
Design and Development of a Case-Based

Reasoning Shell integrated in an Intelligent

Data Analysis Tool

Beatriz Sevilla

September 4, 2009

There are some CBR shells available in the literature. Nevertheless, most of
them do not allow implementing the whole basic CBR cycle in a very �exible
way.

"That is what learning is. You suddenly understand something you've
understood all your life, but in a new way." By Doris Lessing.

"Human beings, who are almost unique in having the ability to learn from the
experience of others, are also remarkable for their apparent disinclination to do

so."By Douglas Adams.

"Don't just learn something from every experience, learn something positive."
By Al Neuharth.

Acknowledgments

Firstly, I would like to dedicate this master thesis to my father and sister. I really
appreciate that they have always support me although they do not understand
why I keep studying and not working. Many thanks for having not questioned
my decision.

Secondly, but not less important, I would like to thank Alex Jurado for
supporting to me in most of the process and helping me to improve this docu-
mentation.

In addition, I would like to be grateful to Roberto Confalonieri and Javier
Vázquez for helping me with the English and with any question that I asked to
them.

Thanks, also to David Artiga for being always my "javaman" in the imple-
mentation issue.

I should thank Zoraida Hidalgo and MariSol Sánchez for their psychological
support, facing the pressure that the presentation of this project means.

I cannot forget to thank my advisor Dr. Miquel Sánchez for guiding me and
teaching me all what I know about CBR.

Eventually, I would like to remark that if there had not been people who
was dedicated to research - in this case CBR research, then the realization
of this project would have not been possible either. For this reason thank
Roger Schank, Cristopher Riesbeck, Agnar Aadmodt, Ian Watson, David Leake,
Ramón López de Mantaras, Enric Plaza, Juan Corchado, etc; for devoting part
of their life to research in this topic, CBR.

III

Contents

Ackknowledge III

Contents VII

List of Figures IX

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 5

2 Background 7
2.1 Case-Based Reasoning . 7
2.2 GESCONDA . 10

2.2.1 Architecture, Speci�cation and Design 10
2.2.2 GESCONDA Functionality 15

2.3 CBR Tools . 19
2.3.1 Caspian . 19
2.3.2 jCOLIBRI . 20
2.3.3 IUCBR . 22
2.3.4 AIAICBR . 24
2.3.5 myCBR . 24
2.3.6 INRECA . 26
2.3.7 CBRExpress . 29
2.3.8 ReMind . 31
2.3.9 ESTEEM . 32

3 The CBR System Description 35
3.1 Case Structure . 35
3.2 Case Library . 35

3.2.1 Flat Memory . 36
3.2.2 Hierarchical Memory . 36
3.2.3 Self-Organizing Maps . 37

3.3 Con�guration . 39
3.4 Start a new case . 40
3.5 Retrieve . 41

3.5.1 Global parameters . 41
3.5.2 "Local" Parameters . 42

3.6 Reuse . 42
3.7 Revise . 45

V

3.8 Retain . 46
3.8.1 Distance . 48
3.8.2 Evaluation . 49
3.8.3 Recursive Cluster Elimination (RCE) method 49

3.9 Utility . 50
3.9.1 Our approximation of Utility 52

4 The CBR Shell Development 53
4.1 Software Requirements . 53

4.1.1 Functional requirements 53
4.1.2 Non-Functional Requirements 54

4.2 Use Cases of the CBR shell . 54
4.2.1 De�ne Case Structure . 54
4.2.2 Select New Case . 55
4.2.3 Select New Case List . 55
4.2.4 CBR cycle and Battery 56
4.2.5 Retrieve . 56
4.2.6 Reuse . 56
4.2.7 Revise . 57
4.2.8 Retain . 57
4.2.9 Load Conditions . 57
4.2.10 Update Utility . 57
4.2.11 Load Con�guration . 57

4.3 Design . 58
4.3.1 Architecture . 60
4.3.2 Model . 60
4.3.3 View . 63
4.3.4 Controller . 66

4.4 Implementation . 67
4.4.1 Model . 67
4.4.2 View . 68
4.4.3 Controller . 69
4.4.4 Algorithms . 69
4.4.5 Retrieval . 69
4.4.6 Reuse . 70
4.4.7 Evaluation . 73
4.4.8 Retain . 73

5 Evaluation 77
5.1 Theoretical assessment . 77
5.2 Experimental evaluation . 80

5.2.1 Testing the Iris dataset 80
5.2.2 Testing the Abalone dataset 81

6 Conclusions and Future Work 83
6.1 Future Work . 84

6.1.1 Memory Organization . 84
6.1.2 Evaluation . 84
6.1.3 Case Base Maintenance 84
6.1.4 Local Weighting . 84

6.1.5 Selection of Distance Measures 85
6.1.6 General Lines . 85

References 91

A Similarity Measures 93
A.1 L'Eixample . 94
A.2 Minkowski . 95

A.2.1 Euclidean . 96
A.2.2 Manhattan . 96

A.3 Cosinus Distance . 96
A.4 Unweighted Similarity Measures 97

A.4.1 Canberra . 97
A.4.2 Clark . 98

B Global Con�guration 99

List of Figures

2.1 Typical CBR cycle . 8
2.2 Class Diagram of GESCONDA Model 12
2.3 Class Diagram of GESCONDA View 14
2.4 Screenshot of GESCONDA GUI 14
2.5 Architecture of GESCONDA . 16

3.1 Self-Organizing Maps Structure 38
3.2 Files that can be used by CBR system 40
3.3 Comparison between similar case and useful case 46
3.4 Performance pro�les for case usage(U), case reinforcement value(V)

and combination of they two. Performance pro�les obtained by
progressively removing cases from an initial case base of 55000
cases . 51

4.1 Use Case Diagram of the CBR Shell 55
4.2 CBR schema of how it works . 58
4.3 CBR diagram of how it works . 59
4.4 Typical CBR Model . 61
4.5 Gesconda Model with CBR Model 62
4.6 View of the CBR tab in GESCONDA II 64
4.7 Dialogs that allows to set up or change the case structure de�ning

which belong to the description case or solution case. Also, to
create the evaluation, utility attribute or both. 64

4.8 View of the Battery Con�guration, where it is possible to distin-
guish all the phases of CBR . 65

4.9 Dialog to create a formula for an attribute adaptation 66
4.10 CBR tab with GUI retain for adding conditions 75

IX

Chapter 1

Introduction

The objective of this master thesis is to create a Case-Based Reasoning shell
integrated in an Intelligent Data Analysis Tool, called GESCONDA which is
a software developed in our research group (KEMLg1). Our project's aims to
create a system which integrates CBR with some other techniques from arti�cial
intelligence and statistics. This integration is done in such a way, that every
technique is used by other techniques for its bene�t.

CBR is gaining attention, as it does not require an explicit domain model and
therefore elicitation becomes a task of gathering case histories [Watson & Marir,
1994]. On the other hand, existing Case-Based Reasoning implementations are
mostly for a �xed domain. So, our propose is to create a CBR Shell where
no �xed domain exists and where the expert/user creates its own domain. In
this way, the task of building a new CBR application for a new target domain
becomes easier.

Most of the learning algorithms can be classi�ed in supervised and unsuper-
vised algorithms. The supervised ones expect to get prototypes to predict new
results. Clustering algorithms analyze what semblances or relations there are
between instances. CBR is closer to supervised algorithms because it expects
to solve a new situation.

Almost all supervised algorithms are prepared to predict the class of the
new instance, so the class attribute uses to be a discrete attribute. Thus, these
features restrict the real environment. The problems have to be reduced to an
instance list where each instance is a set of attributes and one of these attributes
is the solution that it could be a discrete attribute.

Nevertheless in CBR , or rather Data-Intensive Case-Based Reasoning, the
problem is still an instance list, but the solution can be an attribute list of any
type.

Currently, our research group is involved in a European Project called Mod-
SimTex3 where we carry the Arti�cial Intelligence research work. In this context,
we will create a CBR system to analyze the data for achieving an approximation
of the textile machine parameters.

In the ModSimTex project, the data belongs to a real domain where the
problem is de�ned as an attribute set and each new query or new problem could

1This thesis is the result of the research work of the author within the Knowledge Enginer-
ing and Machine Learning Group2

3http://www.modsimtex.eu/

1

http://www.modsimtex.eu/

2 CHAPTER 1. INTRODUCTION

have more than one attribute. Besides, these attributes can change in every
case or new situation. So, we need a system that o�ers the possibility to have
more than one attribute as response and that the role of the attributes can
change any time the user wants. Therefore, the management of some real-world
domains requires a �exible CBR tools. As it will be described in section 2.3,
mostly available CBR shells do not a�ord this skill. Thus, this is one of the
motivations of our work.

Until now, we explained the advantages of CBR, but a Data Mining process
normally takes some phases. One of the most known methodologies, that de-
�nes these phases and how these are connected, is CRISP4. This methodology
remarks the importance of data preparation and modeling, and also that these
two phases can be a cycle by themselves.

There are some tools that o�er data preparation and learning algorithms,
but if we want to use CBR, there are not available tools o�ering both - CBR
and techniques to prepare the data.

For these reasons, we found interesting both ideas of using CBR and inte-
grating it in a intelligent Data Analysis Tool such as GESCONDA.

The document is organized as follows:
Firstly, in next sections we explain the history of the project to understand

our motivation and the goals that we want to achieve.
In chapter 2 we introduce this project background explaining what is CBR

and GESCONDA. And we talk about the existing CBR shells to understand
the lack of �exible and general CBR tools in this area. In chapter 3, we describe
the CBR shell functionalities that we want to create and the several possible
implementations. Once the project is described, in chapter 4 the design and
decision made to develop the system are presented . After the whole system is
explained, in the evaluation chapter we show some experiments that has been
done to test the tool. A comparison of the CBR shell against the shells that has
been described in related work(2.3). Finally, we conclude with the discussion
of the project (chapter 6), drawing some conclusions and outlying future work
directions.

1.1 Motivation

A few years ago, I has met Case Base Reasoning(CBR) (see description in
background 2.1). It was introduced as a technique which is based on the same
functionality as the human brains. The idea behind CBR was simple and in
fact, when I thought in myself in front of a new situation, I imagine myself
remembering what experiences I have to solve it.

Until that moment I had studied learning techniques which just tried to
generalize in order to extract conclusions out of the analyzed data. And, in
the case of supervised learning, how to classify a new instance based on the
generalizations. In these processes we always talk about success percent. But I
had never thought that instances which were not solved because they did not
belong to these generalizations could have been solved by looking at similar
instances in a smaller, particular domain for the new instance.

As I was thinking more and more about the subject, new questions and
worries came to me. When I went to ask my advisor questions like: "if we

4http://www.crisp-dm.org/

http://www.crisp-dm.org/

1.1. MOTIVATION 3

create prototypes, then search can be faster" or "why not creating a memory
organization which maintains relationships between non linear cases", he kept
answering to me that of course we could make these extensions. Thus, he
proposed me some articles through I began to understand that this was a very
�exible �eld.

I kept exploring some shells and contexts in which CBR had been applied.
In help desk �eld it has been used a lot, with the aim of �nding answers to
questions already formulated, like GizmoTapper [giz, 1996] or the one developed
by Compaq [com, 1992]. It has also been used in diagnostics domain, like
CASEY [Koton, 1989] or PROTOS [E.R.Bareiss, 1988].

One of the CBR systems that most attracted my attention was CHEF [Ham-
mond & Head, 1990], CHEF is a recipe adaptation system. This system imple-
ments all stages of the CBR cycle, but it is highly domain-dependent. It looks
for recipes given some directions like the possibility of including a particular
ingredient, or the way it is cooked. If it does not �nd a case which has all
of the preconditions, then - providing some rules it has - it changes the most
similar recipe it founds in order to �t the conditions. Per example, exchanging
a vegetable for another which was a precondition for the other recipe. And it
saves the recipe together with user's evaluation of it, being able to create new
recipes if the recipe has been negatively evaluated.

Then, after looking to some of the shells and systems, I concluded that most
of them were focused on the retrieval part. Moreover, those that implemented
some phase else, they do it tied to the domain, because they are used to belong
to organizations interested in analyzing and solving a concrete problem.

Then, having a bit more knowledge I saw that CBR seemed to be focused
just on retrieval part, at least most of the implemented CBR systems. The rest
of the phases were very domain dependent or were directly obviated.

Abstracting what CBR means, I reached the conclusion that it could be seen
as a methodology where each part can be extended with di�erent techniques that
deal with improving the performance. Moreover, it caught my attention the fact
that in the literature, they do not refer to a class attribute anymore, but they
do to the solution which could be a more generic concept.

Coming back to supervised learning, one could think in the process as a CBR
system, where the case base was the instances which got organized according
to the used technique. The prototype to which a new instance belongs was
searched and �nally, it was adapted by copying the prototype's solution (class)
to the new instance. In case of incremental techniques, they save that instance,
while the non-incremental ignore it.

We noticed then that it existed the need to create a generic CBR system
suitable to be used in any domain and also extensible and malleable for each
domain.

We started to specify how such a system should behave and we realized that
it could be more interesting if it was embedded in a larger data analysis system
like GESCONDA. Doing that way, both parts could bene�t each other. There
is a lemma in programming: DRY ("Don't Repeat Yourself"). If there was
already a system including several techniques, why not use it? At that point,
we decided to focus on Data-Intensive Case-Based Reasoning - instance-based -
because GESCONDA is conceived to work with instances.

We think that case structure'loss is justi�ed because the GESCONDA func-
tions can be applied to the case base. Besides, the knowledge available generally

4 CHAPTER 1. INTRODUCTION

when doing Data Mining is represented by instances.
That is when the idea of this project arose: implementing a CBR which had

all of its phases �exible enough to cope with the maximum number of domains
and extend it to improve its functionality. Besides, it may be used as a �nal
system to cover all phases of Data Mining and possible become an application
that could be used not only in the academic environment.

Our �nal target was set. That is why we have studied some generic applica-
tions to see how they tried to generalize the CBR phases (see related work 2.3).
We also have made an study on some �elds to see how they faced each phase.
Moreover, we have looked for systems that join di�erent techniques together.
They can be found in the literature as "hybrid CBR systems".

1.2. GOALS 5

1.2 Goals

Our target is the implementation of a new CBR module inside GESCONDA (to
be precise, GESCONDA II, which is the last GESCONDA version). This im-
plementation allows the use of all techniques at any moment. That is, although
data have to be loaded as cases, they may be used also in any functionality of
GESCONDA. On the other hand, if data are loaded as instances, they may be
also used inside CBR. This way we have then two systems bene�ting each other.

We will go into CBR in depth. We will look at which systems are already
developed, what they cover and how they have been conceived. About each
CBR task, we will study which solutions have been proposed and how have
they been developed. In CBR part, we will try to make it as �exible as possible
in order it to cover as many domains as possible or, rather to, be adjusted as
much as possible to each domain. Moreover, in order not to loose the knowledge
about the domain, the CBR shell should allow to specialize each con�guration
to a more concrete domain.

During its executions, the system should also create a text �le describing
what it is executing, together with the results. Moreover, once the desired
con�guration is known, the user will be able to use the CBR shell by command
line, without the need to load the graphical interface.

Regarding the technical part, the implementation has to be highly �exible, in
order to be able to keep adding more and more functionalities without the need
to change the code. This implementation has to be also independent enough to
be used as an API (Application Programming Interface).

Finally, the Graphical User Interface should be easy to use. Any user with
the minimum required knowledge should be able to execute CBR .

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we introduce the reader with background knowledge about the
thesis, which will help him to have a better understanding of the document.

We start with an explanation of what Case Based Reasoning is, by means of
a short description of the general concept. Afterwards, all its steps and options
are explained in detail.

Next, a brief description of GESCONDA system follows, allowing the reader
to understand how is it designed and what it can o�er. This system has its own
documentation, hence we thought it is important to have just a general view
which provides which type of system is and to have an idea of what is this thesis
about.

Finally, we conclude with an introduction of some applications which imple-
ment CBR to see what they o�er, which are their general features and lacks.
We base part of our CBR system in what these applications do and how they
do it.

2.1 Case-Based Reasoning

Case-Based Reasoning (CBR) [de Mantaras et al., 2006,Kolodner, 1993,Ries-
beck & Schank, 1989] is a problem solving paradigm [Aamodt & Plaza, 1994].
Such a system uses the human reasoning model [de Mantaras et al., 2006] as a
base. Humans make use of past experiences to resolve new situations or prob-
lems, reasoning by analogy [Ross, 1989].

The foundations of Case-Based Reasoning rely on the early work done by
Schank and Abelson [Schank & Abelson, 1977], where they proposed that
our general knowledge about situations is recorded as scripts. The cognitive
paradigm behind the Case-Based Reasoning is based on Schank's Dynamic
Memory theory [Schank, 1982], which introduces indexing as the key to use
experience in understanding. The main premise was that remembering, under-
standing, experiencing, and learning cannot be separated from each other, and
that the human memory is dynamic, and changes as a result of its experiences.

The reasoning by analogy of CBR is based in collecting a lot of relevant cases.
Those cases could be considered as past experiences or solved problems [Altho�,
1999] in a particular domain. Storing a case means to keep a description of the
experience as well as the solution provided to that experience. The set of stored

7

8 CHAPTER 2. BACKGROUND

cases or experiences is usually named "Case Library" or "Case Base" or "Case
Memory".

Case-Based Reasoning is a paradigm that - in many aspects - is fundamen-
tally di�erent from other major AI approaches [Aamodt & Plaza, 1994]. Instead
of relying on general knowledge of the problem domain, or generalized relations
between problem description and solution, CBR is able to utilize the speci�c
knowledge of previously experienced cases. A new problem is solved by �nd-
ing a similar past case, and reusing it in the new problem situation. A second
important di�erence is that CBR is also an approach to incremental, sustained
learning, since a new experience could be retained each time a problem has been
solved, making it immediately available for the next problems.

The CBR formalization is summarized in the basic CBR system reasoning
cycle, proposed by Aamodt and Plaza in [Aamodt & Plaza, 1994], called the
"4 RE's"(�gure 2.1).

Figure 2.1: Typical CBR cycle

According to CBR, solving a problem involves:

1. Obtain the problem description

2. Measure the similarity of the current problem to previous problems stored
in a case base (or memory) with their known solutions, retrieving one or
more similar cases

3. Adapt (reuse) the solution of one or more of the retrieved cases, possibly
after adapting it to account for di�erences in problem descriptions

4. The solution proposed by the system is then evaluated (revised)

5. The problem description and its new solution can be retained (stored) as
a new case, and the system has learnt to solve a new problem.

Therefore, a CBR system will be e�cient and reliable as long as its case base
is representative of the domain, and its ability to retrieve the most similar cases
as an answer to a new situation is good [de Mantaras et al., 2006].

2.1. CASE-BASED REASONING 9

As a matter of fact, two aspects have been more important from the de�ni-
tion of Aamodt and Plaza [Aamodt & Plaza, 1994]. Now, the learning or retain
phase copes only with the functionality of storing or not the new experience with
some criteria. These aspects are indexation of cases and case base maintenance,
which are enough important to be separated in two tasks more.

The �rst one - indexation - is the organization of the case base, with the aim
of ensuring a faster retrieval without quality a�ecting. The second one - case
base maintenance - is a task that should be executed to ensure the coherence
of the organization of the cases and tries, to maintain optimal e�ciency and
competence of the system [Orduña-Cabrera & Sánchez-Marré, 2008].

Some authors consider CBR as a methodology instead of a technique [Sovat
et al., 2001], but there is no a clear distinction. Initially, CBR was a more speci�c
model, but along the time the di�erent phases of the CBR cycle have been
implemented with di�erent techniques. This can be seen, for example, in the
hybrid system for forecasting presented by Corchado and Aiken [Corchado et al.,
2004]. This system uses MLHL-SIM(Maximum Likelihood Hebbian learning -
Scale Invariant Map) for indexing and retrieval, unsupervised kernel methods for
reusing and kernel methods for learning. Therefore, the initial CBR de�nition
has evolved and it is not wrong to think about it CBR as a methodology.

10 CHAPTER 2. BACKGROUND

2.2 GESCONDA

GESCONDA is an intelligent data analyzer for the management of environmen-
tal data (GEStió del CONeixement de Dades Ambientals), but it is suitable
to with other domain data

GESCONDA 1 is a project under development by KEMLg. This project was
funded by the Spanish Research Council(CICYT) in 2000 and 20042.

The main goal of the project is to design and develop a prototype tool
for intelligent data analysis and implicit knowledge management of data bases,
with special focus on environmental databases. The latter are remarkable due to
the high amount of heterogeneous information and knowledge patterns implicit
in large data bases coming from the monitoring of any system or dynamical
environmental process [Sánchez-Marré et al., 2004].

Although in the literature other Knowledge Discovery(KD) tools or com-
mercial systems exist, such as WEKA3 or RapidMiner4, none of them strongly
integrates statistical and machine learning methods together. Besides the pos-
sibility of explicit management of the produced knowledge in Knowledge Bases
(in the classical AI sense), mixed techniques that can cooperate among them to
discover and extract the knowledge contained in data or dynamical data analysis
in a single tool, allowing interaction among all methods [Gibert et al., 2006].

Our implementation wraps GESCONDA II [Margarit, 2007]. GESCONDA
II is a new version of the original GESCONDA, with the integration of di�erent
components, redesign and implementation of new functionalities.

2.2.1 Architecture, Speci�cation and Design

This new version of GESCONDA II has been developed in Java 5 (GESCONDA
uses a previous version of Java). In addition, the graphics in the presentation
layer have been drawn using a LGPL library: JFreeChart which allows to create
powerful and adaptable graphics.

The �nal product has been packaged on one jar using a special tool5 that
replaces the ClassLoader from Java Virtual Machine for one that is able to
decompress the project in runtime.

The design methodology that has been followed is Scrum6, which is included
in the agile methodologies of developing. This methodology owes its name to the
concept of Scrum in Rugby. Scrum is a simpli�cation of eXtreme Programming
that allows to complex development or managing complex work in a short time.

GESCONDA II has followed the Model-View-Controller (MVC) architecture
pattern. Along the following sections we can brie�y see how is the behaviour of
each layer.

Model

In GESCONDA, the database is implemented as a plain �le that contains a set
of instances (or observations). This �le can have di�erent formats(see at 2.2.2

1https://kemlg.upc.edu/menu2/current-projects-1/gesconda-1/gesconda
2TIC 2000-1011, TIC 2004-1368
3http://www.cs.waikato.ac.nz/ml/weka/
4http://rapid-i.com/
5http://one-jar.sourceforge.net
6http://en.wikipedia.org/wiki/Scrum_(development)

https://kemlg.upc.edu/menu2/current-projects-1/gesconda-1/gesconda
http://www.cs.waikato.ac.nz/ml/weka/
http://rapid-i.com/
http://one-jar.sourceforge.net
http://en.wikipedia.org/wiki/Scrum_(development)

2.2. GESCONDA 11

the functionality of GESCONDA).
Each instance is set up with a set of values belonging to an attribute, where

all instances share the same set of attributes. Some of the values can be missing
values as GESCONDA supports missing values

The types of the attributes could be summarized as real numbers and char-
acter streams. Formally, the instantiated types are the following:

Quantitative/Numerical: Real number, are implemented as �oat numbers.

Qualitative/Categorical: All the possibilities have to be speci�ed or can be
increased in GESCONDA while it's running.

Ordered The values follow an order, so the distances between two di�er-
ent values are dependent on the distance of the order.

