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1 INTRODUCTION 

1.1 NANOTECHNOLOGY BACKGROUND  

The birth of nanotechnology is often associated with the talk given by Nobel Prize winner 

Richard Feynman entitled “There’s Plenty of Room at the Bottom”. In this talk, Feynman 

discusses the possibilities of what is now commonly referred to as nanotechnology and how its 

advancement could potentially generate an enormous number of technical applications. 

Nanotechnology comprises technological developments on the nanometer scale, usually on 

the order of 0.1 to 100 nm. For a perspective of this scale at the atomic level, a hydrogen 

atom’s diameter is on the order of an Ångström (1 Å = 0.1 nm). Thus, ten hydrogen atoms laid 

side by side would measure a distance of about 1 nm across. Nanotechnology is necessarily a 

multidisciplinary field which encompasses and draws from the knowledge of several diverse 

technological fields of study including chemistry, physics, molecular biology, material science, 

computer science, and engineering. 

Nowadays many technological fields are experiencing one major revolution, coming from 

the possibility of manipulating and assembling objects at the nanometer scale. In particular, 

one of the fields where nanotechnologies are expected to have a major impact is electronics, 

whereby the possibility of working at the atomic scale opens up new possibilities for building 

faster, smaller, and cheaper integrated circuits. However, when building nanoscale devices, we 

implicitly come up with the problem of interconnecting them into a purposeful system, able to 

perform complex functions through the proper interconnection (by means of information 

transmission) of simple elements. 

Advances in the field of nanotechnology have expanded the breadth of potential 

applications tremendously in recent years. The nanotechnology research and development 

(R&D) areas have been growing rapidly throughout the world. The nanotechnology R&D 

investment reported by government organizations around the world has increased from 

approximately $432 million in 1997 to about $3 billion in 2003 alone. At least 30 countries 

have initiated national activities in this field. Although nanotechnology is currently still 

considered to be in the precompetitive stage, the worldwide annual industrial production in 

the nanotechnology sectors is estimated to exceed $1 trillion in 10 to 15 years, which would 

require about 2 million nanotechnology workers. 
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1.2 APPROACHES  

There are three different approaches for the development of nano-machines, namely the 

top-down, the bottom-up and the bio-hybrid [1]. 

• In the top-down approach, the existing electronic components and devices are 

scaled down from the micro domain to the nano domain by means of 

conventional techniques, such as lithography for silicon-based transistors. 

However, in the nano-scale, electrons tend to be constrained in such a limited 

space that current well-established laws are not suitable to completely describe 

the nano-components behavior. For this, the design of nano-electronic devices 

should take into account the quantum effects [58]. 

• In the bottom-up approach, the design of nano-machines is realized from 

molecular components, which chemically assemble themselves by principles of 

molecular recognition, molecule by molecule [40] [21]. The most promising 

technique following this approach is the construction of quantum dots (also 

known as nanocrystals), which are semiconductor materials at atomic level. 

However, the fabrication of quantum dots is still a challenging issue [59], and their 

toxicity makes this option infeasible for medical applications [33], [34]. In this 

section several techniques are being developed, e.g. the analysis of carbon 

nano-ribbons properties in [37]. 

• A third approach, called bio-hybrid, has been proposed for the development of 

nano-machines. In this case, biological elements can be directly used as building 

material or as patterns to be replicated with synthesized components [1]. 

 

1.3 MOTIVATION  

Nanotechnology enables the miniaturization and fabrication of devices in a scale ranging 

from 1 to 100 nanometers. At this scale, a nano-machine can be considered the most basic 

functional unit. Nano-machines are tiny components consisting of a set of molecules which are 

able to perform very simple computation, sensing and/or actuation tasks [70]. 
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Nano-machines can be interconnected to execute collaborative tasks in a distributed 

manner. The resulting nanonetworks are envisaged to expand the capabilities and applications 

of single nano-machines. Communication between nano-machines can be performed through 

classical methods or by means of molecular communication. 

Classical communication techniques (e.g., electromagnetic fields, optical or acoustic waves), 

cannot be applied to nano-scale networks by merely reducing conventional networks 

dimensions. The complexity and size of existing transceivers as well as their high power 

consumption are significant drawbacks that the aforementioned techniques present at 

nanometer dimensions [37]. As an example, the influence of the quantum effect at the 

nano-scale limit the applicability of conventional network paradigms based on classical 

electronics [32]. The main alternative to overcome these disadvantages and still use 

electromagnetic waves as a supporting carrier for information transmission is the use of novel 

materials implicitly lying in the nano-domain. For example, a nano-patch antenna based on 

graphene ribbons is proposed in [37]. 

The concept of molecular communications has been introduced in the recent years [1]. 

Following the bio-hybrid approach, molecular communication is inspired by the 

communication mechanisms that naturally occur between living cells, and it is defined as the 

transmission of information using molecules. 

Bio-inspired molecular communication approach is envisaged to govern the development of 

future nanonetwork communications. First of all, the natural size of biological elements 

eliminates the need of downscaling micro components because molecules or biological cells, 

which can be used as building blocks, are already in the nanometer scale. Biocompatibility 

provided to the system by molecular communication is another advantage, allowing a more 

direct interaction with medical applications. Finally, the energy consumption is extremely low 

compared to semiconductor based networks. According to [70], a single molecular reaction, 

which may represent multiple computations, consumes 10,000 times less energy than a 

microelectronic transistor. 

Molecular communication takes place amongst living cells via direct contact (juxtacrine 

signaling), without contact over short distances (paracrine signaling), or without contact over 

long distances and/or scales (endocrine signaling) [57]. Thus, in either reusing the existing cells 

or creating bio-inspired nano-machines able to copy their behavior, an analogous classification 

can be made. In bio inspired molecular communication, we distinguish between short range 
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communication (referred to distances from nanometers to millimeters) and long range 

communication (referred to distances from millimeters to meters). In short range 

communication, molecular motors [52] and calcium signaling [54] are some of the proposed 

techniques in the literature. In long-range communication only pheromones usage has been 

proposed so far [1]. 

In this thesis novel bio-inspired techniques suitable for the long range will be proposed. The 

focus on bio-inspired approach has been chosen due to the features that it provides, which are 

envisaged to pave the way to long range nano-communications. Long range 

nano-communication is an unexplored research area with unique and powerful characteristics 

capable of major revolutions. The main objective of this thesis will be the study and the 

analysis of potential solutions to intercommunicate nano-machines at distances 10 orders of 

magnitude bigger than their dimensions (reaching devices in the macro domain, if necessary). 

 

1.4 APPLICATIONS  

The range of applications in which nano devices are required is astonishingly wide. Five main 

areas can be identified: 

i) Biomedical Applications: e.g., immune system support, bio-hybrid implants, drug 

delivery systems and applications within genetic engineering. 

ii) Environmental Applications: e.g., biodegradation assistance, animal and biodiversity 

control, and air pollution control. 

iii) Industrial and Consumer Goods Applications: e.g., development of new materials, 

manufacturing processes and quality control procedures, also for food and water 

quality control applications, and advanced fabrics and materials development. 

iv) Military Applications: e.g., nuclear, biological and chemical (NBC) defences and 

nano-functionalized equipments. 

v) Telecommunications, ICT and Future Internet: e.g., distributed execution and 

management of dynamic and intelligent services in unpredictable environments. 
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Based on long range molecular communications, a wide variety of new applications can be 

designed. These applications would be impractical, or simply infeasible, if other classical 

communication techniques were used. The five main areas mentioned above can benefit from 

long-range molecular communication: 

i) Biomedical Applications: long range communication will provide a pathway 

between intra-body nano-networks and macro devices (e.g., displays, 

oscilloscopes, cardiograms). In addition to this, the interconnection of different 

intra-body nano-networks or nano-systems can be achieved by taking advantage 

of long-range techniques (e.g., between heart monitoring nanonetwork and 

breathing system subnet). 

 
 

 

 

FIG. 1  POSSIBLE APPLICATIONS USING LONG RANGE NANOCOMMUNICATION. TOP-LEFT: MEDICAL 

APPS. (E.G., PATHWAY BETWEEN NANO-NETWORKS AND MACRO DEVICES). TOP-RIGHT: INDUSTRY APPS. 

(E.G., IMPROVEMENT OF HAPTIC INTERFACES IN VIDEOGAME INDUSTRY). BOTTOM-LEFT: 

ENVIRONMENTAL APPS. (E.G., ACCURATE SENSOR NETWORKS FOR TOXICITY, HUMIDITY…). 

BOTTOM-RIGHT: ICT APPS. (E.G., AD-HOC MOLECULAR NANO-DEVICES INTERCONNECTION AND 

MOLECULAR HOTSPOT ACCES). 
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ii) Environmental Applications: retrieving different parameters (e.g., humidity in a 

forest, toxicity in a certain area) in environmental applications is a key feature 

that can be simplified by using nano sensors networks based on long-range 

molecular communications. In addition to this, the distribution of nano 

components able to sense environmental concentration of a substance would 

generate a more accurate output, as the sensing at the nano scale is able to 

detect chemical concentrations with a finer scale. 

iii) Industrial and Consumer Goods Applications: the interconnection of tiny devices is 

a powerful feature that can be applied to industrial and consumer goods 

applications, increasing the value added of manufactured products. Amongst 

others, imperceptible nano-devices can be attached to usual products and 

provide new functionalities appreciated by potential consumers. A possible 

example is a network integrated by several sensors, which are embedded in a 

motorbike helmet and in the gloves of the motorbike rider, that are able to share 

information in order to improve the rider security. The embedded nano-sensors in 

the fabrics are potentially undetectable and could be mixed with textile fibers at 

much reduced cost. Another example is the design of haptic interfaces for the 

videogame industry, improving the player feelings and virtual movements in the 

designed game. Nano-sensors in videogame industry would be able to track 

player movements in a very accurate precision, and could even trigger nervous 

stimulus by transmitting an intra-body signal. 

iv) Telecommunications, ICT and Future Internet: the evolution of the 

telecommunication world will be possible mainly through the miniaturization of 

communication devices from the current micro-scale to the nano-scale and 

through their efficient interconnection. In that scenario, long range molecular 

communication can be a means for nano-devices to reach distributed internet 

access points. Moreover, ad-hoc computers nano-networks will be able to be 

implemented with these techniques. 

Regarding military field, a wide range of devices could be largely enhanced by the 

application of the techniques coming from the fields mentioned above. 
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1.5 DOCUMENT ORGANIZATION  

In this thesis, five options to implement the listed applications will be proposed. The 

suggested techniques, summarized in Fig. 2, are classified into two molecular communication 

schemes, either wired or wireless, on the basis of the signal propagation and the specific 

implementation target. Wireless communication options are referred to the communication 

techniques whose information transference does not require electrical conductors, or other 

physical link but a fluid medium (e.g., air, water, blood). Wired options are referred to the 

communication methods that require a physical link to transport the signal. 

 

In this thesis, each of the proposed techniques will be analyzed according to the classical 

scheme division in communications (Fig. 3). Encoding and emission, propagation and reception 

and decoding will be the three sections in each of the suggested options. Some insights to 

existing models and the mathematical formulation of the critical parts will be also offered. 

