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Abstract : 

The specification of an information system must include all relevant static and dynamic aspects of the 

domain. The static aspects are collected in structural diagrams that are represented in UML by means of 

class diagrams. Dynamic aspects are usually specified by means of a behavioral schema consisting of a 

set of system operations (composed by actions) that the user may execute to query and/or modify the 

information modeled in the class diagram.  

Behavioral schemas must be consistent with regard to structural schemas. Consistency between both 

schemas means that the set of system operations provided by designers must be syntactically consistent 

(i.e, the operation specifications conform to a particular syntax), executable (i.e, for each operation there 

must exist a system state over which the operation can be successfully applied), complete (i.e, through 

these operations, users should be able to modify the population of all modifiable elements in the class 

diagram) and non-redundant (i.e, there are not (partly) superfluous operations).  

The goal of this thesis is to give a method to determine the consistency between structural and behavioral 

schemas of an information system. Moreover, in case of inconsistent schemas the method must provide 

feedback information to allow designers modify their behavioral schemas in order to repair the 

inconsistency. 
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1. Introduction 

Since the very beginning of computer science, one of the main goals of software engineers has been to 

automate as much as possible the software development process. In fact, the software engineering community 

envisages a future in which, of all the phases of software development, software engineers will only be strictly 

necessary during the specification of the information system while the remaining phases (mainly design, 

implementation and test) would be fully automated. This is one of the most challenging and long-standing 

goals in software engineering [34]. 

This is also the focus of some of the most popular and current development approaches as MDD (Model-

Driven Development [2]) and MDA (Model-Driven Architecture [26]). MDD is a software engineering 

paradigm that gives the Conceptual Schema (CS) (that is, a representation of knowledge about a domain) a 

central role in the development process and promote the automatic generation of the system implementation 

based on its CS, either directly or by first transforming the CS into a new model adapted to the specific features 

and characteristics of the target platform. MDA is the OMG vision of MDD and it is founded on standards like 

MOF and OCL for modelling and meta-modelling. In MDA approach there are two kinds of models: PIM 

(Platform-Independent Model), that provide formal specification of the structure and behavior of the system 

away technical details (for example, a CS is a PIM), and PSM (Platform Specific Model), that specify the 

system in terms of the implementation constructs that are available in one specific implementation technology. 

 

 

 

 

 

 

 

Fig. 1.1. Model Driven Development Process. 

CS is a key artifact in development process and, thus, its correctness is essential. Wrong CSs can lead to 

incorrect implementations. Here is where the verification methods come into play. There are many methods for 

verifying CSs. The verification depends on the type of the model and on the property we want to verify. Most 

of the current methods are focused on the static part of the CS but less work has been done with respect to the 

dynamic part (behavior). Verification of the correctness properties of the both CS parts is very important to 

guarantee the quality of application that will be obtained from the model. 

 

 Model Specification 

AAuuttoommaattiicc    
ttrraannssllaattiioonn  

class Department { 
    String name; 
}  
 
class Person { 
    String name; 
    String email; 
    Department worksIn; 
} 
 
class Session { 
    Date date; 
    String room; 
    Accepted paper; 
} 
 
class Paper { 
    String title; 
} 
 
class UnderReview extends Paper {} 
 
class Rejected extends Paper {} 
 
class Accepted extends Paper { 
    Date accepDate; 
    Session isPresentedAt; 
} 

 

Generated code 
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In particular, we are interested in the verification of Action Semantics (AS) since it is a key element in all 

executable UML methods [25, 17] to specify the behavior of the operations defined in the class diagram. 

Actions are the fundamental unit of behavior specification. Basic actions include the creation of new objects, 

creation of new links, removals of existing objects or the modification of attribute values, among others, and 

they can be coordinated with conditional and loop nodes to completely define the operation effect.  

As a simple example, consider the class diagram of Fig. 1.2, described by UML language [39]. The class 

diagram describes the objects within a system (people and departments) and their relationships (person works 

in a department). Fig. 1.2 also includes the behavior of the system through the operations specified by AS 

(addPerson and changeAddress). In this context, both operations are incorrect, since changeAddress tries to 

update an attribute (address) which does not even exist in the diagram and addPerson can never be 

successfully executed (i.e. every time we try to execute addPerson the new system state violates the minimum 

‘1’ cardinality constraint of the department role in WorksIn since the new person instance is not linked to any 

department). Besides, this operation set is not complete, that is, through these operations users cannot modify 

all elements of the class diagram, e.g. it is not possible to create and destroy departments. If these errors are not 

fixed before continuing with the code-generation phase, the resulting system implementation will be totally 

useless.  

context Person::changeAddress(a:Integer) { 
    AddStructuralFeature(self,address,a); } 
 
context Person::addPerson(n:String, e:String) { 
    p: Person; 
    p := CreateObject(Person); 
    AddStructuralFeature(p,name,n); 
    AddStructuralFeature(p,email,e); } 

Fig. 1.2. A simple example of a class diagram with two operations. 

In this sense, the goal of this master thesis is to provide a set of techniques for the verification of correctness 

properties of action-based behavior specifications at design time. The correctness properties that we deal with 

can be summarized in: 

• Syntactic consistency: The operation specifications conform to a particular syntax, in this case, the 

UML metamodel [30] syntax and its restrictions. 

• Executability: The execution of operations leaves the system in a consistent state. 

• Completeness: All possible changes on the system state can be performed through the execution of 

operations. 

• Redundancy: There are not (partly) superfluous operations. 

 

1.1. Objectives of this master thesis 

The objective of this master thesis is to complement the current verifying methods of dynamic part of a system 

with a new method able to verify the previous set of correctness properties.  

This objective can be divided into the following functional goals: 

1. Analyze the syntactic consistency of each operation defined in the CS. 

2. Determine the executability of each operation defined in the CS, taking into account the dependencies 

among actions. 

Department

name : String

Person

name : String
email : String

WorksIn 1*
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3. Determine the completeness of the whole operation set defined in CS. 

4. Detect possible redundancies in operations defined in the CS. 

5. For each detected error, suggest to the designer possible corrective procedures as a complementary 

feedback. 

To achieve the goals 2 and 3, it is necessary to consider a new sub-goal consisting in the analysis of the 

operation flow to determine all possible execution paths in an operation, that is, a sequence of actions that may 

be followed during the operation execution. 

Additionally, we are interested in the following non-functional goals: 

1. Perform a static analysis (do not a model animation/simulation during the verification process).  

2. Do not reduce the language expressiveness. 

3. Be complete, in the sense that the existence of a solution can always be determined. 

 

1.2. Document structure 

This master thesis is structured as follows. The next section introduces basic concepts that are important to 

understand the rest of the work. Section 3 give an overview of the method proposed and describe its steps in 

detail. Section 4 presents the state of the art of CS verification methods. Finally, in section 5 we present the 

conclusions and indicate areas of future work.  
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2. Basic Concepts 

This section describes the main concepts that are important to understand the rest of the work.  

 

2.1. Structural Schema 

A Conceptual Schema (CS) is a representation of general knowledge about a domain [33]. A CS includes two 

main components: Structural Schema and Behavioral Schema.  

A structural schema specifies the static part of a system, that is, the representation of a problem domain. A 

structural schema can be represented with a UML Class Diagram (CD) artifact, that contains information about 

the domain classes, attributes, associations, generalizations and constraints.  

We consider that a CD can be represented using the tuple: 

CD = <setcl, setat, setas, setgen, setconstr> 

where setcl, setat, setas, setgen and setconstr represent the set of classes, attributes, associations, generalization sets 

and constraints of the class diagram CD, respectively. All elements in CD are assumed to be correct instances 

of the corresponding metaclasses of the UML metamodel [30]. We assume that all associations are binary 

associations (n-ary associations can be easily expressed in terms of a set of binary ones [24]).  

As an example, the Fig. 2.1.1 shows a class diagram aimed at representing part of a conference management 

system. The abstract class Paper is specialized in three disjoint subclasses according to the state of the paper 

(UnderReview, Rejected or Accepted). Only accepted papers can be presented in a Session. Each paper is 

written by one or more people, each of which works in a department. The constraint MaxPapersSent means 

that a person may send at most 10 papers. 

 

 

 

 

    context Department inv MaxPapersSent: 
  self.person.paper � asSet() � size() <= 10 

Fig. 2.1.1. Example of a class diagram. 

 

P erson 
nam e : S tring { readO nly } 
em ail : S tring 

Paper 

title : S tring 

A ccepted 
accepDate : da te 

Departm ent 
nam e : S tring 

UnderR eview  

IsA uthorO f 

        author 
1..* 1..* W orksIn 1 *

{dis joint,com plete} 

Session 
date: D ate 
room : S tring 

com m ents : S tring 
Rejected 

1 0..1 
IsP resentedAt 
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For this class diagram we have that: 

setcl = { Paper, UnderReview, Accepted, Rejected, Person, Department, Session }  

setat = { title, accepDate, comments, name, email, name, date, room }   

setas = { IsAuthorOf, WorksIn, IsPresentedAt }   

setgen = { Paper, {UnderReview, Accepted, Rejected} }  

setconstr = { context Department inv MaxPapersSent: self.person.paper � asSet() � size() <= 10 } 

 

2.2. Behavioral Schema 

A behavioral schema specifies the dynamic part of the system, that is, the functionalities that a system can 

perform. In UML there are many ways to represent the behavior of a system (Sequence Diagram, State 

Machines, etc.) but the basic way is the use of operations (attached to classes) that the user may execute to 

query and/or modify the information modeled in the structural schema. 

The operations of a behavioral schema can be defined by two ways: declarative or imperative approaches.  

In a declarative specification, a contract for each operation must be provided [27]. A contract consists of a set 

of preconditions and postconditions. The precondition expresses requirements that any call must satisfy if it is 

to be correct and the postcondition expresses properties that are ensured in return by the execution of the call. 

