
Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics
Màster en Computació

Tesi de MàsterTesi de MàsterTesi de MàsterTesi de Màster

Verifying consistency between

structural and behavioral schemas in UML

Estudiant: Elena Planas Hortal

Director(s): Cristina Gómez i Jordi Cabot

Data: 25 de juny, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41797104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Llenguatges i Sistemes Informàtics

Master in Computing

Title of thesis : Verifying consistency between structural and behavioral schemas in UML

Student : Elena Planas Hortal

Advisor : Cristina Gómez

Co-advisor : Jordi Cabot

Date : June 25th, 2008

Abstract :

The specification of an information system must include all relevant static and dynamic aspects of the

domain. The static aspects are collected in structural diagrams that are represented in UML by means of

class diagrams. Dynamic aspects are usually specified by means of a behavioral schema consisting of a

set of system operations (composed by actions) that the user may execute to query and/or modify the

information modeled in the class diagram.

Behavioral schemas must be consistent with regard to structural schemas. Consistency between both

schemas means that the set of system operations provided by designers must be syntactically consistent

(i.e, the operation specifications conform to a particular syntax), executable (i.e, for each operation there

must exist a system state over which the operation can be successfully applied), complete (i.e, through

these operations, users should be able to modify the population of all modifiable elements in the class

diagram) and non-redundant (i.e, there are not (partly) superfluous operations).

The goal of this thesis is to give a method to determine the consistency between structural and behavioral

schemas of an information system. Moreover, in case of inconsistent schemas the method must provide

feedback information to allow designers modify their behavioral schemas in order to repair the

inconsistency.

Keywords : verification, UML, structural schema, behavioral schema, Action Semantics

Language : English

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

5 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

Contents

1. Introduction .. 7

1.1. Objectives of this master thesis ..8

1.2. Document structure...9

2. Basic Concepts ... 11
2.1. Structural Schema...11

2.2. Behavioral Schema ...12

2.3. Action Semantics in the UML ..13

2.3.1. Action Semantics syntax proposed..14

2.4. Dependencies among actions..18

3. The Proposed Method... 21
3.1. Overview ..21

3.2. Analyzing Syntactic Consistency ...22

3.3. Determining Execution Paths ...25

3.4. Verifying Weak Executability ..27

3.4.1. Executability algorithm...29

3.5. Verifying Completeness ...36

3.5.1. Completeness algorithm..36

3.6. Detecting Redundant Paths...39

3.6.1. Redundancy in Actions..40

3.6.2. Redundancy in Execution Paths..41

3.6.3. Redundancy in Operations..41

4. Related Work.. 43

5. Conclusions and Further Work... 45

6. References .. 47

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

6

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

7 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

1. Introduction

Since the very beginning of computer science, one of the main goals of software engineers has been to

automate as much as possible the software development process. In fact, the software engineering community

envisages a future in which, of all the phases of software development, software engineers will only be strictly

necessary during the specification of the information system while the remaining phases (mainly design,

implementation and test) would be fully automated. This is one of the most challenging and long-standing

goals in software engineering [34].

This is also the focus of some of the most popular and current development approaches as MDD (Model-

Driven Development [2]) and MDA (Model-Driven Architecture [26]). MDD is a software engineering

paradigm that gives the Conceptual Schema (CS) (that is, a representation of knowledge about a domain) a

central role in the development process and promote the automatic generation of the system implementation

based on its CS, either directly or by first transforming the CS into a new model adapted to the specific features

and characteristics of the target platform. MDA is the OMG vision of MDD and it is founded on standards like

MOF and OCL for modelling and meta-modelling. In MDA approach there are two kinds of models: PIM

(Platform-Independent Model), that provide formal specification of the structure and behavior of the system

away technical details (for example, a CS is a PIM), and PSM (Platform Specific Model), that specify the

system in terms of the implementation constructs that are available in one specific implementation technology.

Fig. 1.1. Model Driven Development Process.

CS is a key artifact in development process and, thus, its correctness is essential. Wrong CSs can lead to

incorrect implementations. Here is where the verification methods come into play. There are many methods for

verifying CSs. The verification depends on the type of the model and on the property we want to verify. Most

of the current methods are focused on the static part of the CS but less work has been done with respect to the

dynamic part (behavior). Verification of the correctness properties of the both CS parts is very important to

guarantee the quality of application that will be obtained from the model.

 Model Specification

AAuuttoommaattiicc
ttrraannssllaattiioonn

class Department {
 String name;
}

class Person {
 String name;
 String email;
 Department worksIn;
}

class Session {
 Date date;
 String room;
 Accepted paper;
}

class Paper {
 String title;
}

class UnderReview extends Paper {}

class Rejected extends Paper {}

class Accepted extends Paper {
 Date accepDate;
 Session isPresentedAt;
}

Generated code

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

8

In particular, we are interested in the verification of Action Semantics (AS) since it is a key element in all

executable UML methods [25, 17] to specify the behavior of the operations defined in the class diagram.

Actions are the fundamental unit of behavior specification. Basic actions include the creation of new objects,

creation of new links, removals of existing objects or the modification of attribute values, among others, and

they can be coordinated with conditional and loop nodes to completely define the operation effect.

As a simple example, consider the class diagram of Fig. 1.2, described by UML language [39]. The class

diagram describes the objects within a system (people and departments) and their relationships (person works

in a department). Fig. 1.2 also includes the behavior of the system through the operations specified by AS

(addPerson and changeAddress). In this context, both operations are incorrect, since changeAddress tries to

update an attribute (address) which does not even exist in the diagram and addPerson can never be

successfully executed (i.e. every time we try to execute addPerson the new system state violates the minimum

‘1’ cardinality constraint of the department role in WorksIn since the new person instance is not linked to any

department). Besides, this operation set is not complete, that is, through these operations users cannot modify

all elements of the class diagram, e.g. it is not possible to create and destroy departments. If these errors are not

fixed before continuing with the code-generation phase, the resulting system implementation will be totally

useless.

context Person::changeAddress(a:Integer) {
 AddStructuralFeature(self,address,a); }

context Person::addPerson(n:String, e:String) {
 p: Person;
 p := CreateObject(Person);
 AddStructuralFeature(p,name,n);
 AddStructuralFeature(p,email,e); }

Fig. 1.2. A simple example of a class diagram with two operations.

In this sense, the goal of this master thesis is to provide a set of techniques for the verification of correctness

properties of action-based behavior specifications at design time. The correctness properties that we deal with

can be summarized in:

• Syntactic consistency: The operation specifications conform to a particular syntax, in this case, the

UML metamodel [30] syntax and its restrictions.

• Executability: The execution of operations leaves the system in a consistent state.

• Completeness: All possible changes on the system state can be performed through the execution of

operations.

• Redundancy: There are not (partly) superfluous operations.

1.1. Objectives of this master thesis

The objective of this master thesis is to complement the current verifying methods of dynamic part of a system

with a new method able to verify the previous set of correctness properties.

This objective can be divided into the following functional goals:

1. Analyze the syntactic consistency of each operation defined in the CS.

2. Determine the executability of each operation defined in the CS, taking into account the dependencies

among actions.

Department

name : String

Person

name : String
email : String

WorksIn 1*

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

9 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

3. Determine the completeness of the whole operation set defined in CS.

4. Detect possible redundancies in operations defined in the CS.

5. For each detected error, suggest to the designer possible corrective procedures as a complementary

feedback.

To achieve the goals 2 and 3, it is necessary to consider a new sub-goal consisting in the analysis of the

operation flow to determine all possible execution paths in an operation, that is, a sequence of actions that may

be followed during the operation execution.

Additionally, we are interested in the following non-functional goals:

1. Perform a static analysis (do not a model animation/simulation during the verification process).

2. Do not reduce the language expressiveness.

3. Be complete, in the sense that the existence of a solution can always be determined.

1.2. Document structure

This master thesis is structured as follows. The next section introduces basic concepts that are important to

understand the rest of the work. Section 3 give an overview of the method proposed and describe its steps in

detail. Section 4 presents the state of the art of CS verification methods. Finally, in section 5 we present the

conclusions and indicate areas of future work.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

10

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

11 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

2. Basic Concepts

This section describes the main concepts that are important to understand the rest of the work.

2.1. Structural Schema

A Conceptual Schema (CS) is a representation of general knowledge about a domain [33]. A CS includes two

main components: Structural Schema and Behavioral Schema.

A structural schema specifies the static part of a system, that is, the representation of a problem domain. A

structural schema can be represented with a UML Class Diagram (CD) artifact, that contains information about

the domain classes, attributes, associations, generalizations and constraints.

We consider that a CD can be represented using the tuple:

CD = <setcl, setat, setas, setgen, setconstr>

where setcl, setat, setas, setgen and setconstr represent the set of classes, attributes, associations, generalization sets

and constraints of the class diagram CD, respectively. All elements in CD are assumed to be correct instances

of the corresponding metaclasses of the UML metamodel [30]. We assume that all associations are binary

associations (n-ary associations can be easily expressed in terms of a set of binary ones [24]).

As an example, the Fig. 2.1.1 shows a class diagram aimed at representing part of a conference management

system. The abstract class Paper is specialized in three disjoint subclasses according to the state of the paper

(UnderReview, Rejected or Accepted). Only accepted papers can be presented in a Session. Each paper is

written by one or more people, each of which works in a department. The constraint MaxPapersSent means

that a person may send at most 10 papers.

 context Department inv MaxPapersSent:
 self.person.paper � asSet() � size() <= 10

Fig. 2.1.1. Example of a class diagram.

P erson
nam e : S tring { readO nly }
em ail : S tring

Paper

title : S tring

A ccepted
accepDate : da te

Departm ent
nam e : S tring

UnderR eview

IsA uthorO f

 author
1..* 1..* W orksIn 1 *

{dis joint,com plete}

Session
date: D ate
room : S tring

com m ents : S tring
Rejected

1 0..1
IsP resentedAt

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

12

For this class diagram we have that:

setcl = { Paper, UnderReview, Accepted, Rejected, Person, Department, Session }

setat = { title, accepDate, comments, name, email, name, date, room }

setas = { IsAuthorOf, WorksIn, IsPresentedAt }

setgen = { Paper, {UnderReview, Accepted, Rejected} }

setconstr = { context Department inv MaxPapersSent: self.person.paper � asSet() � size() <= 10 }

2.2. Behavioral Schema

A behavioral schema specifies the dynamic part of the system, that is, the functionalities that a system can

perform. In UML there are many ways to represent the behavior of a system (Sequence Diagram, State

Machines, etc.) but the basic way is the use of operations (attached to classes) that the user may execute to

query and/or modify the information modeled in the structural schema.