On chapter 2 the wireless molecular communication options are discussed, namely, the 

techniques based on pheromones, pollen and spores. In chapter 3 the wired communication 

options will be handled, including the techniques based on action potentials in axons, and flow 

circuit in capillaries. In each case, we discuss the usual communication steps, namely, 

encoding, emitting, propagation, receiving and decoding. In chapter 4 we qualitatively 

compare all the proposed schemes and discuss their advantages and drawbacks. In chapter 5, 

the main conclusions of these long range molecular communication techniques are drawn up. 

 

FIG. 2  OPTIONS FOR LONG RANGE MOLECULAR COMMUNICATION 

Long range
molecular communication

Wireless Options Wired Options

Pheromones

Pollen / Spores

Light transduction Axons Capillaries
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FIG. 3  COMMUNICATION PROCESS STAGES THAT WILL BE USED TO ANALYZE EACH OF THE 

PROPOSED TECHNIQUES. 

   Emission     Reception    DecodingPropagationEncoding
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2 WIRELESS OPTIONS 

Wireless molecular communication in the nano domain can be mainly realized through two 

different propagation techniques, namely, molecular diffusion and molecular transport in fluid 

medium. The optical wave propagation is also considered here as a bridging technique for the 

connection between the nano-world and the macro-world, and able to exploit wireless 

molecular communication. 

Molecular diffusion stands for a spontaneous transport of molecules from a region of higher 

concentration to a region of lower concentration. This transport is the result of an underlying 

random molecular motion. Through the molecular diffusion process, the molecules released by 

a transmitting nano-machine can propagate through the medium until the destination. The 

transmission of pheromones is an important molecular diffusion based mechanism and it will 

be covered in subsection A. 

Molecular transport in fluid medium can be applied when the communication molecules are 

grouped together into bigger entities, such as pollen and spores. Pollen and spores, due to 

their size and mass, cannot rely on molecular diffusion to propagate, but need to be 

transported by a flowing fluid medium (e.g., air or water). Pollen and spores transmission will 

be discussed in subsection B. 

The optical wave propagation can be used to transmit a molecular communication signal to 

micro-electronic devices. In subsection C some insights about the possibilities of converting 

molecular information into optical signals and vice versa will be offered. 

 

2.1 PHEROMONES  

Pheromones are molecules of chemical compounds released by plants, insects and other 

animals that trigger specific behaviors among the receptor members of the same species. The 

use of pheromones for molecular communication in long range nanonetworks has been 

recently proposed in [1]. 
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2.1.1 ENCODING AND E

Pheromones enable the members of a certain species 

pertaining alarm, food or mating) only with members of the same species. This mechanism is 

achieved by means of the establishment of communication channels involving the release, the 

propagation and the reception of pheromones. A wide range of different pheromones is 

present in nature. Each type of pheromone is characteristic of a particular speci

uniquely bound to a precise message. 

Hence, pheromone diversity allows 

from interference among each other

Pheromone diversity can be succ

two different strategies. On 

pheromones it is possible to create different non

using a different pheromone type). On the other hand, the use of different pheromones can be 

used in a single channel, thus increasing the information enclosed in 

molecules. 

When pheromone diversity is used to create 

nano-machines, the emitting nano

using a certain type of pheromone. The message would only be understood by insects of the 

same species, as a result of possessing

receptor nano-machine must be equipped with the pheromone 

specific pheromone type. An illustration of this technique can be seen in 

FIG. 4.  USE OF PHEROMONE DIVE
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EMISSION  

enable the members of a certain species to share information messages (e.g., 

pertaining alarm, food or mating) only with members of the same species. This mechanism is 

hieved by means of the establishment of communication channels involving the release, the 

propagation and the reception of pheromones. A wide range of different pheromones is 

present in nature. Each type of pheromone is characteristic of a particular speci

uniquely bound to a precise message. This feature is denominated pheromone diversity. 

pheromone diversity allows different communication channels to be inherently 

each other.  

Pheromone diversity can be successfully applied to nano-machine communication following 

two different strategies. On the one hand, through the emission and reception of different 

pheromones it is possible to create different non-interfering channels (each channel will be 

nt pheromone type). On the other hand, the use of different pheromones can be 

, thus increasing the information enclosed in the emitted pheromone 

When pheromone diversity is used to create different non-interfering 

machines, the emitting nano-machine takes the role of an insect sending

using a certain type of pheromone. The message would only be understood by insects of the 

as a result of possessing the specific pheromone receptor. Analogously, the 

machine must be equipped with the pheromone receptor able 

An illustration of this technique can be seen in Fig. 

SE OF PHEROMONE DIVERSITY TO CREATE NON INTERFERING CHANNELS

Ll. Parcerisa  

to share information messages (e.g., 

pertaining alarm, food or mating) only with members of the same species. This mechanism is 

hieved by means of the establishment of communication channels involving the release, the 

propagation and the reception of pheromones. A wide range of different pheromones is 

present in nature. Each type of pheromone is characteristic of a particular species and it is 

pheromone diversity. 

to be inherently free 

machine communication following 

one hand, through the emission and reception of different 

interfering channels (each channel will be 

nt pheromone type). On the other hand, the use of different pheromones can be 

the emitted pheromone 

 

 channels among 

sending a message 

using a certain type of pheromone. The message would only be understood by insects of the 

specific pheromone receptor. Analogously, the 

receptor able to detect that 
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stand for one pheromone type and triangles represent a different pheromone type. 

information can be encoded either in amplitude or in frequency

present in the medium of that specific pheromone

non-interfering channels can be thought as a Molecular Division Multiple Access (MDMA). In 

this scenario, the channels are separated by type of pheromones, in the same way that in 

FDMA the channels are separated 

time slots. 

Pheromone diversity can be

emitted in a single channel to 

nano-machine must be able to release different

must be equipped with as many different pheromone receptors as can be emitted by the 

transmitter nano-machine. Applying this technique t

since the information associated to eac

the possibility of having 2 states for each pheromone, namely, released and not released, 

amount of messages able to be transmitted

pheromone types. As the receptor is equipped with a specific detector for each pheromone 

type, the signal components (the different pheromone types) are orthogonal 

interfere with each other. 

FIG. 5.  USE OF PHEROMONE DIVE
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Applying this technique the information throughput is boosted, 

since the information associated to each received molecule is increased. Indeed, 

the possibility of having 2 states for each pheromone, namely, released and not released, 

messages able to be transmitted is 2n, where n is the number of different

the receptor is equipped with a specific detector for each pheromone 

type, the signal components (the different pheromone types) are orthogonal 
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A combination of both schemes is also possible, optimizing the entire potential of 

pheromone diversity. For this, a specific subset of pheromones,  �� , is assigned to a 

communication channel between two nano-machines. Another subset, ��, (where �� and �� 

are disjoint subsets) is assigned to another channel, possibly involving two different 

nano-machines. As a consequence, the transmitting nano-machines are able to encode 

information in more than one pheromone type, but without interfering with other 

nano-machine communications. More advanced protocols can manage the dynamic 

assignment of pheromone subsets to transmitting nano-machines, or decide to reserve a third 

subset to assign addresses to nano-machines and route the messages in a more efficient way. 

The application of degrading enzymes is another technique that can be used in pheromone 

encoding. Enzymes are biomolecules (usually proteins) that increase the rates of chemical 

reactions; the degrading enzymes reduce the life of pheromone molecules, thus weakening 

the pheromone signal as a function of time. Altering the life time of pheromones will add more 

levels of freedom to the wireless molecular communication system, providing several features 

listed in the succeeding paragraphs. 

First of all, priority mechanisms between different emitting nano-machines could be 

established with the usage of degrading enzymes. The priority mechanisms could be needed, 

for example, in the case that two different emitting nano-machines (each of them emitting 

with different pheromone types) try to reach the same nano-machine receptor. If the emitting 

nano-machines apply different enzymes to their emitted molecules, the receptor 

nano-machine receives different amounts (concentration) of the two types of pheromones 

depending whether the degrading enzyme acts faster or not. Then the receiver can assign a 

different priority depending on the concentration value of each pheromone type. 

Another possible usage for degrading enzymes is the implementation of a mechanism 

similar to the Time To Live (TTL) used in conventional networks. In several already existing 

protocols (e.g., multimedia related), TTL feature is used to assure that a certain message will 

be delivered before the expiring of a defined amount of time. In pheromones case, applying 

the enzymes to emitted pheromone molecules would degrade the concentration intensity in a 

rate that depends on the particular applied enzyme. As the emitting nano-machine broadcasts 

the pheromone molecules in an isotropic fashion, the TTL feature could be useful to prevent 

known problems in this network topology. For example, TTL could be used to control the 

retransmission of the message by relay nano-machines, thus avoiding flooding in the network. 
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TTL could also be used to limit the intermediate nano-machines that can be used from the 

emitter to the receptor (hops in multi-hop path). 

Finally, it is also possible to use these enzymes for the evaluation of the 

transmitter-to-receiver nano-machine distance (or range). A further nano-machine with the 

enzyme applied to its emitted pheromones will reach the destination in a lower concentration 

than a closer emitting nano-machine. Knowing the applied enzyme to the emitted molecules 

and the molecular concentration at the emitter, it is possible to calculate the distance between 

emitter and receptor nano-machine. 

 

2.1.2 PROPAGATION  

Pheromones propagate in space by means of molecular diffusion. Molecular diffusion is a 

very complex mechanism deeply studied in entomology and botany, amongst other research 

fields. In the following, two simple models of pheromones diffusion in still air are exposed. 

These models are based on the Fick’s laws of diffusion [61] and particularized for pheromone 

diffusion. Fick’s first law of diffusion relates the diffusive flux to the molecular concentration, 

equation ( 1 ). Fick’s second law of diffusion predicts how molecular concentration changes 

with time, as it can be seen in equation ( 2 ). 

 

���, 	
 = −
∇U�r, t
 
( 1 ) 

����, 	
�	 = 
�∇U�r, t
 ( 2 ) 

 

where J is the diffusion flux in 
�������, D is the diffusion coefficient in 

���
� , U is the molecular 

concentration in  
������ and r and t are distance and time variables, respectively. 

The models that will be discussed are differentiated by the emitting scheme. In the first one, 

exposed in subsection i), instantaneous emission is treated. In subsection ii) the continuous 

emission of pheromone molecules is considered. These models are analyzed assuming a single 

emitting nano-machine and a single receptor (peer-to-peer communication) and without 
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analyzing possible interference with other molecular signals or remaining molecules in the 

medium. More advanced models on molecular diffusion are exposed on [62]. 

 

2.1.2.1 INSTANTANEOUS EMISSION 

Instantaneous emission of pheromones is usually takes place when alarm situations occur in 

nature. In this kind of emission, the totality of a fixed amount of pheromones is released into 

the medium (e.g., air or water) in a minimized time, abruptly increasing the molecular 

concentration around the emitting nano-machine. Then, due to molecular diffusion, these 

molecules will travel through the medium dispersing themselves randomly.  

