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Abstract

This Master Thesis proposes an analytical model of commodity trading in the presence of
market power, which is new to the literature. We establish the rational behavior of traders
between two markets and derive price spread dynamics based on the trading volumes. We
consider two commodity markets that quote different prices for the same product, and
a trader capable of purchasing in one market to resell in the other, within a trading
capacity. For simplicity, we assume that the inventory present between the two markets is
constant, i.e., the amount stored is fixed (and is directly linked to the trading capacity).
We first establish the structure of the optimal trading policy. This policy determines,
given a realization of the current price spread between the two markets, how much (if
any) volume must be bought/sold from/at the first market and sold/bought at/from the
second market, so that the long-run average profit is maximized. When optimizing, the
trader takes into account its impact on future spreads. We then describe the parameters
of the optimal policy and we apply our model to kerosene prices in New York and Los
Angeles, and illustrate the insights derived.
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Introduction

Commodity trading moves a colossal amount of volume and money worldwide. This Mas-
ter thesis considers the bidirectional problem of a commodity trader which may purchase
in one market and resell in the other (or vice versa) depending on the spot price at the
two markets.

We consider the trader to be capacitated ; in other words, we have operational restrictions
(e.g. logistics) in the volume he can move between the markets. We also take into account
the influence of the trading activities in the spot prices as the spread (difference in price)
is reduced when trading takes place (spreads tend to close over time). This is technically
known as market power.

This Thesis has several objectives:

• The first objective is to build a model that characterizes the problem taking into
account the capacity restrictions and market power. We will need to understand
and model the price spread dynamics.

• Our primary objective is to find and characterize the optimal trading policy for the
trader’s problem. This policy must determine, given a realization of the current price
spread between the two markets, how much (if any) volume must be bought/sold
from/at the first market and sold/bought at/from the second market, so that the
long-run average profit is maximized.

• The topic of this Thesis lays between two different study areas. The first one is fi-
nance and economics, the second is operations management and operations research.
We will be particulary careful about introducing the basic concepts and technical
vocabulary of the first area as they can be new for someone who does not work in
it. In some sense, we hope that this Thesis will be a bridge between the two areas
as it combines the ideas and methodologies of both.

• We will test our theoretical model and apply its insights to a real example. With
this we hope to obtain a valuable feedback.

• Without avoiding scientific precision we pretend to make the intuition beneath our
results as clear as possible so that a trader who reads this Thesis does not find
difficulties in understanding what (and why) we claim he should do to optimize his
benefits.
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Since November 2006, I have been working as the research assistant of professor Victor
Mart́ınez-de-Albéniz from the Production, Technology and Operations Management De-
partment at IESE Business School. The main result of our collaboration is a co-authorized
paper A Capacitated Commodity Trading Model with Market Power submitted to Man-
agement Science December 2007. In this Master Thesis I will expose the results and
conclusions we present in the paper as well as the methodology and techniques we have
used.

The Thesis is organized as follows. In Chapter 1, we make a short introduction to com-
modity trading and we review the previous literature and how this Thesis is related to
it. Chapter 2 describes in detail the model with its assumptions and notation. Then, in
Chapter 3 we present the results for different market situations (monopoly, oligopoly),
together with the optimality equations that characterize the optimal policy, and a numer-
ical sensitivity analysis. In Chapter 4 we show an application of our model to kerosene
prices and discuss future research directions. Finally, we summarize, discuss and present
the conclusions.
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Chapter 1

Commodity Trading

1.1 About Commodities

Etymologically, the word commodity came into use in English in the 15th century, derived
from the French word commodité, similar in meaning to ”convenience” in terms of quality
of services. The Latin root is commoditas, referring variously to the appropriate measure
of something; a fitting state, time or condition; a good quality; efficaciousness or propriety;
and advantage, or benefit. The German equivalent is die Ware, i.e., wares or goods offered
for sale. The French equivalent is produit de base like energy, goods, or industrial raw
materials. The Spanish translation is mercanćıa and mercaderia in Catalan.

In the original and simplified sense, commodities were things of value, of uniform quality,
that were produced in large quantities by many different producers. The items from
each different producer were considered equivalent. In a broader sense one can think
a commodity to be anything for which there is demand, but which is supplied without
qualitative differentiation across a given market.

Examples include not only minerals, metals and agricultural products such as iron ore,
aluminum, silver, gold, sugar, coffee, rice, wheat, but also energy sources such as coal,
oil, and natural or liquified gas, and even intermediary or manufactured products such as
chemicals or generic drugs.

Nowadays, commodities have become the building block of a large part of our economy.
They are relatively easily traded and can be physically delivered anywhere in the world.
The volume of commodity trading in the world is huge: more than 91 million 60kg coffee
bags were traded in 2006, more than 84 million barrels of oil are daily consumed... and in
some cases in clear expansion (the natural gas sector grows 2% per year, liquified natural
gas (LNG) grows 10%). Many less-developed countries depend heavily on the exports
of a small number of primary commodities. There are big firms with huge departments
devoted exclusively to commodity trading (e.g. Glencore, LouisDreyfus).
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Commodities are traded in very active markets, such as the Chicago Board of Trade
(CBOT), the New York Mercantile Exchange (NYMEX), or the London Metal Exchange
(LME), to cite a few. Prices are determined by the market, rather than by the large
suppliers or large buyers, with the exception perhaps of the Organization of the Petroleum
Exporting Countries (OPEC).

Spot prices at commodity markets exhibit several salient features: they are highly auto-
correlated, and extremely volatile with rare but violent explosions in price. Figure 1.1
is an example of the time series plot of a commodity (coffee) with high volatility and
spikes in price. Deaton and Laroque [8] explained the volatility by inventory holding dy-
namics: where speculators carry inventory, the price remains stable, but when they are
out-of-stock, the price fluctuates wildly. Table 4.1 summarizes some of the statistical facts
about eight primary commodities over the period November 1999-January 2008 (4-month
and one-year a-c are the first order autocorrelation coefficients when considering the data
in trimesters or annually. The Kurtosis is calculated with respect to that of a Normal
Distribution).
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Figure 1.1: Daily coffee prices

It is commonly assumed that the price of a commodity is the same in any point in the
world, as occurs for stocks or bonds. This is not so, as the price in each location is adjusted
for logistics costs and local market conditions (local balance of supply and demand) among
others. For example, a coffee producer with several factories in Europe will pay different
prices for deliveries in each one of the factories. One would assume that these differences
are very small, or at least stable over time. This is true in the long-run but in some cases
price spreads, i.e., price difference between two locations, can be significant in the short
term (we will examine a particular example in Chapter 4).
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Table 1.1: Commodity price facts November 1999-January 2008. Source: Reuters.

4-month a-c One-year a-c St.Dev Skewness Kurtosis
Rice 0.93 0.61 4.92 0.55 0.06
Tea 0.79 0.51 18.45 0.48 0.65
Wheat 0.87 0.56 73.85 1.77 8.55
Cotton 0.79 0.59 17.53 0.02 0.23
Sugar 0.83 0.24 66.85 3.16 12.67
Coffee 0.82 0.40 31.14 0.76 0.95
Cocoa 0.91 0.67 16.42 0.47 -0.38
Copper 0.96 0.85 97.7 2.70 7.36

In such markets, there is a good opportunity for commodity traders to enter the market,
and, in the short-run, make a profit. In stock and bond markets, these constitute arbitrage
opportunities that disappear as soon as they appear, these markets are considered to be
arbitrage-free (Baxter [1] defines an arbitrage opportunity as the making of a guaranteed
risk-free profit with a trade o series of trades in the market). For commodities, however,
it takes time for traders to close the price spreads to its average levels. In order to un-
derstand the market, it is important to elucidate how a trader should behave, according
to its own trading capacity. Trading capacity may consist of shipping from one market to
the other, which may be costly, for example. We must of course consider that the trading
activity has an impact on the price levels in each market, i.e., the price at a location
increases if a trader buys from it, and decreases if he sells to it: each trader has market
power.

3
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1.2 Literature Review

There is significant research on commodity prices and commodity trading, with at least
two different literature streams: the first one, from economics and finance, and the second
one, from operations management.

The first research stream studies the properties of commodity price evolution in estab-
lished markets. One of the first important papers in this area is Deaton and Laroque[8],
which show that, as said before, commodity prices have high autocorrelation and vari-
ability. They develop a rational expectations model1 for commodity prices that explains
these features. They base their model on supply/demand forces and in particular on the
existence of competitive speculators that hold inventory of the commodity, with which
they expect to buy low and sell high. This behavior results in commodity prices normally
staying within some limited range; here, speculators will build inventory when the price
is low, and deplete it when it is high. As a result, the speculators act as regulators of
the commodity prices. Sometimes, however, when supply and demand shocks push the
price high, the speculators may run out of inventory, and hence spikes in prices will occur.
Deaton and Laroque [9] extend this work and find that speculation only is not enough to
explain the high positive autocorrelation in observed commodity prices and that part of
it is caused by the underlying processes of supply and demand.

Williams and Wright [28], Chambers and Bailey [4] and Routledge et al. [20] also use
a competitive rational expectations model to explain the properties of commodity prices
in markets. They all consider the existence of convenience yields, which are defined in
Hull[17] as a measure of the benefits from owning a commodity asset versus holding a long
futures contract on the asset. A futures contract is a contract that obligates the holder
to buy or sell an asset at a predetermined delivery price during a specified future time
period. A convenience yield is generally positive since carrying inventory allows the owner
to make profits from trading opportunities that may arise, for instance from temporary
local shortages; on the other hand, holding a futures contract does not allow it. As an
example, an oil refiner is unlikely to regard a futures contract on crude oil as equivalent
to crude oil held in inventory: the crude oil in inventory can be an input to the refining
process whereas a futures contract cannot be used for this purpose. The convenience
yield typically reflects the market’s expectations concerning the future availability of the
commodity. As noted in Hull [17], the greater the chances that shortages will occur,
the higher the convenience yield. One can describe spot prices evolution by modeling
convenience yields and spot prices as separate stochastic processes, possibly correlated,
see Gibson and Schwartz [12]. Schwartz [21] develops three variations of a mean-reverting
stochastic model driven by one, two or three factors taking into account mean reversion of

1The theory of rational expectations was first proposed by John F. Muth of Indiana University in the
early sixties. He used the term to describe the many economic situations in which the outcome depends
partly upon what people expect to happen. It is based on the standard economic assumption that people
behave in ways that maximize their utility (their enjoyment of life) or profits. As an example, the price
of an agricultural commodity, for example, depends on how many acres farmers plant, which in turn
depends on the price that farmers expect to realize when they harvest and sell their crops
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commodity prices, convenience yields and stochastic interest rates. Schwartz and Smith
[22] provide a two-factor stochastic spot price model determined by the combination of
short-term and long-term factors, that allow volatility in both terms. This two-factor
model is equivalent to the stochastic convenience yield model developed in Gibson and
Schwartz [12]. These models are empirically validated for copper, gold and crude oil. Our
work does not directly model mean-reverting spot price processes or convenience yields,
as in these papers, but focuses instead on modeling price spreads.