Unordered No relation exits among the possible values.

As a result, GESCONDA de�nes an Instance as a set of attribute values. In
the �gure 2.2 it is possible to observe that CMTaula is and object that contains
all the instances (CMInstancia) and also, a list of attributes (CMAtribut). Thus,
the data is a list of instance, while instances themselves are a list of values
(CMValor). Every instance has the same attributes and one value for each of
the attributes. The most important classes used are the following:

CMModel Follows the Singleton pattern. It acts as a front-end interface
among the rest of the classes. It has a executed algorithm (CMAlgo-
risme) historical. Also, it has access to the data (CMTaula). And �nally,
the current distance (CMDistancia).

CMTaula This class gathers together the di�erent parts of the data, the spec-
i�cation of the attributes among CMAtribut and CMInfoAtribut and the
data (list of CMInstancia).

List of CMInstancia It is a vector of all the instances

CMInstancia Is a vector of values (CMValor). One value for each attribute
that is de�ned.

List of CMAtribut A vector of the attributes which belong to instances.
CMAtribut is an abstract class, so a type has to be selected for instantia-
tion. In this class, the attribute is described: its type, its possible values,
whether is it categorical and its order, if any. It provides functions to con-
sult the values, which are stored in the di�erent instances, the possibility
to update with a new value or resetting the information created from the
values. Each CMAtribut will be instantiated as a subclass as it is possible
to see in �gure 2.2: numerical, categorical and ordered categorical. More-
over, every attribute has its extra information(CMInfoAtribut), which is
an abstract class as well.

CMInfoAtribut This class contains extra information that can be assessed
and updated while the program is running. The information about the
values are: mean, mode, number of di�erent values, variance, etc .

12 CHAPTER 2. BACKGROUND

Figure 2.2: Class Diagram of GESCONDA Model

2.2. GESCONDA 13

CMValor It is an abstraction of the types and contains the value and whether
it is an outlier or not. Of course, it has to be speci�ed according to the
subtypes of this CMValor, CMAtribut and CMInfoAtribut.

Class Attribute It is an attribute of CMTaula that links to a categorical
attribute which will act as the class for supervised learning (see 2.2.2)

CMAlgorisme This is an abstract class, provides the template of the imple-
mented algorithms with simple functions such as execute. It also has
information about the current state. In �gure 2.2 is this class with its
subsequent subclasses depicted. Many of these subclasses are the abstrac-
tion of di�erent groups of algorithms and they have, in turn, subclasses
implementing speci�c algorithms. To examine some examples about these
implementations, please consult kMeans, ID3, Rise (see section 2.2.2)

This class is included in the model because CMModel has an executed
algorithms historical log during the session. It also has the possibility to
recover them without the need to execute it again in the case data are the
same.

CMDistancia It is also an abstraction. Some measures are developed as Eu-
clidean, Manhattan, Canberra, L'Eixample, etc. (please refer to appendix
A for an explanation about each distance function). This class is in the
model because there is an active distance stored in CMModel.

One of the special characteristics is that most of the results of the algorithms
are included in the data as a new variable. In the instances, new qualitative vari-
ables are generated by the clustering algorithm, thus classifying them into the
di�erent clusters, and also allowing to visualize the data base into prototypes.

Rule inductive algorithm generates a rule set that can be applied later on
the database. These rules must be modeled for ensuring the correct treatment
and persistence. Rules can be exported to the CLIPS format.

Decision tree algorithms generate a tree. A tree is a set of nodes and father-
child relations. Each node contains information about the attributes and con-
ditions that are applied to itself.

View

In this section we explain the main features selected to develop the CBR mod-
ule. However, it is out of the thesis scope to study in depth the details of the
architecture, design and implementation of GESCONDA.

Figure 2.3 shows the class diagram describing the main classes in this layer.
Desktop is a unique instance (Singleton pattern) that can be to access from any
part of the code. In �gure 2.4 we can see the visualization of this class. On the
left there is a variable view, and the rest of the screen is organized by tabs. All
of the components use Observer pattern to be noti�ed when a change occurs in
the model.

As it has been said before, the language used is Java, using Swing libraries
for the views and jFreeChart for graphics and data representation.

The application menu is dynamically built from a xml �le. This could be
the main feature when including the CBR module with almost no modi�cation
of the code.

14 CHAPTER 2. BACKGROUND

Figure 2.3: Class Diagram of GESCONDA View

Figure 2.4: Screenshot of GESCONDA GUI

2.2. GESCONDA 15

Controller

The Controller layer of the MVC model is represented in GESCONDA as an
action set providing functions for showing dialogs, executing algorithms and
notifying views.

Most of the actions are linked to the menu through the xml �le(see previous
section 2.2.1). Besides, a set of actions manage the algorithm executions in the
stack of the application. For this propose, each algorithm is launched in a new
thread.

2.2.2 GESCONDA Functionality

To explain the functionality, we divide the functions into logical groups. On the
basis of previous experiences, GESCONDA as a multi-layer architecture of 4
levels has been designed connecting the user with the system or process [Gibert
et al., 2006], as we it ca be seen in �gure 2.5. These 4 levels are the fol-
lowing: Data preparation, recommendation and meta-knowledge managment,
knowledge discovery and knowledge management.

In order to manage the data, typical functions are provided: open, save,
close, import, export. Di�erent formats are supported:

GCDA This format is called "GESCONDA project" because it is possible to
store more than the data. For instance, the algorithm results like rules or
trees can be stored. It is xml -structured.

GSP GSP is the old format of the �rst GESCONDA version. It is created with
the Java serialization.

CSV Delimited by semicolons.

TXT Text format with the data delimited by tabs.

DAM Data and Meta-data allows to store the data and more related informa-
tion, like the attributes and their weights.

GESCONDA II o�ers all the functions to create the data from scratch. In
addition, when either the structure of the data is speci�ed or the attributes are
de�ned , it supports copying the data from an excel sheet. To facilitate the
visualization of the data missing values, soft and hard outliers are highlighted
in di�erent colors.

About data �ltering, GESCONDA II provides tools for manipulating the
data and its attributes. The function provided are the following:

∙ Creating a new attribute

� from scratch

� as a constant

� as a sequence

� as a random variable following one of these distributions: Bernoulli,
Binomial, Discrete, Uniform, Poisson, Normal and Exponential

16 CHAPTER 2. BACKGROUND

Figure 2.5: Architecture of GESCONDA

2.2. GESCONDA 17

∙ Deleting an attribute

∙ De�ning the Class attribute.

∙ Discretization of an attribute:

� custom

� equidistant

� based on boxplots [Gibert & Perez-Bonilla, 2006]

∙ Standardization of a speci�c attribute, thus creating a new one.

∙ Replacing missing values.

∙ Managing outliers, both soft and hard ones.

∙ De�ning the active distance.

∙ Calculating the mean distance among all the instances.

∙ Relevance techniques to weight the attributes:

� custom

� Supervised

∗ EBL (Entropy based local weighting) [Núñez et al., 2003]

∗ PROJ (Projection of Attributes)

∗ IG (Information Gain)

∗ CVD (Class Value Distribution) [nez et al., 2003]

� Unsupervised

∗ UEB(Unsupervised Entropy Based)-1

∗ UEB(Unsupervised Entropy Based)-2 [Núñez & Sánchez-Marré,
2004]

∗ Gradient descent

∙ Graphical visualization:

� bar diagram

� histogram

� TSplot

� Bivariant plot (XYPlot)

� Letterplot

About Recommendation and Meta-Knowledge Management, some tools are
provided by GESCONDA for recommending a proper way to face the analysis
in order to extract the more useful knowledge regarding the concrete problem
to be solved.

- Problem goal de�nition

- Method suggestion

- Parameter setting

18 CHAPTER 2. BACKGROUND

In Knowledge discovery, GESCONDA o�ers some other tools which apply
techniques from Arti�cial Intelligence and Statistics:

∙ Clustering (Machine Learning and Statistical):

� k-Means

� Nearest-Neighbour

� Marata

� Isodata

� Cobweb

� Bagging strategies

∙ Decision tree induction:

� ID3

� C4.5

� CART

∙ Classi�cation rule induction: option to export(txt or CLIPS format)

� Rules

� Prism

� CN2

� Rise

∙ Statistical Modeling:

� Linear regression

� Variance Analysis: one and two factors

In Knowledge management, once the algorithms are applied, GESCONDA
allows to use and validate the solutions:

∙ Integration of di�erent knowledge patterns for a predictive task, or plan-
ning, or system supervision.

∙ Validation of the acquired knowledge pattern.

2.3. CBR TOOLS 19

2.3 CBR Tools

In the literature it is possible to �nd some tools for the CBR system develop-
ment. Some of them are developed by commercial companies and others are
deployed by research university groups. In the next subsection we describes
some of these CBR shells with the goal to know what is currently o�ered and
what is our contribution with the thesis presented in this document. As a
matter of the fact, these systems are Data-Intensive, although some of them
could be considered as Knowledge Intensive CBR shells. In the literature, it is
distinguished between Data-Intensive CBR (DI-CBR) and Knowledge-Intensive
CBR (KI-CBR). DI-CBR systems share characteristic features such as the use
of learning from examples, sparse use of domain and simple case structure, etc.
Nevertheless, KI-CBR share characteristic features such as the intensive use of
domain knowledge, complex case structure or developments based on ontologies
and description logics, etc.

We will explain �rst the academic shells and then, the commercial ones.

2.3.1 Caspian

Caspian has been built at the Center for Intelligent Systems (University of
Wales). 7

This Shell comes with its own language for de�ning cases (CASL8) and
creating the database.

The general structure of the case �le described by CASL [cas, 1995a]:

Introduction Contains an introductory text which gets displayed once the
program has �nished checking the case �le.

Case De�nition De�nes the types and weights of the attributes that may
appear in a case.

Index De�nition De�nes the attributes used as indexes when searching for a
matching case. At least one is needed and its type must be an enumerated
type.

Modi�cation De�nition De�nes the modi�cation rules for providing a means
of:

∙ specifying that certain symbols or numbers are similar (matching
purpose). In the case of the number, this is done by specifying ranges.

∙ specifying symbols as abstractions of others (useful for making the
search more general or for de�ning generalized cases).

Repair Rule De�nition Contains the repair rules. Both the Modi�cation
De�nition and the Repair Rule De�nition may be omitted.

Case Instance Such instances are the ones that make up the case base.

7http://www.aber.ac.uk/compsci/Research/mbsg/cbrprojects/getting_caspian.shtml
8CASL is a language used for Case-Based Reasoning

http://www.aber.ac.uk/compsci/Research/mbsg/cbrprojects/getting_caspian.shtml

20 CHAPTER 2. BACKGROUND

The CBR cycle starts when the user speci�es a new case. In this process, it
is possible to skip some attributes but not those that are used for indexing.

Then the retrieve task, which is separated in two subtasks [cas, 1995b]. The
�rst one performs the index search, the program searches the case base for the
subset of cases which exactly matches all the index constraints. The second
subtask consists in selecting one case. The user can do it manually or let the
program scan the subset of cases to �nd the one with the highest weight value.
That is, calculating the greatest sum of the weights of all the attributes that
matched. Finally, the attributes which do not match exactly but are de�ned to
be similar by the modi�cation rules, return a value which is three-quarters of
the attributes's normal weight.

The next step after selecting the case is to apply the repair rules to it, in
the same way that is done in ESTEEM (see section 2.3.9).

In the aftermaths of the retrieved case when it is repaired, two things happen.
First, the original values in the problem section are replaced by new values which
have been entered by the user. Then the repair rules are applied. These rules
examine the problem �elds and the solution �elds of the retrieved case for certain
combinations of values that would cause problems. If this is the case, then the
repair rule �res and changes are made to the solution part of the retrieved case.
When Caspian applies the repair rules, it cycles through each of them in order
until no more repair rules �re. A rule is only allowed to �re once. Since it
is possible for one set of changes to cause another one to �re, it is possible to
decompose the repair rules, so that single rule can tweak the changes made by
a previous rule activation.

2.3.2 jCOLIBRI

JColibri built by GAIA(Group for Arti�cial Intelligence Applications).9This is
a complete CBR development architecture supporting many features like graph-
ical interfaces, description logics and ontologies, textual CBR, evaluation, etc.
Nowadays, a new version exists (jCOLIBRI 2) which includes mechanisms to Re-
trieve, Reuse, Revise and Retain cases and is designed to be easily extended with
new components. It o�ers two basic methods in reusing. The �rst one is copy-
ing and the second one is a numerical direct proportion among the attributes of
the query and the case. This is a system for building CBR applications that is
an evolution of previous work on knowledge intensive CBR. The �rst version of
COLIBRI1 was prototyped in LISP and was far from being usable outside of the
research group which developed it. jCOLIBRI was designed as a technological
evolution of COLIBRI which incorporates, in a 3-tier architecture, an object-
oriented framework in Java and a number of GUI-based tools for assembling a
CBR application from reusable components. We are going to concentrate on the
jCOLIBRI2, that this year has been considered the main framework to develop
a cbr system10.

We introduce jCOLIBRI2 in more detail in the following sections:

9http://gaia.fdi.ucm.es/projects/jcolibri/
10http://www.madrimasd.org/informacionidi/noticias/noticia.asp?id=37686&tipo=g

http://gaia.fdi.ucm.es/projects/jcolibri/
http://www.madrimasd.org/informacionidi/noticias/noticia.asp?id=37686&tipo=g

2.3. CBR TOOLS 21

Retrieval

At this point, the con�guration and precycle is completed. This step obtains
the most similar cases given a query. The main method is nearest neighbour
numeric scoring comparing attributes. It uses global similarity functions to
compare compound attributes (CaseComponents) and local similarity functions
to compare simple attributes.

The selection of the cases to use in the adaptation can be performed by
means of two criteria. The �rst one consists in selecting the most similar and
the second in choosing those that are more diverse. jCOLIBRI2 o�ers methods
for both of them.

Reuse

The reuse step adapts the solution of the retrieval cases to the requirements of
the query. jCOLIBRI2 considers this task is very domain dependent and leaves
this step open to developers. Anyway, it o�ers the following methods:

Copy This method copies the value of an attribute in the new case.

Direct Proportion Performs numerical direct proportion among the attributes
of the query and the case.

Besides these methods, a package is included that contains some classi�ca-
tion reuse methods implemented by Lisa Cummins & Derek Bridge (University
College Cork, Ireland). On the other hand, ontologies can be used to guide the
adaptation of the cases.

Revise

In the revise step the proposed solution is tested for success. For instance, by
being applied to the real world environment or evaluated by a domain expert,
and repaired if failed.

This step is also very domain dependent and may change among applications.

Retain

jCOLIBRI2 just o�ers an option to store the new cases, but there is no automatic
mechanism to decide whether to store them or not.

jCOLIBRI2 also presents a textual CBR, but there does not appear to be
a consensus about the structure of a textual CBR system, mainly due to the
di�erent application domains. For classi�cation applications typically only a
basic stemmer algorithm and a cosine similarity function is needed, while with
other applications more intense NLP derived structures are employed [Recío-
García et al., 2008].

jCOLIBRI2 includes several other features implemented by external contrib-
utors. We brie�y describe them:

∙ Visualization of a Case Base. This tool computes the distance among all
cases and visualizes them according to that distance.

∙ Classi�cation and Maintenance. jCOLIBRI2 includes several methods in
order to improve the CBR performance or its accuracy. It's been developed
by Lisa Cummins and Derek Bridge (University College Cork, Ireland).

22 CHAPTER 2. BACKGROUND

2.3.3 IUCBR

The Indiana University Case-Based Reasoning Framework (IUCBRF)11 is a
freely available open-source framework, written in Java, to facilitate the devel-
opment of case-based reasoning (CBR) systems [Bogaerts & Leake, 2005].

A case can be de�ned as a set of attributes, each one belonging to one of the
following groups:

∙ Problem

∙ Solution

∙ Inactive Contexts

∙ Use Counts

∙ Time Of Creation

∙ Source

Both a problem and a solution consist mainly of a feature collection.
A case also maintains a use count and a successful use count. Each time

a case is retrieved, its use count is incremented. If the resulting solution is
deemed of high quality, then each contributing case's successful use count is
incremented. This data can be useful for maintenance purposes.

Cases record the point in the system's history they were added (the time
of creation). This is recorded in terms of the number of problems previously
processed. This data can be useful for maintenance purposes. For example,
older cases may be considered more likely to be out of date and targeted for
removal.

Each case is also associated with a source. For example, if a case came from
a successful problem solving episode, then the case source would be "system-
generated". More speci�c sources can also be created. Source data may be
useful in maintenance.

The attribute types that IUCBR support are the following:

∙ Double

∙ Integer

∙ String (with some special handling for long strings)

∙ Boolean

∙ The set {"Yes", "No"}

∙ The set {"very mild", "mild", "moderate", "severe", "very severe"}

∙ Term vector

∙ Internet address

Any customized attribute type can be created by extending an existing ab-
stract feature.

The case base is indexed by one of the two following simple indexing schemes:

11http://www.cs.indiana.edu/~sbogaert/CBR/

http://www.cs.indiana.edu/~sbogaert/CBR/

2.3. CBR TOOLS 23

∙ Flat case base

∙ B-tree-backed case base

The framework provides the option of storing the cases using a B-tree-backed
case base. With this approach, selected features are identi�ed by the system
designer as indices to be held in memory and used for similarity comparisons in
retrieval. When the most similar cases are identi�ed according to these indexes,
the full cases are retrieved from a B-tree-backed �le.

About the CBR cycle, each part is implemented and it's easy to be extended:

Retrieval To �nd the most similar cases, a k-nearest-neighbor (k-NN) algo-
rithm is implemented.

Reuse IUCBRF provides the following small set of domain-independent case
adaptation techniques:

∙ No Adaptation: Simply returns the solution of the �rst retrieved case
as the system solution.

∙ Weighted Average: Given a list of cases and weights, returns a weighted
average of the solution values as the adapted solution.

∙ Weighted Majority: Given a list of cases and weights, takes a weighted
vote and returns the winning value. In the event of a tie, whichever
value is associated with a higher-ranked case is declared the winner.

The weights used can either be provided statically, or be determined
dynamically in each problem solving episode. One example of dynamic
weighting are the distances of retrieved cases (saved in the retrieval step),
with closer neighbors given higher weights.

Retain The framework provides simple facilities for case base maintenance in-
clude case removal and addition. Triggering mechanisms for both opera-
tions can be customized, and two implementations currently exist. One
simple implementation, "null maintenance", never adds nor removes any
cases. Another implementation, "basic maintenance" periodically checks
for infrequently-used cases to remove, and accepts for addition any new
case corresponding to a problem that was just solved successfully.

IUCBR also provides a CCBR (Conversational CBR) system that incremen-
tally re�nes case selections by interacting with the user.

Case List Re�ner It determines the contents and order of the list of poten-
tially useful cases. The one case list re�ner that is implemented orders
the cases depending on the di�erence between each case and the current
problem.

Question Selector It determines which question should be asked next in the
conversation. The framework contains three implementations :

Ordered Selection It simply asks the next question on the list.

Flow Chart Selector It determines the next question by asking a �ow
chart provided by the designer.

24 CHAPTER 2. BACKGROUND

Frequency This selector determines which unknown attribute in the cur-
rent problem has a known value in the largest number of cases under
consideration. The question corresponding to this attribute is the
next question asked.

2.3.4 AIAICBR

AIAICBR Shell Deployed by the Arti�cial Intelligence Applications Insti-
tute12. The information about this system is scarce and in its home page is
detailed how to use and focused on genetic algorithms.

This shell is a generic tool for CBR . The structure of the case restricts the
solution to a unique nominal attribute.

The tool performs classi�cation based on case comparison. The parameters
of the algorithm to de�ne are the number of nearest neighbours and the weights
that can be set up manually, or optimized by a genetic algorithm. The accuracy
of the algorithm is measured by a leave-one-out-evaluation.

Genetic Algorithms optimize the weight structure. Each chromosome repre-
sents the weights of each attribute or �eld belonged to a case. This algorithms
don't alter the value of k in nearest neighbour.

In order to run this algorithm, �lling the following parameters is needed:

∙ number of chromosomes

∙ mutation rate(%)

∙ word length(bits)

∙ mapping from bits to weights can be con�gured

On the other hand, the �le data structure must be in comma delimited
form, newline delimiting a case. The �rst line of the case base must contain the
name of the key �le while the second one states the goal �eld (i.e. the class to
which the data/record/case belongs). Only one attribute can belong to the case
solution

Furthermore, it is possible to modify a �le that de�nes the type of matching
that is done on each �eld (attribute) in each case. The matching types include:

∙ numerical comparison by evaluating the ratio of 2 numbers

∙ comparison of strings/sentences/paragraphs by tri-gram matching

2.3.5 myCBR

MyCBR13 is a project at German Research Center for Arti�cial Intelligence
(DFKI) [Stahl & R.Roth-Berghofer, 2008]. They built a case based reasoning
tool that can be used as standalone application as well as a Protégé14 plug-in.
myCBR consists of the four following modules:

12http://www.aiai.ed.ac.uk/
13http://www.mycbr-project.net
14Protégé is a free, open source ontology editor and knowledge-base framework (see http:

//protege.stanford.edu/)

http://www.aiai.ed.ac.uk/
http://www.mycbr-project.net
http://protege.stanford.edu/
http://protege.stanford.edu/

2.3. CBR TOOLS 25

Modelling Tools: These tools extend the existing functionality of Protégé for
creating domain models and case instances and adding the missing func-
tionality for de�ning similarity measures.

Retrieval GUI: The retrieval GUI provides powerful features for analysing
the quality of the de�ned similarity measures. Moreover, it can also serve
as the user interface of �rst prototypical CBR applications.

Retrieval Engines: For executing the similarity-based retrieval, di�erent re-
trieval engines are provided.

Explainer: A dedicated explanation component provides modelling support in-
formation as well as explanations of retrieval results for quicker roundtrips
of designing and testing.

To create a new CBR application [Zilles, 2009], the starting point is the
collection of the data. That data is mainly intended for structural CBR that
make use of rich attribute-value based or object-oriented case representations.
Data can be imported from a CSV �le and specify a class in the Class Hierarchy
of the Protégé . Then the data rows become instances of this class.

About the CBR cycle, myCBR is focused in the retrieval task. As has been
introduced, they present a functionality to model the similarity measure, both
global for calculating the �nal similarity value and local for each attribute:

Sim(q, c) =

n∑
i=1

wi ∗ simi(qi, ci)

Retrieval Engine

After de�ning all necessary similarity measures, the next step is to de�ne the
query, or rather, the new case. This can be done manually or using one from
the case base.

Finally, the system shows the most similar cases to the new case according
to the de�ned similarity measures.

Similarity possibilities

The global similarity (Sim(q, c)) for the current class could be calculated using
one of the following approaches: weighted sum, euclidean, minimum, maximum.
For each row, similarity measure options are speci�ed for an attribute:

∙ whether it is discriminant or not

∙ a weight (range which is unbounded)

∙ local similarity measure

The local similarities (simi) depend on the attribute type:

Numerical The user can choose between some typical and adjustable functions
or de�ne a minimum and maximum value and optional similarity points,
in order to obtain a linear interpolation over all similarity points.

26 CHAPTER 2. BACKGROUND

Symbolic The user can specify all the similarity values between each pair of
possibilities, treat them as numerical - giving an order - or create a tax-
onomy for performing automatic similarity calculations.

