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Easy access to a wide range of information available online enables people to ex-
plore this information with an ambition to explore interesting content even more.
This opportunity often leads to a problem of finding interesting and relevant in-
formation from the sea of knowledge. This problem is often referred to as the
information overload problem, which is getting harder and harder to deal with
as the amount of information available online grows. In this thesis, one source of
information is exploited and organized in such a way that the task of discovering
new content is made easier.

We use Really Simple Syndication (RSS) as our source of information and two
methods to categorize it: document clustering with K-Means and Latent Dirichlet
Allocation (LDA). We use the textual information that the RSS contains, each
RSS feed usually contains a specific set of topics. Our first goal is to perform
document clustering to the data, in order to generate meaningful clusters with
the help of natural language processing (NLP) techniques to preprocess the data.

Our second goal is to analyze the clustered RSS feeds and exploit the similarities
between the documents to generate meaningful user models based on user feed
subscriptions. The third goal is to provide relevant recommendations based on
the user models we have learned. We combine the current state-of-the-art meth-
ods and present novel methods to compare feeds. We exploit WordNet shallow
ontologies in our novel method to create generalized representations of the feeds.
The final goal is to develop a functional application that can leverage the meth-
ods we developed with the help of machine learning libraries. The method we
propose is a combination of document clustering techniques, text similarity, feed
modeling and recommendation system.

The results of our experiments show that K-Means clustered documents com-
bined with recommendations based on the feed contents yield the best results.
Using WordNet to measure the similarity of words provides also promising re-
sults. Further exploring the advantages of using semantic similarities would be
an interesting research topic in the document similarity measures.

Keywords: RSS, document clustering, recommendation system, text clas-
sification, vector space distance measures, shallow ontologies

Language: English
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Abbreviations and Acronyms

CDbw Compose Density Between and Within clusters
df Document Frequency

HTML Hypertext Markup Language

idf Inverse Document Frequency

IUF Inverse Update Frequency

LDA Latent Dirichlet Allocation

NLP Natural Language Processing

RSS Really Simple Syndication

STC Suffix-Tree Clustering

tf-idf Term Frequency - Inverse Document Frequency
WordNet Database of English words, their connections and syn-

tactic categories
XML Extensible Markup Language
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Chapter 1

Introduction

Humans have usually a strong thirst for knowledge, which can be quenched
in modern days quite easily by searching for information online. Some people
are interested of particular topics and other people of their own particular
topics, and there can exists groups of people who share their interests. These
behavior patterns provide us a reason to try and quench the information
thirst with the most appropriate methods in machine learning.

Partly due to the widespread access to internet, there exists vast amounts
of information available online for everyone in many different formats. Typ-
ically the information on the internet tends to be updated frequently and
distributed in many forms. One form of distribution is to use feeds which
usually contain summarized information and a link to the full-text resource.
The content of each feed varies and usually it resembles the information
presented on that particular source of information.

The problem with this situation is that it is hard for a user to find new
and interesting information from the available feeds. It is easy to subscribe
to these feeds from a site which is frequently visited by the user, but for the
user to find a new site with similar content is difficult. This is a common
problem of finding new sources of information from the internet, commonly
referred as the information overload problem.

Another problem is to filter out the information that is not interesting
to the user. There can be a situation where the user is only interested of a
subset of, for example, the news presented in a website or a feed. In this case
the user has to browse through all the information and distinguish the most
interesting news items. This is a problem of information filtering, to present
the items that are most likely interesting to the user in an ordered list.

In this thesis we present one approach to solve these problems by using
information retrieval techniques. In short, our approach builds a model of
the user’s interests based on his or her subscriptions and uses the textual
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content of the feeds to recommend feeds that the user might find interesting.

We used natural language processing and document clustering techniques
to form an understanding of the content in the user’s feeds. Having struc-
tured an understanding of the data, we use approaches from the field of
recommendation systems to find feeds that should be recommended to the
user. We experimented with several different approaches and their combina-
tions in an attempt to find the best way to solve the problem of finding the
relevant feeds.

We used traditional methods, such as vector distance computations, and
methods that we found not so frequently used in this domain of recommen-
dation systems. The more infrequent methods include document clustering,
comparisons of top-k lists, graph based approaches and a new approach that
we present in this thesis, which is based on WordNet.

Based on our experiments, the best results can be achieved with K-Means
document clustering and modeling the users based on the feeds they sub-
scribe to. Furthermore, some methods such as using the feed content with
Latent Dirichlet Allocation based document clustering for recommendations
and incorporating WordNet information yields promising results.

The remaining sections of this thesis are organized as follows. In chap-
ter 2, we begin with a more detailed explanation of the problem and present
some recent approaches to solve it. We continue with background informa-
tion in chapter 3, and in chapter 4 we present our approach in more detail.
In chapter 5, we present the tools we used in our application and chapter 6
presents our experiments and the results. We evaluate the results in chapter 7
and finally we conclude this thesis in chapter 8, where we present discussion
and draw conclusions.



Chapter 2

The RSS Recommendation Prob-
lem

We will begin this chapter by motivating the problem and then introduce
the common approaches in recommendation systems for text feeds. Finally,
we present the current applications and their approaches and describe how
we plan to improve these approaches.

There are already some RSS aggregators which provide recommendations
of feeds or items based on user preferences. However, there are not that many
more recent approaches, thus providing us a reason to approach the problem
with more recent methods developed in the field of recommendation systems
and information retrieval.

2.1 Why Recommend Feeds

According to Built With [48], which is a trends, intelligence and internet
research company, there are over 31.2 million websites providing information
using feeds on their website, with over 9.2 million feeds provided using RSS.
This means that 29.4% of websites that provide a feed, provides that feed
using RSS, and from a total number of almost 81 million websites included
in Built With’s analysis 12.3% of them provide RSS feed.

When we consider the 9.2 million feeds provided on the web with RSS,
it is very hard to find a feed that is interesting. Obviously, if the site one
frequently visits provides feed in RSS, it is easy enough to subscribe to it.
Still, the problem is how to find more feeds of the same subject without any
tools. In addition, because of the vast selection of available feeds this can
cause the decision to be even harder to make.

Edmunds and Morris discuss the problem of information overload in the

3
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context of business organisations [14]. In the paper the authors present
a literature review on information overload and provide many definitions
for it; for example, information overload can mean that a person has more
relevant information that can be understood or it can mean that there is a
large amount of information, out of which some may be relevant. In our case
we consider information overload as the latter case, where there is a large
amount of feeds available and out of them some may be relevant.

Let us consider a user who is interested in, for example, technology and is
familiar with a website or two and is subscribing their RSS feeds. According
to data provided by Built With on their website, there are over 3000 RSS
feeds in the domain of technology. How would the user be able to find the
similar feeds from the available 3000 feeds. One option would be to manually
go through them all and select the interesting ones, however, this might lead
to bad decisions, which is a consequence of information overload, and also
going through manually all the feeds is an irrational solution, thus to solve
this problem is an interesting task. To solve the problem we can use the
computational power of modern computers and some intelligent algorithms.
Now that the problem we are faced with is more clear, we can proceed with
the explanation of the data we are working with.

2.2 RSS - Really Simple Syndication

RSS is a syndication format for Web content and its abbreviation originates
from Really Simple Syndication defined by the RSS advisory board [42]. RSS
is similar to Extensible Markup Language (XML) in syntax and it is actually
a dialect of XML.

RSS document contains elements which describe the content inside these
elements, for example, RSS document starts with a <rss> element. Inside
<rss> element there is a <channel> element which contains the actual con-
tent of the RSS feed. <channel> element contains metadata such as <title>,
<description> and publication date, <pubDate>, for the feed. Inside the
<channel> element there are one or more <item> elements, which contains
the information of the items in the feed. Usually <item> contains at least a
short description, or in some cases maybe even the full text of the item, and
the publication date. For example, a simple RSS feed can be in the following
format:

<rss>
<channel>
<title>Example RSS feed</title>
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<link>http://example.org/</link>
<description>
This example RSS feed shows the syntax for RSS
</description>
<item>
<description>
A sample RSS item
</description>
<pubDate>
Tue, 16 July 2013 11:55:05 GMT
</pubDate>
</item>
<item>
<description>
A sample RSS item 2
</description>
<pubDate>
Mon, 15 July 2013 10:24:00 GMT
</pubDate>
</item>
</channel>
</rss>

RSS is really a simple format, as the name suggests, and easy to use
and additionally the most widely spread syndication format according to
Built With [48]. Furthermore, because RSS is a standard format it is really
straightforward to create a tool for it, which can be used to read any RSS
feed available. These features of RSS makes it a perfect choice for a source
of data in this thesis.

2.3 Current state-of-the-art Applications

Current applications can be roughly divided to two categories: client-based
and Web-based applications. The main difference between the categories is
that client-based approaches enable the application to use more detailed in-
formation on the user preferences; for example, the application could inspect
the contents of users’ documents in the hard drive to obtain a more detailed
user model. This information is not available in Web-based applications, but
the advantage of using such an application is that the feeds are monitored
constantly for new additions. In contrast, client-based applications do not
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read the feed unless the user’s computer is powered on and the application is
running, therefore, these applications might overlook some interesting items
in the feed which are no longer available in the feed when the user returns.

Some more academic oriented approaches have been developed for which
the details are available; however, some commercial or other types of ap-
proaches do not provide the details. The next sections will describe these
approaches in more detail when available.

2.4 Recent Study of the Problem

Ji and Zhou [26] present the most recent study on the field of recommen-
dation systems and RSS feeds. The authors describe the current state of
recommendation applications for RSS feeds at the time of the writing of the
paper. According to the authors, these applications have some different ap-
proaches to the problem. Intersynd [38] recommends feeds from similar users
which are defined by sharing at least 20% of the feeds. NectaRSS [43] and
CRESDUP (Content recommendation system based on private dynamic user
profile) [11] analyze the textual contents of the feeds and use this information
to find similar feeds.

Ji and Zhou [26] compared in their paper different similarity metrics to
discover similar feeds. The results presented in the paper indicate that the
best performing metrics are the fraction of favourite feeds from all feeds
subscribed to by the user as well as the inverse update frequency of the feed
itself.

2.5 Intersynd

Intersynd is a middleware application that computes the recommendations
for the application and does not try to replace the RSS reader [38]. Inter-
synd’s recommendation algorithm is based on shared feeds between neigh-
bouring users which are defined as sharing 20% feeds [38]. The recommended
feeds are the most commonly appearing ones in the neighbourhood weighted
by the inverse of feed list sizes.

Intersynd also incorporates diversity in the recommended feeds by adding
some bias to feeds that are similar but not so common. Diversity enables the
users to experience more different feeds that are still interesting [38].
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2.6 NectaRSS

NectaRSS [43] uses an approach to build user models in an incremental ap-
proach. Each time the user uses NectaRSS, it is considered as a session and
if there are previous sessions the model built is updated with the informa-
tion gathered at the current session. The information used in NectaRSS is
a vector space representation of the text information contained in the RSS
feed.

NectaRSS does not use all the information available in the RSS feed, but
instead it only relies on the headlines of the feed items. Their approach is
based on the assumption that the information is newslike which allows the
simplification that the headline contains all the distinctive information. The
similarity is then computed by comparing the terms in the headlines that the
user has read in previous sessions and the terms in the new headline.

The results presented in the paper by Samper et al. [43] show that their
approach is significantly better than randomly choosing items to recommend.
Furthermore, they conclude that the precision of the recommendations im-
prove as more sessions are added to the users.

2.7 Google Reader

Perhaps one of the most developed and most widely known RSS aggregators
is Google Reader [19]. As Google does not describe in detail their recom-
mendation methods, we can draw some conclusions from the descriptions on
their website.

“Your recommendations list is automatically generated - it takes into ac-
count your existing feed subscriptions. Aggregated across many users, this
information can indicate which feeds are popular among people with similar
interests. For instance, if a lot of people subscribe to feeds about both peanut
butter and jelly, and you only subscribe to feeds about peanut butter, Reader
will recommend that you try some jelly.” [19]

From this description, we can conclude that their recommendation engine
computes some sort of user model and locates the most similar user from
which the feeds are collected. According to the description, it appears that
Google Reader focuses on the content discovery retrieving unknown topics
that the most similar users subscribe to rather than topics to which they are
already subscribed.

Google announced in March 2013 that they will terminate the Google
Reader service due to decreasing usage, and it was discontinued on July 1st,
2013 [20].
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2.7.1 Consequences of Google Reader Shutdown

Even though, Google stated that the reason for shutting down Google Reader
was the decline in usage, there has been an active conversation on the topic
on the Web. For example, a simple query on Google Search about the dis-
continuation of Google Reader provides many blog results discussing the
alternative solutions.