Routledge et al. [19] consider the correlation between prices of different commodities
within broad families (e.g., natural gas and electricity in energy). They model the substi-
tutability of these commodities and find existence of equilibrium price processes, where
rational agents convert one commodity into the other. In particular, they focus on natu-
ral gas and electricity, and analyze the spread (price difference) between these two com-
modities. This is known in the industry as the spark spread, and is used extensively by
commodity traders. The industry also uses the dark spread, i.e., the spread between coal
and electricity prices. Reuters (the world’s largest international multimedia news agency)
provides to its users calculators for these two types of spreads. In our work, we focus
on price spreads between different geographical locations, although the work could be
extended to spreads between different commodities, as discussed later. We take a similar
approach, and specifically consider the individual operational actions of rational traders,
which allows us to describe in closed-form the agents’ actions.

A second stream of literature on commodities exists in operations management. The
papers in this group typically focus on the management of inventory of commodities, in
the presence of price uncertainty, with buy/sell decisions in a single market. There is
extensive literature on inventory management models, see for example Zipkin [30]. Goel
and Gutierrez [13][14][15], apply these type of models specifically into commodities. These
papers try to incorporate the information given by the convenience yield in the inventory
and buy/sell decisions, e.g., Caldentey et al. [3] for copper mining operations in Chile,
where they use the stochastic process in Schwartz [21] to model copper spot prices. In
this sense, they try to combine finance and operations models.

In this group, Golabi [16] models the prices of the commodity in future periods as random
variables with known distribution functions. Assuming constant demand, he proves that a
sequence of critical price levels at a given period determines the optimal ordering strategy.
Wang [27] proves that a myopic inventory policy is optimal for a multi-period model with
stochastic demand and decreasing prices. Secomandi [23] considers optimal commodity
trading and provides a much more detailed view of the operations involved in trading. He
focuses on storage assets, i.e. storage facilities or contracts that ensure that one will have
the inventory at a pre-determined time. His model is based on inventory and well-behaved
flow constraints. He shows that the optimal policy is, depending on the region, to buy
and withdraw, to do nothing or to sell and inject. This type of policy is used for contract
valuation in Secomandi [23] and Wang et al. [26].

Our work combines the ideas of price equilibrium, from economics and finance, together
with a more detailed view of operations. We are specifically interested in optimizing

5



Master Thesis JosepMa Vendrell Simón

the inventory management policy, given that the trading activity may influence the price
spread process.
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Chapter 2

The Model

2.1 Two Markets

Let us consider the trading of a single commodity in only two locations, market A and
market B. Each one of these markets has its own local dynamics, and as a result the price
at which the commodity trades in each place may be different. As said, we name these
differences in price as price spreads or simply spreads.

Trading may also take place between A and B. In particular, traders may choose to buy
in one place and ship (send) the commodity to the other. Of course, doing so, the traders
incur trading costs. We will focus on this type of trading between two locations.

The first assumption of our model is that there are no lead-times when shipping the
commodity from one market to the other. Implicitly, we are assuming that at any given
time, what is bought in one location is sold at the other. Although in reality shipping
of physical commodities cannot be done immediately, our first assumption simplifies the
problem and makes it more tractable.

The second important assumption is considering constant linear trading costs. This is
a strong assumption, since we are saying that the costs are independent of the price of
the commodity. We could have considered other types of costs. As an example: if the
trading cost is a fraction of the dollar volume of trade, the cost would be a constant times
the spot price at the buying market times the trading quantity. While this is numerically
solvable, the analysis becomes intractable. However, assuming linear costs has been made
before in the literature, e.g., in Goel and Gutierrez [14].

Our basic model describes a pipeline, where no intermediate storage is allowed. In other
words, a trader simply opens a faucet so that the commodity flows from A to B or vice
versa. We consider in addition that the pipeline capacity is given by the maximum achiev-
able flow, in units per period.

7
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We denote:

• qAB the trading capacity from A to B, (per period)

• qBA the trading capacity the one from B to A.

• uAB
t trading quantity from A to B at time t

• uBA
t trading quantity from B to A at time t

• cAB the cost of moving one unit from A to B

• cBA the cost of moving one unit from B to A.

The capacity constraint implies that 0 ≤ uAB
t ≤ qAB and 0 ≤ uBA

t ≤ qBA and the total
trading cost incurred is equal to cABuAB

t + cBAuBA
t .

Figure 2.1: Summary of model features. The trader can ship uAB units of commodity
from A to B and uBA units from B to A.

The model could also handle a shipping process that does not involve a pipeline, as long
as the inventory level in each part of the route remains constant. For instance, consider
a set of trucks or ships that on each day can move towards A or towards B (all together).
The quantity originating in A and arriving in B will be identical, and will be constrained
by the maximum speed in the system.

8
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2.1.1 Trading between two markets

Any trading policy, if decided rationally, should obviously depend on the prices quoted in
A and B. For example, when PB

t −PA
t > cAB, it is profitable to trade from A to B. Clearly,

if the current trading activity does not influence the future prices, the trader would try
to maximize the present profit from trading at t, i.e.,

max
uAB ,uBA≥0

(PB
t − PA

t )(uAB
t − uBA

t )− cABuAB
t − cBAuBA

t .

In this case, it is easy to see that the optimal policy is such that either uAB
t = 0 or uBA

t = 0
and

ut := uAB
t − uBA

t =





qAB if PB
t − PA

t ≥ cAB

0 if cAB ≥ PB
t − PA

t ≥ −cBA

−qBA otherwise.

We define the net trading quantity at time t as ut := uAB
t − uBA

t . With this notation, the
capacity constraints become −qBA ≤ ut ≤ qAB. Notice that ut determines the trading
policy.

In other words, we will trade at maximum capacity when the price spread is bigger than
the trading cost. As noted before, if PA

t and PB
t are independent of the trading quantities,

this trading policy is optimal, as shown in Secomandi [24].

It is a basic economical fact that in a financial market (for a constant supply) when demand
increases (many traders willing to buy) prices increase and when demand decreases prices
go down. Then, if many traders follow the policy described before, the price at the cheaper
market would rise and the price at the other market would go down, so the spread would
tend to close over time. Hence, it is clear that the trading volume must impact the prices
in the future. If this was not the case, we would see large spreads between locations, and
more importantly, that these spreads may not close over time.

As a result, if the trading quantities do influence future prices, it is no longer clear what
type of policy is now optimal for the trader. This requires modeling the relationship
between global trading policies and the price spread process. This is done in the next
section.

2.2 The Price Processes

We model time as a continuous variable, t ≥ 0, and we denote the price of the commodity
in markets A and B as PA

t and PB
t respectively. Using the same notation as in the previous

section, vt := vAB
t − vBA

t denotes what the other traders in the market trade from A to B.
Of course, this is positive when the quantity flows from A to B and negative otherwise.

9
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Using Game Theory nomenclature we could see the traders in the market as players in a
game. We will use the two words (trader/player) indistinctively.

We model the price processes at A and B as correlated random walk, i.e.,

(
dPA

t

dPB
t

)
=

(
α(PA

t , PB
t ) + βA(ut + vt)

α(PA
t , PB

t )− βB(ut + vt)

)
dt +

(
σA1 σA2

σB1 σB2

)(
dW 1

t

dW 2
t

)
(2.1)

where W 1
t and W 2

t are independent Wiener processes, α can be any exogenous function,
and βA, βB, σ··· ≥ 0.

With this formulation, it is easy to see that the trade between A and B has a direct impact
on the prices process, which captures the players’ market power. Specifically, the total net
trade from A to B at t, i.e., ut + vt, if positive, increases the price at A and decreases it at
B. This is qualitatively intuitive. Furthermore, we model this dependency as linear. This
is a strong assumption, which is related to having linear price-quantity demand curves.

Notice also that the proposed model could exhibit mean-reversion properties, as long
as the mean-reverting adjustment is the same in both markets. For example, one could
let α(PA

t , PB
t ) = κ

[
µ− (θAPA

t + θBPB
t )

]
, where µ would be the long-term mean price,

defined as a weighted average of prices at A and B.

Finally, in contrast with models in finance, e.g., Schwartz [21], we consider linear random
walks, instead of geometric ones. This assumption guarantees tractability of the trading
problem. However, since geometric Brownian motions might be more appropriate, we
explore an alternative model in Chapter 4.

As said, the profit captured by the trader depends on the price spread. We define Gt :=
PB

t − PA
t the price spread at time t between A and B.

From Equation (2.1), we have that dGt = −(βA + βB)(ut + vt)dt + (σB2 − σA2)dW 2
t −

(σA1 − σB1)dW 1
t . Thus, Gt is a stochastic process that can be expressed as

dGt = −β(ut + vt)dt + σdWt, (2.2)

where β = βA + βB, σ2 = (σB2 − σA2)
2 + (σA1 − σB1)

2 and Wt a Wiener process.

In the remainder of the Thesis, we assume that the traded quantity vt (related to the rest
of the market) only depends on Gt. This assumption guarantees tractability. As a result,
since both revenue and cost depend only on Gt, it follows that, at optimality, the trader’s
policy ut should only be a function of the spread Gt.

1

Hence, considering that ut and vt are functions of Gt only, i.e., ut = u(Gt) and vt = v(Gt),

1In a game setting, this would be a Nash equilibrium, since the best-response to a trading policy that
depends only on Gt is a trading policy that depends only on Gt. This is true when each trader in the
market has operating costs cijuij

t .

10
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the random variable G, satisfies the stochastic differential equation

dGt = A(G)dWt + B(G)dt (2.3)

with A(G) = σ and B(G) = −β(u(G) + v(G)).

Now, if for a certain ε > 0, lim
G→−∞

B ≥ ε and lim
G→+∞

B ≤ −ε, G has a stationary probability

density function (p.d.f.), denoted f(G), which satisfies

1

2
A2(G)

∂2f

∂G2
−B(G)

∂f

∂G
= 0. (2.4)

This is known as the Kolmogorov equation, and is a backward parabolic partial differential
equation.

We give a quick justification of how we reach equation 2.4. As we are interested in the
long term average profits we do not consider the transients solutions of the Kolmogorov

equation, that involve
∂f

∂t
. We can consider the backward problem. The probability that

the spread is G at time t + dt, denoted as f(G, t + dt), depends only on where the spread
was at time t, as we deal with a Markovian process. So we have

f(G, t + dt) = Eφ

[
f(G−B(G)dt− A(G)

√
dtε, t)

]

where φ(ε) is a Gaussian distribution (Eφ[ε] = 0,Eφ[ε
2] = 1, and

∫∞
−∞ φ(ε)dε = 1). When

the p.d.f. is stationary, a second order Taylor approximation yields

f(G) = f(G, t + dt) =

∫ ∞

−∞
f(G−B(G)dt− A(G)

√
dtε, t)φ(ε)dε

=

∫ ∞

−∞

[
f(G)− ∂f

∂G
[B(G)dt + A(G)

√
dtε] +

1

2

∂2f

∂G2
A(G)2dtε2

]
φ(ε)dε

=
∫∞
−∞

[
f(G)− ∂f

∂G
B(G)dt

]
φ(ε)dε− ∫∞

−∞
∂f
∂G

A(G)
√

dtεφ(ε)dε +
∫∞
−∞

1
2

∂2f
∂G2 A(G)2dtε2φ(ε)dε

= f(G)− ∂f

∂G
B(G)dt +

1

2

∂2f

∂G2
A(G)2dt.