Text User select word or character based and after, those can be con�gured.

Set Depending on the chosen settings, the mapping between new case values
and case values is calculated di�erently. For example, one value out of the
set or by con�guring a similarity for each value.

2.3.6 INRECA

The acronym INRECA stands for "INduction and REasoning from CAses"
and it is the name of a European consortium that jointly executed two large
CBR projects named INRECA (1992 - 1995) and INRECA-II (1996 - 1999). The
projects have been funded by the European Commission's ESPRIT program, as
part of the 3rd and 4th funding framework.

In spite of this is not a generic shell, we believe it's worth the e�ort, because
it's a methodology that has been a reference for a wide range of CBR tools.

The consortium consisted of the following partners and some of the applica-
tions developed during the project [Bergmann, 2001]:

∙ AcknoSoft (now renamed to Kaidara)15

� A maintenance system to support troubleshooting of the CFM 56-3
aircraft engines for the BOEING 737.

� A helpdesk system for supporting the robot diagnosis procedure at
the after-sales service for SEPRO Robotique.

� At ALSTOM, an application for improving train availability to opti-
mize operating cost.

� A rapid cost estimation application for plastic parts production.

� For Odense Steel Shipyard, AcknoSoft developed an application that
integrates with multimedia tools for improving the performances of
ship welding robots.

∙ IMS (now renamed to IMS MAXIMS)16

� Application for assessing wind risk factors for Irish forests at COILLTE17.

� At Analog Devices, IMS developed an operational ampli�ers prod-
uct catalog application using the tools and the support provided by
AcknoSoft, tec:inno, and the University of Kaiserslautern.

� A CBR expertise knowledge base at Irish Research Scientists Asso-
ciation.

∙ TEC:INNO (now renamed to Empolis Knowledge management GmbH,
which is part of the Bertelsmann Mohn Media Group)18

15 www.kaidara.com
16www.imsmaxims.com
17 http://www.coillte.ie/
18 http://www.empolis.com

 www.kaidara.com
 www.imsmaxims.com
http://www.coillte.ie/
 http://www.empolis.com

2.3. CBR TOOLS 27

� A tourist information system on the Internet for the region of Müritz
(Germany).

� For Siemens, TEC:INNO developed the SIMATIC Knowledge Man-
ager which provides service support for the SIMATIC industrial au-
tomation system.

� For the Institute of Microtechnology in Mainz (Germany), it devel-
oped the compendium "Precision from Rhineland-Palatinate".

∙ University of Kaiserslautern, Arti�cial Intelligence - Knowledge-Based Sys-
tems Group 19

� They conducted a feasibility study (together with DaimlerBenz) for
applying INRECA technology to the task of supporting the reuse of
object-oriented software.

∙ DaimlerBenz (now renamed Daimler)20

� The main INRECA-II application called HOMER was developed by
TEC:INNO at Daimler. HOMER is an intelligent hotline support
tool for CAD/CAM workstations.

Nowadays, Kaidara (Acknosoft) o�ers Advisor that is a helpdesk system
based on INRECA. Empolis (TEC:INNO)developed empolis orenge [Schumacher,
2002] based in other tools as CBR-Works [Schulz, 1999], CBR-Sells and CBR-
answer.

Empolis Orenge21 is a �exible and scalable Case-Based Reasoning shell for
industrial applications that also contains many components which provide func-
tionality beyond the basic CBR paradigm. Orenge consists of a set of compo-
nents or services which provide di�erent solutions for CBR :

∙ retrieval engines: CRN and database retrieval.

∙ text mining component for information extraction.

∙ rule processing system for completion and reuse task.

∙ data import from a document or database

The editing of models and con�guration �les is supported by Orenge: Cre-
ator, which provides graphical user interfaces to edit the models and contains
wizards to assist the user in this task.

Brie�y, we explain the four points on which INRECAis centered are intro-
duced: vocabulary, similarity measures, solution transformation and case base.

Case Representation (Vocabulary)

INRECAuses an object-oriented technique for case representation. This rep-
resentation is appropriate for complex domains in which casex with di�erent
structures exist. Each case is represented by an object which is a collection of

19http://www.dfki.de/
20www.daimler.com
21http://www.km.empolis.com

 http://www.dfki.de/
www.daimler.com
http://www.km.empolis.com

28 CHAPTER 2. BACKGROUND

attribute-value pairs itself. The structure of an object is described by an object
class that includes the set of attributes together with a type (possible values or
subobjects). The attributes can be distinguished between simple or relational.
The last ones represent a direct binary relation and are used to represent com-
plex case structures.

Moreover, these object classes can form a hierarchy where subclasses inherit
from the parent classes.

The object-oriented representation has been implemented in CASUEL22,
which is a Common Case Representation language developed within the IN-
RECA project in 1992.

CASUEL is the interface language between all the INRECA component sys-
tems [Bergmann, 2001], but it is also intended to serve as the interface language
between the INRECA integrated system and the external world, and as a stan-
dard for exchanging information between classi�cation and diagnostic systems
which use cases.

CASUEL is a �exible, object-oriented frame-like language for storing and
exchanging descriptive models and case libraries in ASCII �les. It is designed
to naturally modelling the complexities of real cases. CASUEL represents do-
main objects in a class hierarchy using inheritance, the slots used to describe
the objects, typing constraints on slot values, as well as di�erent kinds of rela-
tionships between objects. CASUEL additionally supports a rule formalism for
exchanging case completion rules and case adaptation rules, as well as a �rst
mechanism for de�ning similarity measures.

Similarity Measures

The objective is to determine the similarity between two objects, so-called the
global similarity, whereas the distance between two attributes is local similarity
measure. Lastly, for each relational slot, an object similarity (global) measure
recursively compares the two related sub-objects.

Then, the similarity values from the local similarity measures and the object
similarity measures, respectively, are aggregated to the object similarity between
the objects being compared. This may be done by using a weight model.

This initial approach to similarity, however, did not specify how the class
hierarchy in�uences similarity assessment. In INRECA-II a framework was de-
veloped for object similarities that allowed to compare objects of di�erent classes
while considering the knowledge contained in the class hierarchy itself.

The model presented afterwards distinguished between an inter-class and an
intra-class similarity measure [Bergmann & Stahl, 1998]:

Intra-Class Similarity The common properties of the two objects can be used
to the intra-class similarity. For doing this it is necessary to take the most
speci�c common class of the two objects and to compute the similarity
based on the attributes (together with its weights or not) of this class
only.

Inter-Class Similarity It is important to note that the di�erence between
two objects is not represented by their shared attributes but by the struc-
ture of the class hierarchy. Therefore, inter-class similarity represents the

22http://www.wi2.uni-trier.de/de/cms/projects/CASUEL/CASUEL2_toc2.04.fm.html

http://www.wi2.uni-trier.de/de/cms/projects/CASUEL/CASUEL2_toc2.04.fm.html

2.3. CBR TOOLS 29

highest possible similarity of two objects, being independent of their at-
tribute values, but dependent on the positions of their object classes in the
hierarchy. Formally, the inter-class similarity is de�ned over the classes of
the objects from the query(new case) and case being compared.

The �nal object similarity between two objects can then be computed by
the product of the inter- and the intra-class similarity.

Solution transformation

In many situations, additional general knowledge is required to cope with the re-
quirements of an application. In INRECA, such general knowledge is expressed
by three di�erent kinds of rules:

Exclusion rules are entered by the user during consultation and describe hard
constraints on the cases being retrieved.

Completion rules are de�ned by the knowledge engineer during system de-
velopment. They describe how to infer additional features out of known
features of an old case or the current case.

Adaptation rules are also de�ned by the knowledge. They describe how a
retrieved case can be adapted to �t the current case.

2.3.7 CBRExpress

CBR Express, produced by Inference Corporation, has been one of the most
successful CBR tools. Inference's CBR Express is a tool with a comfortable user
interface, primarily designed for help-desk applications and after, extended for
similar interactive selection tasks [Altho� et al., 1995]. It is itself an application
written with Inference's ART-IM expert system toolset, and can be extended
with this toolset [3cb, 1992]. The user interface is written with Asymetrix
ToolBook, which makes it somewhat slow but malleable.

CBRExpress works well in domains that can be represented by a set of vec-
tors of pairs attribute-value. If domain modelling requires background knowl-
edge such as rules, formulas, constraints or taxonomies, CBRExpress tool is not
the best choice, unless it's used as a component of another application, instead
of using it as a standalone application [Altho� et al., 1995]

A key feature of CBR-Express is its ability to handle free-form text. This
was felt to be vital to the help desk market since it lets customers describe
their problems in their own words rather than being taken through a decision
tree style question and answer session. CBR-Express ignores words such as:
and, or, I, there, etc., it can use synonyms, and represents words as a set of
trigrams [Watson & Marir, 1994].

Originally, they wanted a large case base to cover more problems. Instead,
some sample cases were constructed, with proper questions. With a smaller,
hand-built case base, it's easier to avoid redundant cases di�ering only by a
word or two. One important task was creating a synonym list. In addition, they
created a style guide to force consistency on the four developers and eventually
four domain experts (senior support reps) who create cases for the system.
Questions get default weights from CBR Express, or the builder-user can weight
them according to relative importance, including absolute scores.

30 CHAPTER 2. BACKGROUND

CBR Express includes automatic heuristics to reduce the search space to
a subset for most queries. Moreover, a hierarchical system is fairly rigid in
its classi�cations and expects correct answers; nearest-neighbor is extremely
tolerant of inaccuracies and missing data - especially appropriate for help-desk
problems.

The system is good enough to present the right answer to the operator with
a couple of iterations of the process. The point of CBR Express is to make it
simple, and it is in its basic form without ART-IM extensions. The problem
with CBR Express is that it's so simple it misses some powerful constructs.

A typical CBR Express process: The user starts by typing in a short prob-
lem description. The �rst section of the runtime module uses simple text-search
techniques to rank probable cases by matching the signi�cant words and tri-
grams, throwing out (temporarily) any cases with no words in common with the
input case. This is similar to most natural-language categorization or database
front-end systems, which just throw out extraneous words, anyway - as is op-
posed to parsers, which depend on grammar and more verbose formulations.
The top-ranking cases/questions are then displayed to the user. Obviously, the
operator has to enter relevant information, using words that discriminate well
between cases. Whereas a direct user of a public system might type a lot of ir-
relevant stu�, an experienced operator will type only terse, useful phrases, such
as "Printer failure", whatever the customer on the line might say. In the end,
the system depends on sensible operators, and a particular case base contains
a limited domain. Now the user must answer some of the questions listed with
the top-ranked cases; usually �ve or ten of them are displayed, a number set by
the user.

The questions are listed in order of weight for the highest-ranked case. The
user answers whichever question prefers. While there's a large, possibly prolif-
erating number of discrete, unique cases, the system's e�ciency is maximized
and the user's time is minimized if questions are kept to the minimum. The
more cases a single question can discriminate among, the better.

Using the new answers, CBR Express conducts a second search, to �nd
cases that match the answers given for the input case. It scores a subset of
the case base again, allocating an optional proportion of the score (typically
20 percent) to the description match, and the rest to the values of answers to
the questions. Once again, it produces a list of the highest-ranked matches
to the target case. At this point, the operator can select a case and see the
recommended action, or answer further questions based on a new set of questions
that appears, corresponding again to the highest-ranking possibilities.

Once again, the system adjusts the scores of the cases involved, and produces
a new list. This goes on until the system �ashes a match, the user gives up,
or the system declares that nothing matches the user's answers. In that case,
the user tags the new case as "unresolved," saving the description and all the
questions and their answers. The case is forwarded to an expert who solves it,
and either determines that it is in fact an existing case or enters it as a new
case. The expert just stores it with a new name, along with any new questions
and their answers.

Special characteristics of CBRExpress retrieval are that it is fast. This
becomes important for case bases with thousands of cases where lack of an
inductive component may become a problem. And another characteristic that
makes a di�erence from others applications, it is the solution that is not just an

2.3. CBR TOOLS 31

unique attribute, else a data record that associates additional information with
the case.

CBRExpress distinguishes between user and maintenance mode. Only the
maintenance mode allows to changes of the similarity measure, entering ques-
tions o reindexing the case base. In user mode, most of the windows are removed
to prevent the user from destroying the case base. The menus are reduced to
only those features necessary for the retrieval.

In summary, CBR-Express is extremely well suited to help desk applications
and has also been used successfully for intelligent task assistance, information
access systems and knowledge publishing. It is very easy to use, reliable, network
ready, and notable for its intelligent handling of text.

2.3.8 ReMind

ReMind, produced my Cognitive Systems Inc., was developed with support from
the US DARPA programme. It is available as a C library to be embedded in
other applications, as well as an interactive development environment [Watson
& Marir, 1994].

Cognitive takes a hybrid approach, combining decision trees and template
matching with nearest-neighbor searches, and stresses its �exibility as a compet-
itive advantage. Generally, matching cases can be retrieved using the decision
tree. The answer to each question rapidly eliminates a huge portion of the case
base and allows the search to focus on a tighter and tighter section of the case
base. When a selection of cases is retrieved, or when there is no exact match,
nearest-neighbor searching comes into play.

ReMind o�ers template, nearest neighbour, inductive, and knowledge-guided
inductive retrieval that can be done automatically with no user involvement or
the user can create a qualitative model to guide the induction algorithm. The
template retrieval supports simple SQL-like queries returning all cases that fall
within set parameters. The nearest neighbour retrieval is informed by user
de�ned importance weightings that can be placed on case features. Inductive
retrieval involves building a decision tree that indexes the cases. This can be
done automatically by ReMind with no user involvement or the user can create
a qualitative model to guide the induction algorithm.

Qualitative models are created graphically to indicate which concepts (case
features) are dependent on other concepts. Qualitative weightings can be placed
on these dependencies. Then, ReMind uses the qualitative model to guide the
induction algorithm (hence knowledge-guided induction) resulting in decision
trees that more closely re�ect the causal relationship of concepts in the cases.
Interestingly, di�erent qualitative models can be created to explore di�erent
theories about the domain or to allow what-if questions to be asked.

Case adaptation is provided by creating adaptation formulae that adjust
values based on the di�erence between the retrieved and the new case. These
are also graphically created using a visual programming technique. Although
it takes a little in getting used to the extremely close typing of case features
combined with the close typing of the operators, it does reduce syntax errors.
Finally, ReMind can create case bases from existing databases making it poten-
tially useful for data mining projects.

Cognitive's ReMind is closer to a toolbox than a tool [3cb, 1992]; it lets the
savvy user-builder manipulate data and cases with just about every version of

32 CHAPTER 2. BACKGROUND

CBR technique around, including many techniques described above. You can
build an extremely clever system if you know what you're doing, and you can also
make it fairly intelligible to a normal end-user if you have the interface-building
skills and sensibility - but the system doesn't do it for you. Where ReMind
shines is the underlying technology of matching, indexing and induction, and
the richness of the development environment.

It's hard to describe the typical ReMind system, since the tool lets the
builder-user build almost anything. Customers so far include some government
agencies, but also commercial companies such as Motorola (help-desk, ware-
house management to �nd appropriate parts and computer security auditing),
Boeing (engineering decisions and production scheduling), British Airways (747
maintenance), American Express (to detect when its small-business accounts
are spending out of pattern), Nestlé, Barclay and NCR. The �rm also has a
long list of prospects, many of which it has been done research for.

2.3.9 ESTEEM

ESTEEM, from Esteem Software Inc.23, is written in Intellicorp's Kappa-PC 24

It supports applications that access multiple case bases and nested cases. This
means that one can reference another case base through an attribute slot in a
case. ESTEEM supports various similarity assessment methods including fea-
ture counting, weighted feature computation and inferred feature computation.
It can also automatically generate feature weights, either using an ID3 weight
generation method, or a gradient descent weight generation method. Moreover,
users can incorporate their own similarity functions into ESTEEM.

ESTEEM is very reasonably priced and is well suited as a teaching tool or
an entry level CBR product. That's the reason why Esteem is one of the major
commercial CBR tools.

It's considerated an expert system, focusing not just on case retrieval but
on generally rule-based case adaptation. In this respect, although it's a less
ambitious system, it's closer to ART-IM than to either ReMind (see 2.3.8) or
CBR Express(see 2.3.7). One other distinguishing feature is Esteem's ability to
nest cases, so that a case can derive a feature from cases in another case base.

The Esteem product grew from a number of customer-speci�c applications.
One example is the Bidder's Associate, currently in use by salespeople at Engi-
netics, an aerospace parts manufacturer in Dayton, Ohio. Those salespeople use
spreadsheets to record and manage their bids for parts manufacturing contracts.
Basically, the spreadsheet is a smart form into which salespeople enter the cus-
tomers' requirements and do a few calculations; then they draw up a proposal.
The requirements and constraints all follow a similar pattern, but each set is
unique; moreover, some win bids and some lose bids. The Esteem system took
its spreadsheet, with its signi�cant features in it, as the basic format for a case.

This shell is a Windows-based software tool that enables individuals (both
non-programmers and programmers) to quickly construct decision enabling ap-
plications which utilize Case-Based Reasoning technology [3cb, 1992]. ESTEEM
delivers a set of technologies including Case-Based Reasoning, hybrid cases and

23http://www.esteem.co.uk/
24Kappa-PC is a Hybrid Knowledge-based Systems Environment which incorporates multi-

ple knowledge representation schemes, multiple inferencing capabilities, options for the choice
of search and the ability to incorporate standard procedural coding into you application.

http://www.esteem.co.uk/

2.3. CBR TOOLS 33

rules, similarity assessment, and learning through adaptation of prior experi-
ence.

The case structure is de�ned by the user and every feature from the descrip-
tion case can have the following types:

∙ Text

∙ Numeric

∙ One of a list

∙ Yes or No

∙ Case (a feature can be a case from another case base)

ESTEEM provides the ID3 algorithm for indexing (organizing the case base).
Multiple features or attributes can be selected to build more complex indices,
in order to use those features as the primary search attributes.

The similarity is de�ned as well, and can be customized for each feature
depending of what type are:

∙ Exact

∙ Partial match (letters)

∙ Partial word match (words)

∙ Range (numeric range)

∙ Fuzzy Range (tolerance)

∙ Equal

∙ Inferred (uses rules to determine match)

In addition, the assessment can include feature counting, weighted feature
counting, inferred feature computation and weighted inferred feature computa-
tion.

ESTEEM's Similarity De�nition Editor is used to de�ne how similarity is
assessed between a new problem description and the case base. Similarity is
performed both at the case level (comparing case to case) as well as at the
feature level (comparing the value of each case's feature value to the new entered
feature values).

Rules are used to compute similarity and to adapt a retrieved similar case to
better the needs of the new problem. The rules used in adaptation are domain
speci�c, that is, each CBR application will have its own rules for adaptation. A
developer should be careful by limiting the use of rules as much as possible [3cb,
1992]. Also, he must try to place as many values as he can into the creation of
the case base and into the knowledge the cases will contain.

34 CHAPTER 2. BACKGROUND

Chapter 3

The CBR System Description

In this chapter we explain every phase in our CBR shell. What is needed to
assess a cycle, what are the parts that are required to the whole system and
what can be done to improve the performance.

This CBR shell, which is integrated in GESCONDA, pretends to be as �exi-
ble as possible. All phases allow to be parameterized in the sense of using them
according to the needs of the user, with the idea to adapt them to the new
domain or context.

In the following subsections main features and functionalities of the CBR
shell will be detailed: case structure, case library, con�guration, how to create
a new problem and the four steps of the classical CBR cycle.

3.1 Case Structure

A case is a contextualized piece of knowledge that represents an experience. To
store that concept we try to take pro�t from what the GESCONDA data is
o�ering.

Normally, the case structure is divided into Case Description and Case So-
lution. Most attributes will belong to one or other category. But, some other
attributes are interesting to improve the CBR performance, such as an evalu-
ation of the proposed solution or a measure to assess the utility of the case in
the past.

Both attributes evaluation and utility could be useful to improve the per-
formance of CBR. The �rst one, evaluation, is an attribute that contains the
information of the evaluation or revise task, and it is useful to know what are the
cases in the case base which have been evaluated positively or, on the contrary,
negatively (see section of evaluation 3.7).

The second one is utility, that stores how useful a case has been during the
CBR life. This attribute maintains counters or frequencies of how often this
case has been used and whether it was successful (see section utility 3.9).

3.2 Case Library

The system maintains the memory as is used in GESCONDA, that is, as a
�at memory. In �gure 4.5 there's the model for implementing di�erent types

35

36 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

of indexing the case library but, at present, only the plain (also called �at)
indexing schema exists. We explain the indexations that will be implemented
soon because the system allows to easily integrate another indexation schema.

3.2.1 Flat Memory

Flat memory is a list of all the cases. In our case, this kind of memory is
inherited from GESCONDA.

Plain or �at memories always retrieve the set of cases best matching the input
case. Moreover, adding new cases is cheap, but the retrieval time is expensive
since every case in the memory is matched against the input case.

This kind of memories could could have good time e�ciency if policies success
to maintain this library clean without redundant cases or cases which have never
been used (see retain section 3.8).

3.2.2 Hierarchical Memory

In hierarchical memories, the matching process and retrieval time are more e�-
cient, due to the fact that only few cases are considered for similarity assessment
purposes, after a prior discriminating search in the hierarchical structure. Any-
way, they also have some disadvantages. Keeping the hierarchical structure in
optimal conditions requires reorganizing the case library's structure [Veloso &
Carbonell, 1993] in front of new experience, otherwise the retrieval process could
miss some optimal cases searching a wrong area of the hierarchical memory.

This kind of memories can be split up in three types depending on how they
have been built up:

Share Feature Networks/Trees The cases are stored in a tree, and are lo-
cated depending on the characteristic attributes (clustering). In other
words, the common characteristics are nodes where all the cases sharing
this characteristic hang.

This process is computationally more expensive because the tree needs
more space and its storing and updating is more complex.

The retrieval task is cheap because only a subset of cases is analyzed, but
its result depend on how the hierarchy is established.

The quality of the results depends on the establishment of an importance
characteristic hierarchy.

Discriminant Tree with priorities This kind of tree solves the problem of
searching even when the input case is incomplete. The main idea is that
each node contains a question to all subnodes which provide alternative
responses. The most important questions are formulated �rst, higher in
the hierarchy.

As in common characteristics tree, discrimination trees subdivide the set
of cases and share most of the advantages and disadvantages of this tech-
nique. The questions can be implemented more e�ciently than when
matching in each subnode. At the same time, to separate the attributes
in their particular values makes easier to identify which attributes have
been more useful for the case characterization.

3.2. CASE LIBRARY 37

The disadvantages that arise are those of the Share Feature Network-
s/Trees: some signi�cant cases may be ignored if the ordering of questions
is not optimal.

Redundant Discriminant Trees or Dynamic Memory Model These trees
solve the problem of not retrieving the optimal case by organizing them
in di�erent trees, each one with a di�erent order of the questions. Most
of them use the share feature networks to maintain their size controlled.

This method has been one of the most implemented hierarchical memories,
excluding �at memory.

This model has been developed from the MOP (Memory Organization
Packet) theory [Aamodt & Plaza, 1994]. This structure has been postu-
lated by Roger Schank as a more general knowledge structure to account
for the diverse and heterogeneous nature of episodic knowledge. More im-
portant than the MOP knowledge structure was the new emphasis on the
basic memory processes of reminding and learning [Slade, 1991].