The sudden release of a fixed amount of particles (instantaneous emission) is the most 

suitable modeling when pheromone diversity is used to increase the molecules that can be 

emitted by a single nano-machine. In this case, we are not interested in variation in molecular 

concentration (amplitude or frequency modulation) but in the type of emitted pheromones. 

Thus, there is no need to continuously fill the medium with molecules and the puff emission is 

the most suitable scenario. 

For a still air and no molecular interference scenario, the pheromone density U(r,t), in 

mol/cm3, can be obtained from Robert’s equation [7]: 

 

���, 	
 =  2�
�4�
	
��  !"�#$% 

( 3 ) 

 

where r is the distance to the emitting source in cm, t is the time from emission start, Q is 

the amount of released molecules and D is the diffusion constant in cm2/s, which depends on 

the propagation medium. 

In Fig. 4, equation ( 3 ) is used to illustrate the delay and maximum concentration detection 

in distances ranging from 2 cm to 2.6 cm from emitter. With the parameters used (Q=100,000 

mol and D=0.43 cm
2
/s) and assuming a receptor molecular threshold C=1,000 mol, the 

maximum radius is approximately 2.44 cm. Indeed, at 2.4 cm from the emitter the maximum 

concentration received is 1,065 mol/cm
3, and at 2.6 it is 837 mol/cm

3. Longer radius can be 
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reached by increasing the Q/C relation (molecules released / threshold molecules). As an 

example, the alarm pheromone of the ant Acanthomyops claviger has an effective radius of 10 

cm and signals take 2 minutes to reach this distance and 8 minutes to fade out [42]. Regarding 

the delay, it is necessary 1.7 seconds to reach 2.4 cm. 

 

2.1.2.2  CONTI NU OU S EM I SS IO N  

When pheromone diversity is used to deploy a molecular division multiple access (MDMA), 

the information is encoded in amplitude or frequency variation of pheromone molecular 

concentration. In amplitude or frequency molecular modulation, the continuous emission is 

needed. If the emission rate of molecules is constant Q(τ)=Q, for continuous emission in still 

air  the pheromones propagation is [7]: 

 

���, 	
 = �2
��  �&' ( �√4
	* 
( 4 ) 

 

where erfc is the complementary error function: 

 

FIG. 6.  PHEROMONAL DENSITY, ACCORDING TO DIFFUSION EQUATION ( 3 ), AS A FUNCTION OF 

TIME FOR DIFFERENT DISTANCES FROM EMITTER. THE DIFFUSION COEFFICIENT IS D=0.43 CM
2
/S, THE 

AMOUNT OF RELEASED MOLECULES IS Q=100,000 AND THE THRESHOLD OF THE MOLECULES IN 

RECEPTION IS C=1000 MOLECULES. 
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 �&'�+
 = 2√� ,  !ν�-ν.
/  

( 5 ) 

 

With the same Q/C relation (Q=100,000 and C=1,000), we can use equation ( 4 ) to visualize 

the transmission delay in continuous emission scheme. As it can be seen in Fig. 5, in this case 

greater distances can be achieved, but the time needed to reach the receiver is nonlinearly 

increased. As an example, to reach the threshold C at 1 cm it is needed 1 second, whereas to 

reach the same concentration at 10 cm it is needed around 95 seconds.  

 

So far, the presence of wind has not been considered. On the one hand, it can boost 

coverage or transmission speed, carrying pheromone molecules further on its flow. But on the 

other hand, wind implies turbulences that can produce distortion and molecule dispersion, 

affecting the signals. Moreover, subordinating the transmission to such external and varying 

factor is impractical, unless it is fixed or very regular (e.g., conduct the flux and generate air 

movement if needed).  

 

 

FIG. 7.  PHEROMONE MOLECULES DENSITY TROUGH TIME FOR DIFFERENT DISTANCES FROM 

EMITTER, ACCORDING TO DIFFUSION EQUATION ( 4 ). THE DIFFUSION COEFFICIENT IS CHOSEN D=0.43

CM
2
/S, THE AMOUNT OF RELEASED MOLECULES Q=100,000 AND THE THRESHOLD OF THE MOLECULES 

IN RECEPTION IS C=1000 MOLECULES. 
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2.1.3 DECODING AND RECEPTION  

As a result of the high molecular diversity of pheromones, natural receptor mechanisms are 

highly sensitive and selective. As shown in Fig. 6, pheromone antenna has three molecular 

filters [43]. The first one is the cuticle and has some gates, known as pore tubules, which allow 

pheromones to get inside the antenna core, namely, the sensillar lymph. After passing the 

cuticle, pheromones are encapsulated by odorant binding proteins (OBP). The OBP-ligand 

complex reaches the dendrite olfactory receptors, triggering an electrical signal. Hence, this 

antenna is able to convert from a pheromone to an electrical signal. Nano-machines equipped 

with these antennas will be able to understand the received electrical signal and react 

accordingly. 

 

2.1.4 MODEL  

The dispersion of pheromone molecules through the space has been largely studied, mostly 

in entomology field. Almost all of the models include in its formulation the medium turbulence 

as an inherent factor. This variable it might not be necessary in short range coverage (1 mm to 

10 cm), but it is essential for larger distances due to the attenuation and transmission speed of 

such method of communication. As an example, in Fig. 7 the attenuation of particles as a result 

of its diffusion is depicted as a function of distance and frequency:   

 

FIG. 8  ANTENNA STRUCTURE FOR PHEROMONE RECEPTION, ACCORDING TO [43]. 
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As it can be seen, even for a continuously emitting source (f=0Hz), at 50 micrometers the 

attenuation is -30dB. If we need to include frequency in our modulation scheme, the overall 

attenuation decreases up to 180dB for 5MHz. The graph is realized in [62] after the 

demonstration of the validity of the Diffusion Green’s Function. Firstly, the concentration is 

decomposed using Fourier orthonormal bases: 

'�+0, 	
 = , 123 �	
 !423 /0-536  ( 6 ) 

 

where 53 is the vector containing the spatial frequencies, one for every dimension of S, 

spanning the spatial frequency domain K. Substituting ck(t) into the Fick’s Second Law Partial 

Differential Equation, a solution for any spatial frequency component is found. 

123 �	
 = 123 �0
 !$823 8�% , 123 �0
 !$823 8�%
6  !423 /0-53  ( 7 ) 

123 �0
 = 1�2�
:;<= , '�+0, 0
>  423 /0-+0 ( 8 ) 

 

FIG. 9.  ATTENUATION IN A MOLECULAR DIFFUSION PROCESS AS A FUNCTION OF DISTANCE AND 

FREQUENCY, ACCORDING TO [62]. 
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Although the development of the previous model can give expressions for short range 

molecular communication (e.g., ion signaling), for long range molecular communication the 

presence of medium turbulence (e.g., wind) cannot be neglected. Among all the models, the 

Sutton model and the Gaussian Plume model are the most common models applied to 

pheromone diffusion [22]. As focused on atmospheric surface layer, none of the mentioned 

models consider other forces like Coriolis, geostrophic winds and molecular viscosity. 

 

2.1.4.1  SU TTO N M OD EL :  

Sutton developed this model in 1953, being first applied to pheromones by Bossert and 

Wilson in 1963. The model describes the pheromone concentration C for every point in the 

tridimensional space xyz. 

?�+, @, A
 = 2��?B?C�+�!:  D!/EF�GB�HI�JC�HK�LM
 ( 9 ) 

 

where Q is the release rate, U is the mean wind speed (aligned with x axis), Cy and Cz are the 

respective horizontal and vertical diffusion coefficients, and n is a parameter (0 < n < 1) 

dependent on the vertical profile of wind velocity. 

The dispersion coefficients are functions of the atmospheric turbulence, terrain roughness, 

and vertical windspeed profile. In [71], it is suggested to use { Cy = 0.4 cm1/8, Cz = 0.2 cm1/8, n = 

0.25 } for light winds and neutral atmospheric conditions. 

For an elevated source, Sutton suggests the following equation: 

?�+, @, A, ℎ
 = � ·  !B�HI�/�FE
�?B?C�+�!: P !�C!Q
�HK�/�FE +  !�CJQ
�HK�/�FE S ( 10 ) 

 

where h is the height of the source above ground. 
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2.1.4.2  GAU S SIA N PLU ME MO DE L:  

In the Gaussian plume model all variables are defined as in the Sutton model, except that 

the horizontal and vertical dispersion coefficients (σy, σz) are functions of the downwind 

distance x, and a new parameter α is defined as a constant (0< α <1) that depends upon the 

degree of absorption of material to the ground. 

?�+, @, A, ℎ
 = � ·  !B��TI�
2�UBUC� P !�C!Q
��TI� + V ·  !�CJQ
��TK� S ( 11 ) 

 

As it can be seen in Fig. 8 and Fig. 9, this model describes reasonably well the deposition of 

particles taking into account turbulence in the medium. Moreover, for more advanced models, 

section 2.2.4 offers some developments that can be applied to pheromonal diffusion. 

 

  

 

FIG. 10  GAUSSIAN PLUME, ACCORDING TO 

[11] 

 

 

FIG. 11  ACTIVE SPACE IN WHICH 

PHEROMONE CONCENTRATION IS ABOVE A 

BEHAVIORAL THRESHOLD, INDICATIONG THE 

PROBABILITY OF AN INSECT REACHING THE 

SOURCE [10] 
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2.2 POLLEN AND SPORES  

Pollen and spores are reproductive structures adapted for dispersal (pollen in plants and 

spores in fungi). Although bigger than pheromones (smallest pollen grain, from Myosotis, is 

6μm in diameter and spore from Aspergillus is 2μm to 6μm), they can offer some advantages 

presented in the following sections. 

 

2.2.1 ENCODING AND EMISSION  

Like pheromones, pollen and spores can offer the particle diversity propriety; there exist 

different packets (e.g., types of particles) that can only be understood by certain receivers. This 

feature can aid the encoding protocol (enlarging the possible alphabet) or improve the routing 

(e.g., identifying each channel by different particles usage). 

However, in the pollen case the possibility of encoding DNA in each molecule is a great 

feature that can widely expand the symbols to transmit and improve the channel throughput. 

As both pollen and spores are vegetal reproduction methods, they enclose the parent DNA in 

its structure. DNA chain decoding can be done in the receptor node in order to obtain the 

information embedded in it. Pollen manipulation is a well studied technique, widely covered in 

the literature such as in [79] and [19]. 

 

2.2.2 PROPAGATION  

As far as the authors know, there is not any theoretical mathematical model of pollen or 

spore propagation. Fick’s laws and diffusion models studied in pheromones cannot be applied 

in the case of pollen and spores. In pollen and spores case, the diffused particles have bigger 

dimensions, and some previously obviated factors have determinant effects in this new 

scenario. Although pollen and spores dispersion has been largely studied in botanical and 

mycological fields, only empirical research can be found. The lack of a solid theoretical model 

for these particles dispersion can be attained to the complexity and the big number of factors 

affecting the deposition processes. 

