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Abstract

This thesis presents a new wavelet transform specifically designed for the coding of

depth images which are used in view synthesis operations. Two basic properties

of these images can be leveraged: first, errors in pixels located near the edges of

objects have a greater perceptual impact on the synthesized view; second, they can

be approximated as piece-wise planar signals. We make use of these facts to define

a discrete wavelet transform using lifting that avoids filtering across edges. The

filters are designed to fit the planar shape of the signal. This leads to an efficient

representation of the image while preserving the sharpness of the edges. By preserving

the edge information, we are able to improve the quality of the synthesized views, as

compared to existing methods.
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Chapter 1

Introduction

Recent advances in multi-view video (MVV) allow applications that not so long were

only possible in science fiction, such as three-dimensional television (3DTV) [SMS+07]

or free view-point video (FVV) [Tan04], to be getting closer to becoming a part of

our daily lives. These techniques have a very promising future in services such as

broadcasting television, video games, virtual reality, surveillance, as well as video

conferencing. Nevertheless, challenges remain that are preventing these technologies

from reaching the market.

When capturing a certain scene for MVV applications, an array of multiple cameras

which record the stage from various positions, or view points, (as shown in Fig. 1.1(a))

is used. Since each camera generates its own sequence of frames, the total amount of

data produced by the system is proportional to the number of cameras, and can easily

become excessive for existing storage and transmission technologies. Moreover, since

all frames across multiple cameras are representing the same scene, the information

is very redundant.

Many researchers have developed techniques that take advantage of this redundancy

(or correlation between views) in order to reduce the total amount of data. Some

of the most important approaches are: interview prediction [XGZ05], 3D motion

estimation [YKS07], motion vector reuse [SHLY08] and multi-view video plus depth

(MVV+D) [YKK+07].

Our work can be seen as an example of a MVV+D approach, which is also referred to

1



2 CHAPTER 1. INTRODUCTION

as depth-image-based rendering (DIBR). As the name indicates, this approach makes

use of the depth information, i.e., the distance from the viewer (camera) to objects in

the image, in order to compute the position of these objects in 3D space. Using this

information, it is possible to artificially generate the images that would be seen from

different points of view. MVV+D uses this property in order to reduce the number of

cameras that record an image. Using DIBR techniques, frames that certain cameras

would generate can be artificially produced by manipulating the information provided

by the rest of the cameras, so that those intermediate cameras can be eliminated from

the array without loss of information. Fig. 1.1 illustrates this idea. The technique

used for the synthesis of images using information provided by other cameras is called

view interpolation.

(a) Original MVV camera array. (b) Camera array using DIBR and
view intepolation.

Figure 1.1: Thanks to view interpolation, the frames from some cameras can be
generated using the information provided by others.

It has been stated that DIBR applications require the location of objects in 3D

space. However, standard video frames only provide information about positions in

two dimensions, thus the third spatial component must be given by depth images, also

referred to depth maps (DM). A DM is a gray scale image that provides information

about the position of objects in the three spatial dimensions, but not about colors,

therefore, it is used in combination with a standard image (referred to as the DM’s

parent) that represents the colors and textures of the objects. In a DM, the value of

each pixel represents the distance that separates the viewer (camera) from the object

represented by that same pixel (same location) in the DM’s parent. Fig. 1.2 shows

an example.

Thanks to DIBR the number of cameras can be dramatically reduced, and, con-

sequently, so can be the quantity of data generated. Nevertheless, the number of

cameras can still be considerably high, and, in addition, now each camera does not
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(a) Video frame. (b) Corresponding DM

Figure 1.2: Example of an image and depth map pair. Objects closer to the viewer
have a higher intensity in the DM.

only produce sequences of frames, but also sequences of DMs. All this implies that

the total information generated by the system requires excessive storage and/or trans-

mitting capacities. Therefore, compression techniques are necessary.

In our work we have focused on the compression of DMs as isolated images (not as

parts of a sequence). In order to find the most optimal compression approach it is

first necessary to perform an analysis of the characteristics of such images. Also,

since DMs are not directly seen by the viewers, but only used during the interpola-

tion process, it is necessary to pay special attention to the effect that errors in DMs

have in the resulting synthesized image. Bearing these ideas in mind a coding algo-

rithm, which is efficient for this kind of signals, is built. Assuming that DMs follow

a piece-wise planar (PWP) signal model and using an innovative edge-avoiding filter-

ing technique specially designed for this kind of images, we have developed a discrete

wavelet transform (DWT) [Mal08] which is able to compress the DMs while minimiz-

ing the distortion around the edges of the objects. This improves considerably the

perceived quality of the synthesized images.

Others have tackled this same problem in different ways:

Platelets [WN03], which also assumes that the images follow a PWP model,

segment the image until a point where inside each block there is only one edge

(which must allow parameterization using a straight line). Then, the parameters

of the planes at each side of the edge are computed and sent along with the block

segmentation overhead. At the decoder, each pixel’s value is computed using

the corresponding plane parameters. This method’s main limitation is that



4 CHAPTER 1. INTRODUCTION

it does not allow perfect reconstruction (it is not completely invertible), since

the error generated when approximating the image values for planes cannot be

corrected at the decoder.

Directionlets [VBLVD06] and bandelets [PM05], apply a similar block segmen-

tation as Platelets. In this case, inside each block a dominant directional pixel

intensity flow (parallel to the edge) is defined. Then, a DWT algorithm is ap-

plied, where separable filtering along a grid aligned with each directional flow

is used. These methods are discussed in more depth in Section 2.2.

In tree-based wavelets [SO09], a DWT is applied along trees, which connect the

pixels in the image. These trees are built so that two pixels from different sides

of an edge are never filtered together. However, since no assumptions are made

about the signal’s model, the filter coefficients cannot be adapted to the position

of the pixels in the image. This method does not use block segmentation, but

requires that both the encoder and decoder share the edge information, which

is sent as overhead.

Shape adaptive wavelets [MD08], use a technique similar to the mirroring of the

pixel at the boundaries of an image. In this case, when an edge is reached, the

value of the pixels on the other side is obtained by extrapolating the function

that the image follows on the one side of it, forcing the input of the filter

to be continuous. This transform uses 1D filters; hence, the extrapolation is

done using pixels along a certain 1D direction. Like tree-based wavelets, this

algorithm requires the sharing of the edge information by encoder and decoder.

Our transform is based on a similar filtering approach to the one used by shape-

adaptive wavelets. The main difference between both algorithms is that we allow the

encoder to select from a more general set of filtering kernels and develop the necessary

locally adaptive kernel selection algorithms. By assuming that DMs follow a PWP

model, the position of pixels distributed in 2D space is used for computing each

plane’s parameters. These are used for designing optimal filters. On the contrary,

shape adaptive wavelets only consider 1D filtering operations. Based on this filtering

approach, we have developed a completely invertible wavelet transform, that, without

directional filtering or block segmentation, is capable of efficiently compressing DMs

to be used in view interpolation operations. Like in the tree-based and shape-adaptive

wavelets, the edge information needs to be sent as side information.
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The rest of this work is organized as follows. First, the bases and main elements

of our algorithm are introduced in Chapter 2. Chapter 3 describes in detail the

adaptive filtering technique used in our system. For a simpler understanding of the

algorithm, the operations detailed in both chapters are explained for the first level

of decomposition; the changes that the algorithm suffers as the rest of the steps

are taken are detailed in Chapter 4. Some experimental results are presented in

Chapter 5. Conclusions and future lines of work are detailed in Chapter 6.





Chapter 2

Proposed Algorithm

The core of our work is the design of a coding technique for DMs which efficiently

compresses the information while minimizing the errors of the interpolated images.

This algorithm is based on wavelets and designed using the lifting procedure [DS97].

The two properties of the DMs that are used by the algorithm in order to adapt the

elements of the procedure are the following:

First, DMs are assumed to be piece-wise planar signals, which means that they

are formed by planes with arbitrary shapes. The separation between two ad-

jacent planes is named edge. In most DMs, the distance from the viewer to

every part of a small object is practically the same; thus, all the pixels that

represent those objects in a DM will have approximately equal value. As for

the value of the pixels that represent bigger objects, such as walls, tend to vary

very smoothly; this variation can be well approximated by planar functions.

Second, the information of pixels located near the edges has to be preserved.

This is motivated by the fact that, as shown in Fig. 2.1, errors on those pixels

are more likely to generate severe artifacts in the synthesized images than the

errors on pixels located far from edges. This fact has been discussed and ana-

lyzed in depth in [LOD+09] and [KOL+09]. Moreover, when applying coding

techniques based on standard filtering operations, such as standard DWT, large

high frequency coefficients tend to appear in those areas. Due to the spatial

distribution of these high frequency coefficients (they tend to be isolated), their

7



8 CHAPTER 2. PROPOSED ALGORITHM

coding usually requires a large number of bits, as compared to low frequency

coefficients. Consequently, when the images are compressed at very low bit

rates, more severe errors appear around edges than in other areas of the image,

which is, clearly, not optimal for view synthesis applications.

(a) (b)

(c) (d)

Figure 2.1: Example of artifacts in a synthesized image. (a) Original DM; (b) com-
pressed DM using standard DWT; (c) synthesized image using (a); (d) synthesized
image using (b). Although the compressed depth maps may be perceptually lossless,
the interpolated view shows artifacts.

Bearing this in mind, we have developed a new wavelet algorithm which is based

on an innovative adaptive filtering technique. By avoiding filtering across edges, our

transform is able to reduce the intensity of the high frequency coefficients (especially

around edges), which allows high compression rates while minimizing the errors in

the synthesized images, as compared to existing methods.

The proposed transform is used as part of a coding system (refer to Fig. 2.2) which

also includes other components such as an edge detector, whose output is used by

our transform, and a supplementary coding component which quantifies and codes

the transform coefficients. While for coding we use an existing algorithm (for our

experiments we have used SPIHT [KP97, SP] ), a new edge detector has been espe-

cially designed for our transform, as explained in detail in Appendix A. Since the
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edge information must be shared with the decoder, it is also encoded (using JBIG

[jbi93] in this case) and sent as side information. The influence of these elements in

the performance of our transform is studied in Chapter 5.

In this chapter only the wavelet transform is discussed in detail. Section 2.1 reviews

the most important ideas behind the wavelet transforms and the lifting procedure.

How each operation in the lifting scheme is adapted to the scenario is explained in

Sections 2.2, 2.3, 2.4 and 2.5.

Edge

Detector

Wavelet 

Coding

SPIHT

Coding

ENCODER
TRANSFORM COEFFS.

EDGE INFORMATION
JBIG

Coding

DECODER

SPIHT

Decoding
Wavelet

decoding

TRANSFORM COEFFS.

EDGE INFORMATION
JBIG

Decoding

Figure 2.2: Block diagram of Encoder and Decoder

2.1 Wavelets and Lifting

Contrary to other frequency analysis tools, such as the Fourier transform [Tol76],

wavelet transforms render the information of a signal in ways that are localized in

both space and frequency. When applying a wavelet algorithm to an image, the

frequency components are separated in 2D space as shown in Fig. 2.3. In the original
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image, the position and intensity of each pixel is completely specified but no frequency

information is available. Thanks to the wavelet transforms it is possible to estimate

locally the relative weight of different frequency components. However, the resolution

in the spatial domain has decreased as compared with the original image. This last

phenomenon is a consequence of the Heisenberg uncertainty principle [Hei49].

(a) Original image (b) Image transformed using
DWT

Figure 2.3: Example of the application of DWT to an image. (a) Original Image; (b)
Resulting image after the application of DWT. In (b), frequency bands ordered: Lh-
Lv(top-left), Lh-Hv(bottom-lft), Hh-Lv(top-right) and Hh-Hv(bottom-right), where
L and H represent Low and High frequency band respectively, and h and v stand for
horizontal and vertical direction respectively.

Since for typical images most of the information is located in the lowest frequency

bands, the part of the output corresponding to those bands is considered an approxi-

mation to the original image. Therefore, in order to perform a more detailed analysis,

the transform can be applied iteratively on that approximation until the desired spa-

tial/frequency resolution is reached. This is done by simply cascading the transform

blocks as many times as levels of decomposition are desired; the result of such op-

eration is shown in Fig. 2.4. As the information of the signal is not changed after

applying a wavelet algorithm but only expressed in a different space; the process can

be inverted in order to return to the previous space (original image).

Wavelets are used in image processing for many purposes such as de-noising, elimi-

nating textures or simply analyzing of the characteristics of a particular image. Since,

the information of most signals (images) is not uniformly distributed along all the fre-

quency bands but rather condensed in just a few ones (normally the lowest frequency

bands) this kind of algorithms are commonly used for compression.
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(a) (b) (c) (d)

Figure 2.4: Different levels of decomposition. (a) Original image. (b) After 1 level of
decomposition, (c) 2 levels and (d) 3 levels.

One common way for designing wavelet transforms is by the use of the lifting procedure

which is explained in Section 2.1.1. Section 2.1.2 explains how the procedure can be

manipulated so that the whole transform is adapted to a certain scenario.

2.1.1 Introduction to the Lifting Procedure

Every wavelet transform can be expressed as a combination of lifting stages. The

process of transforming a discrete signal using lifting is explained next:

First of all, given a discrete signal, its samples must be split into two disjoint sets,

namely the sets of the even (E) and odd (O) samples, also referred to as evens and

odds for short. This operation is often called samples split or parity assignment. Let

us illustrate this operation with a simple example. Let x = (xk)k∈Z be an infinite

length 1D signal. We can define the even and odd sets using the parity of the samples:

xe = (x2k)k∈Z and xo = (x2k+1)k∈Z.

Then an approximation of the values of the odd set (O) is constructed using only

the samples of the even set (E) and a prediction operator P. This operation is called

prediction step, and the samples corresponding to the error of such approximation

are named detail coefficients.

d = xo − P(xe). (2.1)

For example, a prediction of every odd value x2k+1 can be performed by averaging

x2k and x2k+2 (as shown in Fig. 2.5(a)):

dk = x2k+1 −
1

2
(x2k + x2k+2). (2.2)
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If E and O are sufficiently correlated, the approximation error will have very low

energy (if x in our example was locally linear, all detail coefficients would have no

energy (dk = 0 ∀k)). As proved in the context of DPCM methods [Cut52], it can be

more efficient in terms of bit consumption to retain the detail values (d) than the

ones of the original signal (xo).

At this point the signal has been transformed from a pair of sequences (xe,xo) to

another (xe,d); since xe is obtained by a simple sub-sampling of the original signal,

aliasing occurs. To correct this, the values of the evens are updated using an operation

that ensures that the running average of the signal is preserved. This operation,

which is named updating step, uses the detail values obtained in the previous step.