Also many similar feed aggregation services have mentioned on their blogs
that the discontinuation notice from Google Reader has created a spike on
their new users. For example, Feedly mentioned on their blog that during
the two weeks that followed the Google discontinuation announcement, they
received over 3 million new users [17]. In addition, NewsBlur mentioned on
their blog that after Google’s announcement their count of daily users rose
from 1500 users to 50000 users [9].

According to these signals, we can assume that there is still a wide demand
for Google Reader replacement, albeit this demand was turning to be too
small for Google to maintain Google Reader.

2.8 NewsBlur

NewsBlur is one of the many services that received new users from Google
Reader after its termination. NewsBlur is completely open source application
licensed under MIT License. It also includes intelligence on the recommen-
dations of the feeds based on the likes of users [8]. The approach they have
chosen, to the best of our knowledge, uses Fisher’s linear discriminant clas-
sifier to classify the feed as interesting or not.

2.9 How Our Approach Improves the Field

None of the approaches previously presented mention to perform any clus-
tering on the feeds, to the best of our knowledge. We believe this is an
important step to group the similar feeds using document clustering tech-
niques. Not only can this improve the quality of the recommendations but
also narrow down the search space for finding the feeds to recommend. Our
approach also uses the similar methods presented in other approaches, we use
the textual content of the feeds and the user preferences, in addition we also
present a new approach to find similar feeds. We leverage the feed weighting
approaches presented, and present a novel method to model the quality of
the feed.
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To emphasize, our approach does not try to contain all the features that,
for example, NewsBlur or Google Reader provides, but instead our approach
mostly expands the field of similarity measures used in feed recommendation
systems. Nonetheless, our approach is not in any way specific to feed rec-
ommendation and the same methods can be applied to many fields of text
document recommendations.



Chapter 3

Background

In this section we present the methods we used in this thesis. We present
first the methods that are used to preprocess the data, and continue with
the methods that rely on the results of the previous methods. We begin this
chapter by giving a broad introduction to text mining, then we continue with
document clustering. Finally, we describe similarity measures and finish this
chapter with an introduction to recommendation systems.

3.1 Introduction

To motivate the reader to the topics of this chapter we begin with an explana-
tion of our dataset. As previously mentioned, our application uses RSS feeds
and consequently we will have textual data at our disposal. Even though,
the data is initially RSS we do not consider it to be relevant to keep it in
that format, we will remove all the RSS elements as described later in this
section.

The dataset we used contained over 1200 feeds, which we used as de-
scribed in the experiments section 6.1. Each feed contains items which we
store as text, furthermore each file is stored to a folder which then forms
the contents of the feed. From each item in the feed we collect the descrip-
tion and title to a text file, also we collect the publication times. We do
not store the publication time in the files where the contents are stored to
prevent effecting our text clustering algorithms. The resulting files represent
the documents we cluster in our approach.

The length of the file contents, in practice the number of characters in a
feed, varies between different feeds and we can use the length differences as a
feature of a feed to model the quality of it. Similarly, because we can retrieve
the publication times of each item in a feed, we will use this information also

10
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as a feed feature.

On the grounds that none of the approaches described in chapter 2 men-
tion that they use document clustering techniques to improve their algo-
rithms, we chose to include document clustering in our approach. We can
assume that the documents of each category of feeds contains somehow simi-
lar content, so the feeds can be clustered to meaningful clusters, which we can
use to narrow the search space of feeds. With a similar reasoning we chose
Latent Dirichlet Allocation and K-Means clustering as our chosen clustering
methods. Latent Dirichlet Allocation was chosen because it works well in
the field of text document clustering and is easy to see the similarity to hu-
man writing process. K-Means was chosen to incorporate a simpler, yet well
performing, clustering algorithm.

Although, in this thesis we focus on the RSS recommendation problem,
our solution is in no way specific to RSS recommendation. We believe our
approach can be used to cluster and recommend any documents that contain
the same features we exploited from RSS. For example, to use our approach in
recommending scientific papers we could model the authors as a feed source
and the papers published by the author as the feed items. With this approach
we could get the publication times and content lengths similarly as we did

for RSS feeds.

3.2 Text as Data

The data we are working with is text documents, therefore, it is necessary in
our case to perform some preprocessing to it in order to improve the quality of
the methods applied to it. Many clustering algorithms, including the ones we
used in this thesis, are capable of handling numeric data and based on this,
we will need to convert textual data to numerical values. The next sections
will present an overview to text mining, our preprocessing approaches and
our representation of the data.

3.3 Text Mining

Where traditional data mining techniques use numerical data that can be
clustered, text mining techniques begins with text data contained in doc-
uments. The previous claim might seem to indicate that these fields are
separate, however, with nowadays techniques the methods for text mining
are more and more similar to the ones used in data mining [47].

To be able to use the traditional data mining algorithms we need a way to
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car | sea | boat | drive
Document 1 | 1 0 0 1
Document 2 | 0 2 1 1

Table 3.1: Example of representing text documents with numeric values.

transform the words in a document to a numeric vector. The simplest way to
achieve this is to count the number of times a word occurs in a document and
then use these counts as the values in the vector. Table 3.1 shows an simple
example of representing two documents by counting the occurrences of the
words. The example presents two documents where in the first document
there are words car and drive, the second document contains sea, boat and
drive. Having the data as numeric vectors we can use this information and
compute the similarities between these two documents, for example, using
vectors space distance measures.

The aforementioned approach allows us to convert the textual documents
to a numeric format. Albeit, in this format we have achieved numeric repre-
sentation of the text documents, we still need to do some processing to get
better results as described in next sections.

3.3.1 Text Representation

A well known and widely used vector representation of the documents is term
frequency - inverse document frequency (tf-idf) vectors. Tf-idf approach val-
ues the terms appearing in the documents so that the most commonly ap-
pearing terms throughout all the documents are given less value, and the
terms that appear more infrequently are given more weight [47]. The pre-
sented valuations can be reasoned with an assumption that common terms
do not differentiate the documents well enough, while the terms that appear
more rarely are more likely to be specific to the documents in which they
appear in.

Equations 3.1 and 3.2 presents how tf-idf value for word w are computed.
Equation 3.1 presents inverse document frequency, where NV is the total num-
ber of documents and df(w) is the frequency of the word w in documents.
Equation 3.2 shows how to compute the value for tf-idf with term frequency,
tf(w), and inverse document frequency, idf(w).

N

idf(w) = log(m)

(3.1)

tf-idf(w) = tf(w) - idf(w) (3.2)
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Tf-idf vectors, which we use to represent the documents, contain the infor-
mation of how valuable a word is to represent the features of the document.
Tt-idf model could be extended to give higher values for different parts of the
document [47], for example, if we know that the document’s first N words
contain more information than the rest, we could give more weight those N
words.

Moreover, tf-idf vectors of documents in the basic form still contains words
that are not important and can be considered as noise. The next step is to
preprocess the documents so that they can perform better in our approach.
For a human reader the preprocessed documents might appear of a lesser
quality, or even unreadable, but when document clustering algorithms are
used with preprocessed documents, they yield better results.

3.3.2 Text Preprocessing

To improve the quality of tf-idf vectors converted from text, we can apply
some preprocessing to the text first. We employ natural language processing
(NLP) techniques to filter words and convert words to a stem, which is a sort
of a root form for the word. The disadvantage of using NLP techniques is,
that most of them are language dependent and might require some expert
knowledge of the language.

Stop word removal is a technique that removes common words, which
might cause some troubles to algorithms and they do not convey any im-
portant information. Mostly these stop words in English language contains
articles, such as “a”, “an” and “the” [47]. Another technique to improve
the performance of predictions in text mining is to lemmatize the words.
Lemmatization, or stemming, means the conversion of words to their base
form [47], to be more specific our technique of choice is called inflectional
stemming. For example, driving, driver and drove all have the same root
meaning, to drive, and we want to use the same root meaning for all the
different forms of the word. Regarding the example, we could lemmatize the
words to driv and replace all the occurrences of the original words with inflec-
tionally lemmatized version of the word. Essentially, this technique reduces
the dimensionality of the document vectors also. According to Weiss et al.
[47] some approaches in text mining prefer to stem the words all the way to
root form. This technique stems the words even further to achieve a deeper
generalization, for example, words teacher and taught could be reduced to
teach and both of the words would be assumed to have the same meaning.

In addition to the techniques described, we removed short words, of length
less than n characters, and converted all words to lower case. Considering
the text documents we used, the documents are from internet based RSS



14 CHAPTER 3. BACKGROUND

feeds and we need to take care of standardizing the documents.

3.3.3 Document Standardization

For the reason that the sources of the documents can vary in text mining
systems the documents should be standardized, this enables us to focus on
the information which is useful. The source of a document could be an
internet site, a book, an article or any other source of textual information.
For example, in a document retrieved from internet the textual content might
also include something that is helpful for the web browser to display the
content in a more decorated form, as presented in the previous sections, in
RSS there exists elements in the content that provide this information. [47]

One example of this kind of widely used format is Extensible Markup Lan-
guage (XML), or a derived format used in this thesis work called RSS. Both
of these formats not only contain the textual information, but also something
called tags or elements, which are of no use for the reader but applications
can exploit them. In our case we do not need this extra information, we need
to identify it and remove it from the documents so that only the contents
of the document remains. We used Apache Wink, presented in section 5.2,
to retrieve the RSS feeds and remove all the RSS elements from text. To
clean the text documents of Hypertext Markup Language (HTML) elements
we used JSOUP, described in more detail in section 5.4, which removes all
HTML elements from the text.

3.4 Document Clustering

Document clustering is a technique where a large set of documents are
grouped together into a meaningful sets of clusters. The grouping can be
dependent on the application and it can be, for example, in customer ser-
vice where reports are grouped into different problems and their solutions.
Two main approaches for performing document clustering are hierarchical
clustering and flat clustering. The difference between the approaches is that
hierarchical clustering contains hierarchy for the clusters and the clustering
can be changed by changing the level where the hierarchy is observed. Flat
clustering does not contain such hierarchies.

Clustering can be performed in two directions, namely divisive and ag-
glomerative directions. Divisive clustering begins by assuming that the whole
set of documents is one cluster and starts to split the cluster to multiple clus-
ters. The process can be continued until each document forms one cluster, or
it can be terminated with a stopping criterion [39]. Agglomerative clustering
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begins by assuming that each document forms a cluster and combines the
most similar clusters together forming bigger and bigger clusters. Agglom-
erative clustering can also be continued until all documents are assigned to
a one big cluster, or it can be stopped at any level with a stopping criterion
[39].

Zhao et al. [50] present comparisons on the different approaches of docu-
ment clustering. According to the results the authors present in their paper,
divisive clustering outperforms agglomerative approaches. The authors dis-
cuss that the reason for achieving better results with divisive clustering could
be due to the possible early mistakes made in agglomerative clustering, which
are multiplied as the clustering proceeds.

3.4.1 Clustering Criterion Functions

Clustering criterion functions define which clusters should be considered to
be the most similar ones. Depending on the document clustering approach,
hierarchical or flat and agglomerative or divisive, there are some criterion
functions which perform best.

The paper by Zhao and Karypsis [51] present experiments with some
clustering criterion functions for hierarchical clustering. In hierarchical ag-
glomerative clustering there are three strategies to measure the similarity of
clusters in order to make a decision which clusters to combine. These strate-
gies most commonly are complete-link, average-link and single-link. There
exists also some vector space similarity measures which perform well in doc-
ument clustering, namely Cosine distance.

For divisive clustering Zhao et al. [50] describe and evaluate some inter-
nal, external, hybrid and graph based criterion functions. Internal criterion
functions use the documents inside each cluster. External criterion functions
use the differences between clusters as a criterion function. Graph based
criterion functions model the problem of splitting clusters as a graph and use
graph model quality measures. Hybrid models combine all the previously
mentioned methods.

3.4.2 K-Means Clustering

The history of K-Means algorithm begun already in 1957, but it was pub-
lished later in 1982 by Stuart Lloyd [33]. This algorithm is widely used
clustering approach because of its simplicity and performance.

K-Means is a simple clustering algorithm for grouping similar objects.
The main idea is to choose k cluster centers and then assign each point to the
closest cluster center k, this is the assignment step. After all the points are
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assigned to a cluster, the centers of each cluster are recomputed, this being
the update step, and the process of assigning each point to a closest center is
repeated until the update step makes no modifications. Other approach to
stop iterating these steps is to define a threshold for the number of changes
done in update step. The assignment and update steps can be formulated as
follows when the initial set of cluster centroid are cq, ..., ¢

e Assignment step,

— Assign each datapoint = to a cluster of centroid C; so that the
distance to centroid C; is the minimum distance compared to all
other k cluster centroids.

e Update step,

— Calculate new values for cluster centroids based on the new dat-
apoint to cluster association.

G = \clw 2 i
z,€C;

One problem with K-Means clustering is how to select the best value for
k, the number of clusters. The problem can be solved with preclustering, for
example, with canopy clustering to create initial clusters.