The propagation of pollen and spores has been studied based on empirical measures and its 

fitting to approximate expressions. The first equation was exposed in [30], where the amount 

p of pollen deposition was calculated as a function of distance as shown in ( 12 ): 
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W��
 = �X !Y"
�  ( 12 ) 

 

where Q’ is the amount of pollen released to the medium, r is the distance from the source 

and b is a constant indicating the proportion of pollen per distance unit (b≥0). 

To include the effects of turbulence, the previous equation is modified in [4]: 

 

W��
 =  �X !Y"��!�

��J�   ( 13 ) 

 

where m is a turbulence parameter with m=0.62 for minimum turbulence and m=0.88 for 

maximum turbulence [4]. 

An improved version of equation ( 13 ) is exposed in [28], powering the exponential to a 

Gaussian function V + Z × \�]: _, `
. This modification provides a more accurate match to 

empirical measures. 

 

W��, θ
 = �X a !Y×";
�� bcJd×e�f:g,�


 ( 14 ) 

 

where d and c are a generalization of the parameter m, w is the mean direction of the wind 

and s its standard deviation. α and β are parameters of the normal distribution function. 

Pollen release of Lolium species has been empirically measured in [28], and modeled using 

equation ( 14 ). Anthesis (the period during which a flower is fully open and functional) is 

divided in four stages (early, mid1, mid2, late). In Fig. 10 pollen distribution in mid1 is 

represented with the following parameters: w=121.01º, s=62.27º, Q’=399.60 mol, b=0.2800 

m
-0.819, c=0.819, d=0.607, α=1, β=-35.860.  
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An advantage of pollen propagation is that both pollen and spores are more robust to 

chemical reactions than pheromones. External chemical compounds in the medium will not 

modify the structure of pollen particles, whereas could provoke a chemical reaction in 

pheromones molecules. 

 

2.2.3 DECODING AND RECEPTION  

The main advantage of pollen or spores utilization is the possibility of DNA encoding. The 

most used technique to extract the DNA strands is hybridization, and it could be used in our 

receptor to decode the information enclosed in the DNA sequence. In hybridization process, 

the received molecules are heated to separate the complementary strands (thus splitting the 

DNA sequence). The breakage is possible because the hydrogen bonds that join the DNA base 

strands become thermodynamically unfavorable. After the complementary strand breakage, 

the nucleotides (structural units of RNA and DNA) will bind to their complement. If our receiver 

has different single stranded binding candidates, the received message will consist of 

successful DNA double strands. 

 

 

 

 

FIG. 12.  POLLEN DISTRIBUTION IN FIRST HALF OF MID ANTHESIS (LOG COUNT). 
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2.2.4 MODEL  

In the transmission using pollen or spores, the key factor is the wind dispersal model. The 

presence of a turbulent medium (e.g., wind, fluid medium) is fundamental for the success of 

this communication technique. 

The basis of several mechanical models of airborne particles is the ballistic equation. Using 

this equation, the average distance d traveled by a released particle is [55]: 

 

- = h·wvt  ( 15 ) 

 

where h is the height where the particle is released, w is the horizontal wind velocity and vt 

is the terminal velocity of the particle. 

Although equation ( 15 )  is a good starting point for particles with a terminal velocity  higher 

than 1m/s, in pollen and spores case the upward movement caused by vertical turbulence is 

more important than falling caused by gravity. For this, the ballistic equation is not enough to 

predict the dispersal distance [38]. 

As [38] states, pollen and spores models can be grouped following two main approaches: 

Eulerian and Lagrangian. The Eulerian modeling approach focuses on the density of the particle 

pattern and, thus, explains the dispersal of an individual particle by modeling the probability of 

finding it in a given area. The Lagrangian approach models the movement of the particle itself, 

typically by simulating trajectories for dispersing particles. 

From the communication perspective, Lagrangian models offer a better accuracy in 

transmission parameters. Although the receptor would be able to sense the concentration of 

pollen/spores, the evolution of the seed will describe as well the evolution of the transmission 

item if the packet is assigned to a single seed (pollen/spore). Parameters like attenuation, 

distortion or scattering will be embedded in the Lagrangian models, allowing further research 

to clearly identifying each factor contribution. 
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In most of the studied models, the presence of wind is a key factor on the equations. In [36], 

the displacement of individual pollen grains is calculated by solving horizontal and vertical air 

velocity components. The joint stochastic equations used are: 

 

dl = mnd	 + ondξn      d+ = ld	 ( 16 ) 

d_ = mgd	 + ogdξg       dA = �_ − p�
d	 ( 17 ) 

 

where u and w are the horizontal and vertical air velocity, au, bu, aw, and bw are the Langevin 

coefficients [77] and dξg and dξn are random numbers drawn from Gaussian distributions 

with mean zero and variance dt. 

One of the outputs of this model in [36] is the pollen concentration using the following 

equation: 

 

?�q, r
 = p� · 1st u v:�q, r
p�q, r

wx

:y�
 ( 18 ) 

 

where Vs is the volume of the source, NP is the number of trajectories, and Tn is the 

residence time of the particle n in the grid division of volume V(i,j). 

Other model proposed in [69], strats from the following general equation for dispersal 

trajectory (x1=x, x2=y, x3=z) : 

 

+z�	 + ∆	
 = +z�	
 + , �lz − |%}z�
-	          q = 1,2,3%J∆%
%  ( 19 ) 

 

where ui is the instantaneous wind velocity in direction xi, ∆t is the discrete simulation time 

interval, vt is the seed terminal velocity, and δi3 is 1 for i=3 and 0 otherwise. 
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From equation ( 19 ) several degrees of model complexity can be developed, such as 

stochastic models or Markov chain models. The simplest model is the deterministic, which for 

distances < 15 m is a good approximation. The deterministic model assumes that the dispersal 

distance depends only on the height the pollen/spore is released and the wind it experiences 

during this time. The mean horizontal wind velocity U is calculated in the following form: 

 

��A
 = l∗5 ln (A − -A� * ( 20 ) 

 

where u* is the friction velocity, z is the height from the ground surface, d is the zero-plane 

displacement height, z0 is the momentum roughness length, and k=0.4 is the Von Karman 

constant. 

The dispersal distance D can be calculated, then, using the following equation: 

 


 = l∗5 · |% ���� − -
 ln (�� − - · A� * + A�� ( 21 ) 
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2.3 LIGHT TRANSDUCTION  

For light transduction we refer to the conversion between short range molecular 

information (e.g., calcium signaling) and optical signals. Future coexistence between nano and 

micro networks is unavoidable and their interconnection is an open challenging issue. 

Proposed techniques in this section will enable the interfaces of nano and micro devices, using 

optical signal as common carrier. The usage of optical conversion techniques will also enable 

gateways between several isolated short-range nano-networks. In this case, molecular signals 

are converted to optical waves, which are propagated in optical domain and converted back 

from optical to molecular information. The architecture’s scheme is shown in Fig. 11. 

Light transduction offers exciting features. For instance, it has an extremely high velocity 

compared to molecular signals. In addition to this, modeling of optical signals is extensively 

studied [6],[29] (e.g., in terms of attenuation, noise sources, bandwidth, etc). Inorganic 

components such as amplifiers or filers could be used in this pathway if needed. 

 

2.3.1 ENCODING AND EMISSION  

Two novel solutions are proposed to allow the conversion from the molecular to the optical 

domain, namely fluorescent proteins and Molecular Organic Light Emitting Diode (MOLED’s). 

2.3.1.1  FLU OR E SCE NT PR OT EIN S  

Fluorescent proteins are biological molecules composed of aminoacids that fluoresce at 

certain wavelength when exposed to different wavelengths. These molecules have been 

 

FIG. 13.  LIGHT TRANSDUCTION TECHNIQUE SCHEME. 
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developed since the cloning of the green fluorescent protein (GFP) from the jellyfish Aequoria 

victoria. Nowadays we can use from blue to red wavelengths (Fig. 12), each of them with 

different quantum yields (efficiency) and other parameters, like pH dependence. For green, 

yellow and red proteins the quantum yield (that measures the photonic efficiency) is above 

60%, in cyan is 40% and blue is as low as 25% [60]. 

 

Sensing the presence of these proteins (exciting them in the right wavelength), is a method 

currently in use for labeling molecules in biomedical research. Regarding telecommunications, 

it could also be used as an interface between a short-range nano-network and a long-range 

optical gateway. As it is shown in Fig. 11, the molecular to optical component M→O 

transceiver would be required to sense the presence at the endpoint node EP1 of the 

molecular signal. The M→O transceiver would emit a laser signal of approximately 10mW, 

retrieving the molecular information in the endpoint node of the short-range molecular 

network. Although the size of the transceiver is currently in macro domain, research on both 

nano-lasers [2], [46] and fluorescent proteins is currently in progress. This research is 

envisaged to optimize the fluorescent proteins properties (e.g., quantum yield, power 

requirement) to fulfill communications expectations. For example, in [14] a new fluorescent 

protein with novel characteristics is designed and tested.  

 

FIG. 14.  SPECTRAL EMISSION OF BLUE, CYAN, GREEN,  YELLOW AND RED FLUORESCENT PROTEINS 

(LEFT TO RIGHT CURVES IN THE FIGURE), ACCORDING TO [60]. 
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FIG. 15.  CALCIUM IONS DETECTION USING FLUORESCENT PROTEINS, ACCORDING TO [51] 
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Of a particular interest is [51], where a fluorescent protein is described to detect presence of 

calcium ions. As calcium signaling is one of proposed methods for short-range communication, 

it is a clear interface to convert information from the Ca2+ to optical signaling. The sensing 

system is shown in Fig. 13. When blue or cyan fluorescent proteins (BFP/CFP) are excited, a 

light emission will be produced at 440nm (BFP) or 480nm (CFP) if there are no calcium ions and 

at 510nm (GFP) or 535 nm (YFP) if there is Ca2+. GFP and YFP stand for green and yellow 

fluorescent protein, respectively. FRET stands for Förster resonance energy transfer, the 

mechanism of energy transfer between donor and acceptor protein. 

 

2.3.1.2  MOLED’S  

Molecular Organic Light Emitting Diodes or MOLED’s are semi-conductor structures in the 

nano-scale that can be used to convert molecular signals into optical information. One of the 

main consequences of their tiny dimensions is that they have properties between bulk 

semiconductors and discrete molecules [9]. 

Although MOLEDs are designed downscaling organic LED’s and not following a bio-inspired 

approach, methods for conjugating them to biomolecules are described in [27] using 

antibodies or peptides. Techniques to enclose these components in a biological shield and 

attach them into the target molecules have been already tested in medical research. This 

procedure offers some advantages to fluorescent proteins. Among others, MOLEDs have 

higher resistance to biological agents, much longer life and higher efficiency when compared 

with fluorescent proteins. 
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However, MOLED’s also present some drawbacks. As shown in Fig. 14, MOLED’s have 

greater decay times than fluorescent molecules. The time between the moment at which 

excitation occurs and the moment at which fluorescent proteins reaches 1/e of relative 

intensity is 2ns. However, the fluorescence on MOLED’s probes last longer, reaching the same 

value at 20ns after excitation. This feature is useful in medical cell imaging, but signifies a 

disadvantage in the communication field. With enlarged decay time, transmission rate would 

be lower. Another drawback is the toxicity presented by MOLED’s [17], making them 

inconceivable for medical in-vivo applications. In networks without health risk, it is still a 

feasible option. 