The resulting samples are called smooth coefficients. This operation can be written

as:

s = xe + U(d). (2.3)

For example, the update operator could be defined as:

sk = x2k +
1

4
(dk−1 + dk). (2.4)

Once this step is completed the signal has been transformed to a pair of sequences

(s,d), in which s is a sparse approximation of the original signal x, while d represents

the error of such approximation. Fig. 2.5 illustrates the whole process.

2k2k-12k-22k-3 2k+42k+32k+22k+1

d
k

(a) Splitting and Prediction

2k2k-12k-22k-3 2k+42k+32k+22k+1

S
k

(b) Updating

S

d

(c) Separation

Figure 2.5: Example of lifting transform on a 1D signal

Since both the predicting and the updating steps are invertible, the whole transform

can be reversed by applying an inverted procedure:

xe = s−U(d),

xo = d + P(xe).
(2.5)
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Fig. 2.6 shows the block diagram of the forward transform operation. Similarly to

wavelets, the operation can be repeated iteratively on the smooth coefficients s, which

can lead to greater compaction of the information of the signal.

SPLIT  (E / O) P U

x

x

x

d 

s

o

e

Figure 2.6: Lifting Procedure block diagram.

2.1.2 Design of a Lifting Transform for Images

Every lifting based approach is fully specified by the choice of the sets E and O and

the operators P and U. Regarding the even/odd sets selection, the only requirement

is that both sets be strongly correlated, for, this way, the intensity of d can be

minimized, and thus high rates of compression can be achieved. In order to separate

the frequency components of the image into 4 bands after each level of decomposition

(as in Fig. 2.3), the algorithm is applied as a separable 2D transform (see Fig. 2.7).

This means applying the transform in one direction (which implies a downsampling

along that direction), and next, applying another operation in a different direction.

The choice of these directions can have important repercussions on the performance

of the whole transform.

As for the predicting and updating operations, the expressions that will be used in

this work are:

d(i, j) = X(i, j)−
∑

(k′,l′)∈Ni,j

pi,j(k
′, l′) ·X(k′, l′), (2.6)

s(k, l) = X(k, l) +
∑

(i′,j′)∈Nk,l

uk,l(i
′, j′) · d(i′, j′). (2.7)

Regarding the prediction of (2.6), the filter pi,j weights the contribution of each
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SPLIT  (E / O)

U

x

x

x

d 

s

o

e P

s

sd 

sse

P

U

so

dir 1

SPLIT  (E / O)

dir 2

P

d

dd 

dse

U

do

SPLIT  (E / O)

dir 2

Figure 2.7: Block diagram of a separable 2D lifting transform. If more levels of
decomposition are needed, the operation can be repeated on the SS signal.

(k′, l′) ∈ Ni,j ⊂ E to the approximation of the value X(i, j). As for the updating

operation of (2.7), it is clearly another example of filtering; where Nk,l ⊂ O.

Two lifting transforms with small differences in the way that the filters pi,j and

uk,l are obtained and in the structure of the sets Nu,v can have completely different

performances. Therefore, the way that these elements are defined needs to be adapted

to the scenario in which the transform is applied.

The following sections and chapters describe the choice of all these elements in detail.

Note that for a simpler understanding of the algorithm, the detailed operation of all

the blocks is explained for the first level of decomposition (before any downsampling

has been done). How the operations vary as the level of decomposition increases is

explained in Chapter 4.

2.2 Proposed Coefficient Split

The first step in the application of a lifting algorithm is the separation of the pixels

of the image into the even and odd subsets (E and O). The most common approach

is the use of separable schemes with alternating parities, as in Fig. 2.8. This means

that, as shown in Section 2.1.2 two directions in the 2D space are chosen. Then,

for the first lifting step, the pixel parity is alternated along one direction (which we

name transform direction (TD)), i.e., the two adjacent pixels of an odd would be even,

and vice versa, along TD; while it is forced to be constant along the other direction

(named alignment direction (AD)), i.e., the pixels are either all odd or all even along
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AD. Once the smooth and detail coefficients have been separated, the operation is

repeated over the two signals (s and d) as shown in Fig. 2.7. This time, the TD and

AD are switched. We call standard separable splitting the method that, as shown in

Fig. 2.8, chooses the vertical and horizontal directions (rows and columns) as the TD

and AD with the parity distribution explained above.

(a) Horizontal direction as TD. (b) Vertical direction as TD.

Figure 2.8: Example of standard separable splitting.

Many have seen in the splitting a way for adapting the wavelet algorithm to the char-

acteristics of the image. Regarding DM coding, some approaches, such as directionlets

[VBLVD06] and bandelets [PM05], base their algorithms on the optimal selection of

these directions in order to avoid filtering across edges. These methods segment the

image until a point where there is only one main edge inside each block, which must

allow parameterization using a certain function (a straight line in the case of direc-

tionlets and a curve in bandelets). Then they define the TD as the one parallel to

the edge and the AD as the one orthogonal to it. The separable wavelet algorithm

is then performed along these directions as in Fig. 2.7 (with parity alternation along

TD and constant along AD). Fig. 2.9 shows an example.

The main drawback of these methods is that the set of possible directions is finite

whereas the edges may adopt arbitrary shapes. Consequently, it cannot be guaranteed

that the edges will not be crossed while filtering, and thus the energy of the detail

coefficients may not be minimized. Moreover, large HP coefficients always appear

when filtering along the direction orthogonal to the edge (as in Fig. 2.9(b)). Our

method deals with the avoidance of edges during the prediction step, hence the filtering
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(a) TD parallel to edge. (b) TD orthogonal to edge.

Figure 2.9: Directionlet transform inside a block with a diagonal edge.

direction is chosen only based on our signal model.

We say that a wavelet transform has filters of p vanishing moments (VM) when the

transform coefficients expressed as z-transform have p zeros in π. This means that

any polynomial signal up to the order p− 1 can be represented completely in scaling

space, and thus the detail coefficients have zero intensity for that signal. In a general

case, the VM that the filters would need in order to correctly approximate a signal

would vary depending on the filtering directions. Fig. 2.10 shows how a particular 2D

signal can be filtered in many directions. For the vertical direction (number 2 in the

image), the filters would need many VM in order to provide a good approximation

to the signal; however, along the horizontal direction (number 1 in the image) the

number of VM needed is minimized. Nevertheless, it may not be always possible to

find this direction in a real image, and even if it were possible, it may happen that the

shape of the signal in the orthogonal direction (along which the transform also has

to be performed) requires filters with more VM. In such cases large HP coefficients

would still appear.

Yet, in our work, DMs are assumed to be planar functions (except around edges),

hence, as can be observed in Fig. 2.11, regardless of the direction chosen, the sig-

nal intensity varies linearly and thus, filters with two VM will always be able to

approximate the signal correctly.

Since the transform direction has no influence on the filtering result (along every

direction the signal can be perfectly approximated by using 2 VM filters), in our case

directional filtering is not necessary. Hence, selecting a standard separable splitting
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(a) Signal

1

(b) Few VM needed

2

(c) Many VM needed

Figure 2.10: Example of approximation of a signal along different directions

(a) Plane

1

(b) 1 VM needed

2

(c) 2 VM needed

Figure 2.11: Example of approximation of a planar signal along different directions

approach, such as the one shown in Fig. 2.8, while using specific edge-avoiding filtering

operations (with 2 VM filters) is sufficient for our purposes. Thus, our choice of

parity is not adaptive to the location of the edges (while the filtering operations will

be adaptive).

2.3 Proposed Prediction Step

Once the pixels of the image are divided into the even and odd sets, the next step

of the transform is the prediction of the odd pixels. The prediction step is the most

important part of our algorithm for it is only during this operation that the energy of

the detail coefficients can be minimized. If this is done, then high compression rates

can be achieved with minimum distortion on the resulting synthesized image.

As has been introduced in Section 2.1, for each odd pixel (i, j) ∈ O from the image

X(i, j) an approximation is built by combining pixels from the even set (E). Then the

corresponding detail coefficient is computed as the error of such an approximation.

It can be inferred from (2.6) that for each odd (i, j) there are two elements that

need to be specified: Ni,j and pi,j . The set of pixels Ni,j is the neighborhood of
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the odd pixel (i, j), and pi,j , which contains the coefficients that weight the relative

importance of each (k, l) ∈ Ni,j on the prediction of (i, j), can be seen as a filter.

Also, as discussed in previous sections, we have assumed that DMs are piece-wise

planar signals, i.e., images formed by planes that are separated by arbitrarily shaped

edges. Our algorithm bears these two concepts in mind (Edges and Planes) in

order to make an accurate prediction. In our work the selection of each neighborhood

Ni,j ⊂ E addresses the edge avoidance issue (all the evens in Ni,j must belong to the

same plane as (i, j)), while the filters pi,j are specifically designed for planar signals.

Non-adaptive techniques use the same filtering strategies for all odd pixels, i.e., pi,j =

p ∀(i, j) ∈ O and Ni,j has the same structure around every pixel (i, j). For example,

during the prediction operation in a 5/3 DWT [Mal08] (using the horizontal direction

as TD) Ni,j = {(i, j − 1), (i, j + 1)} ∀(i, j) ∈ O and pi,j = {12 ,
1
2} ∀(i, j) ∈ O. On the

contrary, in our algorithm we take advantage of the flexibility of the lifting procedure

to allow different pi,j and Ni,j to be chosen for each (i, j). This makes it possible

to avoid situations where the intensity of the detail coefficients would be high if a

non-adaptive technique were used. However, while non-adaptive transforms may be

able to simplify the prediction step into a few operations, the fact that our algorithm

processes each odd node separately implies the use of more computational resources.

Two other important drawbacks of adaptive techniques are that the transform loses

its orthogonality, and that side information must be sent, along with the transform

coefficients, to the decoder. How these drawbacks affect the final result is thoroughly

studied in Chapter 5.

The steps taken prior to the application of (2.6) are the selection of Ni,j and the

computation of pi,j . These steps are followed in this order for each odd node indi-

vidually. As will be seen in the following sections, the coefficients of the filter pi,j

depend directly on the position of the pixels that form Ni,j , and the selection of these

depends directly on the location of the edges in the image with respect to the odd

(i, j). Before getting into the details of how to design these two elements it is impor-

tant to discuss some characteristics of the distribution of the edges in the image in

order to find the best procedure.

The following subsection explains the blocks inside the prediction step based in what

is considered an efficient strategy in terms of computational resources consumption.
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2.3.1 Predicting Operation Blocks

Since, clearly, the vast majority of the pixels will not be located around edges but

deep inside the planes, it may be useful to see which Ni,j structure would be bene-

ficial in such cases. By describing a straightforward operation that processes these

odds separately and rapidly, while ensuring that the neighborhood structures are not

changed (with respect to the ones that would be selected in case that these pixels were

not separated from the rest), the transform can be computed considerably faster.

Let (i, j) be an odd pixel located far away from any edge, so that all the even pixels

around it belong to the same plane in the image (i.e., all could be included in Ni,j).
As illustrated by Fig. 2.11, most combinations of these evens, together with the

appropriate filters, can provide a perfect approximation of the odd’s value, i.e., so

that d(i, j) = 0. This means that Ni,j can be formed in a great variety of ways

without altering the value of the detail coefficient. Nevertheless, the choice of evens

does have an impact on the performance of the overall system depending on how

close to orthogonality the resulting transform is. As explained in Chapter 5, most

of the encoders used for coding the transform coefficients, introduce less errors for

transforms that are closer to orthogonality. Therefore, the algorithm will try to

imitate, as far as possible, the neighborhood structures of the 5/3 DWT, which is

known to be close to orthogonal. Hence, the combination of evens that is chosen in

these cases is the one that is formed by the two immediate neighbors along TD.

This means that when computing the transform along rows (TD = horizontal), the

odd (i, j) will be predicted by using the value of the pixels in (i− 1, j) and (i+ 1, j)

(i.e., Ni,j = {(i−1, j), (i+1, j)}); and when TD corresponds to the vertical direction,

by using Ni,j = {(i, j − 1), (i, j + 1)}. For this combination of evens, the filter

expressions given in Section 2.3.3 imply that pi,j = {12 ,
1
2}. We refer to the two

immediate neighbors of (i, j) along TD as its cousins. This result means that if the

transform was applied to an infinite 2D planar signal (no edges or image boundaries)

the algorithm would be equivalent to the 5/3 DWT.

These neighborhood structures and filter coefficients will be chosen for any odd node

that has no edges between it and its two cousins. Other combinations will be chosen

only when edges have to be avoided and when the boundaries of the image are reached.

In these cases, the procedure is adapted to the shape of the planes on the image,

elsewhere the transform behaves as a 5/3 DWT. Fig. 2.12 shows an example of the
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structure of the neighborhoods for pixels in the image, where some are near and

some are far from edges. Similarly to tree-based wavelets [SO09], since in our case

the connections between pixels (which are later used for filtering) are defined using a

graph topology, we say that the algorithm computes a graph-based wavelet transform.

odd pixel

even pixel

edge

odd-even connection

Figure 2.12: Most odds use the 5/3 DWT neighborhood structures (orange arrows).
Only when edges need to be avoided other structures are used (red arrows).

We refer to the pixels whose predictions are computed as in the 5/3 DWT as non-

extrapolated, while the pixels that are separated from any of their cousins by an edge

are called extrapolated pixels. Fig. 2.13 shows an example.

non-extrapolated odd

extrapolated odd

Figure 2.13: Division into extrapolated and non-extrapolated odd pixels

This procedure is very similar to the one presented in [MD08]. In that technique

edges are avoided by extrapolating the value of the pixels at the other side of the edge,

making the signal continuous along the transform direction. However, this method

uses only evens in the same row/column (depending on TD) as the odd, whereas

ours uses the information provided by all the evens in the 2D space. This makes a
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difference in cases where there are not enough evens along the 1D direction to build

an extrapolation of the function. This phenomenon is especially common when high

levels of decomposition have been reached. In such cases, [MD08] fails to provide

an accurate prediction of the odds, while our method is still able to minimize the

corresponding detail coefficients by using evens in other rows/columns. Nevertheless,

[MD08] can be extended to transforms that use filters with more than 2 VM, such

as the 9/7 DWT [Mal08], whereas our method cannot. However, since our algorithm

is designed specially for DMs, which have been assumed to follow planar functions

(only require filters with 2VM), it needs not be adapted to other types of wavelet

algorithms, aside from the 5/3 DWT.