3.4.3 Canopy Clustering

McCallum et al. [34] present in their paper Efficient clustering of high-
dimensional data sets with application to reference matching Canopy clus-
tering. Canopy clustering is a fast single-pass algorithm that can be used,
for example, to generate initial clusters as we did. Motivation to use canopy
clustering is to reduce the number of comparisons between items in clustering
[34]. For example, in K-Means if we had k clusters we would need to begin by
computing distances to every cluster centroid from every data point. With
canopy clustering we can first run a cheap algorithm to identify the data
points that are near to each other and seem to form clusters. When we have
created the initial clusters we do not need to compute the distances to each
cluster centroid from each data point in K-Means, but rather, we can just
compute the distances to the cluster centroid from the data points that are
assigned to that cluster by the preclustering algorithm.

Canopy clustering algorithm starts by randomly picking a data point as a
center of a canopy and assigns all the data points that are within distance T3
to that cluster, and at the same time excludes those data points from being
part of other canopies. Then all the data points within a distance 77, from
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the previously created canopy, are included in the canopy, but they are also
allowed to be part of other canopies.

Modifying the values T} and T5 the number of clusters changes and we can
modify the number of the initial clusters with these parameters. According
to McCallum et al. [34] canopy clustering reduces the computation time
without any loss in accuracy.

3.4.4 Latent Dirichlet Allocation

Blei and Laffert [7] present Latent Dirichlet allocation (LDA) in their paper
Topic models. LDA is a generative topic model derived from latent semantic
indexing and probabilistic latent semantic indexing. The assumption in LDA
is that the documents are generated by latent topics, the hidden variables
from which the documents are observed from [7]. The main motivation for
LDA is to uncover this underlying semantic structure of a text document [7].
These underlying semantic structures are the latent topics of the document
and every document is allowed to be a combination of multiple latent topics.

LDA is a generative model and it can be thought to be similar to the
writing process of a human. Figure 3.1 shows the plate model for LDA, with
the plate model we can observe the similarities to human writing process.
The parameters as explained by Blei and Laffert [7] are 6, in the upper part
of the plate model which is the document specific topic distributions, the
probabilities of words appearing in topics, « is a positive K-vector used as
a parameter for dirichlet distribution for topic proportions. The variable K
is the number of topics, D are the documents and N are the words in the
dictionary. The topics for words in the topic assignment are in Z;,,. Topics
are the (5, multinomials over the whole dictionary, containing the actual
words for the generated document. The topics contain all the words in the
dictionary so that each topic has some probability for all the words. To
generate a document from this model we would begin by choosing one topic
distribution for the document, then assigning topics to each word location
in the document from this distribution. Finally we would assign words to
the locations by drawing them from the distributions of the topics. A more
formal description of the process can be found on the paper by Blei and
Laffert [7].

Blei and Laffert [7] present the advantages of this variable assignment. It
allows each document to contain multiple topics by being a type of mixed-
membership model. The key difference between classical mixture models
and LDA is that the classical mixture models cannot model this kind of
diversity in the topics [7]. For example, if a set of documents is about cars
and racing, cars and repairing and third document of racing and repairing.



18 CHAPTER 3. BACKGROUND

o6
(5

@ @ e N

K D

Figure 3.1: A graphical model of Latent Dirichlet allocation as presented by
Blei and Laffert [7].

Using classical mixture models the features of cars cannot be captured as
well as in a model that allows multiple topics per document.

3.5 Similarity Measures

In order to make reasonable recommendations for users, we need to be able to
compute somehow the similarities between the users, between the documents
of users and other documents. This section describes the approaches we used
in this thesis to measure these similarities.

3.5.1 Vector Space Distance Measures

Because we model the documents as tf-idf vectors we can use many traditional
distance measures to measure the similarity of two document vectors. In our
approach we have used the following vector space similarity measures:

e Chebyshev,

e Cosine,

Euclidean,

Manhattan,

Minkowski,
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e Squared Euclidean,

e Tanimoto.

Chebyshev distance, or L., metric, shown in Equation 3.3 is also known
as the chessboard distance [37]. Chebyshev is in the chessboard the distance
which the king has to take in order to move to any other location. This is
similar to Manhattan distance, with an exception that diagonal moves are
allowed.

DChebyshev(A7 B) = miaX (’&l - bl’) <33)

Cosine similarity measures the angle between two vectors [39]. When
the angle between the vectors is small the vectors must be similar and the
measure is close to one. Similarly, when the vectors are not similar the
angle is large and the value approaches zero. Because we want to use cosine
similarity as a distance measure we subtract the similarity value from 1 as
shown in Equation 3.4.

A-B
Al B]]
Euclidean distance measure is a simple distance measure, it measures

the connecting line between two points [39]. Equation 3.5 presents the well
known approach to euclidean distance in vector space.

DC’osine(A7 B) =1 (34>

DEuclidean(Ay B) — DEuclidean(Ba A) - (35)

Squared euclidean distance measure is, as the name suggest, a squared
distance of euclidean distance as shown in Equation 3.6 [39]. The difference
to euclidean distance is that by squaring the distance, we can give more
weight to points that are further away from each other.

n
D puctidgean?(A, B) = Dpuctidean2 (B, A) = Z(ai - bi)2 (3.6)

i=1
Manhattan distance, also known as the city-block distance, measures the
absolute distance of two points [39]. Equation 3.7 shows the computation
of manhattan distance for two vectors. Manhattan distance can be thought
to be a stricter version Chebyshev distance, in the same chessboard example

only horizontal and vertical moves are allowed.
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DManhattan<A7 B) = Z |ai - bz‘ (37)
=1

Minkowski distance is a generalization of the euclidean and manhattan
distance measures. Minkowski measures the distance in orders of p for two
vectors as shown in Equation 3.8. When p = 1 the distance equals to man-
hattan distance and when p = 2 the distance equals to euclidean distance.
When p has low values we can prevent the distances to become equal with
high dimensionality. Minkowski distance gives lower importance to large lo-
cal distances and makes the distance measure more robust to noise [45]. In
our implementation we use p = 3.

1

n P

DMinkowski<A7 B) = <Z ‘ai - bz|p) (38>

i=1

Tanimoto distance measure, also known as the Jaccard distance, is similar

to cosine distance with a difference that Tanimoto takes into account the

relative distance difference of the two vectors [39]. Equation 3.9 presents the
formula for computing the Tanimoto distance.

A-B
|A?+ |B]?—A-B
Out of these distance measures cosine distance is used often in measuring
document similarity due to its good performance in measuring two vectors
similarity. Because cosine distance is widely used in text similarity measures
with tf-idf we can use it as a baseline similarity [47].

DTanimoto(Aa B) =1 (39>

3.5.2 Shallow Word Ontologies

All the distance measures presented in the previous section compares the
vector representations of the documents and the word frequencies in the
document. For a human reader, the words have also deeper connections, for
example, a banana and an apple are considered to be similar because they
both are subconcepts of a fruit. In order to include these connections to
similarity computations we used WordNet! [36].

WordNet is a broad database of English words, their connections and
syntactic categories, from which we are only interested of the connections of
words, which WordNet provides as presented in paper by George A. Miller
[36]:

'WordNet is a registered trademark of Princeton University.
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Synonymy is a symmetric relation between word forms.

Antonymy is similar to synonymy, but is instead a relation between
opposing words and thus is useful for adjectives and adverbs.

Hyponymy and hypernymy, sub- and super-name respectively, are tran-
sitive relations between synsets. These are used for organizing nouns
to hierarchical structure. For example, we can use these to get a more
generic explanation for a specific term.

Meronymy and holonymy, part- and whole-name respectively, are com-
plex semantic relations. These are, for example, parts of a machine
such as a wheel is a part of a car or ear is a part of a head.

Troponymy is similar to hyponymy, but for verbs and results in much
shallower hierarchical structure.

Entailment relations between verbs.

WordNet contains at the time of writing over 206000 word sense pairs [46].
There are a lot more features in WordNet, which can be found in WordNet
website [46] or in a paper by George A. Miller [36].

We used 8 different word similarity measures to measure the similarity of
documents with JIGSAW algorithm for word sense disambiguation [5]:

Hirst and St-Onge,
Leacock and Chodorow,
Lesk,

Wu and Palmer,
Resnik,

Jiang and Conrath,
Lin,

Path counting.

Budanitsky [10] gives a good overview of most of the measures listed.
Next we will present the similarity measures shortly, more details of the
measures can be found in the paper by Budanitsky [10] or in the paper of
the original author.



22 CHAPTER 3. BACKGROUND

Word similarity named as Hirst and St-Onge is presented in paper by
Hirst and St-Onge [25], their approach is based on lexical chains. In Hirst
and St-Once two words, or their concepts, are semantically similar if their
synsets are connected by a not too long path, also the path should not change
direction too often. Leacock and Chodorow uses a method by Leacock and
Chodorow [30]. Their method counts the number of edges between word
senses in WordNet. The final similarity value is the negative logarithm of
the edges scaled by the maximum depth of the WordNet’s “is-a” hierarchy.

Lesk similarity is based on the paper by Lesk [31], where the author
proposed that the relatedness of two words is proportional to the overlap of
their dictionary definitions. Later Banerjee and Pedersen [4] extended Lesk’s
proposition to WordNet.

Wu and Palmer [49] propose an approach similar to Leacock and Chodorow,
earlier than the previously mentioned though. The difference is that Wu and
Palmer’s approach uses least common subsumer to find the depth of two con-
cepts and scales the result with a sum of the depths of individual concepts,
where the depth of a concept is the distance to root node.

Resnik [40] presented a method to measure the similarity of two concepts
using the information content. The measure finds the most specific concept
that subsumes both concepts, and uses information content to measure the
similarity. Information content in this context can be thought as the depth
of the concept from root node, the bigger the depth more specific the concept
is, therefore, it contains more information than the concepts higher in the
tree.

Jiang and Conrath [27] presented an approach to combine the edge based
and node based similarities. Their approach starts with edge counting and
enhanced with node based approach of information content derived from
Resnik’s [40] work.

Lin [32] devised a universal distance measure which does not require any
knowledge of the items. Lin presents an approach which uses the information
content of two concepts to measure the similarity of words. Both Resnik’s
similarity measure and Wu and Palmer’s measure are similar to Lin’s measure
in certain conditions [10].

Finally the path counting computes the shortest path of two concepts.
The value is normalized; if the distance of the path is one the similarity is
one and as the path gets longer the similarity approaches zero.

To clarify, all the previously mentioned algorithms compute the similarity
of two words. In order for us to use them as a distance metric, we will need
to subtract the value of similarity from 1.
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3.5.3 Comparing Top-K Lists With Kendall’s Tau

Fagin et al. [15] presented in their paper comparing top-k lists some ap-
proaches to measure the similarity of ordered lists. In the paper the authors
use their approaches to measure the similarity of search engine results. The
motivation for using the comparison of top-k lists to find similar users is
that LDA provides topics which are lists of words. These topic vectors can
be ordered by using the probability of the word as a value which is used
in ordering. We could also use the centroids of the user’s documents as an
ordered list of words, and compare the centroids of two users for similarity.

We selected two main approaches from the paper to include in this thesis,
which we used with LDA topics. We chose Kendall’s Tau and Spearman’s
footrule distance measures. Spearman’s footrule is related to Kendall’s Tau
in particular K (7, 72) < F(71,72) < 2K(7,72) [13]. In Kendall’s Tau the
distance measure can be thought as the number of moves needed to order one
of the lists to match the other list with bubble sort. Equation 3.10 shows the
equation how to calculate Kendall’s Tau distance for two lists as presented
in the paper by Fagin et al. [15].

The parameter p is the value for penalty which is used when the values
of elements in the two lists do not match as explained later, k is the length
of the lists, 7 and 7, are the two lists to be compared and z is the number of
common elements in the lists [15]. If we give zero value to penalty p it is an
optimistic assignment so that we give non-zero penalty only when we know
that the two elements are in opposite order in the two lists [15]. Likewise if we
give 0.5 value to the penalty it is a neutral assignment. S is the complement
of the two lists S = D, \ D,, and T' = D, \ D,,. Finally Z is the union of
the two lists.

There are four rules which define the penalty for two elements, ¢ and 7,
compared and these rules can be found in more detail in the paper by Fagin
et al. [15]:

e Both ¢ and j appear in both lists. If both items are in same order in
both lists penalty equals to zero, if they are in reverse order then the
penalty equals to one.

e Both 7 and j appear in one list, say 7 and one of them, say i, appears
in other list 7. In the former case if 7 is ahead of j in 7; the penalty is
zero, otherwise the penalty is one.

e One of the words, say ¢, appears in say 7; but not in 7 and j appears
in 75 but not in 7. In this case, the penalty is always one.
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e Both 7 and j appear in one list, but neither appears in the other list.
In this case, the penalty is p.