 

Although MOLED components currently present the drawbacks mentioned above, its 

properties could be improved as research on these elements is being in progress. For instance, 

a novel MOLED using iridium complex phosphor is described in [78]. In comparison with 

previous MOLEDs and POLEDs (polymer OLED’s), this new nano-component has higher 

efficiency and narrower spectrum width (the emitted power is more concentrated to the 

expected emission wavelength). 

 

  

 

FIG. 16.  A COMPARISON OF THE EXCITED STATE DECAY CURVES BETWEEN MOLEDS (QUANTUM 

DOTS) AND COMMON ORGANIC DYES, ACCORDING TO [27]. 
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2.3.2 PROPAGATION  

In light transduction scenario, the signal is propagated as an electromagnetic wave. As 

explained in [64], we can deduce the received power from Maxwell’s equations: 

 

�� = ������ ( �4�-*�
 ( 22 ) 

 

where PT is the transmitted power, GT is the antenna gain in emission, GR is the antenna gain 

in reception, λ is the frequency wavelength and d is the distance between transmitter and 

receptor. 

If we are interested in the range of the free space optical communications we can transform 

equation ( 22 ) to: 

 

- = �4� ����� ���� ( 23 ) 

 

Thus, if we consider an antenna gain of 3dB, we expect the received power -20dB of the 

emitted and a green wavelength (510nm), the achievable distance will be: 

 

- = 510��4� � ��10!��/���� · 2 · 2 = 0.812�� ( 24 ) 

 

As it is shown, this is far from our communication expectations. Nano-machines with higher 

antenna gain and better directivity could be designed to overcome the short optical range. 

Another possible solution is the usage of semiconductor mixers to convert the optical 

frequencies to MHz instead of hundreds of GHz, hence greatly increasing maximum distance 

propagation. 
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Additionally, optical signal could be guided by optical fibers (turning the option to wired 

scheme) and reach much further distances, by reducing attenuation and scattering. The 

coverage achievable by this method is enormous compared to other techniques. 

 

2.3.3 DECODING AND RECEPTION  

Methods to recover the signal at the nano-scale from optical modulation are fundamental in 

gathering the isolated nano-networks. Once the molecular signal from the emitting 

nano-network has been translated to optical information, the receiver nano-network requires 

a technique to convert the signal back to molecular domain. To implement this conversion, 

molecular wire and molecular switch are proposed. In these techniques, optical waves are 

converted to guided electrons, constituting an electromagnetic signal. This would require a 

terminal node with the capability of receiving electrical voltage information, or a pre-converter 

to molecular signal should be placed before the node. This electron to molecular information 

conversion is done through synapse processes. 

 

2.3.3.1  MOL ECU LAR  W IR E  

The conversion of incoming light signal to molecular information could be developed taking 

a system inspired in plants photosynthesis methods as a reference. 

One possible option is the structure presented in [76], where a molecular wire is described. 

The proposed wire is 5 molecules length with an optical input. A boron-dipyrromethene dye is 

used to absorb light, with 62% absorbed light at 485 nm. The free base porphyrin used for 

output molecule could be also an option in transmitting part (as an alternative for fluorescent 

proteins and MOLED’s). 

Another possible option is the adaptation of light conversion in solar panels, with silicon 

structure or organic dyes. In [41] and [5], a dye-sensitized ZnO nanowire structure is proposed 

to transform incoming sun light to electrical energy. After photon capture, electrons are 

conducted through the wires, which are 16nm in diameter. As it is shown in Fig. 15, the 

nanowire array is the central part of the solar cell, guiding the photons from input light to the 

platinated cathode, where an electron is released. The same technique could be applied to 

capture our light incoming signal. 
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A molecular switch is a molecule that can be reversibly shifted between two or more stable 

states. A subset of molecular switches actuates 

observation of this phenomenon is described in 

The light-driven molecular 

endpoint. As seen in Fig. 16

provide a physical path when rece

absence of light. Hence, the physical structure can be sensed by detecting whether it is 

possible a current intensity through the switch.

The molecular switch could implement the adapted filte

signal. For example, in a pulse amplitude modulation (PAM), the sensing of the physical 
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ch is a molecule that can be reversibly shifted between two or more stable 

states. A subset of molecular switches actuates in response of light variation. 

observation of this phenomenon is described in [13].  

driven molecular switch implies the physical modification 

16, the usage of a macromolecule at the endpoint node would 

provide a physical path when receiving light, while would be in an open circuit configuration in 

absence of light. Hence, the physical structure can be sensed by detecting whether it is 

possible a current intensity through the switch. 

The molecular switch could implement the adapted filter to decode the incoming optical 

signal. For example, in a pulse amplitude modulation (PAM), the sensing of the physical 

structure would give a different logical signal depending on the incoming opt

e.g., the PAM in high level), there would be some current intensity in the 

switch, while there would be no possible current for light absence (e.g., PAM in low

ANOWIRE SOLAR CELL STRUCTURE, DESCRIBED AT [41]. 
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ch is a molecule that can be reversibly shifted between two or more stable 

response of light variation. The molecular 

 of nanonetwork 

, the usage of a macromolecule at the endpoint node would 

iving light, while would be in an open circuit configuration in 

absence of light. Hence, the physical structure can be sensed by detecting whether it is 

r to decode the incoming optical 

signal. For example, in a pulse amplitude modulation (PAM), the sensing of the physical 

structure would give a different logical signal depending on the incoming optical signal. For 

there would be some current intensity in the 

e.g., PAM in low). 
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So far, we have covered the wireless options. In the following section we cover the wired 

ones. Each application peculiarity will force the usage of either wireless or wired techniques, 

depending on the required features. 

 

2.3.4  MOD EL  

Light transduction is one of the most promising techniques in the interconnection of 

bio-inspired nano-networks and micro-networks based in silicon semiconductor. The optical 

interfaces in micro domain have already been developed (using light emitting diodes in micro 

dimensions). Hence, the optical interfaces to transduct a molecular signal to an optical wave in 

the nano-domain would enable the usage of light as the common signal understood by nano 

and micro devices. 

 

2.3.4.1  MOL ECU LAR  T O OP TIC A L IN TER FAC E S  

Two techniques have been proposed to convert molecular signal to optical information, 

based on the current research in biomedical cell imaging: fluorescent proteins and 

bio-compatible quantum dots. Although both of them are capable of implementing the 

transductor, the most suitable technique for molecular to optical transduction is the 

bio-compatible nanocrystals, or luminescent quantum dots. These quantum dots offer better 

optical properties and minimum undesired reactions to other biological components. Among 

other advantages, quantum dots have higher quantum yields (conversion efficiency), higher 

photostability and large molar extinction coefficients. 

 

 

FIG. 18.  LEFT: PHYSICAL MOLECULAR STRUCTURE ALTERATION IN FRONT OF LIGHT PRESENCE.

RIGHT: LOV2 MACROMOLECULE IDENTIFIED AS 1JNU IN RCSB PROTEIN DATABANK ([74]), AS 

REFERENCED IN [13]. 
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The main problem of fluorescent proteins utilization as a nano-networks interface is the 

photo-bleaching. Photobleaching is the photochemical destruction of the fluorophore, the 

molecular component which causes a molecule to be fluorescent. This phenomenon normally 

lasts for a single measurement, or signal conversion in our case. For instance, in [72] a Green 

Fluorescent Protein is measured to have a 40% bleach depth after 200µs. For this, it would be 

required the fluophores creation or reconstruction in transductor nano-machine. Thus, the 

complexity of the fluorescent proteins implementation will be much higher than the usage of 

bio-adapted nanocrystals. 

The nanocrystals quantum dots are usually a two layer semiconductor structure, namely, the 

core and the shell. Additionally, the shell can be conjugated with biological components that 

will make the compound able to detect certain biomolecules (e.g., tumor cells) [27], [26]. The 

main drawback is the cytotoxicity that quantum dots might present in medical applications. 

However, as stated in [50], in lower concentrations they are not completely innocuous, but 

they can accomplish their task without major interference with other biological processes. 

The schematic of the conversion between molecular and optical information is shown in Fig. 

17. Molecular signal m(t) reaches the bioadapter components around the nanocrystal. Then, 

the nanocrystal will be able to transmit an optical wave depending whether the presence of 

the desired molecular signal is detected or not. The emitted optical signal will have undesired 

 

FIG. 19 MOLECULAR TO OPTICAL CONVERSION SCHEME 
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frequencies that shall be filtered in the transceptor. Finally, the filtered signal can be 

transported in an optical fiber to reach extremely high distances. 

In the detection of molecular signal by the nanocrystal, two methods can be applied: FRET 

and BRET. 

In the Förster Resonance Energy Transfer (FRET) case, the nanocrystal is excited by an 

external optical signal (around 10mW). If the presence of target cells is detected, the 

nanocrystal will emit an optical signal in another wavelength. This mechanism is the same that 

fluorescent molecules use. The FRET mechanism has a donor and an acceptor. The donor is a 

light-receiving component (e.g., Cyan Fluorescent Protein) that excites the acceptor (e.g., CdSe 

quantum dot, Yellow Fluorescent Protein). The FRET efficiency is measured by the following 

equation [75]: 

 

� = 1
1 + � ����� ( 25 ) 

 

where µ is the FRET efficiency, r is the distance between donor and acceptor and R0 is 

Förster distance. This distance is is typically a few nanometres, depending on the donor and 

acceptor molecule and their relative orientation. As it can be seen, the distance between 

donor and acceptor is crucial in FRET efficiency. 

Bioluminescence Resonance Energy Transfer (BRET) is a current research topic that could 

highly improve the features of molecular to optical conversion in our designed transceivers. In 

BRET conversion no external light is needed, as the donor transmits energy to the acceptor by 

non-radiative means. BRET transfer has been reported between fluorescent proteins [16] and 

using nanocrystal. In [65], a BRET mechanism in CdSe/ZnS nanocrystal is studied. A mutation of 

the R. reniformis luciferase (Luc8) is used as a biological component that triggers quantum dot 

emission. The resulting emitted optical signal has a component in 480nm corresponding to 

Luc8, but a bigger peaks are found in wavelength from 600 nm to 800 nm (depending on the 

used nanocrystal). 
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Quantum dot emitters based on BRET transmission is the most promising technique for two 

main reasons. First of all, the optical wave is transmitted only when there is the molecular 

signal, instead of sensing the molecular signal with an external laser. Although it would imply 

an asynchronous behavior (as the transceiver do not know when the incoming signal will 

arrive), the channel occupation can be dramatically reduced (as the periodic sensing from the 

transceiver disappear) and there is no need of molecular signal buffering (that would be 

necessary in FRET while waiting for incoming sensing signal). Secondly, the power required to 

achieve a BRET transmission is much lower than the power needed for FRET. As an example, in 

[68] it is compared the energy needed via BRET versus external excitation of 1 µM of the 

conjugated quantum dot under 1cm of tissue (in 1µL). 

