-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by UPCommons. Portal del coneixement obert de la UPC

Universitat Politécnica de Catalunya
Departament de Llenguatges i Sistemes Informatics
Master en Computaci6

Tes de NMaster

Verifying consistency between
structural and behavioral schemas in UML

Estudiant: Elena Planas Hortal
Director(s): Cristina Gémez i Jordi Cabot

Data: 25 de juny, 2008

https://core.ac.uk/display/41797104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITAT POLITECNICA DE CATALUNYA
Departament de Llenguatges i Sistemes Informatics
Master in Computing

Title of thesis : Verifying consistency between structural andawédral schemas in UML

Sudent : Elena Planas Hortal

Advisor : Cristina Gémez

Co-advisor : Jordi Cabot

Date : June 25th, 2008

Abstract :

The specification of an information system mustude all relevant static and dynamic aspects of
domain. The static aspects are collected in stractiagrams that are represented in UML by medn
class diagrams. Dynamic aspects are usually spddify means of a behavioral schema consisting
set of system operations (composed by actions)thizatiser may execute to query and/or modify
information modeled in the class diagram.

Behavioral schemas must be consistent with regarstructural schemas. Consistency between

schemas means that the set of system operationgl@doby designers must Isgntactically consistent

(i.e, the operation specifications conform to dipalar syntax)executable (i.e, for each operation the
must exist a system state over which the operationbe successfully appliedpmplete (i.e, through
these operations, users should be able to modifyptpulation of all modifiable elements in the sl
diagram) anadhon-redundant (i.e, there are not (partly) superfluous operajon

The goal of this thesis is to give a method to wwheitge the consistency between structural and behealv
schemas of an information system. Moreover, in cdsaconsistent schemas the method must pro
feedback information to allow designers modify theiehavioral schemas in order to repair
inconsistency.

the
)
of a
the

both

AS

vide
the

Keywords : verification, UML, structural schema, behaviosahema, Action Semantics

Language : English

0000000000000 000 MASTER

Verifying consistency between structural and behavioral schemas in UML THESIS

Contents

IR [11 oo [¥ o1 1] o RSP PPPOPPPPPP 7
1.1. Objectives of thiS MASIEr tNESISoeieeee s 8
1.2. DOCUMENT SITUCTUIEeiiiiiiieiiee e et immmmmm bbbttt ettt et e e e e e e e e s e e s s s s e e e e e et e et eeeeeeeeeeeaasaanannnnnnes 9

P2 Y- L o @ = o) £ 11
2.0, SErUCTUrAl SCHEMA ... o ettt e e et e e e e e e e e e e e e e e e e e s anneeees 11
2.2. BEhAVIOral SChEMAueiiiiii it e s e e st e e e e nnabaeeeeeean 12
2.3. Action SEmMaNtiCS iN the UML ... e e e e e e e e e e 13

2.3.1. Action Semantics SyNtax ProPOSEA.......cccccuvruriiiiiiiiiiiieeieeeee e e e e e s s rrrrraaaaaaaees 14
2.4. Dependencies amONg ACHONSuuiiieiiiiiie ettt e s e s e e e s s e e e anrrees 18

3. The Proposed Method............ooooiiiiiiie e 21
0 I O 1T V1= PP PR PRR 21
3.2. Analyzing SYNtactic CONSISIENCYccceerriuriiiieeiiiiiit ettt et e e e e 22
3.3. Determining EXECULioON Paths ... e oo e e e e e e e 25
3.4. Verifying Weak EXECULADIIITY ettt 27

3.4.1. Executability @algorithmi............uuuieiiieiiiiiiieeiee e e 29
3.5. VerifyiNng COMPIEIENESScooiiiiiiiiiiee ettt e et e s e e e s e s 36
3.5.1. Completeness algorithm...........eeiiceeeeeiiiiieeeece e a e e e e e e e e 36
3.6. Detecting Redundant PAthS............. e et ittt e e 39
3.6.1. RedundanCy iN ACHONS........coioiiceeeeee e e e r e e e e e e e e e e e se s rrerreraeeaaaaaaeens 40
3.6.2. Redundancy in EXeCUtion PathsS........ouueeeiiiiiiiiiiiiiiice e 41
3.6.3. Redundancy iN OPEratiONS..........cceeeieiieei e i et r e et e e e e e e e e e s ese b eannreeeeeees 41

4. REIAIEA WOTKuiiiiiiiiiiiiiiiiee ettt ettt e et e e e e e e e e es 43

5. Conclusions and FUrther WOrK.............ceeooeiiiiiiiiiiiiieeeeeeee e e 45

6. RETEIENCES ...ttt ettt e e e e e e e e bbb 47

Master in Computing 5 Elena Planas
Universitat Politécnica de Catalunya

MASTER 0000000000000 000

THESIS Verifying consistency between structural and behavioral schemas in UML

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

0000000000000 000 MASTER

Verifying consistency between structurd and behaviordl schemas in UML THESIS

1. Introduction

Since the very beginning of computer science, ohéhe main goals of software engineers has been to
automate as much as possible the software develdpreasess. In fact, the software engineering comtguni
envisages a future in which, of all the phases tifveme development, software engineers will only ety
necessary during the specification of the infororatsystem while the remaining phases (mainly design,
implementation and test) would be fully automateHlisTis one of the most challenging and long-stagdin
goals in software engineering [34].

This is also the focus of some of the most popalat current development approaches as MDD (Model-
Driven Development [2]) and MDA (Model-Driven Architectuf26]). MDD is a software engineering
paradigm that gives the Conceptual Schema (CS) i@ha representation of knowledge about a domain)
central role in the development process and prortieeautomatic generation of the system implememtat
based on its CS, either directly or by first tramsfing the CS into a new model adapted to the spdeditures
and characteristics of the target platform. MDA is @MG vision of MDD and it is founded on standards like
MOF and OCL for modelling and meta-modelling. In MDApaoach there are two kinds of models: PIM
(Platform-Independent Model), that provide formpésification of the structure and behavior of tlystem
away technical details (for example, a CS is a Plat}d PSM (Platform Specific Model), that specifg th
system in terms of the implementation construcis éine available in one specific implementatiomitedogy.

Model Specification Generated code

class Department {
String name;

Automatic
translation

class Paper (
stiing tle:
}

class UnderReview extends Paper

class Rejected extends Paper {}

Fig. 1.1. Model Driven Development Proce

CS is a key artifact in development process ands,tits correctness is essential. Wrong CSs cah tiea
incorrect implementations. Here is where Weeification methodsome into play. There are many methods for
verifying CSs. The verification depends on the tgb¢he model and on the property we want to veipst

of the current methods are focused on the staticgbahe CS but less work has been done with redpettie
dynamic part (behavior). Verification of the cormess properties of the both CS parts is very inaporto
guarantee the quality of application that will beadled from the model.

Master in Computing 7 Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviord schemas in UML

In particular, we are interested in the verificatimhAction Semantics (AS) since it is a key elementll
executable UML methods [25, 17] to specify the bé&braef the operations defined in the class diagram.
Actions are the fundamental unit of behavior speatfon. Basic actions include the creation of neyeat,
creation of new links, removals of existing objeststhe modification of attribute values, among oshend
they can be coordinated with conditional and loogesoto completely define the operation effect.

As a simple example, consider the class diagramigf E2, described by UML language [39]. The class
diagram describes the objects within a systpeopleanddepartmentsand their relationshipgpérson works

in a department Fig. 1.2 also includes the behavior of the systhrough the operations specified by AS
(addPersonand changeAddreds In this context, both operations are incorrsatce changeAddressries to
update an attributeafldres3 which does not even exist in the diagram autiPersoncan never be
successfully executed (i.e. every time we try tocai@addPersorthe new system state violates the minimum
‘1’ cardinality constraint of the department roleWorksInsince the new person instance is not linked to any
department). Besides, this operation set is notpbete, that is, through these operations usersatanndify

all elements of the class diagram, e.qg. it is mssjble to create and destroy departments. If taeses are not
fixed before continuing with the code-generation gghahe resulting system implementation will be Ilpta
useless.

context Person::changeAddress(a:Integer) {
AddStructuralFeature(self,address,a); }

Person . .
* Worksin 1| Department context Person::addPerson(n:String, e:String) {
name : String St . Person;
email : String name : String P g

p := CreateObject(Person);
AddStructuralFeature(p,name,n);
AddStructuralFeature(p,email,e); }

Fig. 1.2. A simple example of a class diagram with two opiens.

In this sense, the goal of this master thesis préwide a set of techniques for the verificatidrcorrectness
properties of action-based behavior specificat@ndesign time. The correctness properties thatewd with
can be summarized in:

* Syntactic consistency: The operation specifications conform to a patéicsyntax, in this case, the
UML metamodel [30] syntax and its restrictions.
» Executability: The execution of operations leaves the systeandonsistent state.

» Completeness: All possible changes on the system state can Herped through the execution of
operations.

* Redundancy: There are not (partly) superfluous operations.

1.1. Objectives of this master thesis

The objective of this master thesis is to complentlea current verifying methods of dynamic paraafystem
with a new method able to verify the previous setafectness properties.

This objective can be divided into the following &ional goals:

1. Analyze thesyntactic consistenayf each operation defined in the CS.

2. Determine theexecutabilityof each operation defined in the CS, taking irdooaint the dependencies
among actions.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

0000000000000 000 MASTER

Verifying consistency between structural and behavioral schemas in UML THESIS

Determine theompletenessf the whole operation set defined in CS.

4. Detect possibleedundanciesn operations defined in the CS.

5. For each detected error, suggest to the desigrssilpje corrective procedures as a complementary
feedback

To achieve the goals 2 and 3, it is necessary tsider a new sub-goal consisting in the analysishef
operation flow to determine all possible executiathg in an operation, that is, a sequence of actiwst may
be followed during the operation execution.

Additionally, we are interested in the following nam€tional goals:

1. Perform a static analysis (do not a model animé&iomulation during the verification process).
2. Do not reduce the language expressiveness.

3. Be complete, in the sense that the existence olusien can always be determined.

1.2. Document structure

This master thesis is structured as follows. The section introduces basic concepts that are itapbto
understand the rest of the work. Section 3 giveamrvew of the method proposed and describe itsssitep
detail. Section 4 presents the state of the a@®fverification methods. Finally, in section 5 wegent the
conclusions and indicate areas of future work.

Master in Computing

o iaste Elena Planas
Universitat Politécnica de Catalunya

MASTER 0000000000000 000

THESIS Verifying consistency between structural and behavioral schemas in UML

10

Master in Computing
Universitat Politécnica de Catalunya

Elena Planas

0000000000000 000 MASTER

Verifying consistency between structural and behavioral schemas in UML THESIS

2. Basic Concepts

This section describes the main concepts thangperitant to understand the rest of the work.

2.1. Structural Schema

A Conceptual Schema (CS) is a representation ofrgekeowledge about a domain [33]. A CS includes two
main components: Structural Schema and Behaviatz8a.

A structural schema specifies the static part ofstesn, that is, the representation of a problemalomA
structural schema can be represented with a UML @é&sgram (CD) artifact, that contains informatioroab
the domain classes, attributes, associations, gkzesions and constraints.