The contracts may be represented by OCL language [31], a declarative language provided by OMG (Object 

Management Group).  

In an imperative specification, the conceptual modeler explicitly defines the set of actions (insertion of a new 

object, update of an attribute,…) to be applied over the system state. Imperative specifications of operations 

may be defined by an imperative language as UML Action Semantics (AS) [32].  

In conceptual modeling, the declarative approach is preferable since it allows a more abstract and concise 

definition of the operation effect and conceals all implementation issues. Nevertheless, in order to transform a 

model specification to a set of executable software components, declarative specifications must be transformed 

into their equivalent imperative ones. This transformation is non-deterministic, but an initial research [6] has 

been done to provide some heuristics for helping in the translation process. In this thesis we assume that the 

starting point is the use of imperative specifications of operations. 

As an example, we have defined four operations for the class diagram of Fig. 2.1.1. Its signature is: 

• endOfReview(com:String, d:Date, evaluation:String): Reclassifies a paper as rejected or accepted 

depending on the evaluation parameter. 

• submitPaper(tit:String, authors:Person[1..*]): Creates a new under review paper and links the paper 

with its authors. 

• dismiss(): Deletes the WorksIn link between a person and his/her department. 

• createSchedule(dateList: List(Date), roomList: List(String)): Assigns a date and room to present each 

accepted paper. 
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2.3. Action Semantics in the UML 

In UML, the behavior of an operation can be specified using several UML constructs as State Machines or 

Activities, among others (see the UML metamodel fragment of Fig. 2.3.1). In this thesis we will concentrate on 

this latter option.  

 

 

 

 

 

Fig. 2.3.1. Fragment of UML metamodel. 

Activities describe a procedural implementation of the operation effect (in contrast with declarative definitions 

based on the use of pre and postcondition). An activity is composed of a set of activity nodes describing the 

different steps of the activity. Activity nodes may either be basic actions or structured nodes useful to 

coordinate basic actions in action sequences, conditional blocks or loops. We consider two types of loops: 

while-do (if meta-property isTestedFirst from metaclass LoopNode is equal to true, that is, the test is performed 

before the first execution of the body) and do-while (if meta-property isTestedFirst is equal to false, that is, the 

body is executed once before the test is performed). 

UML metamodel defines a set of actions that allows to specify the behavior of an operation. In full, UML 

describes more than forty actions, but for the purposes of this thesis we only consider a subset of them. 

Specifically, we will focus on the construction actions (CreateObjectAction, CreateLinkAction), destruction 

actions (DestroyObjectAction, DestroyLinkAction) and update actions (AddStructuralFeatureValueAction, 

ReclassifyObjectAction). 

UML provides an abstract syntax for these actions [30], but it does not define a concrete syntax for their use in 

an operation specification. Therefore, it is necessary to define a concrete syntax in order to complete the 

abstract specification. There are several non-standard proposals that define an abstract and concrete syntax for 

actions. Some of these proposals are: Action Semantics Language (ASL) [8], Object Action Language (OAL) 

[29], Platform-independent Action Language (PAL) [37], PathMATE Action Language (PMAL) [36], Starr's 

Concise Relational Action Language (SCRALL) [41], Shlaer-Mellor Action Language (SMALL) [40] and That 

Action Language (TALL) [25].  

For the sake of simplicity and according to the goals of this thesis, we use our own syntax, according to the 

abstract syntax provided by UML standard action metaclasses and similar to the previous proposals. Details of 

this syntax are explained in next section. 

 

 

StructuredActivityNode 

BehavioralFeature ExecutableNode 

ConditionalNode SequenceNode 

StateMachine 

ActivityNode 

LoopNode 

Operation 

Behavior 

Activity Action

* 

0..1 

+method 
* +specification

0..1 
+node 

* 

+activity 
0..1 
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2.3.1. Action Semantics syntax proposed  

In the following, we describe the concrete syntax of actions used in this work. For each action we specify: 

• Abstract syntax: UML abstract syntax. 

• UML metamodel: extract of UML metamodel for the action. 

• Concrete syntax: our concrete syntax. 

• Arguments: input arguments of the action. 

• Result: output arguments of the action. 

• Basic semantics: basic semantics defined by UML. 

• Additional Semantics: additional semantics added. 

 

Abstract syntax  CreateObjectAction 
UML metamodel  

 
 
 
 
 
 
 
 
 
 
 
 

Concrete syntax CreateObject(class:Classifier): InstanceSpecification 
Arguments class – Classifier to be instantiated. 

Result Returns the object instantiated. 
Basic semantics This action creates a new object that conforms to the specified classifier. The 

specified classifier cannot be abstract. 
The action has no other side effects. In particular, the new object has no structural 
feature values and participates in no links. 

Additional semantics - 
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Abstract syntax  DestroyObjectAction 
UML metamodel  

 
 
 
 
 
 
 
 
 
 

Concrete syntax DestroyObject(o:InstanceSpecification) 
Arguments o – Object to be destroyed. 
Result - 
Basic semantics This action destroys the object o. Destroying an object that is already destroyed has 

no effect. 
Additional semantics We assume that links in which o participates are not automatically destroyed 

(attribute isDestroyLinks = false). We restrict the use of this action only for destroy 
objects that are instances of a class (not for destroy links). 

 

Abstract syntax  AddStructuralFeatureValueAction 
UML metamodel  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Concrete syntax AddStructuralFeature(o:InstanceSpecification, at:StructuralFeature, 
v:ValueSpecification) 

Arguments o – Object to be updated. 
at – Attribute to be updated. 
v – New value. 

Result - 
Basic semantics This action sets the value v as the new value for the attribute at of the object o. 

Additional semantics We assume that multi-valued attributes are expressed (and analyzed) as binary 
associations between the class and the attribute data type. For this reason, the new 
value always is inserted in first position.  
We restrict the use of this action to the addition of values to structural features, it 
cannot be used for modifying association ends. 
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Abstract syntax  CreateLinkAction 
UML metamodel  

 
 
 
 
 
 
 
 
 
 
 
 
 

Concrete syntax CreateLink(as:Classifier, p1:InstanceSpecification, p2:InstanceSpecification) 
Arguments as – Link to be created. 

p1, p2 – Participants of the link. 
Result - 

Basic semantics This action creates a new link in the binary association as between objects p1 and p2. 
The association cannot be an abstract classifier. Rcreating an existing link has no 
effect if the structural feature is unordered and non-unique. 

Additional semantics - 

 

Abstract syntax  DestroyLinkAction 
UML metamodel  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Concrete syntax DestroyLink(as:Classifier, p1:InstanceSpecification, p2:InstanceSpecification) 
Arguments as – Link to be destroyed. 

p1, p2 – Participants of the link. 

Result - 
Basic semantics This action destroys the link between objects p1 and p2 from as. There is no return 

value in either case. Destroying a link that does not exist has no effect. 
Additional semantics - 
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Abstract syntax  ReclassifyObjectAction 
UML metamodel  

 
 
 
 
 
 
 
 
 
 
 
 
 

Concrete syntax ReclassifyObject(o:InstanceSpecification, newClass:Classifier[0..*], oldClass: 
Classifier[0..*]) 

Arguments o – Object to be reclassified. 
newClass – New superclasses of o. 
oldClass – Old superclasses of o. 

Result - 
Basic semantics This action adds o as a new instance of classes in newClass and removes it from 

classes in oldClass. Multiple classifiers may be added and removed at a time. None 
of the new classifiers may be abstract. 

Additional semantics - 

According to the previous concrete syntax, the imperative specification of the operations introduced in section 
2.2 is: 

 
context Paper::endOfReview(com:String, d:Date, 
evaluation:String) { 
  if self.oclIsTypeOf(UnderReview) then 
    if evaluation = ’reject’ then 
     ReclassifyObject(self,Rejected,∅); 
     AddStructuralFeature(self,comments,com); 
    else 
     ReclassifyObject(self,Accepted,∅); 
   AddStructuralFeature(self,accepDate,d); 
   endif  
 endif  
} 
 

 
context Paper::submitPaper(tit:String, authors:Person[1..*]) { 
    i: Integer := 1; 
    p := CreateObject(UnderReview); 
    AddStructuralFeature(p,title,tit); 
    while i ≤ authors->size() do 

 CreateLink(IsAuthorOf,p,authors[i]);  
  i := i+1; 

    endwhile  
} 

 
 

 
  context Person::dismiss() {                         
    DestroyLink(WorksIn,self,self.department);  
  } 
 

   
context Paper::createSchedule(dateList: List(Date), 
roomList: List(String)) { 
      acceptPapers: List(Accepted); 
      acceptPapers := (Accepted.allInstances()); 
      s: List(Session); 
      i: Integer := 1; 
      while i ≤ acceptPapers->size() do 
        s[i] := CreateObject(Session); 
        AddStructuralFeature(s[i],date,dateList[i]); 
        AddStructuralFeature(s[i],room,roomList[i]); 
        i := i+1; 
      endwhile 
      CreateLink(isPresentedAt,acceptPapers[1],s[1]); 

} 
 

Fig. 2.3.2. Specification of endOfReview, submitPaper, dismiss and createSchedule operations. 

In the next sections we will show how to verify these operations.  
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2.4. Dependencies among actions 

A dependency from an action action1 (the depender action) to an action action2 (the dependee action) expresses 

that action2 must be included in all operations where action1 appears to avoid violating the constraints of the 

class diagram. It may happen that action1 depends on several actions (AND-composition). In this case, all 

dependee actions must be included in order to satisfy the dependency. It may happen also that action1 has 

different alternatives to keep the consistency of the system OR-composition). In this case, as long as one of the 

possible dependee actions appears in the operation, the dependency is satisfied. As we will show in next 

sections, this concept is used for verifying the executability of operations. 

