

Universitat Politècnica de Catalunya
Escola Tècnica Superior d´Enginyeria de Telecomunicació de Barcelona

ADDRESSING MOBILITY ISSUES
IN MOBILE ENVIRONMENT

Master’s Thesis completed in fulfilment of the requirements for ERASMUS exchange
program in Lappeenranta University of Technology
Department of Information Technology
Communications Software Laboratory

August 15, 2008

Ji Zhang

Supervisor: Professor Jari Porras

Instructor: Arto Hämäläinen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41797406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Resumen

Desde el principio de la última década, el uso de los dispositivos móviles creció

exponencialmente impulsado por el avance tecnológico y la personalización. Sin embargo, la

movilidad y limitación de recursos son dos características innatas de los dispositivos

móviles, y dichas características provocan que continuemos tratando las redes fijas y

móviles como dos tipos de redes independientes y de difícil interacción mutua.

PeerHood es un diseño de red P2P que considera tanto dispositivos fijos como móviles como

parte esencial de un escenario real de distribución de red. sus características principales estan

basadas en Environment Awareness, interacción entre dispositivos en diferentes protocolos

de red, y un diseño P2P destructurado. Como resultado, PeerHood abre un amplio abanico de

posibilidades, tal como intercambio de ficheros entre dispositivos fijos y móviles, control

remoto, distribución de recursos de la red y Social Networking.

No obstante, las características citadas anteriormente de los dispositivos móviles representan

un serio obstáculo y desafío para PeerHood y en este proyecto proponemos una solución

basado en PeerHood, añadiendo funciones como Total Environment Awareness y Node

Interconnectivity, para lograr una conexión fiable y flexible que se adapta a un entorno

móvil cambiante de la maneras más eficiente posible. Entre las tecnologías inalámbricas

existentes, Bluetooth fue elegido para la implementación.

La estructura de este proyecto será la siguiente: tras la introducción en el primer capítulo, en

el segundo capítulo realizaremos un repaso a la última versión de PeerHood, sus

características y principales funcionalidades. En capítulo tres, vamos a analizar en detalle el

algoritmo de descubrimiento de dispositivos y sus ventajas. En capítulo cuatro discutiremos

el sistema de interconexión de dispositivos remotos. En capítulo cinco analizaremos el

escenario problemático y la implementación de los diseños anteriores como solución.

Finalmente en el capítulo seis expondremos nuestra conclusión basada en los resultados

obtenido a partir de la implementación.

Abstract

Since the beginning of the decade, the use of mobile devices has increased dramatically due

to the continuous advances in capability and personalization of the devices. Nevertheless, the

dynamic nature and resource limitation of mobile devices make us still consider fix- and

mobile networks separately and easy wireless interaction between these two networks is

difficult.

PeerHood is an emerging mobile peer to peer network solution which considers both (fix and

mobile devices) as essential parts of the real wireless environment. It offers environment

awareness, connection between devices under different network technology and an

unstructured peer to peer network design. As the result, it opens a potential range of

applications and possibilities, such as free interaction between fix and mobile network,

remote control, resources distribution or social networking.

However, the characteristics of mobile devices represent a serious obstacle and challenge for

PeerHood and make it different than other existing static Peer to Peer network. In this work

we propose an approach, based on Total Environment Awareness and Node

Interconnectivity, to allow consequently reliable adaptive task migration and connection

among mobile devices depending on the environment. Among the existing wireless

technologies, Bluetooth has been chosen for the implementation.

KEYWORDS

Mobile P2P, PeerHood, Task Migration, Mobile Handover, seamless connection

Acknowledgements

This master’s thesis has been done for Lappeenranta University of Technology Department

of Information Technology in February – August 2008. The thesis has been done as part of a

larger project, which concentrates on mobile environment PeerHood.

I want to thank my supervisor for the thesis, Professor Jari Porras, for supporting during my

thesis and for giving me valuable insight into PeerHood peer-to-peer networking, and into its

potential applications in mobile networks.

I specially would like to thank Arto Hämäläinen, who has been the instructor for my thesis

and lead for the PeerHood protocol design. Arto gave many ideas for my thesis and was a

great teacher in many occasions.

My gratitude also goes to Teemu Reisbacka and Bishal, who have been working with me in

the same department, and giving good ideas for my thesis. I want to thank Teemu for his

invaluable help during the writing process. Finally, I would like to thank my family and my

girlfriend Laura for supporting me during all my studies.

August 15, 2008

Ji Zhang

5

Contents

Chapter 1: Introduction 1

 1.1 The Problem... 2

 1.2 Objectives and Scope .. 3

 1.3 Structure ... 4

Chapter 2: PeerHood Environment 5

 2.1 Overview of PeerHood... 5

 2.2 PeerHood Implementation ... 6

 2.2.1 Daemon ... 7

 2.2.2 Library... 8

 2.3 Functionalities of PeerHood .. 9

Chapter 3: Dynamic Device Discovery 12

 3.1 Coverage Exclusion ... 12

 3.2 Gnutella network.. 14

 3.3 Dynamic device discovery ... 15

 3.4 Essential parameters... 17

 3.4.1 Link Quality .. 17

 3.4.2 Time Delay.. 20

 3.4.3 Static & Dynamic.. 21

 3.5 Discovery Process .. 22

Chapter 4: Interconnection 26

 4.1 Connection Process .. 26

6

 4.2 Bridge Server ... 28

 4.3 Performance Testing .. 32

Chapter 5: Task Migration 33

 5.1 Migration scenarios .. 33

 5.2 Soft Handover .. 34

 5.2.1 Routing Handover .. 36

 5.2.2 Service Reconnection... 41

 5.3 Result Routing.. 42

Chapter 6: Conclusion 47

 6.1 Conclusions & Further Discussion... 47

 6.2 Potential Applications .. 49

REFERENCES.. 50

7

FIGURES LIST

Figure 1.1 Connection loss during Task Migration 3

Figure 1.2 Real task migration scenario 3

Figure 2.1 PeerHood basic scenario 5

Figure 2.2 PeerHood Implementation 6

Figure 2.3 Main daemon structure 7

Figure 2.4 Main library structure 8

Figure 2.5 PeerHood Connect 10

Figure 3.1 Coverage Exclusion 12

Figure 3.2 Device information storage 13

Figure 3.3 Neighbourhood information fetching 14

Figure 3.4 Gnutella network structure 15

Figure 3.5 Network information transferring 16

Figure 3.6 Dynamic device discovery 17

Figure 3.7 Bluetooth Plugin discovery process 18

Figure 3.8 Link quality storage algorithm 19

Figure 3.9 Link quality addition equity 20

Figure 3.10 Maximum Time Delay 20

Figure 3.11 Static & Dynamic Bridge 21

Figure 3.12 BTPlugin activity diagram 23

Figure 3.13 Activity diagram of AnalyzeNeighbourhoodDevices 24

Figure 4.1 Interconnection between 2 devices 26

Figure 4.2 Multiconnection bridge service 27

Figure 4.3 Bridge Connection Process 29

Figure 4.4 Bridge service & BridgeConnection function activity diagram 31

Figure 4.5 Test connection configuration 32

Figure 5.1 Constant changing scenarios 33

Figure 5.2 Soft Handover 34

Figure 5.3 Two servers handover 35

Figure 5.4 Routing Handover 36

Figure 5.5 Routing Handover Diagram 38

8

Figure 5.6 Bridge routing stage A 40

Figure 5.7 Bridge routing stage B 40

Figure 5.8 Handover simulation stage 41

Figure 5.9 Waiting for response 43

Figure 5.10 Picture analyse Server 46

Figure 6.1 Coverage Amplification 49

CHAPTER 1 INTRODUCTION

- 1 -

Chapter 1

Introduction

The number of mobile terminals has increased dramatically during the last years. The use of

such devices has become more and more important and universal in our lives due to

continuous improvement of hardware performance and advances of wireless communication

technologies. Since mobile phone was born, we have passed from basic phone functions to

TV broadcasting, Global Positioning System (GPS) locationing, social networking, file

transferring and any kind of applications that we could only enjoy in the desktop computer in

the past. Many mobile devices, such as mobile phones and PDAs, have become essential

communication tools in the modern society. Even though they are getting more processing

power, battery capacity and other hardware performance advances, mobile devices still are

not suitable for carrying out most of high energy consumption applications due to their size

and battery limitation.

In the last decade the number of communication networks designed for mobile devices, such

as GPRS, Bluetooth, WIFI, 3G, HSDPA, ZIGBEE and IR, have increased enormously. Due

to this new coexistence of mobile devices, wireless connection and static computers, many

researchers believe that it’s possible to distribute the resources of environment in a more

efficient way between mobile and static devices and have a better interaction between them.