We consider that a CD can be represented usingiie t
CD = <sef, sel, Seks Selen Selons™

where sgf, sef, Sels Sefenand set,s represent the set of classes, attributes, asEwsageneralization sets
and constraints of the class diagr@m, respectively. All elements iBD are assumed to be correct instances
of the corresponding metaclasses of the UML metainf@. We assume that all associations are binary
associations (n-ary associations can be easilyesgpd in terms of a set of binary ones [24]).

As an example, the Fig. 2.1.1 shows a class diagiam@daat representing part of a conference managemen
system. The abstract claBaperis specialized in three disjoint subclasses adogrtb the state of the paper
(UnderReview Rejectedor Acceptedl Only accepted papers can be presented 8ession Each paper is
written by one or more people, each of which worksa tlepartment The constrainMaxPapersSenteans
that a person may send at most 10 papers.

Paper 1.* <IsAuthorOf 1.* Person * Worksin__ 1[pepartment
title : Strin author [name : String { readOnly } X "
¢ email : String name : String

{disjoint,complete)‘r
[| 1

UnderReview Rejected Accepted Session
IsPresentedAt

comments : String accepDate : date 1 01| date: Date
room: String

context Department inv MaxPapersSent:
self.person.paper > asSet() > size() <= 10

Fig. 2.1.1. Example of a class diagram.

Master in Computing 11
Universitat Politécnica de Catalunya

Elena Planas

Verifying consistency between structurd and behaviord schemas in UML

For this class diagram we have that:

set, = { Paper, UnderReview, Accepted, Rejected, Persopaiaent, Session }

set, = { title, accepDate, comments, hame, email, natagg, room }

sets = { IsAuthorOf, WorkslIn, IsPresentedAt }

seten = { Paper, {UnderReview, Accepted, Rejected} }

Setonsy = { context Department inv MaxPapersSent: self persaper> asSet()?> size() <= 10}

2.2. Behavioral Schema

A behavioral schema specifies the dynamic part efsystem, that is, the functionalities that a systan
perform. In UML there are many ways to represent libbavior of a system (Sequence Diagram, State
Machines, etc.) but the basic way is the use ofaijmers (attached to classes) that the user mayutxéc
query and/or modify the information modeled in geictural schema.

The operations of a behavioral schema can be defigéwo ways: declarative or imperative approaches.

In a declarative specification, a contract for eapkration must be provided [27]. A contract cossidta set

of preconditions and postconditions. The precoadigxpresses requirements that any call must wittiifis

to be correct and the postcondition expresses piepehat are ensured in return by the executiothe call.
The contracts may be represented by OCL languade 43declarative language provided by OMG (Object
Management Group).

In an imperative specification, the conceptual niedexplicitly defines the set of actions (insemtiof a new
object, update of an attribute,...) to be appliedrdhe system state. Imperative specifications afrations
may be defined by an imperative language as UML AcBemantics (AS) [32].

In conceptual modeling, the declarative approacpréferable since it allows a more abstract and isenc
definition of the operation effect and concealsialblementation issues. Nevertheless, in orderawosfiorm a
model specification to a set of executable softveamponents, declarative specifications must besteamed
into their equivalent imperative ones. This transfation is non-deterministic, but an initial res#gaf6] has
been done to provide some heuristics for helpinthentranslation process. In this thesis we assinaietthe
starting point is the use of imperative specifizasi of operations.

As an example, we have defined four operations #ctass diagram of Fig. 2.1.1. Its signature is:

< endOfReview(com:String, d:Date, evaluation:StrinBeclassifies a paper as rejected or accepted
depending on the evaluation parameter.

« submitPaper(tit:String, authors:Person[1..*]Creates a new under review paper and links therpap
with its authors.

» dismiss() Deletes the Worksln link between a person and éigiepartment.

e createSchedule(dateList: List(Date), roomList: Ligi(f))): Assigns a date and room to present each
accepted paper.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

2.3. Action Semantics in the UML

In UML, the behavior of an operation can be spedifising several UML constructs as State Machines or
Activities, among others (see the UML metamodel fraghof Fig. 2.3.1). In this thesis we will concergran
this latter option.

BehavioralFeature (0.1 +MeI0Od oy * | ActivityNode ExecutableNode |+
+specification *

Behavior
f 1 ‘[F %
Operation StateMachine Activity Action StructuredActivityNode

+activity
? 0.1

Fig. 2.3.1. Fragment of UML metamodel.

Activities describe a procedural implementationhef bperation effect (in contrast with declarativérdéions
based on the use of pre and postcondition). Anigciiv composed of a set of activity nodes desnghihe
different steps of the activity. Activity nodes majther be basic actions or structured nodes udgeful
coordinate basic actions in action sequences, tiondi blocks or loops. We consider two types ofpl&io
while-do(if meta-propertysTestedFirsfrom metaclastoopNodes equal to true, that is, the test is performed
before the first execution of the body) ashatwhile (if meta-propertysTestedFirsis equal to false, that is, the
body is executed once before the test is performed)

UML metamodel defines a set of actions that allowsgecify the behavior of an operation. In full, UML
describes more than forty actions, but for the pses of this thesis we only consider a subset ah.the
Specifically, we will focus on the construction aasoCreateObjectActionCreateLinkActiol, destruction
actions DestroyObjectAction DestroyLinkActioh and update actionsAddStructuralFeatureValueAction
ReclassifyObjectActign

UML provides an abstract syntax for these actio®§, [But it does not define a concrete syntax feirthse in
an operation specification. Therefore, it is neapsdo define a concrete syntax in order to coneplée
abstract specification. There are several non-stahgroposals that define an abstract and consyeiti@x for
actions. Some of these proposals are: Action Seosahtinguage (ASL) [8], Object Action Language (OAL)
[29], Platform-independent Action Language (PAL)][37athMATE Action Language (PMAL) [36], Starr's
Concise Relational Action Language (SCRALL) [41])en-Mellor Action Language (SMALL) [40] and That
Action Language (TALL) [25].

For the sake of simplicity and according to thelgad this thesis, we use our own syntax, accordinthé
abstract syntax provided by UML standard action platses and similar to the previous proposals. Batéi
this syntax are explained in next section.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

MASTER 0000000000000 000

THESIS Verifying consistency between structurd and behaviord schemas in UML

2.3.1. Action Semantics syntax proposed

In the following, we describe the concrete syntaaaifons used in this work. For each action we specify

Abstract syntaxUML abstract syntax.

UML metamodelextract of UML metamodel for the action.
Concrete syntaxour concrete syntax.

Argumentsinput arguments of the action.

Result output arguments of the action.

Basic semanticdasic semantics defined by UML.

Additional Semanticsadditional semantics added.

Abstract syntax CreateObjectAction

UML metamodel

Action
(from BasicActions)

f

CreateObjectAction

) 0.1
+resu it

1 | +classifier 1 {subsets output}

Classifier OutputPin

ifromKemel) {from BasicActions)
Concrete syntax CreateObject(class. Classifier): I nstanceSpecification
Arguments class Classifier to be instantiated.
Result Returns the object instantiated.
Basic semantics This action creates a new object that conforms ® gpecified classifier. The

specified classifier cannot be abstract.
The action has no other side effects. In particutze new object has no structural
feature values and participates in no links.

Additional semantics -

Master in Computing 14 Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

Abstract syntax DestroyObjectAction
UML metamodel

Action
(from BasicActions)

DesmyObjectAction

isDestroyLinks : Boolean = false
isDestroyOwnedObjects - Boolean = false

{subsets input}
1|, +target

In putPin

(from BasicActions)

Concrete syntax DestroyObj ect(o: | nstanceSpecification)

Arguments o- Object to be destroyed.

Result -

Basic semantics This action destroys the objezt Destroying an object that is already destroyed has
no effect.

Additional semantics We assume that links in whicb participates are not automatically destroyed
(attributeisDestroyLinks = false We restrict the use of this action only for degt
objects that are instances of a class (not foraleshks).

Abstract syntax AddStructuralFeatureValueAction
UML metamodel

Action
(fromBasicActions)

A

0

S y
StructuralFeatureAction | 0.1 1 _ Inp utPin
structural Feature ‘ +objec|/ (from BascAdims)

7\ {subsets input}

0--1. WiiteStructural FeatureAction |

Structural Feature

AddStructuralFe atureValueAction

isReplaceAll : Boolean =fals

0..1
+value
] i (_subsets’uzl;ﬁt}
, InputPin T+inertAt {subsetsinput)
{from Basic Acions)
Concrete syntax AddStructuralFeatur e(o: 1 nstanceSpecification, at: StructuralFeature,
v:ValueSpecification)
Arguments G- Object to be updated.
at — Attribute to be updated.
v — New value.
Result -
Basic semantics This action sets the valweas the new value for the attributeof the objecb.

Additional semantics We assume that multi-valued attributes are expdegaed analyzed) as binary
associations between the class and the attributetga¢. For this reason, the new
value always is inserted in first position.

We restrict the use of this action to the additidnvalues to structural features, it
cannot be used for modifying association ends.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

MASTER 0000000000000 000

THESIS Verifying consistency between structurd and behaviord schemas in UML

Abstract syntax CreatelL inkAction
UML metamodel
Action
(fromBasicActions)
CreateLinkAction WriteLinkAction LinkAction
1
+endData
PR {redefines endData}
LinkEndCre ation Data
isReplaceAll : Boolean = false
0.1 0.1 InputPin
(from BasicActions)
+insertAt
e
=
Concrete syntax Createl ink(as:Classifier, pl:InstanceSpecification, p2:1 nstanceSpecification)
Arguments as- Link to be created.
pl, p2— Participants of the link.

Result -
Basic semantics This action creates a new link in the binary asdimriasbetween objectgl andp2.

The association cannot be an abstract classifiered®ng an existing link has n
effect if the structural feature is unordered and-onique.
Additional semantics -

Abstract syntax DestroyLinkAction
UML metamodel Action

(fromBasicActions)

.

WiiteLinkAction LinkAction

L

DedroyLinkAction

+endData
2. {subsets endData}

LinkEndDestructionData
isRemoveDuplicates : Boolean = false

InputPin +destroy At 01
(from BasicActions) [
0.1

Concrete syntax DestroyL ink(as:Classifier, p1:1nstanceSpecification, p2:1 nstanceSpecification)
Arguments as Link to be destroyed.

pl, p2- Participants of the link.
Result -
Basic semantics This action destroys the link between objgetsand p2 from as There is no return

value in either case. Destroying a link that dogsemst has no effect.
Additional semantics -

Master in Computing 16 Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

Abstract syntax ReclassifyObjectAction
UML metamodel Action

(fromBasicActions)

A

RedassifyObjectAction

isReplaceAll : Boolean = false

* *

+object

{subsstsinput} | 1

InputPin
{from BasicActi...