Dependencies between actions depend on the type of the action and on the integrity constraints of each 

particular class diagram. For the purposes of our analysis, we just need to consider minimum cardinality 

constraints for associations and disjoint and complete constraints for generalizations (either graphically 

represented or implicitly induced by textual OCL constraints).  

As a simple example, consider the class diagram of Fig. 2.1.1. In this context, if we have an operation that 

includes an action p:=CreateObject(Person), this operation requires the presence of the action 

CreateLink(WorksIn,p,d), where d is a department, in order to satisfy the minimum ‘1’ cardinality constraint of 

the department role in WorksIn association. If we have another operation that includes an action 

Reclassify(p,{Accepted},{}) to reclassify a paper p from UnderReview to Accepted, this operation must contain 

the action Reclassify(p,{},{UnderReview}) in order to satisfy the disjoint constraint of the generalization. 

For other types of constraints, we can always find a combination of a system state and/or a set of arguments for 

which the execution of an action action results in a consistent state with respect to those constraints. For 

instance, maximum cardinality constraints are never violated when action is applied to an empty system state. 

Constraints restricting the value of the attributes of an object may be satisfied when passing the appropriate 

arguments as parameters for the action. As an example, the MaxPapersSent constraint (Fig. 2.1.1) restricts the 

possible values of the parameter authors but we can always find a person (e.g. a newly created one) that may 

submit a paper without violating this constraint. The same situation occurs with constraints restricting the 

relationship between an object and related objects. Therefore, all these constraints are ignored when computing 

the dependencies of action.  

A simple dependency for an action action is defined as action�dep where dep is the action required by action. 

Complex dependencies are expressed as a sequence of simple ones joined with the logical AND and OR 

operators.  

The following table provides the rules to compute the dependencies (second column) required by each action 

type (first column). These rules are adapted from [7] where they were expressed using a proprietary list of 

action types. Note that most of the rules include applicability conditions that precise in more detail when the 

dependency is required.  
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Table 2.4.1. Dependencies for modification actions. Min(ci,as) and max(ci,as) denote the minimum (maximum) 

multiplicity of ci in as (for reflexive associations we use the role name).  

Action Required Actions 

AddStructuralFeature(o,at,v) for each non-derived and mandatory attribute 

at of c or of a superclass of c 

o=CreateObject(c) 

AND <min(c,as),CreateLink(as,o,o2)> dependencies for each non-derived 

association as where c or a superclass of c has mandatory participation 

DestroyObject(o:c) 

 

<min(c,as),DestroyLink(as,o,o2)> for each non-derived as where c or a 

superclass of c has a mandatory participation 

DestroyLink(as,o1,o3) (if min(c2,as) <> max(c2,as))  

OR CreateObject(o1) 

CreateLink(as,o1:c1,o2:c2) 

(when min(c1,as) = max(c1,as))  

to be repeated for the other end  OR ReclassifyObject(o1,c1,Ø) 

CreateLink(as,o1,o3) (if min(c2,as) <> max(c2,as))  

OR DestroyObject(o1) 

DestroyLink(as,o1:c1,o2:c2) 

(when min(c1,as) = max(c1,as))  

to be repeated for the other end OR ReclassifyObject(o1,Ø,c1) 

AddStructuralFeature(o,at,v) - 

AddStructuralFeature(o,at,v) for each non-derived and mandatory attribute 

at of each class c ∈ nc  

AND <min(c,as),CreateLink(as,o,o3)> for each c ∈ nc and for each non-

derived association as where c has a mandatory participation 

AND ReclassifyObject(o,Ø,{cc’}) for a cc’ such that ∃cc ∈ nc and cc’ ∉ oc 

and cc ≠ cc’ and cc and cc’ are subclasses of a common disjoint and 

complete generalization set and o was instance of cc’ 

AND <min(c,as),DestroyLink(as,o,o3)> for each class c in oc and for each 

non-derived association as where c has a mandatory participation 

ReclassifyObject(o,{nc},{oc}) 

 

AND ReclassifyObject(o,{cc’},Ø) for a cc’ such that cc’ ∉ nc and ∃cc ∈ oc 

and cc ≠ cc’ and cc and cc’ are subclasses of a common disjoint and 

complete generalization set and o was instance of cc 

As an example, consider the class diagram of Fig. 2.1.1 and suppose an operation that includes an action 

CreateLink(WorksIn,p,d) where p and d are a person and a department respectively.  

This action has the follow dependencies: 

CreateLink(WorksIn,p,d) � DestroyLink(WorksIn,p,d’) OR CreateObject(p)  

Where: 

• The dependency DestroyLink(WorksIn,p,d’) means that if we create a new link between a person p 

and department d, we should destroy the current link between the person p and his current department 

(d’). 

• The dependency CreateObject(p) means that if we create a new link between a person p and 

department d, we should create the object p. 

As we have seen, as long as one of the previous dependee actions appears in the same sequence of action 

CreateLink(WorksIn,p.d), the dependency is satisfied. 
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3. The Proposed Method 

This section provides an overall vision of our proposal for verifying operations specified with AS and describes 

in detail each step of the method. 

 

3.1. Overview 

The method we propose consists of a set of techniques for the verification of correctness properties of action-

based behavior specifications at design time. Without loss of generality, we will focus on the verification of 

actions appearing in the definition of the operations’ behaviors. However, many of our techniques could be 

equally used to verify action sequences appearing in other kinds of behavior specifications as State Machines 

or Sequence Diagrams.  

Roughly, given an operation op, our method proceeds by follow a set of steps that can be summarized in (see 

Fig. 3.1.1): 

1. Analyzing the syntactic consistency of each action action ∈ op, that is, guarantee that its specification 

conforms to the abstract syntax specified by the UML metamodel. 

2. Analyzing the operation flow to determine all possible execution paths in op (an execution path is a 

sequence of actions that may be followed during the operation execution). 

3. Determining the executability of each execution path p by performing a static analysis of the 

dependencies among the modification actions (i.e. actions that change the system state) in p and their 

relationship with the structural constraints (as cardinality constraints) in the class diagram.  

4. Determining the completeness of the whole operation set, that is, all possible changes on the system 

state can be performed through the execution of operations. 

5. Analyzing possible redundancies in op, that is, detecting if there are superfluous actions. 

For each detected error, possible corrective procedures are suggested to the designer as a complementary 

feedback. 
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Fig. 3.1.1. Method overview. 

 

3.2. Analyzing Syntactic Consistency 

The first step of our method consists in checking the syntactic consistency of each action in an operation.  

Concerning UML models, syntactical consistency ensures that a specification conforms to the abstract syntax 

specified by the UML metamodel [15] (similar to the grammar of programming languages). For instance, in 

our running example, the action p:=CreateObject(Paper) is not syntactically correct due to we cannot create an 

instance of an abstract class. 

Syntactical consistency conditions are expressed in UML metamodel using a set of (OCL) constraints (i.e. 

Well-Formedness Rules) that restrict the possible set of valid (i.e. Well-Formed) UML models. These Well-

Formedness Rules (WFRs) help to prevent syntactic errors in action specifications.  

An operation is syntactically correct when each action in the operation satisfies all these WFRs.  

In the follow we show some WFR included in the UML 2.0 metamodel [30]. The complete set of WFR can be 

found in the UML 2.0 metamodel.  

# WFR 1 

UML metaclass LinkAction (super-class of CreateLinkAction ) 

Textual description When specifying a CreateLink action action over an association assoc, the type and 

number of the input objects (parameters) in action are compatible with the set of 

association ends defined for assoc. 

OCL definition context LinkAction inv: 

self.endData->collect(end)=self.association()->collect(connection)) 

 

# WFR 2 

UML metaclass CreateObjectAction 

Textual description The classifier cannot be abstract. 

OCL definition context CreateObjectAction inv: 

not (self.classifier.isAbstract = true) 
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# WFR 3 

UML metaclass ReclassifyObjectAction 

Textual description The newClassifiers set cannot contain any abstract classifier. 

OCL definition context ReclassifyObjectAction inv: 

not self.newClassifier->exists(isAbstract = true) 

 

Unfortunately, our analysis of the WFRs relevant to the Action Packages has detected several flaws that 

compromise the usefulness of such rules (a previous analysis [3] already highlighted that other parts of the 

UML specification should be reviewed as well). Some example errors are the following: 

• Syntactic errors: References to “forall” (instead of “forAll”) and “oclisKindOf” (for “ oclIsKindOf”) 

operations. 

• UML 1.5 related errors: WFRs restricting the multiplicity of input and output pins refers to a 

multiplicity attribute that does not longer exist in the UML metamodel (in UML 2.0, pins are subtypes 

of MultiplicityElement and thus we should use the upper and lower attributes instead). There is also a 

reference to the now inexistent NavigableEnd metaclass. 

• Semantic errors: The constraint “context WriteStructuralFeatureAction inv: self.value.type = 

self.structuralFeature.featuringClassifier” forces the type of the new value for the structural feature 

to be equal to the type of the Classifier owning the feature. Clearly, this is plain wrong. The type of 

the new value should be the same as the type of the structural feature, i.e. “self.value.type = 

self.structuralFeature.type”. 

• It is not clear the relationship between the InstanceSpecification, ValueSpecification and Pin 

metaclasses. Since input and output pins must hold InstanceSpecification (e.g. in the 

CreateObjectAction action) and ValueSpecification (e.g. WriteStructuralFeature actions) values, both 

kind of values need to be converted to instances of the Pin metaclass which is not possible with the 

current metamodel structure. 

Besides, several required WFRs are not predefined in the metamodel, and thus, existing WFRs must be 

complemented with new ones to guarantee that action specifications are syntactically correct.  