Mobile connectivity solution PeerHood [1, 2] was created to satisfy this resource distribution

need. In PeerHood network, mobile devices can take advantage of the nearby computing

resources, and migrate their processing tasks to a fixed computation server to execute the

task more powerfully and conserve battery energy [8]. Nevertheless, during the process the

mobile environment is changing constantly and randomly due to its mobility characteristic.

The initial connection has a high probability to be lost. Consequently the performance of the

task processing will be seriously limited by the time duration and device mobility which is

not desirable at all.

CHAPTER 1 INTRODUCTION

- 2 -

As several researchers [5, 6] have already demonstrated the viability and benefits of this task

migration, in this work we assume the benefit of this remote task execution and we will

focus on the behaviour of device’s connections in a changing mobile environment. Other

features as the power consumption saving, transmission cost and time delays are outside the

scope of this thesis.

1.1 The Problem: Mobility

One of the main goals of PeerHood is this resource distribution for mobile devices. For

example, mobile device has a task that is not suitable for execution in it. This could, for

example, be analysis of pictures that requires high processing power. Mobile device looks

for the PeerHood environment and selects a suitable device (typically fixed) to migrate the

task to. This device starts solving the task while mobile continues its work. After the

processing the task is returned back to the device.

However, there exists the possibility to lose the connection due to the device’s movement

and consequently the coverage loss. Mobility is the essence of mobile devices and the

established connection could be lost in any moment due to the unavoidable coverage

limitation. Whenever the connection is lost, any migrated task is forced to be finished and it

will affect seriously the remote execution performance of PeerHood. In figure 1.1 we have

the simplest scenario of connection loss due to the device’s mobility.

 Figure 1.1 Connection loss during Task Migration

Personal ComputerPersonal Computer

MobileMobile

XX

MobileMobile

Coverage
Area

Coverage
Area

CHAPTER 1 INTRODUCTION

- 3 -

LaptopLaptop

MobileMobile

MobileMobile

X

Personal ComputerPersonal Computer

Personal ComputerPersonal Computer

Obviously there is no easy solution for the previous scenario. Nevertheless, in the real

wireless communication environment, like in figure 1.2, during the mobile device’s

movement new elements as other mobile devices, task servers of other services and more

network elements also appear inside this changing environment. Although these new

elements are not directly useful to migrate the task, we believe these elements might provide

to us with the interconnection capability between the mobile device and the first task

executor. In other words, these elements could be used to construct a continuous adaptive

connection through different network nodes to solve the mobility problem during Task

Migration.

1.2 Objectives and Scope

Based on the idea of last subchapter; the objective of this thesis is to find out how to

efficiently adapt task migration for mobile devices within a continuous changing network

environment. To solve the problem of avoiding the connection loss and completing the task,

we realized it is essential to have a total environment awareness to discover not only the

direct neighborhood but all the devices inside the total coverage area, a connection selection

system to arrive to each one and an automatic interconnection system that allows

connections between remote devices through jumps. Thus the devices can choose freely

different connection configuration according to the network environment and the application

 Figure 1.2 Real task migration scenario

CHAPTER 1 INTRODUCTION

- 4 -

need. All the mentioned changes were made based on the previous version of PeerHood and

the results will be analyzed to draw conclusions about task migration in a mobile peer-to-

peer environment.

1.3 Structure

The structure of the thesis will be the following: in the second chapter we will take a review

of PeerHood, its characteristics and its main functionalities. In chapter three, we will analyze

in detail the new device and service discovery and its advantages. In chapter four we will

discuss the interconnection system of remote devices. The chapter five will discuss the

scenario of task migration and the seamless handover implementation as the solution.

Finally, in chapter six, we will analyze the result of the implementation and draw

conclusions on the work done.

CHAPTER 2 PEERHOOD ENVIRONMENT

- 5 -

Chapter 2

PeerHood Environment

2.1 Overview of PeerHood

PeerHood [1, 2] was created with the goal to offer an unstructured peer to peer neighborhood

communication in a mobile environment. Mobile and static PeerHood devices with are

aware of the nearby device’s existence and are able to communicate directly with each other

without any centralized servers. In order to achieve this type of mobile ad-hoc network, the

information of each device’s immediate neighbours are monitored and updated continuously

through device discovery inquiries and then stored in the system for future usage. Such

design of discovery process provides devices the environment awareness, making possible

the following wireless peer-to-peer connection establishment. The basic scenario of

PeerHood is presented in Figure 2.1, where every device is aware of the environment and

ready to connect and be connected.

Another important feature of PeerHood is the creation of a common (abstract) interface to

unify different network technologies so the underlying network structure is invisible from

the application layer. Complex tasks like device discovery, service discovery, connection

Figure 2.1 PeerHood basic scenario

PC C

Laptop DLaptop D

Mobile AMobile A

Mobile BMobile B

Bluetooth

GPRS

Bluetooth

WIFI

Bluetooth

PC C

CHAPTER 2 PEERHOOD ENVIRONMENT

- 6 -

establishment and error checking are handled by the PeerHood system and the application

only has to consider functionalities of the highest layer. As the consequence, the application

development difficulty will be reduced considerably. Following the idea of remote execution

and optimal network resource distribution, PeerHood has also been designed to offer devices

the capability to share services and applications with other devices within the same

PeerHood environment. Currently PeerHood works with Bluetooth, Wireless LAN (WLAN)

and General Packet Radio Service (GPRS).

2.2 PeerHood Implementation
We consider that the PeerHood consists of two main independent parts: daemon and library.

Daemon is the process in charge of searching permanently for remote devices and their

services through different network plugins as well as act as the storage of the information.

On the other hand, Daemon is in charge of the configuration parameters from the system,

and sends stored information as response to other PeerHood device inquiries. The library

interface, which is connected to the Daemon using local sockets, is in charge of taking

information from the Daemon and offering PeerHood functionality to the applications layer.

The structure of PeerHood implementation is presented in Figure 2.2.

Figure 2.2 PeerHood Implementation

CHAPTER 2 PEERHOOD ENVIRONMENT

- 7 -

AbstractDeviceDeviceStorageDaemon

GPRSPlugin

WLANPluginAbstractPlugin

BTPlugin

DaemonDevice

LocalSockets

It’s important also to notice the usage of abstraction in PeerHood structure. Due to the fact

that PeerHood has been designed for more than one network technology and the possibility

to add new classes in the future has been left in it, the backbone structure of PeerHood is

made by abstract devices, abstract plugins and abstract connections. Singleton pattern design

was used for Daemon and Library class.

2.2.1 Daemon
Daemon is the main class of PeerHood which consists of a group of network plugins in

charge of information exchanging with other devices, a device storage where all the remote

devices information of the environment and a local socket connection system to listen to the

application/library petitions are stored. During the daemon initialization, after the plugins

creation, 2 threads are also created by each plugin. Inquiry thread is the one in charge to

search for other devices, create the appropriate connection to them and fetch the necessary

information in the neighbourhood. On the other hand, listening to advertise is who adverts

about own device and sends daemon and device storage’s information to other devices. As

we commented before, PeerHood application layer doesn’t have any direct contact with

daemon. PeerHood library should be used to access the daemon, and the local sockets are

used to send all required information. Device storage is the class where all the remote

devices information is stored. The daemon class structure is presented in figure 2.3.

Figure 2.3 Main daemon structure

CHAPTER 2 PEERHOOD ENVIRONMENT

- 8 -

local sockets
neighborhood

information

library

abstract
connection

daemon

connection
listening

connection
monitoring

BTPlugin

WLANPlugin

GPRSPlugin

connection
establishment

Local

Engine

abstract
monitoring

BTPlugin

WLANPlugin

GPRSPlugin

2.2.2 Library
Library is the main class and we can summarize it in 4 fields: connection establishment,

requesting neighbourhood information from the daemon, connection quality monitoring and

incoming connection listening. Although the daemon also establishes a short duration

connection to other devices to exchange information, the real connection creation for data

transmission between devices is managed by PeerHood library. Applications can easily use

the Connect() function of the library to establishment the data transmission with neighbour

devices. Functions like GetDeviceList(), GetServiceList() and RegisterService() interact

with daemon through local sockets in order to get neighbourhood information or indicate

new service to the daemon.

Engine is an element of the library that listens to connection request from other devices and

the acceptance will be sent back to applications through callbacks. To offer a seamless

connectivity, PeerHood library also includes connection monitoring, which listens to the

connection quality permanently to detect the possible connection losses and reacts to them

accordingly.