This yields Equation (2.4). For more details on the methodology, see Wilmott [29].

In our case, Equation (2.4) can be written as

1

2
σ2 ∂2f

∂G2
+ β(u(G) + v(G))

∂f

∂G
= 0. (2.5)

Thus, the net trading capacity u(G) has a direct influence on the p.d.f. of the spread (we
denote it by fu(G) to make that dependency apparent). The only variable that depends
on the trader decision is u(G), so it acts as a control for Equation 2.5. As an illustration,
we show in Figure 2.2 the stationary p.d.f. for two controls u, where v ≡ 0.

11
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Figure 2.2: Stationary p.d.f. of G, with v ≡ 0, β = 1 and σ = 1, where, in the figure on
the left, u = −2 for G < 0 and u = +2 for G ≥ 0; and, in the figure on the right, u = −2
for G < −10, u = 0 for −10 ≤ G < 10 and u = +2 for G ≥ 10.

For simplicity, we restrict our attention to having both u and v piecewise constant func-
tions. The model can incorporate non-piecewise linear controls, but the analysis becomes
significantly more complex. However, this restriction is quite reasonable as the market is
likely to react with fixed capacity to each spread interval. Now, if u(G)+v(G) is piecewise
constant, Equation (2.5) can be rewritten2 as

u(G) = −σ2

2β

f ′u(G)

fu(G)
− v(G). (2.6)

This explicitly links the traded quantity u to the price spread distribution fu.

2.3 Optimization of Trading Policies

Given a realization of the price spread at time t, Gt, and given capacities qAB, qBA, we
are interested in finding the optimal operating policy u that maximizes the trader’s long-
run average profits. The optimal policy provides, given a price spread between the two
markets, where and how much product to buy and sell. There are two components in the
profit: the revenue, Gtut, and the trading cost, cABu+

t + cBAu−t , where a+ = max{a, 0}
and a− = max{−a, 0}. In other words,

J(u) := Eu

[
Gtut − cABu+

t − cBAu−t
]

(2.7)

where the expectation is taken with respect to fu, the stationary distribution of Gt. Hence,
the problem in (2.7) can be equivalently expressed as

2As f(G) is a density function, the constant of integration must be 0.
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J∗ = sup
u

J(u) =

∫ ∞

−∞

(
Gu(G)− cABu+(G)− cBAu−(G)

)
fu(G)dG

subject to u(G) = −σ2

2β

f ′u(G)

fu(G)
− v(G)

−qBA ≤ u(G) ≤ qAB

fu a p.d.f.

(2.8)

where fu(G) is the spread distribution that depends on our control. This formulation has
the advantage of being quite compact.

Alternatively, we could have considered a discounted profit model, where the control would
again depend only on Gt. However, by examining the alternative formulation,

J(u,G0) = E
[∫ ∞

0

(
Gtu(Gt)− cABu+(Gt)− cBAu−(Gt)

)
e−rtdt

]
, (2.9)

one can observe that here we would need to consider the transient distribution of Gt,
given that at time t = 0, G0 is the spread.

A discrete version of the problem would raise similar complications:

J(G0) = max
−qBA≤u≤qAB

{
G0u− cABu+ − cBAu− + αEW̃

[
J
(
G0 − β(u + v(G0))∆t + σ

√
∆tW̃

)]}

(2.10)

The problem posed by maximizing J(u,G0) in Equation (2.9) can be solved using optimal
control. Interestingly, as we show in §4.2.1, the structure of the results that we derive for
our basic problem setting, i.e., focusing on average profits, Equation (2.8), hold for this
alternative formulation.

13
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2.4 Summary

In this chapter we have presented the model and characterized the optimization problem
to be solved. This can be summarized in the following key points:

• We have describe what type of trading between two locations we consider, and
modeled it as a pipeline between A and B. The capacity of the pipeline is its
maximum flow and no intermediate storage nor lead-times are considered. We have
discussed why we consider linear trading costs.

• We have modeled the spread dynamics, Gt, as a stochastic process that depends on
the net trading quantity, ut+vt and that satisfies dGt = −β(ut+vt)dt+σdWt. With
this expression we capture the impact of trading quantities in prices, i.e, market
power.

• We have explicitly linked our trading quantity (control u) to the spread probability

density function, fu, through the following equation: u(G) = −σ2

2β
f ′u(G)
fu(G)

− v(G)

• We have presented the trader’s optimization problem (2.8) that gives the optimal
trading policy when our aim is to maximize the long-run average profits.

14



Chapter 3

Optimal Trading Policies

Once related the trading quantity to the price spread distribution, we are interested in
finding the optimal policy u that maximizes the trader’s problem (2.8). This policy must
determine, given a realization of the current price spread, Gt, how much (if any) volume
must be bought/sold from/at the A market and sold/bought at/from the B market, so
that the long-run average profit is maximized.

We first analyze the case of monopoly, where there are no other traders between A and B
(i.e., v ≡ 0) and then solve the general case.

3.1 Monopoly: v ≡ 0

We consider in this section an extreme case of our problem: the trader has no competitors
trading between A and B. We call this a monopoly. Note that this does not mean that
the trader is a price-setter in A or B, but rather that he is the only player in the link
between A and B. In this case, Equation (2.6) can be written as

u(G) = −σ2

2β

f ′(G)

f(G)

Intuitively, one would think that this is the situation in which the trader can make highest
profits. The next propositions show that, in fact, it is optimal to trade as little as possible,
unless the price spread is really large, in order to maximize the average trading profit.

Proposition 1. If

(i) cAB = cBA = 0 and

(ii) v(G) = 0 ∀G,

15
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then any policy is optimal in (2.8) and J∗ =
σ2

2β
.

Proof.

E
{

Gu(G)
}

=

∫ ∞

−∞
Gu(G)f(G)dG =

∫ ∞

−∞
G

(
−σ2

2β

f ′(G)

f(G)

)
f(G)dG =

σ2

2β

∫ ∞

−∞
−Gf ′(G)dG =

σ2

2β

after integrating by parts Gf ′(G) and remembering that

∫ ∞

−∞
f(G)dG = 1 as f is a p.d.f.

This result is somehow surprising. Indeed, in the short term, it would be better to in-
stantly gain, at time t, Gtq

AB if Gt > 0 or −Gtq
BA if Gt < 0. However, by doing this

every time, the trader would quickly modify the spread p.d.f. and push Gt close to zero,
which would reduce future profits. Alternatively, the trader could delay the trade until
|Gt| is large, in which case, he would obtain higher profits, but in fewer occasions. The
proposition shows that both strategies will actually yield the same average profit in the
long term when the trading cost is zero. In other words, the overall average benefit does
not depend on the concrete feasible policy: it is the same to trade often, even with small
spreads, or to delay the trade until spreads are large.

In contrast, the optimal policy does matter when there are trading costs.

Proposition 2. If

(i) cAB, cBA > 0 and

(ii) v(G) = 0 ∀G,

then the optimal policy for our trading problem (2.8) is the limit, when M −→∞, of

u(G) =




−qBA if G ≤ M

0 if −M < G ≤ M
qAB if G > M

and yields, at the limit, J∗ =
σ2

2β
.

16
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Proof. On the one hand we have that the expected long-term average gains are:

E
{

Gu(G)− cABu+(G)− cBAu−(G)
}

=

∫ ∞

−∞

(
Gu(G)− cABu+(G)− cBAu−(G)

)
f(G)dG

=

∫ ∞

−∞

(
G

[
−σ2

2β

f ′(G)

f(G)

]
− cAB

[
−σ2

2β

f ′(G)

f(G)

]+

− cBA

[
−σ2

2β

f ′(G)

f(G)

]−)
f(G)dG

=
σ2

2β
− cAB

∫ ∞

−∞

[
−σ2

2β
f ′(G)

]+

dG− cBA

∫ ∞

−∞

[
−σ2

2β
f ′(G)

]−
dG

≤ σ2

2β
.

On the other hand, the profits obtained with the policy given by the proposition are:

∫ ∞

−∞
Gu(G)f(G)dG− cAB

∫ ∞

M

qABf(G)dG− cBA

∫ −M

−∞
qBAf(G)dG

=
σ2

2β
− cABqAB

∫ ∞

M

f(G)dG− cBAqBA

∫ −M

−∞
f(G)dG.

Now, at the limit for M →∞, this value is
σ2

2β
.

Indeed, we have f(G) = f(−M)e
2βqBA(G+M)

σ2 for G < −M , f(G) = f(−M) = f(M)

for −M < G < M and f(G) = f(M)e
−2βqAB(G−M)

σ2 for G > M . Of course, f(−M) = f(M)

is a constant such that f integrates to one. As a result, lim
M→∞

∫ ∞

M

f = lim
M→∞

∫ −M

−∞
f = 0.

This implies that, regardless of the policy u(G), the maximum long term profit we can

possibly obtain is
σ2

2β
. This is achieved as the limit of the proposed policy.

Proposition 2 incorporates cost. Proposition 1 implied that when v ≡ 0, and cAB = cBA =
0, then the average long-run profit is independent of the trading quantity. When the costs
are positive, the policy of not trading anything therefore yields the same average profit,
and is optimal. Since such a policy is actually not feasible (the p.d.f. is not well-defined),
we show that the same objective can be achieved as the limit of feasible policies.
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3.2 Oligopoly: v(G) 6= 0

Economically, an oligopoly is a market form in which a market or industry is dominated
by a small number of traders.

We have so far assumed that we, as traders, were the only player with the ability to
trade and make profits from the price spread. We consider below a market with several
competitors. Competition might change the structure of the optimal policy because the
distribution now also depends on how the competitors influence the market. We have
denoted this influence as v(G), where v(G) is the total net quantity traded from A to B,
by all the competitors. In that case, the control satisfies, from Equation (2.6),

u(G) = −σ2

2β

f ′(G)

f(G)
− v(G).

When there are no trading costs, i.e., cAB = cBA = 0, the objective function can be
written as

∫ ∞

−∞
Gu(G)f(G)dG =

∫ ∞

−∞
G

(
−σ2

2β

f ′(G)

f(G)
− v(G)

)
f(G)dG

=
σ2

2β
+

∫ ∞

−∞
−Gv(G)f(G)dG

after integrating by parts Gf ′(G). Hence, the maximization problem is equivalent

sup
f

∫ ∞

−∞
−Gv(G)f(G)dG

subject to −qBA ≤ −σ2

2β

f ′(G)

f(G)
− v(G) ≤ qAB

f a p.d.f.

(3.1)

This reformulation has the advantage that the trading volume u is no longer present. We
can thus optimize directly taking f as the decision variable. The optimization problem
can be fully solved, with the support of a technical lemma (1) which we show for the
general case. In short, we find necessary conditions that characterize the optimal function
f . Since the p.d.f. and the trading quantity u(G) are directly related, this is equivalent
to finding the optimal trading policy.

As for the monopoly case we begin with a proposition that characterizes the optimal
trading policy when there are no trading costs.

Proposition 3. If

(i) cAB = cBA = 0 and

(ii) v(G) is non-decreasing, limG→+∞ v(G) > 0 and limG→−∞ v(G) < 0,
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then there exists m such that the optimal policy for our trading problem (2.8) is

u(G) =

{ −qBA if G ≤ m
qAB if G > m.