5/3 DWT 

Prediction

EXTRAPOLATED ODD PIXELS

NON-EXTRAPOLATED ODD PIXELS

Non-Extrapol / 

d
r

Merge

Filter

Comput

,i jN

,i jp

( , )i j

( , )d i j

EXTRAPOLATED ODD PIXELSNon-Extrapol / 

Extrapol

Prediction

Operation

Neighborhood

Selection

Figure 2.14: Block Diagram of the Prediction Step.

The complete prediction step works as follows (see Fig. 2.14): First the extrapolated

pixels are pulled apart from the rest (the non-extrapolated ones) using the edge infor-

mation. Then, for each pixel (i, j) belonging to the first group the neighborhood Ni,j
is computed using the edge information. Next, with Ni,j as an input, the coefficients

of filter pi,j are calculated. Lastly, (2.6) is applied using the Ni,j and pi,j obtained.
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As for the second group of pixels, composed by the non-extrapolated odds, they are

treated in a different block that computes the prediction rapidly by using vector op-

erations. Finally, the values obtained for all the pixels are grouped together. The

output of this operation is a signal formed by all the detail coefficients obtained. Note

that the resulting transform coefficients would have equal value if all the pixels were

treated as extrapolated pixels, since the choice of Ni,j and pi,j for non-extrapolated

pixels would not vary.

In the following subsections and chapter each block is described in detail. The block

dedicated to the non-extrapolated odds is explained in Section 2.3.2. Section 2.3.3

presents the equations used for the computation of the coefficients of pi,j . Finally,

due to the sophistication of the procedure that defines each Ni,j , this is described

separately in Chapter 3. Even though the selection of Ni,j must be done prior to the

computation of the filter pi,j , the latter is explained first for a simpler comprehension

of the algorithm.

2.3.2 Non-Extrapolated Pixels Prediction

For all the odd pixels whose prediction does not require the avoidance of edges a

standard procedure equivalent to the one computed in 5/3 DWT is done. Due to the

simplicity of the process, the prediction consists in a simple vector operation. Let the

vector v(k), for k = 1 . . .M , contain the value of the M non-extrapolated odd pixels.

Then, given v(k) = X(i, j), we define the vectors n1 and n2 as follows: in the case

of horizontal filtering, n1(k) = X(i − 1, j) and n2(k) = X(i + 1, j). In the case of

vertical filtering, n1(k) = X(i, j − 1) and n2(k) = X(i, j + 1). This way n1(k) and

n2(k) contain the intensity of the cousin pixels of v(k).

Since both cousins are equidistant to the odd (which is located exactly between them)

the weight of each pixel in the predicting operation must be the same. Therefore

pi,j = {12 ,
1
2}. This is consistent with the result that the equations for the computation

of filters (explained in detail in Section 2.3.3) would provide. It is also equal to the

5/3 DWT filters. The predicting operation is then computed as:

d = v− 1

2
(n1 + n2). (2.8)

The resulting vector is formed by the detail coefficients corresponding to the pixels

in v, i.e., d(k) = d(i, j).
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2.3.3 Prediction Filters

In our algorithm, and given the piece-wise planar assumption about DMs, filters pi,j

are designed to approximate planar 2D signals with no error (i.e., they have 2 VMs).

Chapter 3 explains in detail how Ni,j is formed for each odd pixel (i, j) so that

there is no filtering across edges. At this point it is only necessary to know that,

given an odd node (i, j), once the subset Ni,j is defined, all the pixels involved in the

prediction operation ((i, j) and the evens that form Ni,j) are assumed to belong to

the same plane in the image. Knowing that, one can use the position and intensity of

the pixels in order to calculate the coefficients of such plane. Then an approximation

to the odd’s value can be built by extrapolating the intensity that the obtained plane

would have in the odd’s position. The only requirement to make this possible is

that Ni,j must be formed by either two even pixels collinear with (i, j) or three non-

collinear even pixels. Refer to Appendix B for a detailed proof of this fact. We say

that three nodes are collinear if and only if a straight line can be defined that passes

through their positions in 2D space. Fig. 2.15 illustrates the idea, while this can be

mathematically expressed as follows:

collinear{(k1, l1), (k2, l2), (k3, l3)} ⇔ ∃A,B,C | A · ki +B · li + C = 0, ∀i = 1, 2, 3.

(2.9)

a

b

Figure 2.15: The three pixels connected by the green line (a) are collinear, whereas
the pixels connected by the red line (b) are not.

Since Ni,j can have different configurations (they can be formed by either 2 or 3

pixels), there must be also different ways for computing the filter pi,j . We consider

two cases.

Firstly, if Ni,j = {(k1, l1), (k2, l2)}, where (k1, l1), (k2, l2) and (i, j) are collinear, the

filter can be designed so that it computes the parameters of the line formed by the

two even nodes and extrapolates its value in the position (i, j). The resulting value
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is an approximation of X(i, j). Note that this operation is valid both when the odd

pixel is located between the two evens and when both evens are located at one side

of the odd. Fig. 2.16 illustrates the idea.

Figure 2.16: Approximation of odd values using two collinear evens.

Mathematically, the filter’s expression will be the following:

pi,j(Ni,j) =
[
i 1

]
·

[
k1 1

k2 1

]−1
. (2.10)

In case k1 = k2, the matrix cannot be inverted; however the filter can still be computed

using ordinate coordinates (j, l1 and l2) instead of the abscissa ones (i, k1 and k2).

The resulting equation is the following:

pi,j(Ni,j) =
[
j 1

]
·

[
l1 1

l2 1

]−1
. (2.11)

Note that the resulting filter is the same as that in [MD08] when computing a trans-

form equivalent to 5/3 DWT. However, in [MD08], the three pixels involved in the

operation (odd and two evens) need to be located in the same row/column (depending

on TD), whereas, in our algorithm, the distribution of these three pixels in the 2D

space is not fixed, as long as they are collinear. For example, in the case of having

three pixels that define a diagonal line (with respect to TD), the filter coefficients can

still be computed using the coordinates of their positions and (2.10).

Secondly, in the case that Ni,j is formed by three non-collinear evens (Ni,j =

{(k1, l1), (k2, l2), (k3, l3)}) a similar operation can be done. This time, the param-

eters of the plane formed by the three evens are computed, and the approximation

consists of an extrapolation of that plane’s equation in the odd’s position. Fig. 2.17

illustrates the idea.
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Figure 2.17: Approximation of an odd value using three non-collinear evens.

Mathematically, the filter’s expression will be the following:

pi,j(Ni,j) =
[
i j 1

]
·


k1 l1 1

k2 l2 1

k3 l3 1


−1

. (2.12)

The method in [MD08] does not provide filtering strategies that use non-collinear

pixels, and so, this kind of filtering cannot be performed using their algorithm. Both

(2.10) and (2.12) provide filters with two vanishing moments. Therefore, if the signal

was completely planar the approximation would have no error, and hence the energy

of the detail values would be minimized. Also, note that if Ni,j was formed by the

two cousins of (i, j), the filter obtained from (2.10) will be pi,j = {12 ,
1
2}, which is

consistent with the method used for the non-extrapolated pixels.

2.4 Updating Step

The updating operation is applied to all the pixels in the even set (E) in order to

correct potential aliasing effects introduced by the sub-sampling. For each even pixel

(k, l) in the image the updating operation is computed using the expression (2.7).

Contrary to what has been said about the prediction step, in this case neither uk,l

nor Nk,l are freely chosen. Instead, they are determined by the selection of the filters

pi,j and neighborhood Ni,j for all the pixels (i, j) ∈ O. These elements are connected

as follows. The neighborhood of each even (k, l) is composed by all the odd pixels

whose neighborhoods included (k, l). Mathematically: Nk,l = {(i, j)|(k, l) ∈ Ni,j}.
As for uk,l it is computed using the prediction filters of all the odds in Nk,l following

the orthogonalizing design presented in [SO09]. Since this sophisticated method has
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not been part of the research activity presented in this work, a short summary is

presented here (refer to [SO09] for a complete discussion).

First, the image (whose dimensions are M ×N) is re-shaped as a MN × 1 vector by

creating the index mv,w = (v − 1)M + w, where (v, w) represents the position of a

pixel in the image. Following this notation, the neighborhood of an even pixel mk,l

can be written as Nmk,l
= {z1, z2 . . . zn}, where each zs represents the index of an odd

pixel. Let Pk,l be the MN × n matrix having the prediction vectors of the neighbors

of (k, l) as its columns, i.e., columns(Pk,l) = pzs for s = 1, 2, . . . , n. Then we can

define the vectors u∗k,l and p∗k,l as:

u∗k,l = (umk,l
(z1),umk,l

(z1), . . .umk,l
(zn)),

p∗k,l = (pz1(mk,l),pz2(mk,l), . . .pzn(mk,l)).
(2.13)

Using this notation, the updating filters are defined by:

u∗k,l = −(Pt
k,lPk,l)

−1p∗k,l. (2.14)

As in the prediction step, the computation of these elements needs to be done for each

pixel independently of the rest. Even though the choice of each neighborhood is now

a much more straight forward operation than during the prediction step, the whole

process may still be computationally demanding. Therefore, ways to optimize the

procedure are used. As has been shown in previous sections, the transform behaves

as a 5/3 DWT for most of the pixels in the image. Just as all the non-extrapolated

odds used identical neighborhood structures and filter coefficients, the uk,l and Nk,l
of the evens that are used only by non-extrapolated odds need not be computed for

each pixel separately.

During the prediction step, the sets of non-extrapolated and extrapolated evens are

formed as the odd pixels create their neighborhoods. The set of non-extrapolated set

is formed by evens that are only used in the prediction of both their cousins, which

must also be non-extrapolated odds. This means that an even that is used by only

one odd pixel, even when this is a non-extrapolated odd pixel, will belong to the

extrapolated evens set. Fig. 2.18 illustrates the process.

When the updating step takes place the two sets of pixels are separated. The updat-

ing of each extrapolated even is computed individually using the neighborhoods Nk,l
formed as explained above and in (2.14) and (2.7). As for the non-extrapolated evens,
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odd pixel

even pixel

edge

odd-even connection

(a) Example of the neighborhood structure.

non-extrapolated even

extrapolated even

(b) Extrapolated and non-extrapolated evens.

Figure 2.18: Separation into extrapolated and non-extrapolated evens.

a vector operation similar to the one explained in Section 2.3.2 is applied. Following

the equations above, for each even (k, l) in this set, Nk,l is formed by its two cousins,

while uk,l = {14 ,
1
4} for all the pixels in this set.

Once the pixels of both sets have been updated, they are merged again, forming the

smooth signal.

2.5 Filter Normalization

Although the expressions introduced in Section 2.1.2 for the predicting and updating

operation are completely valid for building a wavelet transform, they usually introduce
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one problem, namely, the gain for the high pass (HP) filter, i.e., prediction filter,

can be higher than the one for the low pass (LP) filter, i.e., updating filter; this

causes the HP coefficients to be scaled higher than the LP coefficients. Thus, when

quantifying the resulting transform coefficients for their encoding and transmission,

less quantization error is introduced in the HP band and more to LP band, which is

suboptimal. This can have negative effects when reconstructing the image.

This problem has been discussed in depth in previous studies, such as [SO09], [DS97]

and [Swe96]. The most popular solution consists in normalizing the filters so that

the total gain for the HP and the LP filters remains equal. Then, the equations

computed for the prediction and updating operations are:

d(i, j) = X(i, j)− 1
ρi,j

∑
(k′,l′)∈Ni,j

pi,j(k
′, l′) ·X(k′, l′),

s(k, l) = X(k, l) + 1
λk,l

∑
(i′,j′)∈Nk,l

uk,l(i
′, j′) · d(i′, j′).

(2.15)

Where ρi,j and λk,l stand for the normalizing values. In [SO09], for example, these

parameters are obtained as follows (using the notation of Section 2.4 ):

ρi,j = ‖p∗i,j‖,
λk,l = ‖Pt

k,l · u∗k,l‖.
(2.16)

However in our work we have found that this method has one serious drawback: since

each coefficient is normalized using a different factor, the smooth coefficients (approx-

imation) do not form a PWP signal after the first decomposition. This phenomenon

appears when using normalizing strategies where λk,j is not constant ∀(k, l) ∈ E . This

is a major problem in our work, since the algorithm, which assumes a PWP input, is

applied iteratively over that approximation. When the signal does not follow a planar

shape, the filters designed in Section 2.3.3 cannot approximate the signal correctly,

and thus HP coefficients appear.

Fig. 2.19 shows an example where a piece-wise constant image (which is a particular

case of PWP) is transformed using this kind of normalization. Since the edges are

very well defined and the image is completely PWP, our transform should be able to

perfectly approximate the signal, so that HP coefficients tend to be all zero. Also,

the resulting smooth signal should consist of a reduced version of the original im-

age, i.e., should be PWP for all levels of decomposition. However the evolution of
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the transform coefficients as the decomposition increases shows that this is not hap-

pening, but, on the contrary, the smooth signal is further from PWP as the level of

decomposition is increased. This phenomenon can be observed more clear in Fig. 2.20,

where the coefficients in Fig. 2.19 are projected in a 3D space. Consequently, different

normalization methods must be found.

(a) Original Image (b) 1 level of decom-
position

(c) 3 levels of decom-
position

Figure 2.19: Transform coefficients when using standard normalization.

(a) Original Image

(b) 1 level of decomposition (c) 3 levels of decomposition

Figure 2.20: 3D representation of the transform coefficients when using standard
normalization.

In our work ρi,j is computed as shown in (2.16). However, the even pixels are updated

using a constant value λk,l = λ ∀(k, l) ∈ E . This value is set as the one used for the

non-extrapolated evens, λ = 0.8452, which is the value obtained when using the 5/3

DWT filters and (2.16). This way, as shown in Fig. 2.21 and Fig. 2.22, the coefficients
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of the lowest pass bands of a PWP image (or a piece-wise constant, as in the example)

always form a PWP signal.

(a) 1 level of decom-
position

(b) 3 levels of decom-
position

Figure 2.21: Transform coefficients when using our normalization.

(a) 1 level of decomposition (b) 3 levels of decomposition

Figure 2.22: 3D representation of the transform coefficients using our normalization.