Figure 2.4 Main library structure

CHAPTER 2 PEERHOOD ENVIRONMENT

- 9 -

2.3 Functionalities of PeerHood
The following key functionalities are included in the previous PeerHood implementation:

- Device Discovery: Device Discovery is the process which provides information

about all devices inside the original one’s coverage. According to number of allowed

networks technologies, the same number of plugins executes discoveries processes to

detect corresponding technology devices. To be able to distinguish devices from each

other, the devices must contain some unique information. MAC-Address of network

interfaces is the most appropriate due to the singularity of each interface, even inside

the same device. Checksum number is also included as device parameter. Currently

checksum is the same as daemon process ID number and is not used. Once a device

is detected, its PeerHood availability will be checked by device discovery inquiry. In

the case of Bluetooth, the SDP query is used. For each found device The SDP query

will try to find the PeerHood tag. If this tag is found, the device will be marked as

PeerHood capable. For each PeerHood capable device the neighbour devices list is

extracted from the device storage and sent to the discovery inquiry as neighbourhood

information.

- Service Discovery: According to the principle of resource distribution, any PeerHood

registered service will be discoverable by the other device’s inquiries. These services

could be also accessed by any PeerHood device in the environment by means of

wireless connections. During the device discovery process, for each PeerHood

available device the services information will also be sent to discovery inquiry the

same way as the neighbourhood list. PeerHood service is described by the following

parameters: ServiceName, ServiceAttribute and Port Number.

- Connection establishment: PeerHood offers connection and transmission between 2

devices in the same neighbourhood. Method Connect is used to establish connection

in the application level. In figure 2.5 the basic connection diagram is explained.

CHAPTER 2 PEERHOOD ENVIRONMENT

- 10 -

1. Connect: Application calls PeerHood interface method ‘connect’.

2. Creation of ThreadInfor: Connection information is stored here and put in

iThreadlist for the further use.

3. Creation of connection: VirtualConnection uses factory to create a new

connection according to the network prototype.

4. Connect: PeerHood Library calls VirtualConnection’s method ‘connect’, creation

of Bluetooth sockets.

5. Write & Read commands: Exchanging commands and information with the

remote device.

6. Checking Roaming configuration and creation of Roaming thread.

7. Connection Returned: Created Connection is returned to application.

Figure 2.5 PeerHood Connect

Read command

Application Library Factory

ThreadInfor

iVirtualConnection CBTConnection

1. Connect

7. VirtualConnection
Returned

2. Creation of
ThreadInfo

3. Creation
of connection

4. Connect

5. Write command

Write command

Write command

6. Checking Roaming option

CHAPTER 2 PEERHOOD ENVIRONMENT

- 11 -

- Data Transmission: After the connection establishment, PeerHood supports data

transmissions between connected devices through MabstractConnection interface.

Methods Write and Read are used to send and receive information directly in the

application layer.

- Seamless Connectivity: When link quality gets weak or breaks, PeerHood will try to

keep the transmission of data by establishing a new alternative wireless technology

connection. While the connection is established, a roaming thread is continuously

searching for a second way to connect to the same service in the same device. Once

the alternative is found, handover can be done instantly, thus restabilising the old

connection. Connection ID is used to identify the connection to substitute from the

connection list.

Previous functions are already implemented successfully in PeerHood. In the following

chapters we will proceed to discuss our improvement to provide the connection adaptation

capacity in mobile environment. Respectively they are Dynamic Device Discovery and

Interconnection.

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 12 -

Figure 3.1 Coverage Exclusion

LaptopLaptop

Mobile 2Mobile 2

Mobile 1Mobile 1

X

Coverage

Coverage

Chapter 3

Dynamic Device Discovery

3.1 Coverage Exclusion
Due to the non-central server and the total random distribution nature of mobile devices, one

device can only fetch information from devices inside its own coverage. It means that the

size of the network is drastically limited by the device coverage. If we consider that in the

beginning the PeerHood protocol was assigned to work in a close environment and interact

only with direct neighbour devices inside the inquiry coverage, the coverage exclusion

problem is still present. For instance, in figure 3.1 the mobile device 2 can send inquiry to

the laptop and other mobile device inside its coverage area and achieve the total network

knowledge.

However, if we suppose the laptop has the same coverage area as the mobile device 2, then it

can only be aware of the mobile device 2’s presence and the mobile device 1 will be

invisible to the laptop. To achieve the total network knowledge of all devices, wide enough

coverage for each device is required and the distribution of the devices shouldn’t be too

dispersed. Thus this behaviour will seriously affect the performance of PeerHood network.

LaptopLaptop

Mobile 2Mobile 2

Mobile 1Mobile 1

Coverage

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 13 -

Figure 3.2 Device information storage

CDeviceStorage

Device A

Device D

Device B

Device C

Device B

Device F

Device D

Device A

Device C

Device D

In the last version of PeerHood [2] a certain neighbourhood information fetching was

included in the device discovery function. The direct neighbourhood information is sent to

the inquiry and stored inside each device as list of neighbourhood devices, consequently

achieving a better knowledge about a more extense nearby environment. The DeviceStorage

structure is presented in figure 3.2.

Curiously, the goal of mentioned implementation was not to achieve a better awareness

about the neighbourhood and solve the problem of coverage exclusion. In fact this

implementation was done to achieve faster neighbourhood device information and later

check the coverage availability sending a specific verification inquiry. First we consider the

possibility to use the implemented topology to solve the coverage exclusion problem.

Effectively such implementation improved the PeerHood performance in network

acknowledge and size limitation. Nevertheless, the problem of coverage exclusion is not

solved yet. In network configuration, such as Figure 3.3, the Device A is aware of the whole

network information inquiring to its direct neighbours B,C,D and E. Similarly E is aware of

its own direct neighbourhood devices F and G. Process works perfectly for A and E.

However, the situation is not the same for devices B, C and D. If we keep the same network

distribution, they will never be notified of the existence of devices F and G and vice verse.

Following the device discovery process logic, any device out of direct neighbour’s coverage

won’t be seen by the inquiry process. The neighbourhood information fetching provides only

an extra coverage jump vision to the device inquiry process. In other words, the vision of

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 14 -

Figure 3.3 Neighbourhood information fetching

device discovery process is limited to two jumps and such problem of coverage exclusion

will still appear inside the network depending on the devices distribution. If we increase the

number of DeviceStorage levels (number of jumps), the visibility problem will be solved.

Nevertheless the storage size would increase exponentially and also the transmission data

volume, producing a high energy consumption to mobile devices. Due to these reasons we

believe other way to resolve the coverage exclusion limitation is needed.

3.2 Gnutella P2P network

To solve the problem of coverage exclusion, we propose a searching algorithm inspired by

the Gnutella P2P network [17, 19]. Gnutella is one of the most popular unstructured peer to

peer file sharing systems. If we consider each user has Gnutella client software as nodes, on

initial start up, the client software has to find at least one other node. Different methods have

been used for this, including a pre-existing address list of possibly working nodes shipped

with the software, using updated web caches of known nodes. Once connected, the client

will request a list of working addresses. Whenever the user wants to do a search, the client

would send the request to each node it is actively connected to. The number of actively

connected nodes for a client was usually quite small (around 5), so each node then forwards

the request to all the nodes it is connected to and they in turn forward the request, and so on,

until the packet is from a predetermined number of "hops" from the sender. If a search

Device CDevice C

Device DDevice D

Device ADevice A

Device BDevice B

Device EDevice E
Device GDevice G

Device FDevice F

Device C

Device B

Device D

Device G

Device F
Device E

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 15 -

Figure 3.4 Gnutella network structure

request turns up a result, the node that had the result will contact the searcher, sending the

information back along the same route the query came through.

One of the biggest performance problems is the huge network traffic generated due to the

high number of query messages [9]. The importance of this is less for fixed internet network

that doesn’t have to take into account the network bandwidth and energy consumption.

However, these two factors are critical for the PeerHood protocol due to its focus on mobile

devices. and evidently the same inquiry process of Gnutella won’t work appropriately in

PeerHood. On the other hand, this sort of device discovery process by node jumps would

provide the whole network information to any device in the network and it would make

PeerHood a definitely scalable network.