The basic idea is to organize speci�c cases which share similar proper-
ties under a more general structure, a Generalized Episode(GE). These
episodes contain three di�erent types of objects:

Cases Set of cases in the GE.

Norms Common characteristics of all GE's cases.

Indices Features that discriminate between GE's cases. An index can
point a case or another GE.

This schema is called redundant since it is possible to reach the same case or
GE via multiple paths. When a new case is given, the best matching is searched
and the new case is allocated in the tree starting from the root node.

To retrieve a case, the GE with the most common norm is searched, then
the indexes are used to look for the case with more additional common charac-
teristics.

One of the problems is that the number of indexes can excessively grow when
the number of cases increase.

Finally, this organization could be seen as a memory that integrates knowl-
edge of speci�c episodes with knowledge of general episodes.

3.2.3 Self-Organizing Maps

Self-Organizing Maps (SOM) belong to the topographic organized maps. The
last kind of maps speci�cally allows us to understand how the data are sorted
according to their characteristics. The models will usually be trained on a
unsupervised learning, so that cases depend on the natural form. With a trained
model, each case can be represented in such a way that it is easy to identify
the subgroups and areas that are more intermediated. These maps are nests
of points that form a mesh (neurons, in instance, for SOM), which besides
can be interpreted as prototypes. In the �gure 3.1 we can see how the input
instance actives a neuron and how its neighbourhood is a�ected and, in the right
sub�gures, how it is possible to interpret them as prototypes.

38 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

(a) Active Neuron In�uence (b) Clustering View

Figure 3.1: Self-Organizing Maps Structure

SOM are a model created by the professor Teuvo Kohonen. Self-Organizing
Maps are commonly called the Kohonen Maps. Although, in the literature,
sometimes SOM are de�ned as more general and include Kohonen Maps [Fodor,
2002].

They are considered a competitive neural network based on the biological
model of the memory function, in how information is organized in the brain. The
theory says that, during learning, when a neuron reinforces itself, it reinforces
all neurons that are near to it. The transition between to strengthen neighbour
neurons (cooperative learning) to inhibit them (competitive), is smooth as the
distance between neurons increases, so the information is sorted topographically
if we observe the neurons that are responsible for it.

Teuvo Kohonen, based on these ideas, in 1982 presented a model with a
similar behavior. There are two variants: LVQ (Learning Vector Quantization)
and SOM (Self-organizing Maps), both based on the principle of topological
map formation to establish the common characteristics among the input data.
Also, both di�er in the dimension of the map, being on a single dimension in
the case of LVQ and bidimensional or three-dimensional in SOM.

The most common use is related to visualization. The most important reason
is that data with high dimension is transformed into a latent space with low
dimension. In addition, the new space follows a topological order.

It is considered a unsupervised learning technique because it is not focused on
the relationship between the descriptive attributes and the class variable. Learn-
ing in the Kohonen model is o�ine, which distinguishes a learning(training)
stage and performance. During the learning, the values (weights) of connec-
tions (feedforward) between the input and output layer are set up. This network
uses an unsupervised competitive learning, neurons in the output layer compet-
ing for being activated and only one remaining active at a given information.
Then, the weights of connections are adjusted depending on the winner neuron.
Besides of the connections between input and output layer, the neurons consti-

3.3. CONFIGURATION 39

tuting the output layer interact laterally such that the weights between neurons
nearby (neighbouring) are similar. These lateral connections are not physical
connections.

The goal of SOM is to �nd a similarity function that allows classifying the
data set in di�erent output neurons (prototypes).

An important concept in the Kohonen network is the neighbourhood around
the winner neuron. The weights of the neurons who are in this area shall be
updated along with the weight of the winning neuron. That's an example of
cooperative learning.

Learning is an iterative process to adjust the weights of a network and re-
ducing the number of neurons that are activated for an example or instance.
The Kohonen network could be de�ned as a classi�cation task, since the output
neuron that is activated by an entry represents the class of such instance. In
addition, a similar instance shall activate the same output neuron, or other close
to it, due to the similarity between classes, thereby guaranteeing that neurons
that are topological nearby are sensitive to a similar inputs, so the network is
especially useful for establishing previously unknown relationships among data
sets.

3.3 Con�guration

This part of the project might be the most important one since our objective is
to build up a �exible system.

To cope with this requirement, we want to create a system that can be
con�gured from di�erent points. Since our system works both as an interface
and as a shell, we thought that both ways must have a mechanism to get all the
variables con�gured.

When it is run as a GUI, all the variables can be asked to the user using
dialogs In section 4.3.3, where the views are explained, it is possible to see some
examples of these dialogs.

Besides, if it is run as a shell then a con�guration �le is used. Inside of this
�le are all the global parameters which are possible to change together with
their default values. In appendix B this con�guration �le is included, where
all the global variables can be set up. This �le is loaded into the system. The
GUI mode is using it as well, but it can also use other values by changing them
through dialogs. These new values are temporary and do not override the ones
from the �le.

Our purpose is that the CBR system can be used from the command line
only indicating the �le with the case base and its structure. In trying to achieve
this goal, we propose all the con�guration related to data to be in �les apart
from the con�guration one.

From now on, it is possible for our CBR to load the data from GESCONDA
II, so we need to load the rest of the con�guration that is related to the data.
We have thought in two ways to cope with this problem. The �rst one, it is a
speci�c xml �le that contains all the information about the data. The second
one, it is to have the information split into di�erent �les. One of these �les could
be one of the supported GESCONDA II formats (described in section 2.2.2).
We follow our purpose to be as �exible as possible, so the user can decide how
to manage the data, but following the xml structure that we de�ne.

40 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

In addition, �gure 3.2 is included in order to understand how the �les can
be loaded to run the system. This �gure 3.2 shows a con�guration �le (con�g)
and data �le. The data �le contains the information about the domain and it
can be loaded as unique �le (CBR project format). Otherwise, this data can be
shared into di�erent �les containing: descriptors, new cases, or the data with
any GESCONDA format.

(a) Organization of �les (b) How CBR data �le can be substitute using
GESCONDA format �le

Figure 3.2: Files that can be used by CBR system

In the next list we can see what is the information that should be loaded to
have everything needed to run the CBR shell. In this list, all of the items added
with this CBR module are highlighted:

∙ data base

∙ case structure

� Attributes

∗ Type = Continuous, DiscreteNonOrdered, DiscretOrdered, List,
Utility

∗ Descriptor = Description, Solution, Evaluation, Utility,
Cbr

∗ Weight: Importance of this attribute. The sum of all weights
should be one.

∗ Distance: What distance is better for this attribute.

3.4 Start a new case

The beginning of every CBR cycle is to de�ne the new case wanted to be re-
solved. So, to do this task our CBR system o�ers di�erent ways to get the data
from:

By user Manually introducing the attribute values.

From Case Library Choosing one from the current case library. In this case,
the user can decide if he wants to use a copy or the real case of the library.
In this case, any change on it will be re�ected in the library. In case of a
Battery, instead of choosing one, the user can select a percentage of the
�rst ones, as well as a random set.

3.5. RETRIEVE 41

From File In the case of a Battery the list of new cases can be loaded from a
�le. Of course, the cases of this �le must have the same structure as the
cases that are loaded.

3.5 Retrieve

In general, the retrieve phase involves �nding the most similar case/s to a given
case. This task starts with a (partial) problem description, and ends when best
matching previous case has been found [Riesbeck & Schank, 1989]. It is usual
to divide this task in two parts. The �rst one tries to select similar cases and
the second one chooses the best matches.

Really, this division into two tasks makes sense when a memory organization
(indexation) exists. Then, a set of cases is returned as similar cases. For in-
stance, in a hierarchical structure, the cases of a substructure would be returned.
The second subtask takes place by selecting the most similar case/s.

One of the goals is to have this organization or indexing of the cases but,
currently, this objective is not reached. Besides of that, the CBR design is
prepared to have it in the sense that, when a new problem is presented, the
algorithm of retrieval is divided in these two subtasks.

First of all, the case library is asked to return the set of cases that are
candidates to be compared with the new case. Actually, the library returns
all the cases that are stored. But the idea is that an active indexation returns
theses cases.

Afterwards, we focus on the second task, starting from the precondition that
the case library must return a set of cases given a new case. And from them,
the retrieve task might be de�ned as the selection of the n most similar cases to
new given case. To make this task as �exible as possible, we have parametrized
all the possible variables.

The parameters can be separated in two groups: the global ones and the
ones related with the current data.

3.5.1 Global parameters

Number of cases to retrieve(n) The algorithm will rate all the cases ac-
cording to its similarity. The nst most similar cases will be shown or, if
the next m cases have the same distance than the nst case, then the n+m
cases will be shown.

Use only description This variable indicates if only the case description is
used to �nd the most similar, otherwise the case solution will be used.

Use the current case if it is in the library When the new case is selected
from the case library, there is the possibility to use it in the retrieval
system or, rather, remove it temporarily from the library. Note that it
may be interesting to test the system if the case is in the library. It could
be possible to see if the system is doing a good retrieval. Also, if an
indexation exists, it could also be possible to see whether it is correctly
built up.

Distance The user not only can select the similarity functions that are im-
plemented in GESCONDA II but also customize their parameters (See

42 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

description of distances in the appendix A). The parameters for each dis-
tance are the following:

L'Eixample: ∙ � → Threshold that de�nes the boundary for using
quantitative or qualitative values for continuous attributes.

∙ Accepting the weights already set or setting them up again

Euclidean: ∙ Choosing whether or not standardizing the data

∙ Accepting the weights already set or setting them up again

Manhattan: ∙ Choosing whether or not standardizing the data

∙ Accepting the weights already set or setting them up again

Minkowsky: ∙ r → variable power to specify the distance type. r =
1→ Manhattan distance, r = 2→ Euclidean distance.

∙ Choosing whether or not standardizing the data

∙ Accepting the weights already set or setting them up again

Cosinus None

Canberra None

Clark None

3.5.2 "Local" Parameters

The next variables depend on the data:

Attributes As we explained, the case structure (3.1) is changeable in that it is
possible to select which are the attributes of the description and which are
the ones of the solution. Besides, GESCONDA II o�ers the mechanism to
activate and desactivate the attributes, so just the active attributes will
be used for assessing CBR algorithms.

Weights It was explained in GESCONDA functionality (2.2.2) that several
algorithms exist to automatically calculate the weights of the attributes.
So, this system is reused to generate the weights prior to retrieve, but it
is con�gurable in retrieve dialog.

GESCONDA provides for itself the functionality of active and desactive at-
tributes and our CBR respect this con�guration.

3.6 Reuse

Reuse is, inherently, one of the most complex task in the CBR cycle, since it re-
quires a deep understanding of the represented situation in the retrieved case/s
in order to be able to modify or set up the solution. Typically, this understand-
ing is domain dependent. Thus, it is important to de�ne generic reuse methods
or methods which would be able to capture automatically the domain knowledge.

In general, it is considered that the CBR inference is based on the princi-
ple [Lieber, 2007]:

"Similar problems have similar solutions"

3.6. REUSE 43

The retrieved case solution adaptation - in the context of the new case -
focuses on the di�erences among the past and the current case and in what part
of the retrieved cases can be transferred to the new case. The selection of the
cases to be used for adaptation from the retrieved cases can be either guided
by an Utility attribute or selected by the user. Its value can be determined by
the number of times that a case has been retrieved, the number of times it has
been used for adaptation or the number of times it has been successfully used
(positive evaluation). Also, it can be a combination of all these criteria (see
3.9). In the literature, the reuse task can be separated in di�erent methods:

Null or Copy The small di�erences are abstracted away and they are con-
sidered as non relevant. So the solution of the retrieved cases is directly trans-
ferred to the new case as its solution. This is a trivial type of reuse, but it is
widely used in many CBR systems because it is domain independent. In our
CBR system, it is possible to apply this kind of method. When more than one
retrieved case exists, then a mean or mode value is computed.

Some authors do not consider this method as an "adaptation method"
[Aamodt & Plaza, 1994]. Nevertheless, when a mean or mode are applied,
it can be considered transformational reuse because it is a formula that trans-
forms the retrieved solutions in a new one. Another possibility is to assess a
pondered average, or rather, a weight average where the weight are inversely
proportional to the distance to the new case. Or even, considering the Utility
attribute by giving more importance to more "useful" cases.

Transformational Reuse The past case solution is not directly a solution
for the new case, but there exists some knowledge in the form of transforma-
tional operators. To develop these operators, knowing some extra information
is needed, which is domain dependent. Our CBR system provides a module
where numerical formulas can be de�ned for the numerical attributes belonging
to the solution of the new case. Thus, when the system is used by an expert,
he/she de�nes the best transformation scheme for the solutions.

Derivational Reuse Reuses the algorithms and methods that produced the
original solution in order to create a new solution to the current problem. Also,
the planning sequence that generated the original solution has to be stored in
memory along with the solution. This approach is sometimes called reinstan-
tiation, and it can only be used for cases that are well understood. This kind
of reuse is not available in our system because it is domain dependent and con-
ceived for other type of data di�erent from data-intensive CBR systems, as may
be the case that represents a process.

Another point to take in account is that our system can support more than
one attribute belonging to the Case Solution and this classi�cation between de-
scription and solution can vary when the user wants. So, in the literature we
have found some solutions but most of them are oriented to solve only one
solution attribute. Most of the proposals use techniques from the supervised
learning �eld and have only one attribute to predict [Fdez-Riverola & Corchado,
2000]. For example, a system to predict oceanographic temperatures [Corchado
& Lees, 2001]. This system retrieves the most similar cases and retrain a radial
basis network with them to create a new solution. Or WeVoS-CBR, which is a
hybrid intelligent system to forecast the presence or not of oil slicks in a certain
area of the open sea after an oil spill. In this system, the data is indexed by
a Visualization Induces Self Organizing Map and it uses a growing neural net-
work to guide the retrieval and create a new solution with these recovered cases

44 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

retraining the network.

One requirement of our system was that it has to be as �exible as possible
in the sense to o�er a CBR that could be adapted to any problem. That is the
reason to think in what are the possibilities facing this Adaptation challenge.
Since the problems that we cover are data intensive, we have to look for solutions
which don't rely on an existant knowledge.

For the time being, CBR module implements three adaptations: null, mean,
weighted mean and formula. The �rst one copies the values of each attribute in
retrieved case solution to the new case solution. And the second one computes
the mean/mode depending on the attribute type, and copies this value to the
new case solution. But we split them because the calculus can be weighted by
either the similarity or the utility(see 3.9):

si(new case) =

∑R
j si(retrievedCasej) ∗ weigtℎ(retrievedCasej)∑R

j weigℎt(retrievedCase)
,

wℎere,

si : solution attribute with index i

R : number of retrieved cases

weigℎt(retrievedCase) :

{
1− distance(retrievedCase, newCase)
utility(retrievedCase)

(3.1)

Guided by the transformational reuse, we create a module where each at-
tribute can be de�ned by a user formula (the third adaptationscheme). Each
attribute from the solution can be computed with the di�erent options. In
this point, it is possible to use the GESCONDA functionality to create new
attributes with the solution values from di�erent algorithms.

Our formula module is an initial approximation. In the future that module
will be able to be extended to cover more formulas and to be con�gured through
a �le. Currently, by means of the GUI, the user can introduce a formula includ-
ing operators, numbers or the own continuous attributes values. To simplify the
process, if there is more than one retrieved case, then the mean value for these
cases will be used. The next equation 3.2 is an expression representing the kind
of formulas which are supported:

soli = sim(operator sim)∗ , sim =

⎧⎨⎩
number

value of selected attribute

mean of the values of selected attribute

of the retrieved cases for adaptation

(3.2)

In con�guration 3.3 section, we explained that both the con�guration and
the acquisition of the parameters are achieved through the interface or by means
of �les.

In this phase, all the options - excepting the formula adaptation option - are
possible to be con�gured by means of a �le.

3.7. REVISE 45

Using the GUI, the user can select the retrieved cases that wants to use for
adaptation or just use all of them. The next step is to choose what kind of
adaptation wants for each solution case:

Null: copying the solution of the most similar case out of the chosen ones in
the previous step to the new case

Mean/Mode: computing the mean or mode for each attribute from the solu-
tion depending on the attribute type

WeightedMean/WeightedMode: this time the mean is weighted by the sim-
ilarity that has been calculated in the retrieval task to give more impor-
tance to the most similar cases. As an alternative, it can be calculated
using the Utility attribute, thus giving more importance to the cases that
are supposedly more useful.

Formula: This option is only available for the continuous attributes. A new
dialog is opened to introduce a formula created by the combination of
numbers, retrieved case attributes and operators (see �gure 4.9 in sec-
tion 4.3.3).

This part is easily extensible so, if considered worthy in the future, this
module can be extended by any Java programmer without knowing all the im-
plementation. Moreover, if an automatic generator of formulas is provided, it
should be easily to introduced in the system.

3.7 Revise

This task can be really important because it gives the opportunity to learn
whether the previous tasks run correctly or not. Therefore, this part of the
cycle consists in evaluating the proposed solution to the new case.

This phase is maybe the most di�cult one, because there is none automatic
method implemented in the literature. Most of the papers that treat case-based
reasoning either avoid this topic or leave it to the expert who is using the system.

It is supposed that this evaluation takes place after the solution is applied
in a real environment. Then, an expert evaluates how useful has been the
proposed solution. Hence, there is little implemented about automatic and
generic methods.

In [Michael et al., 2001] they present the "utility" as we understand the
evaluations. To them, this evaluation is an important term that encompass in
a more generic way what has to be retrieved: not only the most similar case,
but the most useful case. In the next �gure 3.3 is well-explained this concept.

Despite the use of the term "utility", they describe this along the text as
a criterion used by the user to evaluate how useful has been the solution to
him. They introduce a methodology to improve the performance of the retrieval
phase if this evaluation is approximated before selecting the case. Anyway, to
approximate this evaluation they outline that it is domain dependent and has
to be speci�ed. However, there are some possible approximations, but those
depend on the type of use. If it is for testing, the evaluation could be done like
in supervised learning. The simple idea is create a percentage of how equal is
the proposed solution to the real one.

46 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

Figure 3.3: Comparison between similar case and useful case

An approximation of the value would be done by looking at the evaluations
of the cases used to set up this on. When the utility attribute is created, also
a new attribute is created: SourceCases, which is a list of references to the
cases that have been used to create the solution of the current case. Thus, this
attribute could be used to access the precedent cases and form an approximation
to the new case evaluation.

In the literature, we found that this step is made up of two subtasks. The �rst
one is the evaluation of the case itself. This task usually takes place when applied
to the real environment or in simulations. The second one consists on adapting
the solution again [Aamodt & Plaza, 1994]. This step could be interpreted like
going back in the cycle and return to the reuse or adaptation phase. First, the
errors have to be detected and then retrieve or generate explanations for them.
After, theses explanations are used to modify the solution in such a way that the
failures do not occur. Other authors prefer to have the evaluation in order to
not proposing a bad solution again [Baccigalupo & Plaza, 2007], though. This
provides an opportunity to learn from failure.

In our system, currently is a percentage of how good has been the case, but
has to be introduced by the end user or expert, unless the default evaluation
value is used. Graphically, it is possible to easily change it. It is a simple scroll
bar. Moreover, the default value could be modi�ed in the con�guration �le (see
con�guration section 3.3).

3.8 Retain

Learning by (own) experience is the last task of the cycle in Case Based Reason-
ing. After an evaluation step, the opportunity to increase the problem solving
capabilities of the system arises. So, it can learn from the new experience or not.
If the proposed solution has been a successful one, the system can learn from
this fact in the sense that, if this experience is stored in memory, when a new
similar case to this one appears, it can be solved like it (learning from success).
If the system has failed, it must be able to prevent itself from making the same
mistake in the future (learning from failure). Not all Case-based systems have
both kinds of learning.

When a case is evaluated as a failure, if it is assumed that the adaptation

3.8. RETAIN 47

method is correct, two reasons could haver originated the case to be a failure:

∙ The retrieved case is the best one for solving this new situation, given the
current case library, although it is not very similar to the new case. The
problem here is that there are not enough cases (experience) in the case
library to cover the whole space of cases.

∙ The optimal or nearest case has not been retrieved due to the indexation
of the case base. Thus, there is something wrong in the retrieval process.

When the new case has failed, there are several possible actions to be taken,
in order to ensure that this failure cannot be repeated in the future. First,
the CBR system can store the failed case into its memory to prevent taking,
another time, the same failing solution for similar cases to this one. Some
case-based systems maintain a separate case library of failed cases, while others
maintain only one case library structure. The latter is our situation, because
our evaluation system is not just based on "success" or "failure". It could be
evaluated with intermediate values.

In each domain and application it is necessary to decide what, when and
how a new experience should be stored. This is a process of incorporating what
is useful to retain from the new problem, that is, whether the new proposed
solution deserves to be in the case base as a new knowledge because is considered
as a useful experience. Sometimes, it's not worth to store it, i.e, the new case
is almost equal to a case in the library. That is the reason for creating a
functionality where the user can indicate what are his learning criteria, in order
to con�gure a criterion being dependent to his/her speci�c domain.

Our intention is that every domain or application has its own retain criterion.
Initially, the case base may be empty, so it is not necessary to control it until
the number of cases is growing too much - with the consequence of increasing
case base all times without improving the results. Uncontrolled Case Base
growth can cause serious performance problems as retrieval e�ciency degrades
and incorrect or inconsistent cases become increasingly di�cult to detect.

The following characteristics in�uence in the quality of the data:

Relevance cases that are not relevant could have a negative impact

Correctness wrong cases can derivate in wrong solutions

Memory space the more cases exist, the more cost of storing

Retrieve cost if the memory is large the cost to �nd good cases is increased
as well

The Retain task would be seen as one policy of the maintenance of the case
base because its purpose is to avoid incorporating a new data in case it could
cause noise [Leake & Wilson, 2000]. Maintenance in CBR can mean a number
of di�erent things: out-of-date, redundant, or inconsistent cases may be deleted,
groups of cases may be merged to eliminate redundancy and improve reasoning
power,cases may be re-described to repair inconsistencies [Iglezakis et al., 2004].

Therefore, the retention of a new experience is not an easy task. Some
domains change along the time and recent experiences are more important than
the old ones. Nevertheless, some domains are temporarily episodic, or rather

48 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

the old cases could be useful again. For instance, data depending on the weather
is di�erent for each season.

Besides, the utility attribute can be interesting in this phase by improving
the e�ciency of the system by ruling out selected knowledge [Minton, 1990] This
should be done using metrics of use frequency and usefulness of a determinated
case to the knowledge. This metric is what the Utility attribute is storing (see
section 3.9).

After understanding the importance of retaining a new case in the library
and that it depends on the domain and the indexation, we decided to create a
functionality which may be easily extensible and �exible to be con�gured. Thus,
our shell o�ers an interface that allows the user to add conditions which have to
be satis�ed by the case before to be learnt or not, as we can see in �gure 4.10 in
section 4.4.8.

The idea is that the user con�gures which condition needs to ensure that the
new case will be useful to the case base. This is achieved by joining conditions
with the logical connector AND(∧). These conditions are loaded from a �le.
There are two ways for selecting which are the conditions to follow. The �rst
one is to select all conditions in the �le: this is appropriate if the CBR is run
from the command line. And the second one is through the interface: the user
can select the conditions to use and, for each condition, which are the values
wanted for selection. In order to show these conditions graphically we had to
decide a representation. So, we decided that a condition consists of three strings
at any given moment:

1. Name: Identi�er of the condition.

2. Operator: Identi�er of the condition function.

3. Value: Identi�er of the value to use.

This is a general formalization to not restrict what a condition may be.
Therefore, within the �le we can de�ne the condition as one identi�er and a list
of operators and, for each operator, a value list or a number. Hence, the function
is run in the itself class and the retain algorithm only asks to them whether they
are satis�ed or not. For a better understanding of this abstraction we explain
some examples are described below.