+newClassifier

*

+oldClassifier | «

A/ \|/

Classifier

(fromKerrei)
Concrete syntax ReclassifyObiject(o: I nstanceSpecification, newClass. Classifier[0..*], oldClass:
Classifier[0..*])
Arguments G- Object to be reclassified.
newClass- New superclasses of
oldClass- Old superclasses of
Result -
Basic semantics This action add® as a new instance of classesniewClassand removes it from

classes iroldClass Multiple classifiers may be added and removed time. None
of the new classifiers may be abstract.
Additional semantics -

According to the previous concrete syntax, the irafpee specification of the operations introducedéation
2.2is:

context Paper::endOfReview(com:String, d:Date, context Paper::submitPaper tit:String, authors:Person[1..*]) {
evaluation:String) { i: Integer := 1;
if self.ocllsTypeOf(UnderReview) then p := CreateObject(UnderReview);
if evaluation = 'reject’ then AddStructuralFeature(p,title, tit);
ReclassifyObject(self,Rejected,0); while i < authors->size() do
AddStructuralFeature(self,comments,com); CreateLink(IsAuthorOf,p,authorsli]);
else i=i+1;
ReclassifyObject(self,Accepted,); endwhile
AddStructuralFeature(self,accepDate,d); }
endif
endif
}
context Person::dismiss() { context Paper::createSchedule(dateList: List(Date),
DestroyLink(WorksIn,self,self.department); roomList: List(String)) {

acceptPapers: List(Accepted);

acceptPapers := (Accepted.alllnstances());

s: List(Session);

i: Integer :=1;

while i < acceptPapers->size() do
s[i] := CreateObject(Session);
AddStructuralFeature(s[i],date,dateList[i]);
AddStructuralFeature(s[i],room,roomList[i]);
i:=i+l;

endwhile

CreateLink(isPresentedAt,acceptPapers[1],s[1]);

Fig. 2.3.2. Specification obndOfReviewsubmitPaperdismissandcreateScheduleperations.

In the next sections we will show how to verify theperations.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviord schemas in UML

24. Dependencies among actions

A dependency from an acti@ttion, (the depender action) to an actaxtion, (the dependee action) expresses
thatactiorn, must be included in all operations whaetion, appears to avoid violating the constraints of the
class diagram. It may happen tlattion, depends on several actions (AND-composition). Is ttase, all
dependee actions must be included in order tofgatie dependency. It may happen also thetton, has
different alternatives to keep the consistencyhefdystem OR-composition). In this case, as lomgnasof the
possible dependee actions appears in the operdtiendependency is satisfied. As we will show in next
sections, this concept is used for verifying theaatability of operations.

Dependencies between actions depend on the typeeo&dtion and on the integrity constraints of each
particular class diagram. For the purposes of aalyais, we just need to consider minimum cardipali
constraints for associations and disjoint and ceteplconstraints for generalizations (either gragdhjic
represented or implicitly induced by textual OCL stvaints).

As a simple example, consider the class diagramigpf Z1.1. In this context, if we have an operatibat
includes an actionp:=CreateObject(Person) this operation requires the presence of the mctio
CreateLink(WorksIn,p,dwhered is a department, in order to satisfy the minimdrncardinality constraint of
the department role inWorksin association. If we have another operation thatubes an action
Reclassify(p,{Accepted},{}p reclassify a papgr from UnderReviewo Acceptedthis operation must contain
the actionReclassify(p,{},{UnderReview}j order to satisfy the disjoint constraint of tjeneralization.

For other types of constraints, we can always fiedrabination of a system state and/or a set of aegasrfor
which the execution of an actiaaction results in a consistent state with respect to thasestraints. For
instance, maximum cardinality constraints are nei@ated when action is applied to an empty sysséate.
Constraints restricting the value of the attribubésan object may be satisfied when passing theompiate
arguments as parameters for the action. As an erarff@MaxPapersSentonstraint (Fig. 2.1.1) restricts the
possible values of the parameter authors but wealveays find a person (e.g. a newly created one)rttzst
submit a paper without violating this constraint.eTdame situation occurs with constraints restricthmg
relationship between an object and related objétistefore, all these constraints are ignored whempcbing
the dependencies of action.

A simple dependency for an actiantionis defined asction=>depwheredepis the action required by action.
Complex dependencies are expressed as a sequersi@pbé ones joined with the logical AND and OR
operators.

The following table provides the rules to compute dlependencies (second column) required by ea@mnact
type (first column). These rules are adapted fr@inwhere they were expressed using a proprietaryofist
action types. Note that most of the rules includgliegbility conditions that precise in more detaihen the
dependency is required.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Table 2.4.1. Dependencies for modification actioridin(c;,as) and max(g,as) denote the minimum (maximum)

Verifying consistency between structurd and behaviordl schemas in UML

multiplicity of ¢; in as (for reflexive associations we use the role name).

Action

o=CreateObject(c)

DestroyObject(o:c)

CreateLink(as,0;:€1,02:Cp)
(when min(cy,as) = max(c,,as))

to be repeated for the other end

DestroyLink(as,01:€1,02:C2)
(when min(c,,as) = max(cy,as))

to be repeated for the other end

AddStructuralFeature(o,at,v)

ReclassifyObject(o,{nc},{oc})

As an example, consider the class diagram of Fib.l2and suppose an operation that includes annactio

Required Actions

AddStructuralFeature(o,at,v) for each non-derived and mandatory attribute

at of ¢ or of a superclass of ¢

AND <min(c,as),CreateLink(as,0,0,)> dependencies for each non-derived

association as where c or a superclass of ¢ has mandatory participation
<min(c,as),DestroyLink(as,0,0,)> for each non-derived as where c or a
superclass of ¢ has a mandatory participation

DestroyLink(as,01,0s) (if min(cz,as) <> max(c,,as))

OR CreateObject(01)

OR ReclassifyObject(01,¢1,9)

CreateLink(as,01,03) (if min(cz,as) <> max(cz,as))

OR DestroyObiject(o,)

OR ReclassifyObject(01,9,c1)

AddStructuralFeature(o,at,v) for each non-derived and mandatory attribute
at of each class ¢ 0 nc

AND <min(c,as),CreatelLink(as,0,03)> for each ¢ 0 nc and for each non-

derived association as where ¢ has a mandatory patrticipation

AND ReclassifyObject(o,d,{cc’}) for a cc’ such that [tc O nc and cc’ O oc
and cc # cc’ and cc and cc’ are subclasses of a common disjoint and

complete generalization set and o was instance of cc’

AND <min(c,as),DestroyLink(as,0,03)> for each class c in oc and for each

non-derived association as where ¢ has a mandatory participation

AND ReclassifyObject(o,{cc’},d) for a cc’ such that cc’ O nc and Ccc O oc
and cc # cc’ and cc and cc’ are subclasses of a common disjoint and

complete generalization set and o was instance of cc

CreateLink(WorksIn,p,dyhere p and d are a person and a department regbect

This action has the follow dependencies:

CreateLink(WorkslIn,p,d¥ DestroyLink(WorksIn,p,d’) OR CreateObject(p)

Where:

e The dependencPestroyLink(WorksiIn,p,d’)means that if we create a new link between a pgoson
and departmerd, we should destroy the current link between the pgpsaind his current department
(d).

« The dependencyreateObject(p)means that if we create a new link between a pep@md
departmentl, we should create the objgrt

As we have seen, as long as one of the previous depearctions appears in the same sequence of action
CreateLink(WorkslIn,p.dthe dependency is satisfied.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

MASTER 0000000000000 000

THESIS Verifying consistency between structural and behavioral schemas in UML

20

Master in Computing
Universitat Politécnica de Catalunya

Elena Planas

0000000000000 000 MASTER

Verifying consistency between structurd and behaviordl schemas in UML THESIS

3. The Proposed Method

This section provides an overall vision of our grsgl for verifying operations specified with AS arebsdribes
in detail each step of the method.

3.1. Overview

The method we propose consists of a set of techsifpirethe verification of correctness propertiesaofion-

based behavior specifications at design time. Withoss of generality, we will focus on the verificat of

actions appearing in the definition of the operaiobehaviors. However, many of our techniques cdaed
equally used to verify action sequences appearirgher kinds of behavior specifications as Statehihes
or Sequence Diagrams.

Roughly, given an operation op, our method procdsd®llow a set of steps that can be summarize@@ée
Fig. 3.1.1):

1. Analyzing the syntactic consistency of each ac#iotion /7op, that is, guarantee that its specification
conforms to the abstract syntax specified by the Uidtamodel.

2. Analyzing the operation flow to determine all possibkecution paths iap (an execution path is a
sequence of actions that may be followed duringfieration execution).

3. Determining the executability of each execution pptlby performing a static analysis of the
dependencies among the modification actions (€&orms that change the system statg) and their
relationship with the structural constraints (aslglity constraints) in the class diagram.

4. Determining the completeness of the whole operatintlsat is, all possible changes on the system
state can be performed through the execution afadipas.

5. Analyzing possible redundanciesap, that is, detecting if there are superfluous astio

For each detected error, possible corrective puresdare suggested to the designer as a complementa
feedback.

Master in Computing 21
Universitat Politécnica de Catalunya

Elena Planas

MASTER 0000000000000 000

THESIS Verifying consistency between structurd and behaviord schemas in UML

METHOD

Analyzing Syntactic Consistency
dependencies

Determining Execution Paths
% cs /
— ——> Verifying Executability —

designer
% Verifying Completeness

% Detecting Redundant Paths

feedback

Fig. 3.1.1. Method overview.

3.2. Analyzing Syntactic Consistency

The first step of our method consists in checkimgsyntactic consistency of each action in an djpera

Concerning UML models, syntactical consistency esstinat a specification conforms to the abstractasy
specified by the UML metamodel [15] (similar to tgeammar of programming languages). For instance, i
our running example, the actipr=CreateObject(Paperjs not syntactically correct due to we cannot eeat
instance of an abstract class.

Syntactical consistency conditions are expressedNtL metamodel using a set of (OCL) constraints (i.e.
Well-Formedness Rules) that restrict the possibteo$ valid (i.e. Well-Formed) UML models. These e
Formedness Rules (WFRs) help to prevent syntagticsein action specifications.

An operation issyntactically correct when each action in the operation satisfies alstnWFRs.

In the follow we show some WFR included in the UML gi6tamodel [30]. The complete set of WFR can be
found in the UML 2.0 metamodel.

WFR1
UML metaclass LinkAction (super-class of CreateLinkAction)

Textual description When specifying a CreateLink action action overagsociation assoc, the type and
number of the input objects (parameters) in actom compatible with the set of
association ends defined for assoc.

OCL definition context LinkAction inv:

self.endData->collect(end)=self.association()->collect(connection))

WFR2
UML metaclass CreateObjectAction
Textual description The classifier cannot be abstract.
OCL definition context CreateObjectAction inv:

not (self.classifier.isAbstract = true)

Master in Computing 22 Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

WFR3
UML metaclass ReclassifyObjectAction
Textual description The newClassifiers set cannot contain any absttassifier.
OCL definition context ReclassifyObjectAction inv:

not self.newClassifier->exists(isAbstract = true)

Unfortunately, our analysis of the WFRs relevanttie Action Packages has detected several flaws that
compromise the usefulness of such rules (a prevémadysis [3] already highlighted that other partshe
UML specification should be reviewed as well). Somanegle errors are the following:

e Syntactic errors: References tofrall” (instead of forAll”) and “oclisKindOf (for “ oclisKindOf)
operations.

e UML 15 related errors: WFRs restricting the multiplicity ofnput and output pins refers to a
multiplicity attribute that does not longer existthe UML metamodel (in UML 2.0, pins are subtypes
of MultiplicityElementand thus we should use thpperandlower attributes instead). There is also a
reference to the now inexistedavigableEndnetaclass.

e« Semantic errors. The constraint ¢ontext WriteStructuralFeatureAction inv: self.vallype =
self.structuralFeaturéeaturingClassifier” forces the type of the new value for the strudtfeature
to be equal to the type of the Classifier owningféegure. Clearly, this is plain wrong. The type of
the new value should be the same as the type ofstituetural feature, i.e.sélf.value.type =
self.structuralFeaturéype”.

e« It is not clear the relationship between thestanceSpecificatignValueSpecificationand Pin
metaclasses. Since input and output pins must holstanceSpecification(e.g. in the
CreateObjectActioraction) andvalueSpecificatiorfe.g. WriteStructuralFeatureactions) values, both
kind of values need to be converted to instancebePin metaclass which is not possible with the
current metamodel structure.