3.3 Dynamic Device Discovery
Based on the same principle of Gnutella’s network distribution and other researcher’s

results[10, 11, 12, 13], we have created the new device discovery that considers each

PeerHood device as an independent node. Each node can search the nearest devices

information in a certain coverage area and later these devices are stored in the

neighbourhood list. As presented in figure 3.5, whenever a device receives the discovery

inquiry, all its neighbourhood information will be sent to the inquiry owner. The inquiry

owner device will process the received neighbourhood list and store them as other direct

devices inside the coverage in its neighbourhood list, adding the routing information as

bridge name and jump number. The same process will continue with the next node. The final

result is a device list with information about the whole network with its routing information.

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 16 -

Figure 3.5 Network information transferring

Thus every device of the network will achieve the total environment awareness and the way

to connect to each other. The resource consumption will be the same, because the inquiry

petition is not repeated like Gnutella network, but only sent to the direct neighbours.

Compared to the previous version of PeerHood, the use of Bridge address and Jump number

are the most relevant elements that transform the DeviceStorage into an Ad-hoc routing

address table[14, 15]. Several similar studies were also carried by other researchers to

demonstrate the viability of the mobile environment awareness.

- Bridge: Bridge address is the gateway node to connect when we want to connect to

another remote device which is not inside our local coverage. After the remote

connection petition, every bridge analyzes its own device list table and selects the

suitable node to continue the connection establishment.

- Jump: the number of jumps of nodes to get to the final device. Direct devices have

jump number as 0. This parameter is considered as the cost of the connection.

In the example presented in Figure 3.6 there are five elements: A, B, C, D and E. In principle

B can only see its direct neighbours A, B and C inside the same coverage. Meanwhile, D is

aware of the presence of device E. During the device information searching process of B, the

whole neighbourhood information (DeviceStorage) of D is also sent and the new device E

will be stored in B’s DeviceStorage with the corresponding Bridge device name and number

of jumps. Finally, A will also be aware of the presence of E and D after it analyses the

neighbourhood information of B and C.

Laptop 2 Laptop 2 PC PC

PeerHood
network

information

PeerHood
Network

Updated
PeerHood
Network
information

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 17 -

Figure 3.6 Dynamic device discovery

A

B

C

D

E

Inquiry

Inquiry

Awareness
of E

Awareness
of D and E

Awareness of
B,C,D and E

Whenever A wants to connect to remote device, such as E, the only extra parameter it needs

to know is the bridge name, which in this case is B or C. After the connection petition

arrives to B or C, they are in charge of selecting the next step to achieve the final connection

between A and E. However, as the network size increases, the number of ways to reach a

device approaches infinity. The size and process limitations make it so that it is impossible

and unnecessary to store all of the possibilities to connect with the remote device. The

optimal way is required to guarantee the optimal size of the storage and reliability of the

connection.

3.4 Essential parameters
In a real PeerHood environment, the distribution of devices is totally random and there exist

infinite possibilities to reach the destination. As we commented before, the best route

selection is necessary to guarantee the optimal size of information storage [17]. For each

device, the number of jumps is the best cost parameter to determinate the time delay and

traffic generated for the network. Bigger number of jump means also more transferring

traffic and connection delay. However, there still will be several routing options with the

same jump number and more patterns are needed to select the most efficient way. The next

discussed parameters have been taken into account during the device discovery

implementation.

DeviceStorage A
Neighbours Jumps Bridge
Device B 0 empty
Device C 0 empty
Device D 1 C
Device E 1 B

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 18 -

BBAA

CBTPlugin::Fetch
Device

Information

CBTPlugin::Fetch Prototype
Information

CBTPlugin::Fetch
Service

Information

CBTPlugin::Fetch
Neighbourhood

Information

Bluetooth Plugin Bluetooth Plugin

Cdaemon::Send
Device Information

Cdaemon::Send
Prototype Information

Cdaemon::Send
Service Information

Cdaemon::Send
Neighbouthood

Information

Figure 3.7 Bluetooth Plugin discovery process

3.4.1 Link Quality

One of the most important new parameters of the neighbour devices is the link quality value.

Due to the dynamic nature of mobile devices, the link quality is changing continuously. A

weak link quality might mean the device is almost leaving the coverage area and the

probability for connection loss is higher. For each network technology there is a different

link quality parameter and different way of use.

For Example, in the Bluetooth protocol, Received Signal Strength Indicator (RSSI) is what

measures the existing connection parameter. During the device discovery four short duration

connections will be established to get the remote device, service, prototype and

neighbourhood information as presented in figure 3.7. RSSI could be obtained by listening to

the connection channel during this short connection time and stored as link quality

parameter. Furthermore, we could unify these 4 short connections to an only one longer

connection to get a more reliable value. However, there can be differences of link quality

parameters between different manufacturers. Thus, further studies are needed to determinate

the suitability and reliability of the link quality value.

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 19 -

C

B

A

E

D

Figure 3.8 Link quality storage algorithm

To find the route with the best quality, more than one measurement is needed. In next figure

there exist two possible routes for device A to connect D: A-B-D and A-C-D. As we

described before, quality parameter should be achieved by listening to the short connection

established to get device and service information. Thus A can only get directly the quality

parameter of B and C. These are not enough to assure the best route. To solve this need, the

link quality parameters for B-D, C-D will be stored in each device’s information field and

sent to A as neighbourhood information as well.

Once we have link quality parameters from two routes with the same number of jumps, we

will select the route with biggest absolute quality value. If AB + BD are bigger than AC +

CD, route A-B-D will be stored as the definite route.

One curious case is the equity of the quality parameter’s addition. In the case presented in

figure 3.9 the result of addition of both routes are the same, which would be the best route

for the connection? Particularly we think once the quality value is higher than the minimum

demanded, both routes are suitable for the connection. In this case, the route A-C-D won’t be

accepted due to A-C being lower than the minimum threshold 230.

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 20 -

Figure 3.9 Link quality addition equity

A

B

C

D

230 230

210 250

3.4.2 Device & Service Search Time Delay

Whenever we have an extensive PeerHood network, several jumps are needed to detect all

possible neighbour devices. Due to the nature of the searching engine, the bigger the

network is, the bigger is the possible maximum delay to any eventual change of situation.

If we have a device A which is situated two bridge nodes B, D far away from E, we see that

the maximum time delay of A to detect any change of E would be two whole device

searching cycles in the imagined worst case presented in figure 3.10. It means Max Delay =

Num Jump * searching cycle time. Moreover, if the prototype of the device is Bluetooth, the

maximum delay might be even bigger. According to the asymmetric characteristic of

Bluetooth in the device discovery process [4], when a given device is searching for other

devices and services, it is not discoverable by other devices. There exists the probably that

E E E

D

D
B
E

D
B

D
E

D
E

B

A

B

D

E

 Figure 3.10 Maximum Time Delay

Change Produced in E

Change Notified in A

Device discovery Inquiry

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 21 -

on random occasions the Bluetooth device won’t be searched by the discovery inquiry and

thus the notification time of any change in the remote device which requires several jumps

would be much bigger. Thus, a limitation of Num Jumps for moving devices should be taken

into account depending on the network technology. A big time delay would cause

connection loss frequently due to the late knowledge about the environment.

3.4.3 Static & Dynamic

We classify the devices to three big groups: static, dynamic and hybrid. Static terminals are

usually fixed providers of services and their behaviour is completely different from dynamic

mobile devices due to the permanent position and electricity supply. Static terminals are

more suitable for functioning as a bridge between other devices. There are less possibilities

of connection loss, the device searching cycle can be shorter and the energy consumption

spent in the data transmission won’t be taken in account. Thus dynamic devices are normally

clients that give the maximum priority to low battery consumption and it’s not suitable to

carry out connection retransmission due to the resource consumption and the mobility

characteristic. Hybrid devices could be low mobility mobile devices or static devices that

want to reserve their own resources and limit the bridge retransmission function. In the

device searching algorithm we will always give preference to static terminals as a bridge so

that the network traffic will concentrate on them and consequently converting them to the

backbone of the network. In next figure we have two different scenarios with static and

dynamic devices as bridge, where we can observe clearly which is the most reliable

connection configuration.

Static
Static

Dynamic

Dynamic

 Figure3.11 Static & Dynamic Bridge

Dynamic

DynamicDynamic

Dynamic

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 22 -

Mobility values are added to Daemon as a system parameter in the initialization.

Respectively they are {Static, hybrid, dynamic} = {0, 1, 3} to make easier the comparison

during the device discovery process.

We also have considered the possibility to make the addition of mobility parameters in the

same way as link quality in situations where there exist more than one routes with several

number of jumps. Taking the same scheme of figure 3.10 we will have the following table of

possible values.