Proof. The proof of Proposition 3 is a particular case of the proof of Theorem 1

Notice that the proposition requires a regularity assumption on v, in order to have a
well-defined optimal policy, and avoid asymptotically optimal solutions, as in Proposition
2.

Under such condition, when there are no costs, we find that the optimal trading policy
is to trade as much as possible from one market to the other, with the trading direction
depending on whether the spread G is higher or lower that a threshold m. We show the

result by establishing that, in problem (3.1), one of the two constraints on
f ′

f
is always

binding.

We next generalize the preceding results to the general case, with cAB, cBA > 0. In that
case, similarly to Equation (3.1), the trading problem (2.8) is equivalent to

sup
f

∫ ∞

−∞

[
−Gv(G)− cBA

(
−σ2

2β

f ′(G)

f(G)
− v(G)

)−
− cAB

(
−σ2

2β

f ′(G)

f(G)
− v(G)

)+
]

f(G)dG

subject to −qBA ≤ −σ2

2β

f ′(G)

f(G)
− v(G) ≤ qAB

f a p.d.f.
(3.2)

Solving the problem above yields the following theorem. This is the main result of our
work as it gives the optimal trading policy for the general case.

Theorem 1. If

(i) cAB, cBA > 0 and

(ii) v(G) is non-decreasing, limG→+∞ v(G) > 0 and limG→−∞ v(G) < 0,

then there exists mBA,mAB, such that mBA ≤ mAB, and the optimal policy for our trading
problem (2.8) is

u(G) =




−qBA if G ≤ mBA

0 if mBA < G ≤ mAB

qAB if G > mAB.

In order to prove Theorem 1, we first need to prove the following lemma.
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Lemma 1. Given functions v(G) and h(G) := −Gv(G), and an optimal solution f(G)
of the maximization problem (3.2)

If there is [g0, g0 + δ] such that
−σ2

2β

f ′

f
> −qBA + v(G) then we must have

∫∞
g0

(
h−cAB

[
−σ2

2β
f ′
f
−v

]+
−cBA

[
−σ2

2β
f ′
f
−v

]−)
f+σ2

2β
f(g0)


cAB1(

−σ2

2β
f ′
f
−v≥0

)−cBA1(
−σ2

2β
f ′
f
−v≤0

)




∫∞
g0

f

≤
∫∞
−∞

(
h−cAB

[
−σ2

2β
f ′
f
−v

]+
−cBA

[
−σ2

2β
f ′
f
−v

]−)
f

∫∞
−∞ f

.

If there is [g0, g0 + δ] such that
−σ2

2β

f ′

f
< qAB + v(G) then we must have

∫∞
g0

(
h−cAB

[
−σ2

2β
f ′
f
−v

]+
−cBA

[
−σ2

2β
f ′
f
−v

]−)
f+σ2

2β
f(g0)


cAB1(

−σ2

2β
f ′
f
−v≥0

)−cBA1(
−σ2

2β
f ′
f
−v≤0

)




∫∞
g0

f

≥
∫∞
−∞

(
h−cAB

[
−σ2

2β
f ′
f
−v

]+
−cBA

[
−σ2

2β
f ′
f
−v

]−)
f

∫∞
−∞ f

.

Proof. We consider an optimal f that satisfies (3.2) such that, within an interval [g0, g0+

δ],
−σ2

2β

f ′

f
> −qBA+v(G), or in other words,

σ2

2β

f ′

f
< qBA−v(G). Define ũ(G) = u(G)+ε

for G ∈ [g0, g0 + δ], and equal to u(G) otherwise. The corresponding f̃ satisfies

f̃ ′(G)

f̃(G)
=





f ′

f
+ ε if G ∈ [g0, g0 + δ]

f ′

f
otherwise

(3.3)

and hence

f̃(G) =





f∫ g0

−∞ f +
∫ g0+δ

g0
eε(G−g0)f(G)dG + eεδ

∫∞
g0+δ

f
if G < g0

feε(G−g0)

∫ g0

−∞ f +
∫ g0+δ

g0
eε(G−g0)f(G)dG + eεδ

∫∞
g0+δ

f
if G ∈ [g0, g0 + δ]

feδε

∫ g0

−∞ f +
∫ g0+δ

g0
eε(G−g0)f(G)dG + eεδ

∫∞
g0+δ

f
if G > g0 + δ

(3.4)

In G ∈ [g0, g0 + δ], for small ε > 0,
[
−σ2

2β

f̃ ′(G)

f̃(G)
− v(G)

]+

=

[−σ2

2β

f ′(G)

f(G)
− v(G)

]+

− σ2ε

2β
1(

−σ2

2β
f ′(G)
f(G)

−v(G)≥0
)
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and [
−σ2

2β

f̃ ′(G)

f̃(G)
− v(G)

]−
=

[−σ2

2β

f ′(G)

f(G)
− v(G)

]−
+

σ2ε

2β
1(

−σ2

2β
f ′(G)
f(G)

−v(G)≤0
)

where 1Z = 1 if condition Z is satisfied and 0 otherwise. The objective using policy
ũ can be written as

Jε,δ(G) =

∫ ∞

−∞

(
h− cAB

[
−σ2

2β

f̃ ′(G)

f̃(G)
− v(G)

]+

− cBA

[
−σ2

2β

f̃ ′(G)

f̃(G)
− v(G)

]−)
f̃(G)dG

=

∫ g0

−∞ Hf + eεδ
∫∞

g0
Hf +

∫ g0+δ

g0

σ2ε
2β

(
cAB1(

−σ2

2β
f ′
f
−v≥0

) − cBA1(
−σ2

2β
f ′
f
−v≤0

)
)

feε(G−g0)dG

∫ g0

−∞ f +
∫ g0+δ

g0
eε(G−g0)fdG + eεδ

∫∞
g0+δ

f

where H =

(
h− cAB

[−σ2

2β

f ′

f
− v

]+

− cBA

[−σ2

2β

f ′

f
− v

]−)
to simplify notation.

A Taylor approximation with respect to ε and δ (hence considering that δ2 ¿ δ),
yields that

Jε,δ(G) =

∫∞
−∞ Hf + εδ

{∫∞
g0

Hf + σ2

2β
f(g0)

(
cAB1(

−σ2

2β
f ′
f
−v≥0

) − cBA1(
−σ2

2β
f ′
f
−v≤0

)
)}

∫∞
−∞ f + εδ

∫∞
g0

f
+o(εδ)

where lim
x→0

o(x)

x
= 0.

Since f is optimal, we have Jε,δ ≤ J , for ε, δ small, which yields after some algebra,
that ∫∞

g0
Hf + σ2

2β
f(g0)

(
cAB1(

−σ2

2β
f ′
f
−v≥0

) − cBA1(
−σ2

2β
f ′
f
−v≤0

)
)

∫∞
g0

f
≤

∫∞
−∞ Hf∫∞
−∞ f

.

The same argument applied with
−σ2

2β

f ′

f
< qAB + v(G) yields the second part of the

lemma.

We are now ready to proof the theorem.

Proof. Denote W the right-hand side of the expression in Lemma 1, i.e.,

W :=

∫∞
−∞

(
h− cBA

[
−σ2

2β
f ′
f
− v

]−
− cAB

[
−σ2

2β
f ′
f
− v

]+
)

fdG

∫∞
−∞ f

< 0,
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from assumption (ii) of the Theorem. Consider f the optimal solution of problem (3.2),

and u = −σ2

2β

f ′

f
− v. We claim that

(i) u(G) = qAB when G →∞;

(ii) u(G) = qAB for G > mAB for some mAB;

(iii) u(G) = 0 for mBA < G < mAB for some mBA ≤ mAB; and

(iv) u(G) = −qBA for G < mBA.

We start with (i). If g0 → ∞ and u(G) < qAB, Lemma 1 provides a necessary
condition,

∫∞
g0

(
h−cAB

[
−σ2

2β
f ′
f
−v

]+
−cBA

[
−σ2

2β
f ′
f
−v

]−)
f+σ2

2β
f(g0)


cAB1(

−σ2

2β
f ′
f
−v≥0

)−cBA1(
−σ2

2β
f ′
f
−v≤0

)




∫∞
g0

f
≥ W.

The left-hand side expression of the necessary condition is bounded from above by

∫∞
g0

hf + σ2

2β
cABf(g0)∫∞

g0
f

=

∫∞
g0

(
−Gv(G)− σ2

2β
cAB f ′(G)

f(G)

)
f(G)dG

∫∞
g0

f

≤
∫∞

g0

(−Gv(G) + cAB(qAB + v(G))
)
f(G)dG∫∞

g0
f

= cABqAB +

∫∞
g0
−(G− cAB)v(G)f(G)dG∫∞

g0
f

Since, for g0 > cAB, −(G − cAB)v(G) is decreasing (because v(G) is positive when G is
very large), the right-hand side tends to −∞ as g0 → ∞. Hence this contradicts the
necessary condition from the lemma. As a result, for G large enough u(G) = qAB, and
that implies (i).

Given (i), u(G) = qAB > 0 for large G implies for large g0,

∫∞
g0

(
h−cAB

[
−σ2

2β
f ′
f
−v

]+
−cBA

[
−σ2

2β
f ′
f
−v

]−)
f+σ2

2β
f(g0)


cAB1(

−σ2

2β
f ′
f
−v≥0

)−cBA1(
−σ2

2β
f ′
f
−v≤0

)




∫∞
g0

f

=

∫∞
g0

(−Gv(G)− cABqAB
)
f(G)dG + σ2

2β
cABf(g0)∫∞

g0
f

=

∫∞
g0
−(G− cAB)v(G)f(G)dG∫∞

g0
f

22



Master Thesis JosepMa Vendrell Simón

where again we transformed f(g0) into
∫∞

g0
(−f ′/f) × f , and used Equation (2.6). As

before, this is continuous and hence it is optimal to set u(g0) = qAB for g0 > mAB, where
mAB is such that

∫∞
mAB(−Gv(G)− cABqAB)f(G)dG + σ2

2β
cABf(mAB)∫∞

mAB f
=

∫∞
mAB −(G− cAB)v(G)f(G)dG∫∞

mAB f
= W

This proves (ii). For g0 = mAB − ε, we have that

∫∞
g0

(
h− cAB

[
−σ2

2β
f ′
f
− v

]+

− cBA
[
−σ2

2β
f ′
f
− v

]−)
f + σ2

2β
cABf(g0)

∫∞
g0

f
= W + ε′ > W,

for ε′ > 0 very small. Is is clear that u(g0) > 0 cannot be optimal, as the necessary
condition for u < qAB is not satisfied. Similarly, u(g0) < 0 cannot be optimal, since

∫∞
g0

(
h− cAB

[
−σ2

2β
f ′
f
− v

]+

− cBA
[
−σ2

2β
f ′
f
− v

]−)
f − σ2

2β
cBAf(g0)

∫∞
g0

f
= W+ε′−2

σ2

2β
cBA f(g0)∫∞

g0
f

< W.