Besides, several required WFRs are not predefinethé metamodel, and thus, existing WFRs must be
complemented with new ones to guarantee that aqgpiecifications are syntactically correct.

For instance, the rules that we propose to add in Witamodel are:

WFR4
UML metaclass WriteStructuralFeatureAction
Textual description The type of the input object (i.e. the object whdsature will be modified) is
compatible with the classifier owning the feature.
OCL definition context WriteStructuralFeatureAction inv:

self.value.type = self.structuralFeature.type

WFR5
UML metaclass CreateObjectAction
Textual description The input classifier cannot be the supertype obeerng generalization set (in a
covering generalization, instances of the supertgmot be directly created).
OCL definition context CreateObjectAction inv:
Generalization.allinstances()->exists(g|g.general = self) implies

c.generalizationSet.isCovering = false

Master in Computing
Universitat Politécnica de Catalunya

Elena Planas

Verifying consistency between structurd and behaviord schemas in UML

WFR6
UML metaclass ReclassifyObjectAction
Textual description The newClassifiers set and the oldClassifiers setlsjoint sets.
OCL definition context ReclassifyObjectAction inv:

self.oldClassifier->excludesAll(self.newClassifier)

WEFR7
UML metaclass ReclassifyObjectAction
Textual description The newClassifiers set cannot contain the supedfjpecovering generalization set.
OCL definition context ReclassifyObjectAction inv:
let: superclasses = Generalization.alllnstances().general
in: self.newClassifier->forAll(c | superclasses->includes(c) implies

c.type.powertypeExtent.isCovering = false)

WFRS8
UML metaclass WriteStructuralFeatureAction
Textual description Values of readOnly attributes are not updated aftteir tinitial value has been
assigned.
OCL definition This rule cannot be expressed in OCL.

Once the previous ill-defined WFRs are fixed andribes ones are added to the metamodel specificatien,
can successfully analyze the well-formedness obacpecifications as a first step of our verifioatprocess.
The basic idea is to apply an algorithm that, feheaction, the algorithm checks the previous WFR.

The graphical overview of this step would be:

1. Analyzing Syntactic Consistency syntactic

Cs WER inconsistencies

Fig. 3.2.1. Analyzing Syntactic Consistency overview.

The input of the step is the CS, in particular ithperative specification of each operatiopincluded in the
CS. For eactlaction /7 op, the method would check the previous WFR and woetdrn as a feedback the
violated rules and the actions that violate them.

As an illustrative example of this step, supposé te have a new operation in our running example. (Fig
2.1.1):

context Person::setEmail(e: Integer) {

AddStructuralFeature(self,email,e);

}

If we apply the previous WFR to the set of actiohghe operatiorsetEmail(in this case, a unique action
AddStructuralFeature(self,email,ejye detect that the rule WFR4 fails, due to the tgpehe input object
(Intege)) is incompatible with the type of the attrib@ail (String).

After this first analysis, we are ready to proceechveitmore semantic verification process involvinmare
complex analysis of the relationship between th@mastspecified in operations and the elements ®fctass
diagram.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

3.3. Determining Execution Paths

The correctness properties that will be presentettienmnext sections are based on an analysis gidksible
execution paths in an operation. An execution psita sequence of actions that may be followed dutirg
operation execution. For trivial operations (i.gpemtions with neither conditional nor loop nodéisg

operation contains a single execution path bugeimeral, several ones will exist.

To compute the execution paths we propose to remrése operation as a Model-Based Control Flow Grap
(MBCFGQ), i.e. a control flow graph based on the madfgirmation instead on the program code, as tauht
control flow graph proposals. Up to know, MBCFGs hbheen used to express UML sequence diagrams [18].
Here we adapt this idea to express the control floactibn-based operations.

For the sake of simplicity, when creating the MBCFGassume that the method implementing the operation
behavior is defined as &equenceNodeontaining an ordered set BkecutableNodedefining the operation
effect, where each executable node may be one ohtification actions described in Section 2.3 ¢otlypes

of actions are ignored during the analysis), a @@l node, a loop node or an additional sequende (see
Fig. 2.3.1). We also use two “fake” nodes, an ihitiade representing the first instruction in thexgtion and

a final node representing the last one. These twde:ia@o not change the operation effect but help in
simplifying the presentation of our MBCFG.

The digrapiMIBCFG,= (Vop Aop) fOr an operation op is obtained by means of thlevidng rules:

» Every executable node opis a vertex invgy,.

* An arc from an action vertex, to v, is created ind,, if v; immediately precedes in an ordered
sequence of nodes.

* A vertexv representing a conditional nodeis linked to the vertices;... v, representing the first
executable node for each clause (i.e. the therselahe else clause,...) im The last vertex in each
clause is linked to the vertex.,; immediately followingn in the sequence of executable nodes. If
does not includes an else clause an arc betwasdV,e.is also added t8,,.

A vertex v representing a loop nodeg is linked to the vertex representing the firse@xtable node for
bodyPartof n and to the vertex,e, immediately followingn in the node sequence. The last vertex in the
bodyPartis linked tov (to represent the iterative behavior).

Fig. 3.3.1 shows the MBCFG of the operations of omning example (Fig. 2.3.2). The initial and fimaldes
are represented as circles. Test conditions ofitiondl and loop nodes are not shown since theyhateart
of our analysis

1 Detection of infeasible paths due to unsatisfiability of tests conditions in if-then or loop nodes is out of scope of this paper. This
SAT-problem can be tackled with current UML/OCL verification tools adding the test condition as an additional constraint in
the model and checking if the model extended with this new constraint is still satisfiable.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

MASTER 0000000000000 000

THESIS Verifying consistency between structurd and behaviord schemas in UML

Operation endOfReview: Operation submitPaper:
\ ?
p:=CreateObject
(UnderReview)
ReclassifyObject ReclassifyObject
(self,Rejected,) (self,Accepted,0)
AddStructuralFeature
(self,accepDate,d)

AddStructuralFeature
(self,comments,com)

Y

AddStructuralFeature
(p.title, tit)

while CreateLink
(IsAuthorOf,p,authorsl[i])

/

O

Operation createSchedule:
Operation dismiss: ®

s[i]:=CreateObject(Session)

\J/ AddStructuralFeature
i s[i],date,dateList[i
DestroyLink > while (sli] ist[i])

(WorkslIn,self,self.department)

Y,
O

AddStructuralFeature
(s[i],room,roomList[i])

CreateLink
(isPresentedAt,acceptPapers[1],s[1])

v
O

Fig. 3.3.1. MBCFG of endOfReview, submitPaper and dismiss operations for the example.

Given aMBCFG,, graphG, the set of execution paths,, for op is defined agx,=allPaths(MBCFG) where
allPaths(G)returns the set of all paths @that start at the initial vertex (the vertex cepending to the initial
node), ends at the final node and does not indlepeated arcs (these paths are also knownaigs|[5]).

Each path inex,, is formally represented as an ordered sequencenoimber,action>node tuples where
numberindicates the number of times that the actamtion is executedn that particular node. Vertices
representing other types of executable nodes acarmied.

The number element in the tuple is only relevamtédations included in loop nodes. For other actitres
number value is always ‘1’. For an actiaction within a loop,numberis computed as follows:

1. Eachwhile-doloop in the graph is assigned a different integeiable valueN,...,Zrepresenting the
number of times the loop may be executed-while loops are assigned the valleN,..., 1+Zto
express that the body is executed at least once.

2. Thenumberof actionis defined as the multiplication of the variabldues of all loop nodes we find
in the path between action and the initial vertexatTis,action will be executedN times ifactionis
included in a top-level loopN*M if actionforms part of a single nested loop, and so forth.

Master in Computing 26 Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

The graphical overview of this step is:

2. Determining Execution Paths
{exeuction paths}
& MBCFG ——

Fig. 3.3.2. Determining Execution Paths overview.

The input of the step is the CS, specifically thipérative specification of each operation includethe CS.
For each operationl CS, the method computes its execution path witlptaeious rules and returns them.

For example, Fig. 3.3.3 shows the execution path§y#®MBCFG graphs shown in Fig. 3.3.1.

OperationendOfReview

p1={}
p2 = {<1,ReclassifyObject(self,Rejected,[1)>, <1,AddStructuralFeature(self,comments,com)>}

ps = {<1,ReclassifyObject(self,Accepted,[1)>, <1,AddStructuralFeature(self,accepDate,d)>}

OperationsubmitPaper

p = {<1,CreateObject(UnderReview)>, <1,AddStructuralFeature(ptitle,tit)>, <N,CreateLink(IsAuthorOf,p,authors[i])>}

Operationdismiss

p = {<1,DestroyLink(WorksIn,self,self.department)>}
Operationcr eateShedule

p = {<N,s:=CreateObject(Session)>, <N,AddStructuralFeature(s[i],date,datesList[i])>,
<N,AddStructuralFeature(s[i],room,roomList[i])>, <1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Fig 3.3.3. Execution paths of operations of the running eXxamp

3.4. Verifying Weak Executability

Once the execution paths of an operation have beempwed, the next step of the method is to cheek th
executability of each path.

An operation isveakly executable when there is a chance that a user may successixdigute
the operation, that is, when there is at leastrtidl system state and a set of arguments for the
operation parameters for which the execution ofdhtons included in the operation evolves
the initial state to a new system state that sasisfill integrity constraints. Otherwise, the
operation is completely useless. We define our ¢xbitity property as weak executability since
we do not require all executions of the operatiorbé successful, which could be defined as
strong executability.

As an example, consider again the operations defioethe running example of Fig. 2.1.1 and Fig..2.3
Clearly,dismissis not executable since every time we try to dedeliek between a persgnand a department
d we reach an erroneous system state whéas no related department, a situation forbiddeth® minimum

Master in Computing
Universitat Politécnica de Catalunya

Elena Planas

Verifying consistency between structurd and behaviord schemas in UML

‘1’ cardinality constraint in th&VorksInrelationship. In order to dismigsfrom d we need to either assign a
new departmend’ to p or to remove itself within the same operation execution.

Instead submitPapeiis weakly executable since we are able to find a&teton scenario where the new paper
can be successfully submitted. Note that, clasgfginbmitPaperas weakly executable does not mean that
every time this operation is executed the new systae will be consistent with the constraints. stdnce,

if a person p passed as a value fordbthorsparameter belong to a department with already bénssions
then the operation execution will fail because thestraintMaxPapersSenwill not be satisfied by the system
state at the end of the operation execution.

The weak executability of an operation is defineteis of the weak executability of its executiothgathe
operation is weakly executable if at least one sfpiaths is weakly executabléExecutability of a patip
depends on the set of actions included in the gdib.basic idea is the dependencies among actioaisis,
some actions require the presence of other actidthin the same execution path in order to leavesystem
in a consistent state at the end of the execufiberefore, to be executable, a patimust satisfy all action
dependencies for every action actiorpirAs we have seen in section 2.4, dependenciesgartiular action
are drawn from the structure and constraints otthss diagram and from the kind of modificationfpemed
by the action type. Following with the previous exd#mphe dismissoperation is not weakly executable
because its single path (see Fig. 3.3.3) is notwgable since the actiobestroyLink(WorksIn,p,djnust be
always followed by aDestroyObject(p)or a CreateLink(Worksin,p,d’}to avoid violating the cardinality
constraint. Since the path includes none of theserss, it is not weakly executable.