K (7, 1) = (k—z)((2+p)k—pz+1—P)+'Z Kz'(,(j]‘)(TlvTQ)_Z Tl(j)—z 72(7)

(3.10)

3.5.4 Comparing Top-K Lists With Spearman’s footrule

Other approach we selected to implement from the paper by Fagin et al. [15]
was Spearman’s footrule. Equation 3.11 shows the formula for calculating
the Spearman’s footrule distance between two lists 7 and 7». [ is the location
parameter for the Spearman’s footrule distance which must be greater than
k, the length of the lists. As the authors in [15] used value k + 1 for [, we
used [ = k + 1 also.

The value of [ is used as the position where missing values are inserted
to lists. Then basic footrule distance is used to calculate the difference, the
first sum in Equation 3.11. The second and third sums are the sums of the
elements ranks that are not in the other list.

FO(r,m) =2k = 2)l+ Y _|m(i) = n(i)| = Y _m(i) = Y _m(i) (3.11)

1€ €S 1€l

3.5.5 Hungarian Algorithm

Hungarian algorithm, originally developed by Harold Kuhn [29], is a com-
binatorial optimization algorithm. The algorithm can be used to find the
optimal solution to a pairs assignment problem where the costs of the as-
signments are known. For example, if there are three workers and three jobs
with individual costs per worker, we can compute the assignment of workers
to jobs so that the total cost is minimized. It can be thought as a bipartite
graph matching.

In this thesis we use it to match the clusters of two users to find the
most similar users. When we cluster the documents of all users to same
number of clusters, we can compute the distances between the clusters of
two users. However, it is not a requirement of the algorithm that we cluster
the documents to a specific number of clusters. These distances form the
costs for the Hungarian algorithm. When we have the optimal connections
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between the clusters that minimize the distances we can sum up all the
distances of the clusters and use that as the distance between the users.

Hungarian algorithm computes the distance between users by comparing
the clusters, and we can use it as a user distance measure. The algorithm
proceeds as follows with an n X n cost matrix, if the matrix is not square we
can add columns or rows with values of maximum value of the matrix. The
following listing presents the steps in the Hungarian algorithm.

1. Row by row subtract the smallest cost from all the other costs in that
row.

2. Column by column subtract the smallest cost from all the other costs
in that column.

3. Cover all the zeros in the matrix with a minimum number of lines.
4. Test for optimal solution:

(a) If the minimum number of lines from step 3 is n we have found
our optimal solution. The optimal solution are the zero values so
that each row and each column has only one zero selected.

(b) if the minimum number of lines from step 3 is less than n, continue
to step 5.

5. Determine what is the smallest cost not covered by any line and sub-
tract it from all rows that are not covered. Add the smallest cost to all
columns not covered and return to step 3.

3.6 Recommender Systems

Recommender systems can be thought to be derived from the human behavior
in decision making. Usually when a person is making a decision from a set of
similar products, he or she asks from his or her friends for recommendation
on how to make a decision. Another solution could be to find a similar person
based on preferences and trust this person’s recommendation. In a similar
manner recommender system is given a set of items and a user model, be
it either the social connections of the user or the preferences. From this
information the recommender system computes the most appropriate items
to help make the decision. These kinds of problems, where a decision must
be made, are common nowadays with the expansion of Web based stores,
where the selection of items can be broad [41].
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We can express the decision making problem as an information overload
problem. Depending on the domain there can be hundreds of relevant items
to choose from. Finding the interesting subset of these items can be a tedious
task and making the educated decision of the item to choose can be also
difficult. Recommender systems aim to help make the decision by exploiting
the knowledge of the user’s preferences.

In addition to traditional recommendations needed for items to purchase,
there has been many different fields to apply recommendation systems in the
past. Perhaps the most widely known problem is the Netflix Prize [6], where
a movie recommender system is developed. The Netflix Prize competition
has given a great deal of publicity for collaborative filtering techniques, where
the recommendations are based on the valuations of other users of the movies
they have seen.

Recommender systems are software systems built with techniques that
are able to recommend items to users that the user might be interested of.
Items in the context of recommender systems can vary from news items to
a product in a store. There are personalized and non-personalized recom-
mendations from which the latter is not usually interesting in the field of
recommender systems [41]. Non-personalized recommendations are typically
seen in magazines and in other static content where the recommendations are
made for a broad audience, in these cases the recommended items typically
are top lists of items [41].

In the book Recommender Systems Handbook by Ricci et al. [41] the
introduction chapter presents an overview of personalized recommendations.
Personalized recommendations are, in the simplest case, presented in an or-
dered list where the most interesting item is the highest ranked item. To be
able to recommend items to a specific user, some sort of user profile or model
must be learned. User profile usually contains user’s preferences which can be
collected explicitly by collecting user’s valuations of items. Other approach
to collect user preferences is to infer the ratings from user actions, such as
a user buying an item or viewing an item description, which can both be
interpreted as an interest towards the item [41].

Recommender systems can be divided to two main approaches in rec-
ommendation: user based and content based recommendations. The main
difference is the data which is used to make a recommendation. In user based
recommendations, or collaborative filtering, there is no need for knowledge
of the item being recommended, only the user profiles built from item valua-
tions are compared [41]. The basic approach is to first find the most similar
user to the user for whom the recommendations are presented to, the target
user. Then these two similar users are compared so that the items for which
the target user does not have any information, are recommended in an order



3.6. RECOMMENDER SYSTEMS 27

item 1 | item 2 | item 3 | item 4
userl 5 5 1 -
user2 - 1 3 4
user3 - 1 3 -

Table 3.2: Example of user based recommendation.

defined by the likings of the similar user.

Table 3.2 presents a simple case of three users, from which we would like
to recommend an item to user 3. We start by finding the most similar user,
and discover that user 2 is the most similar to user 3 by examining their likes
on items. Then we search for items that user 2 has rated high and user 3 has
no rating, we can observe that item 4 is such an item.

Content based recommendations are decided based on the similarity of
items. Content based approach is domain specific and requires knowledge of
the items and the properties of them. For example, in a recommendations
for books the author, title, year and publisher could be interesting prop-
erties. With this information we could explore user’s favourite books and
might discover that publisher X is dominant in the favourites, and we could
recommend books from publisher X to the user. The problem with content
based recommendations is that they are very domain specific and a book
recommender cannot be used for an e-commerce site selling gardening prod-
ucts. This is the reason why most of the available libraries and frameworks
for recommender systems are focused on user based recommendations [39].

Herlocker et al. [24] present in their paper a set of domain-independent
tasks or goals usually performed by recommendation system, or expected to
perform. The following listing presents the tasks as presented in the paper:

e Annotation in Context: Highlight items in a list to emphasize them.

e Find Good Items: Create a ranked list of recommended items with
predicted ranking.

e Find All Good Items: Recommend all somehow relevant items, this
can be used, for example in medical recommendations to make sure no
option is overlooked.

e Recommend Sequence: Recommend a sequence of similar items, for
example, a sequence of research papers, a tv show and so on.

e Just Browsing: Help the user in the browsing experience to create a
pleasant browsing experience.
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Find Credible Recommender: Users might not initially trust the rec-
ommender and might want to play with it first to create a trust.

Improve Profile: Users rate items because they believe that improves
the quality of the recommendations.

Express Self: Users might not be interested in the recommendation but
are more interested in expressing themselves using their ratings.

Help Others: This is similar to previous task, users might want to help
others to find good recommendations and thus rate items.

Influence Others: To increase the publicity of an item, a movie for
example, movie studios might increase the rating of movie to influence
viewers to go see the movie in theaters.

These tasks define the end user experience of a recommender system and

should be taken into consideration when designing a recommender system.
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The Proposed Approach

In this section we will present the proposed approach for our problem. We
begin by describing the problems we are solving and how we solved them, we
continue with the document clustering techniques and explain our approach
in recommender system and the similarity measures we developed.

4.1 How We Approach the Problem

To help the reader to understand our approach, we begin by introducing the
problems we are solving. First we must model the user, find the feeds to
recommend and finally order the feeds in an order that presents the most
likely interesting feeds first.

We have a simple approach to model the user’s interests; we model the
user based on the content discovered from the feeds the user subscribes. This
allows us to modify the user model easily with weighting approaches, such
as favourite weighting and content dependent weighting. Once we have an
accurate model of the user’s interests, we have two approaches to find the
set of feeds to recommend; we can use purely the user model and find feeds
that are similar to the user model, or we can compare the user models and
recommend the feeds that the most similar user has subscribed.

Once we have discovered the set of similar feeds we compute the distance
of the feed to the user model depending on the approach. If we use user
based recommendation we compute the distance to the user model, or if
we use content based recommendation we use the distance to the individual
feeds of the user. Once we have computed the distances of all the feeds we
discovered in previous step, we can order them based on the distance to user
and recommend the top-5 most similar feeds.

We could have chosen to model the user differently, for example, we could
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Figure 4.1: Module diagram of our application.

have used the explicit information of the user’s preferences and find similar
users. However, this approach requires explicit input from the user and we did
not want to require this from the user, thus we can collect implicit information
of the user’s interests by using the content. We included favouring the feeds
in order to weight the similarities of feeds, but we did not want to make it
the main approach to recommend. Another approach would have been to
use social networks and use the connections of users, this way we can get
the feeds from the users that are connected. This approach assumes that the
connected users share their interests in order to make good recommendations,
we did not want to build our approach based on this assumption.

Figure 4.1 presents the modules in our applications, it can help the reader
to understand our approach better if we briefly describe it here. Our approach
can be separated to 5 modules, we have so far described data source, pre-
processing, document clustering and a subset of the similarity module. We
present in the following sections our approaches in the remaining parts of the
similarity module and the recommendation module.

4.1.1 Baseline method

For comparison purposes we developed a baseline method which counts the
number of shared feeds between users. The shared feeds are used to find the
most similar user and the feeds of the most similar user are recommended
to the user. This is far more simpler than any other method we used in this
thesis, and can be used to compare against the more developed approaches.

Baseline method is a hybrid of content and user based approaches. We
first use the number of shared feeds to find the most similar user and then
compute the distances of the similar user’s feeds to the target user’s feeds,



4.2. SEMANTICALLY GENERALIZED DOCUMENTS 31

finally we use these distances to select the top-5 most similar feeds to recom-
mend.

4.1.2 Collaborative Filtering

Collaborative filtering is a recommendation approach widely used and a very
flexible method, it does not need any information about the features of the
items that are being recommended. Collaborative filtering uses the user’s
valuations of the items to compute the distances between users. One dis-
advantage of this approach is that in order to work properly, it needs the
information of how much the user is interested of each item.

There are approaches that can compute the user interest in item explicitly
and implicitly, by asking the user to rate or by following the user behavior re-
spectively. In our approach we used only explicit information of the valuation
of the feed, which we can use in collaborative filtering.

We treat collaborative filtering as a baseline method, it is similar to our
previously presented baseline approach, but it uses the user’s favourites as
a similarity measure instead of content similarity. Collaborative filtering is
generally considered to be a good approach to recommend items, for example,
in Netflix competition collaborative filtering performed well [28]. In the next
sections we present the methods we consider to be more sophisticated, and
these methods contain the main research and development done in this thesis.

4.2 Semantically Generalized Documents

The previous chapter presented some WordNet based similarity measures for
words. In addition to measuring the semantic similarities between words,
we used WordNet relations to generate semantically generalized documents.
Semantically generalized documents can be generated by converting top N
words of each document to hypernyms of the words, which are the general
terms for the word. For example, a specific term can be an apple and the
first general term for this word is fruit. This approach attempts to make the
distance measurements between documents more generalized, by using more
general terms for words instead of specific words.

For example, consider a document about specific dog species and another
document about specific cat species. With these detailed terms, the distance
measure would find the documents quite dissimilar. By converting the de-
tailed words to a more general terms the distance between these documents
is smaller, as it should be. The idea behind this is that these documents
both are about pets and should perhaps be considered similar.
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The reason for using only the top N words appearing in the documents is
chosen because computing the hypernyms for words from WordNet is com-
putationally heavy, also the most dominant words in a document are enough
to distinguish the general topic of the document.

4.3 Recommendations

Recommendation approaches used in this thesis can be divided to two main
approaches, one is to measure the similarity by using the content of the feeds.
The other approach is to compare the features of users to find similar users
and use that information to recommend content.

Next we describe these two approaches in more detail and how they are
used with different document clustering algorithms. We begin with content
based similarity measures.

4.3.1 Content Based Similarities

Content based similarities use the textual content of the feeds as the main
source of information. In this thesis there are two implementations of content
based similarities, one for K-Means and one for LDA.

These data sources are quite similar as they both produce vectors repre-
senting some set of similar documents that are grouped together. In K-Means
these vectors represent the centroids of the clusters, similarly in LDA these
vectors are the topics which are assigned to each document.