 

����� = φ × � × ? × p × ℎν = φ × � × p × '� × ℎ  ( 26 ) 

 

where φ is the flux of exciting photons in phot/s/mol, n is the number of luciferase 

molecules per quantum dot, C is the concentration of quantum dots in M/l, V is the volume in 

litres, and hν is the energy of a photon. 

In our case, under saturating conditions, 3.6x1010 photons of λ=655nm will be produced per 

second. The total energy required for this emission comes from the conjugated Luc8’s, at 

λ=480nm. Applying equation ( 26 ) to our case (1 µM of quantum dot conjugates, 1 µL in 

volume), we obtain: 

 

����� = 1.5 · 10�� × 6 × 1 · 10!� × 1 · 10!� × 3 · 10�
480 · 10!� × 6.6 · 10!�# = 37nW ( 27 ) 

 

An to produce the same quantum dot emission by external excitation: 

 

����� = φ′� × ¡ × 1 × ℎν ( 28 ) 
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where φ’ is the expected flux of photons in phot/s, µ is the quantum yield (efficiency) of the 

nanocrystals, K is the absorption (related to extinction coefficient), A is the attenuation of the 

tissue, and hν is the energy of a photon. 

To have the same amount of photons than in the BRET case, the energy in FRET case would 

be: 

 

����� = 3.6 · 10��
0.83 × 0.5 × 2.6 · 10� × 3 · 10�

480 · 10!� × 6.6 · 10!�# = 9.3 W ( 29 ) 

 

 

2.3.4.2  OPTI CAL TO MO L ECU LA R  INT ER FA CE S  

The most promising technique to convert optical information to a molecular signal is the 

usage of optical molecular switches. Instead of obtaining electrons from the received photons 

(as it is the case of molecular wires, dyes in photo devices and advanced solar cells), the 

structure of molecular switches changes in function of the received light. Depending on the 

absence or presence of the optical signal, the molecular circuit will present a different 

structure. The implementation of molecular switches is more direct than the other cited 

options (e.g., molecular wire) and can be mapped in micro semiconductor terms. As it can be 

seen in Fig. 18, the optical molecular switch could be the key component in the receptor 

nanomachine. In the figure, the electrical (or molecular) signal xO(t) would have V amplitude or 

null amplitude depending on the incoming optical signal xi(t).  

 

 

FIG. 20 ELECTRICAL MODEL OF A POSSIBLE IMPLEMENTATION OF AN OPTICAL TO MOLECULAR 

SIGNAL INTERFACE USING AN OPTICAL MOLECULAR SWITCH AS A TRANSDUCER. 
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The current in the optical molecular switch can be, according to [80], calculated with the 

Laundauer-Bütiker equation: 

 

£�p
 = �� , ���
v��, p
-� ( 30 ) 

�� = 2 �
ℎ  ( 31 ) 

 

where G0 is the quantum unit of conductande, h is the Plank’s constant, n(E) is the 

distribution function, and T(E,V) is the transmission coefficient for electrons with energy E for 

voltage V. The distribution function can be expressed using the following equation: 

 

���
 =  &�� − �¤
 − &�� − ��
 ( 32 ) 

 

where f is the Fermi function, µL is the electrochemical potential of the left electrode and µR 

is the electrochemical potential of the right electrode. 

Using equations ( 30 )-( 32 ) the current intensity through the molecular switch can be 

visualized for different voltage in Fig. 19. In the figure, the red line is the current in open-ring 

configuration, whereas the black line is the current in closed-ring structure. As it can be seen in 

the figure, for 1 Volt applied in the molecular switch, the current for the different structure 

(depending on whether the optical signal is irradiating the switch or not) is separated by 

several micro-amperes. 
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FIG. 21 CURRENT – VOLTAGE CURVES IN THE MOLECULAR SWITCH, FOR 3 DIFFERENT 

STRUCTURES OF MOLECULAR CONTACTS (A=HOLLOW, B=TOP, C=BRIDGE).  
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3 WIRED  OPTIONS 

Wired molecular communication can be realized by means of a physical link for signal 

propagation. In the following subsections, two different types of molecular physical links are 

proposed, namely, axons (explained in subsection A) and capillaries (explained in subsection 

B). 

 

3.1 AXONS AND ACTION POTENTIAL  

The nerve fibers that animal brain uses to order muscle movements, the intra-body 

transport of external sensorial stimulus and the neural communication in the animal brain are 

the underlying concepts on which this technique is inspired.  Axons, the slender projection of 

the neuron, offer promising features for nano-communication. 

 

3.1.1  ENCO DIN G AN D  EMIS SI ON  

The signal travelling along an axon is an electrical impulse, namely action potential. In 

encoding and emission stage, a method to transform the molecular information coming from 

short range molecular networks (e.g., calcium ions) to action potential electrical signal is 

clearly needed. The conversion in biological world is done by synapse processes, most of them 

chemical synapses, through specialized junctions that communicate nerve or neuronal cells 

with non-neuronal cells. In the human brain there are approximately 1 billion (109) synapses 

for each mm3 [3]. 

 

3.1.2  PROP AG ATIO N  

As it has been previously mentioned, the signal traveling along the axon is the action 

potential. This unidirectional signal is an electrical pulse around 80mV in amplitude, rising from 

a rest potential around -40mV. Amplitude, rest potential and recovery time vary slightly 

between different species. For instance, in Fig. 20 the action potential of a giant squid is 

represented, according to [56]. Its rest potential is -45mV and the action potential spike 

reaches +40mV. The pulse lasts for 0.5ms approx., and the recovery time is 2ms approx. After 

action potential peak, cells constituting the axon re-equilibrate the molecular electrical charge 

by opening certain ion gates.  
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Communication through action potential on axons can provide several advantages to our 

system: 

i) Long length. Axon length is large, in nano-scale terms. According to [23], axons can be 

up to 1 meter, as it is the case of the human nerve that goes from the spinal cord down to the 

toe. Moreover, the connection of several neurons is already implemented in biological domain 

using the synapse process. This process is a chemical interaction between the neuron dendrite 

and axons terminal (see Fig. 21 for neuron structure). Despite of the speed reduction that 

would imply several synapse processes (as it is the bottleneck process in neuronal 

communication), the distance coverage that could be achieved should be taken into account. 

ii) High signal speed. As stated in [35], this is determined by axon radius and the presence 

of myelin sheath. In myelinated largest axons, the action potential is able to reach up to 90 

m/s. Myelin is composed of 80 percent lipid and 20 percent protein and turns axons in a type 

of coaxial cable. Myelin wraps around the axon and very efficiently insulates it, improving 

energy usage.  

iii) Very low attenuation. The attenuation is very low in animal nerve axon. As it is stated 

in [23], the neural impulse does not weaken while travelling along the axon. 

iv) Electrical signal. Action potential is an electric signal, thus enabling semiconductor 

receivers and transmitters to be attached directly to the axons. This would constitute an 

interconnection path between different nanonetworking techniques. Furthermore, Ranvier 

nodes could be used as plug interface. Ranvier nodes are the spaces between the myelin 

 

FIG. 22.  ACTION POTENTIAL WAVEFORM OF A GIANT SQUID, ACCORDING TO [56]. 
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sheaths, approximately 1 micrometer in length. At nodes of Ranvier, the axonal membrane is 

uninsulated and therefore capable of generating electrical activity (see Fig. 21 for neuron 

structure). 

 

3.1.3  DECO DIN G  A ND  RECEP TION  

The reception of action potential can be conformed back to molecular information by 

synaptic processes. In neuronal communication, the action potential is received through the 

dendrites, and can be passed to other neurons by the axon terminals. The pre-synaptic part 

stores several chemical molecules, namely neuro-transmitters, which are released when action 

potential is received. In the post-synaptic part, these neuro-transmitters will be received 

through specialized junctions and will trigger a new action potential (or would be converted 

into a different molecular signal for our nano-machine). 

The conversion between the molecular signal and the action potential impulse is the slowest 

of all the processes involved in neuronal communications. The theoretical bandwidth limit of a 

single axon is around 333 bps, as only one action potential peak is able to be transmitted each 

3ms (0.5 ms of action potential pulse, plus 2.5 ms of cell recovering period). 

 

3.1.4  MOD EL  

As stated in the previous section, the slowest stage in long range communication using 

axons as a physical support is the conversion between the molecular signal and the electrical 

impulse of action potential (the signal traveling along the axon). Hence, this process will be the 

target of the axon modeling. 

  

FIG. 23.  TOP: STRUCTURE OF A NEURON. BOTTOM: AXONS POSSIBLE USE TO TRANSMIT ACTION 

POTENTIAL IMPULSES BETWEEN NANONETWORKS NODES. 
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The conversion between molecular and electrical information is realized through the 

chemical synapse process. As it is shown in Fig. 22, the conversion from electrical action 

potential (A.P.) to a molecular signal is realized in the extreme of the neuron, namely, the axon 

terminal, where action potential triggers the release of molecular neurotransmitters (m.T.) in a 

region called pre-synapse (Pre.Syn.). The released neurotransmitters are able to be bound in 

the post-synapse receptors, where they can be converted to other molecular signals or trigger 

another action potential. In Fig. 23 the process to convert molecular signal to action potential 

is depicted. Through a certain ion gates, the adequate molecules can enter to the dendrites of 

next neuron, triggering the A.P. electrical impulse that travels through its axon. 

For the modeling of the synapse we will discuss the following models: 

• HODS model [47]. Focusing on pre-synapse. This model is an improvement of the 

following previously defined models: 

o Dynamic synapse model [44]. This model additively models presynaptic 

effects on the postsynaptic response. 

o Facilitation-depression model [20]. This model is a fundamental 

multiplicative model in which the multiplicative product of presynaptic 

activities is applied to affect the postsynapse. 

• Kinetic Binding model [18]. Focusing on post-synapse. This model allows a realistic 

biophysical representation, based on the post-synaptic receptor binding. 

• Information Theory model [48]. This model describes synaptic transmission in an 

information-theoretic perspective. 

 

 

 

FIG. 24 SYNAPSE PROCESS TO CONVERT THE 

ACTION POTENTIAL TO A MOLECULAR SIGNAL. 

 

FIG. 25 SYNAPSE PROCESS TO CONVERT THE 

MOLECULAR SIGNAL TO ACTION POTENTIAL. 

 

m.T.

axon

Pre.Syn Post.Syn

A.P. A.P.

axon

A.P.



Molecular Communication Options for Long Range Nanonetworks

 

3.1.4.1  HODS  MOD E L  

The HODS model stands for nonlinear High

the neurotransmitters in pre-

is shown in Fig. 24, the vesicle pools 

and its position in the membrane:

NI : number of vesicles in the 

recieved, the neurotransmitters in this pool are released to the cleft 

pre-sinaptical and post-sinaptical part).

NP : number of vesicles in 

release pool when the neurotransmitters are released to the cleft.

NR : number of vesicles in the 

prepared release pool. 

NU : the used pool collects used neurotransmitters after synaptical process, to be re

future sinapse processes. 