Hence, it is optimal to set u(g0) = 0. This is true while

W >

∫ mAB

g0
−Gv(G)f(G)dG +

∫∞
mAB(−Gv(G)− cABqAB)f(G)dG− σ2

2β
cBAf(g0)∫∞

g0
f

=

∫∞
g0
−(G + cBA)v(G)f(G)dG +

∫∞
mAB −(cAB + cBA)qABf(G)dG∫∞

g0
f

and

W <

∫ mAB

g0
−Gv(G)f(G)dG +

∫∞
mAB(−Gv(G)− cABqAB)f(G)dG + σ2

2β
cABf(g0)∫∞

g0
f

=

∫∞
g0
−(G− cAB)v(G)f(G)dG∫∞

g0
f

.

These equations hold until the first one becomes an equality (since the right-hand side
of the second equation is decreasing if equal to W , and the right-hand side of the first
equation also decreases). As a result, they are satisfied for g0 > mBA, which proves (iii).
mBA is uniquely defined by

∫ mAB

mBA −Gv(G)f(G)dG +
∫∞

mAB(−Gv(G)− cABqAB)f(G)dG− σ2

2β
cBAf(mBA)∫∞

mBA f
= W.

Finally, for G < mBA, the optimal decision is to set u(G) = −qBA, as the necessary
condition for u < −qBA is not satisfied.
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Figure 3.1: Structure of the optimal trading policy

In essence, the optimal trading policy is determined by three regions: [−∞,mBA] where it
is optimal to move as much product as possible from market B to the market A; (mAB,∞],
where the same is true from A to B, the opposite direction; and (mBA, mAB] where it is
optimal to do nothing, as one can see in Figure 3.1.

This is the same structure as in the case with no market power. In our notation, with no
market power, mBA = −cBA and mAB = cAB. Hence, market power changes the optimal
trading policy by delaying the point where the traders begin to ship product from one
market to the other.

The theorem thus generalizes Propositions 1, 2 and 3. The proof of the theorem is
interesting, as it uses necessary conditions to determine the thresholds mBA,mAB.

3.3 The Optimal Trading Thresholds

In this section, we establish how to compute the optimal trading policy, or equivalently,
the spread p.d.f. We show as well some properties of the problem depending on the
function v(G).

Interestingly, the optimal policy derived in Theorem 1 is given by three optimality equa-
tions. Knowing that the optimal policy is given by two thresholds mBA,mAB, since

−σ2

2β

f ′(G)

f(G)
=




−qBA + v(G) if G ≤ mBA

v(G) if mBA < G ≤ mAB

qAB + v(G) if G > mAB

let
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ϕ(G) =





e
∫ G

mBA(−v(t)+qBA) 2β

σ2 dt if G ≤ mBA

e
∫ G

mBA −v(t) 2β

σ2 dt if mBA < G ≤ mAB

e
∫ mAB

mBA −v(t) 2β

σ2 dte
∫ G

mAB (−v(t)−qAB) 2β

σ2 dt if G > mAB.

(3.5)

Hence, we have that f =
ϕ∫∞

−∞ ϕ
. We can express the objective function as

W :=

(
1∫∞

−∞ ϕdG

)



∫ mBA

−∞

(−Gv(G)− cBAqBA
)
ϕ(G)dG

+

∫ mAB

mBA

−Gv(G)ϕ(G)dG

+

∫ ∞

mAB

(−Gv(G)− cABqAB
)
ϕ(G)dG




. (3.6)

Maximizing W with respect to mBA and mAB yields the following optimality conditions.

Proposition 4. Consider u be the optimal control as defined in Theorem (1). mBA, mAB

and W are jointly characterized by Equation (3.6) together with

W =

∫∞
mAB −(G− cAB)v(G)ϕ(G)dG∫∞

mAB ϕ
, (3.7)

W =

∫ mBA

−∞ −(G + cBA)v(G)ϕ(G)dG
∫ mBA

−∞ ϕ
. (3.8)

Proof. W is the value of the trader’s problem for the optimal policy described at Theorem
1, and the equation for mAB is Equation (3.7), given in the proof of Theorem 1. In that
same proof, mBA is defined by

∫ mAB

mBA −Gv(G)ϕ(G)dG +
∫∞

mAB(−Gv − cABqAB)ϕ(G)dG− σ2

2β
cBAϕ(mBA)∫∞

mBA ϕ
= W.

Now taking in account the expression for W , the following algebra yields Equation
(3.8).

(∫ ∞

−∞
ϕ

) 
W −

∫ mBA

−∞ (−Gv − cBAqBA)ϕ∫∞
−∞ ϕ


− σ2

2β
cBAϕ(mBA) =

(∫ ∞

mBA

ϕ

)
W

⇒
(∫ ∞

−∞
ϕ−

∫ ∞

mBA

ϕ

)
W −

∫ mBA

−∞
(−Gv − cBAqBA)ϕ− σ2

2β
cBAϕ(mBA) = 0

⇒
∫ mBA

−∞ (−Gv − cBAqBA)ϕdG + σ2

2β
cBAϕ(mBA)

∫ mBA

−∞ ϕ
= W.
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Rewriting ϕ(mBA) as
∫ mBA

−∞ (f ′/f)× f , and using Equation (2.6) yields

∫ mBA

−∞ (−Gv − cBAqBA)ϕdG + σ2

2β
cBAϕ(mBA)

∫ mBA

−∞ ϕ
=

∫ mBA

−∞ (−Gv − cBAqBA − cBA(−qBA + v))ϕdG
∫ mBA

−∞ ϕ

and hence Equation (3.8).

With the equations given by Proposition 4, we can find numerically the value of the
parameters and hence the optimal function f(G).

In addition, under some properties of v(G), the equations allow us to derive some prop-
erties on the optimal thresholds.

Proposition 5. If cAB = cBA, qAB = qBA and v(G) is anti-symmetrical, i.e., v(−G) =
−v(G) for all G, then mBA = −mAB.

Proof. We denote cAB = cBA = c, qAB = qBA = q. Let us consider the following
change of variables: G = −s, m̃BA = −mAB, m̃AB = −mBA and ϕ̃(s) = ϕ(−s) where
mBA and mAB are given by Equations (3.8) and (3.7) in Proposition 4. We claim that
if v(−G) = −v(G) then m̃BA, m̃AB and W̃ = W also solve the optimality equations of
Proposition 4.

Indeed, we have that

W̃ =

∫ m̃BA

−∞ (−Gv(G)− cq)ϕ̃(G)dG +
∫ m̃AB

m̃BA −Gv(G)ϕ̃(G)dG +
∫∞

m̃AB(−Gv(G)− cq)ϕ̃(G)dG∫∞
−∞ ϕ̃(G)dG

=

∫−m̃BA

+∞ (sv(−s)−cq)ϕ̃(−s)(−ds)+
∫−m̃AB

−m̃BA sv(−s)(−ds)ϕ̃(−s)(−ds)+
∫−∞
−m̃AB (sv(−s)−cq)ϕ̃(−s)(−ds)

∫−∞
+∞ ϕ̃(−s)(−ds)

=

∫∞
mAB(−sv(s)− cq)ϕ(s)ds +

∫ mAB

mBA −sv(s)dsϕ(s)ds +
∫ mBA

−∞ (−sv(s)− cq)ϕ(s)ds∫∞
−∞ ϕ(s)ds

= W,

where we made the change of variables s = −G and used the fact that v is anti-
symmetrical. It is now clear that applying the change of variables,

∫ m̃BA

−∞ −(G + c)v(G)ϕ̃(G)dG
∫ m̃BA

−∞ ϕ̃(G)dG
=

∫∞
mAB −(G− c)v(G)ϕ(G)dG∫∞

mAB ϕ(G)dG
= W = W̃ ,

i.e., satisfies Equation (3.8). Similarly, it satisfies Equation (3.7) as well. In conclusion,
m̃BA, m̃AB and W̃ are also solutions of the optimality equations and hence, since the
solutions are unique, mBA = −mAB.
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Furthermore, for the extreme case where the trader’s capacity is very small (very limited
market power) mBA and mAB are closer to the trading costs.

Proposition 6. If qAB, qBA → 0, then mBA → −cBA and mAB → cAB.

Proof. When qAB = qBA = 0, then
σ2

2β

ϕ′

ϕ
= −v and hence

W =

∫∞
−∞−GvϕdG∫∞

−∞ ϕdG
=

∫∞
−∞ G

(
σ2

2β

ϕ′

ϕ

)
ϕdG

∫∞
−∞ ϕdG

= −σ2

2β

On the other hand, (3.8) is now

W =

∫ mBA

−∞ −(G + cBA)v(G)ϕ(G)dG
∫ mBA

−∞ ϕdG

=

∫ mBA

−∞ (G + cBA)σ2

2β
ϕ′(G)dG

∫ mBA

−∞ ϕdG

=

σ2

2β
[(G + cBA)ϕ]m

BA

−∞ − σ2

2β

∫ mBA

−∞ ϕ
∫ mBA

−∞ ϕdG

= −σ2

2β
+

σ2

2β

(cBA + mBA)ϕ(mBA)∫ mBA

−∞ ϕ

Therefore, as the optimal solution is unique, we have that mBA + cBA = 0 and hence
mBA = −cBA. Similarly mAB = cAB when qAB = qBA = 0.

When qAB, qBA > 0 but very small, we know that (mBA,mAB) are uniquely defined
by

0 =

∫∞
mAB −(G− cAB)v(G)ϕ(G)dG∫∞

mAB ϕ

−
∫ mBA

−∞ (−Gv(G)−cBAqBA)ϕ(G)dG+
∫ mAB

mBA −Gv(G)ϕ(G)dG+
∫∞

mAB(−Gv(G)−cABqAB)ϕ(G)dG∫∞
−∞ ϕdG

0 =

∫ mBA

−∞ −(G + cBA)v(G)ϕ(G)dG
∫ mBA

−∞ ϕ

−
∫ mBA

−∞ (−Gv(G)−cBAqBA)ϕ(G)dG+
∫ mAB

mBA −Gv(G)ϕ(G)dG+
∫∞

mAB(−Gv(G)−cABqAB)ϕ(G)dG∫∞
−∞ ϕdG

.

This is a system of two equations ψ1(m
BA,mAB, qBA, qAB) = 0 and ψ2(m

BA, mAB, qBA, qAB) =
0 with two unknowns, and two parameters qBA, qAB. Since ψ is continuously differentiable,
then (mBA,mAB) is continuous in (qBA, qAB) around (0, 0). We thus have that, for small
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qBA, qAB, the deviations around mBA = −cBA and mAB = cAB are respectively mBA +cBA

and mAB − cAB, and hence

dψ

dqBA
qBA +

dψ

dqAB
qAB +

dψ

dmBA
(mBA + cBA) +

dψ

dmAB
(mAB − cAB) + o(qBA) + o(qAB) = 0,

(3.9)
where o(x)/x → 0 when x → 0.

Interestingly, at qAB = 0,

1

ϕ

∂ϕ

∂mBA
=

2β

σ2
v(−cBA) and

1

ϕ

∂ϕ

∂mAB
= 0.

Also,
1

ϕ

∂ϕ

∂qBA
= −2β

σ2
(−cBA −G)+ and

1

ϕ

∂ϕ

∂qAB
= −2β

σ2
(G− cAB)+.

