation amplitude and phases, the 
optimised antenna pattern parameters, and fitness curves. 

A.3.3 COSMO-SkyMed 

COSMO-SkyMed antenna model simulator is called Pharsim (PHased ARray SIMulator), and is based on array factor 
computation by mean of Fast Fourier Transform applied on the excitation matrix. The simulator developer is Thales 
Alenia Space Italia in the frame of SAR calibration activities.  
 
Regarding the synthesis, the patterns are synthesised using Genetic Algorithms; maximising the 2-way directivity in 
the pointing direction and keeping sidelobes below an input mask. 1-way patterns are synthesised using template 
masks, while the 2-way ones using optimisation of radar parameters. The synthesis allows retrieving the excitation 
for nominal beams after estimating the effects of eventual mechanical deformations from the measured patterns 
([A.33], [A.34]). In Figure A.14, one of the outputs generated by the program is reproduced: 
 

 
Fig. A.14: Example of an output of the COSMO-SkyMed beam optimiser [A.34]. 

 
In [A.34] it is explained that Pharsim has been validated versus an electromagnetic model where measured data is 
loaded and numerous non-ideal effects are taken into account: mutual coupling, mismatching and non-linear effects. 
They concluded that there is a high correlation between the two models. In addition, what Pharsim does to reduce 
computation load is to perform a Fast Fourier Transform of the amplitude-phase excitation matrix to obtain the array 
factor. This is possible for an equi-spaced regular grid, which means that the SAs are equi-spaced and fixed. Hence, 
from all this information it is deduced that Pharsim does not optimises the beams taking into account measured but 
ideal SA antenna patterns. And not only during the optimisation; Pharsim does not uses actual SAs pattern to analyse 
antenna beams. What it actually does is, after the optimisation or the pattern generation form ideal SAs patterns, it 
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performs a correction of the excitations by importing data coming from near-field pre-flight measures and in-flight 
calibration data. In this way, the predicted beam is achieved by matching information on antenna configuration, near 
field measures and in-flight calibration data.  

A.3.4 SEOSAR/PAZ 

Since the next two chapters are entirely devoted to explain the antenna model architecture the optimiser developed 
for that software tool, the only comment to make in this section is that the chosen algorithm optimisation tool for 
that model is, one more time, the Genetic Algorithm approach.  
 
The reader is hence encouraged to learn more about the PAZ antenna model, namely AMOR (Antenna MOdelleR), 
and especially about the method used to optimise the antenna beams in chapters 2 and 3. The former information is 
difficult to find in literature. As antenna model developers, our aim is to throw some light in aspects that every 
antenna model for SAR applications developer has to face in the design and development phase of its task. In this 
way we hope to help the reader to avoid losing time in aspects that probably another designer has faced before.   
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Appendix B  SIMULATION RESULTS 

In this Appendix the extra results from the simulations performed in Section 3.3.3.2 are presented: 
 In Figure B.1 the results corresponding to the 5 simulations performed to tune the weights for the SM-S_10 

beam,  
 In Figure B.2 the results for the 5 simulations performed to tune the weights for the SM-S_26 beam. 
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Figure B.1: Comparison of the optimization results of the SM10 beam: ECE vs. UPC beam for the 5 simulations performed. 

The green line corresponds to the ECE beam, the red line to the UPC resulting from the optimization using ideal SA 
patterns, and the black one resulting from the UPC’s optimization with actual SA patterns. 
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Figure B.2: Comparison of the optimization results of the SM26 beam: ECE vs. UPC beam for the 5 simulations performed. 

