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Abstract

First-order term unification is an essential concept in areas like functional and
logic programming, automated deduction, deductive databases, artificial in-
telligence, information retrieval, compiler design, etc. We build upon recent
developments in grammar-based compression mechanisms for terms and in-
vestigate algorithms for first-order unification and matching on compressed
terms.

We prove that the first-order unification of compressed terms is decidable
in polynomial time, and also that a compressed representation of the most
general unifier can be computed in polynomial time. Furthermore, we present
a polynomial time algorithm for first-order matching on compressed terms.
Both algorithms represent an improvement in time complexity over previous
results [GGSS09, GGSS08].

We use several known results on the tree grammars used for compression,
called singleton tree grammars (STG)s, like polynomial time computability
of several subalgorithmms: certain grammar extensions, deciding equality of
represented terms, and generating their preorder traversal. An innovation is
a specialized depth of an STG that shows that unifiers can be represented in
polynomial space.
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Chapter 1

Introduction

The task of solving equations is an important component of any mathemati-
cally founded science. In general, solving an equation s

.
= t consists of finding

a substitution σ for variables occurring in both expressions s and t such that
σ(s) = σ(t). The range for the variables, the kind of expressions s and t, and
their semantics, as well as the semantics of = depend on the context. By
specifying some of these parameters we can define the well-known first-order
term unification problem.

The first-order unification problem

In the context of this problem the expressions s and t are terms with leaf
variables standing for terms, all function symbols are non-interpreted, and =
is interpreted as syntactic equality. Intuitively, we can see terms as trees, the
widely-used data structure. To be more concrete, we usually consider terms
built of functions symbols f, g, a, b (where f and g are binary, and a,b are
nullary), and variable symbols x and y. Therefore, the unification problem
s

.
= t for terms s = f(x, b) and t = f(a, y) is concerned to the question:

is it possible to replace the variables x,y in s and t by terms such that the
two terms obtained this way are (syntactically) equal? In this example, if
we replace x by a and y by b then s and t become equal, and we obtain an
unified term, i.e. the resulting term after applying the substitution, f(a, b).
Hence, the substitution {x 7→ a, y 7→ b} is called a unifier for s and t.

Robinson [Rob65] showed that the first-order Unification problem is de-
cidable and that whenever a unifier exists, there always exists a most general
unifier, i.e. a unifier such that every other unifier can be obtained by instan-
tiation. Even more, in first-order unification, whenever this most general
unifier exists, it is unique up to variable renaming. Robinson’s algorithm for
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computing most general unifier requires exponential time and space in the
worst case. A great deal of effort has gone into improving the efficiency of
first-order unification. Among several other results, there are the ones by
Venturini-Zilli [VZ75], reducing the complexity of Robinson’s algorithm to
quadratic time, and by Martelli and Montanari [MM82], presenting a linear
time algorithm for unification.

The first-order matching problem

The term matching problem is a particular case of term unification. It is
characterized by the condition that one of the sides of the equation s

.
= t, say

t, contains no variables. Like term unification, this is a common problem in
areas like functional and logic programming, automated deduction, deductive
databases, artificial intelligence, information retrieval, compiler design, etc.

Variants

In most applications of unification and matching, one is not interested just
in the decision problem, which simply asks for a ”yes” or ”no” answer to the
question commented above. A unification or matching algorithm should thus
not only decide solvability of a given instance of these problems, but also ei-
ther compute a most general unifier, i.e. a unifier such that every other unifier
can be obtained by instantiation, or compute all solutions. The first-order
term unification and matching problems are efficiently solvable, but their ex-
pressivity is often insufficient to deal with the current challenges in the areas
mentioned above. For this reason, several variants and generalizations of
these problems have been studied. Incorporating more complex interpreta-
tion of the function symbols and equality predicate under equational theories
has been widely considered (see [BS94, BS01]). In this case, instead of re-
quiring that the terms are made syntactically equal, equational unification
is concerned to make the terms equivalent with respect to a congruence in-
duced by certain equational axiom E. For example, if E = f(a, a) ≈ g(a, a)
, then the terms f(a, x) and g(x, a), which are not (syntactically) unifiable,
are E-unifiable.

Another extension of first-order unification is concerned with allow-
ing other kinds of variables related to terms. This is the case of con-
text variables, i.e. variables which can be substituted by contexts, which
are terms with a single hole (syntactically, the hole is a special con-
stant denoted by •). Context variables have arity one, hence they have
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a subterm t. Once they are instanciated by a context, the hole denotes
where t has to be inserted. For example, we say that the context uni-
fication equation F (f(h(a), h(a)))

.
= h(f(F (a), F (a))) has only one solu-

tion {F 7→ h(•)} and the unified term is h(f(h(a), h(a))). The context
unification instance F (f(x, b))

.
= f(a, F (y)) has several solutions such as

{F 7→ f(a, •), x 7→ a, y 7→ b}, {F 7→ f(a, f(a, •)), x 7→ a, y 7→ b},
{F 7→ f(a, f(a, f(a, •))), x 7→ a, y 7→ b}, and so on. The unified terms
are f(a, f(a, b)), f(a, f(a, f(a, b))), and f(a, f(a, f(a, f(a, b)))) respectively.
On the other hand, f(a, F (x)), and F (f(b, a)) are not unifiable. The context
unification problem was first introduced by Comon [Com91] and its decid-
ability still remains open. However, some particular cases has been already
solved [SSS04, SS02, SSS02, LSSV06b, GGSS08]. Analogously to the first-
order case, the context matching problem is the particular case of context
unification where one of the sides of the equation contains no variables.