Hence, at qAB = qBA = 0, we have that

1

ψ1

dψ1

dmBA
=
−ϕ(−cBA)∫ −cBA

−∞ ϕ
and

1

ψ1

dψ1

dmAB
= 0,

1

ψ2

dψ2

dmAB
=

ϕ(cAB)∫∞
cAB ϕ

and
1

ψ2

dψ2

dmBA
= 0.

In addition, using that W = −σ2

2β
,

1

ψ1

dψ1

dqBA
=

(
2β

σ2

)



2β
σ2

∫−cBA

−∞ (G+cBA)2v(G)ϕ(G)dG
∫−cBA

−∞ ϕ
+

∫−cBA

−∞ −(G+cBA)ϕ(G)dG
∫−cBA

−∞ ϕ

−cBA
∫−cBA

−∞ ϕ∫∞
−∞ ϕ

− 2β
σ2

∫−cBA

−∞ G(G+cBA)v(G)ϕ(G)dG∫∞
−∞ ϕ

−
∫−cBA

−∞ −(G+cBA)ϕ(G)dG∫∞
−∞ ϕ


 ,

1

ψ1

dψ1

dqAB
=

(
2β

σ2

) [
−cAB

∫∞
cAB ϕ∫∞
−∞ ϕ

+ 2β
σ2

∫∞
cAB G(G−cAB)v(G)ϕ(G)dG∫∞

−∞ ϕ
−

∫∞
cAB (G−cAB)ϕ(G)dG∫∞

−∞ ϕ

]
;

and

1

ψ2

dψ2

dqBA
=

(
2β

σ2

)[
−cBA

∫−cBA

−∞ ϕ∫∞
−∞ ϕ

− 2β
σ2

∫−cBA

−∞ G(G+cBA)v(G)ϕ(G)dG∫∞
−∞ ϕ

−
∫−cBA

−∞ −(G+cBA)ϕ(G)dG∫∞
−∞ ϕ

]
,

1

ψ2

dψ2

dqAB
=

(
2β

σ2

) 
 −2β

σ2

∫∞
cAB (G−cAB)2v(G)ϕ(G)dG∫∞

cAB ϕ
+

∫∞
cAB (G−cAB)ϕ(G)dG∫∞

cAB ϕ

−cAB
∫∞

cAB ϕ∫∞
−∞ ϕ

+ 2β
σ2

∫∞
cAB G(G−cAB)v(G)ϕ(G)dG∫∞

−∞ ϕ
−

∫∞
cAB (G−cAB)ϕ(G)dG∫∞

−∞ ϕ


 .

As a result, we can express Equation (3.9) as

mBA = −cBA −
(

ψ1

dψ1

dmBA

)(
1

ψ1

dψ1

dqBA
qBA +

1

ψ1

dψ1

dqAB
qAB

)
+ o(qBA) + o(qAB)
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and

mAB = cAB −
(

ψ2

dψ2

dmAB

) (
1

ψ2

dψ2

dqBA
qBA +

1

ψ2

dψ2

dqAB
qAB

)
+ o(qBA) + o(qAB).

This result shows that our model is robust and that in the limit (when qAB = qBA = 0),
our optimal policy is the same as that of a rational trader with no market power. In
addition, one is able to obtain first-order approximations of mBA and mAB when the
capacities qAB, qBA are small.

Proposition 6 allows us to derive some interesting conclusions in a“perfect”market, where
all traders are small. In that situation, each trader is going to start trading when the
spread is beyond its transaction cost. As a result, there is a direct relationship between
traders’ costs, installed capacities and the market spread long-run distribution. We use
this assumption later on, in §4.1, in order to estimate the amount of capacity present in
the market based on the price spread distribution.

3.4 Sensitivity analysis

In this section we show some properties of the model with respect to small changes in the
parameters.

In a first attempt we tried to do it analytically using the Envelope Theorem. The envelope
theorem is a general principle describing how the value of an optimization problem changes
as the parameters of the problem change. 1 Notwithstanding, the analytical expressions
for the partial derivatives are untractable.

We decided then to do the sensitivity analysis numerically with MATLAB (one can find
the scripts with the code in Appendix A). For this purpose, we have taken two different
approaches. We have implemented the explicit analytical function defined in §3.3 and
compared the results with explicit simulations of concrete policies that satisfy dGt =
−β(ut + v(Gt))dt + σdWt. The results found in both cases are similar, so we can say that
our model is robust. Figure 3.3 is an example of this: the simulated p.d.f. (with 10,000

1Roughly: consider an arbitrary maximization problem where the objective function, f , depends on a
parameter (a):

J(a) = max
x

f(x, a)

where the function J(a) gives the maximized value of f as a function of a. Let x(a) be the value of x
that solves the maximization problem in terms of paramater a. The envelope theorem tells us how J(a)
changes as a changes, manely:

dJ(a)
da

=
∂f(x∗, a)

∂a
|x∗=x(a)
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data points) “converges” to the analytical p.d.f. Figure 3.2 shows the result of a simulated
policy. Since both approaches yield similar results, we have used below the analytical
implementation because the computations are faster than with simulations.
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Figure 3.2: Simulating a policy. Parameters: cAB = cBA = 0, qAB = qBA = 1, v(G) = 1
when G ≥ 1, v(G) = −1 when G ≤ −1 and v(G) = 0 otherwise
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Figure 3.3: Comparison between the analytical pdf (red) and the simulated pdf (blue).

For given cBA, cAB, qBA, qAB, β, σ, v(·), the optimal thresholds mBA,mAB are found, through
an exhaustive search, even though it would be computationally more efficient just to solve
Equations (3.6), (3.8) and (3.7). We also compute the average profit J∗ defined in (2.7).
In Figure 3.4 we show the value of J∗ for a concrete trading policy, with and without
trading costs.
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Figure 3.4: Long-term average benefits. Left: no trading costs. Right: positive costs

Without lost of generality we have assumed that
σ2

2β
= 1. This is only a scaling assump-

tion. In addition, we have considered two main cases:

• the symmetric trader: cBA = cBA = c,qBA = qAB = q and v(G) antisymmetric;

• the uni-directional trader: cBA = ∞, cAB = c and qBA = 0, qAB = q.

For both scenarios, we numerically show the impact of cost (c) and capacity (q) on the

optimal average profit J∗ =
σ2

2β
−W , and on the thresholds mBA,mAB. Note that for the

symmetric trader scenario, we can apply Proposition 5 and hence mBA = −mAB.

We observe in Figures 3.5 and 3.6 that, as one would expect, the trader’s average profit
decreases to zero with cost. Any capacity is actually useless for c ≥ 5, since, as the
competitor starts trading |v| = 1 for |Gt| ≥ 1, the spread never goes above c. The
threshold at which the trader begins to operate is actually very close to the cost, for the
entire range.

In addition, the trader’s profit is concave in the capacity, implying decreasing marginal
returns on the capacity. The marginal value of capacity is very small for q ≥ 2, since
more capacity tends to reduce the price spreads. As the capacity grows, the threshold
also increases, and can be quite high compared to the cost, e.g., for the symmetric trader,
when q = 5, c = 1 and mAB ≈ 1.6.

Interestingly, comparing Figures 3.5 and 3.6, one can see that the symmetric trader makes
slightly more than twice the profit for the unidirectional trader. The optimal trading
thresholds are very similar in both cases. This suggests that, in the case of a symmetric
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Figure 3.5: The symmetric trader. The top figures depict the changes of the optimal
mBA,mAB with changes in c (left) and q (right). The bottom figures show the correspond-
ing changes in average profit J∗, again with changes in c (left) and q (right). In these
figures, we consider that v(G) = 1 when G ≥ 1, v(G) = −1 when G ≤ −1 and v(G) = 0
otherwise.

trader, the thresholds could be computed independently, i.e., find mAB using cAB, qAB > 0
and qBA = 0, and similarly for mBA. This policy would be close to optimal.
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Figure 3.6: The uni-directional trader. The top figures depict the changes of the
optimal mAB with changes in c (left) and q (right). The bottom figures show the corre-
sponding changes in average profit J∗, again with changes in c (left) and q (right). In
these figures, we consider that v(G) = 1 when G ≥ 1, v(G) = −1 when G ≤ −1 and
v(G) = 0 otherwise.

3.5 Summary

In this chapter we have presented many results and shown important insights of our model
that can be summed up in the following key points:

• For the monopoly case: Proposition 1 shows that when there are no trading costs
the average long-run profit is independent of the trading quantity. This is not true
when the costs are positive as shown in Proposition 2.

• When solving the trader’s problem we have been able to reformulate (2.8) into an
optimization problem (3.2) with f as decision variable. Since the p.d.f f and the
trading quantity u(G) are directly linked; this is equivalent to finding the optimal
trading policy.

• For the oligopoly case: Theorem 1 characterizes the optimal trading policy, u(G),
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which is determined by two thresholds mAB and mBA. The trader must ship at full
capacity from market B to market A when the spread is below mBA, the same but
in the opposite direction when the spread is above mAB, and do nothing elsewhere.

• We have analyzed the impact of market power in the structure of the optimal
trading policy: it delays the point where the traders begin to ship product from one
market to the other.

• Proposition 4 gives the closed-form equations which characterizes the thresholds
mAB and mBA.

• Proposition 5 shows that mAB = −mBA when v(G) is anti-symmetrical. Proposition
6 allows us to derive some interesting conclusions when all traders are small (q ≈ 0).
In that situation, each trader is going to start trading when the spread is beyond
its transaction cost. Hence, there is a direct relationship between traders’ costs,
installed capacities and the market spread long-run distribution.

• In §3.4 we illustrate how the changes in cost and capacity affect the average
long-run profits and the thresholds described by the optimal policy. As expected,
revenues decrease with cost and are concave with capacity, as more capacity tends
to reduce the price spreads..
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Chapter 4

Applications and Extensions

4.1 Application to Jet-Fuel (Kerosene) Prices

In this section, we analyze the data of jet-fuel (kerosene) spot prices in two locations:
New York Harbor (NY) and Los Angeles (LA). We have taken the data from the Energy
Information Administration from the U.S.Goverment, see http://www.eia.doe.gov. This
is an illustrative example as Kerosene is a product with no qualitative differences, i.e, as
the planes are the same worldwide the jet-fuel must be the same everywhere.

We show in Figure 4.1 the evolution of kerosene jet-fuel spot prices, over more than fifteen
years. As can be seen in the left figure, the evolution of the price in these two locations is
very similar. This implies that in the long-run the price spread is small. However, when
examining, in the right figure, the price differences over the period, it is surprising to see
short-run spreads of tens of cents of a dollar. Another salient feature is that the spreads
do not close quickly, in some cases lasting more than one month.