The green line corresponds to the ECE beam, the red line to the UPC resulting from the optimization using ideal SA 
patterns, and the black one resulting from the UPC’s optimization with actual SA patterns. 
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Appendix C AZIMUTH AND 

ELEVATION PLANES INCONSISTENCE 

An inconsistence in the results provided by the ECE SAR Tool has been detected while comparing exactly the same 
pattern generated from coefficients provided by ECE when plotted using ECE tool and AMOR. It was found that 
starting from the same coefficients both patterns are different in gain level (more than 1dB). The shape is practically 
the same, but with an offset that makes the UPC generated beam more than 1dB less directive. After many 
comparisons and deliberations, it was found that the EL and AZ pattern cuts provided by the ECE tool are not 
consistent, since they must have the same maximum gain in the point where the cuts intersect, and this does not 
happens (Figure 4.13 and 4.14). This means that the cuts are not done passing exactly over the same point in the 
main lobe. The AMOR tool performs correctly those cuts. However, this means that the comparisons presented in 
Chapter 3 are not totally fair for two reasons: 

 
1. The ECE tool always uses ideal pattern SAs, while the UPC tool also uses actual SA patterns. This way, AMOR is 

able of accounting for differences in the SA patterns, errors on the SAs positioning in the manufacturing process, 
and even for errors in TRMs. 

2. It seems that there is a disagreement between ECE Tool and AMOR in the definition of the AZ and EL planes. In 
addition, it seems to be an inconsistent result between the levels of the AZ and EL planes provided by the ECE 
Tool. Hence, the EL cuts which are compared between tools are not performed in the same plane and this makes 
difficult to compare in fair conditions both results. 

 
In Figure C.1 it can be observed how using the same set of coefficients for both tools, specifically the ones used to 
generated the SM-S_1 beam, the ECE cuts are inconsistent, at least according to our definition. Concretely, the AZ cut 
is done at φ=0º, and the EL one at φ=90º, in AMOR case, and the power value in the nominal centre of the swath 
(θ=0º in the AZ plane, and θ=-18.72º in the EL plane) is exactly the same. On the contrary, in the ECE generated beam, 
with the formerly mentioned EL and AZ cuts definition, the power in the centre of the swath for AZ and EL planes 
does not coincide. 
 

 
Figure C.1: Comparison of the power patterns for the TX SM-S_1 beam: ECE vs. AMOR beam. Zoom in the swath. The 

AMOR power values in the centre of the swath coincide, while in the ECE case this they differ in 2.3 dB. 
 
If the patterns are normalized in order to check if at least their shape is the same, it is observed that the AZ pattern is 
quite different between both tools while the EL pattern is the same for both. It is very probable that the cuts are 
defined in different planes (Figure C.2).  

difference ~2 dB

difference ~0.3 dB
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Figure C.: Comparison of the power patterns for the TX SM-S_1 beam: ECE vs. AMOR beam. Zoom in the swath. The AMOR 

power values in the centre of the swath coincide, while in the ECE case this they differ in 2.3 dB. 
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ABSTRACT 
 
PAZ is a highly flexible X-band SAR Satellite which primary objective is global Earth Observation to serve the strategic 
needs of the Spanish Government within the National Earth Observation Programme.  
The SAR Satellite will be capable to provide high quality SAR images with a variety of sizes and resolution ranging from 
medium over wide regions up to very high resolution (e.g. meter and sub-meter). Operational flexibility with multi-mode, 
multi-polarization and left and right looking attitude is one of the major PAZ system requirements leading to a quite large 
number of different instrument configurations and antenna beams. The main function of the antenna model is to derive the 
two dimensional antenna patterns for all the modes, swaths, polarizations and transmit/receive combinations needed for 
image acquisition and processing. 
The methodology of the antenna model design, the validation/verification methods as well as first results obtained with 
AMOR are presented in detail in this paper. 
 