4.3.1.1 K-Means

In K-Means approach the centroids of each cluster is used to find similar
documents. Our approach is to find all the clusters that the user has docu-
ments in and use all the user documents in each cluster to compute a user
specific centroid for that cluster. We compute the distances from this user
specific centroid to other documents in that cluster, that are unknown to the
user. Algorithm 1 presents the process of finding the closest documents to
the user’s documents.

Now we have the distances of all the feeds that are unknown to the user.
With this information we can order the list of unknown feeds by distance
and recommend the feeds that are the closest. We could also compute the
distances of all documents against all the user’s documents to find the glob-
ally most interesting documents. However, this can be computationally too
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expensive, if and when the number of documents is large. Limiting the num-
ber of document comparisons to already known similar subsets of documents
can decrease the computational cost.

Algorithm 1 K-Means content based recommendation

for all clusters C do

for all user documents D in cluster C' do

compute centroid ¢, for C' from documents D

end for
end for
for all centroid ¢, do

find closest non-user document d,,.,, in cluster C' from centroid ¢,

end for
order the list of d,.,, by distance

4.3.1.2 Latent Dirichlet Allocation

In content based recommendation with LDA clustered documents, we begin
by searching all the topics that the user has feeds from. Vectors representing
the topics, we can discover the most similar topic for each user topic, and
add those to the list of topics that the user might be interested. Now that
we have a set of interesting topics for the user we can search for all the feeds
in these topics that the user does not have and compute the distances to the
user’s topics. We select the recommended topics by the distance from the
topics that the user is already interested of.

Having discovered the similar topics we can search for all the documents
in these topics and compute the distances between the user’s documents.
The distance is computed using the tf-idf vector of the documents and with
different distance measures. With the same reasoning as in K-Means con-
tent based recommendation, presented in algorithm 1, we limit the number
of document comparisons by finding first an interesting subset of the doc-
uments. Algorithm 2 presents our approach in computing content based
recommendations for LDA.

4.3.2 User Model Based Similarities

The main motivation for using user based similarities is that if the two user
models are similar, it is probable that the actual users also like similar top-
ics. To measure the similarity of users we used K-means and LDA based
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Algorithm 2 LDA content based recommendation

for all user topics T' do
find the most similar topic to T and add to the interesting topics Tipterest

end for

choose the top-3 most similar topics from T;,ierest 10 Tejose

for all topics in T, do
find all documents D,,.,, in T.s that user does not have and compute
distance to user topics

end for

order the list of interesting document D,,.,, by the distance to user topics

approaches. In K-means the user models are computed from the cluster in-
formation and in LDA the user models are computed from the topics. One
traditional approach in user based recommendations is to use collaborative
filtering to find similar users. This approach is different from the previously
mentioned, as it does not need any knowledge of the items to recommend
and is more flexible.

4.3.2.1 K-Means

K-Means generates clusters of the documents, which we can analyze and form
a user model based on the clusters. To model a user in K-Means approach,
we use all the documents that the user has and compute centroid from them.
Because the documents are modeled in vector space, we can use vector cen-
troid of all the user documents as a user model. Equation 4.1 presents the
approach to compute the user model C., from the user’s documents D, ;..

1

Cuser - |D |
user

D, (4.1)

ieDuser

Once we have computed the user models for all users we can compute
the most similar user by comparing the user models with some traditional
vector distances described in subsection 3.5.1. We exploit the clusters of
the most similar user and retrieve all the documents in these clusters that
are unknown to the user we are making recommendations to. To order the
documents that we have found, we use the target user’s feeds to compute the
distance to each new feed, and use the smallest distance as the distance of
the new feed to user. Algorithm 3 presents the described approach.
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Algorithm 3 K-Means user model based recommendation. Usgpger is the
user we are making recommendations to.
for all user w in users U do
compute user feed centroid C,
end for

for all user feed centroids C,, do
compute distance to Usgrget
end for

for all feed clusters cf..q in closest user clusters do
get all unknown feeds feedyninown t0 user Usgpger in
closest users clusters cgeeq

end for

for all feed feed, inown do
compute smallest distance to all
user feeds feed,se,

end for

order recommended feeds by distances

4.3.2.2 Latent Dirichlet Allocation

In K-Means user model based approach we computed the user model from
the user’s documents, similarly in LDA we compute the user model from the
topics of user’s documents. Equation 4.2 presents the approach to compute a
user centroid based on the topics of the user’s documents. Approach that we
developed uses only the most probable topic for the feed. This simplification
allows us to convert the soft document to topic association generated by LDA
to hard assignments.

Ouser = L Z E (42)

|Tuser| .
1€ yser

We can compute the most similar users by computing the distances be-
tween users with vector space distance measures presented in subsection 3.5.1.
Next we used the topics that the most similar user is interested of in order
to find feeds to recommend. We collect all the feeds that are in the topics of
the most similar user and order them by computing the distance of the feed
to all of the topics that the target user is interested of. Algorithm 4 presents
our approach to compute the user based recommendations for LDA, the al-
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gorithm is similar to the one used for K-Means user based recommendations.

Algorithm 4 LDA user model based recommendation. Uyy,ge is the user we
are making recommendations to.
for all user u in users U do
compute user topic centroid T,
end for

for all user topic centroids T, do
compute distance to Upgrget
end for

for all feed topics T'ceq in closest user clusters do
get all unknown feeds feedyninown t0 user Uigpger i
closest users topics T'teeq

end for

for all feed feed,ninown do
compute smallest distance to all
user topics Tyser

end for

order recommended feeds by distances

4.4 Feed Weighting

To improve the quality of the recommendations, we implemented four dif-
ferent feed weighting approaches that model the quality of the feed, user
valuation of the feed and the semantic similarity of the content in the feeds.
Our approaches were chosen based on the performance in other papers, and
our own intuition what could help to improve the quality of the recommen-
dations by improving document similarity measures. In the next sections we
describe our methods in more detail.

For three of the weighting approaches, all except favourite weighting, we
gave a total of 25% effect to distance measures from weighting. If only one
weight was used that weight controls the whole 25%, and if all three weights
were in use each of them controls 8.3% of the effect. Equation 4.3 presents
the formula for computing the total distance for feed f, where dist(f) is the
distance value for the feed using the selected vector space similarity measure.
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Parameter weights is the sum of all enabled weights, for example, sum of
inverse update frequency and content length.

distiora(f) = 0.75 - dist(f) 4+ 0.25 - weights (4.3)

4.4.1 Favourite Feeds

Weighting the user’s favourite feeds by allowing the user to like their favourite
feeds are quite common approaches in many recommendation systems. This
approach is simple and it also allows us to implement collaborative filtering.

We implemented favouring in such a way that allows user to only like or
set the liking to default. One more option would have been to dislike feeds
but for this thesis we did not implement disliking. We used three numeric
values for likes; value 1 for like is the default and values 2 and 3 are the two
like settings.

We used the like values when computing the user models. We also in-
cluded favouring to content based approaches, which are based on K-Means
clusters or LDA topics, by multiplying the document vector with a value set
for like. This allows the user model to move slightly to the direction of more
favoured feeds.

D; - like (4.4)

’ user‘ .
1€ Dyser

4.4.2 Inverse Update Frequency

Inverse Update Frequency (IUF) was introduced by Ji and Zhou [26] in their
paper A Study on Recommendation Features for an RSS Reader. Based
on the authors experiments and the results presented, IUF was the best
performing feed weighting approach when combined with favourite fraction.
Favourite fraction is the ratio of favourite items in a feed with respect to the
items read in the feed, as we do not follow the favourites in item level, we
used only TUF.

Equation 4.5 presents the computation of IUF, where n(i) is the average
number of new items per day for feed 7 and n,,,, is the maximum number of
updates per day from all feeds. TUF models the quality of the feed so that it
is assumed that if a feed is updated too frequently the quality of the feed is
low and with less frequent updates the quality of the feed increases.

wrG) = 29 (4.5)

nmax
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IUF is not user specific, instead it is a feed specific and we use it to
weight the distance computation for the ordering of the recommended feeds.
In Equation 4.5 IUF (i) = 0 when the feed is the most infrequently updated,
and IUF(i) = 1 when the feed is updated frequently. With these values we
can increase or decrease the distance value computed.

4.4.3 Content Length

With a similar intuition as with IUF, we used the length of the feed content
to measure the quality of the feed. The main difference between the IUF
and content length is that we prefer longer contents so that the feed contains
items that are more descriptive. If the content length is short the item might
not contain enough information to make a decision if it is worth reading or
not.

Equation 4.6 presents the calculation of content length for feed ¢, where
[() is the average length of content for items in feed and [, is the maximum
length of content from all feeds. Similarly as IUF, content length is used to
model the quality of the feed and it is used when ordering the feeds for
recommendation. When CL(i) = 0 the content of the feed contains many
characters and describes well the feed contents. When C'L(7) = 1 the content
of the feed is short and we can assume the quality of the feed is not so good.

cri) =1 - 0 (4.6)

4.4.4 WordNet Title Similarity

Often the title of the feed is a good description of the feed’s content and of
the topic that the feed covers. With this intuition we implemented a feed
similarity measure which can be used as a feed weighting approach. Our
approach uses WordNet to compute the similarity of the words found in the
feed title.

To use this similarity as a feed weight, we compute the distance of a
recommended feed’s title to all the words in user’s feed titles. By using all
the words in user’s feed titles, we can get a more general model for user’s
interests and compare that against the new feed. The similarity measures we
used to compute the similarity are presented in subsection 3.5.2. When we
compute the similarities of the titles, we need to convert this to a distance
by subtracting the similarity from 1. We can then use this value similarly as
content length and IUF.



Chapter 5

Implementation Environment

This chapter explains in brief detail the software packages we used in our
implementation. We chose to use Java as the programming language to
implement the application, because Java environment provides us good tools
for our task. These tools include projects from Apache such as Mahout, Wink
and Lucene to mention a few. All of the tools used are open source and are
under active development, which means that the algorithms are more likely
to be up to date with the most recent and well implemented algorithms. In
the next sections we will describe these tools in more detail and finish this
chapter with a module level explanation of our tool.

5.1 Apache Mahout and Hadoop

Mahout is a machine learning library from Apache which provides algorithms
to recommendation systems, clustering and classification [39]. To make Ma-
hout scalable the developers have built it using Apache Hadoop in the core
of some of its functions. Hadoop is a framework for distributed computing
and more information of it can be found on the project’s website [1].

Mahout itself is only a software library written in Java, which means that
it is not usable as a standalone tool. It does not provide any graphical user
interface and it requires some development time to use it in any project. In
this thesis we used clustering algorithms and vector space distance measures
from Mahout.

There would have been many alternatives to Mahout, even if we would
still use Java. Some alternative libraries include Weka [22] and Mallet [35].
Mainly due to the good integration to Hadoop we chose to use Mahout as
our library of choice. Mallet would have been another good choice as it is
focused on algorithms for textual content.
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5.2 Apache Wink Client

Apache Wink is a framework for using web services from Java code [3]. Wink
provides an easy access to web services and as a developer, one does not
need to know all the low-level aspects of communication with a service. This
framework allowed us to easily consume RSS feeds in different forms so that
we could only focus on the information contained in the feeds.

In addition to Apache Wink there are numerous web service libraries for
Java and it does not make a big difference which one we chose as we barely
required any features from it.

5.3 Apache Lucene

Apache Lucene is a long running project providing search framework [2].
Apache Mahout also used to be part of Apache Lucene, but as the machine
learning capabilities got bigger in the project, Mahout was separated to its
own project [39].

Apache Lucene provides indexing and search technologies and text anal-
ysis tools, just to mention a few. We only scratched the surface of Lucene in
this thesis, as we only used the text analysis it provides. We used Apache
Lucene to perform the text preprocessing by implementing our own filter for
Lucene. This filter can be used to generate vector representations of the
documents with Apache Mahout. Due to our choice of using Mahout and its
tight integration with Lucene, we did not see it necessary to look for alter-
natives. If we would have built our application using, for example, Mallet it
would have been reasonable to look for alternatives.

5.4 Jsoup HTML Parser

Jsoup is a Java HTML parser which can do many things with related to
HTML code in textual format [23]. We also used only a fraction of the tools
capabilities, as we only use it to parse the text from the RSS feed items.

Usually there are some HTML code in RSS feed items so that, for exam-
ple, browser knows how to style the feed contents. For us this information
is not useful and instead it is more harmful, because HTML is universal
language and the same syntax is used in all feeds. Similarly as for Apache
Wink, there are numerous HTML parsers for Java and any of those would
have been just as suitable for our needs.



5.5. WORDNET JIGSAW 41

5.5 WordNet Jigsaw

Jigsaw is a knowledge-based word sense disambiguation (WSD) system pre-
sented by Basile et al. [5], which uses the WordNet senses to disambiguate.
The main assumption in Jigsaw is that part-of-speech specific algorithms are
better than using a general approach for all word classes. For example, Jig-
saw uses different approaches to disambiguate senses for adjectives and verbs
[5].