The operations of a behavioral schema can be defined by two ways: declarative or imperative approaches.

In a declarative specification, a contract for each operation must be provided [27]. A contract consists of a set

of preconditions and postconditions. The precondition expresses requirements that any call must satisfy if it is

to be correct and the postcondition expresses properties that are ensured in return by the execution of the call.

The contracts may be represented by OCL language [31], a declarative language provided by OMG (Object

Management Group).

In an imperative specification, the conceptual modeler explicitly defines the set of actions (insertion of a new

object, update of an attribute,…) to be applied over the system state. Imperative specifications of operations

may be defined by an imperative language as UML Action Semantics (AS) [32].

In conceptual modeling, the declarative approach is preferable since it allows a more abstract and concise

definition of the operation effect and conceals all implementation issues. Nevertheless, in order to transform a

model specification to a set of executable software components, declarative specifications must be transformed

into their equivalent imperative ones. This transformation is non-deterministic, but an initial research [6] has

been done to provide some heuristics for helping in the translation process. In this thesis we assume that the

starting point is the use of imperative specifications of operations.

As an example, we have defined four operations for the class diagram of Fig. 2.1.1. Its signature is:

• endOfReview(com:String, d:Date, evaluation:String): Reclassifies a paper as rejected or accepted

depending on the evaluation parameter.

• submitPaper(tit:String, authors:Person[1..*]): Creates a new under review paper and links the paper

with its authors.

• dismiss(): Deletes the WorksIn link between a person and his/her department.

• createSchedule(dateList: List(Date), roomList: List(String)): Assigns a date and room to present each

accepted paper.

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

13 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

2.3. Action Semantics in the UML

In UML, the behavior of an operation can be specified using several UML constructs as State Machines or

Activities, among others (see the UML metamodel fragment of Fig. 2.3.1). In this thesis we will concentrate on

this latter option.

Fig. 2.3.1. Fragment of UML metamodel.

Activities describe a procedural implementation of the operation effect (in contrast with declarative definitions

based on the use of pre and postcondition). An activity is composed of a set of activity nodes describing the

different steps of the activity. Activity nodes may either be basic actions or structured nodes useful to

coordinate basic actions in action sequences, conditional blocks or loops. We consider two types of loops:

while-do (if meta-property isTestedFirst from metaclass LoopNode is equal to true, that is, the test is performed

before the first execution of the body) and do-while (if meta-property isTestedFirst is equal to false, that is, the

body is executed once before the test is performed).

UML metamodel defines a set of actions that allows to specify the behavior of an operation. In full, UML

describes more than forty actions, but for the purposes of this thesis we only consider a subset of them.

Specifically, we will focus on the construction actions (CreateObjectAction, CreateLinkAction), destruction

actions (DestroyObjectAction, DestroyLinkAction) and update actions (AddStructuralFeatureValueAction,

ReclassifyObjectAction).

UML provides an abstract syntax for these actions [30], but it does not define a concrete syntax for their use in

an operation specification. Therefore, it is necessary to define a concrete syntax in order to complete the

abstract specification. There are several non-standard proposals that define an abstract and concrete syntax for

actions. Some of these proposals are: Action Semantics Language (ASL) [8], Object Action Language (OAL)

[29], Platform-independent Action Language (PAL) [37], PathMATE Action Language (PMAL) [36], Starr's

Concise Relational Action Language (SCRALL) [41], Shlaer-Mellor Action Language (SMALL) [40] and That

Action Language (TALL) [25].

For the sake of simplicity and according to the goals of this thesis, we use our own syntax, according to the

abstract syntax provided by UML standard action metaclasses and similar to the previous proposals. Details of

this syntax are explained in next section.

StructuredActivityNode

BehavioralFeature ExecutableNode

ConditionalNode SequenceNode

StateMachine

ActivityNode

LoopNode

Operation

Behavior

Activity Action

*

0..1

+method
* +specification

0..1
+node

*

+activity
0..1

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

14

2.3.1. Action Semantics syntax proposed

In the following, we describe the concrete syntax of actions used in this work. For each action we specify:

• Abstract syntax: UML abstract syntax.

• UML metamodel: extract of UML metamodel for the action.

• Concrete syntax: our concrete syntax.

• Arguments: input arguments of the action.

• Result: output arguments of the action.

• Basic semantics: basic semantics defined by UML.

• Additional Semantics: additional semantics added.

Abstract syntax CreateObjectAction
UML metamodel

Concrete syntax CreateObject(class:Classifier): InstanceSpecification
Arguments class – Classifier to be instantiated.

Result Returns the object instantiated.
Basic semantics This action creates a new object that conforms to the specified classifier. The

specified classifier cannot be abstract.
The action has no other side effects. In particular, the new object has no structural
feature values and participates in no links.

Additional semantics -

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

15 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

Abstract syntax DestroyObjectAction
UML metamodel

Concrete syntax DestroyObject(o:InstanceSpecification)
Arguments o – Object to be destroyed.
Result -
Basic semantics This action destroys the object o. Destroying an object that is already destroyed has

no effect.
Additional semantics We assume that links in which o participates are not automatically destroyed

(attribute isDestroyLinks = false). We restrict the use of this action only for destroy
objects that are instances of a class (not for destroy links).

Abstract syntax AddStructuralFeatureValueAction
UML metamodel

Concrete syntax AddStructuralFeature(o:InstanceSpecification, at:StructuralFeature,
v:ValueSpecification)

Arguments o – Object to be updated.
at – Attribute to be updated.
v – New value.

Result -
Basic semantics This action sets the value v as the new value for the attribute at of the object o.

Additional semantics We assume that multi-valued attributes are expressed (and analyzed) as binary
associations between the class and the attribute data type. For this reason, the new
value always is inserted in first position.
We restrict the use of this action to the addition of values to structural features, it
cannot be used for modifying association ends.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

16

Abstract syntax CreateLinkAction
UML metamodel

Concrete syntax CreateLink(as:Classifier, p1:InstanceSpecification, p2:InstanceSpecification)
Arguments as – Link to be created.

p1, p2 – Participants of the link.
Result -

Basic semantics This action creates a new link in the binary association as between objects p1 and p2.
The association cannot be an abstract classifier. Rcreating an existing link has no
effect if the structural feature is unordered and non-unique.

Additional semantics -

Abstract syntax DestroyLinkAction
UML metamodel

Concrete syntax DestroyLink(as:Classifier, p1:InstanceSpecification, p2:InstanceSpecification)
Arguments as – Link to be destroyed.

p1, p2 – Participants of the link.

Result -
Basic semantics This action destroys the link between objects p1 and p2 from as. There is no return

value in either case. Destroying a link that does not exist has no effect.
Additional semantics -

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

17 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

Abstract syntax ReclassifyObjectAction
UML metamodel

Concrete syntax ReclassifyObject(o:InstanceSpecification, newClass:Classifier[0..*], oldClass:
Classifier[0..*])

Arguments o – Object to be reclassified.
newClass – New superclasses of o.
oldClass – Old superclasses of o.

Result -
Basic semantics This action adds o as a new instance of classes in newClass and removes it from

classes in oldClass. Multiple classifiers may be added and removed at a time. None
of the new classifiers may be abstract.

Additional semantics -

According to the previous concrete syntax, the imperative specification of the operations introduced in section
2.2 is:

context Paper::endOfReview(com:String, d:Date,
evaluation:String) {
 if self.oclIsTypeOf(UnderReview) then
 if evaluation = ’reject’ then
 ReclassifyObject(self,Rejected,∅);
 AddStructuralFeature(self,comments,com);
 else
 ReclassifyObject(self,Accepted,∅);
 AddStructuralFeature(self,accepDate,d);
 endif
 endif
}

context Paper::submitPaper(tit:String, authors:Person[1..*]) {
 i: Integer := 1;
 p := CreateObject(UnderReview);
 AddStructuralFeature(p,title,tit);
 while i ≤ authors->size() do

 CreateLink(IsAuthorOf,p,authors[i]);
 i := i+1;

 endwhile
}

 context Person::dismiss() {
 DestroyLink(WorksIn,self,self.department);
 }

context Paper::createSchedule(dateList: List(Date),
roomList: List(String)) {
 acceptPapers: List(Accepted);
 acceptPapers := (Accepted.allInstances());
 s: List(Session);
 i: Integer := 1;
 while i ≤ acceptPapers->size() do
 s[i] := CreateObject(Session);
 AddStructuralFeature(s[i],date,dateList[i]);
 AddStructuralFeature(s[i],room,roomList[i]);
 i := i+1;
 endwhile
 CreateLink(isPresentedAt,acceptPapers[1],s[1]);

}

Fig. 2.3.2. Specification of endOfReview, submitPaper, dismiss and createSchedule operations.

In the next sections we will show how to verify these operations.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

18

2.4. Dependencies among actions

A dependency from an action action1 (the depender action) to an action action2 (the dependee action) expresses

that action2 must be included in all operations where action1 appears to avoid violating the constraints of the

class diagram. It may happen that action1 depends on several actions (AND-composition). In this case, all

dependee actions must be included in order to satisfy the dependency. It may happen also that action1 has

different alternatives to keep the consistency of the system OR-composition). In this case, as long as one of the

possible dependee actions appears in the operation, the dependency is satisfied. As we will show in next

sections, this concept is used for verifying the executability of operations.

Dependencies between actions depend on the type of the action and on the integrity constraints of each

particular class diagram. For the purposes of our analysis, we just need to consider minimum cardinality

constraints for associations and disjoint and complete constraints for generalizations (either graphically

represented or implicitly induced by textual OCL constraints).

As a simple example, consider the class diagram of Fig. 2.1.1. In this context, if we have an operation that

includes an action p:=CreateObject(Person), this operation requires the presence of the action

CreateLink(WorksIn,p,d), where d is a department, in order to satisfy the minimum ‘1’ cardinality constraint of

the department role in WorksIn association. If we have another operation that includes an action

Reclassify(p,{Accepted},{}) to reclassify a paper p from UnderReview to Accepted, this operation must contain

the action Reclassify(p,{},{UnderReview}) in order to satisfy the disjoint constraint of the generalization.

For other types of constraints, we can always find a combination of a system state and/or a set of arguments for

which the execution of an action action results in a consistent state with respect to those constraints. For

instance, maximum cardinality constraints are never violated when action is applied to an empty system state.