3.8.1 Distance

The �rst and simple condition is not to store the cases that are equal or very
similar to other one which is already in the case base. In order to de�ne the
condition, we can formulate: "If similarity is bigger than 90% then do not store
it". In this case, the three identi�ers could be: "similarity", "<", "90". To
use this condition - "similarity" - it is possible to de�ne di�erent operators and
values. In fact, the value could be a representation of a number and the user
may introduce any numerical value.

Thence, the condition identi�ed by "similarity" may have di�erent opera-
tors(">", "<", "equal", ">90") and each operator a numerical value or a list
of values. For instance, the operator ">90" has the values "yes" or "not".

3.8. RETAIN 49

3.8.2 Evaluation

As with Distance, the conditions of the values using their evaluation work in the
same way (as it happens with Utility), so we skip these conditions to explain a
more complex one.

If this new case has not been evaluated, in order to not have failed cases, the
case base is searched to �nd which case that has a negative evaluation matches
the new input case. This is done to avoid repeating the failure, or rather to
avoid having similar incorrect cases in the library. Then the condition needs two
values, the �rst one could be the evaluation and the second one, the similarity.
But we have already explained that the value is a string, so this string must
depict both values. This could be done by introducing a list of values:

name: "Negative Similar Case"

operator: "negativeSimilar"

values :numberEvaluation, numberSimilarity

Then, if the case retrieved has an evaluation smaller than the value "num-
berEvaluation" and its similarity is bigger than the value "numberSimilarity",
the case has to be ignored.

3.8.3 Recursive Cluster Elimination (RCE) method

In a context, the training data are the past cases of diagnoses. These records are
organized as description-solution associative pairs. With an adapted clustering
based learning algorithm similar to the RCE method, the algorithm is outlined
as follows:

In this algorithm, each training case is an associative pair (X, Y), where X
is the input description vector and Y corresponds to the solution component.
Each cluster center has a radius of attraction Rj , whose value lies between
its allowable maximum and minimum values. When a new training vector X
is entered, the algorithm computes distance scores Dj for all existing cluster
centers Ci.

If Dj is less than R, for some j, it means that the input pattern is covered
by Cj . Then the algorithm checks if the solution of Cj is the same as Y in
the training record. If they are the same, then the training record is marked
"covered" and nothing else needs to be done. Otherwise, it means that the
radius Rj is too large, then it has to be reduced. If the radius Rj has already
been reduced to its allowable minimum, then the cluster center Cj is made
to represent more than one solution. This means that the set of descriptions,
X, does not uniquely identify the solution and hence it recommends multiple
possible solutions. In this situation, the case has to be stored. The user will
then need to verify each of these suggestions.

If the input record is not covered by any cluster (ie. Dj > Rj for all j), then
a new cluster is formed. Its center will take the input vector values, its radius
of attraction initiated to the maximum allowable value and its solution set to
Y . Notice that when the radius of a cluster center is reduced, some previously
covered input patterns may become exposed again. Thus, whenever the radius
of some cluster center is decreased, the system is marked "unstable", and all

50 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

the training data will be presented for another iteration, until the system �nally
becomes stable.

Whenever a new training record is available, the same learning algorithm
can be applied to incorporate the new case into the existing knowledge base in
a relatively fast manner [Lim et al., 1991].

Then the condition could be reduced to indicate what is the minimum value
of the radius: {"RCE", "minimum Radius" and "numerical value"}.

3.9 Utility

"The utility problem in arti�cial intelligence system occurs when knowledge
learned in an attempt to improve a system's performance degrades performance
instead" [Minton, 1990]; [Francis & Ram, 1994]

One of the main problems in CBR is the maintenance of the case base [Orduña-
Cabrera & Sánchez-Marré, 2008] [Orduña-Cabrera & Sánchez-Marré, 2009].
When the number of cases reaches high values then some problems can occur.
Next, we explain some of them:

∙ When the number of cases grows, the cost to �nd a case grows as well.

∙ A case base containing obsolete cases means that noise exists and perfor-
mance could decrease.

We mentioned the Utility attribute several times in previous sections. "Util-
ity" is a concept that tries to keep the usefulness of the case in the case base.
Of course, this may be an abstract problem depending on the point of view.
Sometimes, the utility can be how often a case is used to resolve new problems
while other times is more important to just count how may times this case is
near to the new presented problems.

The question is: where could be useful this Utility attribute to be used? As
a matter of fact, this attribute could be useful in almost all CBR tasks:

Retrieval From a set of cases that are similar to the new case, select those
that are most useful.

Adaptation If there is a group of cases to use in adaptation, Utility could give
more relevance to those that are more useful.

Case Maintenance The policies to delete some cases to reduce the size of the
library could be guided by this attribute avoiding to delete those cases
which have been used the most. Or to delete those that have not been
used in a long time.

In [Francis & Ram, 1994] they suggest that we could improve the behaviour
of their CBR approach by assessing cases quality, and using the quality in order
to prefer useful cases in the retrieval.

In the following lines we introduce an example in which we use this attribute
to maintain the case base. As a consequence, retrieval time forgetting is reduced,
that is another di�erent point of view from the perspective seen until now.

The article Forgetting Reinforced Cases [Romdhane & Lamontagne, 2008]
presents a study comparing the performance of Case Usage versus Case Value

3.9. UTILITY 51

criteria for forgetting cases, hence bounding the number of cases to be ex-
plored during retrieval. In this study they conclude that case usage is the most
favourable criteria for selecting cases to be forgotten prior to retrieval. In addi-
tion, they try mixing case usage and case value obtaining some improvements.

Computational time in a CBR cycle depends on the time dedicated to re-
trieval and adaptation. In a nearest neighbour setting, retrieval time depends
on the number of cases being considered for making recommendations. Hence,
to meet time constraints, a CBR system would either have to forget cases prior
to case retrieval or to �lter cases while performing retrieval. For this work, they
adopt a forgetting approach to limit retrieval time.

In the same article, the goal is to determine whether the values obtained
through reinforcement learning could provide a good indication on which cases
a CBR system should forget to reduce the size of a case base. This work is
conducted by a case study using Tetris, a game with simple rules presenting
relevant time constraints.

In �gure 3.4 we can see how is the performance based on the number of
lines eliminated in tetris game. From this experiment, they conclude that case
usage (U) provides a better decision criterion for progressive forgetting of cases.
Results also indicate that reinforcement value (V) is not by itself an informative
criterion for reducing the size of the case base. It is also interesting to note
that the size of the CBR memory can signi�cantly be reduced without severely
impacting on its performance. The combination of both criteria improves the
results,especially when the case base size is tiny.

Figure 3.4: Performance pro�les for case usage(U), case reinforcement value(V)
and combination of they two. Performance pro�les obtained by progressively
removing cases from an initial case base of 55000 cases

But it's not all advantages when always selecting the most useful cases. If
doing so, then the same cases are selected every time, thus creating a new prob-
lem of leverage. Hence, Utility creates a dilemma to deal with the exploration
vs. exploitation trade-o�: when there is no good case for recommending a
node, we may prefer the less used cases (exploration), or the most used ones

52 CHAPTER 3. THE CBR SYSTEM DESCRIPTION

(exploitation).

3.9.1 Our approximation of Utility

What are the factors that make a case become useful? This question is a new
challenge that has to be solved by thinking in all domains, or rather by a generic
de�nition. The next points are analyzed: determining how often the case in the
system has been used and determining how long since the last time that has been
used. The assessment of the answer to these question could be done de�ning
this information for each case:

∙ Total number of times the CBR cycle has been run, which should be
common to all the cases (Num of Runs).

∙ Number of times a case has been retrieved (Num of Retrieves).

∙ Number of times a case has been selected to create a new solution (Num
of adaptations). Notice that it is a subgroup of the retrieved cases.

∙ Number of times a case has been selected to create a new solution, be-
coming this new solution positively evaluated (Num of success).

∙ Date of case creation.

∙ Date of the last use of the case.

Utility could be seen as a frequency determined by a fraction [de la Rosa
et al., 2007], so the numerator and the denominator must be speci�ed. One
approximation could be how often a case has been successful:

utility =
numerator

denominator
=

Num of success

Num of runs or retrieves

To make Utility attribute more �exible, it is possible to decide what are the
numerator and the denominator through the GUI and the con�guration �le.
Remember that the evaluation attribute can be avoided, so "Num of success"
would not have sense. Then, "Num of adaptations" could be used instead as a
good metric of how useful has been the case along the CBR life.

Chapter 4

The CBR Shell Development

In this chapter, most of the skills, described in the last chapter 3, are designed
and developed in the current CBR shell prototype. During the CBR design
speci�cation we have been aware that one of ours main objectives is to have an
extensible CBR shell. Thus, some decisions have been into account for designing
and implementing.

After describing functional and non-functional requirements of the system
(Section 4.1), we describe the main functions (Section 4.2). Finally, in Section
4.3 we provide the design of the system and we remark important points of the
implementation and the algorithms. In this chapter, we do not specify the CBR
shell in details as the system has been informally presented in the last chapter 3.

4.1 Software Requirements

In the following we explain the main software requirements of the system. Some
of them are restrictions due to the integration with GESCONDA, besides to the
functionalities that this new module should o�er.

4.1.1 Functional requirements

Our aim is to create a CBR shell that can be integrated in the last version of
GESCONDA II. One of the main requirement, and also the most di�cult, we
want to ful�ll is the shell �exibility. The shell has to be as �exible as possible in
all the CBR phases and su�ciently generic to be able to cover more than one
domain.

The following requirements have been used as a starting point:

∙ to store the case base in xml �les

∙ to import/export in both cases' types and GESCONDA cases' instances.

∙ to be used for di�erent domains

∙ to o�er the possibility to launch a battery of queries

∙ to trace logs

53

54 CHAPTER 4. THE CBR SHELL DEVELOPMENT

∙ to have a �exible structure. The structure should not be �xed as changes
in the case structure should be easy to apply

∙ to have some indexing technique. The indexing should allow the possibility
to order the cases in some structure

∙ to be able to select the number of cases in the retrieval step

∙ to select the distance to use and its parameters

∙ to select the cases from the retrieved to be used in the adaptation step

∙ to light feedback in the evaluation step

∙ to be able to specify options to store or not the solved cases

4.1.2 Non-Functional Requirements

These requirements are those that our system should satisfy. As previously said,
some are restriction due to the integration of the CBR shell with GESCONDA II:

∙ the GESCONDA code must not be modi�ed or at least the minimum. In
principle, GESCONDA II o�ers a simple system to integrate new func-
tionalities that will be accessible from the main menu.

∙ the data should be not duplicated. CBR should use the same objects in
memory that are created by GESCONDA .

∙ the front-end should be usable both for application and library modes

∙ the use of the libraries available in the group should be maximizaed

∙ the system should be as �exible and generic as possible, both to extend
and to con�gure the parameters of CBR

∙ the systems should be a multi-platform tool

4.2 Use Cases of the CBR shell

The functionalities of this CBR prototype are represented in the next use case
diagram 4.1. In this �gure we distinguish between two actors, the user and
the system. And the inclusions among functionalities- if one functionality uses
another one.

Finally, we brie�y specify the main functionalities in the following subsec-
tions.

4.2.1 De�ne Case Structure

Since we want a Data-Intensive Case-Based Reasoning, our cases are constituted
as a set of attributes. These attributes can belong to case description, case
solution, evaluation, utility or other attributes that internally are used by CBR
such as source case.

In order to have a more �exible case description, the user can de�ne to which
group the description belongs. It is also possible not to create any utility nor

4.2. USE CASES OF THE CBR SHELL 55

Figure 4.1: Use Case Diagram of the CBR Shell

any evaluation. In this way the case is more similar to a typical instance. In
addition, if just one attribute is selected to case solution, these cases are like
instances with an attribute as a class, as in the supervised learning �eld.

4.2.2 Select New Case

A new case de�nition is possible whenever a new CBR cycle is started as a
whole cycle or just as only the retrieval phase. For the case de�nition, the user
is allowed to create a new case case and specify all the values, or pick up one
case from the library or even, to edit the values of an existing case picked up
from the library.

4.2.3 Select New Case List

A new cases list can be loaded from a �le or picked up from the library, for
example when the user wants to run a battery of CBR cycles,(to solve a battery
of new cases). If cases are chosen from the library it is possible to take a
percentage of the �rst cases or take a percentage of random cases. At this
moment, the user is asked whether he wants to remove the cases from the case
base or to maintain. If they are maintained, the cases will be used as well
as cases in the library. The use of each new case to retrieve depends on the

56 CHAPTER 4. THE CBR SHELL DEVELOPMENT

con�guration. It is possible to compare with itself or to ignore when the cases
are the same.

When the case or cases are selected from the library, the user can choose
if he/she wants to use the case/s uniquely as new cases or also, as case base.
Depending on the con�guration those will be compared against themselves in
the retrieve algorithm or ignored when both the compared cases are the same.

4.2.4 CBR cycle and Battery

We mentioned these two functionalities. The CBR cycle implies to run the
whole cycle in one time, without stopping between each CBR step:

1. Set up the new case (4.2.2)

2. Retrieve (4.2.5)

3. Adapt (Reuse)(4.2.6)

4. Evaluate (Revise)(4.2.7)

5. Learn (Retain)(4.2.8)

It can be con�gured at the beginning with the same parameters as if every phase
is run separately.

And the battery uses this CBR cycle to compute more than one consecutive
cycle. To do it, �rst the battery dialog o�ers the functionality to load or select
a new case list (see 4.2.3). If it is run by the command line, the new case list
should be loaded from a �le.

4.2.5 Retrieve

In this �rst step, the user is required to set up the new case (see 4.2.2). Then,
the case library or case base, that is in charge to maintain these cases, return a
set of retrieved cases when is asked with the new case as parameter. The set of
cases represent the similar ones under the library criteria. The library criteria
depends on the indexation that was set up. For �at indexation, it returns all
the cases. This function can be seen as the �rst part of the retrieve (selection).

The next step is to look for the n (number of retrieved cases) cases that are
more similar depending on the selected distance and its own distance con�gu-
ration.

4.2.6 Reuse

The reuse phase, �rst load the reuse con�guration, both introduced by the user
or by the con�guration �le. In the case that is con�gured by the user, this phase
allows to introduce custom formulas to calculate the adapted solution.

Secondly, compute the adaptation for each solution attribute according to
its con�guration as NULL, MEAN/MODE, WEIGHTED MEAN/MODE or
FORMULA(see algorithms in section 4.4.6).

4.2. USE CASES OF THE CBR SHELL 57

4.2.7 Revise

Currently, this step is introduced by the user. The user can use the default
value and change it. Or, also can revise once the new case is already adapted.

4.2.8 Retain

Retains is twofold: �rst, there is the option to load the available retaining
conditions and after that, the user can con�gure as many conditions as necessary,
and each one with one custom con�guration. Second, to decide whether to retain
or not depend on the adaption mode (Learn, NoLearn , LearnIf). In the case
of conditions, those have to be satis�ed for learning the current case.

If this phase is con�gured by the GUI, then the user can check if the current
case satisfy the set of conditions. If it is run by command line, then all the
conditions in the conditions.xml will be loaded and con�gured with default
values. However, the current case can be retained or not by user demand or by
satisfying all the con�gured conditions.

4.2.9 Load Conditions

The conditions are stored in a xml �le. Then, the user can load a new �le with
his/her preferences.

4.2.10 Update Utility

Any time that any algorithm related wit CBR is run, there is a listener that is
in charge to update the Utility attribute.

∙ After Retrieve: it is updated the number of retrieves of each case that has
been retrieved.

∙ After Reuse: it is updated the number of use �eld in all the cases that has
been used to adapt the current case.

∙ After Revise: it is updated the number of success �eld of all the cases that
has been used to created the adapted solution(we call the "source cases")
to the revised case.

Besides to update the utility attribute, also, it creates the �les with all the
results.

4.2.11 Load Con�guration

CBR has a global con�guration of all its phases. This con�guration can be
speci�ed through a con�guration �le. To make the process faster, the user can
load another con�guration �le with the same format, but it is not necessary to
include all the �eld.

58 CHAPTER 4. THE CBR SHELL DEVELOPMENT

4.3 Design

We have designed the CBR shell taking into account the system speci�cation
provided in chapter 3 (CBR description). In the next sections we are explained
the main design decisions with respect to the architecture and the design pat-
terns. Of course, in the design of the shell we have considered the design of
GESCONDA II as well in order to guarantee a coherent integration between
the two systems.

In next �gure 4.2 is schematic depicted the whole CBR cycle:

Figure 4.2: CBR schema of how it works

Finally, the �gure 4.3 draws how the CBR works and when the con�gured
�le and data �les are needed.

4.3. DESIGN 59

Figure 4.3: CBR diagram of how it works

60 CHAPTER 4. THE CBR SHELL DEVELOPMENT

4.3.1 Architecture

As far as technologies are concerned, we have reused the technologies used to im-
plement GESCONDA II. Thus, we use Java, and jFreeChart. We have switched
to Java 6 because it does not run into con�icts with the rest of code and it o�ers
some advantages over version 5.

For the design we have followed the MVC architecture pattern used in
GESCONDA II with the di�erence that we want to build up a system that
could be used as a shell (by command line) as well. So, we have changed some
aspects to achieve an independence from the interface. For instance, all param-
eters and variables to con�gure the system can be introduced by the interface
or by means of an xml �le (see CBR con�guration 3.3).

4.3.2 Model

One of the main restrictions is that the GESCONDA structure cannot be mod-
i�ed in order to guarantee a smooth integrated system running. One of the
non-functional requirement is to not modify GESCONDA code as far as pos-
sible. Also, it is not allowed to duplicate the data because is expensive in
terms of memory, and after duplication, it would be not possible to use the
GESCONDA functionality because it would not understand the new case struc-
ture as a GESCONDA instance (please refer to the GESCONDA structure de-
�ned in Section 2.2.1 to have a better understanding).

Thus, the idea is that CBR module cannot modify the GESCONDA data,
and after CBR is executed, GESCONDA functionalities continue should work-
ing. In this way, the results of GESCONDA can be used in CBR because, most
of the algorithms store the result in new variables which could be useful to im-
prove the retrieval. Also, the functionality to prepare the data could be used,
such as to change the current weights of the attributes.

Therefore, we already have a data structure called CMInstancia(instance),
which is a vector of attributes. These attributes can be continuous or nominals,
and one of the nominals can be selected as class attribute to use in supervised
learning. Thus, it has been necessary to create a structure which allows to
de�ne which attributes belongs to the Case Description or to the Case Solution
part. The user can de�ne for each attribute its kind, and in addition, there
is the chance to load this information by an xml �le. Besides, the option to
create an evaluation or utility attributes is o�ered as well. Hence, this structure
enables the �exibility to select which are the Case Description or Case Solution,
to identify others attributes which will be used by CBR, and to change such
con�guration at any time.

So, we had to forget about the typical CBR model (see �gure 4.4), and there-
fore, to reorganize it to wrap the GESCONDAmodel ensuring that GESCONDA
keeps on working correctly.

Our case is an imaginary class that includes CMInstance and all the descrip-
tions of its attributes are common for all the cases. For this reason cases can be
stored in the same place where all the cases are stored. This place is CMTaula
for attributes and CMCaseLibrary for descriptors.

Figure 4.5 shows the initial GESCONDA model and the classes added
to model by the CBR system (inside the rounded black rectangle). The rest
of the classes inherited from the GESCONDA classes are not included (see

4.3. DESIGN 61

Figure 4.4: Typical CBR Model

GESCONDA model 2.2.1 for details). The following list describes every class:

CBR The main class that controls the data, con�guration and the state of the
CBR cycle in case that it is separately executed.

CBRCon�g This class contains all the variables which do not depend on the
data. In fact, this class maps the con�guration �le (see con�guration 3.3).

CBRListener This class implements the observer pattern and its main func-
tion is to perform extra functions of CBR like updating the utility attribute
or collecting data for future statistics.

CaseLibrary This class is in charge of maintaining the data. From this class
it is possible to access data and the descriptors that are common for all
the cases or instances.

IndexedCaseList It is an abstract class and depending on the con�guration
a subclass is chosen for selecting which kind of index to use. Its function
getCases(Case) returns a list of cases that vary depending which one is
selected (plain, hierarchical or Self-Organizating Maps).

Utility To include Utility, it is created as a new type of attribute. Thus, it
needs the attribute, infoAttribute and value.

List It is a new type of attributes and it stores a list of CMInstancia. This
attribute is useful to maintain the source cases, i.e. the cases that have
been used to create the case solution.

Algorithm subclasses These classes are inherited from the Algorithm to be
included as an algorithm of GESCONDA. Most of them are the algorithm
used in the CBR cycle. For instance, the Battery algorithm executes a
CBR cycle from a list of new cases with a speci�c con�guration. Condi-
tion that are used in the Retain task, this is an abstract class that has
the satisfy function and has to be coherent with the condition.xml that
contains all the conditions and its values to be shown in the interface.

62 CHAPTER 4. THE CBR SHELL DEVELOPMENT

Figure 4.5: Gesconda Model with CBR Model

4.3. DESIGN 63

To adapt the CBR model to the GESCONDA model we introduce CBR, a
class used to manage and con�gure the system to execute CBR. For instance,
it maintains the task scheduling preventing the execution of a posterior task in
the case the anterior has not been run yet and it stores the last solution of the
cycle. CBR is a Singleton pattern and thus it is accessible by all the classes.

One of the most important classes of our model is the CaseLibrary which
deals with the maintenance of data and their attributes. As seen before, the
CMTaula contains the instances and their attributes and the CaseLibrary rep-
resents its complementary class. Thus, it has Descriptors and manages them to
have one for each attribute. Furthermore it manages the data access. This class
also creates the CBR attributes according to the con�guration. Right now the
indexation is only plain, so instances are returned as they come from CMTaula.

The Descriptor class contains the attribute to which refers and its type
(description, solution, evaluation, utility or other cbr type). Its function is a
tag for the attributes to recognize what type they are.

Since the attributes types of GESCONDA do not support all the data types,
we create two more. The �rst Utility is an attribute that is a fraction. Its
values are shown as continuous, but every case stores how many times has been
retrieved, used to create a new solution and used successfully.

The second attribute type is List. This is a list of CMInstancia and is the
most di�erent of all because cannot be reduced as a number or a simple string.
Anyway, its role is to store for each case what cases have been used to create its
solution. Of course, we design a generic attribute for being used in the future
as another type of attribute.

4.3.3 View

The model View contains the classes designed to support the interaction with
the end-user. Following GESCONDA II, the functions o�ered in the main menu
are introduced in menu.xml (see section 2.2). In this way code changes are not
needed to add interface functionalities.

Nevertheless we have to introduce some changes to return the results in the
same way that GESCONDA II does. Thus, we add a new tab in the main
window responsible to show all the references to CBR. In next �gure 4.6 the
aspect of this tab integrated in GESCONDA II is shown.