However, the extension of unification and matching treated in this
work is concerned with reconsidering complexity issues for the first-order
unification problem when applied to compressed input terms. In re-
cent years there has been an increase of interest in compression mecha-
nisms based on grammar representation, since other mechanisms can in
general be efficiently simulated. These compression techniques were ini-
tially used for words [Pla95, Loh06, Lif07], and led to important results
in string processing, with applications [HSTA00, GM02, LR06] in soft-
ware/hardware verification, information retrieval, and bioinformatics. In
that sense, Straight-Line Programs (SLP), or the equivalent formalism of
Singleton Context Free Grammars (SCFG), are now a widely accepted for-
malism for text compression. Later, grammar-based compression was ex-
tended to terms/trees [BLM05, SS05, CDG+97] with applications on XML
tree structure compression [BLM05] and XPATH [LM05]. STG-based com-
pressors have already been developed [MMS08]. Essentially, an SCFG, i.e. a
context free grammar where all nonterminals generate a singleton language,
is used for representing single words, and similarly, every nonterminal in a
singleton tree grammar (STG) represents one tree. An STG can succinctly
represent terms/trees which are exponentially big in size and height. Effi-
cient algorithms have been developed for checking whether two compressed
inputs represent the same word/term [Pla95, Loh06, Lif07], and for find-
ing occurrences of one of them within the other (fully compressed pattern
matching)[KRS95, KPR96, MST97, Lif07]. Recently, it was shown that tree
grammars using multi-hole-contexts are polynomially equivalent to STGs
[LMSS09]. STGs have also been used for complexity analysis of unifica-
tion algorithms in [LSSV06b, LSSV06a], and the context matching problem
[GGSS08].
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Overview of results obtained in this work

In [GGSS09], and in [GGSS08], there were presented polynomial time algo-
rithms for first-order unification and matching , in both cases with terms
represented with STGs. As a nobel contribution we describe, in Chapter 3
and Chapter 4 respectively, faster algorithms for this two problems. More-
over, we believe that the presented solutions represent also a gain in simplicity
which makes them easily implementable.
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Chapter 2

Preliminaries

In this chapter the necessary concepts and definitions in the scope of this
work are introduced. Most of the basic definitions and explanations regard-
ing terms and term unification were borrowed from [CDG+97], [Vil04], and
[BS01].

2.1 Terms

Terms allow the representation of data with substructure. A term is either:

• A constant symbol

• A variable

• A compound term

A compound term consists of a function symbol applied on a sequence of one
or more terms called arguments. It sometimes helps to think of a compound
term as a tree structure.

Example 2.1.1 The formula f(+(1, x), ∗(3, 4),−(5, y)) could be depicted as
the structure:

f

+ * -

1 x 3 4 5 y

where f ,+, − and ∗ are function symbols, 1,3,4 and 5 are constants, and x,
y represent variables.
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The number of arguments taken by a function symbol is called its arity. In
the example above, +,− and ∗ have an arity of 2 and f has arity 3. We can
regard a constant as a function with arity 0.

Once introduced the intuitive idea on what the terms are, we can define
them, as well as the notation used in this document, in a more strict way. A
signature F is a finite set of symbols. We also define arity as a mapping from
F into N , where N denotes the set of natural numbers including 0. The arity
of a symbol f ∈ F is ar(f). The set of symbols of arity i is denoted as Fi.
The symbols of arity 0, 1, 2, . . . , i are respectively called constants/nullary,
unary, . . . , i-ary symbols. We assume that F contains at least one constant.

Let X be a set of symbols called first-order variables, denoted by x, y, x,
which are nullary. We assume that the set X and F are disjoint. We employ
the syntax of second-order terms (without abstraction) and denote terms as
s, t, u, v, . . . .

The set T (F ,X ) of terms is recursively defined by:

• F0 ⊆ T (F ,X ).

• X ⊆ T (F ,X ).

• if i ≥ 1, f ∈ Fi and t1, . . . , ti ∈ T (F ,X ), then f(t1, . . . , ti) ∈ T (F ,X ).

If X = ∅ then T (F ,X ) is also written T (F). Terms in T (F) are called
ground terms. Hence, a term without occurrences of free variables is said to
be ground.

2.2 Terms, trees, and positions

As commented above, it is easy to think about a term as a tree structure.
At this point, an alternative definition for terms is presented to go further
than just the intuitive idea.

A finite ordered tree t over a set of labels E is a mapping from a prefix-
closed set Pos(t) ⊆ N∗ into E, where N∗ denotes the set of finite strings
over N . Thus, a term t ∈ T (F ,X ) may be viewed as a finite ordered ranked
tree, the leaves of which are labeled with variables or constant symbols and
the internal nodes are labeled with symbols of positive arity, with out-degree
equal to the arity of the label, i.e. a term t ∈ T (F ,X ) can be also defined
as a partial function t : N∗ → F ∪ X with domain Pos(t) satisfying the
following properties:

i. Pos(t) is finite, nonempty and prefix-closed
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ii. ∀i ∈ Pos(t), if t(i) ∈ Fn, n ≥ 1, then {j | i · j ∈ Pos(t)} = {1, . . . , n}

iii. ∀i ∈ Pos(t), if t(i) ∈ V ∪ F0, then {j | i · j ∈ Pos(t)} = ∅

where · denotes the concatenation.

Thus, each element in Pos(t) is a position. Positions are denoted p, q, as
sequences of positive integers. In f(t1, . . . , tn) the position of the ith subterm,
ti, is i. The empty word is denoted λ, p ≺ q means the prefix relation, p · q
the concatenation, and t|p the subterm at position p of t.

2.3 Subterms

A subterm t|p of a term t ∈ T (F ,X ) at position p is recursively defined as

• t|λ = t

• f(t1, . . . , tn)|i·p = ti|p

where λ denotes the empty string.

2.4 Functions on terms

The size of a term t, denoted by |t| and the height of t, denoted by height(t)
are inductively defined by:

• height(t) = 0, |t| = 1 if t ∈ V

• height(t) = 0, |t| = 1 if t ∈ F0

• height(t) = 1 + max1≤i≤n(height(ti)), |t| = 1 +
∑n

i=0 |ti| if t is of the
form t = f(t1, . . . , tn)

Therefore, the height of a term t refers to the number of nodes in the deepest
branch of the tree representing t, and the size refers to its number of nodes.

Example 2.4.1 Let t be the term f(g(a, g(c, x)), f(a, b, a), a). Then, the
term g(c, x) occurs at position 12. Hence, t|12 = g(c, x). height(t) = 3, and
|t| = 11.
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2.4.1 Preorder traversal of a term

We denote by pre(t) the preorder traversal (as a word) of a term t. It is re-
cursively defined as pre(t) = t, if t is a constant or a first-order variable, and
pre(t) = f · pre(t1) · . . . · pre(tm), if t = f(t1, . . . , tm) with m > 0. Two arbi-
trary different trees may have the same preorder traversal, but when they rep-
resent terms over a fixed signature where the arity of every function symbol
is fixed, the preorder traversal is unique for every term. Given a term t, there
is a natural bijective mapping between the indexes {1, . . . , |pre(t)|} of pre(t)
and the positions Pos(t) of t, which associates every position p ∈ Pos(t) to
the index i ∈ {1, . . . , |pre(t)|} you find at root(t|p) while traversing the tree
in preorder. We can recursively define the two mappings pIndex(t, p) →
{1, . . . , |pre(t)|} and iPos(t, i) → Pos(t) as follows. pIndex(t, λ) = 1,
pIndex(f(t1, . . . , tm), i.p) = (1+|t1|+. . .+|ti−1|)+pIndex(ti, p), iPos(t, 1) =
λ, and iPos(f(t1, . . . , tm), 1 + |t1| + . . . + |ti−1| + k) = i · iPos(ti, k) for
1 ≤ k ≤ |ti|.