INTRODUCTION 
 
SEOSAR/PAZ is the first Spanish Satellite based on the use of a high resolution X-band Synthetic Aperture Radar (SAR). 
The entire System is being developed under control and supervision of Hisdesat, who is also responsible of the satellite 
operation and data exploitation services. EADS CASA Espacio is the Satellite prime contractor company leading a wide 
industrial consortium, while INTA (Instituto Nacional de Técnica Aerospacial) is responsible of developing the Ground 
Segment [1]. 
The SAR instrument comprises an X band active phased array antenna with an operation instantaneous bandwidth up to 300 
MHz. The antenna which size is 4.8 m length and 0.7 m width consists of 12 panels in azimuth direction– assembled in three 
mechanical leaves – each with 32 dual-polarized subarrays [2]. Each individual subarray is driven by a transmit-receive 
module (TRM) adjustable in amplitude and phase by applying complex excitation coefficients. This enables beam steering 
and adaptive beam forming in both azimuth and elevation directions. For the variety of standard acquisition modes possible, 
such as Stripmap, ScanSAR or Spotlight, and the several experimental modes more than ten thousand beams can be 
programmed and commanded. This multitude of beams is one highlight but also a great challenge for the whole mission and 
it represents the main driver for the need of an accurate antenna model. In fact, the traditional (ASAR) approach based on 
the calibration of individual beams and in-orbit measurement of single antenna pattern is not feasible because it requires an 
unacceptable effort and cost, taking into account the short Commissioning Phase (CP). Owing to this high degree of 
flexibility of the instrument and tight radiometric performance requirements, a different approach is needed to reach an 
efficient end-to-end system calibration. 
 
ANTENNA MODEL 

 
Concept 

 
PAZ operation and calibration approach is built around an Antenna Model. This tool is used to accurately determine the 
antenna beam patterns combining mathematical models with highly precise on-ground characterization data, post-launch 
external verification measurements and periodic in-flight TR modules calibration.  
This article summarizes the different functionalities provided by Antenna MOdelleR (AMOR) in order to fulfil the best 
performance of the radar instrument and to correct the SAR images radiometry. AMOR is developed by the Universitat 
Politècnica de Catalunya (UPC) under EADS Casa Espacio contract. As aforementioned, it will allow the reconstruction of 
the antenna radiation patterns by superposition of measured embedded subarray patterns weighted by beam excitation 
coefficients, considering the antenna geometry and elements referencing. Another important function to be included in 
AMOR is the beam excitation coefficients optimization, in order to optimize the performance in terms of Noise Equivalent 
Sigma Zero (NESZ) and ambiguity ratios; an eventually re-computation may be in response to TRMs failure or degradation. 
Furthermore the tool includes the analysis of the effects due to eventual antenna subarray misalignment and planarity errors, 
favouring a better fit to the desired patterns. Frequency dependence as well as thermo-elastic deformations are assessed. 
AMOR validation/verification strategy is also presented, describing the steps necessary to achieve the needed AMOR 
accuracy in order to comply with the specified products quality. 
AMOR Functionalities & Future Developments 
The antenna modeller AMOR is being implemented using Matlab® and it runs in personal computers and even in 
notebooks. Its primary goal is the design, analysis and synthesis of the PAZ front-end antenna patterns in to order to achieve 
maximum-performance sensing data in a much more operational basis. For that reason the AMOR GUI (Graphical User 
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Interface) makes a distinction between the Analysis and Synthesis procedures in addition to its Array Description procedure. 
The influence of errors in the antenna performance is also accounted for and an Error Analysis tool is included in the code. 
In Fig. 1 a screenshot of the Array Description tool is shown. 

 
 

 
 

Fig. 1: Array Description window of AMOR. Buttons in the upper side of the window are calls to the tools available in the 
code. Some of them are the Error analysis tool, the array Analysis tool, and the Synthesis of excitation coefficients tool. 