The rest of view consists of independent dialogs for the con�guration of each
task. Each dialog is shown inside another one depending on the task �ow. To
reduce the complexity we have reduced the dialogs because the functions CBR
cycle and Battery show all the parameters for each task in the cycle. Thus,
if these tasks are executed separately a new dialog is opened only with the
respective options for this task:

1. If data is loaded with any GESCONDA format then the descriptors do
not exist. Thus, a dialog is opened to ask the user whether she/he wants
to load data from a �le or set up them manually. In �gure 4.7 is described
the manual setup.

2. After data and descriptors are loaded, if the function of battery is selected,
then a con�guration dialog is opened. This dialog is depicted in �gure 4.8.

64 CHAPTER 4. THE CBR SHELL DEVELOPMENT

Figure 4.6: View of the CBR tab in GESCONDA II

This functionality has the option to load the cases which will be used
as new cases. There are two sources. The �rst one is from the loaded
data, and it can be the �rst one or random, and the user can indicate the
percentage to be used. The second one is loaded from an external �le.

3. In adaptation, for each attribute there are some options (see 4.4.6). For
numerical ones the option to create a speci�c formula is provided as shown
in �gure 4.9

Figure 4.7: Dialogs that allows to set up or change the case structure de�n-
ing which belong to the description case or solution case. Also, to create the
evaluation, utility attribute or both.

4.3. DESIGN 65

Figure 4.8: View of the Battery Con�guration, where it is possible to distinguish
all the phases of CBR

66 CHAPTER 4. THE CBR SHELL DEVELOPMENT

Figure 4.9: Dialog to create a formula for an attribute adaptation

4.3.4 Controller

4. Finally, when the battery is run, the CBR tab is returned showing the last
cycle which has been assessed (see �gure 4.6).

This part follows the schema of GESCONDA II controllers. Thus, all the
actions are subclasses of the CCAccio (controller class). The main function of
CBR controllers is to manage which dialogs to show for obtaining the parameters
and launch the pertinent algorithms.

As it is mentioned in GESCONDA (see 2.2), there is a controller structure
that allows to execute the algorithm in a new thread without blocking the whole
application.

4.4. IMPLEMENTATION 67

4.4 Implementation

In this section the development of this shell is detailed. As said in the previously
sections, our implementation has been restricted by the fact that it has to adapt
to the GESCONDA system and it cannot be intrusive.

In the implementation we have followed the GESCONDA II style, with the
di�erence that we want to be able to execute from command line as well. For
this reason our layers do not have any dependencies between them. Since
GESCONDA II is implemented bounding the functionalities to its interface;
we need that our model let be independent from the interface intervention. In
this way, a custom con�guration is loaded by a �le as well.

We enumerate the style to name the classes in the following list to avoid
confusions with the names:

CM* : Model Class

CC* : Controller Class

CCAccio* : Controller Class in charge of a function. We use "CCAction*"
because our code is written in English.

4.4.1 Model

The model layer is responsible to manage di�erent aspects of the CBR function-
ality. First, it loads the necessary data (instances, descriptors and con�gura-
tion). Next, but not less important it collects information while CBR is running
and it is in charge of updating information used, and/or generating logs used
for statistics.

The main class is CMCBR. It uses the Singleton pattern to be unique and
always accessible. This class is in charge of maintaining the state of the CBR
cycle, of connecting with the case base and of con�guration. It also contains a
listener class that covers everything that is not related to the own CBR cycle.
Finally, it stores all the results in logs. In addition, this layer contains classes
which can parse xml �les.

Con�guration

When GESCONDA II is launched CMCBR is created. The CMCBR initializa-
tion creates the class CBRCon�g that loads the "con�g" �le. To load this �le
we use Java library which o�ers Java "Properties". Such library allows to treat
a �le as a hash map. For this purpose the "Con�g" �le is appended (see for
more detail section B)

Listener

The class CBRListener is the implementation of the Observer pattern. Through
the classes "PropertyChangeSupport" and "PropertyChangeEvent", the class
CBRListener becomes a listener of CBR .

Each time that any CBR algorithm �nishes, the CBRListener updates the
following information:

∙ The last date that has been used for each case involved in the algorithm.

68 CHAPTER 4. THE CBR SHELL DEVELOPMENT

∙ Retrieval:

� Total number of retrieves of the system.

� the number of retrieves for each retrieved case.

∙ Reuse: the number of reuse for all the cases that has been involved for
solving the new solution

∙ Evaluation: if this phase has been successful, all the cases which have
taken part in the reuse.1

∙ Retain: the date of creation if the new case has been stored. This date
is also updated when the case is introduced as an instance through any
functionality of GESCONDA .

Moreover every time that an algorithm �nishes, CBRListener stores the
information in a �le. In this way a trace log of the system execution is always
available. To maintain this �le, we use a simple library for logging. Logging is
a package of the Commons project included in Apache2.

XML Readers

The data of CBR is stored in xml format. Thus, SAX3 has been used to read
and write xml �les.

4.4.2 View

The view layer is implemented using the Java Swing library. Almost all dialogs
of the CBR module collect the parameters and con�guration needed to execute
CBR algorithms. Besides, to the tab inserted in GESCONDA II that also shows
the results.

The implementation is as reusable or modular as we need, in order to reuse
all the panels that are similar. For example, the �gure 4.8 in subsection view
of design, it depicts that it is formed by the same panels that has been used in
the di�erent dialogs when the algorithms are executed separately.

One thing that all the collected dialogs and panels implement, is the Prop-
ertyChange. In fact, these �re a PropertyChange with the new parameters.

Eventually, we reuse all views from GESCONDA II which shown what we
want. In other situations, we had to implement it again. For instance, the dialog
from GESCONDA II that allows to change the distance just shows the names
and we re-implement it for our module to con�gure all possible parameters.
In �gure 4.8 below to "Load Cases" there is the retrieval con�guration with
"Dissimilarity Measure" panel. Inside this panel it is possible to change distance
measure, and to each distance the panel "parameters" is updated with its own
parameters.

1In this point we had to create a new type of attribute List which stores the list of cases
used to form the solution.

2http://commons.apache.org/logging/
3http://www.saxproject.org/

http://commons.apache.org/logging/
http://www.saxproject.org/

4.4. IMPLEMENTATION 69

4.4.3 Controller

The controller layer includes classes which mediate the view class and model
class. To connect them there is also an intermediary class to pass the parameters
collected in views.

Most of these classes are initiated from the main menu of GESCONDA
II with the aim of executing some algorithm. So, the controller shows the
pertinent dialogs to collect the parameters and transfer those to algorithm while
are launched.

Some actions are launched from the model class CMCBR like the action that
allows to introduce the descriptors either by specifying through the GUI or by
loading a �le(descriptors.xml).

Actions can be launched from another action as well, such as the case of
selecting a set of cases to launch a battery of cycles.

4.4.4 Algorithms

All the classes that implement an algorithm inherit it from CMAlgorisme. The
main functions are executar and algorisme, both are abstract. The �rst func-
tion is called from the controller which manages the threads. algorisme is the
algorithm itself.

Besides, it implements some functions to be called by the classes that manage
the view and the time. The current instance is shown while the algorithm is
running.

Initially the constructor asks for the name and the data (CMTAula). So,
if the algorithm has parameters, then all the algorithms that we implement
have to override the constructor to pass the parameters in a unique object. In
alternative parameters can be speci�ed one by one.

The unique object is a HashMap<DTOParamenter, Object>. This object
represents the DTO pattern in the sense that is useful to transfer all the pa-
rameters among the classes. One example is when the con�guration is obtained
through the interface. Then, the controller can ask to this window for its pa-
rameters and directly transfer then to the algorithm before its execution. The
advantage is that it is not necessary to �ll all the parameters, but only the ones
the user wants to change from the default values.

DTOParameter belongs to an enumeration of all the existing parameter
types. Some examples are: name, attribute weights, learn mode, normalize.

4.4.5 Retrieval

The retrieval algorithm implements the second part of the Retrieval task. At
this point, the selection of the cases which depends on the indexation has already
been done. Particularly, in the plain indexation, all the cases are selected; in
hierarchical indexation, the cases of a sub-hierarchy are the selected ones; and
in Self-Organizing Maps, the cases belonging to a region.

The parameters needed by this algorithm are:

∙ New Case: the case to be compared with the others.

∙ Selected Cases: cases that has been selected as the proper cases to be
compared with the new case depending on the indexation criteria.

70 CHAPTER 4. THE CBR SHELL DEVELOPMENT

∙ Distance: The type of distance to be used: Euclidean, L'eixample, Caberra,
etc.. This distance will be already con�gured with its parameters.

∙ Weights: this is an option parameter that represents the weights to use in
the assessment of the distance, and are not the weights which are de�ned
in GESCONDA. These weights only exist in this class and do not a�ect
any other class.

∙ Use Only Descriptions: The usual retrieve only compares the description
attributes, but it is possible to include the rest of parameters con�guring
this parameter.

∙ Ignore Same Case: This option implies that the new case is from the
library, and then if it is true the new case will be not compared with itself.
It could be interesting to compare if the user is making some testing.

Notice that the "number of the retrieved cases" is not a parameter, because
at the same time that is needed to select the n most similar cases, all the
distance are assessed. Thus, all the cases with its distance are stored. So, there
is a function (topNRetrieved) that given a number returns the number of cases
that are most similar. A particularity of this function is that it returns the
minimal sorted set of cases that contains at least the number of cases speci�ed
such that it does not exist another case whose distance is equal or smaller and
it does not belong to this set.

Therefore, the retrieval algorithm iterates over all the cases from the selection
of the library (depends on the indexing criteria) comparing with the new case
and storing the distance between them.

4.4.6 Reuse

The adaptation of the new case depends on the way it has been con�gured. This
algorithm needs to know the data which is available all the time, the con�gu-
ration of the user, each selection of each attribute and whether it is a formula
itself. The modes are: NULL, MEAN(MODE), WEIGHTED MEAN(MODE)
or FORMULA.

The parameters needed by this algorithm are the following:

∙ New Case

∙ List of cases to be used in adaptation. By default they are the cases that
have been retrieved. Before to adapt, when the retrieved cases are shown,
the user can select a subset of them.

∙ Mode of reusing: global o for each solution attribute. If any mode is a
formula, then this formula must be indicated.

∙ Index of an attribute: this parameter is optional and corresponds to the
index of the attribute to be used for pondering the mean or mode.

∙ List of �oat: this parameter is optional and represents the distances for
pondering the mean. This list should be ordered like the cases list.

Depending on the selected mode the algorithm is di�erent.

4.4. IMPLEMENTATION 71

NULL Adaptation

NULL adaptation copies directly each value of each solution attribute to the
solution attribute of the new case. In this mode the number of the cases which
have been selected to be used in adaptation does not matter, as the most similar
case is taken.

MEAN or MODE adaptation

This reuse method depends on the type of attribute over which the adaptation
is calculated. For continuous attributes the mean of the values of the selected
cases is assessed. However for discrete attributes, the solution attribute is placed
with the mode of this attribute values from the selected cases.

In fact, this adaptation is a particular case of weighted mean, where all
weights are the same.

Weighted MEAN or MODE adaptation

When this algorithm was explained in 3.6, we described that it could be useful
to ponder with the distance or utility of the selected cases. In this way the most
useful or closest cases have a bigger in�uence over the solution. To make this
algorithm more �exible, the index of the attribute that contains the values to
ponder is not �xed, and by default, it corresponds to the utility.

As the index and the list of distance are optional, and there is not restrictions
whether one exists and the other does not, we implement a more generic reuse:a
generic weighting mean (depicted in equation 4.1).

si(newCase) = weigℎtedMean =

R∑
j=0

si(retrievedCasej) ∗ weigtℎj ,

weigℎtj =
pj∑R
k=0 pk

where,

si : solution attribute with index i

pj :

⎧⎨⎩
1− distance(retrievedCasej , newCase)
attributeindex(retrievedCasej)

(1− distance(retrievedCasej , newCase)) ∗ attributeindex
R : number of retrieved cases

index : parameter index

(4.1)

Finally, to calculate the weighted mode the next equation 4.2 is applied:

72 CHAPTER 4. THE CBR SHELL DEVELOPMENT

si(newCase) = weigℎtedMode = maxCk
(

N∑
j=0

pjCkj)

where,

si : solution attribute with index i

Ck : one discrete value from the set of k discretes values

pj :

⎧⎨⎩
1− distance(retrievedCasej , newCase)
attributeindex(retrievedCasej)

(1− distance(retrievedCasej , newCase)) ∗ attributeindex
N : number of retrieved cases that si = Ck

index : parameter index

(4.2)

FORMULA adaptation

This mode of reusing the retrieved cases is quite di�erent in the sense that
involves more classes. To each attribute that is going to be solved by a formula,
a new class Formula is needed. As described in section reuse 3.6, the formula is
introduced as a text. This text has a speci�c syntax according to the Formula
class. The syntax is a list of symbols and each one is separated by the next
with a "separator character". Every symbol is a number, attribute name or
an operator. The symbols have to follow an order which permits that they are
treated as a formula.

This Formula class is a �rst idea. As we will explain in future work 6.1, this
class with its subsequent classes represented in the interface, could be changed
with those that let introduce all type of formulas, including logical ones.

Listing 4.1: Formula reuse code

public abstract class CMAdapt extends CMAlgorisme
{
private CMInstancia newCase ;
.
.
.

/∗This func t i on w i l l a s s e s s the e n t i r e r euse algor ithm ,
apply ing to each a t t r i b u t e the subsequent a lgor i thm
depending on con f i gu r a t i on ∗/

@Override
public int a lgor i sme ()
{

.

.
for (CMAtribut at : s o l u t i o nAt t r i bu t e s)
{
switch (mode)
{
case NULL:

.

4.4. IMPLEMENTATION 73

.
case FORMULA:

// obta in the formula introduced in the GUI
St r ing text = (St r ing)modes . get (at) ;
//new formula c l a s s i s b u i l t up with the text
Formula formula = new Formula (t ext) ;
// getAttributeNames r e tu rn s a l i s t o f a t t r i−
//bute ' names that has been u t i l i z e d in the
// formula
// ge tAtt r ibute sVa lue s r e tu rn s f o r each a t t r i−
//bute i t s va lue or i t s mean i f the re are more
// than one case f o r the reuse
HashMap<Str ing , Double> va lues =

getAtt r ibuteVa lues
(formula . getAttributeNames ()) ;

// c a l c u l a t e the formula
double r e s u l t = formula . eva luate (va lue s) ;
// new adapted value (r e s u l t) i s s to r ed
currentCase . s e tVa lo rAtr ibut

(at . g e tPo s i c i o () , r e s u l t) ;
}

}
}
.
.

}

4.4.7 Evaluation

The implementation of this algorithm is simple. Until now, there is not a mech-
anism which can be automatically used to assess the evaluation itself. Generally,
it is supposed that only an expert could select the evaluation value, or alterna-
tively, that a default value is provided. Hence, the algorithm just receives the
evaluation value and assign it to the new case.

4.4.8 Retain

We present a �exible implementation where a user developer can add learning
conditions. Learning conditions are described in a xml �le(conditions.xml) and
the class used to open the �le must inherit from the interface condition (CM-
Condition). The formalization of a condition consists of three elements: name,
the condition itself and a value. The xml tree is a list of conditions like type of
the following (in listing 4.2 there is an example of this xml �le):

Conditions Is a list which speci�es the available conditions for this condition
and the available values depending on the condition chosen

Condition De�nes every new condition class. Its parameters are:

name The name of the condition used to identify and to show it in the
GUI

algorithmClass The Java Class that extends CMCondition Interface

Operator De�nes the condition function

74 CHAPTER 4. THE CBR SHELL DEVELOPMENT

name The string that indicates which operator is considered

valueType If it is numerical, the end-user or the person who con�gures
the system will introduce a numerical value. Otherwise if categorical,
a list of the possible values has to be speci�ed (as we can see in the
listing 4.2)

value contains the values that an operator can take. If the parameter default
is true, then the value is the default value to be used for showing or if
it is an automatic process to be used as election of the user. If they are
values belonging to an operator with categorical type, then the values are
the possible categories.

Listing 4.2: Condition �le

<?xml version=" 1 .0 " encoding="UTF−8"?>
<conditions>

<condition name="Distance "
a lgor i thmClass="gesconda .CBR. model . CMDistanceCondition">

<operator name=">" valueType="numerica l "/>
<value default=" true ">4 ,5</value>

<operator name="=" valueType= " c a t e g o r i c a l ">
<value>1</value>
<value>3</value>
<value>5</value>
<value default=" true ">3</value>

</operator>
</condition>
<condition name="Type o f CaseBase"

a lgor i thmClass="gesconda .CBR. model . CMIndexingCondition">
<operator name=" i s " valueType=" c a t e g o r i c a l ">

<value>Flat</value>
<value>Hierarchical</value>
<value>SOM</value>

</operator>
</condition>

</conditions>

Therefore, the extension of the retain step has consisted in creating the new
condition/s and its code. New conditions have access to all the data. The
process consists of evaluating whether all the conditions are satis�ed. In the
�gure 4.10 it is possible to see the GUI that allows to con�gure which conditions
have to satisfy the new situation. The conditions are a conjunction, i.e. all the
conditions must be satis�ed before to learn or to store the case in the library.

As it has already been mentioned, to implement the conditions, the user
needs to implement a new Java Class which extends CMCondition Interface. In
the listing 4.3, there are the most important function of this class. To execute
the retain algorithm, all the conditions will be evaluated calling the method
satisfy.

4.4. IMPLEMENTATION 75

Figure 4.10: CBR tab with GUI retain for adding conditions

Listing 4.3: CMCondition Interface

public abstract class CMCondition extends CMAlgorisme
{
protected St r ing conditionName = null ;
protected St r ing operatorName = null ;
protected St r ing value = null ;

.

.

.
/∗ This func t i on w i l l a s s e s s i f the cond i t i on i s

s a t i s f i e d in t h i s moment f o r the new case ∗/
public abstract boolean s a t i s f y (S t r ing value ,

S t r ing operator , CMCBR cbr) ;

public abstract St r ing getConditionName () ;

/∗ Return the p o s s i b l e ope ra to r s ∗/
public abstract St r ing [] getOperators () ;

/∗ Return the cur rent operator ∗/
public abstract St r ing getCurrentOperator () ;

/∗ I f the cond i t i on i s a f i x va lue introduced
by the user ∗/

public abstract St r ing getValueName () ;

/∗ I f the cond i t i on va lue s are a r e s t r i n g ed s e t ∗/
public abstract St r ing [] g e tPos s ib l eVa lue s () ;

/∗ Add to the l i s t o f ope ra to r s and i t s p o s s i b l e
va lue s or nu l l i f i s numerica l ∗/

public void addOperator (S t r ing operator ,
S t r ing [] va lue s)

}

76 CHAPTER 4. THE CBR SHELL DEVELOPMENT

The main idea is to give the possibility to create a di�erent criteria depend-
ing on the expert user and let the opportunity of extending the code easily
without the need to modify the rest of the classes. The mechanism consists of
creating a class that extends CMCondition which contains all the logic. The
main functionality of the xml �le is to de�ne the condition identi�er with its
Java class.

Practical example: Negative Similar Case

This example has been described in section 3.6. This policy tries to avoid storing
those cases that have a similar one and on top of that this similar case has been
evaluated as negative.

The code 4.4 re�ects the main function that has to be implemented to
incorporate this condition in the system. The next code 4.5 has to be placed
in the condition �le.

Listing 4.4: NegativeSimilarCase: function satisfy

public class Negat iveS imi larCase extends CMCondition
{
public boolean s a t i s f y (S t r ing value ,

S t r ing operator , CMCBR cbr)
{
double eva lua t i on = getEva luat ion (va lue) ;
double s im i l a r i t y = g e t S im i l a r i t y (va lue) ;

CMInstance newCase = cbr . getNewCase () ;
for (CMInstancia c : cbr . getCases ())
{

i f (c . eva lua t i on () < eva lua t i on)
{

i f (d i s t ance (newCase , c)<=(1− s im i l a r i t y))
{
return fa l se ;

}
}

}
//There are not a case that s a t i s f y these two
// cond i t i ons , so the case could be s to r ed .
return true ;

}
}

Listing 4.5: Representation of Negative Similar Case in xml �le

<condition name="NonNegativeSimilarCase "
a lgor i thmClass="gesconda .CBR. model . Negat iveS imi larCase ">

<operator name=" nega t i v eS im i l a r " valueType="numerica l "/>
<value default=" true ">{0 . 5 , 0 . 9 }</value>

</operator>
</condition>

Chapter 5

Evaluation

The evaluation of the CBR shell deployed could be twofold: from a more theo-
retical point of view, and from an experimental assessment.

In advance and summarizing, the CBR shell developed is a promising tool for
Data-Intensive Case-Based Reasoning Systems, and provides some advantages
previously mentioned over existing CBR shells.

5.1 Theoretical assessment

From a theoretical perspective, out CBR shell could be analyzed and compared
against some other CBR shells in the literature. The advantages and shortcom-
ing can be taken into account, to get a �nal assessment of the CBR shells.

There are some CBR shells available in the literature. Some of them are
commercial products deployed in software companies (Remind, CBRExpress,
etc.), while others are academic products developed in some research groups
in universities (Caspian, JColibri, etc.). Nevertheless, most of them do not
allow implementing the whole basic CBR cycle in a very �exible way: retrieval,
reuse, revise and retain. On the other hand, most of them do not provide the
friendly use of some data analysis techniques integrated in the same tool as in
our approach. In the next table we can see a comparison of the revised tools
against our system:

Most of the shells are extensible, especially those that are written in Java.
JColibri2 is probably our strongest competitor when talking about function-

alities. JColibri2 is one of shells that is the most popular nowadays, at least as
an academic tool. Also, it is more used as an API and receives contributions
from others entities extending its functionality.

The case structure for all of the reviewed systems is built up with a list of
attributes. Some of these systems support text as CBRExpress, ReMind and
AIAICBR. But only JColibri2 and IUCBRF along with our system have extra
attributes for assessing CBR algorithms. The last thing we want to remark is
that not all of the systems allow the solution to contain more than one attribute.

Our system has a lack of indexation, at least for the moment. Comparing
with the rest of systems, IUCBRF and ESTEEM allow to be hierarchically
organized, even though indexes are not automatically calculated.

As it was mentioned before, most of the systems are focused on retrieval.

77

78 CHAPTER 5. EVALUATION

Name Language Case Indexing Retrieval

Caspian CASL
Attribute List
Solution:n
Evaluation

Flat Search guided
by user index
Selection: most
similar,
manually

JColibri2 Java
Attribute List
Solution:n
Result
Reason of
result

Flat knn
Distance global
and local
Selection: more
similars or
more di�erents

IUCBRF Java
Attribute List
Solution:n
Use Count
Time of
creation
Creation'
Source

Flat
B-tree-backet
(index by user)

knn

AIAICBR Java
Attribute List
Solution:1

Flat knn
weight: by user
or genetic
algorithms
Distance:global
Trigrams

myCBR Java
Attribute List
Solution:1

Flat Distance:
global and local
GUI to de�ne
distances

CBRExpress Asymetric
ToolBox

Attribute List Flat Trigrams
Heuristic

ReMind C
Attribute List Decision Tree knn

automatic or
guied by user
SQL-queries

ESTEEM Intellicop's
Kappa-PC;
C++

Attribute List ID3
automatic
weighting
index by user

ID3

CBR-
GESCONDA

Java
Attribute List
Solution:n
Evaluation
Utility
Source Cases

Flat
Hierarchical,
SOMa

anot yet imple-
mented

knn
Distance:
global

5.1. THEORETICAL ASSESSMENT 79

Name Reuse Revise Retain Extensible Other

Caspian
Repair rules
by user

user user - -

JColibri2
Null
Numerical
Direct
proportion

user user Easily API
Persistence:
Ontologies,
�les or DDBB

IUCBRF
Null
Weighted
Average
Weighted
Majority

- custom
triggers
Delete old
cases
periodically

Yes API model

AIAICBR - - - - -
myCBR - user - Yes Protégé plugin

Scriptable
similarities
in Jython

CBRExpress - - User - -
ReMind

Adjustment of
di�erence
between new
case and
retrieved case

- - Yes Text

ESTEEM
Rules by user - - - Nested Cases

Multi case base

CBR-
GESCONDA

Null
Weighted Mean
Custom
Formula

user User
Con�gurable
conditions

Easily Integrated in
Data Mining
tool
Multiformat

Table 5.1: Comparison of CBR Shells

80 CHAPTER 5. EVALUATION

In this part, we are more similar to JColibri2 because we allow to con�gure
the distances used. JColibri2 also o�ers local weighting and di�erent selection
distance depending on the attribute type.