For instance, the rules that we propose to add in UML metamodel are: 

# WFR4 

UML metaclass WriteStructuralFeatureAction 

Textual description The type of the input object (i.e. the object whose feature will be modified) is 

compatible with the classifier owning the feature. 

OCL definition context WriteStructuralFeatureAction inv:  

self.value.type = self.structuralFeature.type 

 

# WFR5  

UML metaclass CreateObjectAction 

Textual description The input classifier cannot be the supertype of a covering generalization set (in a 

covering generalization, instances of the supertype cannot be directly created). 

OCL definition context CreateObjectAction inv: 

Generalization.allInstances()->exists(g|g.general = self) implies  

c.generalizationSet.isCovering = false 
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# WFR6 

UML metaclass ReclassifyObjectAction 

Textual description The newClassifiers set and the oldClassifiers set are disjoint sets. 

OCL definition context ReclassifyObjectAction inv: 

self.oldClassifier->excludesAll(self.newClassifier) 

 

# WFR7  

UML metaclass ReclassifyObjectAction 

Textual description The newClassifiers set cannot contain the supertype of a covering generalization set. 

OCL definition context ReclassifyObjectAction inv: 

let: superclasses = Generalization.allInstances().general 

in: self.newClassifier->forAll(c | superclasses->includes(c) implies 

c.type.powertypeExtent.isCovering = false) 

 

# WFR8 

UML metaclass WriteStructuralFeatureAction 

Textual description Values of readOnly attributes are not updated after their initial value has been 

assigned. 

OCL definition This rule cannot be expressed in OCL. 

 

Once the previous ill-defined WFRs are fixed and the new ones are added to the metamodel specification, we 

can successfully analyze the well-formedness of action specifications as a first step of our verification process. 

The basic idea is to apply an algorithm that, for each action, the algorithm checks the previous WFR.  

The graphical overview of this step would be:  

 

 

 

Fig. 3.2.1. Analyzing Syntactic Consistency overview. 

The input of the step is the CS, in particular the imperative specification of each operation op included in the 

CS. For each action ∈ op, the method would check the previous WFR and would return as a feedback the 

violated rules and the actions that violate them. 

As an illustrative example of this step, suppose that we have a new operation in our running example (Fig. 

2.1.1):  

context Person::setEmail(e: Integer) { 

  AddStructuralFeature(self,email,e); 

} 

If we apply the previous WFR to the set of actions of the operation setEmail (in this case, a unique action 

AddStructuralFeature(self,email,e)) we detect that the rule WFR4 fails, due to the type of the input object 

(Integer) is incompatible with the type of the attribute email (String). 

After this first analysis, we are ready to proceed with a more semantic verification process involving a more 

complex analysis of the relationship between the actions specified in operations and the elements of the class 

diagram.  

CS 
WFR 

1. Analyzing Syntactic Consistency syntactic 

inconsistencies 
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3.3. Determining Execution Paths 

The correctness properties that will be presented in the next sections are based on an analysis of the possible 

execution paths in an operation. An execution path is a sequence of actions that may be followed during the 

operation execution. For trivial operations (i.e. operations with neither conditional nor loop nodes) the 

operation contains a single execution path but, in general, several ones will exist.  

To compute the execution paths we propose to represent the operation as a Model-Based Control Flow Graph 

(MBCFG), i.e. a control flow graph based on the model information instead on the program code, as traditional 

control flow graph proposals. Up to know, MBCFGs have been used to express UML sequence diagrams [18]. 

Here we adapt this idea to express the control flow of action-based operations. 

For the sake of simplicity, when creating the MBCFG we assume that the method implementing the operation 

behavior is defined as a SequenceNode containing an ordered set of ExecutableNodes defining the operation 

effect, where each executable node may be one of the modification actions described in Section 2.3 (other types 

of actions are ignored during the analysis), a conditional node, a loop node or an additional sequence node (see 

Fig. 2.3.1). We also use two “fake” nodes, an initial node representing the first instruction in the operation and 

a final node representing the last one. These two nodes do not change the operation effect but help in 

simplifying the presentation of our MBCFG.  

The digraph MBCFGop= (Vop, Aop) for an operation op is obtained by means of the following rules: 

• Every executable node in op is a vertex in Vop.  

• An arc from an action vertex v1 to v2 is created in Aop if v1 immediately precedes v2 in an ordered 

sequence of nodes.  

• A vertex v representing a conditional node n is linked to the vertices v1… vn representing the first 

executable node for each clause (i.e. the then clause, the else clause,…) in n. The last vertex in each 

clause is linked to the vertex vnext immediately following n in the sequence of executable nodes. If n 

does not includes an else clause an arc between v and vnext is also added to Aop. 

A vertex v representing a loop node n, is linked to the vertex representing the first executable node for 

bodyPart of n and to the vertex vnext immediately following n in the node sequence. The last vertex in the 

bodyPart is linked to v (to represent the iterative behavior). 

Fig. 3.3.1 shows the MBCFG of the operations of our running example (Fig. 2.3.2). The initial and final nodes 

are represented as circles. Test conditions of conditional and loop nodes are not shown since they are not part 

of our analysis1.  

                                                      

1 Detection of infeasible paths due to unsatisfiability of tests conditions in if-then or loop nodes is out of scope of this paper. This 

SAT-problem can be tackled with current UML/OCL verification tools adding the test condition as an additional constraint in 
the model and checking if the model extended with this new constraint is still satisfiable. 
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Operation endOfReview: 

 

Operation submitPaper: 
 
 
 

 

 

Operation dismiss: 

 

 

 

 

 

 

Operation createSchedule: 

 

 

 Fig. 3.3.1. MBCFG of endOfReview, submitPaper and dismiss operations for the example. 

Given a MBCFGop graph G, the set of execution paths exop for op is defined as exop=allPaths(MBCFGop) where 

allPaths(G) returns the set of all paths in G that start at the initial vertex (the vertex corresponding to the initial 

node), ends at the final node and does not include repeated arcs (these paths are also known as trails [5]).   

Each path in exop is formally represented as an ordered sequence of <number,action> node tuples where 

number indicates the number of times that the action action is executed in that particular node. Vertices 

representing other types of executable nodes are discarded.  

The number element in the tuple is only relevant for actions included in loop nodes. For other actions the 

number value is always ‘1’. For an action action within a loop, number is computed as follows:  

1. Each while-do loop in the graph is assigned a different integer variable value N,…,Z representing the 

number of times the loop may be executed. Do-while loops are assigned the value 1+N,…, 1+Z to 

express that the body is executed at least once.  

2. The number of action is defined as the multiplication of the variable values of all loop nodes we find 

in the path between action and the initial vertex. That is, action will be executed N times if action is 

included in a top-level loop, N*M if action forms part of a single nested loop, and so forth. 
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The graphical overview of this step is:  

 

 

 

Fig. 3.3.2. Determining Execution Paths overview. 

The input of the step is the CS, specifically the imperative specification of each operation included in the CS. 

For each operation ∈ CS, the method computes its execution path with the previous rules and returns them. 

For example, Fig. 3.3.3 shows the execution paths for the MBCFG graphs shown in Fig. 3.3.1.  

Operation endOfReview 

p1 = { } 

p2 = {<1,ReclassifyObject(self,Rejected,∅)>, <1,AddStructuralFeature(self,comments,com)>} 

p3 = {<1,ReclassifyObject(self,Accepted,∅)>, <1,AddStructuralFeature(self,accepDate,d)>} 

Operation submitPaper 

p = {<1,CreateObject(UnderReview)>, <1,AddStructuralFeature(p,title,tit)>, <N,CreateLink(IsAuthorOf,p,authors[i])>} 

Operation dismiss 

p = {<1,DestroyLink(WorksIn,self,self.department)>} 

Operation createShedule 

p = {<N,s:=CreateObject(Session)>, <N,AddStructuralFeature(s[i],date,datesList[i])>,   

       <N,AddStructuralFeature(s[i],room,roomList[i])>, <1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>} 

Fig 3.3.3. Execution paths of operations of the running example. 

 

3.4. Verifying Weak Executability 

Once the execution paths of an operation have been computed, the next step of the method is to check the 

executability of each path. 

An operation is weakly executable when there is a chance that a user may successfully execute 

the operation, that is, when there is at least an initial system state and a set of arguments for the 

operation parameters for which the execution of the actions included in the operation evolves 

the initial state to a new system state that satisfies all integrity constraints. Otherwise, the 

operation is completely useless. We define our executability property as weak executability since 

we do not require all executions of the operation to be successful, which could be defined as 

strong executability. 

As an example, consider again the operations defined for the running example of Fig. 2.1.1 and Fig. 2.3.2. 

Clearly, dismiss is not executable since every time we try to delete a link between a person p and a department 

d we reach an erroneous system state where p has no related department, a situation forbidden by the minimum 

MBCFG 

   2. Determining Execution Paths 

    CS 
   {exeuction paths} 
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‘1’ cardinality constraint in the WorksIn relationship. In order to dismiss p from d we need to either assign a 

new department d’ to p or to remove p itself within the same operation execution.  

Instead, submitPaper is weakly executable since we are able to find an execution scenario where the new paper 

can be successfully submitted. Note that, classifying submitPaper as weakly executable does not mean that 

every time this operation is executed the new system state will be consistent with the constraints. For instance, 

if a person p passed as a value for the authors parameter belong to a department with already 10 submissions 

then the operation execution will fail because the constraint MaxPapersSent will not be satisfied by the system 

state at the end of the operation execution.  