Constraints restricting the value of the attributes of an object may be satisfied when passing the appropriate

arguments as parameters for the action. As an example, the MaxPapersSent constraint (Fig. 2.1.1) restricts the

possible values of the parameter authors but we can always find a person (e.g. a newly created one) that may

submit a paper without violating this constraint. The same situation occurs with constraints restricting the

relationship between an object and related objects. Therefore, all these constraints are ignored when computing

the dependencies of action.

A simple dependency for an action action is defined as action�dep where dep is the action required by action.

Complex dependencies are expressed as a sequence of simple ones joined with the logical AND and OR

operators.

The following table provides the rules to compute the dependencies (second column) required by each action

type (first column). These rules are adapted from [7] where they were expressed using a proprietary list of

action types. Note that most of the rules include applicability conditions that precise in more detail when the

dependency is required.

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

19 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

Table 2.4.1. Dependencies for modification actions. Min(ci,as) and max(ci,as) denote the minimum (maximum)

multiplicity of ci in as (for reflexive associations we use the role name).

Action Required Actions

AddStructuralFeature(o,at,v) for each non-derived and mandatory attribute

at of c or of a superclass of c

o=CreateObject(c)

AND <min(c,as),CreateLink(as,o,o2)> dependencies for each non-derived

association as where c or a superclass of c has mandatory participation

DestroyObject(o:c)

<min(c,as),DestroyLink(as,o,o2)> for each non-derived as where c or a

superclass of c has a mandatory participation

DestroyLink(as,o1,o3) (if min(c2,as) <> max(c2,as))

OR CreateObject(o1)

CreateLink(as,o1:c1,o2:c2)

(when min(c1,as) = max(c1,as))

to be repeated for the other end OR ReclassifyObject(o1,c1,Ø)

CreateLink(as,o1,o3) (if min(c2,as) <> max(c2,as))

OR DestroyObject(o1)

DestroyLink(as,o1:c1,o2:c2)

(when min(c1,as) = max(c1,as))

to be repeated for the other end OR ReclassifyObject(o1,Ø,c1)

AddStructuralFeature(o,at,v) -

AddStructuralFeature(o,at,v) for each non-derived and mandatory attribute

at of each class c ∈ nc

AND <min(c,as),CreateLink(as,o,o3)> for each c ∈ nc and for each non-

derived association as where c has a mandatory participation

AND ReclassifyObject(o,Ø,{cc’}) for a cc’ such that ∃cc ∈ nc and cc’ ∉ oc

and cc ≠ cc’ and cc and cc’ are subclasses of a common disjoint and

complete generalization set and o was instance of cc’

AND <min(c,as),DestroyLink(as,o,o3)> for each class c in oc and for each

non-derived association as where c has a mandatory participation

ReclassifyObject(o,{nc},{oc})

AND ReclassifyObject(o,{cc’},Ø) for a cc’ such that cc’ ∉ nc and ∃cc ∈ oc

and cc ≠ cc’ and cc and cc’ are subclasses of a common disjoint and

complete generalization set and o was instance of cc

As an example, consider the class diagram of Fig. 2.1.1 and suppose an operation that includes an action

CreateLink(WorksIn,p,d) where p and d are a person and a department respectively.

This action has the follow dependencies:

CreateLink(WorksIn,p,d) � DestroyLink(WorksIn,p,d’) OR CreateObject(p)

Where:

• The dependency DestroyLink(WorksIn,p,d’) means that if we create a new link between a person p

and department d, we should destroy the current link between the person p and his current department

(d’).

• The dependency CreateObject(p) means that if we create a new link between a person p and

department d, we should create the object p.

As we have seen, as long as one of the previous dependee actions appears in the same sequence of action

CreateLink(WorksIn,p.d), the dependency is satisfied.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

20

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

21 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

3. The Proposed Method

This section provides an overall vision of our proposal for verifying operations specified with AS and describes

in detail each step of the method.

3.1. Overview

The method we propose consists of a set of techniques for the verification of correctness properties of action-

based behavior specifications at design time. Without loss of generality, we will focus on the verification of

actions appearing in the definition of the operations’ behaviors. However, many of our techniques could be

equally used to verify action sequences appearing in other kinds of behavior specifications as State Machines

or Sequence Diagrams.

Roughly, given an operation op, our method proceeds by follow a set of steps that can be summarized in (see

Fig. 3.1.1):

1. Analyzing the syntactic consistency of each action action ∈ op, that is, guarantee that its specification

conforms to the abstract syntax specified by the UML metamodel.

2. Analyzing the operation flow to determine all possible execution paths in op (an execution path is a

sequence of actions that may be followed during the operation execution).

3. Determining the executability of each execution path p by performing a static analysis of the

dependencies among the modification actions (i.e. actions that change the system state) in p and their

relationship with the structural constraints (as cardinality constraints) in the class diagram.

4. Determining the completeness of the whole operation set, that is, all possible changes on the system

state can be performed through the execution of operations.

5. Analyzing possible redundancies in op, that is, detecting if there are superfluous actions.

For each detected error, possible corrective procedures are suggested to the designer as a complementary

feedback.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

22

Fig. 3.1.1. Method overview.

3.2. Analyzing Syntactic Consistency

The first step of our method consists in checking the syntactic consistency of each action in an operation.

Concerning UML models, syntactical consistency ensures that a specification conforms to the abstract syntax

specified by the UML metamodel [15] (similar to the grammar of programming languages). For instance, in

our running example, the action p:=CreateObject(Paper) is not syntactically correct due to we cannot create an

instance of an abstract class.

Syntactical consistency conditions are expressed in UML metamodel using a set of (OCL) constraints (i.e.

Well-Formedness Rules) that restrict the possible set of valid (i.e. Well-Formed) UML models. These Well-

Formedness Rules (WFRs) help to prevent syntactic errors in action specifications.

An operation is syntactically correct when each action in the operation satisfies all these WFRs.

In the follow we show some WFR included in the UML 2.0 metamodel [30]. The complete set of WFR can be

found in the UML 2.0 metamodel.

WFR 1

UML metaclass LinkAction (super-class of CreateLinkAction)

Textual description When specifying a CreateLink action action over an association assoc, the type and

number of the input objects (parameters) in action are compatible with the set of

association ends defined for assoc.

OCL definition context LinkAction inv:

self.endData->collect(end)=self.association()->collect(connection))

WFR 2

UML metaclass CreateObjectAction

Textual description The classifier cannot be abstract.

OCL definition context CreateObjectAction inv:

not (self.classifier.isAbstract = true)

designer
CS

dependencies

feedback

Analyzing Syntactic Consistency
Determining Execution Paths

Verifying Executability
Verifying Completeness
Detecting Redundant Paths

MMEETTHHOODD

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

23 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

WFR 3

UML metaclass ReclassifyObjectAction

Textual description The newClassifiers set cannot contain any abstract classifier.

OCL definition context ReclassifyObjectAction inv:

not self.newClassifier->exists(isAbstract = true)

Unfortunately, our analysis of the WFRs relevant to the Action Packages has detected several flaws that

compromise the usefulness of such rules (a previous analysis [3] already highlighted that other parts of the

UML specification should be reviewed as well). Some example errors are the following:

• Syntactic errors: References to “forall” (instead of “forAll”) and “oclisKindOf” (for “ oclIsKindOf”)

operations.

• UML 1.5 related errors: WFRs restricting the multiplicity of input and output pins refers to a

multiplicity attribute that does not longer exist in the UML metamodel (in UML 2.0, pins are subtypes

of MultiplicityElement and thus we should use the upper and lower attributes instead). There is also a

reference to the now inexistent NavigableEnd metaclass.

• Semantic errors: The constraint “context WriteStructuralFeatureAction inv: self.value.type =

self.structuralFeature.featuringClassifier” forces the type of the new value for the structural feature

to be equal to the type of the Classifier owning the feature. Clearly, this is plain wrong. The type of

the new value should be the same as the type of the structural feature, i.e. “self.value.type =

self.structuralFeature.type”.

• It is not clear the relationship between the InstanceSpecification, ValueSpecification and Pin

metaclasses. Since input and output pins must hold InstanceSpecification (e.g. in the

CreateObjectAction action) and ValueSpecification (e.g. WriteStructuralFeature actions) values, both

kind of values need to be converted to instances of the Pin metaclass which is not possible with the

current metamodel structure.

Besides, several required WFRs are not predefined in the metamodel, and thus, existing WFRs must be

complemented with new ones to guarantee that action specifications are syntactically correct.

For instance, the rules that we propose to add in UML metamodel are:

WFR4

UML metaclass WriteStructuralFeatureAction

Textual description The type of the input object (i.e. the object whose feature will be modified) is

compatible with the classifier owning the feature.

OCL definition context WriteStructuralFeatureAction inv:

self.value.type = self.structuralFeature.type

WFR5

UML metaclass CreateObjectAction

Textual description The input classifier cannot be the supertype of a covering generalization set (in a

covering generalization, instances of the supertype cannot be directly created).

OCL definition context CreateObjectAction inv:

Generalization.allInstances()->exists(g|g.general = self) implies

c.generalizationSet.isCovering = false

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

24

WFR6

UML metaclass ReclassifyObjectAction

Textual description The newClassifiers set and the oldClassifiers set are disjoint sets.

OCL definition context ReclassifyObjectAction inv:

self.oldClassifier->excludesAll(self.newClassifier)

WFR7

UML metaclass ReclassifyObjectAction

Textual description The newClassifiers set cannot contain the supertype of a covering generalization set.

OCL definition context ReclassifyObjectAction inv:

let: superclasses = Generalization.allInstances().general

in: self.newClassifier->forAll(c | superclasses->includes(c) implies

c.type.powertypeExtent.isCovering = false)

WFR8

UML metaclass WriteStructuralFeatureAction

Textual description Values of readOnly attributes are not updated after their initial value has been

assigned.

OCL definition This rule cannot be expressed in OCL.

Once the previous ill-defined WFRs are fixed and the new ones are added to the metamodel specification, we

can successfully analyze the well-formedness of action specifications as a first step of our verification process.

The basic idea is to apply an algorithm that, for each action, the algorithm checks the previous WFR.

The graphical overview of this step would be:

Fig. 3.2.1. Analyzing Syntactic Consistency overview.

The input of the step is the CS, in particular the imperative specification of each operation op included in the

CS. For each action ∈ op, the method would check the previous WFR and would return as a feedback the

violated rules and the actions that violate them.