The graphical overview of this step is:

cs . -
A 3. Verifying Weak Executability B Boolean +
Executable Paths {repair path}
—- Executability algorithm —

Fig. 3.4.1. Verifying Weak Executability overview.

The input of the step is the CS and the weak exblugpaths computed in the previous step. For each
execution path, the executability algorithm vesfiéit is weak executable and returns a repair faths not
executable.

2 1tis also important to detect and repair all non-executable paths. Otherwise, all executions of the operation that follow one of
those paths will irremediably fail.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

3.4.1. Executability algorithm

In this section we present an algorithm for deteingithe weak executability of an execution path.

The specification of the function is:

Function weak Executability

p — execution path to be verified
Class Diagram, composed by:
set;: Classes
sef Attributes (StructuralFeature)
sels Associations
seter Generalizations Sets
Selonsy Constraints

Input parameters

Output parameters regActionsFor non-executable paths, the function returpsessible action set that
must be included in the path to make it executable.

Extending the path with this sequence is a necesgarglition but not a sufficient
one to guarantee the executability of the path.ohketiin the sequence may have, in
its turn, additional dependencies that must be idersd as well. This can be
detected by reapplying the same function over gteneled path.

Result True, if the pattp is weak executable. False, in other case.

Firstly, the algorithm creates a copymfn pAux (iniPathAuxfunction) and adds the new auxiliary property
available to each node. The properthode.availablekeeps the number of units available for the action
node.action For example, the node= <1,0,p:=CreateObject(Person)#¥om pathp indicate that the path
includes an rf.number=) action of typep:=CreateObject(Person)but, at the moment, there are no units
available f(.available=Q. Initially, the property available takes the walwf the number property
(n.available:=n.numbeéx This property is later used and updated by thpping function.

Roughly, the algorithm works by iterating througte thctions in the path. For each action, it compittes
dependencieggétDependenciefinction). Then, thenappingfunction tries to map each dependency onto the
rest of the actions in the path. Dependencies nopteiely satisfied are added to ttegActionsset and return
as a feedback to the user.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviord schemas in UML

In the following, we present a pseudocode of thetfanahat verifies the weak executability of an exém
path:

function weakExecutability (in: p: Sequence (<number:Integer, action:Action>),
in: sety: Set(Class), in: sety: Set (StructuralFeature), in: setss: Set(Association),
in: setgen: Set(GeneralizationSet), in: setconst: Set(Constraint),
out: regActions: Set (<number:Integer, action:Action >)): Boolean
dependencies: Set(<number:Integer, action:Action>);
node: <number:Integer, available:Integer, action:Action>;
pAux: Sequence(<number:Integer, available:Integer, action:Action>);
pAux := iniPathAux(p);
for each node [0 pAux do
dependencies := getDependencies(node,setq,Seta;, Setas, Setgen, Setconstr);
regActions := regActions U mapping(dependencies,pAux);
endfor
return (regActions = @);
endfunction

In what follows, we explain in more detail the maiepst of the algorithm and show the application to
determine the weak executability of the operatidnsuo running example.

3.4.11. Computing the Dependencies

As we have seen in section 2.4., the concept of digmery determines which actions are required by anoth
action to satisfy the constraints of a class diagra

For computing the dependencies from an actionfuhetion getDependencies founded on the dependencies
table introduced in section 2.4. Given this depengédable,getDependencies(node,sety,Setar,Setas,Setgen,S€tconstr)
function proceeds as follows:

1. Computes the set of dependendegfor the action imode.actioras stated in table 2.4.1.

2. Multiplies the numbervalue in each dependency by the valuenofle.number(the number of
dependencies for an action is proportional to thmlmer of actions of that type in the path).

3. Returnsdep

For instance, in our running example, the gmtDependencies(<1,ur:=CreateObject(UnderReview)u)
return the set of conjunctive actions {<1,AddStructuralFeature(ur title,v)>,
<1,CreateLink(IsAuthorOf,ur®>}, where thev and o, arguments are free variables, since they can be
bounded to any object with the appropriate type.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

3.4.1.2. Determining the Required Actions

For each dependendyreturned bygetDependencidsthe mapping function must first check whetderan be
mapped in one of the actions in the path and, tif addd to the set of required actionsgActionsthat will be
returned as a feedback to the user.

Roughly, we consider that two actions map correctlgmits action type and the model elements areahes
and its parameters can be bound correctly. For pkam consider the path
p={<1,d:=CreateObject(Department)>,<1,AddStructuralFese(d,name,'ComputerScience’)>} and the

dependency1,d:=CreateObject(Department)>> <1,AddStructuralFeature(d,name,v)3n this case, the
dependee action <{,AddStructuralFeature(d,name,y>can be mapped onto the second node pin
(<1,AddStructuralFeature(d,name,’Computer Sciencg’)since the argumentis a free variable and it can
take the valu&Computer Science’

It is worth to note that in some situations two @rendependee actions can be mapped (i.e. shate) same
action in the path. For example, consider the canté our running example. Suppose that we have an
operation with a path p={<N,CreateLink(IsAuthorOf,paper,authors[i]>} In this case, each
CreateLink(IsAuthorOf,paper,authors[i]) need a DestroyLink(IsAuthorOf,paper,...) or a
paper:=CreateObject(UnderReviewpr any subclass of clag%apel) action in the same path. The first
dependency is not shareable, since €aaateLink(IsAuthorOf,paper,..needs a different destroy link to keep
the system consistent. Instead, the alternativeertgncypaper:=CreateObject(UnderRevieviy shareable
since theN create links may rely on the same new created otgestisfy the multiplicity dependencies.

For this purpose, we add additional column (thirduem) in the dependence’s table to indicate if a
dependency can be shareable or not.

Table 3.4.1. Table from 2.4.1 with the additional colurBhareable

Action Required Actions Shareable

o=CreateObject(c) AddStructuralFeature(o,at,v) for each non-derived and N
o}
mandatory attribute at of ¢ or of a superclass of ¢

AND <min(c,as),CreateLink(as,0,0,)> dependencies for
each non-derived association as where c or a No
superclass of ¢ has mandatory participation

DestroyObject(o:c) <min(c,as),DestroyLink(as,0,0,)> for each non-derived
as where ¢ or a superclass of ¢ has a mandatory No

participation

CreateLink(as,01:C1,02:C2) DestroyLink(as,0:,03) (if min(c;,as) <> max(c,as)) No
(when min(cy,as) = max(cy,as)) OR CreateObject(0;) Yes
to be repeated for the other end OR ReclassifyObject(0:,¢1,2) Yes
DestroyLink(as,01:C1,02:C2) CreateLink(as,01,0s) (if min(cz,as) <> max(c,as)) No
(when min(cy,as) = max(cy,as)) OR DestroyObject(0;) Yes

3 Note that, as we have seen before, getDependencies may return not just a single set of dependencies but several alternative
ones (all of them sufficient to reach a consistent state). In those cases, the mapping function should check if at least one of
the alternative dependencies sets can be successfully mapped onto the path. For the sake of simplicity this situation is not
described here.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviord schemas in UML

to be repeated for the other end OR ReclassifyObject(01,9,c1) Yes
AddStructuralFeature(o,at,v) - -

ReclassifyObject(o,{nc},{oc}) AddStructuralFeature(o,at,v) for each non-derived and .
[0}
mandatory attribute at of each class ¢ [nc

AND <min(c,as),CreateLink(as,0,03)> for each ¢ O nc
and for each non-derived association as where ¢ has a No

mandatory participation

AND ReclassifyObject(o,9,{cc?}) for a cc’ such that [tc

0O nc and cc’ 0 oc and cc # cc’ and cc and cc’ are .
es

subclasses of a common disjoint and complete

generalization set and o was instance of cc’

AND <min(c,as),DestroyLink(as,0,03)> for each class c
in oc and for each non-derived association as where ¢ No

has a mandatory participation

AND ReclassifyObject(o,{cc’},d) for a cc’ such that cc’

0 nc and [kc O oc and cc # cc’ and cc and cc’ are v
es

subclasses of a common disjoint and complete

generalization set and o was instance of cc

More formally, we consider that a dependee adii@ttioncan be mapped onto a nadé the path when the
following conditions are satisfied:

1. The action type ofl.actionandn.actionis the same (e.g. both &eeatelLinkactions).

2. The model elements modified by the actions coin¢elg. both create new links for the association
assoc).

3. All instance-level parameters dfactioncan be bound to the parameters iaction (free variables
introduced by the rules may be bound to any pammetiue inn.action fixed ones must have the
same identifier in both actions).

4. n.numberd.numbet (for dependencies that are shareable)navailablexd.number (for non-
shareable actions). In this latter case, the avilitlavalue of the node is decreased accordintheo
number of “consumed” actions:available:=n.available-d.number

Each time a mapping for a dependency is foundhafdependency is not shareable, the available pyopke
the mapping node is diminished (to avoid future etefencies map again to the same action) ik is
updated. Dependencies that do not map with the wedution path are returned by the functisappingand
added to theegActionsset.

4 This comparison may include abstract variables (e.g. when n is part of a loop). In those cases, the d.action can be mapped iff
there is a possible instantiation of the abstract variables that satisfies the inequality comparison.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

3.4.13. Applying the algorithm

In the following, the execution of the executabilfinction for the previous execution paths is dethiTo
facilitate its understanding, free variables aevahinitalics.

Table 3.4.2. Weak Executability for thendOfRevievoperation.