In adaptation, we can see that some systems do not do anything. Others
allow the user to insert rules. But without the user help, we can see that
everything o�ered is quite simple as it is a di�cult topic. In IUCBRF as well
as in our system, a weighted average can be computed. While in IUCBR the
weight means the number of times that a case has been used, in our system we
can weight by several attributes, including the utility attribute (see 3.9), which
can be con�gured with di�erent criteria.

As we can see in the table 5.1, none shell implements a generic evaluation.
In fact, when revising the literature, the systems explain what phases are done,
while directly ignoring the rest of phases.

Eventually, the retain task is only covered by IUCBRF, which allows to
create triggers and, as a maintenance policy, to delete old cases. Our system
faces it through customizable conditions. We o�er some of them and a default
con�guration. Then, the user can modify the con�guration and even introduce
new conditions.

The most signi�cant di�erence over other systems is that this CBR shell is
integrated within an Intelligent Data Analysis Tool (GESCONDA), easing the
data preparation, data �ltering, data relevance and data visualization steps.
Also, the degree of �exibility to cope with di�cult domains, and the degree of
customization by the user are tightly outstanding.

5.2 Experimental evaluation

The CBR shell developed has been preliminary tested with some target domains.
Some of them coming from the UCI repository, and others coming from real-
world data. All functionalities have been evaluated from the retrieve step to the
retain step.

The CBR shell has been evaluated according to the competence of its pro-
vided solutions.

The CBR shell let the users to model whatever domain mainly characterized
by a big number of features and data (i.e., a Data-Intensive Case-Based System).
Especially mentionable are the di�erent ways and strategies available in the
reuse and retain step. Also, the possibility to use all the available capabilities
within the Intelligent Data Analysis tool (GESCONDA) allow making easier
the task of data preparing, data �ltering, feature weighting, data visualization,
etc., which is not commonly found in most of the available CBR shells in the
literature.

5.2.1 Testing the Iris dataset

We start using Iris Data from the UCI repository1. This data is composed by
150 instances classi�ed in 3 classes (iris-setosa, iris-virgilica and iris-versicolor).
The data do not have missing values and one class is linearly separable from the
other two; the latter are not linearly separable from each other.

1http://archive.ics.uci.edu/ml/datasets/Iris

http://archive.ics.uci.edu/ml/datasets/Iris

5.2. EXPERIMENTAL EVALUATION 81

Distance Success
Frequency

Bad Classi�ed
Instances

ReRunned Well
Classi�ed

Euclidean 73/75 120, 135 135
Euclidean 73/75 71, 135 135 , 71
Weighted
Euclidean

73/75 71, 134 71

Clark 71/75 69, 71, 73, 78 69, 73
Canberra 72/75 107, 120, 134

Table 5.2: Experimental test of CBR with di�erent distance measures applied
to Iris Data

Algorithm Success Freq per class Success Frequency
ID3 with C4.5 prunning 50/50, 49/50, 45/50 146/150

Prism(25 rules) 22/22, 25/29, 23/23 70/74
Kmeans 50/50, 48/50, 36/50 134/150
Marata 50/50, 48/50, 36/50 134/150

Table 5.3: Experimental test with di�erent algorithm applied to Iris Data

First, we de�ne the case structure indicating that the solution is the class
attribute. After we generated a battery of CBR cycles where we select the half
of data as new cases with the random option. And we remove the new cases
from the dataset.

Using the euclidean distance without standardization and without weights
we obtain that 97.3% of cases has been successfully classi�ed, using 3 cases in
retrieval and using the adaption scheme by the mode.

In table 5.2.1, we show the results with di�erent distances. All of them, have
been adapted by the mode and the number of retrieved cases is equal to three.
In this table, we show the instances that have been bad classi�ed and in the last
column, the cases that has been re-runned with all the case base, and has been
well classi�ed.

Finally, we see in table 5.2.1 the iris data classi�ed by other methods.

5.2.2 Testing the Abalone dataset

The next dataset used for testing our CBR shell is Abalone. Also, it is from
UCI repository2. Its objective is predict the age of abalone from physical mea-
surements.

The data contains 4177 instance and 9 attributes. 1 attribute is discrete and
the rest are continuous. The age is represented by the rings attribute, since the
age is +1.5 of the value of rings. This attribute rings has 29 values and can be
seen both as a discrete or continuous.

Our �rst test consists in run a battery of the 10% (approximately 500 cases)
of data that has been selected randomly. In table 5.2.2 we can see the main
con�guration and its results. The discretization used for attribute Rings is the
same that has been used in the proposed articles by own repository [Clark et al.,
1996]. This discretization groups ring classes into 1-8, 9 and 10, and 11 on. Also,

2http://archive.ics.uci.edu/ml/datasets/Abalone

http://archive.ics.uci.edu/ml/datasets/Abalone

82 CHAPTER 5. EVALUATION

Distance Num.
Retrieves

WeigthsSolution Success
(%)

Student's
T test

Other

Euclidean 3 - Sex,
Rings(C)

73.9 0.08

Euclidean 3 - Sex 77.4
Euclidean 5 - Rings(3) 79.3 stan-

dard-
ize

Euclidean 5 - Rings(3) 78
Euclidean 3 - Rings(3) 83.7
Euclidean 3 - Rings(3) 82.9
Euclidean 5 - Rings(3) 63.5* 0.04
L'Eixample 3 PROJ Rings(3) 82 � =0.8
L'Eixample 5 PROJ Rings(3) 80.8 � =1
L'Eixample 3 CVD Rings(3) 82.6 � =0.8
Canberra 3 - Rings(3) 80
Cosinus 3 - Rings(C) 64.5* 0.42
Cosinus 5 - Rings(3) 79.3

Table 5.4: Results of applying di�erent CBR con�gurations to Abalone dataset.
The column "Solution" remarks if the attribute Rings is continuous with "C"
or discrete by the number of classes. "*" These values are assessed with the
continuous values, this are encapsulated into the 3 groups(<8; [9,10]; >11) and
compared with the real values

there are some reference about studies on this data. In the article [Waugh, 1995]
where his results �uctuate around 65%

In addition, to assess the success of the discrete attributes we compare our
solutions with the real values. Then we measure the percentage of success.
With continuous attributes is more di�cult, because is di�cult to compare the
results. We decide to evaluate using the Student's T test. With the di�erence
among our results and the real ones, we can know the variance and the typical
deviation. This test is normally accepted for p-values < 0.5, this means that
there is a 95% of possibilities that the distance between both results (predicted
and real) is closed to 0.

Chapter 6

Conclusions and Future Work

Along this document we have introduced our CBR approach, integrated in the
last version of GESCONDA . Another objective was to achieve an integration
that enabled to use all the functionalities of GESCONDA independently of
where the data came from.

The advantage to have integrated it in GESCONDA is the possibility of using
its functionalities at any moment that is required. Besides, GESCONDA uses
the typical data formats in Data Mining. This fact allows to use the available
databases directly in the CBR system without the need to create a new case
base.

This integration has been one of the most challenging and time-consuming
parts of the work, since the original GESCONDA functionalities were totally
bound to its interface (and even interface-driven), and some bugs had to be
�xed to allow proper integration.

The main objective was to create a CBR shell that was suitable to be con-
�gured by the user, with no �xed parameter or option. We mostly reached this
objective with the exception of the evaluation phase, in which the evaluation has
to be inserted by the user. In addition, the con�guration can be done through
an interface or by changing a �le or some �les. The �rst con�guration, with
an interface, is easy to do without the need of an expert user. In the moment
the CBR shell needs some data, it informs the user and for each step it shows
the pertinent dialog with the default con�guration, which corresponds to that
in the con�guration corresponding �le.

To make easy to work with the system, a con�guration �le exists where all
the parameters independently from the data are possible to change.

Besides, the system keeps creating a �le with what it has assessed. For each
phase, it writes what has been used and the results.

Eventually, the system can be run through GESCONDA interface or by
command line. If the user just wants to use CBR and knows what is the con�g-
uration he/she wants, then he can specify the �les containing the data and the
new cases to be calculated.

From both the theoretical assessment against other available CBR shells and
from the experimental work done, it can be concluded, that CBR-GESCONDA
is a very promising tool as a framework to develop CBR systems for many
domains In next section we explain the future work to be done, because this is a
�rst version and it can be extended in many aspects to improve its functionality

83

84 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

providing more options to the user.

6.1 Future Work

Along the documentation, we have mentioned several times that some functions
or options are not yet implemented. These will be the �rst ones to be imple-
mented in the next future. First, we want to extend the memory organization
as we introduced in the description of Case Library(section 3.2). Probably, it
will be our next step.

6.1.1 Memory Organization

About the topic of the organization of the case base, we want to expand the types
of indexation with Self Organizing Maps(SOM) and Hierarchical Structures. We
have already considered them both and know what the algorithms are, although
we have not yet implemented them. Of course, more structures or algorithms
related to memory organization can be easily integrated when needed.

Currently, only the �at memory is implemented because no changes had to
be done, since instances in GESCONDA II are stored in a list. Nevertheless,
we ensure that the most similar case is selected. This similarity is based on
distances and no other calculations which could �nd other relations between
cases are taken into account.

The implementation is already prepared for these new library types, and
just by implementing the algorithms and adding the subsequent options into
the pertinent dialog to show the user will be enough to integrate them.

6.1.2 Evaluation

In the system that we have developed, the evaluation or revise task does not
o�er any automatic option to be calculated. So, an important future work is to
research in this subject, and develop a �nal system that o�ers functionalities to
each phase without user intervention.

6.1.3 Case Base Maintenance

Besides, the matter of Case Base Maintenance is mentioned in the Retain or
Learning phase. But, despite it is an important issue we have not covered it
in depth in this work. Fernando Orduña1, a PHD student at the Knowledge
Engineering and Machine Learning KEMLg group, is centering his work in case
maintenance, the di�erent techniques and when are they more useful to be used.
Hence, one of our future objectives is adding his work in the system.

6.1.4 Local Weighting

Another topic is about using distance measures that make use of weighting
schemes.

When we talked about weighting attributes, we de�ned it as a technique to
rank the relevance of the attributes. We talked about global weights, that is, a

1http://www.lsi.upc.edu/~forduna/

http://www.lsi.upc.edu/~forduna/

6.1. FUTURE WORK 85

weight per attribute. Nevertheless, it is also possible to talk about local weights.
Local weights are not focused on the whole attribute, but in the particular values
of this attribute.

In the literature, there is a lot of information about this topic. We found
some articles that show how CBR retrieval improves with local weighting [Núñez
et al., 2003] [Park et al., 2004]. Besides, diverse techniques can be applied de-
pending on the type of data. When the data can be guided by its class (su-
pervised) then methods as Value Di�erence Metric (VDM) [Stan�ll & D.Waltz,
1986] or EBL [Núñez et al., 2003] can be used. For non-parametric data, the
use of kernels [Ferraty & Vieu, 2006] is very popular.

We would like to extend the functionality of weighting by introducing this
local aspect. For doing it, it is necessary to change some parts of GESCONDA
II. At present, GESCONDA II model is prepared to handle these local weights,
but no algorithm is implemented to use them.

6.1.5 Selection of Distance Measures

Another important topic is the con�guration of distance measures. The current
implementation of GESCONDA II just supports the de�nition of one distance
measure for all the instances. So, we would like to change that part, to be
more �exible and allow the user to select a di�erent distance measure for each
attribute.

Since each attribute is di�erent from the others, might be worthy to con�gure
each one separately. In related work (section 2.3) we can see that JColibri2
(subsection 2.3.2) implements this functionality.

Finally, we want our calculation of a weight distance to be more general:

distance(Ci, Cj) =

n∑
k=1

wk ⋅ attr_distance(Cik, Cjk) (6.1)

Where attr_distance could be di�erent for each attribute. For its assess-
ment, other weights depending on the values could be also used.

6.1.6 General Lines

Another topic for further research is the interpretation of the results. Thus, we
want to integrate skills that make possible the monitoring of the system and the
capability of generating some graphical charts about several important parame-
ters of the system (case library size, retrieval time, etc.). These capabilities will
be available in next releases of the tool.

Eventually, we have created an extended system. So, we keep searching
about CBR and techniques to improve it, and we will integrate them as well.
All of the methods that will be developed in GESCONDA will also be used in
CBR if they are suitable. A CBR system which has been designed to be extended
is never likely to be closed. As research keeps generating new possibilities, they
will be welcome to be considered for our system.

86 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

References

[com, 1992] (1992). Compaq installs cbr help desk. Intelligent Systems Report.
1.1

[3cb, 1992] (1992). Three cases: all cbr, but worlds apart - case-based reasoning
program development tools are described: Remind, esteem and cbr express;
use of cbr express by american airlines and a typical case are discussed. 2.3.7,
2.3.8, 2.3.9

[cas, 1995a] (1995a). Casl description document v1.3. 2.3.1

[cas, 1995b] (1995b). An Introductory Guide to Caspian. 2.3.1

[giz, 1996] (1996). Broderbund's new online technical support receives two pres-
tigious awards; "gizmotapper" technical support on the internet endorsed as
premier online support system. 1.1

[Aamodt & Plaza, 1994] Aamodt, A. & Plaza, E. (1994). Case-based reason-
ing:foundational issues, methodological varations and system approaches. AI
Communications.IOS Press, Vol. 7: 1,pp,39-59. 2.1, 2.1, 3.2.2, 3.6, 3.7

[Altho�, 1999] Altho�, K.-D. (1999). Case Base Reasoning Research and De-
velopment. Springer Verlag. 2.1

[Altho� et al., 1995] Altho�, K. D., Auriol, E., Barletta, R., & Manago, M.
(1995). A review of industrial case-based reasoning tools. 2.3.7

[Baccigalupo & Plaza, 2007] Baccigalupo, C. & Plaza, E. (2007). A case-based
song scheduler for group customised radio. International Conference on Case
Based Reasoning(ICCBR'07). 3.7

[Bergmann, 2001] Bergmann, R. (2001). Highlights of the European INRECA
Projects, (pp. 1�15). Springer Berlin/ heidelberg. 2.3.6, 2.3.6

[Bergmann & Stahl, 1998] Bergmann, R. & Stahl, A. (1998). : (pp. 25�36).:
Springer. 2.3.6

[Bogaerts & Leake, 2005] Bogaerts, S. & Leake, D. (2005). A Framework for
Rapid and Modular Case-Based Reasoning System Development. Technical
report. 2.3.3

[Clark et al., 1996] Clark, D., Schreter, Z., & Adams, A. (1996). A quantitative
comparison of dystal and backpropagation. Australian Conference on Neural
Networks (ACNN'96). 5.2.2

87

88 REFERENCES

[Corchado et al., 2004] Corchado, E. S., Corchado, J. M., & Aiken, J. (2004).
Ibr retrieval method based on topology preserving mappings. In Journal
of Experimental & Theoretical Arti�cial Intelligence, Volume 16, Number 3:
Taylor and Francis Ltd. 2.1

[Corchado & Lees, 2001] Corchado, J. & Lees, B. (2001). A hybrid case-based
model for forecasting. Applied Arti�cial Intelligence, Volume 15, number 2,
(pp. 105�127). 3.6

[de la Rosa et al., 2007] de la Rosa, T., Olaya, A. G., & Borrajo, D. (2007).
Using cases utility for heuristic planning improvement. In Case-Baed Rea-
soning Research and Development, volume Volume 4626/2007 (pp. 137�148).:
Springer Berlin / Heidelberg. 3.9.1

[de Mantaras et al., 2006] de Mantaras, R. L., McSherryA, D., Bridge, D.,
Leake, D., Smith, B., Craw, S., Faltings, B., Maher, M. L., Michael T, C.,
Forbus, K., Keane, M., Aadmodt, A., & Watson, I. (2006). Retrieval, reuse,
revision, and retention in cbr. The Knowledge Engineering Review, 20(3),
215�240. 2.1, 2.1

[Duda et al., 2004] Duda, R. O., Hart, P. E., & Stork, D. G. (2004). Pattern
Classi�cation. A Wiley-Interscience Publication. A.2.1, A.3

[Eidenberger, 2003] Eidenberger, H. (2003). Distance measures for mpeg-7-
based retrieval. International Multimedia Conference archive Proceedings of
the 5th ACM SIGMM international workshop on Multimedia information re-
trieval. A.4.1, A.4.2

[E.R.Bareiss, 1988] E.R.Bareiss (1988). PROTOS: A Uni�ed Approach to Con-
cept Representation, Classi�cation, and learning. Technical report, Dept. of
Computer Science, Vanderbilt University, Nashville, TN. 1.1

[Fdez-Riverola & Corchado, 2000] Fdez-Riverola, F. & Corchado, J. (2000). Sis-
temas híbridos neuro-simb�ølicos:una revisi�øn. Inteligencia Arti�cial, Revista
Iberoamericana de IA, 4(11), 12�26. 3.6

[Ferraty & Vieu, 2006] Ferraty, F. & Vieu, P. (2006). Local weighting of func-
tional variables. In Nonparametric Functional Data Analysis (pp. 37�44).
6.1.4

[Fodor, 2002] Fodor, I. K. (2002). A survey of dimension reduction techniques.
UCRL. 3.2.3

[Francis & Ram, 1994] Francis, A. G. & Ram, A. (1994). A comparative Utility
Analysis of Case-Based Reasoning and Control-Rule Learning Systems. AAAI
Techincal Report WS-94-01. 3.9

[Gibert & Perez-Bonilla, 2006] Gibert, K. & Perez-Bonilla, A. (2006). Revised
boxplot based discretization as the kernel of automatic interpretation of classes
using numerical variables, (pp. 229�237). Batagelj, V.and Bock, H.-H. and
Ferligoj, A.and Ziberna, A. (Eds.). 2.2.2

REFERENCES 89

[Gibert et al., 2006] Gibert, K., Sánchez-Marré, M., & Rodríguez-Roda, I.
(2006). Gesconda: An intelligent data analysis system for knowledge discov-
ery and management in environmental data bases. Environmental Modelling
& Software 21(1):116-121. 2.2, 2.2.2

[Hammond & Head, 1990] Hammond, K. & Head, R. (1990). Case-based plan-
ning: A framework for planning from experience. Cognitive Science, 14,
385�443. 1.1

[Helen et al., 2003] Helen, C., Causton, C., & ans Alvis Brazma, J. Q. (2003).
Microarray gene expression data analysis. Wiley-Blackwell. A.2.1

[Iglezakis et al., 2004] Iglezakis, I., Reinartz, T., & Roth-Berghofer, T. (2004).
Maintenance memories: Beyond concepts and techniques for case base main-
tenance. In P. Funk & P. A. G. Calero (Eds.), Advances in Case-Based
Reasoning (pp. 227�241).: Springer-Verlag. 3.8

[Kolodner, 1993] Kolodner, J. (1993). Case-Based Reasoning (Morgan Kauf-
mann Series in Representation & Reasoning). Morgan Kaufmann. 2.1

[Koton, 1989] Koton, P. (1989). Using experience in learning and problem solv-
ing. Technical report, Massachusetts Institute of Technology. Dept. of Elec-
trical Engineering and Computer Science. 1.1

[Lance & Williams, 1967] Lance, G. N. & Williams, W. T. (1967). Mixed-data
classi�catory programs i - agglomerative systems. Australian Computer Jour-
nal, 1(1), 15�20. A.4, A.4.1

[Leake & Wilson, 2000] Leake, D. B. & Wilson, D. C. (2000). Remembering
why to remember: Performance-guided case-base maintenance. In Fifth Eu-
ropean Workshop on Case-Based Reasoning (pp. 161�172).: Springer Verlag.
3.8

[Lieber, 2007] Lieber, J. (2007). Application of the revision theory to adapta-
tion in case-based reasoning: the conservative adaptation. 7th International
Conference on Case-Based Reasoning - ICCBR'07. 3.6

[Lim et al., 1991] Lim, J., Lui, H., & Tan, A. (1991). Inside: a connectionist
case-based diagnostic expert system that learns incrementally. IEEE Inter-
national Joint Conference on Neural Networks. 3.8.3

[Margarit, 2007] Margarit, E. O. (2007). Gesconda ii: Integració de compo-
nents, redisseny, reimplementació i ampliació de funcionalitat. Master's the-
sis, Universitat Politécnica de Catalunya. 2.2

[Michael et al., 2001] Michael, R. B., Richter, M. M., Schmitt, S., Stahl, A.,
& Vollrath, I. (2001). Utility-oriented matching: A new research direction
for case-based reasoning. In In Professionelles Wissensmanagement: Er-
fahrungen und Visionen. Proceedings of the 1st Conference on Professional
Knowledge Management. Shaker (pp. 264�274). 3.7

[Minton, 1990] Minton (1990). Quantitative results concerning the utility of
explanation-based learning. Arti�cial Intelligence, 42. 3.8, 3.9

90 REFERENCES

[nez et al., 2003] nez, H. N., Sánchez-Marré, M., & Cortés, U. (2003). Similarity
measures in instance-based reasoning. 2.2.2, A.1, A.4

[Núñez & Sánchez-Marré, 2004] Núñez, H. & Sánchez-Marré, M. (2004).
Instance-based learning techniques of unsupervised feature weighting do not
perform so badly! ECAI: 16th European COnference on Arti�cial Intelli-
gence. 2.2.2

[Núñez et al., 2003] Núñez, H., Sánchez-Marré, M., & Cortés, U. (2003). Im-
proving similarity assessment with entropy-based local weighting. IC-
CBR:international conference on case-based reasoning. 2.2.2, 6.1.4

[Orduña-Cabrera & Sánchez-Marré, 2008] Orduña-Cabrera, F. & Sánchez-
Marré, M. (2008). Case base maintenance: Terms and directions. 2.1, 3.9

[Orduña-Cabrera & Sánchez-Marré, 2009] Orduña-Cabrera, F. & Sánchez-
Marré, M. (2009). The dynamic adaptative case-based library for continuous
domains. CCIA. 3.9

[Park et al., 2004] Park, J. H., Im, K. H., Shin, C.-K., & Park, S. C. (2004).
Mbnr: Case-based reasoning with local feature weighting by neural network.
Applied Intelligence, 21, 265�276. 6.1.4