2.5 Substitutions

A substitution σ is a mapping from X into T (F ,X ). The domain of σ is
X , althought sometimes it is assumed to be a subset X ′ ⊂ X depending on
the context. Substitutions mapping from X into T (F) are called ground.
By σ(t) we denote the result of applying σ to the term t. We understand σ

recursively extended to terms as σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

Example 2.5.1 Let t be the term f(f(x1, a), x2) and let σ be the substitution
{x1 7→ g(a, b), x2 7→ b}. Then σ(t) = f(f(g(a, b), a), b) and the domain of σ

is {x1, x2}.

2.6 Contexts

The structure of a context will be useful when compressing terms. The dag
(directed acyclic graph) representation structure compresses terms in width
by reusing multiple occurrences of subterms. Similarly, an STG-based repre-
sentation compresses also in height by reusing multiple occurrences of con-
texts.

Intuitively, contexts are terms with a single occurrence of a hole, denoted
•, into which terms (or other contexts) may be inserted. We denote contexts
by upper case letters C,D. We can provide a formal definition by consider-
ing a context to be a term in an extended signature that includes an extra
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constant symbol •. Hence, the smallest context contains just the hole and
has size 1. If C and D are contexts and t is a term, CD and Ct represent the
term that is like C except that the occurrence of • is replaced by D and t,
respectively. If D1 = D2D3 for contexts D1, D2, D3, then D2 is called a prefix
of D1, and D3 is called a suffix of D1. The position of the hole in a context
C is called hole path, denoted hp(C), and its length is denoted as |hp(C)|.

Example 2.6.1 Let C be the context f(f(g(a, •), a), b), D be the context
h(f(a, •)) and t be the term g(c, x1). Then Ct = f(f(g(a, g(c, x1)), a), b),
CD = f(f(g(a, h(f(a, •))), a), b), |C| = 7, |t| = 3, |Ct| = 9. hp(C) = 112,
and |hp(C)| = 3.

2.7 Unification and matching

Very generally speaking, unification tries to identify two simbolic expressions
by replacing certain sub-expresions(variables) by other expressions. Hence,
this task consists on solving equations s

.
= t by finding a substitution σ

for variables ocurring in both expressions s and t such that σ(s) = σ(t).
In particular, the classical first-order term unification problem seeks to find
solutions for term equations built over uninterpreted function symbols and
first-order variables where = is interpreted as syntactic equality.

Example 2.7.1 The first-order unification problem for terms s = f(a, x)
and t = f(y, f(a, b)) has a solution σ = {x 7→ f(a, b), y 7→ a}. The terms
s′ = f(a, x), t′ = f(x, f(a, b)) cannot be unified.

The term matching problem is a particular case of term unification. It is
characterized by the condition that one of the sides of the equation s

.
= t,

say t, contains no variables.

Definition 2.7.2 Given a signature F and a set of first-order variables X ,
an instance of the first-order unification[matching] problem is a set ∆ of
equations {s1

.
= t1, . . . , sn

.
= tn} where ti, si ∈ T (F ,V) [si ∈ T (F ,V) and

ti ∈ T (F)]. The question is to compute a substitution σ (the solution), such
that σ(si) = σ(ti) for all i.

A simple algorithm for first-order unification might be one described in
Figure 2.1. Its correctness can be proved by induction on the complexity
measure 〈n1, n2〉 on terms, ordered by the (well-founded) lexicographic or-
dering on pairs of natural numbers where n1 denotes the number of distinct
variables in s and t, and n2 = height(s).
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Note that an iterative version of this algorithm would run while s and
t are different and traverse simultaneously pre(s) and pre(t) until finding
a position k such that pre(s)[k] 6= pre(t)[k]. If pre(s)[k] and pre(t)[k]
are function symbols then the unification fails. Otherwise, either pre(s) or
pre(t), say pre(s), contains a variable x at k. Note that, since the arity
for the terminals in G is fixed, the index k corresponds to a unique position
p ∈ Pos(s) ∩ Pos(t), as commented in Section 2.4.1. If x properly occurs
in the subterm of t at p, then we terminate, again stating non-unifiability.
Otherwise, we replace x by the subterm of t at p everywhere, and re-start the
process until both s and t become equal, in which case we state unifiability.

Global σ: substitution; {Initialized to ∅}

Function Unify(s, t) returns boolean:

If s = t Then return True;

If s = f(s1, . . . , sm) ∧ t = f(t1, . . . , tm), m > 0 Then

return
(

Unify(s1, t1)
∧ Unify(σ(s2), σ(t2))
...

∧ Unify(σ(sm), σ(tm))
)

EndIf

If s = f(s1, . . . , sn) ∧ t = g(t1, . . . , tm), n, m ≥ 0 Then return False

If s = x is a variable Then

If x occurs in t Then return False

Else

σ := σ ∪ {x → t}
return True

EndIf

ElseIf t = x is a variable Then

If x occurs in s Then return False

Else

σ := σ ∪ {x → s}
return True

EndIf

EndIf

Figure 2.1: A First-order Unification Algorithm

On the other hand, an algorithm for first-order matching could be the one
defined in Figure 2.2. Its correctness can be shown by induction on height(t).
Note that, in this case, an iterative version of this algorithm would proceed
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similarly as in the previous algorithm. However, in this case we do not need
to check whether s and t became equal after each instantiation of a variable
since σ will always be a ground substitution.

Global σ: substitution; {Initialized to ∅}

Function Match(s, t) returns boolean:

return AuxMatch(s, t) ∧ σ(s) = t

Function AuxMatch(s, t) returns boolean:

If s = t Then {Do Nothing}

If s = f(s1, . . . , sm) ∧ t = f(t1, . . . , tm), m > 0 Then

return
(

Match(s1, t1)
∧ Match(σ(s2), t2)
...