0 + 0 0 + 1 1 + 0 1 + 1 0 + 3 3 + 0 1 + 3 3 + 1 3 + 3

Static

static

Static

hybrid

Hybrid

static

Hybrid

hybrid

Static

dynamic

Dynamic

static

Hybrid

dynamic

Dynamic

hybrid

Dynamic

Dynamic

0 1 1 2 3 3 4 4 6

As you can notice, the smaller the mobility number is, the better would be the stability of the

connection. However, currently we consider it’s important to maintain the single mobility

value, because it is an important device property. Therefore only the nearest device’s

mobility numbers are considered.

3.5 Discovery Process
To find the surrounding devices information, Bluetooth Plugin uses an inquiry thread that is

continuously searching neighbourhood information. At the same time, a SDP query is also

used to find the PeerHood tag to identify PeerHood capable device. For every inquiry loop, a

certain number of other device’s responses are received. For each response device

information will be fetched and stored in the Plugin’s device list and later stored definitely in

DeviceStorage. Time stamp is used to check the device’s existence. If one device doesn’t

respond to the inquiry during certain loop, it means the device has probably already left the

coverage area and the device information should be removed from the device list. PeerHood

considers it not to be necessary to establish information fetching connection with an existent

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 23 -

device in every discovery loop. A service checking interval defines a longer interval time for

stored devices to achieve the energy saving. The detection process is described in figure

3.12.

Comparing to the previous version of PeerHood BTPlugin, the analysis of the

neighbourhood is the main new element of the discovery process to analyze the neighbours

of each response device according to the most efficient way principle. New direct devices

will be added to the device list with its corresponding incremented jump number and bridge

address. Own device comparison filter is used to avoid duplicated route. And jump, mobility

and link quality number are used to select the best route once a previous route is already

stored in the device list. The implementation diagram is presented in figure 13.

For each response

Add Device

Make older

Update needed

Update Device Storage

Get response numbers

 Figure 3.12 BTPlugin activity diagram

Existance in Devicelist

New Device

PeerHood: Yes

Fetch Information

 Analyze
neighbourhood

Set timestamp = 0

Stored device jump >0

Erase stored device

PeerHood:Yes

Recheck needed

Fetch Information

 Analyze
neighbourhood

Store into Devicelist

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 24 -

Nevertheless, this implementation of PeerHood Device Discovery is carried out mainly to

demonstrate the viability of the new device discovery. The mentioned implementation would

work appropriately only in case we that have one Plugin. The reason is that in a normal

situation, the DeviceStorage is also shared and accessed by other network Plugins. Although

Add jump number

Add Bridge Address

Neighbourdevice
already stored

Add to devicelist

Neighbourdevice jump <
Stored device jump

Neighbourdevice mobility <
stored device mobility

Neighbourdevice link quality >
Stored device

Erase stored device

Add to devicelist

Neighbourlist End

Own device found as
Neighbour

 Figure 3.13 Activity diagram of AnalyzeNeighbourhoodDevices

CHAPTER 3 DYNAMIC DEVICES DISCOVERY

- 25 -

a critical zone control is created it’s unviable to lock the DeviceStorage during the entire

Inquiry thread due to the low speed of information fetching process. To avoid the mentioned

problem, the design of previous PeerHood Plugin should be changed. There might be one

local device list to control the service checking interval, all the information fetching process

should be done before accessing the DeviceStorage and the data processing will be done

during the update phase of DeviceStorage.

CHAPTER 4 INTERCONNECTION SYSTEM

- 26 -

A

D

C

E

B

Chapter 4

Interconnection System
The main goal of this thesis is to search one solution to the mobility problem during the task

migration. If Dynamic Device Discovery was thought to get a better awareness about

neighbourhood environment, the Interconnection functionality is created with the target to

allow connection to remote device through different network nodes. In the next example

(figure 4.1) if device A wants to establish connection with remote device E, B would be the

bridge node which A will try to connect. Moreover, Device B should be notified the

connection intention of A as an intermediate connection, receive the final destination address

and service and select the next suitable bridge which is C. Device C will receive the

connection request from B and establish the connection with final device E. After the

connection establishment, B and C will limit to re-transmit every data they receive between

A and E.

To achieve this target, the interconnection system gives every device the chance to be a

bridge node to redirect the traffic to other device. One hidden bridge service will be included

in each PeerHood package and executed in the initialization of Daemon. Bridge service

listens continuously for connection requests in order to establish a new connection with the

next bridge or final destination. The suitable prototype and route selection of next

connection will be always carried out by the bridge server and not the original device. The

scheme is presented in figure 4.2.

 Figure 4.1 Interconnection between 2 devices

CHAPTER 4 INTERCONNECTION SYSTEM

- 27 -

Although static devices with high link quality are more likely to exercise the bridge function,

in a totally random distribution stage, bridge service could also be needed to run in the

mobile devices. In many cases multiple connections should be allowed at the same time in

order to satisfy the random mobile environment. However, in the last case the bridge service

would produce extra processing need and energy consumption to the node device. Due to the

battery limitation of mobile devices, this situation is highly undesirable for them, but at the

same time unavoidable. One of the possibilities is switching off the bridge service of devices

that have the mobility parameter as “mobile”, although the network performance will be

seriously affected due to the decreased visibility. Other option is that the maximum

connection number is adjusted by the device owner and whenever the maximum is reached,

it is notified back to the request device. Nevertheless, as the device discovery process will

always try to find only the best connection route measuring link quality, it would be very

interesting to modify the link quality value according to the maximum connection number

and avoid the “bottle neck” situation. An extra connection number/maximum connection

number percentage could be transmitted during the device discovery process and

proportionally the link quality parameter is decreased.

 Figure 4.2 Multiconnection bridge service

PC C

Mobile A Mobile A

Mobile B Mobile B

PC C

Testing
Client

 Bridge
Service

Testing
Client

Laptop D Laptop D

Mobile A Mobile A

Testing
Client

Testing
Server

CHAPTER 4 INTERCONNECTION SYSTEM

- 28 -

4.1 Connection Process
In principle, the bridge connection process doesn’t differ too much from the normal

connection process of PeerHood. Before we start to analyze the bridge connection process,

three important types of classes should be clarified to get a better understanding.

• Applications: Applications are the highest level class of PeerHood protocol. In this

level the connection is created through PeerHoodImp::Connect and incoming

connection is notified by class Engine.

• PeerHoodImpl::Connect: The connect method of PeerHood library includes all

connection steps and parameter exchange with the remote device. This method

should be called from application level or special system monitoring threads.

• Engine: Engine is the PeerHood class which is continuously listening for possible

connections in different network technologies. Once connection is recognized and

accepted, it will proceed to identify the connection intention to discover if they are

new connection, bridge connection or connection re-establish. Therefore different

connection parameters and received according to the connection type.

It’s important to understand the singleton design pattern of PeerHoodImp library and Engine.

This method ensures that at any given moment of time only one instance of mentioned class

is running, while many applications are allowed. Any network event to the application will

be notified by the engine using methods included in application callback class.

Basically there exist two main differences between the normal connection process and bridge

connection process. First of them is that there exists the need to transfer the destination

address and service name to the bridge connection. The bridge service will receive these two

parameters from engine callback function and proceed to find the next step to continue with

the connection. The second of them is the connection acknowledgement. Due to the fact that

connection is constructed by more than one connection between different nodes, if one of

CHAPTER 4 INTERCONNECTION SYSTEM

- 29 -

BB
AA

CC

them fails all the connection chain would fail and it should be notified to the connection

request device. In figure 4.3 the connection process is described with detail.

In next figure we can see an interconnection example between two remote devices using a

bridge service. As we can notice, the interconnection consumes double amount of time.

Although this time consumption is totally logical and unavoidable, the maximum connection

time will seriously limit the application performance and should be taken in to account

according to different network connection speeds.

 Figure 4.3 Bridge Connection Process

PeerHoodImp::
Create connection

PeerHoodImp::
Connect

Engine::Accept

PeerHoodImp::
Send command
PH_BRIDGE PeerHoodImp::

Send port number
Engine::
Send command
PH_OK PeerHoodImp::

Send connection ID

PeerHoodImp::
Send destination
address

PeerHoodImp::
Send service name

Engine::Callback
notify to Bridge
Server BridgeServer::Connect

Engine::Callback
notify to application Engine::Accept

BridgeServer::Send
confirmation

PeerHoodImp::
Callback notify to
application

Application::Data
transmission

Application::Data
transmission

Normal connection
process end

CHAPTER 4 INTERCONNECTION SYSTEM

- 30 -

4.2 Bridge Service
Bridge service is implemented like other PeerHood application using the library functions.

One abstract connections list will store all the connections from both directions. As every

connection in bridge requires one pair of connections, each incoming connection will be

stored as even and the corresponding connection in other direction as odd to avoid the

creation of two connection list. The BridgeConnection method is called from Engine using

callback system and it is responsible to find the next node to connect, create the connection,

store them into the service connection list and write the acknowledge command to the

request owner. The main loop is listening continuously from file descriptor of every listed

connection and once traffic is detected from one direction, it will be sent to the

corresponding connection in other direction until one of the connections is over. Then the

pair of connection would be removed from the connection list. The activity diagram of

BridgeService is presented in figure 4.4 in next page.