We chose WordNet Jigsaw based on the algorithms it includes and that
they are all well documented and implemented. There are many WordNet
libraries available for Java and for our application the WordNet was not the
main focus, therefore, we did not see it necessary to experiment with different
libraries.

5.6 QOwur Application

Figure 5.1 shows the high-level implementation of our application. There
are H main modules in the application which can be divided to data source,
preprocessing, document clustering, similarity and recommendation modules.

In more detail Figure 5.2 describes the connections between the different
libraries in our application. Starting from the top left corner of Figure 5.2
Wink consumes RSS feeds and outputs the information contained, all RSS
elements removed, to JSOUP which removes all HTML elements from the
text. The processed text files are stored to file system for persistence. Mahout
uses this data in file system and preprocess the files using Lucene and writes
the analyzed results to file system. Mahout uses the contents in the file
system to perform clustering using Hadoop, and finally outputs the results
to file system and to application for computing recommendations. Finally,
the results are outputted to graphical user interface.
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Figure 5.1: Module diagram of our application.
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Figure 5.2: Block diagram of our application. Dotted areas denote roughly
the modules shown in Figure 5.1.



Chapter 6

Experiments and Results

This chapter presents the experiments we conducted on our approach and the
results. We begin by describing our dataset, how we gathered our feeds and
continue by presenting our experiments and results for text preprocessing.
We continue with the clustering experiments and results, then we present our
recommendation experiments with three different datasets and the results
from those. Finally, we experiment with distance measures of the documents
and the user models.

6.1 Dataset

There are some recommendations for a dataset to be used in recommendation
system evaluation, for example, in collaborative filtering it is recommended
that there are multiple items, multiple ratings per item and that there are
more ratings than items [44]. We took these recommendations into account
when we constructed the datasets for our experiments.

Our source of feeds that we used to experiment with contained about 1200
feeds available on the internet. These feeds covered many general categories
such as art, business, entertainment, health, science and hobbies. The full
listing of feed categories can be found in Appendix A. The feeds were mainly
collected from two feed collections freely available online, Feedage.com [16]
and Feeds2Read.net [18]. We also collected feeds from popular news sites
such as BBC and NY Times.

6.1.1 Generated Users

We devised a few sets of different users for our experiments. These datasets
can be divided to two categories; large datasets of a hundred users and small
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datasets of a few tens of users. Large datasets were used to compare the
different clustering approaches and automated experimenting of recommen-
dations. Smaller datasets were used to conduct experiments with recom-
mendations and a human interpretation of results was used on those. For
recommendations experiments the smaller dataset was used because the re-
sults had to be evaluated by hand, and using hundred or more users and
many different algorithms would be too time consuming. Some evaluation
metrics can be automated, such as comparing the results with categories of
the feeds, but this is not as accurate as evaluating feed interests manually,
as shown later in our results.

6.2 Preprocessing Text

We experimented with preprocessing parameters to find the optimal values
that produce the best clustering results. We experimented with the following
parameters for text preprocessing:

e Term length filtering to filter out short terms,
e Maximum allowed n-gram,

e Minimum support for term,

Minimum log-likelihood ratio for collocations,
e Norm to use,

e Minimum document frequency.

We measured the effect of these six parameters by evaluating the cluster
quality of the generated clusters. These quality measures are explained in
more detail in the beginning of section 6.3. We used K-Means and LDA
clustering results in our experiments and optimized parameters for these.
According to our experiments the best parameters for text preprocessing
were found to be the ones presented in Table 6.1.

The detailed results of our experiments are presented in Appendix B,
where we can observe the effects of the parameters. If we do not filter out
short words the average inter cluster distance is small and the number of
clusters is small, which suggest that keeping all the words produces noise
to clustering and these short words are shared among the documents. With
our chosen value 5 for minimum word length we can increase the number of
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Parameter value
Term length )
Maximum N-Gram 4
Minimum support for term 1
Minimum Log-Likelihood ration for collocations | 10
Norm 1
Minimum document frequency 2

Table 6.1: Results for optimized text preprocessing parameters.

clusters and the average inter cluster distance is increased, also CDbw value
is higher with filtering out short words.

For N-Gram results we can see that increasing the allowed N-Grams in-
creases the number of clusters and CDbw value, however, allowing too many
clusters to form is not good for finding feed groups. From intra cluster den-
sity we can see that there is a maximum density at 4-Grams, and also inter
cluster densities are at this value at minimum, these results indicate that this
would be a good choice as the clusters are dense and do not overlap.

Increasing the minimum support for term decreases the CDbw values and
intra cluster densities, which gives a reason to keep this value low. Minimum
log-likelihood ratio for collocations has no effect with unigrams, therefore, we
experimented with bigrams for this to have an effect. We chose the value for
minimum log-likelihood ratio for collocations based on the maximum intra
cluster density and maximum CDbw value, which both occur at value 10.
For the norm to use we used the same criteria as for the minimum log-
likelihood ratio for collocations and found the best value at 1. For minimum
document frequency the results got worse as the value was increased and
thus we selected the value of 1 for minimum document frequency.

6.3 Document Clustering

The results of clustering algorithms affect the quality of recommendations as
our recommendation algorithms rely on the document cluster associations.
We measured the quality of both K-means and LDA clustering with the same
metric called CDbw. Next we will present the CDbw measure presented by
Halkidi and Vazirgiannis [21].
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6.3.1 CDbw

Halkidi and Vazirgiannis [21] present a measure called compose density be-
tween and withing clusters (CDbw) in their paper. Their measure uses inter
and intra cluster densities to compute value for this measure. Equation 6.1
shows the formula for computing CDbw value for cluster index ¢ where sep-
aration is computed with minimum distances between clusters and the inter
cluster densities as shown in Equation 6.2, where d; and d; are the items in
clusters [21]. Inter cluster density and intra cluster densities are explained
in the following sections 6.3.3 and 6.3.2 respectively.

CDbw(c) = Intra_cluster_density(c) - Separation(c) (6.1)
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Separation(c) = 1 — Inter_Dens(c)

6.3.2 Intra Cluster Density

Intra cluster density measures the number of items in a cluster that are
located within the average standard deviation, average being computed from
all clusters, from the center of the cluster. This measure should be maximized
as it informs us how dense the cluster is, if the value is low we can suspect
that the cluster is sparse and this might lead to overlapping clusters or might
indicate that the number of clusters should be higher.

Equation 6.3 shows the intra cluster density as described by Halkidi and
Vazirgiannis, where v;; is the j datapoint in cluster 7 [21]. Equation 6.4
presents the density function used in Equation 6.3, which counts the number
of items in the cluster within one standard deviation distance from the center
with Equation 6.5.

C

1 density(v;
Intra_Cluster_Densit i) c>1 0 (6.3
ntra_Cluster_Density(c . Z Z g ,C# (6.3)

density(v;;) Zf (i, vi5) (6.4)

0, if d(x,v;;) > stdev

1, otherwise.

[z, vy) = { (6.5)
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6.3.3 Inter Cluster Density

The inter cluster density tells us how much the clusters overlap. This measure
is computed by comparing the clusters pairwise and computing the center
point for the two clusters and the average standard deviation from these
clusters. The density is computed from the items that are located within
one standard deviation from the center point of the clusters. Intuitively, this
measure should be minimized to get as small overlap between the clusters as
possible. Equation 6.6 shows the equation for computing inter cluster density
as presented by Halkidi and Vazirgiannis [21].

g dist(c;, ¢;)
Inter_Dens(c) = ; ; (stdevi T stden, . densmter(uw)) ,c>1,c#n
Gt

(6.6)

Equation 6.7 measures the number of points in the radius of average
standard deviation from the center point of the two clusters. Equation 6.8
presents the function which is used to count the items which are close to each
other, similarly as in Equation 6.5. This value is divided by the total number

of items in both clusters in order to get the proportion of the shared items.

ni+n;

lZ f(wlauij)
d inter \Usj ) = =t 7
enSinter (Uij) t (6.7)
0, if d(x,u;;) > (stdev; + stdev;)/2
S, uig) = ( . i) > ( )/ (6.8)
1, otherwise.

6.3.4 Inter Cluster Distances

The three inter cluster distances that we measured were minimum, maximum
and average distances. The most important of these three is the average
distance between clusters, which measures similar value as the inter cluster
density, it tells us how far apart the clusters are from each other. The
minimum inter cluster distance is the smallest distance between any two items
of two clusters and vice versa the maximum distance is the largest distance.
Average distances are computed by measuring the distances between all items
in two clusters and taking the average of this value.
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6.3.5 Approach for Latent Dirichlet Allocation

Because LDA creates a soft clustering of the documents, the aforementioned
metrics cannot be directly applied there. Our approach to measure LDA re-
sults with CDbw and cluster densities takes into account also the probability
of each topic association for document.

To compute the intra cluster density for LDA clustering we use the doc-
ument distance between documents A and B and multiply the distance with
the probability of both documents being assigned to topic t. Equation 6.9
describes the approach to compute intra cluster density for LDA, where P,
and Pp, are the probabilities of topic ¢ for documents A and B.

D D

LD A intra_cluster_density(t) = Z Z dist(A, B) - Py, - Pp, (6.9)
A
B;éA

Similarly for inter cluster distances we also take the probabilities of doc-
ument being assigned to a topic into account. Equation 6.10 shows the
approach to computing inter cluster distances.

LD A inter_cluster_density(s,t) Z Z dist(A, B) .- Pg, (6.10)

B;éA

The separation, shown in Equation 6.11, is also modified for LDA so that
the minimum distance is multiplied by the probability of the document being
part of that topic cluster.

t ot
Z Z min_dist(d;, d;) - Py,, - Py,
_ > 1 (6.11)

Separation(t) = 1=
eparation(t) 1 — LD A inter_cluster_density(t)’

6.3.6 Results For Clustering Algorithms

Our approach to experiment with the clustering approaches and to find the
optimum values for the preclustering parameters is presented here. We begin
by reminding of the two parameters for canopy clustering, the T} and T,
values, which are used to form the initial clusters. We begin our experiments
by setting both T} and 75 to the same value, and iterate over a set of values.
For example, in Cosine distance measure we used values from 0.91 to 0.99
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Distance Measure T T5 | Threshold
Chebyshev 0.4 | 0.6 -
Cosine 0.95 | 0.97 0.4
Euclidean 0.85 | 0.82 -
Manhattan 1.94 | 1.94 0.2
Minkowski 0.75 | 0.8 -
Squared Euclidean | 0.7 | 0.7 -
Tanimoto 0.98 | 0.99 0.1

Table 6.2: Results for optimizing parameters for K-Means clustering. Empty
content for threshold indicates that it had no effect on the clustering for that
distance measure.

with an increment of 0.01, these values depend on the distance measures
used. Once we have found a value that gives good results for our metrics,
we set this value to T,. The parameter T, is the more dominant and it
defines the size of the clusters by excluding the data points withing its range
from other clusters. We then continue by changing only the 77 value in the
neighborhood of T5 and choose the value which gives the best results in our
metrics. Finally, we experiment with the clustering threshold parameter with
values from 0.1 to 1.0, and select the best value based on our metrics.

Appendix C and Appendix D presents a sample result of experiments
with clustering algorithms, we only present the results for K-Means using
Cosine distance and for LDA for brevity. All the other distance measures
were experimented with the same methods and produced similar results.
We used the optimal values for preprocessing the text that we found in the
previous experiments and compared the results of different parameter values
for both clustering algorithms.

By inspecting the results of K-Means clustering with different distance
measures and values for canopy clustering, we can find the optimum param-
eter values. There are some values in the results that can be pointed out,
for example, the stopping threshold for clustering did not have any effect on
some distance measures. With the dataset we used for this experiment we
found the optimum parameter around the same number of clusters indepen-
dent of the distance measure, the number of clusters with the best values for
the metrics were around 35 to 40 clusters. The results can be found in more
details in Appendix C.

As LDA has only one parameter, the number of topics, it was easier to
experiment with. The computational cost of computing the metrics for the
results were found to be much higher than for K-Means results, and for this
reason we experimented with the number of topics up to 70 with the dataset
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of 100 users. As it can be seen in Appendix D, it is not easy to select the
optimum number of topics. We chose 40 topics as our parameter as it does
provide a local maximum to average inter cluster distances, if we do not
consider the results from small number of clusters. Also this value is aligned
with the number of clusters we found for the optimal parameters for K-Means
clustering. Later in our experiments for other datasets, we found out that
40 topics do not provide good results always, therefore, we chose to use the
number of clusters the canopy clustering generated as the number of topics

for LDA.