∧ Match(σ(sm), tm)
)

EndIf

If s = f(s1, . . . , sm) ∧ t = g(t1, . . . , tn), n, m ≥ 0 Then return False

If s = x is a variable Then

σ := σ ∪ {x → t}
return true

EndIf

Figure 2.2: A First-order Matching Algorithm

This two generic algorithms for solving first-order unification and match-
ing will be crucial later in the paper since our approaches consist on adapting
each of them to the compressed case.

2.8 Representations for terms

2.8.1 DAGs

Definition 2.8.1 A term dag is a directed acyclic graph whose nodes are
labelled with function symbols, constants, or variables, whose outgoing edges
from a node are ordered, and where the outdegree of any node labelled with a
symbol f is equal to the arity of f .

In such a graph, each node has an interpretation as a term, and we shall
speak of nodes and terms if they were one and the same. If terms are large
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f

...

f

a b

Figure 2.3: Encoding using dags of term in example 2.8.2

but have lots of common subterms, like t1 = f(a, b), t2 = f(t1, t1), . . . , tn =
f(tn−1, tn−1), then one would require exponential space using the term rep-
resentation to represent tn, whereas a directed acyclic graph (dag) represen-
tation requires linear space because of the reusement of the nodes. Hence,
dags allow to represent terms of exponential width in linear space.

Example 2.8.2 Given the set of equations {t1 = f(a, b), t2 =
f(t1, t1), . . . , tn = f(tn−1, tn−1)}, using a dag to represent tn provides an effi-
cient encoding as shown in figure 2.3.

One of the reasons for the exponential execution time of Robinson’s al-
gorithm is the exponential size increase of the terms to be unified due to
instantiation of variables. The dag structure for term representation is used
in later algorithms to keep the size of this terms linearly bounded. Further-
more, note that since each node in a term-dag has an interpretation as a
term, once two subterms are unified they are represented by the same node,
which helps to avoid repeated calculations.

2.8.2 Grammars

In this work we consider singleton tree grammars (STG) for term compres-
sion. This kind of grammars are a generalization of singleton context-free
grammars (SCFG) [LSSV04, Pla94], which can only generate strings, ex-
tending the expressivity of SCFGs by terms and contexts. This is consistent
with [BLM05], and also with the context free tree grammars in [CDG+97].
However, the latter are slightly more general in permitting contexts with
several holes.
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First of all it is necessary to define the well-known Context-Free Gram-
mars (CFG). Then, by making a restriction on the form of the rules we define
Singleton Context Free Grammars (SCFG), and finally, by extending SCFG
to represent terms we introduce Singleton Tree Grammars (STG).

Definition 2.8.3 A context-free grammar is a quadruple G = (V, Σ, P, S)
where V is a finite set of variables (nonterminals), Σ is a finite set of ter-
minals disjoint with V , S ∈ V is the start symbol and P is a finite set of
production rules of the form Z → α where Z ∈ V and α ∈ (V ∪Σ)∗ . A rule
Z → α is called a Z − rule.

Example 2.8.4 A context-free grammar for the language consisting of all
strings over {a, b} for which the number of a’s and b’s are different is:

S → U S → V

U → TaU U → TaT

V → TbV V → TbT

T → aTbT T → bTaT

T → λ
Here, the nonterminal T can generate all strings with the same number of

a’s as b’s, the nonterminal U generates all strings with more a’s than b’s and
the nonterminal V generates all strings with fewer a’s than b’s. The symbol
λ denotes the empty string.

As we can see in the example above, the non terminals T, U, V are recur-
sive. For this reason, arbitrarily long strings may be generated. Furthermore,
due to that recursivity and to the fact that there is more than one rule con-
taining a given non terminal in its left-hand side, every non terminal can
generate more than one string. SCFGs are called singleton because each non
terminal generates just one string.

Definition 2.8.5 A singleton context free grammar (SCFG) is a non-
recursive context-free grammar such that for every nonterminal Z there is
exactly one Z − rule. Then every non-terminal Z generates just one word,
denoted wZ, and we say that Z defines wZ. We do not distinguish a partic-
ular start symbol. Hence, a singleton context-free grammar is defined as a
3-tuple G = (V, Σ, P ), analogously to context-free grammars.

Alternatively, SCFGs are defined in a different way. They contain variables
X1, . . . , Xn where every variable Xi occurs in a left hand-side of exactly one
rule of the form either Xi → c, for some c ∈ Σ, or Xi → XjXk, for some
j, k < i. Note that, with this alternative definition, SCFGs are in Chomsky
Normal Form.
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Now we can define singleton tree grammars (STG) as an extension of the
already presented SCFGs in order to capture terms and contexts. Note that
SCFGs can be obtained from STGs for the case of a monadic signature, i.e.
all function symbols have arity one except for one constant.

Definition 2.8.6 A singleton tree grammar (STG) is a 4-tuple G =
(T N , CN , Σ, R), where T N is a set of tree/term non-terminals, or non-
terminals of arity 0, CN is a set of context non-terminals, or non-terminals
of arity 1, and Σ is a signature of function symbols (the terminals), such that
the sets T N , CN , and Σ are pairwise disjoint. The set of non-terminals N
is defined as N = T N ∪ CN . The rules in R may be of the form:

• A → f(A1, . . . , Am), where A,Ai ∈ T N , and f ∈ Σ is an m-ary
terminal symbol.

• A → C1A2 where A,A2 ∈ T N , and C1 ∈ CN .

• C → • where C ∈ CN .

• C → C1C2, where C,Ci ∈ CN .

• C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am), where
A1, . . . , Ai−1, Ai+1, . . . , Am ∈ T N , C,Ci ∈ CN , and f ∈ Σ is an
m-ary terminal symbol.

• A → A1, (λ-rule) where A and A1 are term non-terminals.

Let N1 >G N2 for two non-terminals N1, N2, iff N1 → t, and N2 occurs in
t. The STG must be non-recursive, i.e. the transitive closure >+

G must be
terminating. Furthermore, for every non-terminal N of G there is exactly
one rule having N as left-hand side. Given a term t with occurrences of non-
terminals, the derivation of t by G is an exhaustive iterated replacement of the
non-terminals by the corresponding right hand sides. The result is denoted
as wG,t. In the case of a non-terminal N we also say that N generates wG,N .
We will write wN when G is clear from the context.