As an illustrative example of this step, suppose that we have a new operation in our running example (Fig.

2.1.1):

context Person::setEmail(e: Integer) {

 AddStructuralFeature(self,email,e);

}

If we apply the previous WFR to the set of actions of the operation setEmail (in this case, a unique action

AddStructuralFeature(self,email,e)) we detect that the rule WFR4 fails, due to the type of the input object

(Integer) is incompatible with the type of the attribute email (String).

After this first analysis, we are ready to proceed with a more semantic verification process involving a more

complex analysis of the relationship between the actions specified in operations and the elements of the class

diagram.

CS
WFR

1. Analyzing Syntactic Consistency syntactic

inconsistencies

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

25 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

3.3. Determining Execution Paths

The correctness properties that will be presented in the next sections are based on an analysis of the possible

execution paths in an operation. An execution path is a sequence of actions that may be followed during the

operation execution. For trivial operations (i.e. operations with neither conditional nor loop nodes) the

operation contains a single execution path but, in general, several ones will exist.

To compute the execution paths we propose to represent the operation as a Model-Based Control Flow Graph

(MBCFG), i.e. a control flow graph based on the model information instead on the program code, as traditional

control flow graph proposals. Up to know, MBCFGs have been used to express UML sequence diagrams [18].

Here we adapt this idea to express the control flow of action-based operations.

For the sake of simplicity, when creating the MBCFG we assume that the method implementing the operation

behavior is defined as a SequenceNode containing an ordered set of ExecutableNodes defining the operation

effect, where each executable node may be one of the modification actions described in Section 2.3 (other types

of actions are ignored during the analysis), a conditional node, a loop node or an additional sequence node (see

Fig. 2.3.1). We also use two “fake” nodes, an initial node representing the first instruction in the operation and

a final node representing the last one. These two nodes do not change the operation effect but help in

simplifying the presentation of our MBCFG.

The digraph MBCFGop= (Vop, Aop) for an operation op is obtained by means of the following rules:

• Every executable node in op is a vertex in Vop.

• An arc from an action vertex v1 to v2 is created in Aop if v1 immediately precedes v2 in an ordered

sequence of nodes.

• A vertex v representing a conditional node n is linked to the vertices v1… vn representing the first

executable node for each clause (i.e. the then clause, the else clause,…) in n. The last vertex in each

clause is linked to the vertex vnext immediately following n in the sequence of executable nodes. If n

does not includes an else clause an arc between v and vnext is also added to Aop.

A vertex v representing a loop node n, is linked to the vertex representing the first executable node for

bodyPart of n and to the vertex vnext immediately following n in the node sequence. The last vertex in the

bodyPart is linked to v (to represent the iterative behavior).

Fig. 3.3.1 shows the MBCFG of the operations of our running example (Fig. 2.3.2). The initial and final nodes

are represented as circles. Test conditions of conditional and loop nodes are not shown since they are not part

of our analysis1.

1 Detection of infeasible paths due to unsatisfiability of tests conditions in if-then or loop nodes is out of scope of this paper. This

SAT-problem can be tackled with current UML/OCL verification tools adding the test condition as an additional constraint in
the model and checking if the model extended with this new constraint is still satisfiable.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

26

Operation endOfReview:

Operation submitPaper:

Operation dismiss:

Operation createSchedule:

 Fig. 3.3.1. MBCFG of endOfReview, submitPaper and dismiss operations for the example.

Given a MBCFGop graph G, the set of execution paths exop for op is defined as exop=allPaths(MBCFGop) where

allPaths(G) returns the set of all paths in G that start at the initial vertex (the vertex corresponding to the initial

node), ends at the final node and does not include repeated arcs (these paths are also known as trails [5]).

Each path in exop is formally represented as an ordered sequence of <number,action> node tuples where

number indicates the number of times that the action action is executed in that particular node. Vertices

representing other types of executable nodes are discarded.

The number element in the tuple is only relevant for actions included in loop nodes. For other actions the

number value is always ‘1’. For an action action within a loop, number is computed as follows:

1. Each while-do loop in the graph is assigned a different integer variable value N,…,Z representing the

number of times the loop may be executed. Do-while loops are assigned the value 1+N,…, 1+Z to

express that the body is executed at least once.

2. The number of action is defined as the multiplication of the variable values of all loop nodes we find

in the path between action and the initial vertex. That is, action will be executed N times if action is

included in a top-level loop, N*M if action forms part of a single nested loop, and so forth.

 p:=CreateObject
 (UnderReview)

AddStructuralFeature
 (p,title,tit)

while AddStructuralFeature
 (self,comments,com)

 ReclassifyObject
 (self,Accepted,∅)

DestroyLink

(WorksIn,self,self.department)

s[i]:=CreateObject(Session)

 CreateLink
(isPresentedAt,acceptPapers[1],s[1])

 CreateLink
(IsAuthorOf,p,authors[i])

ReclassifyObject
(self,Rejected,∅)

 if

 if

AddStructuralFeature
 (self,accepDate,d)

AddStructuralFeature
(s[i],room,roomList[i])

while
AddStructuralFeature
(s[i],date,dateList[i])

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

27 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

The graphical overview of this step is:

Fig. 3.3.2. Determining Execution Paths overview.

The input of the step is the CS, specifically the imperative specification of each operation included in the CS.

For each operation ∈ CS, the method computes its execution path with the previous rules and returns them.

For example, Fig. 3.3.3 shows the execution paths for the MBCFG graphs shown in Fig. 3.3.1.

Operation endOfReview

p1 = { }

p2 = {<1,ReclassifyObject(self,Rejected,∅)>, <1,AddStructuralFeature(self,comments,com)>}

p3 = {<1,ReclassifyObject(self,Accepted,∅)>, <1,AddStructuralFeature(self,accepDate,d)>}

Operation submitPaper

p = {<1,CreateObject(UnderReview)>, <1,AddStructuralFeature(p,title,tit)>, <N,CreateLink(IsAuthorOf,p,authors[i])>}

Operation dismiss

p = {<1,DestroyLink(WorksIn,self,self.department)>}

Operation createShedule

p = {<N,s:=CreateObject(Session)>, <N,AddStructuralFeature(s[i],date,datesList[i])>,

 <N,AddStructuralFeature(s[i],room,roomList[i])>, <1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Fig 3.3.3. Execution paths of operations of the running example.

3.4. Verifying Weak Executability

Once the execution paths of an operation have been computed, the next step of the method is to check the

executability of each path.

An operation is weakly executable when there is a chance that a user may successfully execute

the operation, that is, when there is at least an initial system state and a set of arguments for the

operation parameters for which the execution of the actions included in the operation evolves

the initial state to a new system state that satisfies all integrity constraints. Otherwise, the

operation is completely useless. We define our executability property as weak executability since

we do not require all executions of the operation to be successful, which could be defined as

strong executability.

As an example, consider again the operations defined for the running example of Fig. 2.1.1 and Fig. 2.3.2.

Clearly, dismiss is not executable since every time we try to delete a link between a person p and a department

d we reach an erroneous system state where p has no related department, a situation forbidden by the minimum

MBCFG

 2. Determining Execution Paths

 CS
 {exeuction paths}

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

28

‘1’ cardinality constraint in the WorksIn relationship. In order to dismiss p from d we need to either assign a

new department d’ to p or to remove p itself within the same operation execution.

Instead, submitPaper is weakly executable since we are able to find an execution scenario where the new paper

can be successfully submitted. Note that, classifying submitPaper as weakly executable does not mean that

every time this operation is executed the new system state will be consistent with the constraints. For instance,

if a person p passed as a value for the authors parameter belong to a department with already 10 submissions

then the operation execution will fail because the constraint MaxPapersSent will not be satisfied by the system

state at the end of the operation execution.

The weak executability of an operation is defined in terms of the weak executability of its execution paths: the

operation is weakly executable if at least one of its paths is weakly executable2. Executability of a path p

depends on the set of actions included in the path. The basic idea is the dependencies among actions, that is,

some actions require the presence of other actions within the same execution path in order to leave the system

in a consistent state at the end of the execution. Therefore, to be executable, a path p must satisfy all action

dependencies for every action action in p. As we have seen in section 2.4, dependencies for a particular action

are drawn from the structure and constraints of the class diagram and from the kind of modification performed

by the action type. Following with the previous example, the dismiss operation is not weakly executable

because its single path (see Fig. 3.3.3) is not executable since the action DestroyLink(WorksIn,p,d) must be

always followed by a DestroyObject(p) or a CreateLink(WorksIn,p,d’) to avoid violating the cardinality

constraint. Since the path includes none of these actions, it is not weakly executable.

The graphical overview of this step is:

Fig. 3.4.1. Verifying Weak Executability overview.

The input of the step is the CS and the weak executable paths computed in the previous step. For each

execution path, the executability algorithm verifies if it is weak executable and returns a repair path if it is not

executable.

2 It is also important to detect and repair all non-executable paths. Otherwise, all executions of the operation that follow one of
those paths will irremediably fail.

CS
+

Executable Paths
Executability algorithm

3. Verifying Weak Executability
 Boolean +
 {repair path}

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

29 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

3.4.1. Executability algorithm

In this section we present an algorithm for determining the weak executability of an execution path.

The specification of the function is:

Function weakExecutability

Input parameters p – execution path to be verified

Class Diagram, composed by:

 setcl: Classes

 setat: Attributes (StructuralFeature)

 setas: Associations

 setgen: Generalizations Sets

 setconstr: Constraints

Output parameters reqActions – For non-executable paths, the function returns a possible action set that

must be included in the path to make it executable.

Extending the path with this sequence is a necessary condition but not a sufficient

one to guarantee the executability of the path. Actions in the sequence may have, in

its turn, additional dependencies that must be considered as well. This can be

detected by reapplying the same function over the extended path.

Result True, if the path p is weak executable. False, in other case.

Firstly, the algorithm creates a copy of p in pAux (iniPathAux function) and adds the new auxiliary property

available to each node. The property node.available keeps the number of units available for the action

node.action. For example, the node n = <1,0,p:=CreateObject(Person)> from path p indicate that the path p

includes an (n.number=1) action of type p:=CreateObject(Person), but, at the moment, there are no units

available (n.available=0). Initially, the property available takes the value of the number property

(n.available:=n.number). This property is later used and updated by the mapping function.