Thanks to this technique (see Fig. 2.23), the scaling effect is avoided, while no ad-

ditional errors are introduced. Fig. 2.23(b) shows the result obtained when no nor-

malization is used. Even though, in this case, the edges are perfectly preserved, the

colors of the image look slightly brighter than in the original image due to the scal-

ing effect. When using a standard normalization (see Fig. 2.23(c)), this problem is

avoided; however, severe artifacts appear because of the mismatch between the shape

of the signal and the model that is assumed (PWP). When normalizing all the up-

dating filters using a constant factor (see Fig. 2.23(d)), these problems are avoided,

and so the transform preserves both the edges and the colors of the original image.

This phenomenon has a strong impact in the final PSNR value of the reconstructed

image, as shown in Table 2.1.
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(a) Original Image (b) Using no Normalization

(c) Using standard Normaliza-
tion

(d) Using our Normalization

Figure 2.23: Reconstructed images for 0.25bpp and 3 levels of decomposition.

Normalization approach / bpp 1 bpp 2bpp 3bpp

No normalization 21.72 31.46 41.97
Standard normalization 23.07 33.41 43.57
Our normalization 31.99 42.77 44.37

Table 2.1: PSNR (measured in dB) obtained when coding Fig. 2.20(a) at different
bit rates, using the different normalization approaches.





Chapter 3

Neighborhood Computation

Since the prediction filters presented in Chapter 2 are specifically designed for planar

signals, it must be ensured that all the pixels involved in the prediction operation

belong to the same plane in the image. If this was done, the approximation built using

those filters could be very accurate and thus the intensity of the detail coefficients

would be very low. The selection of each neighborhood Ni,j aims to achieve this goal.

As discussed in previous sections, for each odd pixel (i, j), the structure of the subsets

of even nodes Ni,j is not fixed, but, on the contrary, any even pixel in the image

potentially belongs to Ni,j . However, the filter expressions used (Section 2.3.3) imply

that these sets are formed by combinations of either two or three pixels. This can

lead to many possible neighborhood structures for each odd pixel; hence, among all

the possibilities one must be selected. The process for the selection of each Ni,j is

done for each odd node (i, j) independently of the others and consists of two steps:

the first one finds which even pixels are located in the same plane as (i, j) (we name

this the pixel discarding step); among all these pixels, the second step finds the group

(pair or trio) of evens that is assumed to provide a more accurate approximation (we

name this the neighborhood choice step).

The first step requires information about the shape and position of the planes in the

image. This is obtained by the use of an edge detector. The second one works based

on a certain criterion. Both elements (edge information and selection criterion) are

shared by the encoder and the decoder. While the criterion is part of the algorithm

and so it needs not be specified to the decoder by the encoder, the edge information

33
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must be sent as side information. This way the same neighborhood structures are

used in both the forward and inverse transform and the process can be properly

reversed. Section 3.1 explains the pixel discard step, while Section 3.2 shows how the

most appropriate combination of evens is selected among all possible. In case that

there is not a single valid combination of even pixels for the approximation of an odd,

we say that the pixel is isolated in its plane. Section 3.3 shows the procedure that is

followed in such cases.

Note that in this thesis we describe the algorithm to identify the best neighborhood

set in terms of a metric computation and a minimization, but the number of likely

edge positions is finite so it will be possible to select Ni,j based on simple look-up

tables.

3.1 Pixel Discard

In order to determine which pixels are located in each plane, the position of the

edges in the image is used. Instead of using existing edge detection methods, in this

work, a novel edge detector that suits the needs of our algorithm has been designed;

Appendix A describes it in detail. The most important feature of this edge detector

is that it provides information about the presence of edges between each pixel and its

six immediate neighbors (i.e., the ones located next to it in the horizontal, vertical,

and both diagonals directions) by extending the pixel grid as shown in Fig. 3.1. We

will refer to this new grid as the pixel and edge grid.

Pixel position

Edge position

Edge

Figure 3.1: Example of the extended pixel and edge grid

This edge grid is very similar to the one presented in [MD08], in which edges where

located in a grid dual to the pixels grid. The resemblances and differences between



3.1. PIXEL DISCARD 35

this method and ours are discussed in Appendix A.

Thanks to this technique it is trivial to discern whether a pixel is separated from its

immediate neighbors by an edge or not. However, in order to select all the evens

that are located in the same plane as the odd to be predicted, the algorithm needs to

extend this information to pixels located at greater distances. Section 3.1.1 explains

the ideas on which the extension of the edge information is based. However, for

computational reasons, the algorithm does not work exactly as presented there, but

computes the information in a faster and simpler way while being consistent with its

main principles. The actual operation of the algorithm is fully described in Section

3.1.2.

3.1.1 Edge Grid Expansion

Given information about the presence of edges between each pixel and its immediate

neighbors, we seek to know whether any pair of pixels belong to the same plane in

the image. First of all, the following assumption is made:

Fact 1 If there is not an edge between two pixels then both of them belong to the

same plane.

Note that this is not an equivalence. Since edges can have totally arbitrary shapes,

it might happen that an edge is found between two pixels of the same plane. The

keyword is between. As can be observed in Fig. 3.2, depending on the path that

we draw from one pixel to another we may or may not find edges even though both

pixels belong to the same plane. However, we will always find an edge between a pair

of pixels that belong to different planes regardless of the path that is followed. Given

two pixels, in order to ensure that they are part of the same plane one would need to

look at all the possible paths that could connect them until a path which crossed no

edges was found. Nevertheless, this is computationally impractical, and, therefore, a

fixed method that easily designs paths between pixels is needed.

Let (i, j) and (k, l) be two pixels in the image. We define e(i,j)(k,l), a variable that

is equal to 1 in case there is an edge between both pixels and 0 otherwise. Also, let

Sni,j denote the set of pixels surrounding of (i, j) of level n. Mathematically Sni,j =
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Pixel

Egde

Path

a

bc

d

Figure 3.2: Pixels a and b are located in the same plane; depending on the path an
edge is found between them or not. Pixels c and d are located in different planes; all
the paths that connect them cross edges.

{(k, l) | dist[(i, j), (k, l) = n} where dist measures the distance between pixels as

shown in Fig. 3.3(a).

Finally, define Ani,j = {e(i,j)(k,l) ∀(k, l) ∈ Sni,j}. Note that A1
i,j ∀(i, j) is defined by

the pixel and edge grid previously described (refer to Fig. 3.3(b) for an intuitive

demonstration).

(i,j)

n=1

n=2

n=3

n=4

(a) Distribution of the pixels of each Sn
i,j

(i,j)

(k,l)

e     =1
(i,j)(u,v)

(u,v)

e     =0
(i,j)(k,l)

(b) A1
i,j

Figure 3.3: Example of the definition of Sni,j and A1
i,j .

Extending Fact 1, if there is not an edge between (i, j) and (k1, l1) and there is not

an edge between (k1, l1) and (k2, l2), this means that the three pixels belong to the

same plane, thus it is only natural to assume that there is no edge between (i, j) and

(k2, l2). Mathematically:

e(i,j)(k2,l2) = e(i,j)(k1,l1) ∨ e(k1,l1)(k2,l2). (3.1)

Where ∨ stands for the mathematical operation “or”. We can say that a path from

(i, j) to (k2, l2) that passes through (k1, l1) has been drawn. In our algorithm paths

are drawn by connecting adjacent pixels. Fig. 3.4 shows the shape of the paths that

the algorithm would follow in order to detect the presence of edges between a central
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pixel (i, j) and any other pixel on the image. Then, if there is no edge between any

pair of adjacent pixels along the path that connects (i, j) and (u, v) it is assumed

that there is no edge between them, and, consequently, that they belong to the same

plane.

(i,j)

(k,l)

Figure 3.4: Example of the creation of paths for a certain (i, j). In red, path from
(i, j) to (k, l)

Mathematically speaking, in order to know if there is an edge between two pixels,

e.g., (i, j) and (u, v) ∈ Sni,j , the following operation is computed:

e(i,j)(u,v) = e(i,j)(w,z) ∨ e(w,z)(u,v),
(w, z) = argmin

(k,l)∈Sn−1
i,j

[‖(u, v)− (k, l)‖] . (3.2)

This way, Ani,j ∀n can be obtained using only An−1i,j and A1
k,l ∀(k, l) ∈ S

n−1
i,j (which is

known thanks to the edge detector introduced before). Consequently, the information

provided by the edge detector, which only indicated the presence of edges between

adjacent pixels, can be extended to any pair of pixels in the image.

Nonetheless, even though this procedure is mathematically valid, running it for every

pair of pixels is not computationally practical since, for most images, the number of

operations needed would be too large. Moreover, in most cases these operations will

not be necessary for various reasons. Section 3.1.2 describes how, using the principles

presented above, the algorithm easily discards all the even pixels that are separated

by an edge from the odd pixel which is being predicted.
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3.1.2 Pixel Discard Algorithm

First of all, given a certain odd pixel (i, j) not all the evens in the image are considered

candidates. Among all the pixels in E , the subset Qi,j ⊂ E is formed by the evens

located within a certain distance of (i, j). The search area is limited to a square region

around (i, j) and only the pixels inside that region can be considered for the latter

formation of Ni,j . This area is formed as shown in Fig. 3.5, which comprises a fixed

number W of even pixels. Clearly, since images are finite signals, the pixels located

close to the boundaries will have less candidate nodes than the others (card(Qi,j ≤
W ), where card stands for the cardinality of the subset, i.e., the number of elements

in the subset). The reason for limiting the number of candidates is that it is assumed

that if a valid combination of pixels cannot be found using the W evens comprised

inside the region defined, it means that the pixel is isolated and therefore enlarging

the area of search would not provide any new valid evens but only will slow down all

the algorithm.

Figure 3.5: Only the evens inside the red square are considered for the prediction of
the central odd

Once we know which pixels conform the set of candidate evens, Qi,j , the pixel dis-

carding step can start. As explained, all the pixels that are separated from the odd in

question by an edge must not be considered further. Therefore, the resulting subset

Ri,j ⊂ Qi,j only includes even pixels that belong to the same plane as (i, j).

Contrary to what may have been inferred from the explanation of how the edge

information is used, pixel discarding is not pixel-oriented but edge-oriented. This

means that instead of checking the path from (i, j) to each even, the algorithm seeks
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for the edges in the area of interest and then discards the evens that are separated

from the odd by each one of these edges. Since the structure of the paths is fixed one

can trivially identify which evens will be assumed to be located in a different plane

given a certain edge.

To this purpose it must be remembered how the paths are drawn (Fig. 3.4). Bearing

this in mind, clearly, different edge positions imply the discarding of different number

of evens. For example, an edge located at (i+0.5, j) (e.g., edge a in Fig. 3.6) leads to

discarding all the pixels with position (h, j) ∀h > i (pixels inside the pink area next

to a), because all the paths that would be drawn from the odd to any of these pixels

would cross at least that edge. In a similar way, an edge located in a position such

as (i − 1.5, j − 1.5) (e.g., edge b in Fig. 3.6) will not only lead to discarding all the

pixels located in the diagonal line that the vector from the odd to the edge defines

(pixels with position (i − α, j − α) ∀α ≥ 2) but also all the horizontal and vertical

paths that are derived from it ((i+ δ, j + ρ ∀δ, ρ ≥ 2, pixels inside the pink area next

to b). Other similar cases can be found depending on the position of the edges. If

all these discarded evens are stored in the subset Ti,j ⊂ Qi,j , then the output of this

block is Ri,j = Qi,j \ Ti,j ; where \ represents the difference of sets.

It is worth noting that some edge positions will never have an effect on the pixel dis-

carding. For example, edges located between two odd pixels (e.g., edge c in Fig. 3.6);

can be ignored since, given the shape of the paths used, no evens would be discarded

by that edge. Chapter 4 explains in detail which consequences can these, and other

similar cases, have on the performance of the algorithm and how they are dealt with.

Summarizing, the pixel discarding step operates as follows: Firstly, the set of candi-

dates is restricted to the evens located inside a certain region around the odd pixel

(generation of set Qi,j). Then, all the edges located inside the region are considered.

Due to the structure of the paths each edge implies the discard of certain evens. All

these evens are grouped into a new set of eliminated evens (Ti,j ⊂ Qi,j). Once these

are eliminated from Qi,j , the remaining even pixels (which form Ri,j) are assumed to

belong to the same plane as the (i, j) and are used as the input of the following step,

namely the neighborhood choice, which, from among all of them, chooses the pixels

that will form the neighborhood Ni,j , used in the predicting operation.
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(i,j)
a

b

c

Figure 3.6: Evens inside the pink areas are discarded by the edges a and b (positions
(i+ 0.5, j) and (i− 1.5, j − 1.5)). The edge c has no influence in the discard.

3.2 Neighborhood Choice

The filter expressions described in Section 2.3.3, which will be applied to the pixels

in Ni,j , require that the neighborhoods be formed by either two or three evens. Two-

pixel neighbor sets are such that the even pixels in the set are collinear with the odd

pixel to be predicted. Three-pixel neighbor sets are such that the three even pixels are

not collinear. Generally, there will be many combinations of pixels that meet these

conditions. Using Ri,j , the set of all the evens that are not discarded by the previous

block, the set Mi,j is formed. This set contains all the possible neighborhoods Ni,j
that can be formed by combining pairs and trios of pixels in Ri,j as described above.

Until this point, we have used the assumption of piece-wise planarity. If the image

was exactly PWP and assuming that there were no errors in the pixel discarding

step, any Ni,j ∈Mi,j would provide a perfect prediction of the odd’s value. However,

if we bear in mind that the PWP assumption is just an approximation and that

the edge detector may be inaccurate sometimes, it is natural to conclude that there

are neighborhoods that are likely to provide a more accurate prediction than others.

Therefore, our goal is to find the optimal neighborhood (N ∗i,j). The concepts on which

the selection of a certain neighborhood over another is based on are the following:

first, the information corresponding to pixels close to each other is assumed to be

more correlated. Since the intensity of the DM may not exactly follow a planar

function, we favor Ni,j choices that cover a small area, which will tend to increase the
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probability that depth information can be well approximated by a plane. Following

the same intuition we will favor those Ni,j that are closer in distance to (i, j). Second,

pixels close to edges are considered less reliable. This is so because there is always the

possibility that the edge detector is not completely accurate in those areas, and so,

in reality, it may happen that those pixels belong to a different plane. Pixels located

far away from edges, on the contrary, are not likely to belong to different planes.

The adequacy of a certain neighborhood Ni,j = {(k1, l1) . . . (kL, lL)} (with L = 2, 3) is

measured according to these ideas by computing the parameters C(Ni,j), P(Ni,j) and

G(Ni,j). In order to explain the meaning of each parameter we will use the concept

that the positions of the pixels in each neighborhood define a geometrical figure (GF)

in 2D space. This way, neighborhoods composed of three pixels form triangles, while

the ones composed of two pixels form segments of straight lines. Fig. 3.7 illustrates

this idea.