Note that we have used Σ instead of F for denoting the set of terminals
of the grammar, although it is also a signature. We explain the reasons as
follows. In this work, STGs are used for representing first-order terms and
contexts. In particular, a terminal A of a STG G generates a term. If Σ
was F we would be able to represent just ground terms. Thus, Σ must also
contain first-order variables as terminals of arity 0.
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Example 2.8.7 The terms in the equation s
.
= t, where s = f(g(a, b), h(x)),

and t = f(h(b), g(a, x)), are generated by term non-terminals As and At,
respectively, in the following STG.

As → f(A1, A2) At → f(A3, A4)
A1 → C1Ab A3 → C2Ab

A2 → C2Ax A4 → C1Ax

C1 → g(Aa, C.) C2 → h(C.)
Ab → b Ax → x

C. → • Aa → a

A directed acyclic graph (dag) can be defined as a particular case of an
STG (in fact, this representation is in direct correspondence with the classic
implementation of graphs using adjacency lists).

Definition 2.8.8 A DAG is an STG where the set of context non-terminals
CN is empty, and moreover, there are only rules of the form A →
f(A1, . . . , Am).

Example 2.8.9 Given the set of equations {t1 = f(a, b), t2 =
f(t1, t1), . . . , tn = f(tn−1, tn−1)}, using a STG to represent tn provides an
efficient encoding (as shown in example 2.8.2 for the case of the dag repre-
sentation).

Tn → f(Tn−1, Tn−1)
...
T2 → f(T1, T1)
T1 → f(A,B)
A → a

B → b

Nevertheless, STG-represented terms may have exponential height in the
size of the grammar in contrast to dags, which only allow for a linear height
in the (notational) size of the dags as shown in the following example.

Example 2.8.10 The term s = f 2n

(a) described by the following grammar
would have exponencial height in a term or dag representation.

s → CnAa

Aa → a

C. → •
C0 → f(C.)
C1 → C0C0
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C2 → C1C1

C3 → C2C2
...
Cn → Cn−1Cn−1

Definition 2.8.11 The size |G| of an STG G is the sum of the sizes
of its rules, where the size of a rule N → u is 1 + |u|. The depth
within G of a non-terminal N is defined recursively as depth(N) := 1 +
max{depth(N ′) | N ′ is a non-terminal in u where N → u ∈ G} and the
maximum of an empty set is assumed to be 0.

The depth of a grammar G is the maximum of the depths of all non-
terminals of G, and it is denoted as depth(G).

Plandowski [Pla94, Pla95] proved decidability in polynomial time for the
word problem for SCFG, i.e., given a SCFG P and two non-terminals A and
B, to decide whether wA = wB. The best complexity for this problem has
been obtained recently by Lifshits [Lif07] with time O(|P |3). In [BLM05,
SS05] Plandowski’s result is generalized to STG. Since the result in [BLM05]
is based on a linear reduction from terms to words and a direct application
of Plandowski’s result, it also holds for the Lifshits result. Hence, we have
the following.

theorem 2.8.12 ([Lif07, BLM05]) Given a STG G, and two tree non-
terminals A,B from G, it is decidable in time O(|G|3) whether wA = wB.

Several properties on STGs are efficiently decidable. The following lem-
mas will be used all along the paper.

Lemma 2.8.13 Let G be an STG. The number |wN |, for every non-terminal
N of G, is computable in time O(|G|).

Proof. We give an alternative definition of |wN | recursively as follows.

• if (N → f(N1, . . . , Nm) ∈ G) then |wN | = 1 + |wN1
| + . . . + |wNm

|,
where N1, . . . , Nm are non-terminals of G and f is a function symbol
with ar(f) = m.

• if N → C1N2 then |wN | = |wC1
| + |wN2

| − 1, where C1 is a context
non-terminal and N2 is a non-terminal of G.

The correctness of the above definition can be shown by induction on the size
of wN . Moreover, since the recursive calls in the definition of |wN | will be
done, at most, over all the non-terminals of G, |wN | is computable in linear
time over |G| using a dynamic programming scheme. 2
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Lemma 2.8.14 Given an STG G, a terminal α, and a non-terminal N of
G, it is decidable in time O(|G|) whether α occurs in wN .

Proof. Whether α occurs in wN can be computed efficiently again using a
dynamic programming squeme: note that α occurs in wN iff either wN → α ∈
G, or α occurs in wN ′ for some non-terminal N ′ occurring in the right-hand
side of the rule for N . 2
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Chapter 3

First-order unification with

STGs

In this section we prove that the first-order unification problem can be solved
in polynomial time even when the input is compressed using STGs.

Definition 3.0.15 The first-order unification problem with STG has an
STG G representing first-order terms and contexts as input, plus two term
non-terminals As and At of G representing terms s = wG,As

and t = wG,At
.

Its decisional version asks whether s and t are unifiable. In the affirmative
case, its computational version asks for a representation of the most general
unifier.

Our algorithm generates the most general unifier in polynomial time and
represented again with an STG.

3.1 Outline of the algorithm

Given a STG G as a compressed representation of two terms s and t, we
compute a minimal index k in which pre(s) and pre(t) differ. At this point,
if both pre(s)[k] and pre(t)[k] are function symbols, we terminate stating
non-unifiability. Otherwise, either pre(s) or pre(t), say pre(s), contains a
variable x at k. Note that, since the arity for the terminals in G is fixed, the
index k corresponds to a unique position p ∈ Pos(s)∩ Pos(t), as commented
in Section 2.4.1. If x properly occurs in the subterm of t at p, then we
terminate, again stating non-unifiability. Otherwise, we replace x by the
subterm of t at p everywhere, and re-start the process until both s and t

become equal, in which case we state unifiability.
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Input: An STG G and term non-terminals As and At.

(we write s and t for wAs
and wAt

).

While s and t are different do:

Look for the first position k such that pre(s)[k] 6= pre(t)[k].
If both pre(s)[k] and pre(t)[k] are function symbols; Then

Halt stating that the initial s and t are not unifiable

// Here, either pre(s)[k] or pre(t)[k], say pre(s)[k], is a variable x.