The weak executability of an operation is defined in terms of the weak executability of its execution paths: the 

operation is weakly executable if at least one of its paths is weakly executable2. Executability of a path p 

depends on the set of actions included in the path. The basic idea is the dependencies among actions, that is, 

some actions require the presence of other actions within the same execution path in order to leave the system 

in a consistent state at the end of the execution. Therefore, to be executable, a path p must satisfy all action 

dependencies for every action action in p. As we have seen in section 2.4, dependencies for a particular action 

are drawn from the structure and constraints of the class diagram and from the kind of modification performed 

by the action type. Following with the previous example, the dismiss operation is not weakly executable 

because its single path (see Fig. 3.3.3) is not executable since the action DestroyLink(WorksIn,p,d) must be 

always followed by a DestroyObject(p) or a CreateLink(WorksIn,p,d’) to avoid violating the cardinality 

constraint. Since the path includes none of these actions, it is not weakly executable. 

The graphical overview of this step is:  

 

 

 

Fig. 3.4.1. Verifying Weak Executability overview. 

The input of the step is the CS and the weak executable paths computed in the previous step. For each 

execution path, the executability algorithm verifies if it is weak executable and returns a repair path if it is not 

executable. 

 

 

                                                      

2 It is also important to detect and repair all non-executable paths. Otherwise, all executions of the operation that follow one of 
those paths will irremediably fail. 
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3.4.1. Executability algorithm 

In this section we present an algorithm for determining the weak executability of an execution path.  

The specification of the function is: 

Function weakExecutability 

Input parameters p – execution path to be verified 

Class Diagram, composed by: 

  setcl: Classes 

  setat: Attributes (StructuralFeature) 

  setas: Associations  

  setgen: Generalizations Sets 

  setconstr: Constraints 

Output parameters reqActions – For non-executable paths, the function returns a possible action set that 

must be included in the path to make it executable.   

Extending the path with this sequence is a necessary condition but not a sufficient 

one to guarantee the executability of the path. Actions in the sequence may have, in 

its turn, additional dependencies that must be considered as well. This can be 

detected by reapplying the same function over the extended path. 

Result True, if the path p is weak executable. False, in other case. 

 

Firstly, the algorithm creates a copy of p in pAux (iniPathAux function) and adds the new auxiliary property 

available to each node. The property node.available keeps the number of units available for the action 

node.action. For example, the node n = <1,0,p:=CreateObject(Person)> from path p indicate that the path p 

includes an (n.number=1) action of type p:=CreateObject(Person), but, at the moment, there are no units 

available (n.available=0). Initially, the property available takes the value of the number property 

(n.available:=n.number). This property is later used and updated by the mapping function.  

Roughly, the algorithm works by iterating through the actions in the path. For each action, it computes its 

dependencies (getDependencies function). Then, the mapping function tries to map each dependency onto the 

rest of the actions in the path. Dependencies not completely satisfied are added to the reqActions set and return 

as a feedback to the user.  
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In the following, we present a pseudocode of the function that verifies the weak executability of an execution 

path: 

function weakExecutability (in: p: Sequence (<number:Integer, action:Action>),  

in: setcl: Set(Class), in: setat: Set (StructuralFeature), in: setas: Set(Association),  

in: setgen: Set(GeneralizationSet), in: setconstr: Set(Constraint), 

out: reqActions: Set (<number:Integer, action:Action >)): Boolean  

     dependencies: Set(<number:Integer, action:Action>);  

     node: <number:Integer, available:Integer, action:Action>;  

     pAux: Sequence(<number:Integer, available:Integer, action:Action>); 

     pAux := iniPathAux(p); 

     for each node ∈ pAux do 

          dependencies := getDependencies(node,setcl,setat,setas,setgen,setconstr); 

          reqActions := reqActions U mapping(dependencies,pAux); 

     endfor 

     return (reqActions = Ø);  

endfunction 

In what follows, we explain in more detail the main steps of the algorithm and show the application to 

determine the weak executability of the operations of our running example. 

 

3.4.1.1. Computing the Dependencies  

As we have seen in section 2.4., the concept of dependency determines which actions are required by another 

action to satisfy the constraints of a class diagram.  

For computing the dependencies from an action, the function getDependencies is founded on the dependencies 

table introduced in section 2.4. Given this dependency table, getDependencies(node,setcl,setat,setas,setgen,setconstr) 

function proceeds as follows:  

1. Computes the set of dependencies dep for the action in node.action as stated in table 2.4.1.  

2. Multiplies the number value in each dependency by the value of node.number (the number of 

dependencies for an action is proportional to the number of actions of that type in the path). 

3. Returns dep. 

For instance, in our running example, the call getDependencies(<1,ur:=CreateObject(UnderReview)>) will 

return the set of conjunctive actions {<1,AddStructuralFeature(ur,title,v)>, 

<1,CreateLink(IsAuthorOf,ur,o2)>} , where the v and o2 arguments are free variables, since they can be 

bounded to any object with the appropriate type. 
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3.4.1.2. Determining the Required Actions 

For each dependency d returned by getDependencies3, the mapping function must first check whether d can be 

mapped in one of the actions in the path and, if not, add d to the set of required actions reqActions that will be 

returned as a feedback to the user. 

Roughly, we consider that two actions map correctly when its action type and the model elements are the same 

and its parameters can be bound correctly. For example, consider the path 

p={<1,d:=CreateObject(Department)>,<1,AddStructuralFeature(d,name,’ComputerScience’)>} and the 

dependency <1,d:=CreateObject(Department)> � <1,AddStructuralFeature(d,name,v)>. In this case, the 

dependee action (<1,AddStructuralFeature(d,name,v>) can be mapped onto the second node in p 

(<1,AddStructuralFeature(d,name,’Computer Science’)>), since the argument v is a free variable and it can 

take the value ‘Computer Science’. 

It is worth to note that in some situations two or more dependee actions can be mapped (i.e. share) to the same 

action in the path. For example, consider the context of our running example. Suppose that we have an 

operation with a path p={<N,CreateLink(IsAuthorOf,paper,authors[i]>}. In this case, each 

CreateLink(IsAuthorOf,paper,authors[i]) need a DestroyLink(IsAuthorOf,paper,…) or a 

paper:=CreateObject(UnderReview) (or any subclass of  class Paper) action in the same path. The first 

dependency is not shareable, since each CreateLink(IsAuthorOf,paper,…) needs a different destroy link to keep 

the system consistent. Instead, the alternative dependency paper:=CreateObject(UnderReview) is shareable 

since the N create links may rely on the same new created object to satisfy the multiplicity dependencies. 

For this purpose, we add additional column (third column) in the dependence’s table to indicate if a 

dependency can be shareable or not. 

Table 3.4.1. Table from 2.4.1 with the additional column Shareable. 

Action Required Actions Shareable 

AddStructuralFeature(o,at,v) for each non-derived and 

mandatory attribute at of c or of a superclass of c 
No 

o=CreateObject(c) 

AND <min(c,as),CreateLink(as,o,o2)> dependencies for 

each non-derived association as where c or a 

superclass of c has mandatory participation 

No 

DestroyObject(o:c) 

 

<min(c,as),DestroyLink(as,o,o2)> for each non-derived 

as where c or a superclass of c has a mandatory 

participation 

No 

DestroyLink(as,o1,o3) (if min(c2,as) <> max(c2,as))  No 

OR CreateObject(o1) Yes 

CreateLink(as,o1:c1,o2:c2) 

(when min(c1,as) = max(c1,as))  

to be repeated for the other end  OR ReclassifyObject(o1,c1,Ø) Yes 

CreateLink(as,o1,o3) (if min(c2,as) <> max(c2,as))  No DestroyLink(as,o1:c1,o2:c2) 

(when min(c1,as) = max(c1,as))  OR DestroyObject(o1) Yes 

                                                      

3 Note that, as we have seen before, getDependencies may return not just a single set of dependencies but several alternative 

ones (all of them sufficient to reach a consistent state). In those cases, the mapping function should check if at least one of 

the alternative dependencies sets can be successfully mapped onto the path. For the sake of simplicity this situation is not 
described here. 
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to be repeated for the other end OR ReclassifyObject(o1,Ø,c1) Yes 

AddStructuralFeature(o,at,v) - - 

AddStructuralFeature(o,at,v) for each non-derived and 

mandatory attribute at of each class c ∈ nc  
No 

AND <min(c,as),CreateLink(as,o,o3)> for each c ∈ nc 

and for each non-derived association as where c has a 

mandatory participation 

No 

AND ReclassifyObject(o,Ø,{cc’}) for a cc’ such that ∃cc 

∈ nc and cc’ ∉ oc and cc ≠ cc’ and cc and cc’ are 

subclasses of a common disjoint and complete 

generalization set and o was instance of cc’ 

Yes 

AND <min(c,as),DestroyLink(as,o,o3)> for each class c 

in oc and for each non-derived association as where c 

has a mandatory participation 

No 

ReclassifyObject(o,{nc},{oc}) 

 

AND ReclassifyObject(o,{cc’},Ø) for a cc’ such that cc’ 

∉ nc and ∃cc ∈ oc and cc ≠ cc’ and cc and cc’ are 

subclasses of a common disjoint and complete 

generalization set and o was instance of cc 

Yes 

More formally, we consider that a dependee action d.action can be mapped onto a node n in the path when the 

following conditions are satisfied:  

1. The action type of d.action and n.action is the same (e.g. both are CreateLink actions). 

2. The model elements modified by the actions coincide (e.g. both create new links for the association 

assoc). 

3. All instance-level parameters of d.action can be bound to the parameters in n.action (free variables 

introduced by the rules may be bound to any parameter value in n.action, fixed ones must have the 

same identifier in both actions).  

4. n.number≥d.number4 (for dependencies that are shareable) or n.available≥d.number (for non-

shareable actions). In this latter case, the availability value of the node is decreased according to the 

number of “consumed” actions: n.available:=n.available-d.number.  

Each time a mapping for a dependency is found, if the dependency is not shareable, the available property of 

the mapping node is diminished (to avoid future dependencies map again to the same action) and pAux is 

updated. Dependencies that do not map with the input execution path are returned by the function mapping and 

added to the reqActions set.  