 
AMOR allows the computation of the copolar and crosspolar transmitting (Tx) and receiving (Rx) antenna patterns of the 
SAR instrument together with the copolar and crosspolar two-way (2W) antenna patterns. Theta and phi components of the 
Tx, Rx and 2W radiation patterns are also computed. The patterns of the subarrays can be different in transmitting or 
receiving modes due to the chosen polarization, being either vertical or horizontal depending on the operating mode of the 
instrument. The resulting patterns can be visualized in a standard Cartesian presentation for the elevation and azimuth planes 
and the main parameters of the pattern automatically determined for a quick analysis of the results. Also three dimensional 
power patterns plots can be generated to assess the absence of notorious secondary lobes. The accurate computation of the 
antenna directivity for the Tx and Rx pattern is an additional functionally included in AMOR. 
Until the moment, to compute these patterns the measurements of an isolated subarray or an ideal subarray with the required 
polarization can be chosen as an input. In the future the measured patterns of embedded subarrays will be used as baseline. 
However, and although not implemented yet in the present interface, the software is ready for using several measured (or 
simulated) subarray patterns simultaneously, in order to account for the slight differences in the radiation patterns of the 
subarrays when embedded in different positions in the whole array. The data concerning the patterns of the subarrays can be 
stored as far field samples, or even as spherical modal coefficients of the subarray for a more complete an accurate 
computation of the far. 
As previously mentioned the software is able to analyze the different operational modes of the instrument (Stripmap, 
ScanSAR, Spotlight), and also a User Defined set of coefficients for designing and/or testing purposes. The coefficients that 
command a given antenna configuration are the combination of TRM Tx/Rx phase and Rx gain values stored in look up 
tables like in the satellite. In Fig. 2 a snapshot of the Analysis tool and some of its results are shown when characterizing a 
Stripmap beam, while Fig. 3 highlights the resulting 3D pattern. 
The use of symmetries in the subarray is also a feature in AMOR, allowing the evaluation of a better configuration of the 
array structure for reducing the crosspolar levels. Although this feature is not going to be used in the future it has revealed as 
very useful in the design phase of the array configuration. 
Mechanical errors due to imperfections in the antenna manufacturing and its deformation in-flight due to the variation of 
thermal conditions at panel and antenna level (modelled as shifts along x, y, and/or z-axis with respect to their nominal 
positions and a rotation along each of their axis –yaw, roll, pitch), together with errors due to TRM failures or deviations 
from their nominal values are also being implemented in AMOR. 
An important objective of the code is the capability of synthesizing the excitation coefficients to be applied to the TRMs 
through its Synthesis tool. This synthesis procedure has to derive an optimized 2W antenna pattern matching a given 
template. The template is related with several instrument performances such as: gain and beamwidth of the main lobe, side 
lobe levels, elevation and azimuth beam pointing directions, gain variations within the swath, ambiguity levels, null 
positions in certain directions and higher gain towards higher elevation angles within the main lobe. The possibility to 
include deviations in the TRM settings (determined by PN-gating technique) or failing modules either in Tx and Rx or both 
shall be considered when computing the coefficients. 
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Fig. 2: Analysis window of AMOR. Some of the resulting pattern cuts (for the Tc, Rx, and 2W azimuth plane) are shown on 
the right. The main parameters of interest for the resulting patterns are shown in the Analysis window. 

 

 
 

 
 

Fig. 3: Analysis window of AMOR. Two ways of showing the three dimensional Tx, Rx, and 2W copolar and crosspolar 
power patterns. 
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AMOR VALIDATION & VERIFICATION METHODS 
 
The life cycle of the Antenna Model is briefly summarized in Fig. 4. The scheme here proposed forms part of the more 
general System engineering and calibration section included into Ground Segment architecture [3]. AMOR V&V chart is 
dictated by the peculiar PAZ System calibration philosophy [4], basically driven by: (i) the huge number of beams to be 
commanded and calibrated, (ii) the high-performance radiometric requirements and (iii) the short CP. 