The implementation has been taken into account the following patterns:

• Bridge service should be bi-directional in order to accept traffic from both sides.

Even and Odd are used to distinguish the connection direction.

• BridgeConnection method is callbacked from Engine to establish new connection

once PH_BRIDGE command is detected.

• Multiple connections should be permited to achieve a real Bridge functionality.

• As connection list could be modified by main loop and BridgeConnection, access

control is necessary to avoid undesired index confusion even the time interval is

small.

• After the connection establishment, bridge won’t interpret the traffic. Every traffic

data it receives will be sent directly to the destination, with the exception of

disconnection. In this case, corresponding connections are disconnected and erased

from the connection list.

CHAPTER 4 INTERCONNECTION SYSTEM

- 31 -

 Figure 4.4 Bridge service & BridgeConnection function activity diagram

Register Service

Bridge finished

Connection exists
sleep

FD_SET connection list

SELECT incoming data

Even Odd

Read length Read length

Read buffer Read Buffer

Write to odd
connection

Write to even
connection

Bridge running

Get devices list

Find given address

Direct data Bridge data

Create direct connection Create bridge connection

Sending Acknowledge Sending Acknowledge

Lock connection list

Add even connection

Add odd connection

Unlock connection list

 BridgeServer main loop
Process BridgeConnection Function

CHAPTER 4 INTERCONNECTION SYSTEM

- 32 -

Client

Client

Bridge

Server

4.3 Performance Testing
The performance of BridgeService was tested with two simple clients and one server. The

configuration is presented in the following figure. The function of the client is to send a

message 20 times with 1 second of intervals to the server through the bridge and server will

just print the message in the screen. Bluetooth was the chosen network protocol.

The test was carried out with several attempts to check the average connection performance.

In these ten connection attempts, three of them couldn’t be done due to the normal Bluetooth

connection fault between client and bridge. In other seven successful connections, the time

needed for the connection was between 3-18 seconds. The sending and receiving of data

packages were carried out perfectly with an almost negligible time delay.

Although the initial connection establishment takes a long time, the negligible time delay of

data transferring among different nodes is an important factor that demonstrates the viability

of interconnetion. Also we found the connection fault is quite frequent during the connection

establishment process even if the devices have strong enough signal. To avoid this problem,

the connection attempt repetition in the Bridge service design would be necessary to

guarantee a satisfactory connection. Further applications also need to be modified similarly.

 Figure 4.5 Test connection configuration

message

message

message

CHAPTER 5 TASK MIGRATION

- 33 -

Chapter 5

Task Migration
5.1 Migration scenarios
After achieving the total environment awareness and the interconnection capability for the

devices, we are ready to discuss about task migration in a constant changing environment.

First of all, in this project we consider the task migration’s benefit for the mobile devices are

evident and already demonstrated in several previous studies. Second of all, the typical task

migration mainly consists on the transmission of certain data from one mobile device to

other device which has the capability/server to solve the task more efficiently, later the result

is sent back to the mobile device. Thus we will concentrate our study to two different stages

of the connection during the task migration process. Respectively they are:

1. Mobile device is interchanging information continuously with the service, the

connection is needed permanently.

2. Mobile device sends data to the service, the server will process the data and the result

will be sent back to the mobile device. The connection is not needed permanently.

In a real PeerHood environment like figure 5.1, the connection could be lost in any time due

to the random mobility of devices and random network distribution. In this chapter we will

try to find how to avoid the connection lose and carry out the task depending different

scenarios.

Dynamic

Hybrid

Dynamic

Dynamic

Static

Dynamic

Dynamic

 Figure 5.1 Constant changing scenarios

CHAPTER 5 TASK MIGRATION

- 34 -

Mobile devicesMobile devices

5.2 Soft Handover
Handover process is commonly used in GSM and 3G mobile communication. In figure 5.2

the typical situation is presented. The mobile device is leaving the coverage area of the first

base station. After the signal becomes low a second connection is established to the second

base station at the same time. Once the hysteresis threshold is overcome the connection will

definitely transfer only to the second base station.

In this work we tried to implement the same Handover functionality to PeerHood. One

HandoverThread was created to listen to the link quality and check the available near

servers. Whenever the quality gets weak due to the device’s movement, HandoverThread can

detect it and will try to continue the service by establishing a second alternative connection

way.

However, there exists a fundamental difference between cell phone communication system

and PeerHood. In the case of GSM, all the traffics in base station have a common destination

that is the MSC (Mobile Switching Centre) which is the controller of the whole network

traffic. BTS (Base Station Controller) doesn’t process any data and everything it receives is

sent to MSC. In other words, the GSM network consists on many access points (BTS) and a

unique server (MSC) which is in charge to interconnect cell phones calls and data

transmission. Nevertheless in PeerHood environment there could exist unlimited kind of

service inside any kind of device. And even the same service is present in various devices,

 Figure 5.2 Soft Handover

CHAPTER 5 TASK MIGRATION

- 35 -

Mobile devicesMobile devicesMobile devicesMobile devices Mobile devicesMobile devices

PicturePicture

Movement line

PicturePicture

Server
1

Server
2

A B C

every service is in principle independent from each other. The change of service location

would mean a complete reset of the application that is not desirable in the most of cases [7].

In next figure we have a typical task migration stage to demonstrate the mentioned problem.

Normally mobile devices are not able to process high quality images, instead of a long time

and high energy consumption processing, optionally they can transfer the images to the near

PeerHood static server to carry out the task, and receive the result back. In moment A the

mobile device is connected only to the server 1 and the image transmission is started. In

moment B the link quality is becoming weak and according to the design, HandoverThread

found the nearest device server with a good enough link quality to establish the alternative

route. However, after the connection broke with server1. Even we are connected to the same

picture analyse service of server2, the whole task migration should start again due to the

inexistence of connection between server 1 and 2.

Obviously the service reconnection is necessary when we don’t have any other choices and

it’s the only way to carry out the task migration. Although before we would like to comment

another way to maintain the same connection to the server: the Routing handover.

 Figure 5.3 Two servers handover

CHAPTER 5 TASK MIGRATION

- 36 -

LaptopLaptop

Personal ComputerPersonal Computer
MobileMobile

MobileMobile
MobileMobile

LaptopLaptop

Text

X

5.2.1 Routing Handover
In PeerHood environment whenever the mobile device are moving, device discovery process

is constantly detecting the change of neighbourhood. According to the moment and network

distribution, many alternative routes will be available to connect two devices. If we consider

the example of figure 5.4 where the mobile device is connected to the laptop to do any task,

as the mobile device is leaving the effective coverage area, the connection could break in any

moment. It’s interesting to see once the device is leaving from the laptop, it is approaching

to other one that has good connection signal with the laptop. Therefore the same connection

could be kept doing the interconnection among these devices. We can summarize this stage

in 5 main points.

1. The service provider is a direct neighbour inside the initial coverage area as other

devices.

2. Many of these devices also consider the service provider as one of their direct

neighbour.

3. Whenever the mobile device is leaving from the service provider, it is approaching to

other direct neighbours.

 Figure 5.4 Routing Handover

CHAPTER 5 TASK MIGRATION

- 37 -

4. The same connection could continue using a direct neighbour as bridge node to

connect to the service provider.

5. Link monitor is measuring the link strength with neighbours.

One important supposition we did is that we assume the speed of the mobile device is not

high enough to change the whole direct neighbourhood environment in few seconds (case

Bluetooth). If the device’s velocity is too high the device discovery could not update

appropriately the neighbourhood. Most of neighbourhood information will be wrong and the

handover system won’t work.

Thus we can summarize the routing handover in 3 main states. The Activity diagram of the

HandoverThread is illustrated in figure 5.5 .

• State 0: HandoverThread Gets DeviceList from Daemon and searches for the actual

connection address in each device’s neighbourlist. The link quality of each new route

is checked and the highest quality route is stored.

• State 1: Monitoring the link quality of the existing connection. We consider if the

signal has been too low for 3 times it means the degradation of the connection and

we go to the state 2.