                                                      

4 This comparison may include abstract variables (e.g. when n is part of a loop). In those cases, the d.action can be mapped iff 
there is a possible instantiation of the abstract variables that satisfies the inequality comparison.  
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3.4.1.3. Applying the algorithm  

In the following, the execution of the executability function for the previous execution paths is detailed. To 

facilitate its understanding, free variables are shown in italics. 

Table 3.4.2. Weak Executability for the endOfReview operation.  

Operation: endOfReview 

Input 
p1 = { } 

pAux =  { } 

Output 
reqActions = { } 

executability = true 

  

Input 
p2 =  {<1,ReclassifyObject(self,{Rejected},∅)>, <1,AddStructuralFeature(self,comments,com)>} 

pAux =  {<1,1,ReclassifyObject(self,{Rejected},∅)>, <1,1,AddStructuralFeature(self,comments,com)>} 

Iteration 1 

node = <1,1,ReclassifyObject(self,{Rejected},∅)> 

dependencies = {<1,AddStructuralFeature(self,comments,v)>,  

                            <1,ReclassifyObject(self,Ø,{UnderReview})>}  

mapping:  

    <1,AddStructuralFeature(self,comments,v)> maps with the second node of pAux 

    <1,ReclassifyObject(self,Ø,{UnderReview})> does not map with any node of pAux 

reqActions = {<1,ReclassifyObject(self,Ø,{UnderReview})> 

pAux =  {<1,1,ReclassifyObject(self,{Rejected},∅)>, <1,0,AddStructuralFeature(self,comments,com)>} 

Iteration 2 

node = <1,0,AddStructuralFeature(self,comments,com)> 

dependencies = { }  

reqActions = { <1,ReclassifyObject(self,Ø,{UnderReview})> }  

pAux =  {<1,1,ReclassifyObject(self,{Rejected},∅)>, <1,0,AddStructuralFeature(self,comments,com)>} 

Output 
reqActions = {<1,ReclassifyObject(self,Ø,{UnderReview})>} 

 executability = false 

  

Input 
p3 = {<1,ReclassifyObject(self,{Accepted},∅)>, <1,AddStructuralFeature(self,accepDate,d)>} 

pAux =  {<1,1,ReclassifyObject(self,{Accepted},∅)>, <1,1,AddStructuralFeature(self,accepDate,d)>} 

Iteration 1 

node = <1,1,ReclassifyObject(self,{Accepted},∅)> 

dependencies = {<1,AddStructuralFeature(self,accepDate,v)>,    

                            <1,ReclassifyObject(self,Ø,{UnderReview})>}  

mapping:  

    <1,AddStructuralFeature(self,accepDate,v)> maps with the second node of pAux 

    <1,ReclassifyObject(self,Ø,{UnderReview})> does not map with any node of pAux 

 

reqActions = {<1,ReclassifyObject(self,Ø,{UnderReview})>}   

pAux =  {<1,1,ReclassifyObject(self,{Accepted},∅)>, <1,0,AddStructuralFeature(self,accepDate,d)>} 

Iteration 2 

node = <1,0,AddStructuralFeature(self,accepDate,d)> 

dependencies = { }  

reqActions = { <1,ReclassifyObject(self,Ø,{UnderReview})> }  

pAux =  { <1,1,ReclassifyObject(self,Accepted,∅)>, <1,0,AddStructuralFeature(self,accepDate,d)>} 

Output 
reqActions = {<1,ReclassifyObject(self,Ø,{UnderReview})>} 

 executability = false 

The execution path p1 is weakly executable, since it does not contain any action. On the other hand, the 

execution paths p2 and p3 are not weakly executable since they always violate the disjointness constraint of the 

generalization. The action required to make the paths executable is 

ReclassifyObjectAction(self,Ø,{UnderReview}) in both cases.  
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Table 3.4.3. Weak Executability for the submitPaper operation.  

Operation: submitPaper 

Input 

p = {<1,p:=CreateObject(UnderReview)>, <1,AddStructuralFeature(p,title,tit)>,  

        <N,CreateLink(IsAuthorOf,(p,authors[i])>}  

pAux  = {<1,1,p:=CreateObject(UnderReview)>, <1,1,AddStructuralFeature(p,title,tit)>,  

               <N,N,CreateLink(IsAuthorOf,p,authors[i])>}  

Iteration 1 

node = <1,1,p:=CreateObject(UnderReview)> 

dependencies = {<1,AddStructuralFeature(p,title,v)>, <1,CreateLink(IsAuthorOf,p,o2)>} 

 

mapping:  

    <1,AddStructuralFeature(p,title,v)> maps with the second node of pAux 

    <1,CreateLink(IsAuthorOf,p,o2)> maps with the third node of pAux 

 

reqActions = { } 

pAux =  {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>,  

               <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>} 

Iteration 2 

node = <1,0,AddStructuralFeature(p,title,tit)> 

dependencies = { } 

reqActions = { }  

pAux =  {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>, 

               <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>} 

Iteration 3 

node = <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>  

dependencies = { <N,DestroyLink(IsAuthorOf,p,o3)> OR <N, o:=CreateObject(Paper)> } 

 

mapping: 

    <N,DestroyLink(IsAuthorOf,p,o3)> does not map with any action of pAux. 

   <N,o:=CreateObject(Paper)> maps with the first node of pAux, since this dependence is shareable and 

UnderReview is a subclass of Paper. 

 

reqActions = { }  

pAux = {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>, 

             <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>} 

Output 
reqActions = { } 

executability = true 

The execution path p is weakly executable, since all actions required are contained in the execution path. 

Table 3.4.4. Weak Executability for the dismiss operation.  

Operation: dismiss  

Input 
p = {<1,DestroyLink(WorksIn,self,self.department)>} 

pAux  = {<1,1,DestroyLink(WorksIn,self,self.department)>}  

Iteration 1 

node = <1,1,DestroyLink(WorksIn,self,self.department)>  

dependencies = { <1,CreateLink(WorksIn,self,o2)> OR <1,DestroyObject(self)> } 

 

mapping:  

    <1,CreateLink(WorksIn,self,o2)>  does not map with any node of pAux 

    <1,DestroyObject(self)> does not map with any node of pAux 

 

reqActions = { <1,CreateLink(WorksIn,self,o2)> OR <1,DestroyObject(self)> } 

pAux  = {<1,1,DestroyLink(WorksIn,self,self.department)>}  

Output 
reqActions = { <1,CreateLink(WorksIn,self,o2)> OR <1,DestroyObject(self)> } 

executability = false 
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This execution path is not executable (and thus, neither the dismiss operation since this is its only path), 

because removing the link violates the cardinality constraint ‘1’ of WorksIn association. Adding the required 

actions CreateLink(WorksIn,self,o2) (i.e. adding a new link for the dangling object) OR DestroyObject(self) 

(i.e. destroying it) returned by our method would make the path executable.  

Table 3.4.5. Weak Executability for the createShedule operation.  

Operation: createSchedule 

Input 

p = {<N,s:=CreateObject(Session)>, <N,AddStructuralFeature(s,date,dateList[i])>,   

       <N,AddStructuralFeature(s,room,roomList[i])>, <1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>} 

 

pAux =  {<N,N,s:=CreateObject(Session)>, <N,N,AddStructuralFeature(s,date,dateList[i])>,  

              <N,N,AddStructuralFeature(s,room,roomList[i])>,  

              <1,1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>} 

Iteration 1 

node = <N,s:=CreateObject(Session)> 

dependencies = {<N,AddStructuralFeature(s,date,v1)>, <N,AddStructuralFeature(s,room,v2)>,  

                            <N,CreateLink(isPresentedAt,v3,s[i])> } 

 

mapping:  

    <N,AddStructuralFeature(s,date,v1)> maps with the second node of pAux 

    <N,AddStructuralFeature(s,room,v2)> maps with the third node of pAux 

    <1,CreateLink(isPresentedAt,v3,s[i])> maps with the fourth node of pAux and <N-1, 

CreateLink(isPresentedAt,v3,s[i])> cannot map with any node due to the fault of units 

 

reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> } 

 

pAux =  {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,  

              <N,0,AddStructuralFeature(s,room,roomList[i])>,  

              <1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>} 

Iteration 2 

node = <N,0,AddStructuralFeature(s,date,datesList[i])> 

dependencies = { } 

reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> } 

pAux =  {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,  

              <N,0,AddStructuralFeature(s,room,roomList[i])>,   

              <1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>} 

Iteration 3 

node = <N,0,AddStructuralFeature(s,date,roomList[i])> 

dependencies = { } 

reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> } 

pAux =  {<N,N,s:=CreateObject(Session)>, <N, 0, AddStructuralFeature(s,date,dateList[i])>,  

               <N,0,AddStructuralFeature(s,room,roomList[i])>,  

               <1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>} 

Iteration 4 

node = <1, 0, CreateLink(isPresentedAt,acceptPapers[1],s[1])> 

dependencies = { } 

reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> } 

pAux =  {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,  

              <N,0,AddStructuralFeature(s,room,roomList[i])>,  

              <1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>} 

Output 
reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> } 

executability = false 

The execution path p is not weakly executable since it always violates the cardinality constraint ‘1’ of paper 

role in IsPresentedAt link. The action required to make the path executable is one 

CreateLink(isPresentedAt,v3,s[i])  action for each session created, where v3 represents an accepted paper. Note 

that this set of actions can be included inside the loop. 
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3.5. Verifying Completeness 

Users evolve the system state by executing the set of operations defined in the class diagram.  

We consider that an operation set is complete when all possible changes 

(inserts/updates/deletes/…) on the system state can be performed through the execution of the 

operations defined in the class diagram. Otherwise, there will be parts of the system that users 

will not be able to modify since no available operations address their modification.  