6.4 Recommendations

To evaluate the recommendations we have divided the feeds we used to cate-
gories that describe the common topic of the feed. This way we can evaluate
whether the recommended feeds are from the relevant categories or not, and
we can evaluate the approach based on this. We can compute the accuracy of
the recommendation by measuring the ratio of the recommended feeds that
are from the correct categories of the feeds that the user has subscribed.

In recommendation accuracy context, the correctly recommended feed is
a feed that is from a category that the user has subscribed feeds from. For
example, if a user has subscribed feeds from technology and art categories,
correctly recommended feed would be from either technology or from art
category.

6.4.1 Accuracy

We measured the accuracy of top five recommended feeds of each approach
and computed the percentage of correctly recommended feed categories. For
each recommendation approach we computed the recommendations for each
user and took the average of the correctly recommended feeds. In order to
get at least one recommended feed to be correct the accuracy should be 20%
or more.

We used two-tailed Wilcoxon signed rank test to evaluate the difference of
two approaches. Wilcoxon signed rank test is similar to t-test and measures
the differences of the results from two algorithms without any distributional
assumptions of the differences between the results of two algorithms [12].
We used the number of correctly recommended feeds as the value to use in
the test and compared the best performing approaches against the baseline
method.
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Our first experiment was with 25 users with 2 random categories for each
user. Each user had 5 feeds from the two categories so that each user had
10 feeds in total. The resulting accuracies for this experiment can be seen
in figures E.2 and E.1 in the Appendix E. We can observe that the baseline
recommender used in the experiments performs well in this dataset achieving
a 40% accuracy. By inspecting the baseline accuracy with different feed
weighting and distance measures, we can observe that the maximum accuracy
is 40% with Cosine distance measure and the lowest accuracy 33.6% with
Squared Euclidean and Minkowski distance measures with title similarity.

We can also notice that in our approaches K-Means based recommenders
perform well in user based approaches and LDA based recommenders perform
better in content based approaches. Collaborative filtering does not perform
well in this experiment, as expected, because in randomly generated users
we did not input any favourite feeds for users. We can observe the cold start
problem for collaborative filtering in these experiments, which occurs when
there are not enough favourite values in the system.

Inspecting the results of different weighting approaches for the feeds we
can see that none of them improved the accuracy. Inverse update frequency
is the most promising of the weighting approaches, but even it does not
improve the accuracy significantly. Title similarity weighting using WordNet
was the best approach for K-Means and content length weighting was best
for LDA. When we compare the results of default K-Means and K-Means
with semantically generalized documents, we can observe that the results get
worse when using semantically generalized documents. With LDA the results
of using semantically generalized documents are similar. To semantically
generalize the documents we used 100 most probable words for LDA topic
models and 100 terms with highest tf-idf values for K-Means documents.

By performing Wilcoxon signed rank test on the best performing ap-
proaches against baseline method we can observe that the results are not
statistically significantly better. Table 6.3 shows the p-values for the best
performing approaches and we can see that they are not even close to being
significantly more accurate at p<0.05 level. The approaches that did not
perform so well were actually statistically less accurate than the baseline ap-
proach at p<0.05. We can see that the K-Means content based approaches
and the LDA user based approaches are statistically worse than the base-
line approach. For the K-Means user based approach and the LDA content
based approach there is not that significant difference, so we cannot make
any decision on the performance against baseline approach based on these
results.

The top-k similarity measures and Hungarian Algorithm are not signifi-
cantly different of baseline approach in this small dataset. Each of the three
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Approach p-value
K-Means Content Cosine 0.02144
K-Means Content Manhattan | 0.07346
K-Means Content Tanimoto 0.1936
K-Means User Cosine 0.7414
K-Means User Manhattan 0.13104
K-Means User Tanimoto 0.5892
LDA Content Cosine 0.28462
LDA Content Manhattan 0.4965
LDA Content Tanimoto 0.28014
LDA User Cosine 0.01596
LDA User Manhattan 0.01684
LDA User Tanimoto 0.01552

Table 6.3: Significance results for 25 user dataset of top-3 K-Means and LDA
approaches without weighting.

approaches have a p-value of 0.6672 with Wilcoxon signed rank test.

In the dataset used in the previous experiment the number of users was
rather small, and this probably made it easier for our baseline method to
perform as well as it did. To be able to decide whether our approach is
better than baseline, we experimented with a 50 user dataset where each
user had 4 random categories of interest and 2 feeds from each category
resulting to a total of 8 feeds per user.

The results, shown in Figure E.5 in Appendix E, for 50 users experiment
indicate that the accuracy of baseline approach degrades as more users are
added to the system, as expected. The baseline accuracy dropped from 40%
to 22.8%, which is nearly a half of the previous accuracy. The average accu-
racy of the LDA basic approach also dropped slightly from 30.2% to 27.9%,
but now some approaches with LDA are clearly better than the baseline ap-
proach. Also for the user based recommendations of LDA, the accuracy is
increased with more users. For the K-Means based approaches the accuracy
improved overall, the maximum accuracy was increased and the average ac-
curacy was 27.9% while it previously was 20.9%. The similarity measures
that used top-k similarity measures to find the most similar user did not
have a big difference between these two experiments in accuracy.

We can also observe that when we increased the number of users in the
system, semantically generalized documents improved the quality of the K-
Means user based recommendations. Also with the LDA based approaches
we can see that the IUF weighting improves the quality for content based
approaches when more users are added. With the LDA content based recom-
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Approach p-value
K-Means Content Cosine 0.4654
K-Means Content Manhattan | 0.33204
K-Means Content Tanimoto 0.45326
K-Means User Cosine 0.00128
K-Means User Manhattan 0.00318
K-Means User Tanimoto 0.00032
LDA Content Chebyshev 0.04136
LDA Content Euclidean 0.03156
LDA Content Minkowski 0.0226
LDA User Euclidean 0.41794
LDA User Manhattan 0.84148
LDA User Minkowski 0.35758

Table 6.4: Significance results for 50 user dataset of top-3 K-Means and LDA
approaches without weighting.

mendations using weighting of the similarity of the feed titles with WordNet,
improves the quality of recommendations. The accuracies of the LDA ap-
proaches with WordNet title similarity weighting with Chebyshev, Minkowski
and Squared Euclidean distances are statistically significantly better with p
values of 0.00044, 0.00108 and 0.0001 respectively.

Appendix E Figure E.3 presents the results for using top-k measures to
compute the most similar user. These measures are statistically better than
the baseline approaches with p-values of 0.00034, 0.00032 and 0.00032 for
Hungarian Algorithm, Top-K Kendall’s Tau and Top-K Spearman’s Footrule
respectively.

By computing statistical tests on the results, presented in Table 6.4, we
can observe that the K-Means user based approaches and the LDA content
based approaches are statistically better than the baseline method at p<0.05
level. We can also observe that the significance of the results are getting
better in a sense that the previously statistically less accurate approaches
are no longer performing statistically less accurately.

The results of 50 user dataset were still not quite clear whether our ap-
proach is an improvement compared to the baseline approach or not, we
increased the size of the dataset to 100 users. With this dataset the compu-
tation times begun to increase in a single computer environment, and as it is
clear that some distance measures perform better than others, we used only
a subset of distance measures in our following experiments. We used Cosine,
Manhattan and Tanimoto distance measures as they gave the best accuracies
on the experiments so far with K-Means. For LDA we first compared the
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Approach p-value
K-Means Content Cosine 0.18684
K-Means Content Manhattan | 0.14156
K-Means Content Tanimoto 0.23014
K-Means User Cosine 0
K-Means User Manhattan 0
K-Means User Tanimoto 0
LDA Content Cosine 0.00142
LDA Content Manhattan 0.00374
LDA Content Tanimoto 0.002
LDA User Cosine 0.79486
LDA User Manhattan 0.5157
LDA User Tanimoto 0.53526

Table 6.5: Significance results for 100 user dataset of top-3 K-Means and
LDA approaches without weighting.

best performing distance measures and made a decision based on results, to
select the three best performing measures. From the results presented in Fig-
ure 6.1 we can observe that the Cosine, Manhattan and Tanimoto distance
measures perform best with LDA also, when compared against Fuclidean and
Minkowski. Because canopy clustering created 78 clusters in this dataset, we
decided to use also the same number of topics for LDA.

Inspecting the results of 100 user dataset, presented in Figure 6.1, we can
observe that the K-Means user based recommendation outperforms the base-
line and the K-Means content based recommendations in accuracy. K-Means
has the best accuracy of 47.4% in the experiments so far, with Cosine and
Tanimoto distance measures in user based approach. The same behavior was
present in the smaller datasets similarly. For LDA the recommendation ap-
proaches perform in the opposite way so that the content based approaches
outperform the user based approaches. We can also observe that the title
similarity using WordNet improves the accuracy of the methods, while other
weighting approaches do not have a significant positive effect. The best ac-
curacy for LDA was with WordNet title similarity and the Cosine distance
measure in the content based approach with an accuracy of 38%. Also with
the top-k based similarity measures, presented in Figure 6.2, the best per-
formance is achieved with the biggest dataset with an accuracy of 47.2%.
The significance of these resulting accuracies can be seen in Table 6.5, where
we can see that the aforementioned approaches are statistically significantly
better than the baseline approach.
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Figure 6.1: Accuracy results of 100 user dataset for K-Means and LDA. K-
Means results are the 5 charts above and LDA are the 5 charts below. C and

U denote the content and user based approaches respectively.
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Top-K Measures
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Figure 6.2: Accuracies for top-k recommendation in a 100 user dataset.

6.4.2 Simulating Real Users

Where the previous experiments were conducted in an automated way to
compare the correctness of the recommendation in order to allow much big-
ger user population, the next experiments were conducted manually in a
smaller set of users. This allows us to eliminate the possibility of a wrongly
categorized feed by manually comparing the recommended feed to the feeds
the user is already interested of. Because of the prototype level of our ap-
plication we were not able to provide internet access to our application or
neither package the application to a distributable format. We performed our
experiments with real human-like users in a local environment, where the re-
sults were examined by hand. For this experiment we created 12 users with 4
feeds from 3 different interest categories and examined the recommendation
results by hand in an objective manner.

Listing in Appendix F shows an example of recommendation results with
Cosine distance measure from the dataset of hundred users. In the listing
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there are listed the original user feeds and recommendations from different
approaches. Each feed is identified by the category it belongs to and the title
of the feed. From these results we can check the results automatically by
checking the number of feeds from the correct categories, in this case from
art, misc, science and technology and business. In the manual evaluation we
can check the title of the recommended feed, or if the title is not distinctive
enough, we can check the actual content of the feed. For this example user,
the LDA content based approach gives the best recommendations, then the
K-Means content based and the LDA user based approaches. The K-Means
user based approach performs the worst of the four basic approaches, even
though the average accuracy of the K-Means user based approach was the
best. The top-k measures recommend as good results as the K-Means con-
tent and the LDA user based approaches, while Hungarian Algorithm gives
slightly worse results than the top-k.

In the small scale experiment of the accuracy with a human valued rec-
ommendation, we used the best performing approach for both K-Means and
LDA and both baseline and collaborative filtering. To approve the recom-
mended feed as correct we inspected the feeds the user had subscribed and
compared if the recommended feeds were of a similar field. For example,
if a user had art and business feeds in recommendations, we inspected the
contents of the subscribed feeds if they were from either of these fields.

For the K-Means user based approach with Cosine similarity the accu-
racy was 78.3% and with the LDA content based approach with Cosine sim-
ilarity the accuracy was 58.3%. With the baseline approach the accuracy
was 30%. We also experimented the effect of adding favourite feeds which
yielded a 38.3% accuracy to collaborative filtering. Feed favouring increased
the accuracy of the baseline approach to 31.7%. The K-Means and LDA the
accuracies decreased to 63.3% and 51.7% respectively.

To compare the accuracies against the automatic accuracies, presented
earlier, we ran automated accuracies also. For the K-Means results the auto-
mated accuracy was 45% and for LDA 56.7%. The baseline accuracy was in
automated calculations 48.3% and collaborative was 33.3% accurate. When
we compare these to the results achieved by human valuation, the results
are quite similar with LDA results. For K-Means the accuracy is signifi-
cantly smaller with automated computations than with human valuations.
The baseline approach achieved higher accuracy using automated accuracy
computation.
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6.5 Distance Measures

We can use the results of the recommendation experiments to evaluate the
performance of the different vector space distance measures described in sub-
section 3.5.1. In the book by Weiss et al. [47] it is mentioned that cosine
similarity is the classical approach to measure the similarity of documents.
Tanimoto distance measure being similar to cosine distance, we can expect
also good results from it.

Based on the results of the experiments with 50 users, results shown
in Figure E.5, for K-Means we can see that the Cosine, Manhattan and
Tanimoto distance measures give the best results. For LDA results, picking
the best performing distance measure was not that easy task, due to the
results being more similar between the distance measures. With different
weighting approaches we can observe that Cosine, Manhattan and Tanimoto
distance measures still perform well. Interestingly also Euclidean, Minkowski
and Squared Euclidean distance measures perform well in some weighting
approaches with LDA.