Roughly, the algorithm works by iterating through the actions in the path. For each action, it computes its

dependencies (getDependencies function). Then, the mapping function tries to map each dependency onto the

rest of the actions in the path. Dependencies not completely satisfied are added to the reqActions set and return

as a feedback to the user.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

30

In the following, we present a pseudocode of the function that verifies the weak executability of an execution

path:

function weakExecutability (in: p: Sequence (<number:Integer, action:Action>),

in: setcl: Set(Class), in: setat: Set (StructuralFeature), in: setas: Set(Association),

in: setgen: Set(GeneralizationSet), in: setconstr: Set(Constraint),

out: reqActions: Set (<number:Integer, action:Action >)): Boolean

 dependencies: Set(<number:Integer, action:Action>);

 node: <number:Integer, available:Integer, action:Action>;

 pAux: Sequence(<number:Integer, available:Integer, action:Action>);

 pAux := iniPathAux(p);

 for each node ∈ pAux do

 dependencies := getDependencies(node,setcl,setat,setas,setgen,setconstr);

 reqActions := reqActions U mapping(dependencies,pAux);

 endfor

 return (reqActions = Ø);

endfunction

In what follows, we explain in more detail the main steps of the algorithm and show the application to

determine the weak executability of the operations of our running example.

3.4.1.1. Computing the Dependencies

As we have seen in section 2.4., the concept of dependency determines which actions are required by another

action to satisfy the constraints of a class diagram.

For computing the dependencies from an action, the function getDependencies is founded on the dependencies

table introduced in section 2.4. Given this dependency table, getDependencies(node,setcl,setat,setas,setgen,setconstr)

function proceeds as follows:

1. Computes the set of dependencies dep for the action in node.action as stated in table 2.4.1.

2. Multiplies the number value in each dependency by the value of node.number (the number of

dependencies for an action is proportional to the number of actions of that type in the path).

3. Returns dep.

For instance, in our running example, the call getDependencies(<1,ur:=CreateObject(UnderReview)>) will

return the set of conjunctive actions {<1,AddStructuralFeature(ur,title,v)>,

<1,CreateLink(IsAuthorOf,ur,o2)>} , where the v and o2 arguments are free variables, since they can be

bounded to any object with the appropriate type.

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

31 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

3.4.1.2. Determining the Required Actions

For each dependency d returned by getDependencies3, the mapping function must first check whether d can be

mapped in one of the actions in the path and, if not, add d to the set of required actions reqActions that will be

returned as a feedback to the user.

Roughly, we consider that two actions map correctly when its action type and the model elements are the same

and its parameters can be bound correctly. For example, consider the path

p={<1,d:=CreateObject(Department)>,<1,AddStructuralFeature(d,name,’ComputerScience’)>} and the

dependency <1,d:=CreateObject(Department)> � <1,AddStructuralFeature(d,name,v)>. In this case, the

dependee action (<1,AddStructuralFeature(d,name,v>) can be mapped onto the second node in p

(<1,AddStructuralFeature(d,name,’Computer Science’)>), since the argument v is a free variable and it can

take the value ‘Computer Science’.

It is worth to note that in some situations two or more dependee actions can be mapped (i.e. share) to the same

action in the path. For example, consider the context of our running example. Suppose that we have an

operation with a path p={<N,CreateLink(IsAuthorOf,paper,authors[i]>}. In this case, each

CreateLink(IsAuthorOf,paper,authors[i]) need a DestroyLink(IsAuthorOf,paper,…) or a

paper:=CreateObject(UnderReview) (or any subclass of class Paper) action in the same path. The first

dependency is not shareable, since each CreateLink(IsAuthorOf,paper,…) needs a different destroy link to keep

the system consistent. Instead, the alternative dependency paper:=CreateObject(UnderReview) is shareable

since the N create links may rely on the same new created object to satisfy the multiplicity dependencies.

For this purpose, we add additional column (third column) in the dependence’s table to indicate if a

dependency can be shareable or not.

Table 3.4.1. Table from 2.4.1 with the additional column Shareable.

Action Required Actions Shareable

AddStructuralFeature(o,at,v) for each non-derived and

mandatory attribute at of c or of a superclass of c
No

o=CreateObject(c)

AND <min(c,as),CreateLink(as,o,o2)> dependencies for

each non-derived association as where c or a

superclass of c has mandatory participation

No

DestroyObject(o:c)

<min(c,as),DestroyLink(as,o,o2)> for each non-derived

as where c or a superclass of c has a mandatory

participation

No

DestroyLink(as,o1,o3) (if min(c2,as) <> max(c2,as)) No

OR CreateObject(o1) Yes

CreateLink(as,o1:c1,o2:c2)

(when min(c1,as) = max(c1,as))

to be repeated for the other end OR ReclassifyObject(o1,c1,Ø) Yes

CreateLink(as,o1,o3) (if min(c2,as) <> max(c2,as)) No DestroyLink(as,o1:c1,o2:c2)

(when min(c1,as) = max(c1,as)) OR DestroyObject(o1) Yes

3 Note that, as we have seen before, getDependencies may return not just a single set of dependencies but several alternative

ones (all of them sufficient to reach a consistent state). In those cases, the mapping function should check if at least one of

the alternative dependencies sets can be successfully mapped onto the path. For the sake of simplicity this situation is not
described here.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

32

to be repeated for the other end OR ReclassifyObject(o1,Ø,c1) Yes

AddStructuralFeature(o,at,v) - -

AddStructuralFeature(o,at,v) for each non-derived and

mandatory attribute at of each class c ∈ nc
No

AND <min(c,as),CreateLink(as,o,o3)> for each c ∈ nc

and for each non-derived association as where c has a

mandatory participation

No

AND ReclassifyObject(o,Ø,{cc’}) for a cc’ such that ∃cc

∈ nc and cc’ ∉ oc and cc ≠ cc’ and cc and cc’ are

subclasses of a common disjoint and complete

generalization set and o was instance of cc’

Yes

AND <min(c,as),DestroyLink(as,o,o3)> for each class c

in oc and for each non-derived association as where c

has a mandatory participation

No

ReclassifyObject(o,{nc},{oc})

AND ReclassifyObject(o,{cc’},Ø) for a cc’ such that cc’

∉ nc and ∃cc ∈ oc and cc ≠ cc’ and cc and cc’ are

subclasses of a common disjoint and complete

generalization set and o was instance of cc

Yes

More formally, we consider that a dependee action d.action can be mapped onto a node n in the path when the

following conditions are satisfied:

1. The action type of d.action and n.action is the same (e.g. both are CreateLink actions).

2. The model elements modified by the actions coincide (e.g. both create new links for the association

assoc).

3. All instance-level parameters of d.action can be bound to the parameters in n.action (free variables

introduced by the rules may be bound to any parameter value in n.action, fixed ones must have the

same identifier in both actions).

4. n.number≥d.number4 (for dependencies that are shareable) or n.available≥d.number (for non-

shareable actions). In this latter case, the availability value of the node is decreased according to the

number of “consumed” actions: n.available:=n.available-d.number.

Each time a mapping for a dependency is found, if the dependency is not shareable, the available property of

the mapping node is diminished (to avoid future dependencies map again to the same action) and pAux is

updated. Dependencies that do not map with the input execution path are returned by the function mapping and

added to the reqActions set.

4 This comparison may include abstract variables (e.g. when n is part of a loop). In those cases, the d.action can be mapped iff
there is a possible instantiation of the abstract variables that satisfies the inequality comparison.

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

33 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

3.4.1.3. Applying the algorithm

In the following, the execution of the executability function for the previous execution paths is detailed. To

facilitate its understanding, free variables are shown in italics.

Table 3.4.2. Weak Executability for the endOfReview operation.

Operation: endOfReview

Input
p1 = { }

pAux = { }

Output
reqActions = { }

executability = true

Input
p2 = {<1,ReclassifyObject(self,{Rejected},∅)>, <1,AddStructuralFeature(self,comments,com)>}

pAux = {<1,1,ReclassifyObject(self,{Rejected},∅)>, <1,1,AddStructuralFeature(self,comments,com)>}

Iteration 1

node = <1,1,ReclassifyObject(self,{Rejected},∅)>

dependencies = {<1,AddStructuralFeature(self,comments,v)>,

 <1,ReclassifyObject(self,Ø,{UnderReview})>}

mapping:

 <1,AddStructuralFeature(self,comments,v)> maps with the second node of pAux

 <1,ReclassifyObject(self,Ø,{UnderReview})> does not map with any node of pAux

reqActions = {<1,ReclassifyObject(self,Ø,{UnderReview})>

pAux = {<1,1,ReclassifyObject(self,{Rejected},∅)>, <1,0,AddStructuralFeature(self,comments,com)>}

Iteration 2

node = <1,0,AddStructuralFeature(self,comments,com)>

dependencies = { }

reqActions = { <1,ReclassifyObject(self,Ø,{UnderReview})> }

pAux = {<1,1,ReclassifyObject(self,{Rejected},∅)>, <1,0,AddStructuralFeature(self,comments,com)>}

Output
reqActions = {<1,ReclassifyObject(self,Ø,{UnderReview})>}

 executability = false

Input
p3 = {<1,ReclassifyObject(self,{Accepted},∅)>, <1,AddStructuralFeature(self,accepDate,d)>}

pAux = {<1,1,ReclassifyObject(self,{Accepted},∅)>, <1,1,AddStructuralFeature(self,accepDate,d)>}

Iteration 1

node = <1,1,ReclassifyObject(self,{Accepted},∅)>

dependencies = {<1,AddStructuralFeature(self,accepDate,v)>,

 <1,ReclassifyObject(self,Ø,{UnderReview})>}

mapping:

 <1,AddStructuralFeature(self,accepDate,v)> maps with the second node of pAux

 <1,ReclassifyObject(self,Ø,{UnderReview})> does not map with any node of pAux

reqActions = {<1,ReclassifyObject(self,Ø,{UnderReview})>}

pAux = {<1,1,ReclassifyObject(self,{Accepted},∅)>, <1,0,AddStructuralFeature(self,accepDate,d)>}

Iteration 2

node = <1,0,AddStructuralFeature(self,accepDate,d)>

dependencies = { }

reqActions = { <1,ReclassifyObject(self,Ø,{UnderReview})> }

pAux = { <1,1,ReclassifyObject(self,Accepted,∅)>, <1,0,AddStructuralFeature(self,accepDate,d)>}

Output
reqActions = {<1,ReclassifyObject(self,Ø,{UnderReview})>}

 executability = false

The execution path p1 is weakly executable, since it does not contain any action. On the other hand, the

execution paths p2 and p3 are not weakly executable since they always violate the disjointness constraint of the

generalization. The action required to make the paths executable is

ReclassifyObjectAction(self,Ø,{UnderReview}) in both cases.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

34

Table 3.4.3. Weak Executability for the submitPaper operation.