For instance, the set of operations defined in Fig. 2.3.2 is incomplete since operations to remove a person or to 

create and remove departments are not specified, among others. 

More formally, an operation set setop={op1,…, opn} is complete when for each modifiable element e in the class 

diagram and each possible action action modifying the population of e, there is at least a weak executable path 

in some opi that includes action.  

The graphical overview of this step is:  

 

 

 

Fig. 3.5.1. Verifying Completeness overview. 

The input of the step is the CS and the weak executable paths computed in the step 2. For each modifiable 

element e defined in the CS, the completeness algorithm checks if exists an action included in some execution 

path that can modify the state of e and returns as a feedback the elements that cannot be modified. 

3.5.1. Completeness algorithm 

In this section we present an algorithm for determining the completeness of a set of operations.  

The specification of the function is: 

Function Completeness 

Input parameters CS, composed by: 

  setcl: Classes 

  setat: Attributes (StructuralFeature) 

  setas: Associations  

  setgen: Generalizations Sets 

  setop: Operations 

exPaths: set of execution paths from setop 

Output parameters feedback – For incomplete operations sets, the output parameter feedback contains 

the set of actions that should be included in some operation to satisfy the 

completeness property. 

Result True, if the set of operations is complete. False, in other case. 

 

CS 
+ 

Executable Paths 
Completeness algorithm 

4. Verifying Completeness 
    Boolean +  
    {CS elements} should be included 
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Roughly, the algorithm proceeds as follows: 

1. Obtains all different actions of weak executable paths of the setop operations set (getExistingActions 

function). 

2. Computes the set of actions that should be provided to the system users in order to be able to modify 

all parts of the system state, depending on the structure and properties of the class diagram 

(getRequiredActions function). Next subsection provides the rules for determining such actions. 

3. Subtracts the existing actions from required actions (requiredActionsSet – existingActionsSet = 

feedbak) to obtain the actions that should be include. Note that, if the result is an empty set, then the 

setop is complete.  

A function for checking the completeness of setop is the following:  

function completeness (in: setcl: Set(Class), in: setat: Set (StructuralFeature), in: setas: Set(Association),  

in: setgen: Set(GeneralizationSet), in: setop: Set (Operations),  

in: exPaths: Set (Sequence (<number:Integer, action:Action>)), out: feedback: Set(Action)): Boolean  

     requiredActionsSet, existingActionsSet: Set(Action);  

     action: Action; 

     feedback := Ø;   

     existingActionsSet := getExistingActions(exPaths); 

     requiredActionsSet := getRequiredActions(setcl, setat, setas, setgen); 

     for each action ∈ requiredActionsSet do 

         if (action ∉ existingActionsSet) then feedback := feedback U {action}; endif 

     endfor 

     return (feedback = Ø);  

 endfunction 

In what follows, we explain in more detail the main steps of the algorithm and show the application to 

determine the weak of the operations of our running example. 

3.5.1.1. Computing the Existing Actions 

The set of actions returned by getExistingActions is composed by those actions that are included in some weak 

executable path of the set exPaths. 

3.5.1.2. Computing the Required Actions 

The set of actions returned by getRequiredActions is computed by first determining the modifiable model 

elements in the class diagram (i.e. the elements whose value or population can be changed by the user at run-

time) and then deciding, for each modifiable element, the possible types of actions that can be applied on it. 

The modifiable elements can be summarized in: 

• Class: A class is modifiable as long as it is not an abstract class and it is not the supertype of a 

complete generalization set (instances of such supertypes must be created/deleted through their 
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subclasses). For each modifiable class c, users must be provided with the actions CreateObject(c) and 

DestroyObject(o:c)5 to create and remove objects from c. 

• Attribute (StructuralFeature): An attribute is modifiable when it is not derived6. For each modifiable 

attribute attr the action AddStructuralFeature(o,attr,v) is necessary. 

• Association: An association is modifiable if all its member ends are not derived. For each modifiable 

association assoc, we need the actions CreateLink(assoc,p1,p2) and DestroyLink(asso,p1,p2). 

• Generalization: Generalization sets are always modifiable. For generalizations sets we need a set of 

actions ReclassifyObject(o,{nc},{oc}) among the classes involved in the generalization to specialize 

(generalize) the object o to (from) each subclass of the generalization. 

3.5.1.3. Applying the algorithm  

In the following, the execution of the completeness function for our running example (Fig. 2.1.1 and 2.3.2) is 

detailed. 

The operation getExistingActions retrieves all different actions of weak executable paths of the operations 

endOfReview, submitPaper, dismiss and createShedule: 

existingActionsSet = { ur:=CreateObject(UnderReview), AddStructuralFeature(ur,title,t), CreateLink(IsAuthorOf,p,ur) } 

The operation getRequiredActions returns the following set of actions (free variables are shown in italics): 

requiredActionsSet = {  

//One CreateObject(Class) action for each modifiable class of the diagram:  

a:=CreateObject(Accepted), r:=CreateObject(Rejected), ur:=CreateObject(UnderReview), p:=CreateObject(Person),  

d:=CreateObject(Department), s:=CreateObject(Session), 

//One DestroyObject(obj) action for each modifiable object of the diagram: 

DestroyObject(a), DestroyObject(r), DestroyObject(ur), DestroyObject(p), DestroyObject(d), DestroyObject(s), 

//One AddStructuralFeature(obj,att,v) action for each modifiable attribute att: 

AddStructuralFeature(a,title,t), AddStructuralFeature(a,accepDate,d), AddStructuralFeature(r,comments,c), 

AddStructuralFeature(p,name,n), AddStructuralFeature(p,email,e), AddStructuralFeature(d,name,n), 

AddStructuralFeature(s,date,d), AddStructuralFeature(s,room,s), 

//One CreateLink(as,p1,p2) action for each modifiable association as: 

CreateLink(IsAuthorOf,p,a), CreateLink(WorksIn,p,d), CreateLink(isPresentedAt,a,s), 

//One DestroyLink(as,p1,p2) action for each modifiable association as 

DestroyLink(IsAuthorOf,p,a), DestroyLink(WorksIn,p,d), DestroyLink(IsPresentedAt,a,s), 

//One ReclassifyObject(o,nc,oc) for each classes involved in the generalization to specialize (generalize) the object o to 

(from) each subclass of the generalization: 

ReclassifyObject(ur,{Accepted},{UnderReview}), ReclassifyObject(ur,{Rejected},{UnderReview}),  

ReclassifyObject(a,{UnderReview},{Accepted}), ReclassifyObject(a,{Rejected},{Accepted}),  

ReclassifyObject(r,{UnderReview},{Rejected}), ReclassifyObject(r,{Accepted},{Rejected}) } 

                                                      

5 Or a generic operation DestroyObject(o:OclAny) to remove objects of any class. 
6 Read-only attributes are considered modifiable because users must be able to initialize their value (and similar for read-only 

associations). 
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Therefore, the output parameter feedback contains the set of actions that should be included in some operation 

to satisfy the completeness property. 

feedback = {  

a:=CreateObject(Accepted), r:=CreateObject(Rejected), p:=CreateObject(Person), d:=CreateObject(Department), 

s:=CreateObject(Session), DestroyObject(a), DestroyObject(r), DestroyObject(ur), DestroyObject(p), DestroyObject(d), 

DestroyObject(s), 

AddStructuralFeature(a,accepDate,d), AddStructuralFeature(r,comments,c), AddStructuralFeature(p,name,n), 

AddStructuralFeature(p,email,e), AddStructuralFeature(d,name,n), AddStructuralFeature(s,date,d), 

AddStructuralFeature(s,room,s), CreateLink(WorksIn,p,d), CreateLink(isPresentedAt,a,s), 

DestroyLink(IsAuthorOf,p,a), DestroyLink(WorksIn,p,d), DestroyLink(IsPresentedAt,a,s), 

ReclassifyObject(ur,{Accepted}, {UnderReview}), ReclassifyObject(ur, {Rejected}, {UnderReview}),  

ReclassifyObject(a,{UnderReview}, {Accepted}), ReclassifyObject(a, {Rejected}, {Accepted}),  

ReclassifyObject(r,{UnderReview}, {Rejected}), ReclassifyObject(r, {Accepted}, {Rejected}) } } 

3.6. Detecting Redundant Paths 

The last step of our method consists in detect redundant paths. 

An action (or set of actions) in an execution path is redundant if its effect on the system state is 

subsumed by the effect of later actions in the same path, that is, the final system state when 

executing the operation following that path would be exactly the same with or without the 

redundant action.  

The aim of this step is detect the redundant actions and inform the designer so that they can remove it from the 

path. 

The graphical overview of this step would be:  

 

 

 

Fig. 3.6.1. Detecting Redundant Paths overview. 

The input of the step is the CS, specifically the imperative specification of each operation included in the CS. 

For each set of actions, the method would detect if it follow some redundancy pattern and would return as a 

feedback the actions (or set of actions) that are redundant. 

An operation specification may be redundant at three different levels: 

1. Some actions in an execution path are redundant. 

2. The complete execution path is redundant. 

3. The operation as a whole is itself redundant. 

 
CS 

Redundancy patterns 

5. Detecting Redundant Paths 

   redundancies 



 

 

Master in Computing 

Universitat Politècnica de Catalunya                                                       
 

Elena Planas 

Verifying consistency between structural and behavioral schemas in UML 
MASTERMASTERMASTERMASTER    

THESISTHESISTHESISTHESIS 

40 

3.6.1. Redundancy in Actions 

We have identified several patterns that detect such redundant actions. For each pattern we provide a possible 

non-redundant alternative path. However, the modification of the paths cannot be fully automatic since, for 

instance, a redundant action action may not be redundant in a different path also including action or may affect 

the execution of other actions in the path. Nevertheless, we believe it is worth to at least point out these 

redundant actions to the designer.  