Operation: endOfReview

| p1={}
nput
pAux = {}
regActions =
Output gActions = {}

executability = true

—_ p2 = {<1,ReclassifyObject(self,{Rejected},[])>, <1,AddStructuralFeature(self,comments,com)>}
npu
5 pAux = {<1,1,ReclassifyObject(self {Rejected},[1)>, <1,1,AddStructuralFeature(self,comments,com)>}

node = <1,1,ReclassifyObject(self,{Rejected},[])>
dependencies = {<1,AddStructuralFeature(self,comments,v)>,
<1,ReclassifyObject(self,d,{UnderReview})>}

mapping:
<1,AddStructuralFeature(self,comments,v)> maps with the second node of pAux
<1,ReclassifyObject(self,d,{UnderReview})> does not map with any node of pAux

regActions = {<1,ReclassifyObject(self,d,{UnderReview})>

pAux = {<1,1,ReclassifyObject(self,{Rejected},[])>, <1,0,AddStructuralFeature(self,comments,com)>}

Iteration 1

node = <1,0,AddStructuralFeature(self,comments,com)>

dependencies ={ }

regActions = { <1,ReclassifyObject(self,d,{UnderReview})> }

pAux = {<1,1,ReclassifyObject(self {Rejected},[1)>, <1,0,AddStructuralFeature(self,comments,com)>}

Iteration 2

outbut regActions = {<1,ReclassifyObject(self,d,{UnderReview})>}
utpu
s executability = false

ps = {<1,ReclassifyObject(self {Accepted},[])>, <1,AddStructuralFeature(self,accepDate,d)>}

pAux = {<1,1,ReclassifyObject(self {Accepted},00)>, <1,1,AddStructuralFeature(self,accepDate,d)>}

node = <1,1,ReclassifyObject(self,{Accepted},[1)>

dependencies = {<1,AddStructuralFeature(self,accepDate,v)>,
<1,ReclassifyObject(self,d,{UnderReview})>}

Input

mapping:
Iteration 1 <1,AddStructuralFeature(self,accepDate,v)> maps with the second node of pAux
<1,ReclassifyObject(self,d,{UnderReview})> does not map with any node of pAux

regActions = {<1,ReclassifyObject(self,d,{UnderReview})>}

pAux = {<1,1,ReclassifyObject(self,{Accepted},[1)>, <1,0,AddStructuralFeature(self,accepDate,d)>}
node = <1,0,AddStructuralFeature(self,accepDate,d)>

dependencies ={ }

Iteration 2
regActions = { <1,ReclassifyObject(self,d,{UnderReview})> }
pAux = {<1,1,ReclassifyObject(self,Accepted,[1)>, <1,0,AddStructuralFeature(self,accepDate,d)>}
regActions = {<1,ReclassifyObject(self,@,{UnderReview})>}
Output

executability = false

The execution patip, is weakly executable, since it does not contain actyon. On the other hand, the
execution pathp, andps are not weakly executable since they always violaedisjointness constraint of the
generalization. The action required to make the hgat executable is
ReclassifyObjectAction(self,@d,{UnderReviewm}poth cases.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviord schemas in UML

Table 3.4.3. Weak Executability for theubmitPapewoperation.
Operation: submitPaper

p = {<1,p:=CreateObject(UnderReview)>, <1,AddStructuralFeature(p,title,tit)>,
<N,CreateLink(IsAuthorOf,(p,authors]i])>}

Input
4 pAux ={<1,1,p:=CreateObject(UnderReview)>, <1,1,AddStructuralFeature(p,title,tit)>,
<N,N,CreateLink(IsAuthorOf,p,authors[i])>}
node = <1,1,p:=CreateObject(UnderReview)>
dependencies = {<1,AddStructuralFeature(p,title,v)>, <1,CreateLink(IsAuthorOf,p,0,)>}
mapping:
. <1,AddStructuralFeature(p,title,v)> maps with the second node of pAux
Iteration 1

<1,CreateLink(IsAuthorOf,p,02)> maps with the third node of pAux

regActions = { }
pAux = {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>,
<N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>}

node = <1,0,AddStructuralFeature(ptitle,tit)>
dependencies ={ }
lteration 2 regActions ={ }
pAux = {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>,
<N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>}

node = <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>
dependencies = { <N,DestroyLink(IsAuthorOf,p,03)> OR <N, o:=CreateObject(Paper)> }

mapping:
<N,DestroyLink(IsAuthorOf,p,03)> does not map with any action of pAux.
Iteration 3 <N,o0:=CreateObject(Paper)> maps with the first node of pAux, since this dependence is shareable and
UnderReview is a subclass of Paper.

regActions = { }

pAux = {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>,
<N,N-1,CreateLink(IsAuthorOf,(p,authorsli])>}

regActions = { }

Output .
executability = true

The execution patp is weakly executable, since all actions requiredcantained in the execution path.

Table 3.4.4. Weak Executability for thdismissoperation.

Operation: dismiss

p = {<1,DestroyLink(WorksIn,self,self.department)>}

Input
s pAux = {<1,1,DestroyLink(WorksIn,self,self.department)>}

node = <1,1,DestroyLink(WorksIn,self,self.department)>
dependencies = { <1,CreateLink(WorkslIn,self,0,)> OR <1,DestroyObject(self)> }

mapping:
Iteration 1 <1,CreateLink(WorkslIn,self,0,)> does not map with any node of pAux
<1,DestroyObject(self)> does not map with any node of pAux

regActions = { <1,CreateLink(WorkslIn,self,0,)> OR <1,DestroyObject(self)> }
pAux = {<1,1,DestroyLink(WorksIn,self,self.department)>}
regActions = { <1,CreateLink(WorkslIn,self,0,)> OR <1,DestroyObject(self)> }

Output .
executability = false

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

This execution path is not executable (and thugheethe dismiss operation since this is its opath),
because removing the link violates the cardinalipstraint ‘1’ of Workslnassociation. Adding the required
actionsCreateLink(WorkslIn,selfp (i.e. adding a new link for the dangling object) @RstroyObject(self)
(i.e. destroying it) returned by our method wouldkmthe path executable.

Table 3.4.5. Weak Executability for thereateSheduleperation.

Operation: createSchedule

p = {<N,s:=CreateObject(Session)>, <N,AddStructuralFeature(s,date,dateList[i])>,
<N,AddStructuralFeature(s,room,roomList[i])>, <1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}
Input . . -

pAux = {<N,N,s:=CreateObject(Session)>, <N,N,AddStructuralFeature(s,date,dateList[i])>,
<N,N,AddStructuralFeature(s,room,roomList[i])>,
<1,1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

node = <N,s:=CreateObject(Session)>

dependencies = {<N,AddStructuralFeature(s,date,v1)>, <N,AddStructuralFeature(s,room,v,)>,

<N,CreateLink(isPresentedAt,vs,sli])> }

mapping:
<N,AddStructuralFeature(s,date,v,)> maps with the second node of pAux
<N,AddStructuralFeature(s,room,v,)> maps with the third node of pAux
Iteration 1 <1,CreateLink(isPresentedAt,vs,s[i])> maps with the fourth node of pAux and <N-1,
CreateLink(isPresentedAt,vs,s[i])> cannot map with any node due to the fault of units

regActions = { <N-1,CreateLink(isPresentedAt,vs,s[i])> }

pAux = {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,
<N,0,AddStructuralFeature(s,room,roomList[i])>,
<1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

node = <N,0,AddStructuralFeature(s,date,datesList[i])>

dependencies ={ }

regActions = { <N-1,CreateLink(isPresentedAt,vs,s[i])> }

pAux = {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,
<N,0,AddStructuralFeature(s,room,roomList[i])>,
<1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Iteration 2

node = <N,0,AddStructuralFeature(s,date,roomList[i])>

dependencies ={ }

regActions = { <N-1,CreateLink(isPresentedAt,vs,s[i])> }

pAux = {<N,N,s:=CreateObject(Session)>, <N, 0, AddStructuralFeature(s,date,dateList[i])>,
<N,0,AddStructuralFeature(s,room,roomList[i])>,
<1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Iteration 3

node = <1, 0, CreateLink(isPresentedAt,acceptPapers[1],s[1])>

dependencies ={ }

regActions = { <N-1,CreateLink(isPresentedAt,vs,s[i])> }

pAux = {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,
<N,0,AddStructuralFeature(s,room,roomList[i])>,
<1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Iteration 4

regActions = { <N-1,CreateLink(isPresentedAt,vs,s[i])> }

Output .
executability = false

The execution path is not weakly executable since it always violates ¢hrdinality constraint ‘1’ of paper
role in IsPresentedAt link. The action required to make the path exddetais one
CreateLink(isPresentedAt,8[i]) action for each session created, whereepresents an accepted paper. Note
that this set of actions can be included insidddbp.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

MASTER 0000000000000 000

THESIS Verifying consistency between structurd and behaviord schemas in UML

3.9. Verifying Completeness

Users evolve the system state by executing thef sgtevations defined in the class diagram.

We consider that an operation set isomplete when all possible changes
(inserts/updates/deletes/...) on the system statdoegrerformed through the execution of the
operations defined in the class diagram. Otherwiserd will be parts of the system that users
will not be able to modify since no available opgenas address their modification.

For instance, the set of operations defined in Zig.2 is incomplete since operations to removeragn or to
create and remove departments are not specifiesh@uathers.

More formally, an operation seet,={op,..., OR} is complete when for each modifiable elemeirt the class
diagram and each possible actartion modifying the population o, there is at least a weak executable path
in someop that includesction

The graphical overview of this step is:

Ccs 4. Verifying Completeness
+ Boolean +
Executable Paths {CS elements} should be included
——- Completeness algorithm —

Fig. 3.5.1. Verifying Completeness overview.

The input of the step is the CS and the weak exblufgaths computed in the step 2. For each modfiab
element e defined in the CS, the completenessitigochecks if exists an action included in somecetion
path that can modify the state of e and returresfagdback the elements that cannot be modified.

3.9.1. Completeness algorithm

In this section we present an algorithm for deteingithe completeness of a set of operations.

The specification of the function is:

Function Completeness

Input parameters ~ CS. composed by:
se};: Classes

sety: Attributes (StructuralFeature)
sets Associations
setenr Generalizations Sets
set,,. Operations
exPaths set of execution paths froset,

Output parameters feedbaekFor incomplete operations sets, the output pat@nfeedback contains
the set of actions that should be included in sooperation to satisfy the
completeness property.

Result True, if the set of operations is complete. Falsether case.

Master in Computing 36 Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

Roughly, the algorithm proceeds as follows:
1. Obtains all different actions of weak executable paththeset, operations setgetExistingActions
function).

2. Computes the set of actions that should be providete system users in order to be able to modify
all parts of the system state, depending on thectstre and properties of the class diagram
(getRequiredActioniinction). Next subsection provides the rules fetedmining such actions.

3. Subtracts the existing actions from required astigequiredActionsSet — existingActionsSet =
feedbak to obtain the actions that should be include. Nb&g, if the result is an empty set, then the
set, is complete.

A function for checking the completeness of setapésfollowing:

function completeness (in: sety: Set(Class), in: sety: Set (StructuralFeature), in: setas: Set(Association),
in: setgen: Set(GeneralizationSet), in: setq,: Set (Operations),
in: exPaths: Set (Sequence (<number:Integer, action:Action>)), out: feedback: Set(Action)): Boolean
requiredActionsSet, existingActionsSet: Set(Action);
action: Action;
feedback := @;
existingActionsSet := getExistingActions(exPaths);
requiredActionsSet := getRequiredActions(set, Seta, Setas, Setgen);
for each action O requiredActionsSet do
if (action O existingActionsSet) then feedback := feedback U {action}; endif
endfor
return (feedback = @);
endfunction

In what follows, we explain in more detail the maiepst of the algorithm and show the application to
determine the weak of the operations of our runexemple.

3.9.1.1. Computing the Existing Actions

The set of actions returned ggtExistingActionss composed by those actions that are includesbine weak
executable path of the sstPaths

3.9.1.2. Computing the Required Actions

The set of actions returned IyetRequiredActionss computed by first determining the modifiable dab
elements in the class diagram (i.e. the elementsekialue or population can be changed by the usena
time) and then deciding, for each modifiable eletnre possible types of actions that can be applreit.

The modifiable elements can be summarized in:

e Class: A class is modifiable as long as it is not an ustclass and it is not the supertype of a
complete generalization set (instances of such rgyms must be created/deleted through their

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviord schemas in UML

subclasses). For each modifiable classsers must be provided with the acti@rsateObject(cand
DestroyObject(0:d)to create and remove objects from

« Attribute (StructuralFeaturg An attribute is modifiable when it is not deriVe&for each modifiable
attributeattr the actionAddStructuralFeature(o,attr,\i$ necessary.

» Association: An association is modifiable if all its member srate not derived. For each modifiable
associatiorasso¢ we need the actior@reateLink(assocp,) andDestroyLink(asso$p,).

e Generalization: Generalization sets are always modifiable. For gdizations sets we need a set of
actionsReclassifyObject(o,{nc},{oc}among the classes involved in the generalizatiospecialize
(generalize) the objectto (from) each subclass of the generalization.