If x occurs in t|p, where p = iPos(t, k), Then

Halt stating that the initial s and t are not unifiable

Extend G by the assignment {x 7→ t|p}
EndWhile

Halt stating that the initial s and t are unifiable

Figure 3.1: Unification Algorithm of STG-Compressed Terms

Note that, as commented in Section 2.7, our algorithm is just an adap-
tation of the algorithm defined in Figure 2.1 to the case where the inputted
terms are compressed using STGs. Hence, the difficulties are induced by the
task of performing all the operations mentioned above on the compressed
representation of terms. In [BLM05] it was shown how to succintly repre-
sent the preorder traversal word of a term generated by an STG using an
SCFG. We reproduce this construction in Section 3.2 to compute an SCFG
PreG with non-terminals Ps and Pt generating pre(s) and pre(t), respec-
tively. We also need to compute, given PreG, the minimal index k in which
pre(s) and pre(s) differ. In Section 3.3 we show how to perform this task
efficiently. Our approach is based on a recent result on compressed string
processing [Lif07]. As commented above, k corresponds to a unique position
p ∈ Pos(s) ∩ Pos(t). In Section 3.4, we present the procedure to, given G

and k, extend G such that a new non-terminal generates t|p. Avoiding the
explicit calculation of p refines the approach presented in previous work in
STG-compressed first-order unification [GGSS09] in order to obtain a faster
algorithm.

We also need to apply substitutions once a variable is isolated. Perform-
ing a replacement of a first-order variable x by a term u is easily representable
with STGs by simply transforming x into a non-terminal x of the grammar
and adding rules such that x generates u. However, since successive replace-
ments of variables by subterms modify the initial terms, we have to show
that this does not produce an exponential increase of the size of the gram-
mar, since its depth may be doubled after each of these operations. To this
end, we develop a notion of restricted depth, and show that its value is pre-
served along the execution, and that the size increase at each step can be
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A → f(A1, . . . , Am) ⇒ PA → fPA1
. . .PAm

A → C1A2 ⇒ PA → LC1
PA2

RC1

A → A1 ⇒ PA → PA1

C → C1C2 ⇒

{

LC → LC1
LC2

RC → RC2
RC1

C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am) ⇒

{

LC → fPA1
. . .PAi−1

LCi

RC → RCi
PAi+1

. . .PAn

C → • ⇒

{

LC → λ

RC → λ

Figure 3.2: Generating the Preorder Traversal

bounded by this restricted depth, which is shown in Section 3.5.

3.2 Computing the preorder traversal of a

term.

In [BLM05] it is shown how to construct, from a given STG G, an SCFG
PreG representing the preorder traversals of the terms and contexts generated
by G. We reproduce that construction here, presented in Figure 3.2 as a set
of rules indicating, for each term non-terminal A and its rule A → α of G,
which rule PA → α′ of PreG is required in order to make the non-terminal
PA of PreG satisfy wPreG,PA

= pre(wG,A). To this end, for each context non-
terminal C of G we also need non-terminals of PreG generating the preorder
traversal to the left of the hole (LC), and the preorder traversal to the right
of the hole (RC).

It is straightforward to verify by induction on the depth of G that, for
every term non-terminal A of G, the corresponding newly generated non-
terminal PA of PreG generates pre(wA).

Lemma 3.2.1 Let G be a STG. A SCFG PreG of size O(|G|) can be con-
structed in time O(|G|) such that, for each non-terminal N of G, there exists
a non-terminal PN in PreG satisfying wPreG,PN

= pre(wG,N).

3.3 Computing the first different position of

two words.

Given two non-terminals p1 and p2 of an SCFG P , we want to find the
minimum index k such that wp1

[k] and wp2
[k] are different. In order to solve

this problem, a linear search over the generated words wp1
and wp2

is not a
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good idea, since their sizes may be exponentially big with respect to the size
of P . Hence, one may be tempted to apply a binary search since prefixes
are efficiently computable with SCFG and equality is checkeable in time
O(|P |3), which would lead to O(|P |4) time complexity. However, we will use
more specific information from Lifshits’ work [Lif07] to obtain O(|P |3) time
complexity.

Lemma 3.3.1 [Lif07] Let G be an SCFG. Then a data structure can be
computed in time O(|G|3) which allows to answer to the following question
in time O(|G|): given two non-terminals N1 and N2 of G and an integer
value k, does wN1

occur in wN2
at position k?

Thus, assume that the pre-computation of Lemma 3.3.1 has been done
(in time O(|P |3)), and hence we can answer whether a given wp1

occurs in a
given wp2

at a certain position in time O(|P |).

For finding the first different position between p1 and p2, we can as-
sume |wp1

| ≤ |wp2
| without loss of generality. Moreover, we also assume

wp1
6= wp2

[1..|wp1
|], i.e wp1

is not a prefix of wp2
. Note that this condition is

necessary for the existence of a different position between wp1
and wp2

, and
that this will be the case when p1 and p2 generate the preorder traversals of
different trees. Finally, we can assume that P is in Chomsky Normal Form.
Note that, if this was not the case, we can force this assumption with a linear
time and space transformation.

We generalize our problem to the following question: given two non-
terminals p1 and p2 of P and an integer k′ satisfying k′ + |wp1

| ≤ |wp2
| and

wp1
6= wp2

[(k′ + 1)..(k′ + |wp1
|)], which is the smallest k ≥ 1 such that wp1

[k]
is different from wp2

[k′ + k]? (Note that we recover the original question by
fixing k′ = 0).

This generalization is solved efficiently by the recursive algorithm given in
Figure 3.3, as can be shown inductively on the depth of p1. By Lemma 3.3.1,
each call takes time O(|P |), and at most depth(P ) calls are executed. Thus,
the most expensive part of computing the first different position of wp1

and
wp2

is the pre-computation given by Lemma 3.3.1, that is, O(|P |3).

Lemma 3.3.2 Let P be an SCFG of size n, and let p1, p2 be non-terminals
of P such that wp1

6= wp2
. The first position k where wp1

and wp2
differ is

computable in time O(|P |3).
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index(p1,p2,k′,P )=























1 , if |wp1
| = 1

index(p11,p2,k
′,P ) , if (p1 → p11p12) ∈ P∧

wp11
6= wp2

[(k′ + 1) . . . (k′ + |wp11
|)]

|wp11
|+ , if (p1 → p11p12) ∈ P∧

index(p12,p2,k
′ + |wp11

|,P ) wp11
= wp2

[(k′ + 1) . . . (k′ + |wp11
|)]

Figure 3.3: Algorithm for the Index of the First Difference

3.4 Isolating variables

As commented in Section 2.4.1, the index k from the previous subsection
defines a position p = iPos(t, k) of a term t generated by an STG G. We
show how to compute, in linear time, an extension of the STG G with a non-
terminal generating t|p. We use the SCFG PreG presented in Definition 3.2.1.