Operation: submitPaper

Input

p = {<1,p:=CreateObject(UnderReview)>, <1,AddStructuralFeature(p,title,tit)>,

 <N,CreateLink(IsAuthorOf,(p,authors[i])>}

pAux = {<1,1,p:=CreateObject(UnderReview)>, <1,1,AddStructuralFeature(p,title,tit)>,

 <N,N,CreateLink(IsAuthorOf,p,authors[i])>}

Iteration 1

node = <1,1,p:=CreateObject(UnderReview)>

dependencies = {<1,AddStructuralFeature(p,title,v)>, <1,CreateLink(IsAuthorOf,p,o2)>}

mapping:

 <1,AddStructuralFeature(p,title,v)> maps with the second node of pAux

 <1,CreateLink(IsAuthorOf,p,o2)> maps with the third node of pAux

reqActions = { }

pAux = {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>,

 <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>}

Iteration 2

node = <1,0,AddStructuralFeature(p,title,tit)>

dependencies = { }

reqActions = { }

pAux = {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>,

 <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>}

Iteration 3

node = <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>

dependencies = { <N,DestroyLink(IsAuthorOf,p,o3)> OR <N, o:=CreateObject(Paper)> }

mapping:

 <N,DestroyLink(IsAuthorOf,p,o3)> does not map with any action of pAux.

 <N,o:=CreateObject(Paper)> maps with the first node of pAux, since this dependence is shareable and

UnderReview is a subclass of Paper.

reqActions = { }

pAux = {<1,1,p:=CreateObject(UnderReview)>, <1,0,AddStructuralFeature(p,title,tit)>,

 <N,N-1,CreateLink(IsAuthorOf,(p,authors[i])>}

Output
reqActions = { }

executability = true

The execution path p is weakly executable, since all actions required are contained in the execution path.

Table 3.4.4. Weak Executability for the dismiss operation.

Operation: dismiss

Input
p = {<1,DestroyLink(WorksIn,self,self.department)>}

pAux = {<1,1,DestroyLink(WorksIn,self,self.department)>}

Iteration 1

node = <1,1,DestroyLink(WorksIn,self,self.department)>

dependencies = { <1,CreateLink(WorksIn,self,o2)> OR <1,DestroyObject(self)> }

mapping:

 <1,CreateLink(WorksIn,self,o2)> does not map with any node of pAux

 <1,DestroyObject(self)> does not map with any node of pAux

reqActions = { <1,CreateLink(WorksIn,self,o2)> OR <1,DestroyObject(self)> }

pAux = {<1,1,DestroyLink(WorksIn,self,self.department)>}

Output
reqActions = { <1,CreateLink(WorksIn,self,o2)> OR <1,DestroyObject(self)> }

executability = false

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

35 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

This execution path is not executable (and thus, neither the dismiss operation since this is its only path),

because removing the link violates the cardinality constraint ‘1’ of WorksIn association. Adding the required

actions CreateLink(WorksIn,self,o2) (i.e. adding a new link for the dangling object) OR DestroyObject(self)

(i.e. destroying it) returned by our method would make the path executable.

Table 3.4.5. Weak Executability for the createShedule operation.

Operation: createSchedule

Input

p = {<N,s:=CreateObject(Session)>, <N,AddStructuralFeature(s,date,dateList[i])>,

 <N,AddStructuralFeature(s,room,roomList[i])>, <1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

pAux = {<N,N,s:=CreateObject(Session)>, <N,N,AddStructuralFeature(s,date,dateList[i])>,

 <N,N,AddStructuralFeature(s,room,roomList[i])>,

 <1,1,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Iteration 1

node = <N,s:=CreateObject(Session)>

dependencies = {<N,AddStructuralFeature(s,date,v1)>, <N,AddStructuralFeature(s,room,v2)>,

 <N,CreateLink(isPresentedAt,v3,s[i])> }

mapping:

 <N,AddStructuralFeature(s,date,v1)> maps with the second node of pAux

 <N,AddStructuralFeature(s,room,v2)> maps with the third node of pAux

 <1,CreateLink(isPresentedAt,v3,s[i])> maps with the fourth node of pAux and <N-1,

CreateLink(isPresentedAt,v3,s[i])> cannot map with any node due to the fault of units

reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> }

pAux = {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,

 <N,0,AddStructuralFeature(s,room,roomList[i])>,

 <1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Iteration 2

node = <N,0,AddStructuralFeature(s,date,datesList[i])>

dependencies = { }

reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> }

pAux = {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,

 <N,0,AddStructuralFeature(s,room,roomList[i])>,

 <1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Iteration 3

node = <N,0,AddStructuralFeature(s,date,roomList[i])>

dependencies = { }

reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> }

pAux = {<N,N,s:=CreateObject(Session)>, <N, 0, AddStructuralFeature(s,date,dateList[i])>,

 <N,0,AddStructuralFeature(s,room,roomList[i])>,

 <1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Iteration 4

node = <1, 0, CreateLink(isPresentedAt,acceptPapers[1],s[1])>

dependencies = { }

reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> }

pAux = {<N,N,s:=CreateObject(Session)>, <N,0,AddStructuralFeature(s,date,dateList[i])>,

 <N,0,AddStructuralFeature(s,room,roomList[i])>,

 <1,0,CreateLink(isPresentedAt,acceptPapers[1],s[1])>}

Output
reqActions = { <N-1,CreateLink(isPresentedAt,v3,s[i])> }

executability = false

The execution path p is not weakly executable since it always violates the cardinality constraint ‘1’ of paper

role in IsPresentedAt link. The action required to make the path executable is one

CreateLink(isPresentedAt,v3,s[i]) action for each session created, where v3 represents an accepted paper. Note

that this set of actions can be included inside the loop.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

36

3.5. Verifying Completeness

Users evolve the system state by executing the set of operations defined in the class diagram.

We consider that an operation set is complete when all possible changes

(inserts/updates/deletes/…) on the system state can be performed through the execution of the

operations defined in the class diagram. Otherwise, there will be parts of the system that users

will not be able to modify since no available operations address their modification.

For instance, the set of operations defined in Fig. 2.3.2 is incomplete since operations to remove a person or to

create and remove departments are not specified, among others.

More formally, an operation set setop={op1,…, opn} is complete when for each modifiable element e in the class

diagram and each possible action action modifying the population of e, there is at least a weak executable path

in some opi that includes action.

The graphical overview of this step is:

Fig. 3.5.1. Verifying Completeness overview.

The input of the step is the CS and the weak executable paths computed in the step 2. For each modifiable

element e defined in the CS, the completeness algorithm checks if exists an action included in some execution

path that can modify the state of e and returns as a feedback the elements that cannot be modified.

3.5.1. Completeness algorithm

In this section we present an algorithm for determining the completeness of a set of operations.

The specification of the function is:

Function Completeness

Input parameters CS, composed by:

 setcl: Classes

 setat: Attributes (StructuralFeature)

 setas: Associations

 setgen: Generalizations Sets

 setop: Operations

exPaths: set of execution paths from setop

Output parameters feedback – For incomplete operations sets, the output parameter feedback contains

the set of actions that should be included in some operation to satisfy the

completeness property.

Result True, if the set of operations is complete. False, in other case.

CS
+

Executable Paths
Completeness algorithm

4. Verifying Completeness
 Boolean +
 {CS elements} should be included

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

37 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

Roughly, the algorithm proceeds as follows:

1. Obtains all different actions of weak executable paths of the setop operations set (getExistingActions

function).

2. Computes the set of actions that should be provided to the system users in order to be able to modify

all parts of the system state, depending on the structure and properties of the class diagram

(getRequiredActions function). Next subsection provides the rules for determining such actions.

3. Subtracts the existing actions from required actions (requiredActionsSet – existingActionsSet =

feedbak) to obtain the actions that should be include. Note that, if the result is an empty set, then the

setop is complete.

A function for checking the completeness of setop is the following:

function completeness (in: setcl: Set(Class), in: setat: Set (StructuralFeature), in: setas: Set(Association),

in: setgen: Set(GeneralizationSet), in: setop: Set (Operations),

in: exPaths: Set (Sequence (<number:Integer, action:Action>)), out: feedback: Set(Action)): Boolean

 requiredActionsSet, existingActionsSet: Set(Action);

 action: Action;

 feedback := Ø;

 existingActionsSet := getExistingActions(exPaths);

 requiredActionsSet := getRequiredActions(setcl, setat, setas, setgen);

 for each action ∈ requiredActionsSet do

 if (action ∉ existingActionsSet) then feedback := feedback U {action}; endif

 endfor

 return (feedback = Ø);

 endfunction

In what follows, we explain in more detail the main steps of the algorithm and show the application to

determine the weak of the operations of our running example.

3.5.1.1. Computing the Existing Actions

The set of actions returned by getExistingActions is composed by those actions that are included in some weak

executable path of the set exPaths.

3.5.1.2. Computing the Required Actions

The set of actions returned by getRequiredActions is computed by first determining the modifiable model

elements in the class diagram (i.e. the elements whose value or population can be changed by the user at run-

time) and then deciding, for each modifiable element, the possible types of actions that can be applied on it.

The modifiable elements can be summarized in:

• Class: A class is modifiable as long as it is not an abstract class and it is not the supertype of a

complete generalization set (instances of such supertypes must be created/deleted through their

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

38

subclasses). For each modifiable class c, users must be provided with the actions CreateObject(c) and

DestroyObject(o:c)5 to create and remove objects from c.

• Attribute (StructuralFeature): An attribute is modifiable when it is not derived6. For each modifiable

attribute attr the action AddStructuralFeature(o,attr,v) is necessary.

• Association: An association is modifiable if all its member ends are not derived. For each modifiable

association assoc, we need the actions CreateLink(assoc,p1,p2) and DestroyLink(asso,p1,p2).

• Generalization: Generalization sets are always modifiable. For generalizations sets we need a set of

actions ReclassifyObject(o,{nc},{oc}) among the classes involved in the generalization to specialize

(generalize) the object o to (from) each subclass of the generalization.

3.5.1.3. Applying the algorithm

In the following, the execution of the completeness function for our running example (Fig. 2.1.1 and 2.3.2) is

detailed.