3.9.13. Applying the algorithm

In the following, the execution of the completen&sxction for our running example (Fig. 2.1.1 and.2) is
detailed.

The operationgetExistingActiongetrieves all different actions of weak executapdghs of the operations
endOfReviewsubmitPaperdismissandcreateShedule

existingActionsSet = { ur:=CreateObject(UnderReview), AddStructuralFeature(urtitle,t), CreateLink(IsAuthorOf,p,ur) }

The operation getRequiredActions returns the follgnget of actions (free variables are showitailics):

requiredActionsSet = {

//One CreateObject(Class) action for each modifiable class of the diagram:
a:=CreateObject(Accepted), r.=CreateObject(Rejected), ur:=CreateObject(UnderReview), p:=CreateObject(Person),
d:=CreateObject(Department), s:=CreateObject(Session),

//One DestroyObject(obj) action for each modifiable object of the diagram:
DestroyObject(a), DestroyObject(r), DestroyObject(ur), DestroyObject(p), DestroyObject(d), DestroyObject(s),

//One AddStructuralFeature(obj,att,v) action for each modifiable attribute att:
AddStructuralFeature(a,title,t), AddStructuralFeature(a,accepDate,d), AddStructuralFeature(r,comments,c),
AddStructuralFeature(p,name,n), AddStructuralFeature(p,email,e), AddStructuralFeature(d,name,n),
AddStructuralFeature(s,date,d), AddStructuralFeature(s,room,s),

//One CreateLink(as,p1,p2) action for each modifiable association as:
CreateLink(IsAuthorOf,p,a), CreateLink(WorkslIn,p,d), CreateLink(isPresentedAt,a,s),

//One DestroyLink(as,p1,p2) action for each modifiable association as
DestroyLink(IsAuthorOf,p,a), DestroyLink(WorksIn,p,d), DestroyLink(IsPresentedAt,a,s),

/IOne ReclassifyObject(o,nc,oc) for each classes involved in the generalization to specialize (generalize) the object o to

(from) each subclass of the generalization:
ReclassifyObject(ur,{Accepted},{UnderReview}), ReclassifyObject(ur,{Rejected},{UnderReview}),
ReclassifyObject(a,{UnderReview},{Accepted}), ReclassifyObject(a,{Rejected},{Accepted}),
ReclassifyObject(r,{UnderReview} {Rejected}), ReclassifyObject(r,{Accepted},{Rejected}) }

5ora generic operation DestroyObject(o:OclAny) to remove objects of any class.
6 Read-only attributes are considered modifiable because users must be able to initialize their value (and similar for read-only
associations).

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

0000000000000 000 MASTER

Verifying consistency between structurd and behaviordl schemas in UML THESIS

Therefore, the output paramefeedbackcontains the set of actions that should be indudesome operation
to satisfy the completeness property.

feedback = {
a:=CreateObject(Accepted), r.=CreateObject(Rejected), p:=CreateObject(Person), d:=CreateObject(Department),
s:=CreateObject(Session), DestroyObject(a), DestroyObject(r), DestroyObject(ur), DestroyObject(p), DestroyObject(d),
DestroyObject(s),
AddStructuralFeature(a,accepDate,d), AddStructuralFeature(r,comments,c), AddStructuralFeature(p,name,n),
AddStructuralFeature(p,email,e), AddStructuralFeature(d,name,n), AddStructuralFeature(s,date,d),
AddStructuralFeature(s,room,s), CreateLink(WorksIn,p,d), CreateLink(isPresentedAt,a,s),
DestroyLink(IsAuthorOf,p,a), DestroyLink(WorksIn,p,d), DestroyLink(IsPresentedAt,a,s),
ReclassifyObject(ur,{Accepted}, {UnderReview}), ReclassifyObject(ur, {Rejected}, {UnderReview}),
ReclassifyObject(a,{UnderReview}, {Accepted}), ReclassifyObject(a, {Rejected}, {Accepted}),
ReclassifyObject(r,{UnderReview}, {Rejected}), ReclassifyObject(r, {Accepted}, {Rejected}) } }

3.6. Detecting Redundant Paths

The last step of our method consists in detectnédnt paths.

An action (or set of actions) in an execution pathedundant if its effect on the system state is
subsumed by the effect of later actions in the saatie, phat is, the final system state when
executing the operation following that path would éxactly the same with or without the
redundant action.

The aim of this step is detect the redundant ast#&md inform the designer so that they can remofvern the
path.

The graphical overview of this step would be:

5. Detecting Redundant Paths B

CcS redundancies

—- Redundancy patterns ——

Fig. 3.6.1. Detecting Redundant Paths overview.

The input of the step is the CS, specifically tmpérative specification of each operation includethe CS.
For each set of actions, the method would deteittfdllow some redundancy pattern and would retsraa
feedback the actions (or set of actions) that edemdant.

An operation specification may be redundant at tditferent levels:

1. Some actions in an execution path are redundant.
2. The complete execution path is redundant.

3. The operation as a whole is itself redundant.

Master in Computing 39 Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviord schemas in UML

3.6.1. Redundancy in Actions

We have identified several patterns that detedh sadundant actions. For each pattern we providesailple
non-redundant alternative path. However, the moditinaof the paths cannot be fully automatic sinfce,
instance, a redundant actiaotion may not be redundant in a different path alsauidiclg action or may affect
the execution of other actions in the path. Nevégtise we believe it is worth to at least point ougsth
redundant actions to the designer.

Table 3.6.1. Patterns of redundant paths.

Redundant path Equivalent path Redundancy

{..., AddStructuralFeatureValue(o,at,v), {...)
The second update overwrites

..., AddStructuralFeatureValue(o,at,v,), AddStructuralFeatureValue(o,at,v>) A

.} -}

{..., 0 = CreateObject(Cl),

{:)
..., DeleteObject(0), ...} No need of
creating/updating/reclassifying
{..., AddStructuralFeatureValue(o,at,v),
(.} an object that it is going to be
-, DeleteObject(0), ...} removed within the same
{..., ReclassifyObject(o,{nc},{oc}), execution.
{..}
..., DeleteObject(0), ...}
{..., CreateLink(as,p1,p2) x Why creating a link that it is
..., DeleteLink(as,p,ps), ...} going to be removed?
(.... ReclassifyObject(o,Cl.Cl). The last reclassification -
ReclassifyObjectAction(o,Cl,,Cl) removes the effect of the first
..., ReclassifyObjectAction(0,Cl;,Cl,), ...} one
! :

{..., ReclassifyObject(o,Cl,,Cl,), .
{..., ReclassifyObject (0,Cls,Cl,),...} Transitive property
..., ReclassifyObjectAction(0,Cl;,Cl,), ...}

As an illustrative example of this step, supposéweahave a new operation in our running example:

context UnderReview::removePaper() {
ReclassifyObject(self {Rejected},{UnderReview});
DeleteObject(self);

}

As we can see in the fourth pattern, the previousradipg includes a redundant action,
ReclassifyObject(self,{Rejected},{UnderReviewBcause it is redundant reclassifying an obfettit is going
to be removed within the same execution.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

0000000000000 000 MASTER

Verifying consistency between structural and behavioral schemas in UML THESIS

3.6.2. Redundancy in Execution Paths

An execution patlp, is redundant with respect to an execution gat(of the same or a different operation)
whenp, is subsumed by, i.e. when all actions ip; appear irp, with the same or lower number. This may be
perfectly correct (e.gp; may appear in a basic operation whose behavidsagsiacluded in a more complex
one) but it should be highlighted as suspiciouscigily when it happens also thtis redundant respect g,
meaning that both paths have exactly the samenactio

As an illustrative example of this step, supposéwehave the follow new operations in our runningnepiz:

context Paper::setTitle(tit:String) {
if (self.oclisTypeOf(UnderReview)) AddStructuralFeature(self title,tit);
else
if (self.ocllsTypeOf(Accepted)) AddStructuralFeature(selftitle,tit);
else
if (self.oclisTypeOf(Rejected)) AddStructuralFeature(self title,tit);
endif

endif

}

Obviously, two of the three execution paths are rddat) since all execution paths modify the sammels
with the same value.

3.6.3. Redundancy in Operations

We say that an operati@p may be redundant when all its execution paths atengant, especially when all
its paths can be mapped to the paths of the othenationop,. Even if both operations make sense, designer
could probably merge them to favor the simplicityree schema.

As an illustrative example of this step, supposéwehave the follow new operations in our runningnepie:

context Paper::setTitle(tit:String) {
AddStructuralFeature(selftitle,tit);

}

contextPaper::createPaperUnderReview(tit: String) {
p:Paper;
p := CreateObject(Paper);
AddStructuralFeature(selftitle,tit);
ReclassifyObject(self {UnderReview} {})

}

In this case, the operati@etTitlemay be redundant, since its execution path camédggped to the execution
path ofcreatePaperUnderReview

Master in Computing 41
Universitat Politécnica de Catalunya

Elena Planas

MASTER 0000000000000 000

THESIS Verifying consistency between structural and behavioral schemas in UML

42

Master in Computing
Universitat Politécnica de Catalunya

Elena Planas

Verifying consistency between structurd and behaviordl schemas in UML

4. Related Work

The properties that we verify in this work have betried previously in more or less depth. In tHew, we
summarize the main related works for each property.

SYNTACTIC CONSISTENCY

The syntactic consistency of UML artifacts has bsenlied in several works. [35], for example, defifms
constraints that must be checked in order to gteeathat a dynamic diagram is consistent with asclas
diagram. [13] defines a set of consistency rulesvldidate a UML model. [42] uses the Description lcsg
formalism [12] for maintaining consistency betweeralving) UML models. Our method complements these
purposes adding new rules at metamodel level.

EXECUTABILITY

In general, the verification of UML specifications done through two steps: (1) translating the UML
specification in a specific formal language and \{@)ifying the obtained formal specification by meaof a
suitable technique.

The formal language and the technique used depetigegproperties we want to verify. For verifying dymic
properties (like executability) a technique widesed isModel Checking

Model Checking is an approach emerged for verifygguirements, mainly in developing reliable sofivéor
concurrent systems. The essential idea behind nadelking is shown in Fig. 4.1. A Model-Checking tool
accepts system requirements or designs (called Is)caled a dynamic property (called specificatidmgttthe
final system is expected to satisfy. The tool thamuputs yes if the given model satisfies the given
specifications and generates a counterexamplevaigeerThe counterexample details why the model doés n
satisfy the specification. By studying the courtaraple, you can pinpoint the source of the errdhéamodel,
correct the model, and try again. The idea is blyag¢nsuring that the model satisfies enough sygi@perties,
we increase our confidence in the correctness afnibeel.

Roughly, model checkers work by generating and airadyall the potential operation executions at tiome
and evaluating if for each (or some) execution ghesn property is satisfied. Even though a numbler o
optimizations are available in state-of-the-art elocheckers (as partial order reduction, state cesgion,
abstraction and so forth), verification methodseisasn model checking suffer from the state explosio
problem (i.e. the size of the problem grows expadaéntin terms of the size of the model and thusgéneral

it is not possible to explore all possible exeausio This implies that usually results provideditiyse methods
are not conclusive, i.e. absence of a solution @aha used as a proof, that is, an operation fledsas not
weakly executable may still have a correct executiotside the search space explored during theicatign.
Instead, our analysis is static and thus no anaméimulation of the model is required.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviord schemas in UML

i Model Answer
Model a 1
(system requirements)| §eckiw B e sale

Y g / C tool // specification

L A

" Counter-example if model
does not satisfy specification

Specification
(system property)

Fig. 4.1. Model-Checking overview.