Our objective here is to apply our model to the trading between these two locations.
Trading, as we use it, can be done in several forms. For example, one can imagine a
dedicated trader that buys kerosene in one market, loads it in a tank truck (which hold
from 4000 to 9000 gallons), and ships it to the other market. This is an expensive way
of trading, and would yield per-gallon costs of the order of 10 USD cents. The capacity
available for this would probably be very large. One can also think of an airline that
flies the NY-LA route and refuels its planes every day in both locations. By buying a
bit more in the cheaper market and a bit less in the more expensive market, this airline
is effectively trading between the two markets. The capacity here would be the number
of planes of the airline in this route. This form of trading is also expensive: a B767-400
consumes 7400 liters per hour, weights 200 tons when fully loaded, which implies that,
shipping one gallon between NY and LA consumes about 0.2 gallons, around 40 USD
cents per gallon traded at 2007 kerosene prices. Our model can be used by this trader
to optimize his actions. We analyze below the outcome of the actions of the traders: the
spread price process.
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Figure 4.1: Plot of kerosene jet-fuel daily spot prices on the left (in USD cents per
Gallon) in New York and Los Angeles, and the corresponding spread (price difference)
Gt = PNY

t − PLA
t .

The series reflects the spot price in USD cents per gallon from January 1991 to November
2007. We are using prices on markets that open from Monday to Friday, although in a
few cases we do not have data over the entire 5-days week, due to local holidays. As a
result, when calculating the spread series, we have removed the days where information
of the price of one or both locations was missing. These facts (week-ends, holidays and
missing data) generate some complications in our study. In fact, when calculating auto-
correlations, i.e., correlations across successive days, we have to take into account this
phenomenon. In other words, although not having information of the price spread in
week-ends, trading on a pipeline or other shipping systems (e.g., trucks) can occur, moving
product from one location to the other. So as a result, the system has three times more
capacity between Friday and Monday than during the week. Thus, we index the series
using natural days, i.e., the time t is indexed from Monday to Sunday.

We have calculated the spread Gt = PNY
t − PLA

t . Table 4.1 provides the basic statistics
summary of the series.

Notice that the maximum and minimum value of the spread are highly significant as well
as the high variance. These facts are interesting for a player trading in these markets.

It is also interesting to examine the auto-correlation diagram, shown in Figure 4.2. Using
the time series terminology, the figure is equivalent to the autocorrelation function (ACF)
but taking in account the missing data. In other words, when calculating the autocorre-
lation coefficients (see [5] for more details) at lag k the terms where Gt and/or Gt+k are
missing are not considered. The slow exponential decay in the ACF is a feature that, for
example, autoregressive models (AR) exhibit, and so does ours. In fact, if the data was
modeled with a simple AR(1) process, then we would have a spread process as follows:
Gt − µ = α(Gt−1 − µ) + σεt where εt is a white noise, with mean zero and standard de-
viation one. This is in some way an alternative to Equation (2.2). High auto-correlation
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Table 4.1: Basic statistics of Gt = PNY
t − PLA

t

Number of observations (market days) 4238
Minimum -53.50
Maximum 44.70
First quartile -6.17
Third quartile -0.25
Mean -3.33
Median -3.25
Variance 41.12
Standard deviation 6.42
Skewness -0.20
Kurtosis 8.28

in the spread could be a sign of “inefficiency” of the market, in other words, financial
opportunities for traders.
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Figure 4.2: The autocorrelations for the jet kerosene data taking in account the missing
information. The lag is measured in days.

More importantly, we depict the spread distribution of the series. Figure (4.3) shows
both the p.d.f. and its logarithm. In our model, see Equation (2.6), the slope of the
logarithm of the p.d.f., f ′/f is equal to −2β(u(G) + v(G))/σ2. This can be calculated
from the figure. In other words, we can estimate −2β(u(G) + v(G))/σ2 from the data.
In a sense, this provides an aggregate measure for the intensity with which the market
brings an off-average spread back to the average. Interestingly, this measure can be well
approximated through a piecewise constant function, as follows.

f ′

f
(G) = −2β(u(G) + v(G))

σ2
=





0.29 for G ≤ −5.5
0.00 for − 5.5 < G ≤ −1.5

−0.31 for G > −1.5
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Figure 4.3: On the left, the shape of the p.d.f. for the data of jet kerosene is similar
to what we could have expected when applying our trading policies. On the right, we
show that the linear approximation (dashed line) fits the logarithm of the p.d.f. well.
The vertical line reflects the mean -3.33 USD cents of the data. Finally, we plot the
distribution for a data range of plus/minus two standard deviations.

The approximation fits the data well, as shown in Figure 4.3. Interestingly, it would be
more accurate than trying to model the spread series as an AR(1) process. Indeed, for

an AR(1) process, Equation (2.4) would yield to f ′′
f ′ = −2(1−α)G

σ2 . Hence the logarithm of

the p.d.f. (right-hand side in Figure 4.3) would exhibit a much larger “convexity” in G,
an approximation that does not fit the data as well as our model.

If all traders are small compared to the market (which seems a reasonable assumption),
then our model would provide a way to estimate how much total trading capacity u(G)+
v(G) is available at each cost level G. This approach can be used to calibrate some of
the parameters of our model. Some more detailed estimates can be obtained by directly
expressing all the price variations, ∆G = Gt+1 − Gt, when Gt ∈ [G − δ,G + δ], as the
sum of a constant plus a white noise. This has the advantage of estimating directly
−β(u(G) + v(G)) (the constant) and σ (the standard deviation of the noise). However, it
turns out that the estimates are very noisy, and only look consistent when we aggregate
them significantly (large δ), which is somehow similar to the estimation performed on
f ′/f .
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4.2 Extensions

In this section we consider different types of model we could have used to solve the
problem, their differences with our model, advantages and disadvantages.

4.2.1 Discounted Profit Maximization

One of the strong assumptions of our model is that the trader cares about long-term
average profit. This assumption does simplify the analysis, as it allows treating the
objective in an explicit way, and, as a result, computing closed-form thresholds for the
optimal policy.

In section §2.3, we have presented an alternative way for the optimization of the trading
policies: the discounted profit maximization case. We use optimal control theory1 to solve
the problem. We use the notation and nomenclature from Bertsekas [2].

Denoting as J(G0) the profit-to-go (expected objective function value), function of the
current price spread G0, the maximization problem can be written as

max
−qBA≤ut≤qAB

J(G0) = E
{∫ ∞

0

e−rt
(
Gtut − cBAu−t − cABu+

t

)
dt

}
(4.1)

where r is the instantaneous discount factor, and such that dGt = −β(ut+v(Gt))dt+σdWt

The optimality conditions can be captured through the Hamilton-Jacobi-Bellman (HJB)
equation. First, the optimal control u∗(G) is given by

max
−qBA≤u≤qAB

(
Gu− cBAu− − cABu+

)
− β

dJ

dG
u.

This implies that u∗(G) = −qBA, 0, qAB. This is the same structure we have found when
solving 2.8. Hence, a bang-bang policy is optimal in the discounted profit case as well.

In addition, if G − β
dJ

dG
is increasing when equal to −cBA, 0, cAB, then there exists

mBA,mAB such that u∗(G) = −qBA when G ≤ mBA; u∗(G) = qAB when G ≥ mAB;
and finally, u∗(G) = 0 when mBA ≤ G ≤ mAB. In that case, the HJB equation satisfies:

σ2

2
d2J
dG2 − β(−qBA + v) dJ

dG
− rJ − (G− cBA)qBA = 0 when G ≤ mBA,

σ2

2
d2J
dG2 − βv dJ

dG
− rJ = 0 when mBA ≤ G ≤ mAB

σ2

2
d2J
dG2 − β(qAB + v) dJ

dG
− rJ + (G− cAB)qAB = 0 when G ≥ mAB

1The optimal control can be derived using Pontryagin’s maximum principle (a necessary condition),
or by solving the Hamilton-Jacobi-Bellman equation (a sufficient condition).
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4.2.2 Alternative Price Processes, Cost Structures and Com-
petitor Actions

In this Master Thesis we present a simple analytical model that gives intuitive trading
policies. One of the main advantages in our model is to be able to recast a problem with
two stochastic processes, PA

t and PB
t , into a problem with a single stochastic process

Gt = PB
t − PA

t . This can be done under two main assumptions:

• that the stochastic process dGt can be expressed only as a function of the spread
Gt (for instance, that the actions of the competitors vt only depend on Gt, not on
(PA

t , PB
t ));

• and that the cost function of the trader is linear, which implies that it is independent
of (PA

t , PB
t ).

When any of these two assumptions is not satisfied, then the approach developed in this
Thesis is significantly more complicated. We provide guidelines on how to deal with these
more general models. The generic formulation for the price processes, replacing Equation
(2.1), is:

dPA
t =

[
αA(PA

t , PB
t ) + βA(PA

t , PB
t )

(
ut + vt(P

A
t , PB

t )
)]

dt + σA(PA
t , PB

t )dWA
t

dPB
t =

[
αB(PA

t , PB
t )− βB(PA

t , PB
t )

(
ut + vt(P

A
t , PB

t )
)]

dt + σB(PA
t , PB

t )dWB
t

(4.2)

A particular case of these is the geometric Brownian motion, where αi = 0, βi = P i
t β̄

i,
and σi = P i

t σ̄
i, with β̄i, σ̄i constants.

The objective function thus becomes

J(u) = max
u
E

{
(PB

t − PA
t )u− c

(
PA

t , PB
t , u

)}

= max
u

∫ ∫ +∞

−∞

[
(pB − pA)u(pA, pB)− c

(
pA, pB, u(pA, pB)

)]
fu(p

A, pB)dpAdpB,

where fu satisfies a partial differential equation similar to (2.4), but in two variables.
In this case, no closed form solution can be easily computed, and fu should be found
numerically.

4.2.3 Trading in a Network

As said, the model developed in this Thesis considers a capacitated trader between two
pre-determined locations, market A and market B. This is a great simplification as, in
reality, trading opportunities are possible between many potential origins and destinations.
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So, if we want to extend our model to three or more locations we are implicitly defining
a network of n nodes (a connected graph), each node representing a market. Figure 4.4
illustrates how the graph for the kerosene prices would look like. For each arc (i, j) of the
graph, we define the trading quantities between market i and market j as uij, the existing
trading capacity as qij and the trading unit cost cij.

We must also redefine the price process evolution from Equation (2.1) as

dP i
t =

[
α(Pt) +

∑

j 6=i

βij(uij
t + vij

t )−
∑

j 6=i

βji(uji
t + vji

t )

]
dt + σidW i

t for all i ∈ {1, . . . , n}

(4.3)

where Pt = (P 1
t , . . . , P n

t ), and W i
t are (possibly correlated) Wiener processes.

Another option when extending our basic model to a network is to integrate the inventory
aspect of the trade. In the model we have assumed that the quantity bought at market
i is equal to the one sold at market j. This is reasonable if we are thinking of pipelines.
However, if the shipping system is a serial network of warehouses, then one could consider
the possibility of storing inventory somewhere in that network.

With this new formulation, similar to §4.2.2, it is impossible to transform the problem
into a single-dimension state space (the price spread). The analysis consequently becomes
intractable, and numerical methods must be used.

Figure 4.4: Network for the kerosene example. The main markets for the jet-kerosene are
New York (NY), Los Angeles (LA), United States Gulf Coast (USGC), Rotterdam (R)
and Singapore(S). We also show, close to each location, the spread with respect to the
NY price
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4.3 Summary

In this chapter we have seen an application of our model to real market data and discussed
alternative models and future extensions. This can be summarized in the following key
points:

• We have shown that for the jet-fuel kerosene prices the short-term spreads are
significant and that sometimes they take over a month to close. These features
are a sign of “arbitrage” opportunity for a trader.