The constant parameters 

pools (Fig. 24) and µI(t) is the nonstationary release rate which is a function of input pulses 

∑ }�	 − 	:
: . The probability of transfer between pools is considered a binomial variable 

probability, converging to a Poisson distribution for a high number of vesicles in each pool.  In 

steady state, the four pools are described in 

 

FIG. 26 HODS SCHEMATIC MODEL

 

 

Molecular Communication Options for Long Range Nanonetworks 

WIRED OPTIONS

stands for nonlinear High-Order Model for Dynamic Synapse.

-synaptical part are assumed to be in different vesicle pools. As it 

, the vesicle pools are classified in 4 different types, according to its function 

and its position in the membrane: 

number of vesicles in the immediate release pool. When Action Potential impulse is 

recieved, the neurotransmitters in this pool are released to the cleft (the space between 

sinaptical part). 

number of vesicles in prepared release pool. Its function  is to refill the immediate 

release pool when the neurotransmitters are released to the cleft. 

number of vesicles in the reserve pool. The reserve pool refills the vesicles of the 

the used pool collects used neurotransmitters after synaptical process, to be re

The constant parameters µR, µP and µU represent the transfer rates between neighboring 

is the nonstationary release rate which is a function of input pulses 

. The probability of transfer between pools is considered a binomial variable 

probability, converging to a Poisson distribution for a high number of vesicles in each pool.  In 

steady state, the four pools are described in [47] by the following equations: 

 

SCHEMATIC MODEL. 
FIG. 27 DETECTION SCHEME OF 

THE INFORMATION THEORY MODEL
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Order Model for Dynamic Synapse. In this model, 

synaptical part are assumed to be in different vesicle pools. As it 

are classified in 4 different types, according to its function 

release pool. When Action Potential impulse is 

(the space between 

release pool. Its function  is to refill the immediate 

pool. The reserve pool refills the vesicles of the 

the used pool collects used neurotransmitters after synaptical process, to be re-used for 

ates between neighboring 

is the nonstationary release rate which is a function of input pulses 

. The probability of transfer between pools is considered a binomial variable 

probability, converging to a Poisson distribution for a high number of vesicles in each pool.  In 
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-s��	
-	 = −��s��	
 + �¦s¦�	
 ( 33 ) 

-st�	
-	 = −�tst�	
 + ��s��	
 ( 34 ) 

-s§�	
-	 = �tst�	
 − �§s§�	
 u }�	 − 	:

:

 ( 35 ) 

-s¦�	
-	 = −�¦s¦�	
 + �§s§�	
 u }�	 − 	:

:

 ( 36 ) 

 

By concatenatively repplacing the variables in equations ( 33 ) - ( 36 ) while preserving the 

variables µI(t) and NI(t), the synaptic activities can be written as the following third-order 

differential equation: 

 

¡� D-�s§-	� + -���§s§
-	� 1�M + ¡� D-�s§-	� + -��§s§
-	 1�M + ¡� �-s§-	� + �§s§1�� + s§
= 0 

( 37 ) 

 

where 

 

¡� = 1�¦���¨ ( 38 ) 

¡� = ( 1�¦�� + 1���t + 1�¦�t* ( 39 ) 

¡� = ( 1�¦ + 1�¦ + 1�¦* ( 40 ) 

1� = u }�	 − 	:

:

 ( 41 ) 
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In our nanocommunication perspective, the relation between the number of vesicles in the 

immediate release pool and the Action Potential impulse will give us the transfer function of 

the synapse process. 

 

3.1.4.2  K INE TIC BIN DIN G MO DE L  

In [18], a simple kinetic synapse model is described based on reasonable biophysical 

assumptions. Hence, the system behavior can be defined by the following equation: 

 

-�-	 = V©vª�1 − �
 − Z� ( 42 ) 

 

where r is the percentage of bound receptors, T is the number of neurotransmitters in the 

mediu and α and β are parameters indicating the binding/release affinity of the post-synaptic 

receptors. 

The action potential is associated to the release of neurotransmitter molecules. When the 

electrical signal (Action Potential) reaches the pre-synaptic part, 1 mM of neurotransmitters 

are released. The process lasts for 1 ms, in which the receptors r in the post-synaptical part are 

able to capture the released molecules. After this time, the neuromolecules present in the cleft 

(space between pre-synapse and post-synapse regions) decrease abruptly. This behavior is 

modeled as a pulse waveform of the neurotransmitters T, thus providing a easy analytical 

solution to equation ( 42 ), splitting the expression for T(t)=T and for T(t)=0. Considering a 

pulse between t0 and t1, the equation ( 43 ) defines the receptors evolution during the pulse, 

and the equation ( 44 ) expose the receptor relaxation after the pulse. 

 

��	 − 	�
 = VvVv + Z + ���	�
 − VvVv + Z
 !�%!%«
¬­  ( 43 ) 

��	 − 	�
 = ��	�
 !d�%!%®
 ( 44 ) 

 

where  
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¯" = 1Vv + Z ( 45 ) 

 

As it is shown in Fig. 26, the receptors will bind following an exponential fashion, emulating 

an electrical condenser model. In that case, the action potential pulses are separated 4 ms. 

Assuming that the maximum number of bound receptors for detection of a logical “0” is 10%, 

this would imply a maximum information transmission of about 1bit/4ms = 250Hz. As it can be 

seen in Fig. 27, increasing the frequency rate of action potentials implies a higher level of 

bound receptors in absence of AP signal. 

 

 

 

FIG. 28 KINETIC MODEL, IMPULSES EACH 4MS. 
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3.1.4.3  INF OR MAT ION TH EOR Y MOD E L  

The synapse process under an information theory point of view has been studied in [48]. In 

this paper, the following equation is proposed to find the mutual information that can be 

achieved for a single synapse: 

 

£�Y = 12 , log� D����²
�:³:³�²
 M -²>  ( 46 ) 

 

where ����²
 is the power spectral density of the stimulus m(t), and �:³:³�²
 is the power 

of the reconstruction noise �³�	
 = �́�	
 − ��	
. 

Although in the referenced article it is proposed multiple synapses to add redundancy and 

increase the information throughput, a single synapse process would be able to transmit about 

4bits/200Hz. 

 

3.2 CAPILLARIES  

Capillaries are the smallest of blood vessels, measuring from 5μm to 10μm in diameter. They 

connect arterioles and venules and their main function is to interchange chemicals and 

 

FIG. 29  KINETIC MODEL, IMPULSES EACH 1.5MS. 
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nutrients between blood and surrounding tissues. The length of capillaries is comparable to 

axons length. In [39], capillaries measuring 67 cm long are used as testing units. In addition to 

this, several capillaries can be joined, reaching further nodes. In Fig. 30, a possible architecture 

using capillary tubules is shown. In that figure, node 1 would release the particles into the 

medium. Traveling into the flow, the message would reach node 2, equipped with receptors 

able to capture the released particles. 

 

3.2.1  ENCO DIN G AN D  EMIS SI ON  

The emulation of capillaries for long-range wired architectures enables the usage of most of 

communication particles that are already used in animal blood. In the capillary circuit, nodes 

would have to sense the flow current and load packets (particles or molecules) using 

appropriate binding receptors, or release particles to transmit the information. Hormones are 

the most suitable particles to be used. Like pheromones in the wireless case, different types of 

hormones exist in nature. Additionally, hormones are able to bind only to its particular 

receptor, thus providing a built-in selective filter. Endocrine hormones, which travel in the 

blood stream, serve as chemical messenger to communicate cells inside the body. Of a 

particular interest is epinephrine, a hormone that triggers the flight or fight response: in front 

of a threat, the animals have to face the menace or leave the scene as fast as possible. As it is a 

type of alarm system, the release and bind process have to be very fast, enhancing the 

performance of designed nanonetwork. According to [12] 30,000 molecules should be released 

to correctly recover a signal peak consisting of 5 components. 

 

FIG. 30  CAPILLARY CIRCUIT IN A TOKEN RING IMPLEMENTATION EXAMPLE 
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3.2.2  PROP AG ATIO N  

The propagation of molecular particles inside the capillaries is governed by fluid mechanics. 

In fluid mechanics, the Reynolds number Re is a dimensionless number that characterizes 

different flow regimes, e.g., laminar or turbulent flow. In laminar flow (low Reynolds number), 

viscous forces are dominant and the fluid motion is smooth and constant. In turbulent flow 

(high Reynolds number), the inertial forces dominate and tend to produce flow fluctuations. 

Reynolds number Re in a pipe is defined as [8]: 

 

� = µ|��  ( 47 ) 

 

where ρ is the density of the fluid (kg·m-3), v is the velocity of the fluid (m/s), r is the radius 

of the capillary (m) and µ is the dynamic viscosity of the fluid (Pa·s). 

Capillary circuit is in the low Reynolds number regime. Taking a value for fluid viscosity µ=2 

mPa·s (plasma, [31]), a pure water density of ρ=1000 kg/m3, a radius of r=2.5 µm and a fluid 

velocity of v=1 cm/s, the Reynolds number would be Re=0.0125 « 1. In this regime, viscous 

effects dominate the dynamics and inertial effects, which cause turbulence, are negligible. 

The hardware required to use capillary tubules as guided propagation is complex and has to 

be carefully monitored. Special attention has to be dedicated to flow current generation and 

capillary integrity. The pumping mechanism is a key factor in capillary communication. In [15], 

fluid propulsion based on electro-osmosis is proposed. The main advantage of this technique is 

its independent implementation, allowing the pumping coupling to be included in the circuit 

without altering the general structure. However, the extremely high electrical fields required 

for its implementation is a major drawback. Other alternatives are a thermal circuit (using a 

temperature gradient to induce the fluid movement), or biological valves and mechanical 

micro-pumps. 

 

3.2.3  DECO DIN G  A ND  RECEP TION  

Reception in capillaries circuit relies on binding affinities of the used particles (hormones). In 

nature, epinephrine receptors are the adrenergic receptors, capable of translating epinephrine 

signal to muscle movement. However, the antagonists (unexpected particles that bind to the 
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receptor) are an important noise source depending on receptor subtype. The antagonist 

amount present in capillary circuit (or the probability of its presence) is the main characteristic 

to choose between adrenergic receptor subgroup. In example, if Butoxamine could be found in 

the flow, β2 subgroup receptor should be discarded. 

 

3.2.4  MOD EL  

Once the molecules are being propagated in capillary tubules, their detection probability 

depends on what is called the receptor/ligand binding theory. Simply stated, the membrane of 

a cell contains hundreds, or even thousands, of diminutive receptors to which these molecules 

may bind. We can define this formally as follows: 

A ligand is a substance that is able to bind and form a complex with a biomolecule to serve a 

biological purpose. 

A receptor is a protein molecule, embedded in either the plasma membrane or the 

cytoplasm of a cell, to which a molecule used for signalling may attach. 

Once the ligand is bound to a receptor, the new structure is a complex, which will keep the 

ligand bounded depending on specific cell related constants (kf and kr).   

In [45], the ligand-binding theory is analyzed on basis to the following formula: 

 

-?�	
-	 = 5¶��	
·�	
 − 5"?�	
 ( 48 ) 

 

where C is the number of complex molecules, R is the number of receptors in the cell, L is 

the concentration of ligands (in M) and kf and kr are constants whose value depends on 

receptor cell type. 