We had three different approaches to measure the user similarities, the
Hungarian algorithm and the two top-k similarity measures. By observing
the results of them in Figure E.3 and Figure 6.2 we can notice that they
all perform similarly in terms of accuracy. The bigger the dataset the more
accurately they retrieved the closest user, and thus providing more accurate
recommendations.

We also experimented with the effect of using different WordNet similarity
algorithms, and discovered that in our small scale measures of measuring the
title similarity, the choice of algorithm did not have a significant difference in
the distance. Some approaches were much more computationally expensive
than others. Therefore, we used the approach that was feasible to compute
and provided good results, this was the Resnik approach to measure word
similarities.

For the top-k distance measures of Spearman’s Footrule and Kendall’s
Tau, we experimented with the number of top words needed from the top-
ics. Spearman’s Footrule needed 250 top words in topics to perform well,
increasing or decreasing this value did not improve the results. Kendall’s
Tau distance needed only top 50 words from the topics to perform well, and
similarly changing this number did not have a significant improvement to the
results.
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6.6 User Distance Measures

We can evaluate the user distance measures by computing user to user dis-
tances. We experimented in a 100 user dataset where we had 5 different user
groups, so we should be able to see 5 groups in the user distance heat maps.
Figure 6.3 through Figure 6.13 presents the heat maps of the user to user
distances of different distance measures. We present only the top three best
performing distances as other distance measures did not produce as good
clusters of the users to the expected 5 groups.

We can see that top-k based measures, Spearman’s footrule and Kendall’s
Tau, are good measures to user to user distance computations. Hungarian
algorithm also provides good results but slightly worse than the previously
mentioned approaches. LDA does not provide as good results as the others
and there are no clear groups of users visible.

The results provide an explanation to the results of recommendation ac-
curacy, where the K-Means user based approach provided good results with
the Hungarian algorithm and the top-k similarities. LDA on the other hand
had better results in the content based approaches, which is probably due to
the inferior performance in the user distance computations.

]

Figure 6.3: Spearman’s Figure 6.4: Kendall’s Tau Dis-
Footrule Distance tance
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Figure 6.5: K-Means
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Chapter 7

Evaluation of Results

We presented different approaches to RSS recommendation systems in chap-
ter 2 and we can use the results of those approaches to evaluate the results of
our approach. For some of the approaches there is no information available
about the accuracy of the recommendations. Also the measure of accuracy
differs in the approaches, for example, in paper by Zhao et al. [50] the authors
use the number of favourite feeds recommended as a measure of accuracy.

7.1 Comparing Results

Zhao et al. [50] presented in their paper only the precise accuracy for the
combinations of similarity measures. The single measure accuracy is only
shown in a bar chart, from which we can estimate the accuracy of using a
single feature. The accuracy of a single feature ranges from 2.5% to 20%,
while by combining the measures the accuracy ranges from 10% to 80%. The
difference to our experiments is that Zhao et al. use at minimum top-10 feeds
to recommend, while we used top-5.

If we compare the results of single feature similarity accuracies we can
observe that our approach has the best accuracy of 47.4% where as Zhao et
al. reached 20% accuracy, our worst accuracy was 6.4% with a single feature.
Based on the accuracies, our approach reached better performance on single
feature, however, when multiple features are used Zhao et al. approach is
significantly better with 80% accuracy. When we compare the results of our
manual experiment, we can reach a similar level of average accuracy with
78.3%.

NectaRSS, introduced in chapter 2, also achieves over 80% accuracy in
their experiments presented in paper by Samper et al. [43]. NectaRSS’
approach is quite different from ours and it uses an incremental approach
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to learn user preferences, NectaRSS also uses the title similarity of the feeds
with a different approach from ours. NectaRSS uses the vector space distance
measure for the title similarity, where we used the WordNet based similarity.

Both of the approaches, we compared our application to, used a rather
small user base to perform the evaluation. Zhao et al. used 20 volunteers and
NectaRSS used 15 volunteers and 30 sessions, in our experiment which simu-
lated user behavior there were 12 generated users, which is in the same range
as the other approaches. This can give some indication that our approach
can perform at the same level of accuracy as the compared approaches.

To be able to make reasonable conclusions on the quality of our approach
compared to the other approaches, the dataset should be the same. We can
observe that the accuracy of using human evaluation is much better than
the automated approach. Also if we compare the accuracies of our auto-
mated experiments, we can see that the accuracy improves as the number of
users increases, which can give some indication that the document clustering
approach requires more users to be able to add significant improvement.

7.2 Observations From Results

When comparing the two different approaches to experiment, we can observe
that the accuracy of K-Means approach is lower in automated experiments.
This gives us a reason to suspect that should the experiments with bigger
dataset be evaluated by humans, the accuracies could have been much better.
For LDA the difference is not that big between these two evaluation methods,
so we suspect that those approaches do not reach the accuracy of K-Means.

By inspecting the results of the different weighting approaches, for both
modeling the quality of the feed as well as the similarity of the titles, we
can observe that none of the weighting approaches had any significant effect.
WordNet based title similarity had the best effect on the accuracy with LDA.
Generating semantically generalized documents or semantically generalized
topics did not help to increase the accuracy of recommendations. However,
both of these WordNet based approaches gave the most promising results
among the weighting approaches we evaluated. Both methods to model the
feed quality, inverse update frequency and content length, appear to only
worsen the results with some distance measures and have little to no effect
on other distance measures.

The results of user distance measure comparisons provide a good overview
of the overall quality of the approach. We can see that the K-Means based
approaches provide much clearer clusters of users, where the LDA based
approaches generate much more noise between clusters of users.



Chapter 8

Discussion and Conclusions

In this thesis, we have developed a prototype application to recommend RSS
feeds based on the user’s preferences derived from the feed subscriptions.
The main goal was to further develop the current state-of-the-art methods in
feed recommendations. To our best knowledge, this is the first time WordNet
based approaches have been applied to this kind of a problem.

Our first goal was to investigate the current trends in document clustering
and choose the appropriate approaches from them. We selected K-Means and
Latent Dirichlet Allocation as our document clustering techniques based on
the popularity and the performance in the domain. In addition to these
two approaches we chose canopy clustering as the preclustering technique to
overcome the difficult decision of choosing the correct number of clusters.
For canopy clustering we could perform parameter optimization to our seven
distance measures using clustering quality metrics. We discovered that by
optimizing the parameters for canopy clustering we can obtain meaningful
clusters on multiple datasets and maintain high quality of clustering metrics.
For Latent Dirichlet Allocation we can optimize the number of topics using
the same clustering quality metrics. We discovered later in our experiments
that the optimized number of clusters discovered earlier to our problem was
not good enough for other datasets. To overcome this issue we discovered
that using the number of clusters generated by canopy clustering, turned out
to be a good solution. Canopy clustering can then be used as an unsupervised
preclustering technique for both of our document clustering approaches.

The second goal was to analyze the previously clustered documents and
generate meaningful user models based on the results. We exploited the
document similarities based on vector space distance measures to generate
a model of the user’s interests. We discovered that some distance measures
perform better than others to cluster the user models, namely Cosine, Tani-
moto and Manhattan distances performed well. We also noticed a difference
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in the user model quality between the document clustering approaches, for
Latent Dirichlet Allocation we used the topic models of the user’s feeds as
a user model, which turned out to be of lesser quality than the K-Means
approach. The K-Means approach used the feeds tf-idf representations to
model the feed, from which a better user model was retrieved.

Our third goal was to recommend the most similar feeds based on the
user models generated. We used two approaches to compute the recommen-
dations, one being based purely on the contents of the feeds and other based
on the user models. We discovered that using state-of-the-art methods in
feed recommendations did not help in our approaches significantly. We de-
veloped a novel methods based on shallow word ontologies to improve the
similarity measures. We discovered that converting the terms in a feed to a
more general terms using WordNet did not improve neither K-Means or LDA
based recommendations. However, when we used WordNet to measure the
similarity of the feed titles, we did observe an improvement to the quality of
the LDA based recommendations.

The final goal was to combine all the methods we have developed to a
functional application. We leveraged the available software libraries from
machine learning in order to be able to focus on developing new methods,
rather than implement everything ourselves from the beginning. By using
widely used libraries we can, for example, improve the scalability of our
application and leverage the future updates to algorithms in order to further
improve the accuracy.

We conclude this thesis with some directions for future work. To begin
with, we experimented with only two document clustering approaches, but
we did implement Suffix-Tree Clustering (STC) up to the clustering phase.
We did not implement STC based user models or recommendations, but
based on the quality of the clustering resulting from STC we can expect
that the results should be comparable. Another improvement to document
clustering can be achieved by exploiting soft cluster association provided by
LDA topic models. We only included the most probable topic in our approach
and including more than one topic for a feed could increase the performance
of LDA recommendations. Our application does not, at its current state,
allow for a wider usage than experimental, an improvement to this can be
achieved by packaging it to an internet accessible application. In addition, we
have so far implemented scalable algorithms in the document clustering part,
but we believe that also the rest of our application can be made scalable. To
improve the scalability we have given thought for it by making our approaches
modular and with that it should be possible to convert them, for instance,
to map-reduce jobs. Exploiting more the information WordNet provides, or
any other word ontology, would be an interesting future direction.
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Appendix A

List of Feed Categories

e antiques e health diet

e architecture e health fitness

o art e hobbies

e art history e home

e arts and craft e journals

e blogs e literature

e blogs news e machine learning and data min-
e business ing

o
e computers miscallaneous

e consumer electronics e movies

e cooking e msn

e economics ® news

e cducation e photography
e cntertainment e programming
e finance e science

e food e society

e games e sports

e health e travel
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Figure B.1: Effect of preprocessing minimum term length to clustering.
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K-Means Clustering Results
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LDA Clustering Results
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Appendix E

Recommendation Results
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Figure E.1: Accuracies for baseline recommendation in a 25 users dataset

with different distance measures.
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Appendix F

Example Recommended Feeds

User Feeds :
ART : NYT Theater
ART : MIT News Topic Music technology
MISC : Feedzilla Quote 0f The Day News
MISC : News
SCIENCE AND TECHNOLOGY : The Official Google Blog
BUSINESS : Business and financial news CNN Money.com

Recommended by Baseline
ART : Wash Post Books
HOBBIES : Events
HOME : Wash Post Home Improvement
MSN : Top 5 Most Recent MSN Articles
HOBBIES : Travel - travel guides ...

Recommended by Collaborative
MISC : Feedzilla Australia News
HOME : Hollis ramblings
CONSUMER ELECTRONICS : Best Digital Camcorder Reviews
ART : NYT Arts
BUSINESS : Businesses For Sale by Owner in Canada

Recommended by K-Means Content with Cosine Distance
SCIENCE AND TECHNOLOGY : Science
MISC : Feedzilla Comics News

CONSUMER ELECTRONICS : Memory Cards Camera Mobile Phone ...

BUSINESS : Business chicagotribune.com
HEALTH : Fitness and Nutrition Center
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Recommended by K-Means User with Cosine Distance
SCIENCE AND TECHNOLOGY : Technology Articles
ART : MIT News Topic Medialab
COMPUTERS : Gadget Advisor
COMPUTERS : Geeking with Greg
GAMES : TECHNOCRAZY

Recommended by LDA Content with Cosine Distance
MISC : Feedzilla Dance News
SOCIETY : The Society of Qualified Archivists
MISC : Feedzilla Albany News

SCIENCE AND TECHNOLOGY : MIT News Topic Mechanical engineering

ART : MIT News Topic Medialab

Recommended by LDA User with Cosine Distance
MISC : Feedzilla Dance News
SOCIETY : The Society of Qualified Archivists
CONSUMER ELECTRONICS : Memory Cards Camera Mobile Phone..
MISC : Feedzilla Albany News

SCIENCE AND TECHNOLOGY : MIT News Topic Mechanical engineering

Recommended by Hungarian Algorithm with Cosine Distance
SCIENCE AND TECHNOLOGY : Technology Articles
ART : MIT News Topic Medialab
COMPUTERS : Gadget Advisor
COMPUTERS : Geeking with Greg
GAMES : TECHNOCRAZY

Recommended by Kendall’s Tau
MISC : Feedzilla Comics News
SCIENCE AND TECHNOLOGY : Technology Articles
ART : MIT News Topic Medialab
COMPUTERS : Gadget Advisor
COMPUTERS : Geeking with Greg
Recommended by Spearman’s Footrule
MISC : Feedzilla Comics News
SCIENCE AND TECHNOLOGY : Technology Articles
ART : MIT News Topic Medialab
COMPUTERS : Gadget Advisor
COMPUTERS : Geeking with Greg
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