1

2

3

Figure 3.7: Example of three GFs (1,2 and 3 in the image) that can be build using
the available evens.

The function C(Ni,j) reflects how close this GF is to the odd pixel in question.

C(Ni,j) is computed as the Euclidean distance from the odd pixel (i, j) to the centroid

(B(Ni,j)) of the GF. This centroid represents the center of gravity of the GF, and in

the case of segments it is located in the middle point of it, equidistant to both ex-

tremes. Fig. 3.8 graphically exemplifies the computation of C(Ni,j). Mathematically:

B(Ni,j) = 1
L ·
∑L

m=1(km, lm),

C(Ni,j) = ‖(i, j)− B(Ni,j)‖.
(3.3)
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B

C

(a) Triangular GF (3 evens)

C

(b) Linear GF (2 evens)

Figure 3.8: Example of the computation of C(·) for different GFs.

Clearly, for GFs located around (i, j) the parameter C(Ni,j) would have small values,

which is consistent with the decision of enforcing the use of neighborhoods formed by

pixels that are located close to the odd pixel.

Parameter P(Ni,j) is computed as the perimeter of the GF formed by Ni,j . For

neighborhoods of two pixels P(Ni,j) is equivalent to the length of the segment. Fig. 3.9

illustrates the computation of P(Ni,j). Mathematically:

P(Ni,j) =

L−1∑
m=1

L∑
m′=m+1

‖(km, lm)− (km′ , lm′)‖. (3.4)

h

h

h

1

2

3

P = h  + h  + h
1 2 3

(a) Triangular GF (3 evens)

P

(b) Linear GF (2 evens)

Figure 3.9: Example of the computation of P (·) for different GFs.

Thus, neighborhoods that are formed by pixels located in a small area will have a

lower cost P(·). This meets one of the requirements presented before, since the closer

the pixels the more likely that their values follow a planar shape.

Lastly, parameter G(Ni,j) is computed, using the extended pixel and edge grid, as

the number of edges located between each of the pixels that conform Ni,j and their

respective immediate neighbors. Fig. 3.10 shows an example. Mathematically:
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GNi,j =
∑

∀(k,l)∈Ni,j

∑
∀(u,v)∈S1

k,l

e(k,l)(u,v). (3.5)

G = 7

(a) Triangular GF (3 evens)

G = 5

(b) Linear GF (2 evens)

Figure 3.10: Example of the computation of G(·) for different GFs.

It must be remarked here that in the computation of G(·) it is used edge information

prior to any downsampling, regardless of the level of decomposition. Therefore, if a

certain pixel is separated by an edge from its closest neighbors, this edge will only

be counted if it was located immediately next to the even in question before any

downsampling was done (see edge a in Fig. 3.11), and not if it was located in any

other position between the pixel and its neighbor (see edge b in Fig. 3.11). This

technique is consistent with the nature of the parameter G(·), since the reliability

of a pixel does not depend on the level of decomposition but only on the distance

from that position to the edges in the original image. If the edge information was

computed based on the downsampled grid, some pixels could become less reliable as

the level of decomposition increased, which physically does not make sense.

ba

Figure 3.11: After a level of decomposition has been reached, the pixel positions in
gray are no longer considered. Therefore, the central pixel is separated from its two
new neighbors by edges. However, on the computation of G(·) only the edge a will
be counted.

Using these parameters, the best neighborhood is found as the one with the lowest

cost, with the cost of a each neighborhood Ni,j being computed using the following

expression:

J(Ni,j) = α · C(Ni,j) + β · P(Ni,j) + γ ·G(Ni,j). (3.6)

This way, not only the best neighborhood can be easily found, but the same operation

can be identically reproduced at the decoder. This is essential, for a different selection
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of the neighborhood would lead to an incorrect inverse transform, and, consequently,

to errors in the reconstructed image.

As for the α, β and γ factors, they are used to weight the relative importance that

each parameter (C, P and G) has in the cost function. In our experiments a simple

configuration which we refer to as the standard weighting is used, this is α = β =

γ = 1. However, if for some reason any parameter(s) had to be given more or less

importance in the approximation, these factors could be changed. Obviously, these

values have to be common to both encoder and the decoder. In practice, they can

be chosen independently of a specific image and thus do not require overhead to be

sent.

Fig. 3.12 shows different possible neighborhood structures (GF) for an odd pixel.

Bearing the meaning of each parameter in mind, it is intuitively possible to see which

GF would have greater cost and which ones a lower one.

1

2

3

Figure 3.12: J(GF1) < J(GF2) < J(GF3)

Note that if the non-extrapolated pixels were not computed in a separate proce-

dure, the number of candidate pixels and, consequently, of possible neighborhoods

(card(Mi,j)) for each one of them would be very large. Moreover, in those cases both

cousins would always be available (not separated from the odd by an edge). The

neighborhood composed by these two cousins would always show a zero value for C ;

and P would have the minimum possible value. As for G, since these nodes are located

far from edges, it would have zero or very small value (G = 0) in most of the cases.

Hence the function J(Ni,j) would give the minimum cost for the neighborhood formed

by the odds’ cousins, and that would be the N ∗i,j used in the prediction. This process,
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however, would be computationally very demanding. Consequently, the process that

computes these pixels separately (presented in Section 2.3.2) is not only consistent

with the criteria of the transform, but also makes the whole algorithm much more

efficient than what it would be if all the pixels were computed individually.

So far, the main ideas behind the selection of the neighborhoods have been given. In

Section 3.2.1, the steps that are taken in its implementation are shown in detail.

3.2.1 Neighborhood Selection Algorithm

Since for every odd pixel (i, j) there may be a large number of possible neighborhoods

Ni,j inside Mi,j , it may seem that the calculation of all the costs J(Ni,j) can be a

very demanding process in terms of computational resources and hence it can make

the algorithm very slow. However, by defining a fixed and optimized procedure, the

process can be accelerated considerably. This procedure is summarized in Fig. 3.15.

First of all, in our algorithm, the size of the square region used for the discard is set

to 5× 5, which implies that W = 28 (see Fig. 3.13). This measure has been decided

based on experiments in which it was concluded that bigger regions did not improve

the performance of the algorithm, but only made it considerably slower.

In order to compute the cost of all the valid combinations of evens we treat differently

two kinds of neighborhoods, the ones formed by two pixels and the ones formed by

three pixels. The algorithm firstly seeks for the pairs of even pixels collinear with

the odd (i, j) (card(Ni,j) == 2). As shown in Fig. 3.13, since the set of candidate

evens has been restricted to a certain area, there are only a few possible two-pixels

neighborhoods. These include the combinations of the evens located in either the same

row/column as the odd node (depending on the TD all the pixels in a row/column will

belong to the odd set O), and the ones that use pixels in the diagonals. The maximum

number of possible two-pixel neighborhoods is 18, since there are 3 directions with

4 even pixels in each, which are grouped in pairs (3 ·
(
4
2

)
= 18). However, since

some of the evens will be discarded because of the edges (otherwise the odd will be a

non-extrapolated pixel and would not be processed in this block) the real number of

combinations to compute will always be lower.

These combinations are found one at a time, and, for each one of them its cost is
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Figure 3.13: Pairs of even pixels collinear with the odd can only be found along the
green directions.

computed and compared against the minimum cost found until that moment. For

the computation of the parameters C and P the positions of the evens in the 2D

space are used as explained in the Section 3.2; as for G, a function called g(u, v) is

used. This function is created right after the edge detector is applied and contains

the number of edges located around each pixel. Using the notation introduced before

g(k, l) =
∑
∀(u,v)∈S1k,l

e(k,l)(u,v). This way G(Ni,j) =
∑
∀(k,l)∈Ni,j

g(k, l). Once all the

two-pixel combinations have been considered the best neighborhood among them,

which we denoteN 2
i,j , is selected. The cost of this neighborhood will be later compared

against the minimum cost found among all the three-pixel neighborhoods. Note that

it could also happen that due to the presence of edges it is not possible to find two

evens collinear with the odd one.

The next step consists in finding all the combinations of three non-collinear even

pixels. Since the number of possibilities is now higher, checking one possibility at a

time is not computationally efficient. This time, all the combinations of three non-

collinear evens are found at once, and the positions of the pixels that conform the

neighborhoods are ordered in a matrix. Then, the cost associated with each parameter

(P, C and G) is computed using the adequate vector functions over that matrix. The

best neighborhood is trivially found by picking the one with minimum total cost (J ),

we name this neighborhood N 3
i,j .

Finally, as shown in Fig. 3.15, the best two-pixel neighborhood is compared against

the best three-pixel one. The one with lower cost is then chosen as N ∗i,j , which will

be used in the prediction of (i, j). Mathematically: N ∗i,j = argmin
Ni,j=N 2

i,j ,N 3
i,j

[J(Ni,j)].

Note that, since the edge information is shared by the encoder and the decoder, the

neighborhood selection process can be replicated at the decoder; which implies that



3.3. ISOLATED PIXELS 47

by sending only the edge map as overhead, the transform can be inverted.

At this point, it can also happen that, for certain odd pixels, it is not possible to find

any valid combination of evens due to the presence of edges. We then say that the

pixel is isolated ; Section 3.3 explains how the algorithm proceeds in this case.

3.3 Isolated Pixels

So far, it has been assumed that for each odd there will always be enough candidate

even pixels to form at least one valid neighborhood. Nonetheless, it may happen

that for certain odd pixels there are no combinations of evens that fit the collinearity

conditions. This phenomenon is more common as the level of decomposition increases,

since the number of pixels in each plane is reduced and the pixels that remain are

located further apart, which increases the probability that there exist edges between

them.

The algorithm is modified in these cases. There are two possibilities: either search

alternative filtering operations using the pixels that are known to belong to the same

plane (if there are any) or accept filtering operations that cross edges. Since the

main goal of the transform is the avoidance of the high frequency values generated

when filtering across edges, the algorithm tries to avoid the second option as much

as possible. The algorithm, which is illustrated in Fig. 3.15, works as follows.

When, given an odd pixel (i, j), Mi,j is found to be empty, the algorithm checks if

there is an edge between the odd and one of its cousins. Note that at least one of

them is separated by an edge, for, if it was not, the odd would have been treated as

a non-extrapolated pixel. In case one of the cousins (say (k, l)) is located in the same

plane, the approximation is built using only that one pixel, Ni,j = (k, l) and pi,j = 1.

This way, the detail coefficient is computed as the difference of intensity between the

two pixels. Mathematically:

d(i, j) = X(i, j)−X(k, l). (3.7)

Contrary to non-isolated pixels, even if the signal is exactly planar, the detail co-

efficient is not expected to have intensity zero. However, since the two pixels are

located close together and in the same plane, the difference between them is expected

to be small. Note that this method is equivalent to using a mirroring technique that
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extrapolates the value of one pixel at the other side of the edge then filtering with

coefficients pi,j = {12 ,
1
2} (as in Fig. 3.14 ). This is equivalent to the method described

in [MD08], using only one even.

d

Figure 3.14: Prediction of an odd pixel using only one of its cousins. The purple line
represents an edge.

In the case that both cousins are separated by edges, the node is assumed to be

completely isolated in its plane. No other candidates are searched for. When this

happens, the odd is predicted using its two cousins (with pi,j = {12 ,
1
2}) regardless of

the edges between them. Due to the fact that the pixels belong to different planes

the detail coefficient is not minimized; nevertheless, this selection makes the whole

transform closer to orthogonality. As shown in Chapter 5, this can have a positive

influence in the overall quality of the reconstructed image.

Note that the fact that this point is reached does not mean that all the even pixels

were discarded during the Pixel Discard block. On the contrary, there may still remain

some even pixels that are not separated by edges, even though a valid neighborhood

cannot be formed. One alternative to our method could consist on finding any of

those pixels and applying (3.7). However, in that case the detail coefficient is not

ensured to be minimized either, while the transforms loses orthogonality and the

computation becomes much more complex and slow. In our work we have decided to

directly use the two cousins without checking other possibilities.
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Figure 3.15: Neighborhood choice process.





Chapter 4

Extension to Multiple Levels of

Decomposition

During the iteration of a lifting transform, the number of inputs on which the trans-

form needs to be computed changes as the level of decomposition increases. This is

due to the downsampling that is implied when the pixels are split into the E and

O sets. Moreover, since the transform uses a separable structure, the signal is al-

ways downsampled along one direction before computing the transform along the

orthogonal one. Consequently, the input (image) does not only change the number of

coefficients, but also their spatial distribution, i.e., at some point the coefficients will

form a square and at others they will form a rectangle. In this chapter, we provide

detail on how the operations explained in previous chapters are adapted to situations

when multiple levels of decomposition are employed.

First of all, it is important to understand how the spatial distribution of the coef-

ficients evolves during the transform process. As shown in Fig. 4.1, given an image

X(i, j), of size N ×M , the transform is first computed along rows, which means that

during the coefficient split, the TD is the horizontal (rows) while AD is the vertical

(columns). Using this structure, the pixels are predicted and updated. Once this

is done, the pixels corresponding to the different sets are separated. This results in

two 2D signals of size N
2 ×M (rectangular shape). In order to complete the trans-

form, the operation is repeated over these two signals separately. This time, the

TD corresponds to the vertical one, which means that the parity is alternated along

51
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columns. Once the two transforms have been computed, the result consists on 4 2D

signals of size N
2 ×

M
2 (note that the total number of coefficients has not changed,

since 4 · N2 ·
M
2 = N · M). When this point has been reached, the transform has

competed a level of decomposition; if further decomposition is needed the process

is repeated iteratively on the coefficients resulting from both updating operations

(smooth horizontal-smooth vertical).

TRANSF.

ROWS

N

M

N/2

M

N/2

M

TRANSF.

COLUMNS

TRANSF.

COLUMNS

N/2

M/2

Smoot Horiz.

Detail Horiz.

N/2

M/2

N/2

M/2

N/2

M/2

Smooth Horiz. 

Smooth Vert.

Smooth Horiz. 

Detail Vert.

Detail Horiz. 

Smooth Vert.

Detail Horiz. 

Detail Vert.

Figure 4.1: Block diagram of a separable lifting transform. The gray squares represent
pixels that are not further used because of downsampling.