• State 2: HandoverThread Create a new bridge connection to the intermediate node

with the stored route. Once the connection is confirmed, the application will be

notified by the callback ChangeConnection method and the connection will be

substituted.

CHAPTER 5 TASK MIGRATION

- 38 -

Create Monitor Monitor

State 1

IncreaseiLowCount

Signal low

iLowCount > 3

Create New Connection
New Connection

Established

State 3

Callback to the
aplication

Replace the old
connection with the

new one

During the implementation testing we proved the interconnection functionality implemented

in last chapter allows the HandoverThread can choose freely the alternative route and makes

the routing connection a viable solution. Even though there exist implementation challenges

to make it really applicable to PeerHood and achieve the expected result. The one we found

was Monitoring limitation.

Select connection form iThreadList

Connect Daemon

Get DeviceList

Find connected device from neighbours
of each DeviceList Element

Store the best quality way

Get service parameters

State 0

 Figure 5.5 Routing Handover Diagram

CHAPTER 5 TASK MIGRATION

- 39 -

Monitoring limitation

According to the principle of node independence, the second HandoverThread will be

created by the bridge to listen the connection established with server. Whenever the server

device is leaving from the bridge coverage area, this HandoverThread will try to connect to

the next bridge to continue with the connection and so on. This system makes every

HandoverThread is responsible only for the connection it is listening to and has the

autonomy to decide to change the connection route.

In figure 5.6 we can see a normal stage of the routing handover. The client A is moving

away from the connected server A. When the link strength becomes low the connection is

interconnected through bridge B and later also through C. This is the ideal performance of

routing handover.

Nevertheless in situation like figure 5.7, the client A is coming back to the initial point but

the HandoverThread of Bridge C only considers the possibility to continue the connection

from itself. The result is an inefficient connection using unnecessary bridge nodes. We still

didn’t find the solution to this implementation problem.

Client A

Client A

Client A

Server A
Bridge B

Bridge C

 Figure 5.6 Bridge routing stage A

CHAPTER 5 TASK MIGRATION

- 40 -

X

The simulation of Routing handover is done with 3 devices following the distribution of next

figure. In first place a client application B connect to server A to print the message “good

morning!” 50 times in the server’s screen. Due to the difficulty to distribute the computers

with enough coverage separation, we simulate the first connection deterioration subtracting

the monitored link quality value artificially by 1 every second. Once this value is smaller

than threshold 230, the signallow account increased. And when this account is bigger than

three, the HandoverThread will proceed to change the connection to the second route.

A A

 B B

C C

First route

Second route

 Figure 5.8 Handover simulation stage

 Figure 5.7 Bridge routing stage B

Client A

Client A

Server A Bridge B

Bridge C

Bridge D

CHAPTER 5 TASK MIGRATION

- 41 -

The simulation was repeated several times to get an average performance of routing

handover. Apart of the connection fault errors produced during the interconnection process,

which is commented before in the last chapter, the connection changes were carried out with

the same time delay like a normal interconnection process without any problem. After we

took the laptop from the office to the corridor during a connection with B and we observed

the decrease of Bluetooth link quality parameter is really fast and we can lose the connection

in few seconds with a normal walking speed. If we add also the interconnection time that

would be from 4 to 15 seconds. More than probably the connection will be lost before we

achieve the second route connection establishment. This huge connection establishment in

Bluetooth is a serious obstacle for the theoretical functionality of routing handover.

5.2.2 Service Reconnection
Whenever the Routing handover is not possible (no suitable Bridge device around to get to

the same connected device) or the routing path is incorrect and after various attempts the

HandoverThread couldn’t restablish the connection with the old device. After the connection

is definitely broken (HandoverThread is continuously listening to the channel quality).

PeerHood will try to connect to another service provider device. As we commented before

about the independence of service owner devices, unless some really specific services are

based on asymmetric traffic from server, all the information needed for the task migration is

required again from the client and the application should be restarted. The process is

identical to a completely new connection process but made by HandoverThread.

CHAPTER 5 TASK MIGRATION

- 42 -

We consider it’s preferable to notify to the application user about the reconnection need and

let him to give the permission to the service reconnection. Depending on the application and

transmission need some times the user would prefer to quit the connection if he has to

initialize the connection again from zero.

5.3 Result Routing
In most of the task migration process, once the information of client application is sent to the

server the connection is not necessary until the server finishes the task processing. After the

client has already sent all the information, it will remain to a sleeping state waiting for the

result back. We have observed in this case if the connection breaks the connection is not

needed to be repaired immediately due to the unknown data processing time of the server.

And any attempt of client to reconnect to the server would be inefficient due to the

connection only is needed after the result processing. Thus we consider the optimal would

be the server establishes the connection with client after the data processing. An example of

picture analyse migration is presented in the in figure 5.9.

HandoverThread

Find the same device in neighbour’s neighbourhood

Find the service in neighbourhood

Servicefound = true

If (connection == broken && Servicefound == true)
 If (routing handover attempts > limit || devicefound = false) {

Reconnection option to client
Service Reconnection
}

Devicefound = true

CHAPTER 5 TASK MIGRATION

- 43 -

Mobile devicesMobile devicesMobile devicesMobile devices Mobile devicesMobile devices

PicturePicture

Movement line

PicturePicture

Server
Bridge

A B C

ResultResult

ResultResult

To achieve this configuration in PeerHood, a new boolean variable “sending” is added in

iThreadlist. Getsending method is called from the application to change the value to indicate

the end of data sending or viceverse. Thus when the link quality becomes low the

HandoverThread will be aware about the no need for the reconnection and avoid the routing

handover or service reconnection.

A testing server and client application are created to demonstrate the functionality of waiting

for response system. The server is simulating an image analyse server which receives a big

size photo from any client, the people from the photo will be recognized and names are

added in the same picture and sent back to the client. The implementation of the server is

similar to other PeerHood application using only the library functions. One connection is

allowed at the same time.

The client is simulating a mobile device which will send a picture to analyse in the remote

server. First the client will send the size of photo (package numbers) and then each data

package. After the data sending it will simulate the device movement disconnecting from the

server, and enters to the sleeping state waiting for the image analyse server’s connection and

receives the result.

 Figure 5.9 Waiting for response

CHAPTER 5 TASK MIGRATION

- 44 -

During the implementation we realized once the connection is broken, the server has not

enough information to reconnect to the client. Due to the previous design of PeerHood, once

a new connection from client is received in server, only connection ID and service port

number are received as connection’s parameter. To be able to establish a new connection to

the client, prototype, device address, service name, device name , Pid and port number also

are necessary values that the PeerHood engine can’t provide. We consider there are two

methods to solve this problem:

1. Clients insert a “client” service to the daemon to provide the connection possibility to

servers. This method would increment the number of network service unnecessary

and the application will be visible for the whole PeerHood network and make it

target of possible attacks. The other inconvenient is the dependence of connection to

the device discovery process, even server is aware about the presence of client, it has

to wait for the plugins to discover the client device.

2. The mentioned parameter like prototype, Pid number, service name, checksum,

device name and port number are sent in the beginning of the connection between

client and server. It would be the best option to avoid unnecessary “client” service in

the PeerHood network.

In this performance test we have chosen the first option to test the performance due to its

relative simplicity. In figure 5.10 is presented the activity diagram of image analyse server.

The performance test was repeated several times with package numbers from very small

value to huge size. During the test some connection faults were produced due to the

normal Bluetooth limitation. We can summarize the result in following three groups.

1. With a smaller number of data packages the processing time is also smaller and the

task could be carried out before the device leaves the coverage area.

CHAPTER 5 TASK MIGRATION

- 45 -

2. With a considerable number of data packages the connection is broken during the

processing time after the server has already received all picture information. In this

case server looks for the device in its neighborhood routing table and tries to send the

result back after the task processing.

3. With a huge number of data packages the connection is broken during the data

packages transmission. Before the definitive connection loss Handover thread will try

to restablish the connection though the neighbor node.

During the experiment we have observed an important event in the third case:

As Bluetooth was the chosen technology for the implementation, the time needed to

establish the connection through another bridge node had an average value superior than 10

seconds. Such huge connection time made the mobile device has lost the connection before

the alternative connection is done and consequently producing a connection lack affecting

the task migration performance. The connection time would be much higher if the jump

number of nodes is bigger. Based on this result, we believe the Routing Handover is not

suitable for all network technologies but only those have a short connection establishment.