 

 
Fig. 4: AMOR validation/verification flow chart 

 
Starting from the design guidelines described in the previous sections, AMOR will be firstly validated on-ground before 
launch and therefore an in-orbit verification process will be performed during the first months of the CP [5]. To do this, an 
extensive on-ground characterization of the instrument behaviour, antenna radiation, mechanical and electrical seems to be 
necessary to achieve well-calibrated SAR products during the whole mission lifetime. The pre-flight tests provide reference 
to the acquired data in-orbit (e.g. antenna patterns, instruments drifts, etc.) and they will directly feed into the antenna model. 
This activity may involve different steps of iteration once the validation has commenced. 
Pre-launch Validation 
Embedded subarray patterns (considering mutual coupling between radiating subarrays, VSWR and insertion loss) and the 
nominal gain and phase excitations applied to each subarray are required as a direct inputs for antenna model. The antenna 
model will be tuned in the sense that the predicted antenna patterns fit well (i.e. achieve the specified accuracy) to the 
measured ones and it will be validated by comparison of modelled with measured patterns. The validation approach makes 
use of a reduced set of beams measured in Tx and Rx modes, for both polarization (vertical and horizontal) and at different 
frequencies: a good selection of them could be based on the pointing and the beamwidth criteria. It’s worth noting that 
AMOR built process will be tracked and checked at different levels: 
 
I. individual subarray 
II. single panel (embedded subarrays) 
III. one leaf (one third of the antenna) 
 
in order to validate the model for the complete antenna. 
 
In-orbit Verification 

 
The second next step foresees an in-orbit verification process to prove the performance for the whole antenna in space; this 
important task will be executed during the first weeks after launch. The verification will be performed with really measured 
beams and can be divided into three main tasks: 
 
 Elevation pattern shape 
 Peak-to-peak gain variation 
 Azimuth pattern shape 
 
The Amazon rainforest will be the primary area for measurements of elevation beam patterns because of the stability and 
homogeneity of the radar back-scattering over extended areas. The pattern shape is clearly visible in the SAR raw data and it 
will be corrected with the modelled reference patterns. AMOR will be also capable to predict peak-to-peak gain, thus gain 
offset between different beams, by an opportune processing of ScanSAR data. The verification of the antenna pattern in the 
azimuth direction will be performed by using measurements acquired over strong point scatterers (2-way azimuth pattern 
estimation) or by analyzing SAR specific acquisition over a deployed network of ground receivers/active transponders. 
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After its completely in-flight verification, the properly working antenna model will also help for the determination of the 
absolute calibration factor, thus the equivalent radar cross section of targets, contributing to save valuable time during the 
commissioning and the operation phase. 
 
CONCLUSIONS 
 
E2E System calibration shall take minimum operation time and cope with System degradation neither with impact on 
performance nor the need for long re-calibration periods. After the lessons learnt during the TerraSAR-X commissioning, an 
effective calibration philosophy emerges which basically shifts the calibration effort from space to ground in order to assure 
a commissioning phase of less than six months. 
The key element of this new concept is a mathematical antenna model based upon accurate on-ground measurements of the 
instrument, a set of post-launch external measurements to be performed during the initial commissioning period, periodic in-
flight internal characterisation, and the internal calibration data to be performed during and together with the sensing data. 
AMOR plays an important role in the performance prediction of the entire instrument and allows for dynamic re-calibration 
during operational lifetime, so its required accuracy has to be carefully managed and verified. 
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 ACRONYMS 

A list of the acronyms used in the chapters of the present Master Thesis is presented below. The acronyms used in 

Appendix A different from the ones in the chapters are not included for the sake of brevity. 

  

 

AMOR  Antenna MOdelleR 

AZ  Azimuth 

EL  Elevation 

LSB  Least Significant Bit 

MSB  Most Significant Bit 

NESZ  Noise Equivalent Sigma Zero  

GA  Genetic Algorithm 

GUI  Graphical User Interface 

RX  Reception 

SA  Sub Array 

SAR  Synthetic Aperture Radar 

SEOSAR  Spanish Earth Observation SAR 

TRM  Transmit-Receive Module 

TX  Transmission 

2W  Two-Way 

3D  Three Dimensions 
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