[Recío-García et al., 2008] Recío-García, J., Díaz-Agudo, B., & González-
Calero, P. (2008). jCOLIBRI2 Tutorial. Technical report, Department of
Software Engineering and Arti�cial Intelligence. University Complutense of
Madrid. 2.3.2

[Riesbeck & Schank, 1989] Riesbeck, C. K. & Schank, R. C. (1989). Inside
case-based reasoning. Lawrence Erlbaum Associates, Pubs., Hillsdale, N.J.
2.1, 3.5

[Romdhane & Lamontagne, 2008] Romdhane, H. & Lamontagne, L. (2008). :
(pp. 474�486).: Springer Berlin/Heidelberg. 3.9

[Ross, 1989] Ross, B. H. (1989). Some psychological results on case-based rea-
soning. Case-based Reasoning Workshop, DARPA. 2.1

[Sánchez-Marré et al., 1999] Sánchez-Marré, M., Cortés, U., Roda, I. R., &
Poch, M. (1999). Sustainable case learning for continuous domains. In Envi-
ronmental Modelling and Software Volume 14, Issue 5 (pp. 349�357). A.1

[Sánchez-Marré et al., 2004] Sánchez-Marré, M., Gibert, K., & Rodríguez-
Roda, I. (2004). Gesconda: A tool for knowledge discovery and data mining
in environmental databases. In In e-Environment: Progress and Challenge
(Eds. P. Prastacos, U. Cortés, J.L. Díaz de León y M. Murillo). In the series
Research on Computing Science, Vol. 11, CIC, Mexico. (pp. 348�364). 2.2

[Sánchez-Marré et al., 1998] Sánchez-Marré, M., R.-Roda, I., & Comas, Q.
(1998). L'eixample distance: a new similarity measure for case retrieval.
1st Catalan Conference on Arti�cial Intelligence(CCIA'98). A.1

[Schank, 1982] Schank, R. (1982). Dynamic Memory: A Theory of Reminding
and Learning in Computers and People. Cambridge University Press. 2.1

REFERENCES 91

[Schank & Abelson, 1977] Schank, R. & Abelson, R. (1977). Scripts, plans,
goals and understanding. Lawrence Erlbaum. 2.1

[Schulz, 1999] Schulz, S. (1999). Cbr-works - a state-of-the-art shell for case-
based application building. In Proceedings of the 7th German Workshop on
Case-Based Reasoning, GWCBR'99, Wrzburg (pp. 3�5).: Springer-Verlag.
2.3.6

[Schumacher, 2002] Schumacher, J. (2002). Empolis orenge - an open platform
for knowledge management applications. In Proceedings of the 1st German
Workshop on on Experience Management (pp. 61�62).: GI. 2.3.6

[Slade, 1991] Slade, S. (1991). Case-based reasoning: A research paradigm. AI
magazine Volume 12 Number 1. 3.2.2

[Sovat et al., 2001] Sovat, R. B., Aluísio, S. M., & de Carvalho, A. (2001).
Rabeca: A hybrid case-based reasoning development environment. In Tools
with Arti�cial Intelligence, Proceedings of the 13th International Conference
(pp. 61�68). 2.1

[Stahl & R.Roth-Berghofer, 2008] Stahl, A. & R.Roth-Berghofer, T. (2008).
Rapid Prototyping of CBR Applications with the Open Source Tool my-
CBR. Technical report, German Research Center for Arti�cial Intelli-
gence(DFKI)GmbH Image Understanding and Pattern Recognition Depart-
ment(IUPR). 2.3.5

[Stan�ll & D.Waltz, 1986] Stan�ll, C. & D.Waltz (1986). Toward memory-
based reasoning. Communications of the ACM. 6.1.4

[Veloso & Carbonell, 1993] Veloso, M. M. & Carbonell, J. G. (1993). Deriva-
tional analogy in prodigy: automating case acquisition, storage and utiliza-
tion. (pp. 249�278). 3.2.2

[Watson & Marir, 1994] Watson, I. & Marir, F. (1994). Case-based reasoning:
A review. AI-CBR, Dept.of Computer Science, University of Auckland, New
Zealand. 1, 2.3.7, 2.3.8

[Waugh, 1995] Waugh, S. (1995). Extending and benchmarking Cascade-
Correlation. PhD thesis, Computer Science Department, University of Tas-
mania. 5.2.2

[Zilles, 2009] Zilles, L. (2009). myCBR Tutorial. 2.3.5

92 REFERENCES

Appendix A

Similarity Measures

We've decided to cover this topic in a di�erent section because it's very im-
portant, in general, for several algorithms in CBR systems. Most of them use
a similarity measure to assess its results, being so depended on how is this
similarity function.

To understand the concept of "Similarity", the di�erent de�nitions follow:

"Similarity is some degree of symmetry in either analogy and re-
semblance between two or more concepts or objects. The notion
of similarity rests either on exact or approximate repetitions of
patterns in the compared items" by Wikipedia1

"Similar: of the same kind in appearance, character, or quantity,
without being identical" by Oxford dictionary2

"Similar: having characteristics in common : strictly comparable"
by Merriam-Webster dictionary3

"Distance: the degree or amount of separation between two points,
lines, surfaces, or objects" by Merriam-Webster dictionary4

So, a similarity metric is merely a function that gives a generalized scalar
distance between two arguments - patterns, vectors or instances.

The objects that are used in GESCONDA II and in CBR are vectors of
values, where each vector has the same de�nition for each position (attribute).
So, the vectors could be seen as a points in a space where the coordinates are
the attributes. The coordinates are not necessary orthogonal, depending on the
correlation among the attributes.

Calculating the similarity or distances between two instances depends on the
chosen distance (in the next subsection we de�ne the distances supported by
GESCONDA II) and, also, on the weights de�ned for each attribute. We want
to remark that feature selection and weighting are an important part of the
analysis the data because those techniques help to clean up the noise, irrelevant

1http://en.wikipedia.org/wiki/Similarity
2http://www.askoxford.com/concise_oed/similar?view=uk
3http://www.merriam-webster.com/dictionary/similar
4http://www.merriam-webster.com/dictionary/distance

93

http://en.wikipedia.org/wiki/Similarity
http://www.askoxford.com/concise_oed/similar?view=uk
http://www.merriam-webster.com/dictionary/similar
http://www.merriam-webster.com/dictionary/distance

94 APPENDIX A. SIMILARITY MEASURES

or redundant data from the data. To describe this preprocesses is out of our
scope, but we emphasize the weights that result from this algorithm because
they are used in the retrieval task of the CBR cycle.

GESCONDA o�ers some automatic algorithm for weighting the attributes ,
such as the gradient (see GESCONDA functionalities2.2.2). These algorithms
can also be speci�ed by the end user. In fact, it does not matter where the
weights come, but it is important to use them to assess the distance by giving
more importance to relevant attributes.

This technique has two aspects. The �rst one weights whole attributes,
that is, every attributes has a unique weight for all its values. The second one
weights the di�erent values into an attribute. To use this last aspect, continuous
attributes should be discretized in order to weight each interval. Unfortunalety,
GESCONDA does not implement the local weighting, although it's a future
issue(see 6.1).

A.1 L'Eixample

An exponential weighting transformation would lead a better attribute rele-
vance characterization, when the number of attributes is very high [nez et al.,
2003]. L'Eixample [Sánchez-Marré et al., 1998] [Sánchez-Marré et al., 1999] is
a normalized weight-sensitive distance function. It takes into account the di�er-
ent nature of the quantitative or qualitative values of the continuous attributes
depending on their relevance.

L'Eixample distance is sensitive to weights. For the most important con-
tinuous attributes - that is, weight > � - the distance is computed based on
their qualitative values(a previous discretization is done for quantitative at-
tributes). This implies that relevant attributes having the same qualitative
value are equals, and having di�erent qualitative values are very di�erent, even
when a continuous measure would be very small. And for those less relevant
ones - that is, weight < � - the distance is computed based on their quantitative
values. This implies that non-relevant attributes having the same qualitative
value are not equals, and having di�erent qualitative values, are more similar.
L'Eixample measure is de�ned as:

d(Ci, Cj) =

∑n
k=1 e

wi × d(Aki, Akj)∑n
k=1 e

wi
(A.1)

d(Aki, Akj) =

⎧⎨⎩
∣qtv(Aki)−qtv(Akj)∣

upperval(Ak)−lowerval(Ak))
if Ak is a continuous attribute and wk < �

∣qlv(Aki)−qlv(Akj)∣
#mod(Ak)−1 if Ak is a continuous attribute and wk > �

or Ai is an ordered discrete attribute

1− �qlv(Aki),qlv(Akj) if Ak is non a ordered discrete attribute

A.2. MINKOWSKI 95

where:

Ci : the case i

Ak : attribute k

Wk : weight of attribute k

Aki : value of the attribute k in the case i

qtv(Aki) : quantitative value of Aki

upperval(Ak) : upper quantitative value of Ak

lowerval(Ak) : lower quantitative value of Ak

� : cut point on the weight of the attributes

qlv(Aki) : qualitative value of Aki

#mod(Ak) : of modalities (categories) of Ak

� : delta of Kronecker

A.2 Minkowski

The Minkowski distance is a metric on Euclidean space which can be considered
as a generalization of both the Euclidean distance and the Manhattan distance5.
It uses the Chebyshev distance when the order tends to in�nity, that corresponds
between two points to the maximum of projected distances.

The variable called order(r in equation A.2) indicates the distances type:
the higher the value of r, the more signi�cant is the contribution of the largest
components(xik − xjk). If r = 1 Manhattan distance is obtained and for r = 2,
Euclidean distance.

The next equation A.2 is the formalization of this measure used in GESCONDA:

d(xi, xj) = (

∑K
k=1 wk ∗ difk(xi, xj)r

WeigℎtSum
)

1
r , r ≥ 1 (A.2)

5http://en.wikipedia.org/wiki/Minkowski_distance

http://en.wikipedia.org/wiki/Minkowski_distance

96 APPENDIX A. SIMILARITY MEASURES

where:

k : number of input attributes

r : order

xi : case i

wk :

{
weigℎt(attribute k) use weights is activated

1 use weights is not activated

WeigℎtSum :

{∑K
k=0 weigℎt(attribk) if use weights is activated

1 if use weights in not activated

difk(xi, xj) :

⎧⎨⎩

∣normalized(xik)− normalized(xjk)∣ if attribute k is continuous

normalize = true

∣xik − xjk∣ if attribute k is continuous

normalize = false
∣xik−xjk∣

NumberOfModalities(k)−1 if attribute k is ordered discrete

0 if attribute k is discrete &

valuek(xi) == valuek(xj)

constant if attribute k is discrete &

valuek(xi) ∕= valuek(xj)

A.2.1 Euclidean

Euclidean distance is the most common and intuitive distance measure. Eu-
clidean distance between two points in two dimensions can be expressed using
Pythagora's theorem [Helen et al., 2003].

The Euclidean distance will be invariant to translations or rotations in fea-
ture space. However, it will not be invariant to linear transformations in general.
That's one reason why the data should be normalized [Duda et al., 2004].

A.2.2 Manhattan

Manhattan distance, also called Taxicab geometry or Rectilinear distance, con-
sidered by Hermann Minkowski in the 19th century, is a form of geometry in
which the usual metric of Euclidean geometry is replaced by a new metric in
which the distance between two points is the sum of the (absolute) di�erences
of their coordinates. The Manhattan name alludes to the grid layout of most
streets on the island of Manhattan, which causes the shortest path a car could
take between two points in the city to have length equal to the points' dis-
tance in taxicab geometry. Formally, the distance between two vectors in an
n-dimensional real vector space with �xed Cartesian coordinate system is the
sum of the lengths of the projections of the line segment between the points
onto the coordinate axes.

A.3 Cosinus Distance

Cosine similarity is a measure of similarity between two vectors by �nding the
cosine of the angle between them. This measure is invariant to rotation and

A.4. UNWEIGHTED SIMILARITY MEASURES 97

dilation, though it is not invariant to translation and general linear transforma-
tion [Duda et al., 2004].

In GESCONDA the Cosinus Distance is implemented following the next
equation A.3:

d(Xi, Xj) = 1− cos(�) = 1− Xi ⋅Xj

∥Xi∥ ∥Xj∥
= 1−

∑K
k=0 xik ∗ xjk√∑K

k=0(xjk)
2 ∗

∑K
k=0(xjk)

2

(A.3)
where:

Xi : case i

k : number of input attributes

xik :

⎧⎨⎩

normalized(valuek(xi)) ∗ weigℎt(k) if attribute k is continuous

unified(valuek(xi)) ∗ weigℎt(k) if attribute k is ordered discrete

0 if attribute k is discrete &

valuek(xi) ∕= valuek(xj)

weigℎt(k) if attribute k is discrete &

valuek(xi) == valuek(xj)

A.4 Unweighted Similarity Measures

These similarity metrics, de�ned in Lance andWilliams (1966) [Lance &Williams,
1967], are very sensitive to small changes close to xik = 0 = xjk, and can be
less reliable if the (xik) are sample estimates of some quantities. An advantage
of these metrics is that they do not need a previous normalization [nez et al.,
2003]. And as the name indicates, these measures ignore the weights attributes.

A.4.1 Canberra

This similarity ignores the attributes's weights. The Canberra distance is a
metric function often used for data scattered around an origin6. It was intro-
duced in 1966 ([Lance & Williams, 1967]). Canberra metric can be seen as a
normalized form of Manhatthan distance [Eidenberger, 2003].

The equation A.4 is used in GESCONDA:

d(xi, xj) =

k∑
k=1

difi(xik, xjk) (A.4)

6http://www.code10.info/index.php?option=com_content&view=article&id=49:

article_canberra-distance&catid=38:cat_coding_algorithms_data-similarity&Itemid=

57

http://www.code10.info/index.php?option=com_content&view=article&id=49:article_canberra-distance&catid=38:cat_coding_algorithms_data-similarity&Itemid=57
http://www.code10.info/index.php?option=com_content&view=article&id=49:article_canberra-distance&catid=38:cat_coding_algorithms_data-similarity&Itemid=57
http://www.code10.info/index.php?option=com_content&view=article&id=49:article_canberra-distance&catid=38:cat_coding_algorithms_data-similarity&Itemid=57

98 APPENDIX A. SIMILARITY MEASURES

difi(xik, xjk) =

⎧⎨⎩

∣xik−xjk∣
∣xik+xjk∣ if attribute k is continuous
∣xik−xjk∣
∣xik+xjk+2∣ if attribute k is ordered discrete

0 if attribute k is discrete &

valuek(xi) ∕= valuek(xj)

constant if attribute k is discrete &

valuek(xi) = valuek(xj)

A.4.2 Clark

Like the previous distance Canberra, this distance does not take in account the
attributes's weights. The formula A.5 is similar to the Canberra formula A.4

In the same way as Canberra is a normalization of Manhattan distance,
Clark's divergence coe�cient is a normalized version of Euclidean measure [Ei-
denberger, 2003].

d(xi, xj) =

k∑
k=1

difi(xik, xjk) (A.5)

difi(xik, xjk) =

⎧⎨⎩

∣xik−xjk∣2
∣xik+xjk∣2 if attribute k is continuous
∣xik−xjk∣2
∣xik+xjk+2∣2 if attribute k is ordered discrete

0 if attribute k is discrete &

valuek(xi) ∕= valuek(xj)

constant if attribute k is discrete &

valuek(xi) = valuek(xj)

Appendix B

Global con�guration of the

CBR Shell

###

Cofiguration File:

This file contains all the variables than affect the global CBR

cycle

###

####################### Case Base Organization ######################

index indicates what are the indexing that is currently used, if

the organization needs any parameter this is specify below to that,

only the corresponding parameter will be read

values = {PLAIN, HIERARCHICAL, SOM}

CaseBase.index = PLAIN

####################### New Case ####################################

When a case is used from the library exist choices:##

useCopy indicates that if the case is from the case base, then

the values are copy in a new case and will be used as a new one.

If is false then the case will be updated with the new proposed

solution

values = {true, false}

NewCase.useCopy = true;

In useCopy == true and newcase is from the casebase, then is

possible to configure that in the retrieve step, this new case

will be compared with itself or not

values = {true, false}

99

100 APPENDIX B. GLOBAL CONFIGURATION

NewCase.useSameCaseInRetrieve = false

######################### Retrieve ####################################

The retrieve task calls the library with the new case and it

returns a set of cases depending on its indextation. So, this

task is centered in compare the newcase with all the cases that

have been returned by the library

numRetrievedCases indicates the number of the cases which will be

returned by this retrieve algorithm and lately used by adaptation.

The most similar numRetrievedCases will be returned if these

exist. If the next case after the numRetrievedCases has the same

distance, it will be returned too, in fact will be returned all

that have the same distance than the numRetrievedCases case.

values = [0..inf]

Retrieve.numRetrievedCases = 3

useOnlyDescriptions indicates if the comparation of the cases will

be among the description attributes or can be used the solution

ones and evaluation if exist

values = {true, false}

Retrieve.useOnlyDescriptions = true

######################### Retrieve- Distance ##########################

To compare the cases can be selected the distances used. For each

one, some parameters can be variables too.

Distance.type = {EUCLIDEA, MANHATTAN, MINKOWSKI, EIXAMPLE,

CLARK, COSINUS, CANBERRA}

Retrieve.Distance.type = EUCLIDEA

DistanceBetweenTwoNonOrderedDiscretValues is common to all distance

types, and marks how to penalized when are different

values = [-inf, inf] ##default = 1

Retrieve.Distance.DistanceBtwNonOrderDiscreValues = 1

r is a variable power to specify the distance type.

Power = 1 Manhattan distance, and power=2 is the Euclidean

distance, which are the most commonly used.

values = [1 .. inf]

Retrieve.Distance.r = 2

101

In MINKOWSKY, EUCLIDEAN, MANHATTAN is possible to configure if

to use the weights previously set up

values = {true, false}

Retrieve.Distance.useWeights = true

In MINKOWSKY, EUCLIDEAN, MANHATTAN sets whether the attributes

must be normalized or not

values = {true, false}

Retrieve.Distance.normalize = true

In L'EIXAMPLE alpha is a threshold that defines the boundary for

using quantitative or qualitative values for continuous

attributes

values = default = 8.f

Retrieve.Distance.alpha = 8.f

######################### Reuse(Adaptation) ###########################

Adaptation phase can be performanced by different methods. By now

just is possible to define as MEAN, but by the interface by

FORMULA, then each attribute that belongs to the solution has the

option to be adapted by a formula manually introduced by the user,

null or mean.

values = {NULL, MEAN, FORMULA, WEIGHTEDMEAN} ##default = MEAN

Reuse.adaptMode = MEAN

If adapMode = WEIGHTEDMEAN, the weighting can be done by the

distance results or by an attribute with the specified index

Reuse.adaptByDistance = false

Reuse.adaptByAttribute = -1

######################### Evaluation(Revise) ##########################

The attribute Evaluation is optional, therefore this phase can

be skipped.

##

When is defined the case structure, one continuous attribute can

be mark as evaluation, or create a new one if this

values = {true, false}

Evaluation.createEvaluation = false

Default Value, is prepare to be an percentage of how good is it

values = [0..100] ##default = 100 (all is well-done !!)

102 APPENDIX B. GLOBAL CONFIGURATION

Evaluation.maxValue = 100

Evaluation.minValue = 0

Evaluation.evaluationDefaultValue = 100

One option to make this process automatic, is to supose that

a case come from the library, then is possible to compare the

solution, and evaluate if has been well-done

Or, a function than provides an average of the evaluations

from the cases that has been used to adapt this new one

Evaluation.compareSolutions = true

######################### Retain(Learn) ###############################

This phase is encharge to store the case that has been generate

in the CBR cycle or to reject it.

values = {LEARN, NOTLEARN, CONDITION}

Retain.learnMode = LEARN

if learnMode = CONDITION then has to exist a file called

conditions.xml that contains the conditions that have to

satisfy the new case to be store.

The xml file describes all the conditions and indicates for each

one what are the java class that implements that have to be

launched and this class implements java Condition interaface.

Retain.conditionsFile = /gesconda/resources/xml/conditions.xml

######################### Utility #####################################

To force to create a utility attribute

values = {true, false}

Utility.createUtility = false

utilityMode= {FREQ, CUSTOM} if is custom won't be updated

Utility.utilityMode = FREQ

if is a FREQ , Utility = numerator/denominator

values = {NUM_TOTAL_RETRIEVES, ## number of retrieves in the system

NUM_RETRIEVES, ## Number of times that a case has been

retrieved

NUM_SELECTED, ## number of times that a case has been

selected to adapt another case

103

NUM_OK ## number of times that has been used to create the

solution of other case, and this last has been

evaluated positive

Utility.Freq.numerator = NUM_SELECTED

Utility.Freq.denominator = NUM_TOTAL_RETRIEVES

if utility exists and is FREQ mode , this attribute has to

be created to updated the utility when evaluation is involved

Utility.createSourceCase = false;

######################### Battery ######################################

This function will be executed the CBR cycles as many times as

many new cases there are. The options or parameters to use are

defined above. The unique to define is the source of the cases

Those might be from the existing case base or load in a new file.

If there're from the library, there must specify if those has to

be deleted from the case base or leave there.

##

source determines whether is from library or file

values = {FIRST, RANDOM, FILE}

Battery.source = RANDOM

if the source is the library has to specify the % of the cases to

use, numberOfCases = "size of the case base * percent / 100 "

if FIRST => the numberOfCases first ones cases

else if RANDOM => numberOfCases cases ara selected randomly

value = [0..100]

Battery.percent = 10

if is from library, the new cases can be erased from the library

values = {true, false}

Battery.deleteFromLibrary = false

if source == FILE then the file name . Remember that the cases

must be structured like the existing in the case base##

Battery.CasesSourceName = "resources/newcases.xml"

	Ackknowledge
	Contents
	List of Figures
	Introduction
	Motivation
	Goals

	Background
	Case-Based Reasoning
	GESCONDA
	Architecture, Specification and Design
	GESCONDA Functionality

	CBR Tools
	Caspian
	jCOLIBRI
	IUCBR
	AIAICBR
	myCBR
	INRECA
	CBRExpress
	ReMind
	ESTEEM

	The CBR System Description
	Case Structure
	Case Library
	Flat Memory
	Hierarchical Memory
	Self-Organizing Maps

	Configuration
	Start a new case
	Retrieve
	Global parameters
	"Local" Parameters

	Reuse
	Revise
	Retain
	Distance
	Evaluation
	Recursive Cluster Elimination (RCE) method

	Utility
	Our approximation of Utility

	The CBR Shell Development
	Software Requirements
	Functional requirements
	Non-Functional Requirements

	Use Cases of the CBR shell
	Define Case Structure
	Select New Case
	Select New Case List
	CBR cycle and Battery
	Retrieve
	Reuse
	Revise
	Retain
	Load Conditions
	Update Utility
	Load Configuration

	Design
	Architecture
	Model
	View
	Controller

	Implementation
	Model
	View
	Controller
	Algorithms
	Retrieval
	Reuse
	Evaluation
	Retain

	Evaluation
	Theoretical assessment
	Experimental evaluation
	Testing the Iris dataset
	Testing the Abalone dataset

	Conclusions and Future Work
	Future Work
	Memory Organization
	Evaluation
	Case Base Maintenance
	Local Weighting
	Selection of Distance Measures
	General Lines

	References
	Similarity Measures
	L'Eixample
	Minkowski
	Euclidean
	Manhattan

	Cosinus Distance
	Unweighted Similarity Measures
	Canberra
	Clark

	Global Configuration