• We can estimate −2β(u(G) + v(G))/σ2 directly from the data. This provides an
aggregate measure for the intensity with which the market brings an off-average
spread back to the average.

• We have shown that the structure of the optimal trading policy in the discounted
profit case is the same as the one we had in Theorem 1.

• We provide guidelines on how to deal with the general models.

• We consider and discuss the problems when trying to extend our model to a network
or integrating the inventory aspect of trade.
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Conclusions

In this Master Thesis we have presented a model which analyzes the optimal trading
strategy for capacitated traders in commodity markets who want to maximize their long-
run average profits. We have focused on two markets only, A and B, where the prices
evolve following a correlated random walk, and are influenced by the trader’s actions,
what we call market power.

Perhaps the biggest advantage in our model, presented in Chapter 2, is to be able to
transform the trader’s decision, based on the prices at both markets (PA

t , PB
t ), into one

that only depends on the price spread Gt = PB
t − PA

t . With this we are able to compute
closed-form expressions for the optimal policy.

In Chapter 3, we have characterized this optimal trading policy, which is described by two
thresholds mBA ≤ mAB such that it is optimal to trade as much as possible (at capacity)
from B to A when Gt ≤ mBA, do nothing when mBA < Gt ≤ mAB, and again trade as
much as possible, from A to B this time, when Gt > mAB.

This is the sort of policy that is intuitively optimal when the trader has no impact on
future prices. We show that the structure remains the same even when the trader moves
the market. Interestingly, the thresholds are very close to the trading costs cBA, cAB when
the trading capacity is small, confirming that when the trader is small in the market,
then he can safely assume that he has no market power (although his trading volume has
an impact on the long-run distribution of prices). On the other hand, when the trading
capacity is large, the thresholds can significantly deviate from the trading costs, as shown
in §3.4.

From a traders point of view the model can be used for many different purposes. At an
operational level, it allows the trader to specify when and how much to trade. At a more
tactical and strategic level, the trader can predict the price spread distribution by looking
at the trading capacity used for each spread level, and evaluate the impact of trading
capacity additions. The specific application to kerosene spreads in Chapter 4 is just an
example of what can be achieved with the model, and many alternative applications are
possible, in other industries.
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Summarizing, we have:

• Simple analytical model which captures the impact on prices of the trading actions
of a capacitated trader.

• Intuitive and closed-form expressions for the optimal policy based on the spread and
characterized by two thresholds.

• The model is useful for both operational and capacity decisions

We have interpreted the markets A and B as locations where an identical commodity is
traded. The trading capacity represents the shipping capacity per period available, such
as a pipeline, a system of trucks, etc. Interestingly, there is an alternative interpretation
of our results: A and B could represent two different commodities priced in the same
location. There, the trading capacity would represent the transformation capacity per
period. Consider for example PA

t being the price of natural gas, and PB
t the price of

electricity, in the same market. A power generation company could consider its generation
capacity as trading capacity from A to B. Our model would dictate the generation policy
for this company, and the distribution of the price spread (called the spark spread) could be
found. Thus, our model is able to describe analytically what the trader/generator should
do. Another example would be a refinery. Crude oil is a mix of different hydrocarbon
compounds, and the proportion of the various hydrocarbons in the mix varies according
to the origin of the crude oil. For a refinery operator, technically it is feasible to produce
any refined product from any type of crude (A,B).

Finally, in §4.2, we formulate several extensions to more general situations, in particular
where the price processes follow other dynamics, e.g., geometric Brownian motion, or the
number of markets is larger than two. The trader optimization problem can there be
solved numerically. Another extension of our basic model is to integrate the inventory
aspect of the trade. We have considered a shipping system where the quantity bought
at A is equal to the one sold at B. This is a fair assumption if we focus on a pipeline.
However, if the shipping system is a serial network of warehouses, then one could consider
the possibility of storing inventory somewhere in that network. The analysis becomes
significantly more complex. These extensions can be further explored, and constitute a
promising direction of future research.
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Appendix

In this appendix we show the MATLAB code used in the numerical sensitivity analysis
in §3.4. The main function is CAMfunction that gives as result the value NPV = J∗ and
the two thresholds mBA, mAB depending on ten parameters:

1. mode1: when =1 we use the analytical model; when=2 we use simulation.

2. mode2: when =1 we compute the symmetric trader case; when=2 we compute the
uni-directional trader case

3. c:=value of the trading costs

4. q:=value of the capacity

5. SimN:=number of simulations to be done

6. xn:= number of points

7. mv0:=lower threshold for the competence

8. mv1:=upper threshold for the competence

9. qv0:=competitors capacity from B to A

10. qv1:=competitors capacity from A to B

SENSITIVITY ANALYSIS

function[NPV,mAB]=CAMfunction(mode1,mode2,c,q,SimN,xn,mv0,mv1,qv0,qv1)

xmin=-20; lower limit
xmax=20; upper limit

xstep=(xmax-xmin)/(xn-1);

xrange=xmin+xstep*(0:xn-1);

m0=xmin;
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N=zeros(xn,xn);

epsilon=zeros(1,SimN);

for k=1:SimN

epsilon(k)=2*rand-1; random perturbation
end

u=zeros(1,xn); our control
v=zeros(1,xn); market power of the competitors

obj=zeros(1,xn);

fbest=ones(1,xn);

objbest=0;

m0best=xmin;

m1best=xmax;

for i=1:xn

if xrange(i)<mv0

v(i)=qv0;

elseif xrange(i)>mv1

v(i)=qv1;

end

end

for i1=1:xn

m1=xrange(i1);

for i0=1:i1

m0=xrange(i0);

u=zeros(1,xn);

if(mode2==1)

for k=1:xn

if xrange(k)<=m0

u(k)=-q;

elseif xrange(k)>=m1

u(k)=q;

end

end

end
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if(mode2==2)

for k=1:xn

if xrange(k)<=m0

u(k)=0;

elseif xrange(k)>=m1

u(k)=q;

end

end

end

ANALYTICAL
if(mode1==1)

f=ones(1,xn);

imid=floor(xn/2);

for k=imid-1:-1:1

f(k)=f(k+1)*exp((u(k+1)+v(k+1)+u(k)+v(k))/2*xstep);

end

for k=imid+1:xn

f(k)=f(k-1)*exp(-(u(k-1)+v(k-1)+u(k)+v(k))/2*xstep);

end

sumf=sum(f);

f=f/sumf;

for k=2:(xn-1)

obj(k)=(xrange(k)*u(k)-c*abs(u(k)))*(f(k+1)+f(k-1))/2;

end

objf=sum(obj);

N(i0,i1)=objf;

end

SIMULATED
if(mode1==2)

G=0;

objf=0;

Gplot=[G];
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for k=1:SimN

if(mode2==1)

if (G<m0)

uG=-q;

elseif (G>m1)

uG=q;

else

uG=0;

end

if (G<mv0)

vG=qv0;

elseif (G>mv1)

vG=qv1;

else

vG=0;

end

end

if(mode2==2)

if (G<m0)

uG=0;

elseif (G>m1)

uG=q;

else

uG=0;

end

if (G<mv0)

vG=qv0;

elseif (G>mv1)

vG=qv1;

else

vG=0;

end

end

G=G-(uG+vG)+epsilon(k);

objf=objf+G*uG-c*abs(uG);

Gplot=[Gplot G];
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end

N(i0,i1)=objf;

f=zeros(1,xn);

end

if objf > objbest

objbest=objf;

m0best=m0;

m1best=m1;

fbest=f;

ubest=u;

evolutionG=Gplot;

end

end

end

Plot simulated pdf
Final=sort(evolutionG);

pvalues=(-.5+(1:SimN+1))/(SimN+2);

data=[Final;pvalues];

i=2;

while i<=length(data)

if data(1,i)==data(1,i-1);

le=length(data);

datal=data(:,1:i-2);

datar=data(:,i:le);

data=[datal, datar];

else

i=i+1;

end

end

xN2=200;

xmin2=min(Final);
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xmax2=max(Final);

xstep2=(xmax2-xmin2)/xN2;

xvalues=xmin2+xstep2*((1:xN2));

yvalues=zeros(1,xN2);

for i=1:xN2

yvalues(i)=interp1(data(1,:),data(2,:),xvalues(i));

end

opt=max(N);

NPV=max(opt);

mBA=m0best;

mAB=m1best;

figure(1);

contourf(xrange, xrange, max(0,N)’,50)

xlabel(’$m_{BA}’$);

ylabel(’$m_{AB}’$);

figure(2);

plot(xvalues(1:xN2-1),diff(yvalues)/xstep2);

xlabel(’Pricedifference value’);

ylabel(’Simulated Probabilitydensity function’);

hold on

plot(xrange,fbest,’r’);

ylabel(’Analytycal Probability density function’);

The following two functions show the changes of the objective function, and thresholds
with respect to changes in costs and capacity. Note that both use CAMfunction and that
are thought to generate figures like 3.5 and 3.6. The two parameters are: mod (when=1
means we are interested in J∗; when=2 we are interested in the thresholds) and N (limit
value of cost or capacity to be evaluated).

COST PLOTS

function RES=cmod(mod,N)

RES1=[CAMfunction(mode1,mode2,0,q,SimN,xn,mv0,mv1,qv0,qv1)(mod)];

RES2=[CAMfunction(mode1,mode2,0,q’,SimN,xn,mv0,mv1,qv0,qv1)(mod)];

for i=1:N

Res1=CAMfunction(mode1,mode2,i,q,SimN,xn,mv0,mv1,qv0,qv1)(mod);
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Res2=CAMfunction(mode1,mode2,i,q’,SimN,xn,mv0,mv1,qv0,qv1)(mod);

RES1=[RES1 Res1];

RES2=[RES2 Res2];

end

if(mod==1)

figure(1);

plot(RES1,’r’);

hold on

plot(RES2,’b’);

xlabel(’Cost c’);

ylabel(’J*’);

end

if(mod==2)

figure(1);

plot(RES1,’r’);

hold on

plot(RES2,’b’);

xlabel(’Cost c’);

ylabel(’$m^{AB}=-m^{BA}$’);

end

CAPACITY PLOTS

function RES=qmod(mod,N)

RES1=[CAMfunction(mode1,mode2,c,0.01,SimN,xn,mv0,mv1,qv0,qv1)(mod)];

RES2=[CAMfunction(mode1,mode2,c’,0.01,SimN,xn,mv0,mv1,qv0,qv1)(mod)];

for i=1:N

Res1=CAMfunction(mode1,mode2,c,i,SimN,xn,mv0,mv1,qv0,qv1)(mod);

Res2=CAMfunction(mode1,mode2,c’,i,SimN,xn,mv0,mv1,qv0,qv1(mod));

RES1=[RES1 Res1];

RES2=[RES2 Res2];

end

if(mod==1)

figure(1);

plot(RES1,’r’);

hold on

plot(RES2,’b’);

xlabel(’Capacity q’);
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ylabel(’J*’);

end

if(mod==2)

figure(2);

plot(RES1,’r’);

hold on

plot(RES2,’b’);

xlabel(’Capacity q’);

ylabel(’$m^{AB}=-m^{BA}$’);

end
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