Table 3.6.1. Patterns of redundant paths. 

Redundant path Equivalent path Redundancy 

{…, AddStructuralFeatureValue(o,at,v), 

…, AddStructuralFeatureValue(o,at,v2), 

…} 

{… 

AddStructuralFeatureValue(o,at,v2) 

…} 

The second update overwrites 
the first one 

{…, o = CreateObject(Cl),  

…, DeleteObject(o), …} 
{…} 

{…, AddStructuralFeatureValue(o,at,v), 

…, DeleteObject(o), …} 
{…} 

{…, ReclassifyObject(o,{nc},{oc}),  

…, DeleteObject(o), …} 
{…} 

No need of 
creating/updating/reclassifying 
an object that it is going to be 
removed within the same 
execution. 

{…, CreateLink(as,p1,p2)  

…, DeleteLink(as,p1,p2), …} 
{…} 

Why creating a link that it is 
going to be removed? 

{…, ReclassifyObject(o,Cl2,Cl1), 

…, ReclassifyObjectAction(o,Cl1,Cl2), …} 

{… 

ReclassifyObjectAction(o,Cl2,Cl) 

 …} 

The last reclassification 
removes the effect of the first 
one. 

{…, ReclassifyObject(o,Cl2,Cl1), 

…, ReclassifyObjectAction(o,Cl3,Cl2), …} 
{…, ReclassifyObject (o,Cl3,Cl1),…} Transitive property 

As an illustrative example of this step, suppose that we have a new operation in our running example:  

context UnderReview::removePaper() { 

  ReclassifyObject(self,{Rejected},{UnderReview}); 

  DeleteObject(self); 

} 

As we can see in the fourth pattern, the previous operation includes a redundant action, 

ReclassifyObject(self,{Rejected},{UnderReview}), because it is redundant reclassifying an object that it is going 

to be removed within the same execution. 
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3.6.2. Redundancy in Execution Paths 

An execution path p1 is redundant with respect to an execution path p2 (of the same or a different operation) 

when p1 is subsumed by p2, i.e. when all actions in p1 appear in p2 with the same or lower number. This may be 

perfectly correct (e.g. p1 may appear in a basic operation whose behavior is also included in a more complex 

one) but it should be highlighted as suspicious, specially when it happens also that p2 is redundant respect to p1, 

meaning that both paths have exactly the same actions.  

As an illustrative example of this step, suppose that we have the follow new operations in our running example:  

context Paper::setTitle(tit:String) { 

  if (self.oclIsTypeOf(UnderReview)) AddStructuralFeature(self,title,tit); 

  else  

     if (self.oclIsTypeOf(Accepted)) AddStructuralFeature(self,title,tit); 

     else  

        if (self.oclIsTypeOf(Rejected)) AddStructuralFeature(self,title,tit); 

     endif 

  endif 

} 

Obviously, two of the three execution paths are redundant, since all execution paths modify the same element 

with the same value. 

3.6.3. Redundancy in Operations 

We say that an operation op may be redundant when all its execution paths are redundant, especially when all 

its paths can be mapped to the paths of the other operation op2. Even if both operations make sense, designer 

could probably merge them to favor the simplicity of the schema. 

As an illustrative example of this step, suppose that we have the follow new operations in our running example:  

context Paper::setTitle(tit:String) { 

  AddStructuralFeature(self,title,tit); 

} 

contextPaper::createPaperUnderReview(tit:String) { 

  p:Paper; 

  p := CreateObject(Paper); 

  AddStructuralFeature(self,title,tit); 

  ReclassifyObject(self,{UnderReview},{}) 

} 

In this case, the operation setTitle may be redundant, since its execution path can be mapped to the execution 

path of createPaperUnderReview. 
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4. Related Work 

The properties that we verify in this work have been studied previously in more or less depth. In the follow, we 

summarize the main related works for each property. 

SYNTACTIC CONSISTENCY 

The syntactic consistency of UML artifacts has been studied in several works. [35], for example, defines four 

constraints that must be checked in order to guarantee that a dynamic diagram is consistent with a class 

diagram. [13] defines a set of consistency rules for validate a UML model. [42] uses the Description Logics 

formalism [12] for maintaining consistency between (evolving) UML models. Our method complements these 

purposes adding new rules at metamodel level. 

EXECUTABILITY 

In general, the verification of UML specifications is done through two steps: (1) translating the UML 

specification in a specific formal language and (2) verifying the obtained formal specification by means of a 

suitable technique.  

The formal language and the technique used depend on the properties we want to verify. For verifying dynamic 

properties (like executability) a technique widely used is Model Checking.  

Model Checking is an approach emerged for verifying requirements, mainly in developing reliable software for 

concurrent systems. The essential idea behind model checking is shown in Fig. 4.1. A Model-Checking tool 

accepts system requirements or designs (called models) and a dynamic property (called specification) that the 

final system is expected to satisfy. The tool then outputs yes if the given model satisfies the given 

specifications and generates a counterexample otherwise. The counterexample details why the model does not 

satisfy the specification. By studying the counterexample, you can pinpoint the source of the error in the model, 

correct the model, and try again. The idea is that by ensuring that the model satisfies enough system properties, 

we increase our confidence in the correctness of the model.   

Roughly, model checkers work by generating and analyzing all the potential operation executions at run-time 

and evaluating if for each (or some) execution the given property is satisfied. Even though a number of 

optimizations are available in state-of-the-art model checkers (as partial order reduction, state compression, 

abstraction and so forth), verification methods based on model checking suffer from the state explosion 

problem (i.e. the size of the problem grows exponentially in terms of the size of the model and thus, in general 

it is not possible to explore all possible executions). This implies that usually results provided by these methods 

are not conclusive, i.e. absence of a solution cannot be used as a proof, that is, an operation classified as not 

weakly executable may still have a correct execution outside the search space explored during the verification. 

Instead, our analysis is static and thus no animation/simulation of the model is required. 
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Fig. 4.1. Model-Checking overview. 

There are a variety of tools that implements Model Checking technique. One of the most popular and open-

source is the SPIN Model Checker [20]. SPIN supports a formal language to specify systems descriptions, 

called PROMELA (a PROcess MEta LAnguage). Another Model Checking-based tool is ProB [38], that 

supports the B-Method [1]. 

Model Checking approach has been used in the context of behavior UML specifications, mainly in the 

verification of state machines [23, 22, 28], activity diagrams [16] and on the consistent interrelationship 

between them and/or the class diagram [21, 11, 19, 43]. 

As we have seen, to check the executability of an operation (or, in general, any property that can be expressed 

as a Linear Temporal Logic formula – LTL [14]) previous works rely on the use of Model Checking 

techniques. Many of these works restrict the expressivity of the supported UML models. In fact, most of the 

methods above do not accept the specification of actions in the input behavior specifications, which is exactly 

the focus of our method. A remarkable difference of our method is that, since do not require 

animation/simulation and do not restrict the language, is efficient and complete: the existence of a solution can 

always be determined. 

As a trade-off our method is unable to verify arbitrary temporal properties. We believe our method could be 

used to perform a first correctness analysis, basic to ensure a minimum quality level in the operation 

specification. Then, designers could complement the verifying process proceeding with a more detailed 

analysis adapting current approaches presented above to the verification of operations specified with action 

semantics. For instance, example execution traces that make the operation reach an error state would help 

designers to detect particular scenarios not yet appropriately considered in the operation.  

Moreover, there is also a difference in the kind of feedback provided to the designer when the executability 

property is not satisfied. Model checking tools are able to provide example execution traces that do not satisfy 

the integrity constraints. In contrast, our method provides a more valuable feedback (at least for a first-level 

correctness analysis) since it suggests how to change the operation specification in order to repair the detected 

inconsistency.  

COMPLETENESS 

Regarding this property, we would like to remark that, to the best of our knowledge, our work is the first one 

proposing the verification of the completeness property of a behavioral schema. 

REDUNDANCY 

Redundant property has been studied in several perspectives. [10] identify redundancies between Sequence 

Diagrams and declarative contracts of operations. [4] computes the net effect, that is, defines structural 

inconsistencies (redundancies) between construction operations (actions), similar to our detection of 

redundancies in actions.  
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5. Conclusions and Further Work 

We have presented an efficient and decidable method for verifying the correctness of imperative operations 

specified using the action semantics formalism, one of the key elements in all MDD and UML Executable 

methods. It is worth to note that our method only treats a subset of the actions provided by UML, but this set 

can be extended to tackle the whole range of actions. 

Our method is able to verify several properties of the behavior specifications: syntactic consistency, 

executability, completeness and redundancy. All the process is based on a static analysis of the structural and 

behavioral schemas and, for verify the executability, is also based on the dependencies among the actions 

included in the operation specification. For verify the executability model animation/simulation is not 

performed during the verification process, and thus, our method does not suffer from the state-explosion 

problem of current model-checking based methods [9]. As a trade-off, our method is not adequate for 

evaluating general LTL properties.  

We believe that the characteristics of our method make it especially suitable for its integration in current CASE 

and code-generation tools, as part of the default consistency checks that those tools should continuously 

perform to assist designers in the definition of software models. Moreover, the valuable feedback provided by 

our method helps designers to correct the detected errors since our method is able to suggest a possible repair 

procedure instead of just highlighting the problem. 

As a further work, we plan to extend the set of actions our method deals with and to apply our techniques to 

other kinds of UML behavior specifications, as state machines and interactions, that may also include action 

sequences (for instance, as part of a state transition).  

Moreover, we would like to complement our techniques by providing an automatic transformation between the 

initial action semantics specification and the input language of a popular model-checker tool (as the 

PROMELA language [20] so that, after an initial verification with our techniques, designers may get a more 

fine-grained (though partial) analysis by means of applying model checking techniques on the operation 

specification.  
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