There are a variety of tools that implements Madkkcking technique. One of the most popular and-ope
source is the SPIN Model Checker [20]. SPIN supparfsrmal language to specify systems descriptions,
called PROMELA (a PROcess MEta LAnguage). Another Mddeécking-based tool is ProB [38], that
supports the B-Method [1].

Model Checking approach has been used in the comtedehavior UML specifications, mainly in the
verification of state machines [23, 22, 28], agyivdiagrams [16] and on the consistent interrefesiop
between them and/or the class diagram [21, 11,3]9, 4

As we have seen, to check the executability of amatipa (or, in general, any property that can beressed
as a Linear Temporal Logic formula — LTL [14]) piews works rely on the use of Model Checking
techniques. Many of these works restrict the exprtgof the supported UML models. In fact, mosttbe
methods above do not accept the specification dracin the input behavior specifications, whicteiactly
the focus of our method. A remarkable difference amfr method is that, since do not require
animation/simulation and do not restrict the larggjas efficient and complete: the existence ablat®n can
always be determined.

As a trade-off our method is unable to verify adriyrtemporal properties. We believe our method ¢dd
used to perform a first correctness analysis, b&siensure a minimum quality level in the operation
specification. Then, designers could complement wbefying process proceeding with a more detailed
analysis adapting current approaches presentedeaiothe verification of operations specified witttian
semantics. For instance, example execution tradwsnhake the operation reach an error state would he
designers to detect particular scenarios not yetogpiately considered in the operation.

Moreover, there is also a difference in the kindesfdback provided to the designer when the exeitityab
property is not satisfied. Model checking tools abée to provide example execution traces thatateatisfy
the integrity constraints. In contrast, our methpwdvides a more valuable feedback (at least fdrs&level
correctness analysis) since it suggests how to ehdrggoperation specification in order to repadr detected
inconsistency.

COMPLETENESS

Regarding this property, we would like to remark thatthe best of our knowledge, our work is thet finse
proposing the verification of the completeness prigpof a behavioral schema.

REDUNDANCY

Redundant property has been studied in severapgetiges. [10] identify redundancies between Seqgeienc
Diagrams and declarative contracts of operations.cinputes the net effect, that is, defines stmattu
inconsistencies (redundancies) between constructiparations (actions), similar to our detection of
redundancies in actions.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

Verifying consistency between structurd and behaviordl schemas in UML

9. Conclusions and Further Work

We have presented an efficient and decidable mefiwoderifying the correctness of imperative opienas
specified using the action semantics formalism, oh¢éhe key elements in all MDD and UML Executable
methods. It is worth to note that our method ondats a subset of the actions provided by UML, bist set
can be extended to tackle the whole range of actions

Our method is able to verify several properties & tbehavior specifications: syntactic consistency,
executability, completeness and redundancy. Allpteesess is based on a static analysis of the atalcnd
behavioral schemas and, for verify the executabilg also based on the dependencies among thenacti
included in the operation specification. For veriftye executability model animation/simulation ist no
performed during the verification process, and thus method does not suffer from the state-explosi
problem of current model-checking based methods A8 a trade-off, our method is not adequate for
evaluating general LTL properties.

We believe that the characteristics of our metha#tarit especially suitable for its integration uwrrent CASE
and code-generation tools, as part of the defaatisistency checks that those tools should contisiyou
perform to assist designers in the definition dfveare models. Moreover, the valuable feedback plediby
our method helps designers to correct the detesreas since our method is able to suggest a desspair
procedure instead of just highlighting the problem.

As a further work, we plan to extend the set of astionr method deals with and to apply our technidaes
other kinds of UML behavior specifications, as sta@chines and interactions, that may also includ®ra
sequences (for instance, as part of a state ti@msit

Moreover, we would like to complement our technigbggroviding an automatic transformation between the
initial action semantics specification and the inpanguage of a popular model-checker tool (as the
PROMELA language [20] so that, after an initial fiegtion with our techniques, designers may get aemo
fine-grained (though partial) analysis by meansapplying model checking techniques on the operation
specification.

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

MASTER 0000000000000 000

THESIS Verifying consistency between structural and behavioral schemas in UML

46

Master in Computing
Universitat Politécnica de Catalunya

Elena Planas

Verifying consistency between structurd and behaviordl schemas in UML

6. References

=

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Abrial, J. R.The B-Book: Assigning Programs to MeaninGambridge University Press. (1996)

Atkinson, C., Kiihne, TModel-Driven Development: A Metamodeling Foundati®fEE Software 20(5), 36-41
(2003)

Bauerdick, H., Gogolla, M., Gutsche, Betecting OCL Traps in the UML 2.0 Superstructura: Bxperience
Report Int. Conf. on the Unified Modeling Language, LN@G273, 188-197 (2004)

Blanc, X., Mougenot, A.Detecting Model Inconsistency through Operationd®hdlodel Constructianint.
Conf. on Soft. Eng., 511-520, (2008)

Bollobas, B.Modern graph theorySpringer (2002)
Cabot, J.From Declarative to Imperative UML/OCL Operation Sifieations LNCS, 4801, 198-213 (2007)

Cabot, J., Gomez, (eriving Operation Contracts from UML Class Diagranist. Conf. on Model Driven
Engineering Languages and Systems, LNCS, 4735, 106¢2007)

Raistrick C., Francis P., Wright 84odel driven architecture with executable UMChapter 10 (2004)

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y.,tleH: Progress on the State Explosion Problem in Model
Checking Informatics - 10 Years Back. 10 Years Ahead. Rhélih, LNCS, 176-194 (2001)

Costal, D., Sancho, M. R., Teniente, Bnderstanding Redundancy in UML Models for Objedefted
Analysis Int. Conf. on Advanced Information Systems Engiimgg 659-674 (2002)

Gallardo, M.M., Merino, P., Pimentel, Bebugging UML Designs with Model Checkinfpurnal of Object
Technology, 1(2), 101-117 (2002)

Donini, F. M., Lenzerini, M., Nardi, D., Scheh.: Reasoning in Description LogicBrinciples of Knowledge
Representation, 191-236 (1996)

Egyed, A.instant Consistency Checking for the UNtht. Conf. on Soft. Eng., 381-390 (2006)
Emerson, E. ATemporal and Modal LogitHandbook of Theoretical Computer Science, 8, 99E21(1990)

Engels, G., Kuster, J. M., Heckel, R., Groen@meg..: A Methodology for Specifying and Analyzing
Consistency of Object-Oriented Behavioral Mod&lEM SIGSOFT Software Engineering Notes, 26, 186-19
(2001)

Eshuis, R.:Symbolic Model Checking of UML Activity Diagram&CM Transactions on Soft. Eng. and
Methodology, 15, 1-38 (2006)

France, R. B., Ghosh, S., Dinh-Trong, T., Solp&rgModel-Driven Development using UML 2.0: Promises
and Pitfalls COMPUTER, 59-66, (2006)

Garousi, V., Briand, L., Labiche, YControl Flow Analysis of UML 2.0 Sequence Diagrafisropean Conf. on
Model Driven Architecture-Foundations and Applicais, LNCS, 3748, 160-174 (2005)

Graw, G., Herrmann, PTransformation and Verification of Executable UMLodi&ls Electronic Notes in
Theoretical Computer Science, 101, 3-24 (2004)

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

20.
21.

22.

23.

24.

25.

26.
27.
28.

29.

30.

31.
32.
33.
34.

35.

36.
37.

38.
39.

40.
41.

42.

43.

Verifying consistency between structurd and behaviord schemas in UML

Holzmann, G. JThe spin model checker: Primer and reference marddison-Wesley Professional (2004)

Knapp, A., Wuttke, JModel Checking of UML 2.0 Interactiong/orkshop on Critical Systems Development
using Modelling Languages, LNCS, 4364, 42-51 (2006)

Latella, D., Majzik, 1., Massink, M.Automatic Verification of a Behavioural Subset ofllU Statechart
Diagrams using the SPIN Model-Checkormal Aspects of Computing, 11(6), 637-664 (1999)

Lilius, J., Paltor, I. P.Formalising UML State Machines for Model Checkirgt. Conf. on the Unified
Modeling Language, LNCS, 1723, 430—-445 (1999)

McAllister, A. J., Sharpe, DAn Approach for Decomposing N-Ary Data Relationshoftware-Practice &
Experience, 28(1), 125-154 (1998)

Mellor Stephen J., Balcer Marc Executable UML: A foundation for model-driven atelsture Addison-
Wesley (2002)

Mellor, S. J., Scott, K., Uhl, A., Weise, Model-Driven ArchitectureComputing Reviews, 45, 631 (2004)
Meyer, B: Applying 'Design by ContractComputer, 25, 40-51 (1992)

Ober, I., Graf, S., Ober, Malidating Timed UML Models by Simulation and Meafion. Int. Journal on
Software Tools for Technology Transfer, 8(2), 1285-12006)

Object Action Language (OAL).
http://66.102.1.104/scholar?hl=ca&lr=&q=cache:1gQRICqzUIlJ:www.acceleratedtechnology.com/pdf_downl
oad/bpalref.pdf+%220bject+Action+Language%22

Object Management Group (OMGYML 2.0 Superstructure Specificatio©®MG Adopted Specification
(ptc/07-11-02) (2007)

Object Management Group (OM®&)bject Constraint Language Specificatiarmal/2006-05-01).
Object Management Group (OM®ML ASL Reference Guideww.omg.org/docs/ad/03-03-12.pdf
Olivé, A.:Conceptual modeling of information syste®pringer (2007)

Olivé, A., Cabot, JA Research Agenda for Conceptual Schema-Centricl@awent Conceptual Modelling in
Information Systems Engineering, 319-334 (2007)

Paige, R. F., Brooke, P. J., Ostroff, J. Metamodel-Based Model Conformance and Multiview Goescy
Checking ACM Transactions on Soft. Eng. and Methodology(3162007)

PathMATE Action Language (PMAL)ttp://www.pathfindermda.com/products/spotlight.php

Platform-independent Action Language (PAL).
ftp://ftp.software.ibm.com/software/rational/web/cdaadg/RAC14010-USEN-00.pdf

ProB http://users.ecs.soton.ac.uk/mal/systems/prob.html

Rumbaugh, J., Jacobson, I., Booch, The unified modeling language reference manéaldison-Wesley
Professional; Har/Cdr edition (1999)

Shlaer-Mellor Action Language (SMALWttp://www.modelint.com/downloads/small.pdf

Starr's Concise Relational Action Language (SCRALL)
http://www.modelint.com/downloads/mint.scrall.tn.1.pdf

Van Der Straeten, R., Mens, T., Simmonds, &¢klas, V.:Using Description Logic to Maintain Consistency
between UML Modeldnt. Conf. on the Unified Modeling Language, LN@B63, 326—-340 (2003)

Xie, F., Levin, V., Browne, J. CModel Checking for an Executable Subset of UNtt. Conf. on Automated
Soft. Eng, 333-336 (2001)

Master in Computing Elena Planas
Universitat Politécnica de Catalunya