Given the structure in which the DWT coefficients are normally represented (Fig. 4.2),

it is possible to think the transform coefficients are relocated (separating in space all

the frequency bands) after each level of decomposition. However, this could have very

damaging consequences when computing our transform over those coefficients, since,

for example, 3 positions that are collinear at a certain level of decomposition may not

be so if the coefficients are relocated as in Fig. 4.2(b) and 4.2(c), this would affect the

definition of the neighborhoods and the filters; also, the way that the edges are dealt

with should change in order to be adapted to a new structure. Therefore, as shown
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in Fig. 4.1, each detail/smooth coefficient is located exactly in the same position as

the corresponding original pixel, during the whole transform process.

(a) Original image (b) DWT coefficients after
1 level of decomposition

(c) DWT coefficients after
2 levels of decomposition

Figure 4.2: Example of the application of DWT to an image. In (b) and (c), the
transform coefficients are represented separately in space and frequency.

In our algorithm, the downsampling works as follows. Let q be the level of decompo-

sition at a certain stage of the transform. The splitting is first computed along rows,

which means that (i, j) will belong to O if j = 2qn − 1 (n ∈ Z) and to E otherwise

(j = 2qn). After the sets are separated, the pixels are split again in order to continue

with the transform, in this case a pixel belongs to O if i = 2qn−1 and to E if i = 2qn.

Thanks to this method, the position of a coefficient in relation to another does not

change as the level of decomposition increases. However, this also implies that some

parts of the algorithm must be adapted to each stage of the transform, these are:

the square region used during the even discarding and the edge map (EM). Fig. 4.6

illustrates how these elements, which are external to the lifting transform but have

a deep repercussion on its result, change as the level of decomposition grows. These

adaptations are detailed next.

First, as shown in Fig. 4.6 the square region used in order to discard even pixels,

which is introduced in Section 3.1.2, is enlarged after each step so that the number of

evens inside the region remains constant, and hence, the same possible neighborhoods

can be formed. Let dxqr (dyqr) be the maximum distance from the odd (i, j) being

predicted, to any pixel (k, l) inside the restricted area when k = i (l = j) (see Fig. 4.3),

at the level of decomposition q, when the transform is computed along rows. When

the transform is computed along columns, we denote this distance dxqc (dyqc ). For

the first level of decomposition dx1r = dy1r = 3, which forms the square region of size

5 × 5 introduced in Section 3.2.1. After the image is downsampled along rows, the
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horizontal component is doubled, making the area rectangular instead of square, i.e.,

dxqc = 2 · dxqr
dyqc = dyqr .

(4.1)

Once the column downsampling has been performed, the vertical component is dou-

bled too, which returns the region to a square shape:

dxq+1
r = dxqc,

dyq+1
r = 2 · dyqc .

(4.2)

Fig. 4.3 shows how the region changes as the number of levels of decomposition

is increased. Note that thanks to this method, all the neighborhoods structures

described in Section 3.2.1 can be formed regardless of the level of decomposition,

since neither the number of evens nor the possible combinations of collinear/non-

collinear pixels are changed.

dx  =3

dy  =3r

1

r

1

(a) Square region when transform along
rows

dy  =3c

1

c

1
dx  =6

(b) Rectangular region when transform along
columns

Figure 4.3: The region of non-discarded evens changes its shape and size in order to
ensure that there is always the same number of possible neighborhoods.

Second, the EM can be updated before each step of the transform in order to accelerate

its computation, without changing the resulting output. For this purpose, we take a

closer look at the technique designed for drawing paths from pixel to pixel, which is

used for discarding the evens that belong to different planes (see Section 3.1). When

using this method some edges will never be crossed by any path, and thus, the result

of the discard will not be affected if they are not considered. However, this edges

slow the algorithm significantly. Therefore, by eliminating them from the EM before

computing the transform, the algorithm can be computed much faster. The location

of these useless edges is the following:
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For start, a path that connects two odd coefficients of the same row or column will

never lead to an even one. Hence, no even will be discarded due to the presence of

edges that cross such path (see edge c in Fig. 4.4), i.e., the choice of Ni,j will not be

changed by those edges. Using a similar argument, the edges which are located in

rows/columns that have been eliminated by downsampling (see edge a in Fig. 4.4)

will be of no use for the pixel discard operation. On the contrary, edge positions

that represent edges between diagonal neighbors (see edge b in Fig. 4.4) cannot

be eliminated so easily, even when the closer pixels are odds, for there is always

the possibility that some paths pass through those positions no matter the level of

decomposition.

a

b

c

Figure 4.4: The edges a and c do not imply the discard of any evens, while b does.

Also, as shown in Fig. 4.5, as the image is downsampled, the last rows/columns are

not transformed anymore. Therefore, the edges located in those areas are no longer

needed, for they only lead to positions where the pixels have been eliminated by

downsampling. For a certain level of decomposition q, these useless positions are the

following: when the transform is computed along rows, all edges with position (i, j)

so that i > 2mr and j > 2mc , where mr = log2(N)− q and mc = log2(M)− q, can be

eliminated without altering the result of the transform. On the next stage, when the

transform is computed along columns, those edges are still not used, but also some

additional positions can be eliminated: for the transform of the detail coefficients

resulting from the previous stage (detail horiz. in Fig. 4.1), these correspond to the

columns with i > 2mr−1; while for the smooth coefficients (smooth horiz. in Fig. 4.1),

the first columns (i < 2q) are the useless ones.
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(a) Transform computed along
rows

(b) Transform along columns on
the detail coeffs.

(c) Transform along columns on
the smooth coeffs.

Figure 4.5: Structure of the pixels for a certain level of decomposition. The edges
outside the region marked by the orange line will not influence the result.

In summary, given a certain EM BW 0(u, v), output of the edge detector, whose size

is (2N − 1)× (2M − 1) because it uses the pixel and edge grid, the EMs BW q
r (u, v),

BW q
ce(u, v) and BW q

co(u, v) that are used in the the lifting operations as shown in

Fig. 4.6, are computed as:

BW q
r (u, v) =

{
0 if u = (n+ 1) · 2q + n+ 1 or v = (n+ 1) · 2q + n+ 1; n ∈ Z
BW q−1

ce (u, v) otherwise

(4.3)

BW q
ce(u, v) =

{
0 if u = n · 2q+1 + 2q − 1 or v = 2q + 2α; n, α ∈ Z;α ≤ 2q−1 − 1

BW q
r (u, v) otherwise

(4.4)

BW q
co(u, v) =

{
0 if u = (n+ 1) · 2q+1 − 1 or v = (2n+ 1) · 2q − 1; n ∈ Z
BW q

r (u, v) otherwise
(4.5)

Once all these adaptations have been done, the transform can be computed at any

level of decomposition as explained in Chapters 2 and 3.
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Figure 4.6: Block diagrams of the operation computed parallel to the lifting transform:
Discard region resizing (on top, in orange) and updating of the EM (on bottom, in
green).





Chapter 5

Experimental Results

The initial goal of this work was the design of a wavelet transform that efficiently

encodes depth maps while preserving the edges on those DM images. This way, it

was assumed, the resulting synthesized images obtained by using these DMs would

have a better perceptual quality than the ones obtained when the DMs were encoded

using other existing methods.

In Section 5.1 we experimentally prove that when DMs are coded using our method,

the PSNR values achieved are higher than the ones obtained with standard trans-

forms. Also, we prove that the edges are well preserved when using our transform

while blurred when using non-adaptive filtering techniques. Then, we also compare

the performance of our algorithm against the method presented in [MD08] and reach

important conclusions about the different edge-avoiding approaches.

Moreover, since the ultimate use of DMs is not their direct viewing but their use in

view synthesis operations, we also compare the resulting synthesized images obtained

with DMs that have been coded with our transform against others obtained using

different methods. This is done in Section 5.2.

Note that all the results presented in this chapter have been obtained using three levels

of decomposition. Also, the lifting filters of our transform are normalized using the

technique introduced in Section 2.5 and the edge detector used is the one presented

in Appendix A.
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5.1 Compressed Depth Maps

First, we compare the performance of our proposed transform against the standard

9/7 and 5/3 DWT. For this purpose we use some of the DMs provided in the Mid-

dlebury data set [Mid] and code them for different bit rate values. The obtained RD

curves are presented in Fig. 5.1 to 5.5. As the results show, our algorithm performed

significantly better than the other methods for high bit rates, gaining up to 15 dB

in some cases. However, for very low bit rates (0.125 bpp or below), our method

achieved similar PSNR values as the standard ones, or in some cases had a worse

performance. This is due to the inclusion of EMs as side information; since the size of

the EM is fixed, the percentage of bits dedicated to this information grows as the bit

rate decreases. This phenomenon has a deeper repercussion for images with a larger

number of edges (see Fig. 5.2), whereas for DMs with few edges (see Fig. 5.5) fewer

bits are dedicated to the overhead, and thus, our results are not affected as dramati-

cally. To illustrate this fact, the total bits per pixel dedicated to each EM is specified

together with the RD curves. However, note that for most applications, DMs with

PSNR lower than 25 dB introduce severe distortion. Therefore, a comparison of the

performance of the algorithms below that point does not have a practical use, since

in all cases the interpolated images would ave very deteriorated quality.

(a) Original Image

(b) Edge Map

(c) RD curves

Figure 5.1: Tsukuba DM. 0.0059 bpp dedicated to EM
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(a) Original Image

(b) Edge Map

(c) RD curves

Figure 5.2: Art DM. 0.0099 bpp dedicated to EM

(a) Original Image

(b) Edge Map

(c) RD curves

Figure 5.3: Flowerpots DM. 0.0059 bpp dedicated to EM
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(a) Original Image

(b) Edge Map

(c) RD curves

Figure 5.4: Baby DM. 0.0060 bpp dedicated to EM

(a) Original Image

(b) Edge Map

(c) RD curves

Figure 5.5: Bowling DM. 0.0049 bpp dedicated to EM
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Another aspect that is worth considering is the fact that the gain obtained with our

transform (as compared to standard methods) is greater for images with stronger

edges, i.e., greater difference of intensity between the pixels at each side of the edge,

(e.g., Fig. 5.3) than for ones with weaker edges (e.g., Fig. 5.4). This is so because the

error incurred when standard methods mix pixels from different planes is lower in the

second group of images, and hence, the energy of the coefficients of the HP bands is

inferior. Thus, the gain achieved when avoiding filtering across edges is higher when

edges are stronger.

One of the main objectives of our transform was the preservation of the sharpness

of the edges. As shown in Fig. 5.6, thanks adaptive filtering, the blurring effect

introduced by the standard methods does not appear in our case (even when all images

have similar PSNR values). This is important when the coded DMs are later used

in View Interpolation operations. Also, note that in areas where the edge detector

fails to find edges, our transform also introduces severe blurring (see Fig. 5.7). This

reflects the importance of a reliable approach for finding the edges.

(a) Original DM (b) Using our method

(c) Using 5/3 DWT (d) Using 9/7 DWT

Figure 5.6: Reconstructed Tsukuba image after coding at 0.125bpp.
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(a) Section of original DM (b) Edge Map

(c) Using our method (d) Using 9/7 DWT

Figure 5.7: Zoomed area of the Tsukuba DMs. Using our method, the edges indicated
in the EM are preserved, while the rest are blurred. The standard method blurs all
edges.

Lastly, another factor that damages the performance of our algorithm is that SPIHT

(which is used for encoding the transform coefficients) is optimized for orthogonal

transforms, i.e., it tends to prioritize the transmission of larger transform coeffi-

cients. However, due to the filtering techniques used, our method is far form being

orthogonal. More specifically, if Y (i, j) denotes the resulting coefficients from trans-

forming X(i, j), then if the transform was nearly orthogonal, we should expect that

δ =
∑

i,j |Y (i, j)|2/
∑

i,j |X(i, j)|2 ≈ 1. However, our transform is, in general, not even

close to this condition. Table 5.1 shows the values of δ for the images presented in

Figs. 5.1 to 5.5. Clearly, our transform is far from orthogonality, while the standard

methods are not. Thus, using SPIHT to encode our transform coefficients is inher-
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ently suboptimal, and it is one of the reasons (together with the side information

bit consumption) why our transform does not achieve much gain at low bit rates.

Future studies should be focused in both the causes and the consequences of this

phenomenon. In an improved version of our algorithm it would be necessary to con-

sider filter techniques that make the overall transform more orthogonal. A possible

solution could consist of improving the filter normalization approach so that it does

not only ensure that the transform coefficient follow a PWP model (as it does now)

but also that the overall transform is closer to orthogonality.

Transform / Image tsukuba art flowerpots baby bowling

Proposed 0.1164 0.1172 0.1164 0.1179 0.1188
5/3 DWT 1.0353 1.0352 1.0417 1.0277 1.0424
9/7 DWT 0.9872 1.0219 1.0149 1.0173 1.0318

Table 5.1:
∑

i,j |Y (i,j)|2∑
i,j |X(i,j)|2 for various transforms and images.

We also compare the performance of our algorithm against the one presented in

[MD08] (which we refer to as Minh Do method). Since the normalization approach

introduced in Section 2.5 is a part of our work we first compare the PSNR values

obtained with our transform (using our normalization method, which we refer to as

uniform normalization) against the ones obtained with [MD08] (using the standard

normalization approach). As the RD curves of Fig. 5.8 show, our transform performed

significantly better than their algorithm for all images and bit rates (achieving up to

8dB of gain when using our transform).

Moreover, in order to compare the neighborhood selection approach of our transform

against the one in [MD08], we combine the transform in [MD08] with our normaliza-

tion method. This way, the transform that obtains higher PSNR values will be the

one with the most efficient neighborhood selection algorithm. Since the number of

possible neighborhood structures is greater in our algorithm, intuition says that DMs

coded using our method should have better quality. However, as the RD curves show

(see Fig. 5.8), the results obtained with this method are very close to ours (in some

cases even better). This implies that the gain obtained when choosing our method

over the one in [MD08] is due to the normalization method introduced, rather than

to the larger number of possible neighborhood structures.

This can be attributed to the fact that DMs are, locally, almost constant. In [MD08],
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when an odd’s neighborhood cannot be formed by the odd’s cousins or by a combi-

nation of two other evens located in the same row/column as the odd, the pixel is

assumed to be isolated. In this case (see Section 3.3) the detail coefficient consists of

the difference between the intensity of the odd pixel and the one from a certain even

(which belongs to the same plane). If the image is perfectly PWP, the intensity of

this detail coefficient will (in general) not be zero, and thus high frequency compo-

nents appear on those areas. Our method, on the contrary, is capable of searching for

alternative filtering strategies that generate a zero intensity detail coefficient. This

way, with our transform, the coding of the HP coefficients requires less bits. This

should lead to higher quality DMs when using our method, than when using the

transform in [MD08]. However, since the DMs used are very close to being locally

constant, the detail coefficients obtained by the algorithm in [MD08] have very low

value. Then, in order to code these HP coefficients very few bits are required, as

well; and so the appearance of these HP components does not have a strong impact

on the overall quality of the reconstructed images. Moreover, since most DMs are

not exactly PWP, the errors that our transform generates when approximating the

signal for a plane are comparable, in terms of HP components intensity, to the ones

obtained when using [MD08]. Also, the search of alternative neighborhood structures

often leads to crossing edges when filtering, due to errors during the generation of

the EM, which introduces high intensity HP coefficients. All this implies that the use

of a larger kernel of possible neighborhoods is does not improve the quality of the

reconstructed DMs as much as expected.