The operation getExistingActions retrieves all different actions of weak executable paths of the operations

endOfReview, submitPaper, dismiss and createShedule:

existingActionsSet = { ur:=CreateObject(UnderReview), AddStructuralFeature(ur,title,t), CreateLink(IsAuthorOf,p,ur) }

The operation getRequiredActions returns the following set of actions (free variables are shown in italics):

requiredActionsSet = {

//One CreateObject(Class) action for each modifiable class of the diagram:

a:=CreateObject(Accepted), r:=CreateObject(Rejected), ur:=CreateObject(UnderReview), p:=CreateObject(Person),

d:=CreateObject(Department), s:=CreateObject(Session),

//One DestroyObject(obj) action for each modifiable object of the diagram:

DestroyObject(a), DestroyObject(r), DestroyObject(ur), DestroyObject(p), DestroyObject(d), DestroyObject(s),

//One AddStructuralFeature(obj,att,v) action for each modifiable attribute att:

AddStructuralFeature(a,title,t), AddStructuralFeature(a,accepDate,d), AddStructuralFeature(r,comments,c),

AddStructuralFeature(p,name,n), AddStructuralFeature(p,email,e), AddStructuralFeature(d,name,n),

AddStructuralFeature(s,date,d), AddStructuralFeature(s,room,s),

//One CreateLink(as,p1,p2) action for each modifiable association as:

CreateLink(IsAuthorOf,p,a), CreateLink(WorksIn,p,d), CreateLink(isPresentedAt,a,s),

//One DestroyLink(as,p1,p2) action for each modifiable association as

DestroyLink(IsAuthorOf,p,a), DestroyLink(WorksIn,p,d), DestroyLink(IsPresentedAt,a,s),

//One ReclassifyObject(o,nc,oc) for each classes involved in the generalization to specialize (generalize) the object o to

(from) each subclass of the generalization:

ReclassifyObject(ur,{Accepted},{UnderReview}), ReclassifyObject(ur,{Rejected},{UnderReview}),

ReclassifyObject(a,{UnderReview},{Accepted}), ReclassifyObject(a,{Rejected},{Accepted}),

ReclassifyObject(r,{UnderReview},{Rejected}), ReclassifyObject(r,{Accepted},{Rejected}) }

5 Or a generic operation DestroyObject(o:OclAny) to remove objects of any class.
6 Read-only attributes are considered modifiable because users must be able to initialize their value (and similar for read-only

associations).

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

39 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

Therefore, the output parameter feedback contains the set of actions that should be included in some operation

to satisfy the completeness property.

feedback = {

a:=CreateObject(Accepted), r:=CreateObject(Rejected), p:=CreateObject(Person), d:=CreateObject(Department),

s:=CreateObject(Session), DestroyObject(a), DestroyObject(r), DestroyObject(ur), DestroyObject(p), DestroyObject(d),

DestroyObject(s),

AddStructuralFeature(a,accepDate,d), AddStructuralFeature(r,comments,c), AddStructuralFeature(p,name,n),

AddStructuralFeature(p,email,e), AddStructuralFeature(d,name,n), AddStructuralFeature(s,date,d),

AddStructuralFeature(s,room,s), CreateLink(WorksIn,p,d), CreateLink(isPresentedAt,a,s),

DestroyLink(IsAuthorOf,p,a), DestroyLink(WorksIn,p,d), DestroyLink(IsPresentedAt,a,s),

ReclassifyObject(ur,{Accepted}, {UnderReview}), ReclassifyObject(ur, {Rejected}, {UnderReview}),

ReclassifyObject(a,{UnderReview}, {Accepted}), ReclassifyObject(a, {Rejected}, {Accepted}),

ReclassifyObject(r,{UnderReview}, {Rejected}), ReclassifyObject(r, {Accepted}, {Rejected}) } }

3.6. Detecting Redundant Paths

The last step of our method consists in detect redundant paths.

An action (or set of actions) in an execution path is redundant if its effect on the system state is

subsumed by the effect of later actions in the same path, that is, the final system state when

executing the operation following that path would be exactly the same with or without the

redundant action.

The aim of this step is detect the redundant actions and inform the designer so that they can remove it from the

path.

The graphical overview of this step would be:

Fig. 3.6.1. Detecting Redundant Paths overview.

The input of the step is the CS, specifically the imperative specification of each operation included in the CS.

For each set of actions, the method would detect if it follow some redundancy pattern and would return as a

feedback the actions (or set of actions) that are redundant.

An operation specification may be redundant at three different levels:

1. Some actions in an execution path are redundant.

2. The complete execution path is redundant.

3. The operation as a whole is itself redundant.

CS

Redundancy patterns

5. Detecting Redundant Paths

 redundancies

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

40

3.6.1. Redundancy in Actions

We have identified several patterns that detect such redundant actions. For each pattern we provide a possible

non-redundant alternative path. However, the modification of the paths cannot be fully automatic since, for

instance, a redundant action action may not be redundant in a different path also including action or may affect

the execution of other actions in the path. Nevertheless, we believe it is worth to at least point out these

redundant actions to the designer.

Table 3.6.1. Patterns of redundant paths.

Redundant path Equivalent path Redundancy

{…, AddStructuralFeatureValue(o,at,v),

…, AddStructuralFeatureValue(o,at,v2),

…}

{…

AddStructuralFeatureValue(o,at,v2)

…}

The second update overwrites
the first one

{…, o = CreateObject(Cl),

…, DeleteObject(o), …}
{…}

{…, AddStructuralFeatureValue(o,at,v),

…, DeleteObject(o), …}
{…}

{…, ReclassifyObject(o,{nc},{oc}),

…, DeleteObject(o), …}
{…}

No need of
creating/updating/reclassifying
an object that it is going to be
removed within the same
execution.

{…, CreateLink(as,p1,p2)

…, DeleteLink(as,p1,p2), …}
{…}

Why creating a link that it is
going to be removed?

{…, ReclassifyObject(o,Cl2,Cl1),

…, ReclassifyObjectAction(o,Cl1,Cl2), …}

{…

ReclassifyObjectAction(o,Cl2,Cl)

 …}

The last reclassification
removes the effect of the first
one.

{…, ReclassifyObject(o,Cl2,Cl1),

…, ReclassifyObjectAction(o,Cl3,Cl2), …}
{…, ReclassifyObject (o,Cl3,Cl1),…} Transitive property

As an illustrative example of this step, suppose that we have a new operation in our running example:

context UnderReview::removePaper() {

 ReclassifyObject(self,{Rejected},{UnderReview});

 DeleteObject(self);

}

As we can see in the fourth pattern, the previous operation includes a redundant action,

ReclassifyObject(self,{Rejected},{UnderReview}), because it is redundant reclassifying an object that it is going

to be removed within the same execution.

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

41 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

3.6.2. Redundancy in Execution Paths

An execution path p1 is redundant with respect to an execution path p2 (of the same or a different operation)

when p1 is subsumed by p2, i.e. when all actions in p1 appear in p2 with the same or lower number. This may be

perfectly correct (e.g. p1 may appear in a basic operation whose behavior is also included in a more complex

one) but it should be highlighted as suspicious, specially when it happens also that p2 is redundant respect to p1,

meaning that both paths have exactly the same actions.

As an illustrative example of this step, suppose that we have the follow new operations in our running example:

context Paper::setTitle(tit:String) {

 if (self.oclIsTypeOf(UnderReview)) AddStructuralFeature(self,title,tit);

 else

 if (self.oclIsTypeOf(Accepted)) AddStructuralFeature(self,title,tit);

 else

 if (self.oclIsTypeOf(Rejected)) AddStructuralFeature(self,title,tit);

 endif

 endif

}

Obviously, two of the three execution paths are redundant, since all execution paths modify the same element

with the same value.

3.6.3. Redundancy in Operations

We say that an operation op may be redundant when all its execution paths are redundant, especially when all

its paths can be mapped to the paths of the other operation op2. Even if both operations make sense, designer

could probably merge them to favor the simplicity of the schema.

As an illustrative example of this step, suppose that we have the follow new operations in our running example:

context Paper::setTitle(tit:String) {

 AddStructuralFeature(self,title,tit);

}

contextPaper::createPaperUnderReview(tit:String) {

 p:Paper;

 p := CreateObject(Paper);

 AddStructuralFeature(self,title,tit);

 ReclassifyObject(self,{UnderReview},{})

}

In this case, the operation setTitle may be redundant, since its execution path can be mapped to the execution

path of createPaperUnderReview.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

42

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

43 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

4. Related Work

The properties that we verify in this work have been studied previously in more or less depth. In the follow, we

summarize the main related works for each property.

SYNTACTIC CONSISTENCY

The syntactic consistency of UML artifacts has been studied in several works. [35], for example, defines four

constraints that must be checked in order to guarantee that a dynamic diagram is consistent with a class

diagram. [13] defines a set of consistency rules for validate a UML model. [42] uses the Description Logics

formalism [12] for maintaining consistency between (evolving) UML models. Our method complements these

purposes adding new rules at metamodel level.

EXECUTABILITY

In general, the verification of UML specifications is done through two steps: (1) translating the UML

specification in a specific formal language and (2) verifying the obtained formal specification by means of a

suitable technique.

The formal language and the technique used depend on the properties we want to verify. For verifying dynamic

properties (like executability) a technique widely used is Model Checking.

Model Checking is an approach emerged for verifying requirements, mainly in developing reliable software for

concurrent systems. The essential idea behind model checking is shown in Fig. 4.1. A Model-Checking tool

accepts system requirements or designs (called models) and a dynamic property (called specification) that the

final system is expected to satisfy. The tool then outputs yes if the given model satisfies the given

specifications and generates a counterexample otherwise. The counterexample details why the model does not

satisfy the specification. By studying the counterexample, you can pinpoint the source of the error in the model,

correct the model, and try again. The idea is that by ensuring that the model satisfies enough system properties,

we increase our confidence in the correctness of the model.

Roughly, model checkers work by generating and analyzing all the potential operation executions at run-time

and evaluating if for each (or some) execution the given property is satisfied. Even though a number of

optimizations are available in state-of-the-art model checkers (as partial order reduction, state compression,

abstraction and so forth), verification methods based on model checking suffer from the state explosion

problem (i.e. the size of the problem grows exponentially in terms of the size of the model and thus, in general

it is not possible to explore all possible executions). This implies that usually results provided by these methods

are not conclusive, i.e. absence of a solution cannot be used as a proof, that is, an operation classified as not

weakly executable may still have a correct execution outside the search space explored during the verification.