Definition 3.4.1 Let G be an STG. Let N a non-terminal of G, and let
k be a natural number satisfying k ≤ |Pre(wG,N)|. We recursively define
kExt(G,N, k) as an extension of G as follows:

• If k = 1 then kExt(G,N, k) = G. In the next cases we assume k > 1.

• If (N → f(N1, . . . , Ni−1, Ni, . . . , Nm)) ∈ G and 1 + |wN1
| + . . . +

|wNi−1
| = k′ < k ≤ k′ + |wNi

| then kExt(G,N, k) = kExt(G,Ni, k− k′).

• If (N → C1A2) ∈ G and k ≤ |wPreG,LC1
| then kExt(G,N, k) in-

cludes kExt(G,C1, k), which contains a non-terminal N ′ generating the
subterm of wG,C1

at position iPos(wG,C1
, k). If N ′ is a context non-

terminal then kExt(G,N, k) additionaly contains the rule A → N ′A2,
where A is a new term non-terminal.

• If (N → C1C2) ∈ G and k ≤ |wPreG,LC1
| then kExt(G,N, k) includes

kExt(G,C1, k), which contains a non-terminal N ′ generating the sub-
term of wG,C1

at position iPos(wG,C1
, k). If N ′ is a context non-

terminal then kExt(G,N, k) additionaly contains the rule C → N ′C2,
where C is a new context non-terminal.

• If (N → C1N2) ∈ G and k′ = |wPreG,LC1
| < k ≤ |wPreG,LC1

|+ |wN2
| then

kExt(G,N, k) = kExt(G,N2, k − k′).

• If (N → C1N2) ∈ G and |wPreG,LC1
| + |wN2

| < k then kExt(G,N, k) =
kExt(G,C1, k − |wN2

| + 1).

• If (N → A2) ∈ G then kExt(G,N, k) = kExt(G,A2, k).

• In any other case kExt(G,N, k) is undefined.
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Lemma 3.4.2 Let G be an STG. Let N a non-terminal of G, and let k be
a natural number such that k ≤ |Pre(wG,N)|. Then G can be extended to a
STG G′ in time O(|G|) with O(depth(G)) new non-terminals such that one
of them generates the subterm of wG,N at position iPos(wG,N , k).

Proof.
The fact that kExt(G,N, k) is an extension of G satisfying the statements

of the lemma follows by induction on depth(N):
For the base case we assume depth(N) = 1, then |Pre(wN)| = 1 and, since

k ≤ |Pre(wN)|, k = 1. Hence, wN |iPos(wN ,k) = wN |iPos(wN ,1) = wN |λ = wN

by definition of iPos, and definition of subterm of wN . Thus, since N is a
non-terminal of G then kExt(G,N, k) = G generates wN . For the induction
step we distinguish cases according to the definition of kExt(G,N, k):

• Assume that (N → f(N1, . . . , Ni−1, Ni, . . . , Nm)) ∈ G and 1 + |wN1
| +

. . . + |wNi−1
| = k′ < k ≤ k′ + |wNi

|. By definition of iPos(wN , k), it
holds that iPos(wN , k) = i · iPos(wNi

, k − k′). Hence, wN |iPos(wN ,k) =
wNi

|iPos(wNi
,k−k′) by definition of subterm of wN . Moreover, since in this

case kExt(G,N, k) = kExt(G,Ni, k − k′), the fact that kExt(G,N, k)
generates wN |iPos(wN ,k) follows by induction hypothesis.

• If (N → C1A2) ∈ G and k ≤ |wPreG,LC1
| then either iPos(wN , k) �

hp(wC1
) or iPos(wN , k) and hp(wC1

) are disjoint. Both situations are
ilustrated by the following figure:

wA2
wA2

iPos(wN , k) ≺ hp(wC1
) iPos(wN , k) and hp(wC1

) disjoint

iPos(wN , k)

iPos(wN , k)

hp(wC1
)hp(wC1

)

In the former case, wC1
|iPos(wC1

,k) is a prefix of wC1
and wN |iPos(wN ,k) =

wC1
|iPos(wC1

,k)wA2
. In this case kExt(G,N, k) is constructed by us-

ing kExt(G,C1, k), which constains a new non-terminal N ′ generating
wC1

|iPos(wC1
,k) by induction hypothesis, plus the rule A → N ′A2, where

A is a new term non-terminal. Hence, it holds that wA = wN ′wA2
=

wC1
|iPos(wN ,k)wA2

= wN |iPos(wN ,k) and thus kExt(G,N, k) generates
wN |iPos(wN ,k). In the latter case, wN |iPos(wN ,k) = wC1

|iPos(wC1
,k).

By induction hyphotesis, kExt(G,C1, k) generates wC1
|iPos(wN ,k) and,

since wC1
|iPos(wC1

,k) is a term, kExt(G,N, k) = kExt(G,C1, k) and
kExt(G,N, k) generates wN |iPos(wN ,k), again by induction hypothesis.
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• The case where (N → C1C2) ∈ G and k ≤ |wPreG,LC1
| is solved analo-

gously to the previous one.

• If (N → C1N2) ∈ G and k′ = |wPreG,LC1
| < k ≤ |wPreG,LC1

| + |wN2
|

then hp(wC1
) � iPos(wN , k) and hence iPos(wN , k) is of the form

hp(wC1
) · iPos(wN2

, k − k′). Moreover, by definition of subterm of wN ,
it holds that wN |iPos(wN ,k) = wN2

|iPos(wN2
,k−k′) and thus, since in this

case kExt(G,N, k) = kExt(G,N2, k − k′), the fact that kExt(G,N, k)
generates wN |iPos(wN ,k) follows from induction hyphotesis.

• Assume that (N → C1N2) ∈ G and |wPreG,LC1
| + |wN2

| < k. Since
wN is of the form wC1

wN2
, iPos(wN , k) = iPos(wC1

, k − |wN2
| + 1)

(recall that the hole is considered an special constant of size 1).
Furthermore, wN |iPos(wN ,k) = wC1

|iPos(wN ,k). All together implies
that wN |iPos(wN ,k) = wC1

|iPos(wC1
,k−|wN2

|+1), and hence, the fact that
kExt(G,N, k) = kExt(G,C1, k − |wN2

| + 1) generates wN |iPos(wN ,k) fol-
lows from induction hyphotesis.