In order to prove this theory, we have developed a Haar-like transform where each

odd is predicted using only its available cousins, i.e., both of them (as in 5/3 DWT)

if they are not separated by edges, and, in case one of them belongs to a different

plane, the prediction is computed using only the remaining one. The normalization

method used in this case corresponds to the one presented in Section 2.5. Contrary

to [MD08], whose algorithm could use pixels located further away from the odd in

order to extrapolate the signals values, in this Haar-like transform, only the imme-

diate neighbors of each odd, along TD, can be used for its prediction. This would

introduce strong errors in case that the image was not close to being locally con-

stant. The results (see Fig. 5.8) show that this transform achieves similar results

(and even better in some cases) as both the one proposed in this work and the one

in [MD08]. Consequently, it is deduced that DMs can be considered locally constant.



5.1. COMPRESSED DEPTH MAPS 67

Thus, assuming that DMs are piece-wise constant (PWC) images can be sufficient

for developing coding algorithms to be applied to DMs. Nevertheless, since PWC is

a particular case of PWP, all the assumptions and statements presented in this work

are still valid. Moreover, our transform, and all the tools presented in this work, can

be extended to other PWP signals in different scenarios.
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Figure 5.8: RD curves obtained using different edge-avoiding filtering techniques.
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5.2 Interpolated Views

We now compare the perceptual quality of the synthesized images that are obtained

when using our method against the one obtained when using standard methods.

For this, we consider the interpolation of individual frames in the standard ballet

and breakdancers sequences using two adjacent views. The frames whose DMs are

compressed are shown in Fig. 5.9 and 5.10. For simplicity, we only compress the depth

maps but not the individual frames. Joint encoding of video and depth is beyond the

scope of this work. The DMs to be compressed, together with their corresponding

EMs, are show in Fig. 5.11 and 5.12. All the results have been obtained using the

interpolation software developed by Nagoya University [Uni].

(a) View 3 (b) View 5

Figure 5.9: Frames from the Ballet sequence

(a) View 3 (b) View 5

Figure 5.10: Frames from the Breakdancers sequence
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(a) View 3 DM (b) View 3 EM

(c) View 5 DM (d) View 5 EM

Figure 5.11: Ballet frames DMs and EMs

(a) View 3 DM (b) View 3 EM

(c) View 5 DM (d) View 5 EM

Figure 5.12: Breakdancers frames DMs and EMs
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Note that even when the DMs are not compressed the interpolated images show severe

artifacts (see Fig. 5.13).

Figs. 5.16 and 5.15 show the images obtained when the DMs are compressed at 0.25

bpp for both our method and the 9/7 DWT. Clearly, the standard method deforms

the shape of the objects, which degrades the perceptual quality of the image. Thanks

to our adaptive filtering technique, the edges are preserved, and, consequently, the

shape of the objects maintains its naturalness. This is even more clear in Fig. 5.16

and 5.17, which shows in detail a zoomed area of the resulting images. Note that the

artifacts introduced by our transform are very similar to the ones that appear when

the DMs are not compressed. Thus, DMs coded with our transform require less bits

for storage and transmission, while the perceptual quality of the image is not severely

affected.

Also, it is worth noting that even though the PSNR values obtained for the DMs

are very similar for both transforms (see Table 5.2), the perceptual quality of the

resulting synthesized images is very different. This is due to the fact that the pixels

located around edges represent a small percentage of the total set of pixels, thus, the

errors generated on those areas have little impact in overall PSNR of the DM, while

they are determinant in the result of the view interpolation.

Ballet v. 3 Ballet v. 5 Breakdancers v. 3 Breakdancers v. 5

Proposed 46.07 48.06 52.23 51.93
9/7 DWT 52.09 47.77 51.53 51.13

Table 5.2: PSNR (in dB) of the reconstructed DMs.

Note that, again, the standard method introduces more error when the edges are

strong (e.g., in the Ballet sequence, Fig. 5.14(b)), while achieving considerably good

results for images with weak edges (e.g., the Breakdancers sequences, Fig. 5.15(b)).

For both types of images our transform achieves very good visual results (see Figs. 5.14(a)

and 5.15(a)), since the edges are preserved in both cases.
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(a) Ballet Frame

(b) Breakdancers

Figure 5.13: Interpolated Frames obtained with uncompressed DMs
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(a) Using our method

(b) Using 9/7 DWT

Figure 5.14: Ballet frames obtained with compressed DMs
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(a) Using our method

(b) Using 9/7 DWT

Figure 5.15: Ballet frames obtained with compressed DMs
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(a) Using uncompressed DMs (b) Using our method (c) Using 9/7 DWT

Figure 5.16: Zoomed area from the interpolated Ballet images

(a) Using uncompressed DMs (b) Using our method (c) Using 9/7 DWT

Figure 5.17: Zoomed area from the interpolated Breakdancers images





Chapter 6

Conclusions and Future Work

In this work we have presented an innovative wavelet transform that encodes DMs

taking into consideration the final result of their use in view synthesis. The transform

has been defined using the lifting procedure and based on the assumption that a DM

is a PWP signal and that the sharpness of its edges need to be preserved. Starting

from that point, the different elements of the lifting procedure have been adapted to

the scenario, creating an innovative edge-avoiding filtering technique. The coefficient

split and the prediction filters have been defined for planar signals, while the neigh-

borhood of each odd is chosen so that filtering across edges is avoided. The algorithm

also includes a new filter normalization approach which ensures that the transform

coefficients follow a PWP model after transforming a PWP signal.

In order to suit the needs of our algorithm, a new edge detector technique, which

renders the edge information in a new grid structure, has been designed as well.

Thanks to these adaptations, we not only improve the quality of the reconstructed

DMs (as compared to existing methods), but also eliminate the artifacts on the syn-

thesized images, which are induced by filtering operations that cross edges. When

DMs are encoded using our method, the synthesized images obtained by view inter-

polation present a significantly better perceptual quality.

In our experiments, we have also seen that assuming that DMs are piece-wise constant

images is sufficient, in the vast majority of the cases, for designing adaptive wavelet

transforms. Nonetheless, since this is just a particular case of PWP images, our
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transform is completely valid for DMs, while also extensible to different scenarios

based on PWP signals.

As for future studies, many elements of this work can be revisited and improved in

order to be adapted to different scenarios. First, future lines of work could focus

in the joint coding of depth and video sequences. Also, the PWP model should be

extended to a piece-wise polynomial one so that it can be adapted to other signals

apart from DMs. Ways for making the transform closer to orthogonality should be

developed too. In addition, the basis set by our edge detector technique should also

be exploited in order to achieve greater precision in the detection of edges; which has

a deep repercussion in the performance of our transform and many other applications.

Other studies could be focused in adapting the normalization technique presented in

this work to other applications that require that the model of the signal remains

constant through the whole transform process. Moreover, in an improved version of

our transform, it would be necessary to consider using simplified EM (requiring fewer

bits) for lower bit rates. Other elements of our transform, such as the shape of the

paths and the criteria presented in Chapter 3, should be revisited and adapted when

developing later versions of our transform in different scenarios.



Appendix A

Edge Detector

As has been shown in previous chapters, the location of the edges is a very important

element in our algorithm. In Chapter 3 the algorithm use of the edge information

was explained in detail. There, a new grid in which some positions corresponded to

the pixels in the image while some others were only used for locating the edges was

introduced. Note that, most existing edge detection techniques do not render their

outputs in such grid but, on the contrary, they use what we have named edge pixels.

This means that when an edge is found between a pair of adjacent pixels, the edge

detector assigns to this edge the position of one of these two pixels. The decision of

which pixel is chosen to be an edge pixel does not take into consideration which side

of the edge each pixel is located in. In piece-wise planar images, this implies that

one cannot tell which plane edge pixels belong to. Fig. A.1 shows an EM obtained

by applying one of these techniques, where, clearly, the location of the edge pixels

is not consistent with the position of the pixels in the planes of the image. Since

our algorithm requires precise information about the location of edges in the image

so that pixels from different planes do not get filtered together, these methods are

not valid for our purposes. Using a pixel and edge grid such as the one presented in

Chapter 3, on the contrary, one can always tell on which side of the edge each pixel

is located, and, thus, mixture between pixels of different planes can be avoided.

Our work includes the creation of a novel edge detection technique that locates the

edges in the pixel and edge grid. Since the edge detection is not the main objective

of our work, the improvement of such technique is left for future studies. Section A.1
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Figure A.1: Edge Map obtained using Canny ([Can86]) edge detector. The vertical
edge on the left should be completely straight.

explains in detail how the edges are found and presented in the output, while Sec-

tion A.2 shows how this information has been manipulated and coded so that the bit

rate consumed by its transmission to the decoder is minimized.

A.1 Edge Detection Algorithm

As the vast majority of edge detectors, ours works based on the directional gradient

of the image. This means that the gradient is computed all around the image, and

it is assumed that there is an edge in those positions where the intensity of the

gradient is higher than a certain threshold. The edge detection algorithm is shown

in Algorithm 1.

Given a DM X(i, j) of size N ×M the first step that our edge detector takes is the

creation of a new variable, which we will name Y (u, v) of the size of the mentioned

pixel and edge grid ; i.e., it has (2N − 1) × (2M − 1) positions. For each pixel (i, j)

in X the corresponding position in the new grid is (2i − 1, 2j − 1). Therefore, all

the positions of the form (2n − 1, 2m − 1) ∀n,m ≥ 1 represent the positions of the

pixels in the images, whereas the rest of the positions are potentially edges. These

potential edges are located between each pixel and its six immediate neighbors in the

vertical, horizontal and both diagonal directions. As can be observed in Fig. A.2,

the positions of the form (2n− 1, 2m) and (2n, 2m− 1) correspond to edges between

neighbors along the vertical and horizontal direction respectively, whereas positions

such as (2n, 2m) correspond to edges in the diagonal directions. Note that while
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each horizontal/vertical edge separates a pair of pixels, each diagonal edge implies

the separation of two pairs of pixels.

Pixel position

Edge position

Edge

Figure A.2: Representation of an edge in the pixel and edge grid.

This method is very similar to the one used in [MD08]. There, the edge grid is formed

only by the positions corresponding to the diagonal edges (see Fig. A.3). This way,

the edge grid is dual to the one used by the pixels of the image. The horizontal

and vertical edges are obtained by combining nearby diagonal pixels. As seen in

Section A.2 after our edge map is coded, the resulting edge map is equivalent to the

one in [MD08].

Figure A.3: Edge grid used in [MD08].

Once Y (u, v) is created, each edge position is assigned the value of the gradient of

the signal in that location. For the horizontal and vertical edges, this value consists

of the difference of intensity between the two adjacent pixels on the image. As for

the diagonal edges, since there are two pairs of pixels involved, the value assigned is

computed as the maximum of the two differences of intensity. These differences are

given as absolute values. Obviously, the coefficients corresponding to the pixels in

the original image have zero value. Mathematically:
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Y (2n− 1, 2m− 1) = 0,

Y (2n− 1, 2m) = |X(n,m)−X(n,m+ 1)|,
Y (2n, 2m− 1) = |X(n,m)−X(n+ 1,m)|,
Y (2n, 2m) = max{|X(n,m)−X(n+ 1,m+ 1)|, |X(n,m+ 1)−X(n+ 1,m)|}.

(A.1)

Once the gradient has been computed in all positions, the threshold is defined. Let

q = {Y (2n − 1, 2m), Y (2n, 2m − 1), Y (2n, 2m) ∀n,m ≥ 1} be the set of all the

gradient values obtained in the previous step, then the threshold τ is computed as

τ = mq + 0.6 · σq, where mq stands for the mean of the values in q and σq represents

its standard deviation.

Finally the edge map is created as a binary image of size and structure equal to

Y (u, v). This image, which we name Z(u, v), contains value 1 for the positions where

the gradient is higher than the threshold τ and 0 elsewhere. Mathematically:

Z(u, v) =

{
1 if Y (u, v) > τ

0 if Y (u, v) < τ

When this is done, Z(u, v) represents the edge map of the DM X(i, j). Fig. A.4

represents the whole edge detection process.
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Figure A.4: Example of the computation of the edge map

The use of this technique has one major drawback (as compared with other methods):

the output of this system has almost twice as many positions as the output of normal

edge detectors (whose edge maps have the same size as the original image) which
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means that it requires more resources for its storage and transmission. Section A.2

explains how this edge map is encoded so that this problem is overcome.

A.2 Edge Map Coding

Since edge maps are sent to the decoder as side information, their size and bit rate

consumption can have a great repercussion on the performance of the whole algorithm.

Moreover, using the pixel and edge grid explained before there is a great quantity of

unnecessary information. The EM coding algorithm is shown in Algorithm 2.

First, all the positions corresponding to pixels in the image do not provide information

about the presence of edges, therefore they should not be sent to the decoder. These

positions represent 36% of the total positions on the image, so by simply eliminating

these pixels the size of the whole edge map is significantly reduced. Nonetheless, the

size of the resulting edge map is still considerably greater than the one provided by

methods that do not use the pixel and edge grid.

In order to achieve greater compression, we will only retain the edge positions corre-

sponding to the diagonal edges, which generates an EM of size (N − 1) × (M − 1).

The information of vertical an horizontal edges is retained as follows:

Let (w, z) = (2n, 2m − 1) ((w, z) = (2n − 1, 2m)) be a position on Z(u, v) that

represents an horizontal (vertical) edge, i.e., Z(w, z) = 1. Then, the closest positions

that represent diagonal edges are forced to have value 1, Z(2n, 2m−2) = Z(2n, 2m) =

1 (Z(2n− 2, 2m) = Z(2n, 2m) = 1) regardless of their previous values. Note that the

edges positions located on the boundaries of the image will only change the value of

one diagonal edge pixel. Also, all the diagonal edges that had already value 1 will

retain their value while the ones that had value 0 might change it. Fig. A.5 illustrates

the operation.