Instead, our analysis is static and thus no animation/simulation of the model is required.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

44

Fig. 4.1. Model-Checking overview.

There are a variety of tools that implements Model Checking technique. One of the most popular and open-

source is the SPIN Model Checker [20]. SPIN supports a formal language to specify systems descriptions,

called PROMELA (a PROcess MEta LAnguage). Another Model Checking-based tool is ProB [38], that

supports the B-Method [1].

Model Checking approach has been used in the context of behavior UML specifications, mainly in the

verification of state machines [23, 22, 28], activity diagrams [16] and on the consistent interrelationship

between them and/or the class diagram [21, 11, 19, 43].

As we have seen, to check the executability of an operation (or, in general, any property that can be expressed

as a Linear Temporal Logic formula – LTL [14]) previous works rely on the use of Model Checking

techniques. Many of these works restrict the expressivity of the supported UML models. In fact, most of the

methods above do not accept the specification of actions in the input behavior specifications, which is exactly

the focus of our method. A remarkable difference of our method is that, since do not require

animation/simulation and do not restrict the language, is efficient and complete: the existence of a solution can

always be determined.

As a trade-off our method is unable to verify arbitrary temporal properties. We believe our method could be

used to perform a first correctness analysis, basic to ensure a minimum quality level in the operation

specification. Then, designers could complement the verifying process proceeding with a more detailed

analysis adapting current approaches presented above to the verification of operations specified with action

semantics. For instance, example execution traces that make the operation reach an error state would help

designers to detect particular scenarios not yet appropriately considered in the operation.

Moreover, there is also a difference in the kind of feedback provided to the designer when the executability

property is not satisfied. Model checking tools are able to provide example execution traces that do not satisfy

the integrity constraints. In contrast, our method provides a more valuable feedback (at least for a first-level

correctness analysis) since it suggests how to change the operation specification in order to repair the detected

inconsistency.

COMPLETENESS

Regarding this property, we would like to remark that, to the best of our knowledge, our work is the first one

proposing the verification of the completeness property of a behavioral schema.

REDUNDANCY

Redundant property has been studied in several perspectives. [10] identify redundancies between Sequence

Diagrams and declarative contracts of operations. [4] computes the net effect, that is, defines structural

inconsistencies (redundancies) between construction operations (actions), similar to our detection of

redundancies in actions.

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

45 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

5. Conclusions and Further Work

We have presented an efficient and decidable method for verifying the correctness of imperative operations

specified using the action semantics formalism, one of the key elements in all MDD and UML Executable

methods. It is worth to note that our method only treats a subset of the actions provided by UML, but this set

can be extended to tackle the whole range of actions.

Our method is able to verify several properties of the behavior specifications: syntactic consistency,

executability, completeness and redundancy. All the process is based on a static analysis of the structural and

behavioral schemas and, for verify the executability, is also based on the dependencies among the actions

included in the operation specification. For verify the executability model animation/simulation is not

performed during the verification process, and thus, our method does not suffer from the state-explosion

problem of current model-checking based methods [9]. As a trade-off, our method is not adequate for

evaluating general LTL properties.

We believe that the characteristics of our method make it especially suitable for its integration in current CASE

and code-generation tools, as part of the default consistency checks that those tools should continuously

perform to assist designers in the definition of software models. Moreover, the valuable feedback provided by

our method helps designers to correct the detected errors since our method is able to suggest a possible repair

procedure instead of just highlighting the problem.

As a further work, we plan to extend the set of actions our method deals with and to apply our techniques to

other kinds of UML behavior specifications, as state machines and interactions, that may also include action

sequences (for instance, as part of a state transition).

Moreover, we would like to complement our techniques by providing an automatic transformation between the

initial action semantics specification and the input language of a popular model-checker tool (as the

PROMELA language [20] so that, after an initial verification with our techniques, designers may get a more

fine-grained (though partial) analysis by means of applying model checking techniques on the operation

specification.

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

46

Elena Planas

MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

47 Master in Computing

Universitat Politècnica de Catalunya

Verifying consistency between structural and behavioral schemas in UML

6. References

1. Abrial, J. R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press. (1996)

2. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE Software 20(5), 36-41

(2003)

3. Bauerdick, H., Gogolla, M., Gutsche, F.: Detecting OCL Traps in the UML 2.0 Superstructure: An Experience

Report. Int. Conf. on the Unified Modeling Language, LNCS, 3273, 188-197 (2004)

4. Blanc, X., Mougenot, A.: Detecting Model Inconsistency through Operation-Based Model Construction. Int.

Conf. on Soft. Eng., 511-520, (2008)

5. Bollobas, B.: Modern graph theory. Springer (2002)

6. Cabot, J.: From Declarative to Imperative UML/OCL Operation Specifications. LNCS, 4801, 198-213 (2007)

7. Cabot, J., Gómez, C.: Deriving Operation Contracts from UML Class Diagrams. Int. Conf. on Model Driven

Engineering Languages and Systems, LNCS, 4735, 196-210, (2007)

8. Raistrick C., Francis P., Wright J.: Model driven architecture with executable UML. Chapter 10 (2004)

9. Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., Veith, H: Progress on the State Explosion Problem in Model

Checking. Informatics - 10 Years Back. 10 Years Ahead. R. Wilhelm, LNCS, 176-194 (2001)

10. Costal, D., Sancho, M. R., Teniente, E.: Understanding Redundancy in UML Models for Object-Oriented

Analysis. Int. Conf. on Advanced Information Systems Engineering, 659-674 (2002)

11. Gallardo, M.M., Merino, P., Pimentel, E.: Debugging UML Designs with Model Checking. Journal of Object

Technology, 1(2), 101-117 (2002)

12. Donini, F. M., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in Description Logics. Principles of Knowledge

Representation, 191–236 (1996)

13. Egyed, A.: Instant Consistency Checking for the UML. Int. Conf. on Soft. Eng., 381-390 (2006)

14. Emerson, E. A.: Temporal and Modal Logic. Handbook of Theoretical Computer Science, 8, 995-1072 (1990)

15. Engels, G., Küster, J. M., Heckel, R., Groenewegen L.: A Methodology for Specifying and Analyzing

Consistency of Object-Oriented Behavioral Models. ACM SIGSOFT Software Engineering Notes, 26, 186-195

(2001)

16. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transactions on Soft. Eng. and

Methodology, 15, 1-38 (2006)

17. France, R. B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-Driven Development using UML 2.0: Promises

and Pitfalls. COMPUTER, 59-66, (2006)

18. Garousi, V., Briand, L., Labiche, Y.: Control Flow Analysis of UML 2.0 Sequence Diagrams. European Conf. on

Model Driven Architecture-Foundations and Applications, LNCS, 3748, 160-174 (2005)

19. Graw, G., Herrmann, P.: Transformation and Verification of Executable UML Models. Electronic Notes in

Theoretical Computer Science, 101, 3-24 (2004)

Master in Computing

Universitat Politècnica de Catalunya

Elena Planas

Verifying consistency between structural and behavioral schemas in UML
MASTERMASTERMASTERMASTER

THESISTHESISTHESISTHESIS

48

20. Holzmann, G. J.: The spin model checker: Primer and reference manual. Addison-Wesley Professional (2004)

21. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. Workshop on Critical Systems Development

using Modelling Languages, LNCS, 4364, 42-51 (2006)

22. Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Behavioural Subset of UML Statechart

Diagrams using the SPIN Model-Checker. Formal Aspects of Computing, 11(6), 637-664 (1999)

23. Lilius, J., Paltor, I. P.: Formalising UML State Machines for Model Checking. Int. Conf. on the Unified

Modeling Language, LNCS, 1723, 430–445 (1999)

24. McAllister, A. J., Sharpe, D.: An Approach for Decomposing N-Ary Data Relationships. Software-Practice &

Experience, 28(1), 125-154 (1998)

25. Mellor Stephen J., Balcer Marc J.: Executable UML: A foundation for model-driven architecture. Addison-

Wesley (2002)

26. Mellor, S. J., Scott, K., Uhl, A., Weise, D.: Model-Driven Architecture. Computing Reviews, 45, 631 (2004)

27. Meyer, B.: Applying 'Design by Contract'. Computer, 25, 40-51 (1992)

28. Ober, I., Graf, S., Ober, I.: Validating Timed UML Models by Simulation and Verification. Int. Journal on

Software Tools for Technology Transfer, 8(2), 128-145 (2006)

29. Object Action Language (OAL).

http://66.102.1.104/scholar?hl=ca&lr=&q=cache:1gQDIRCqzUIJ:www.acceleratedtechnology.com/pdf_downl

oad/bpalref.pdf+%22Object+Action+Language%22

30. Object Management Group (OMG): UML 2.0 Superstructure Specification. OMG Adopted Specification

(ptc/07-11-02) (2007)

31. Object Management Group (OMG): Object Constraint Language Specification (formal/2006-05-01).

32. Object Management Group (OMG): UML ASL Reference Guide. www.omg.org/docs/ad/03-03-12.pdf

33. Olivé, A.: Conceptual modeling of information systems. Springer (2007)

34. Olivé, A., Cabot, J.: A Research Agenda for Conceptual Schema-Centric Development. Conceptual Modelling in

Information Systems Engineering, 319-334 (2007)

35. Paige, R. F., Brooke, P. J., Ostroff, J. S.: Metamodel-Based Model Conformance and Multiview Consistency

Checking. ACM Transactions on Soft. Eng. and Methodology, 16(3) (2007)

36. PathMATE Action Language (PMAL). http://www.pathfindermda.com/products/spotlight.php

37. Platform-independent Action Language (PAL).

ftp://ftp.software.ibm.com/software/rational/web/casestudy/RAC14010-USEN-00.pdf

38. ProB. http://users.ecs.soton.ac.uk/mal/systems/prob.html

39. Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language reference manual. Addison-Wesley

Professional; Har/Cdr edition (1999)

40. Shlaer-Mellor Action Language (SMALL). http://www.modelint.com/downloads/small.pdf

41. Starr's Concise Relational Action Language (SCRALL).

http://www.modelint.com/downloads/mint.scrall.tn.1.pdf

42. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic to Maintain Consistency

between UML Models. Int. Conf. on the Unified Modeling Language, LNCS, 2863, 326–340 (2003)

43. Xie, F., Levin, V., Browne, J. C.: Model Checking for an Executable Subset of UML. Int. Conf. on Automated

Soft. Eng, 333-336 (2001)