As in [45], we restrict our attention to situations in which the cohort of surface receptors is 

unchanged, thus fixing total receptor number to constant amount RT. However, in the 

referenced paper the simplification is also applied to L(t) (considering fixed the ligand 

concentration) and it is unacceptable for our purposes, as our information will be encoded in 

ligand concentration fluctuation. 
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-?�	
-	 = 5¶��·�	
 − º¡¶·�	
 + ¡"»?�	
 ( 51 ) 

 

To determine Lo (to which our signal will be added), we will compute the equilibrium of 

complexes. When reaching that equilibrium, no further variation should be applied, thus 

obtaining  
¼H�%
¼% = 0.  Then, equation ( 51 ) becomes: 

 

0 = 5¶��·� − º¡¶·� + ¡"»?½¾ ( 52 ) 

?½¾ = 5¶��·�5¶·� + 5"   6¿y2­/2ÀÁÂÂÂÂÂÂÃ  ?½¾ = ��·�·� + ¡$ ( 53 ) 

 

where KD is the dissociation constant. Assigning a Lo value of KD, the number of complexes in 

equilibrium is RT/2. In other words, the receptor steady-state is reached when half of its 

receptors are occupied.  

To run the numerical analysis, we will sample the evolution of complexes quantity (number 

of bound receptors). If we assume that the sampling time ∆	 obeys the Nyquist-Shannon 

sampling constraint: 

 

∆	 < 12Åg ( 54 ) 

 

then there is no loss of the information coming from the transmitter when the signal C(t) is 

being sampled. Bw is the bandwidth of the Fourier transform before the sampling. In our case, 
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we will introduce fluctuations up to 250Hz, hence the time increment must be smaller than 

2ms. 

If we discretize the equation ( 51 ) we will have: 

 

∆?�	
 = Æ ¡¶��·�	
 − º¡¶·�	
 + ¡"»?�	
Ç∆	 ( 55 ) 

?©� + 1ª = ?©�ª +  5¶��·©�ª∆	 − º¡¶·©�ª + ¡"»?©�ª∆	 ( 56 ) 

 

To establish the receptor parameters, we will compare an alpha adrenergic receptor (in 

charge of adrenaline receiving in living organisms) and a light chain interleukin (IL). The 

following parameters, taken from [45], are used in our simulation. 

 

 α-Adrenergic Interleukin 

ÈÉÊÊ ËÌÍÉ BC3H1 T lymphocytes 

ÎÏ�#/ÈÉÊÊ
 1.4 × 10# 1.1 × 10# 

ÑÒ�Ó!Ô ÕÖ×!Ô
 2.4 × 10� 8.4 × 10� 

ØÙ�ÕÖ×!Ô
 0.018 24 

ØÚ 7.5 × 10!�� 2.9 × 10!� 

TABLE 1  DIFFERENT PARAMETERS OF SIMULATED RECEPTORS 

 

As it is shown in Fig. 31, adrenergic receptor is unable to provide an acceptable response to 

ligand frequency variation.  
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This can be explained for its low level of ¡" parameter, which reflects the tendency of the 

receptor to keep the ligand molecule in the complex form (bound to the receptor). As ¡" is low 

in adrenergic receptors, the system cannot discharge fast enough to follow the sinus function 

in the input signal (the ligand concentration). Indeed, we can visualize the decay curve of 

complexes by fixing: 

·©�ª = 0 ∀� ≥ 0 ( 57 ) 

?©0ª = ?ÝÞß ( 58 ) 

 

Then, equation ( 55 ) becomes: 

 

 

FIG. 31 α-ADRENERGIC RECEPTOR SIMULATION. TOP-LEFT: INPUT SIGNAL AS A SINUSOID 

VARIATION IN LIGAND CONCENTRATION. TOP-RIGHT: NUMBER OF LIGANDS THAT HAVE BEEN 

CAPTURED BY RECEPTORS. BOTTOM-LEFT: SPECTRAL ANALYSIS OF INPUT SIGNALS (LIGANDS). 

BOTTOM-RIGHT: SPECTRAL ANALYSIS FOR BOUND RECEPTORS (COMPLEXES) 
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∆?©�ª = −¡"?©�ª∆	 ( 59 ) 

 

thus, the higher values for ¡", the faster the ligands unbind from the receptor. Due to its low 

¡", α-adrenergic receptors are not able to fulfill the minimum requirements. Even for very low 

frequencies (several Hz), these receptors offer output amplitudes below 0.1 molecules. In 

other words, the receptor would not detect any molecule for the variation of the input sinus in 

L(t). 

However, the use of the light chain interleukin (IL) as a receptor highly improves the system 

performance.  As it is shown in Fig. 33, the frequency response of IL turns this cell to be the 

main candidate for being implemented in the capillary circuit. We define the molecular 

bandwidth (BW) as the maximum frequency in the input signal that provokes 2 receptors to 

change in the IL cell. As shown in Fig. 32, the higher molecular BW that can be achieved is 

214.16 Hz (for a ligand amplitude of Kd). Reducing the input amplitude also reduces the 

molecular bandwidth. Hence, for a sinus amplitude of 0.5Kd, we obtain a BW of 90.55 Hz. For 

an amplitude A=0.1Kd, the maximum reachable bandwidth is found to be 14.45 Hz. 

 

 

 

FIG. 32 BANDWIDTH FOR AN IL RECEPTOR AND DIFFERENT AMPLITUDES OF THE SINUS LIGAND 

SIGNAL. 
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FIG. 33  LIGHT INTERLEUKIN RECEPTOR SIMULATION. TOP-LEFT: INPUT SIGNAL AS A SINUSOID 

VARIATION IN LIGAND CONCENTRATION. TOP-RIGHT: NUMBER OF LIGANDS THAT HAVE BEEN 

CAPTURED BY RECEPTORS. BOTTOM-LEFT: SPECTRAL ANALYSIS OF INPUT SIGNALS (LIGANDS). 

BOTTOM-RIGHT: SPECTRAL ANALYSIS FOR BOUND RECEPTORS (COMPLEXES) 
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4 QUALITATIVE  EVALUATION 

In this section, the aforementioned techniques are compared qualitatively to demonstrate 

the strengths and weaknesses of each option. We have to take into account that the 

parameters evaluation is explorative and meaningful only for general overview. In addition to 

this, wired and wireless options should not be wrapped in the same consideration parameters 

without having in mind that their different medium transmission makes them suitable for 

some applications and not for others. 

First of all, hardware complexity is a parameter that should be considered. On the one hand, 

wireless options are more complex in emitter and receptor implementation. For instance, to 

mimic pheromones receptor we need an antenna with 3 filters and binding proteins in an 

aqueous medium (corresponding to second filter where hydrophobic components are 

discarded) [43]. On the other hand, the distance between emitter and receiver does not need 

additional hardware in wireless cases. 

 The second parameter considered is the diversity, which can boost throughput or be a key 

factor in channel definition. Pheromones, pollen, spores and capillaries (using hormones in 

capillaries flow circuit) provide a high diversity. Although light transduction option does not 

provide molecular diversity, frequency spectrum can be used to multiplex several signals. 

Axons option is an alternative with only one signal type to communicate with (action 

potential). 

Regarding distance coverage, light transduction option is capable to reach the longest 

nodes, as its electromagnetic propagation enables the use of already existing optical wireless 

techniques, or even the use of optical fibers in the transmission path. The axons are also a very 

good alternative to reach maximum distances of a meter or several meters, using chemical 

synapse reactions to join more than one axon. Capillaries could be used to reach 

approximately the same range. On the other hand, pheromones and pollen or spores are the 

options with less range, being able to effectively communicate in centimeters scale. As [7] 

states, pheromonal communication in nature involving ranges from hundreds of meters are 

only feasible taking the advantage of the wind as the transporting medium. 

In signal speed terms, the axons are the best option, being able to transport the impulse up 

to 90m/s. However, the synapse between neurons dramatically reduces this velocity. Light 

option is also a very fast option, but the translation between molecules and light reduces 

transmission speed. In the case of capillaries, the speed is greatly affected by the fluid current 
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(probably plasma), where the pump mechanism plays a key role. Pheromones and pollen 

propagate by diffusion means, and are slower than other methods. For example, in the 

diffusion of the attractant alarm substance of a worker ant, it is need around a minute to reach 

15 cm (0.0025 m/s) [7]. 

The reliability is another fundamental parameter. Wired options have in this case higher 

scores, being axons the most reliable option. In axons case the connection is peer to peer, 

whereas in capillaries the particles are taken from the flow current circulating through its 

pipes. Light transduction is also a very reliable option. In pollen, spores and pheromones it 

could be of interest to include error correction or cyclic codes to add robustness to the 

transmission. 

Finally, the noise would affect more pollen and pheromones than the other options. In 

diffusion methods the presence of wind, other particles and possible chemical recombination 

should be considered as noise sources. In light option, the electromagnetic interference 

(caused by other EM signals) and the translation between molecular and optical signal should 

be considered as the main noise challenges. In the axons case, the presence of noise would not 

be very relevant, as myelin isolation would protect the signal from external interferences. In 

capillaries, the concrete receiver that binds the particle (hormone) should be modeled to 

determine the noise parameter (for example the probability of binding not desired particles 

and the probability of binding failure for the desired molecule). 
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5 CONCLUSION 

Nanotechnology is a novel field exponentially acquiring attention from the research 

community in the last years. The development of nano-machines following the bio-inspired 

approach, which is based on the usage of already existing biological elements as building 

blocks, offers promising solutions. However, very little empirical work has been done. Despite 

of some recent short range nano-communication experiments (e.g., calcium signaling in [53] or 

molecular motors in [24]), only theoretical simulations can be found. Hence, the real 

availableness of proposed communication methods has to be tested in future phases of 

nanoresearch roadmap. 

Long-range nano-communication is an unexplored research area, capable of providing 

unique features for specific applications. Semiconductor or short-range molecular 

nano-comunication techniques cannot provide the properties that long-range applications 

require. When dealing with distances from a few centimeters to several meters, it is 

demanded new solutions for the improvement of the signal speed, reliability, energy 

consumption and hardware requirements. 

In this paper several options have been proposed to communicate nodes at nano scale 

covering distances from few centimeters to several meters. Pheromones, pollen, spores, light 

transduction, capillaries and axons are analyzed and compared. However, it should be taken 

into account that each implementation could be more suitable depending on the concrete 

application, the network topology or the network environment.  

Nevertheless, light transduction –converting molecular signal into optical information– is the 

most promising technique. As micro and nano elements will coexist in first nanotechnology 

stages, this option will act as an interface to interconnect different networks. The optical 

bridge between two molecular nanonetworks is also possible with this option. 

The modeling of the long range options proposed in this paper should be imperative to 

analyze which of them offer better features. The information throughput, robustness or 

external factors influence in each option is the next step in that nanonetworking scope. 

Modeling, simulations, empirical results and detailed physical description should be done 

before going any further. Rebuilding upper layers in the protocol stack only make sense when 

first layer is reliable and have been tested or exhaustively simulated.  
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