We can also confirm that in the second case, migrated task’s result could be sent back from

server without any problem. And doesn’t need any change inside PeerHood library and

engine. This functionality could be added by the application programmers according to the

service need and time delay limitation. After we add the total network acknowledge

(chapter3) y and interconnection capability (chapter4), the server can easily return the result

to the client taking the advantage of the environment with some time delay.

CHAPTER 5 TASK MIGRATION

- 46 -

 Figure 5.10 Picture analyse Server

Register Service

Unregister Service

Server running
No connection

Connection exists

FD_SET connection

SELECT connection

Package number
received

Read Package number

Read length

Read Buffer

Receiving end

Processing data

No connection

Write result back

Write result back

Get Devicelist

Find client device

Reconnect to client

- 47 -

Chapter 6

Conclusions
Conclusions & Further work
In this project we have proposed a different design of PeerHood environment and the

handover system. However, this work only the first attempt to achieve the mentioned

functionality to PeerHood and many lacks of design are needed to improve. Also more real

performance test should be carried out in the future to certificate the viability of these ideas.

After working with PeerHood during several months, we want to stand out the importance

for PeerHood to achieve the total environment acknowledge and interconnection capability.

In this project we did the simple version of the implementations and the results have

demonstrated the advantages and viability of these changes.

The most difficult part of this project was the routing handover design. The theoretical

routing handover undoubtedly can improve the PeerHood performance even though the

unpredictable behaviour of mobile devices, the big connection delay and the monitoring

limitation make us doubt of its usefulness in a real environment.

So far there exists the possibility to lose data due to Write function not being aware of the

connection loss. Additionally, the implementation of Data Transferring Acknowledge is too

costly due to the small size of packet. Thus an efficient Data Buffering is necessary to

guarantee the data integrity. About the new parameters of Plugin, link quality parameter was

used as a supposition value but in any moment we have doubted the necessity of this value

inside PeerHood protocol. The link quality as an indispensable parameter has to be studied in

more detail.

- 48 -

Regarding high processing task migration, in the actual telecom market PeerHood has hard

competences as cellular network 3G and HSDPA due to the excellent coverage and

reasonable data transmission cost. In fact there exist already some servers offering image

processing and text translation services through MMS http://www.tauyou.com/ and direct

video analysis through 3G http://www.t-immersion.com/. However, the possibility to

interoperate between the existing network technologies and incorporation of any others give

PeerHood the unique capacity to design a totally flexible network combining different

technologies.

- 49 -

ServerServer

6.2 Potential Applications

Coverage Amplification
One of the most interesting features of PeerHood would be the amplification of coverage in

areas where normally devices are not able to receive the signal. In figure 6.2 we have a

tunnel where mobile phones have not any GPRS signal. One server is in the outside of the

tunnel and provided with GPRS antenna. Inside the tunnel we proceed to install several

Bluetooth devices making function of connection bridges. Once the mobile phone wants to

access to the mobile services it will use a PeerHood application to connect to the server and

access to the whole GPRS network.

The coverage amplification concept is also applicable to unify small LANs to a bigger

network. In high mobile devices density places like office building or university, the

concentrated distribution of mobile devices means a wide PeerHood network with many

dynamic nodes. Many applications can be used in the environment as free Bluetooth calls as

social networking, etc.

 Figure 6.1 Coverage Amplification

BT BT BT
BT

GPRS

- 50 -

REFERENCES

[1] Jari Porras, Petri Hiirsalmi and Ari Valtaoja: "Peer-to-peer Communication Approach

for a Mobile Environment", 37th Annual Hawaii International Conference on System

Sciences, 2004.

[2] Arto Hämäläinen and Jari Porras: “Enhancing Mobile Peer-to-Peer Environment with

Neighborhood Information”, Proceedings of the 3rd Workshop on Applications of

Wireless Communications, 2005.

[3] R. Gold and C. Mascolo, Use of Context-Awareness in Mobile Peer-to-Peer

Networks. Proc. 8 tn IEEE Workshop on Future Trends of Distributed Computing

Systems (FTDCS 01), Bologna, Italy, 2001.

[4] Sidath B Handuruande Samrat Ganguly Sudeept Bhatnagar: “Fast Bluetooth

Discovery for Mobile Peer-to-Peer Applications”, Fourth International Conference on

Mobile Systems, Applications and Services, Uppsala, Sweden, June 2006.

[5] Tommi Kallonen and Jari Porras, "Use of distributed resources in mobile

environment", the 14th IEEE International Conference on Software,

Telecommunications and Computer Networks (Softcom 2006), Sept 29 - Oct 1, Split,

2006, ISBN 953-6114-87-9.

[6] Savvas Gitzenis, Nicholas Bambos, "Mobile to Base Task Migration in Wireless

Computing," Second IEEE International Conference on Pervasive Computing and

Communications (PerCom'04), 2004

- 51 -

[7] Oriana Riva, Tamer Nadeem, Cristian Borcea, and Liviu Iftode: “Mobile Services:

Context-Aware Service Migration in Ad Hoc Networks” IEEE Transactions on Mobile

Computing, Volume 6, Issue 12, Dec. 2007 Page(s):1313 – 1328, Digital Object

Identifier 10.1109/TMC.2007.1053

[8] Mads Darø Kristensen, “Enabling Cyber Foraging for Mobile Devices”, the fifth

Middleware for Network Eccentric and Mobile Applications Workshop, Magdeburg,

Germany, September 2007.

[9] Yu-Tang, Guo Wan-Li Lv, Bin Luo. An improved Resource Discovery Algorithm for

Gnutella Networks. Third International Conference on Natural Computation 2007 IEEE

[10] Khaled Nagi, Iman Elghandour and Birgitta Kônig-Ries. “Mobile Agents for

Locating Documents in Ad-hoc Networks”. Seventh International Workshop on Agents

and Peer-to-Peer Computing (AP2PC08) Estoril, Portugal May 13, 2008

[11] Yasser K.Ali, Hesham N.Elmahdy, Sanaa El Olla Hanfy Ahmed. “Optimizing

Mobile Agents Migration Based on Decision Tree Learning”. Proceedings of World

Academy of Science, Engineering and Technology (PWASET) Volume 22 July 2007

ISSN 1307-6884

[12] Nikos Migas, William J.Buchanan and Kevin A. Mcartney. “Mobile agents for

routing, topology discovery, and automatic network reconfiguration in ad-hoc networks”.

Engineering of Computer-Based Systems, 2003, Proceeding. 10th IEEE International

Conference and Workshop, April.

[13] Romit RoyChoudhury, S.Bandyopadhyay, Krishna Paul. “A Distributed Mechanism

for Topology Discovery in Ad Hoc Wireless Networks Using Mobile Agents”. Mobile

and Ad Hoc Networking and Computing First Annual Workshop, 2000.

- 52 -

[14] Sanket Nesargi, Ravi Prakash. “MANETconf: Configuration of Hosts in a Mobile

Ad Hoc Network”. INFOCOM 2002 Twenty-First Annual joint Conference of the IEEE

Computer and Communications Societies. 23-27 June 2002

[15] H. Qi, F. Wang, "Optimal itinerary analysis for mobile agents in ad hoc wireless

sensor networks," The 13th International Conference on Wireless Communications, vol.

1, pp.147-153. Calgary, Canada, July, 2001

[16] Fang Zhiyuan, Chen Xiaoyun, Tang Yong, Zhang Jingchun, Zhou Yu. “Real-Time

State Management in Mobile Peer-to-Peer File-Sharing Services”. Service-Oriented

Computing and Applications International Conference, 2007. SOCA '07. IEEE.

[17] Gaogang Xe, Zhenyu Li, Jianing Chen, Yifen Wei, Issarny, V, Conte, A. DTCS: “A

Dynamic Tree-based Consistency Scheme of Cooperative Caching in Mobile Ad Hoc

Networks”.Wireless and Mobile Computing, Networking and Communications, 2007.

WiMOB 2007. Third IEEE International Conference.

[18] Jiannong Cao, Yang Zhang, Li Xie, Guohong Cao. “Consistency of cooperative

caching in mobile peer-to-peer systems over MANET”. Distributed Computing Systems

Workshops, 2005. 25th IEEE International Conference

[19] http:://en.wikipedia.org/wiki/Gnutella. Wikipedia

[20] http:://en.wikipedia.org/wiki/Handoff Wikipedia

[21] David R.Musser & Atul Saini. “STL Tutotial and Reference Guide: C++

Programming with the Standard Template Library”. ISBN 0-201-63398-1

- 53 -

[22] W.Rchard Stevens, Bill Fenner & Andrew M.Rudoff. “Unix Network

Programming: The Sockets Networking API”. Third Edition ISBN 0-13-141155-1