Mathematically, if Z2(i, j) represents the re-sized (N − 1)× (M − 1) Edge Map, and

∨ stands for the logical operator “or”, then:

Z2(i, j) = Z(2i, 2j)∨Z(2i−1, 2j)∨Z(2i, 2j−1)∨Z(2i+1, 2j)∨Z(2i, 2j+1). (A.2)

In fact, Z2 is only used for the storage and transmission of the edge information. Since

our algorithm requires that the edges be located in the (2N − 1) × (2M − 1) grid,
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(a) Extension of the information in Z (b) Resulting Z2

Figure A.5: Generation of Z2.

the information needs to be resized before applying the transform. For this operation

the positions of potential horizontal and vertical edges both of whose closest diagonal

edges position have value 1 are considered to be representing an edge, and therefore,

they are also given value 1. The edge map resizing algorithm is shown in Algorithm 3.

Mathematically, if Z3(u, v) is the reconstructed edge map, and ∧ stands for the logical

operator “and”, then:

Z3(2i, 2j) = Z2(i, j),

Z3(2i+ 1, 2j) = Z2(i, j) ∧ Z2(i+ 1, j),

Z3(2i, 2j + 1) = Z2(i, j) ∧ Z2(i, j + 1),

Z3(2i− 1, 2j − 1) = 0.

(A.3)

(a) Extension of the info.
from Z2

(b) Resulting Z3

Figure A.6: Generation of Z3.
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Clearly, A.2 is not injective, thus it is not invertible. This means that Z3 6= Z;

however, the information of both EM is very similar. Since both the encoder and the

decoder need to use the same edge information, they will both use Z3(u, v), while the

EM sent will be Z2(i, j).

Note that this method is equivalent to the one presented in [MD08], where only the

information of the diagonal edges was used (see Fig. A.3). In their algorithm, only the

paths that connect pixels in the same row/column are considered, thus, a grid that

only includes diagonal edges, together with an easy way for extending this information

to obtain horizontal and vertical edges, is sufficient for their algorithm. Since in our

case the shape of the paths is more complex, the pixel and grid used by the algorithm

is defined so that the horizontal and vertical edges are also included (as in Fig. A.2),

which makes the computation of any e(i,j)(k,l) much simpler.

The use of this technique has one major benefit: the edge map is compressed. How-

ever, there are other aspects that are implied:

These technique may close edges that were incorrectly left open by the edge detector

explained in the previous section. Fig. A.7 shows a simple example of how this

phenomenon can take place. This is good for our transform, since now the planes are

more correctly separated.

However, other edges are created in positions where there were not supposed to be any.

As shown in Fig. A.7 two separate edges located close together can easily generate

new edges in positions located between them. This phenomenon can be extremely

harmful on noisy EM; since, by using this method, positions that represent false

isolated edges would be connected to other edges, as it is also shown in Fig. A.7.

On the whole, the gain achieved thanks to the reduction in the bit consumption com-

pensates the possible errors generated by the re-sizing. Moreover, since the generation

and treatment of EMs is not an objective of this work, a more optimal solution is not

studied here, but left for future studies.

Table A.1 shows some examples of the bit consumption required when the EMs are

coded and when they are not, together with the Hamming distance existent between

the uncoded EM (Z) and the one obtained using the coding and decoding techniques

explained above (Z3). Note that since the EMs are coded using JBIG (which is

very efficient for binary signals regardless of their size), even though the number of
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(a) Generation of Z2 (b) Generation of Z3

Figure A.7: The re-sizing of the EM can close incomplete edges, but also generate
false ones.

positions of the EM has been greatly reduced thanks to the coding technique used

(the number of positions is reduced to around 1
4 in the coded EM), the gain in terms

of bit consumption does not decrease as dramatically (bpp decreases around 20%).

Also, note that the size of the DMs is 1024 × 768, which means that the number

of positions of the corresponding EMs is 2047 × 1535 (3142145 positions), thus a

Hamming distance of 5000 can be considered very small.

Image bpp original EM bpp coded EM Hamming distance

Ballet view 3 0.0024 0.0019 5032
Ballet view 5 0.0022 0.0018 5065
Breakdancers view 3 0.0042 0.0035 4664
Breakdancers view 5 0.0047 0.0039 5076

Table A.1: Bits per pixel dedicated to the EM and Hamming distance from the
uncoded EM to the coded one for different images.
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Algorithm 1 Edge detection algorithm.

[Nx, Ny]← size(X)
Y ← matrix of size (2 ·Nx − 1)× (2 ·Ny − 1)
Y (n,m)← 0 ∀(n,m)
{Compute gradient}
for n = 1 to Nx do
for m = 1 to Ny do
Y (2n− 1, 2m)← |X(n,m)−X(n,m+ 1)|
Y (2n, 2m− 1)← |X(n,m)−X(n+ 1,m)|
Y (2n, 2m)← max{|X(n,m)−X(n+ 1,m+ 1)|, |X(n,m+ 1),−X(n+ 1,m)|}

end for
end for
{Compute mean value of the gradient.}
{ First compute the number of edge positions.}
w ← (2 ·Nx − 1) · (2 ·Ny − 1)−Nx ·Ny

{ Compute mean.}
M ←

∑
∀(n,m) Y (n,m)

w
{ Compute standard deviation.}

S ←
√∑

∀(n,m) Y
2(n,m)

w −M2

{ Compute threshold.}
T ←M + 0.6 · S
{ Generate binary edge map.}
Z ← matrix of size(2Nx − 1)× (2Ny − 1)
for n = 1 to Nx do
for m = 1 to Ny do
if Y (n,m) ≥ T then
Z(n,m)← 1

else
Z(n,m)← 0

end if
end for

end for

Algorithm 2 Edge map coding algorithm

[2 ·Nx − 1, 2 ·Ny − 1]← size(Z)
Z2 ← matrix of size (Nx − 1)× (Ny − 1)
{Compute reduced EM.}
for i = 1 to Nx − 1 do

for j = 1 to Ny − 1 do
Z2(i, j) ← Z(2i, 2j) or Z(2i − 1, 2j) or Z(2i, 2j − 1) or Z(2i +
1, 2j) or Z(2i, 2j + 1)

end for
end for
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Algorithm 3 Edge map decoding algorithm

[Nx − 1, 2Ny − 1]← size(Z2)
Z3 ← matrix of size (2 ·Nx − 1)× (2 ·Ny − 1)
{Compute full-size EM.}
for i = 1 to Nx − 1 do
for j = 1 to Ny − 1 do

if Z2(i, j) = 1 then
if Z2(i+ 1, j) = 1 then
Z3(2 · i+ 1, 2 · j)← 1

end if
if Z2(i, j + 1) = 1 then
Z3(2 · i, 2 · j + 1)← 1

end if
{First and last rows/columns of Z3 must be computed separately.}
if i = 1 then
Z3(1, 2 · j)← 1

end if
if i = Nx − 1 then
Z3(2 ·Nx − 1, 2 · j)← 1

end if
if j = 1 then
Z3(2 · i, 1)← 1

end if
if j = Ny − 1 then
Z3(2 · i, 2 ·Ny − 1)← 1

end if
end if

end for
end for



Appendix B

Mathematical Proofs

In Section 2.3.3 two mathematical equations that can be used in the computation of

filters with two vanishing moments have been provided. In this appendix, the proof

of why these expressions minimize the intensity of the detail coefficients is given. The

collinearity conditions stated in that same section are also proved here. For all the

following proofs, all the pixels are assumed to form a perfect 2D plane. Therefore,

the value of each pixel in the image is equal to:

X(i, j) =
(
i j 1

)
·


a

b

c

 . (B.1)

We also recall the mathematical operation applied during the prediction of a certain

odd (i, j), since it will be the starting point of all mathematical reasoning:

d(i, j) = X(i, j)−
∑

(k′,l′)∈Ni,j

pi,j(k
′, l′)X(k′, l′). (B.2)

Section B.1 explains the mathematical reasoning behind the filters expression used

for two-pixel neighborhoods while Section B.2 does the same with three-pixel neigh-

borhoods.
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B.1 Two-pixel Neighborhood Approximation

Given a certain odd pixel (i, j) and a neighborhood Ni,j = {(k1, l1), (k2, l2)} of a

planar 2D signal, it can be proved that an exact approximation of the odd’s value

can be build using these two evens if the three pixels (two evens plus the odd) are

collinear. When using these three pixels, the expressions (B.1) and (B.2) can be

combined in order to express the detail coefficient computation as a vector operation:

d(i, j) =
(
i j 1

)
·


a

b

c

−−→p i,j ·
(
k1 l1 1

k2 l2 1

)
·


a

b

c

 . (B.3)

Since the three nodes are collinear, their positions can be expressed as v = m · u+ n

∀(u, v) = (i, j), (k1, l1), (k2, l2). Written as a vector operation:

(
i j 1

)
=
(
i 1
)
·

(
1 m 0

0 n 1

)
. (B.4)

Note that if i = k1 = k2 the parameter m will not exist (m → ∞). However, in

such case the operation can be computed identically by using the ordinate coordinate

instead of the abscissa, and m = 0 (u = n). Mathematically:

(
i j 1

)
=
(
j 1
)
·

(
0 1 0

n 0 1

)
. (B.5)

For the rest of our reasoning we will assume that i, k1 and ks are not equal, and,

therefore (B.4) will be the expression used. Applying (B.4) in (B.3) leads to:

d(i, j) =
(
i 1
)
·

(
1 m 0

0 n 1

)
·


a

b

c

−−→p i,j ·
(
k1 1

k2 1

)
·

(
1 m 0

0 n 1

)
·


a

b

c

 . (B.6)

Applying the distributive property of the sum:
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d(i, j) =

((
i 1
)
−−→p i,j ·

(
k1 1

k2 1

))
·

(
1 m 0

0 n 1

)
·


a

b

c

 . (B.7)

If the prediction was perfect, the intensity of the detail coefficient would be zero.

d(i, j) = 0 =

((
i 1
)
−−→p i,j ·

(
k1 1

k2 1

))
·

(
1 m 0

0 n 1

)
·


a

b

c

 . (B.8)

Which leads to:

(
i 1
)

= −→p i,j ·

(
k1 1

k2 1

)
. (B.9)

Finally, the expression of the filter is:

−→p i,j =
(
i 1
)
·

(
k1 1

k2 1

)−1
. (B.10)

Which is the same as the one given in Section 2.3.3.

Note that if k1 = k2 the inverse cannot be computed. However, in this case, as

mentioned above, the coordinates used would be j, l1 and l2, which would provide

the expression:

−→p i,j =
(
j 1
)
·

(
l1 1

l2 1

)−1
. (B.11)

So far, an expression of the prediction filters has been given only for the case where

the three pixels are collinear. However, can the approximation be formed in the case

that the three nodes are not located in the same 1D line inside the 2D space? Intuition

says that this is not possible, since the function X(i, j) has three dimensions (the two

position values and the intensity). Therefore, in order to parameterize the function

that passes though the three pixels, two evens do not provide enough information.
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Applying a similar mathematical reasoning to the one followed for collinear pixels,

we can see how the detail coefficient cannot be minimized completely in the case that

(i, j), (k1, l1) and (k2, l2) are not collinear.

First of all, since pixels are not collinear, (B.4), (B.5) and (B.6) cannot be used.

Therefore, the new line of reasoning must start at (B.3). The step from that point is

trivial:

d(i, j) = 0 =

((
i j 1

)
−−→p i,j ·

(
k1 l1 1

k2 l2 1

))
·


a

b

c

 . (B.12)

Consequently:

(
i j 1

)
= −→p i,j ·

(
k1 l1 1

k2 l2 1

)
. (B.13)

We will use the notation H2 =

(
k1 l1 1

k2 l2 1

)
. Since H2 is a full rank matrix, and has

linearly independent (LI) rows, the pseudoinverse [RM72] (H+
2 ) can be computed so

that H2 ·H+
2 = I, where I stands for the identity matrix. Therefore:

−→p i,j =
(
i j 1

)
·H+

2 . (B.14)

And (B.3) is then:

d(i, j) = 0 =
(
i j 1

)
−
(
I−H+

2 ·H2

)
·


a

b

c

 . (B.15)

However, since H+
2 ·H2 6= I (this is a property of every pseudoinverse matrix of this

kind) it cannot be ensured that the detail coefficient is minimized.

Consequently, it has been proved that for a planar signal, a neighborhood formed

by two evens can only minimize the detail coefficient’s intensity if those evens are

collinear with the odd to be predicted.
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B.2 Three-pixel Neighborhood Approximation

Given the odd node (i, j) and its neighborhood Ni,j = {(k1, l1), (k2, l2), (k3, l3)}, an

approximation of the value X(i, j) is computed as the intensity of the plane formed

by the three even pixels in the odd’s position. In order to define this plane completely,

the even pixels must not be collinear in the 2D space, since, if they are there is always

a degree of freedom and the plane is not correctly defined in one dimension. This can

be intuitively understood thanks to Fig. B.1.

(a) Non-collinear pixels define a plane (b) Collinear pixels cannot de-
fine a plane

Figure B.1: Definition of planes using 3 pixels.

Also, when finding the mathematical expression of the prediction filters, this condition

appears very clear. Similarly to (B.3), the prediction of (i, j) in the case that the

image is a perfect plane is given by:

d(i, j) =
(
i j 1

)
·


a

b

c

−−→p i,j ·

k1 l1 1

k2 l2 1

k3 l3 1

 ·

a

b

c

 . (B.16)

Applying a reasoning equivalent to the one in the previous section: in order to get

intensity zero for the detail coefficient (d(i, j) = 0) we have:

(
i j 1

)
= −→p i,j ·


k1 l1 1

k2 l2 1

k3 l3 1

 . (B.17)
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Consequently:

−→p i,j =
(
i j 1

)
·


k1 l1 1

k2 l2 1

k3 l3 1


−1

. (B.18)

This operation can only be computed when H3 =


k1 l1 1

k2 l2 1

k3 l3 1

 is invertible. Basic

algebra proves that this is only possible if the three vectors
(
kn ln 1

)
are LI. This

implies that the three positions in the 2D space (kn, ln) are not collinear. If this

condition is followed and the four pixels (three evens and one odd) form a perfect

plane the detail coefficient will be zero:

d(i, j) =
(
i j 1

)
·


a

b

c

−−→p i,j ·H3·


a

b

c

 =
(
i j 1

)
·
(
I−H−13 ·H3

)
·


a

b

c

 = 0. (B.19)
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