• If (N → A2) ∈ G (λ-rule) then the fact that kExt(G,N, k) generates
wN |iPos(wN ,k) directly follows by induction hypothesis.

To show that kExt(G,N, k) contains O(depth(G)) new non-terminals not in
G it suffices to remark that the number of recursive calls in the computation
of kExt(G,N, k) is bounded by depth(G) and each of them extends G with
at most one new non-terminal.

To compute kExt(G,N, k) in linear time we first build the SCFG PreG

generating the preorder traversals of the terms generated by G and pre-
compute the size of the term/word generated by each non-terminal in G

and PreG. Both operations can be done in linear time. Once this pre-
computations are done, kExt(G,N, k) can be computed by a single run over
the rules of G, which leads to the desired time complexity. 2

3.5 Application of substitutions and a notion

of restricted depth

Term unification algorithms usually apply substitutions when one variable is
isolated. We need to emulate such applications when the terms are repre-
sented with STGs. In an STG, first-order variables are terminals of arity 0.
Replacing a first-order variable X can be emulated by transforming X into
a term non-terminal and adding the necessary rules for making X generate
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the replacing value. We define this notion of application of a substitution as
follows.

Definition 3.5.1 Let G be an STG. Let X be a terminal representing a first-
order variable and let A be a term non-terminal of G, respectively. Then,
{X 7→ A}(G) is defined as the STG obtained by adding the rule X → A to
G, and converting X into a term non-terminal.

When one or more substitutions of this form are applied, in general the
depth of the non-terminals of G might increase. In order to see that the
size increase is polynomially bounded along several substitution operations
when unifying, we need a new notion of depth called Vdepth, which does not
increase after an application of a substitution. It allows us to bound the final
size increase of G. The notion of Vdepth is similar to the notion of depth,
but it is 0 for the non-terminals N belonging to a special set V satisfying the
following condition.

Definition 3.5.2 Let G = (T N , CN , Σ, R) be an STG, and let V be a subset
of T N ∪Σ. We say that V is a λ-set for G if for each term non-terminal A

in V , the rule of G of the form A → α is a λ-rule.

Definition 3.5.3 Let G = (T N , CN , Σ, R) be an STG and let V be a λ-set
for G. For every non-terminal N of G, the value VdepthG,V (N), denoted also
as VdepthV (N) or Vdepth(N) when G and/or V are clear from the context,
is defined as follows (recall the convention that max(∅) = 0).

Vdepth(N) := 0 for N ∈ V

Vdepth(N) := 1 + max{Vdepth(N ′) | N ′ is a non-terminal occurring in α,
where N → α ∈ G}, otherwise.

The Vdepth of G is the maximum of the Vdepth of its non-terminals.

The idea is to make V to contain all first-order variables, before and after
converting them into term non-terminals. The following lemma is completely
straightforward from the above definitions, and states that a substitution
application does not modify the Vdepth provided X ∈ V for the substitution
X 7→ A.

Lemma 3.5.4 Let G, V be as in the above definition. Let X ∈ V be a
terminal of G of arity 0, and let A be a term non-terminal of G. Let
G′ be {X 7→ A}(G). Then, for any non-terminal N of G it holds that
VdepthG′(N) = VdepthG(N).
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We also need the fact that Vdepth does not increase due to the con-
struction of kext(G,A, k) from G. However, we first prove a more specific
statement.

Lemma 3.5.5 Let G be an STG, let C be a context non-terminal of G, let
V be a λ-set for G, let k be a natural number such that wC |iPos(wC ,k) is a
context, and let G′ be kext(G,C, k).

Then, for every non-terminal N of G it holds that VdepthG(N) =
VdepthG′(N), and for every new non-terminal N ′ in G′ and not in G, it
holds that VdepthG′(N ′) ≤ VdepthG(C). Moreover, the number of new added
non-terminals is bounded by VdepthG(C).

Proof. The identity VdepthG(N) = VdepthG′(N) for each non-terminal N

of G is straightforward from the fact that kext(G,C, k) does not change
the rules for the non-terminals occurring in G. To prove the fact that
VdepthG′(N ′) ≤ VdepthG(C) for each new non-terminal N ′ in G′ and not
in G, plus the fact that at most VdepthG(C) new non-terminals have been
added, we will use induction on Vdepth(C). The base case (Vdepth(C) = 1)
trivially holds since, in this case, the STG G is not modified. For the induc-
tion step we distinguish cases according to the definition of kExt(G,C, k):

• Assume that (C → f(A1, . . . , Ai−1, C
′, . . . , Am)) ∈ G. Note that, since

wC |iPos(wC ,k) is a context, it holds that 1 + |wA1
| + . . . + |wAi−1

| =
k′ < k ≤ k′ + |wC′|. In this case, kext(G,C, k) = kext(G,C ′, k − k′)
and, since Vdepth(C ′) < Vdepth(C), the lemma directly follows by
induction hypothesis.

• Assume that (C → C1C2) ∈ G and k ≤ |wPreG,LC1
|. In this

case, the construction of kext(G,C, k) is done by computing
kext(G,C1, k) and adding the rule C ′ → C ′

1C2, where C ′
1 is the

context non-terminal generating wC1
|iPos(wC1

,k) and C ′ is an ad-
ditional new non-terminal. Since Vdepth(C1) < Vdepth(C), by
induction hypothesis, it holds that for all the new non-terminals
N ′ in G′ = kext(G,C1, k), VdepthG′(N ′) ≤ VdepthG(C1) and at
most VdepthG(C1) new non-terminals have been added. It follows
that at most VdepthG(C) new non-terminals have been added in
the construction of kext(G,C, k), and VdepthG′(C ′

1) ≤ VdepthG(C1).
Moreover, since VdepthG(C) = 1 + max(VdepthG(C1), VdepthG(C2)),
VdepthG′(C ′) = 1 + max(VdepthG′(C ′

1), VdepthG′(C2)) and
VdepthG(C2) = VdepthG′(C2), it also holds that VdepthG′(C ′) ≤
VdepthG(C).
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• Assume that (C → C1C2) ∈ G and k′ = |wPreG,LC1
| < k ≤ |wPreG,LC1

|+
|wC2

|. In this case, kext(G,C, k) = kext(G,C2, k − k′) and, since
Vdepth(C2) < Vdepth(C), the lemma directly follows by induction
hypothesis.

Finally, note that the case (C → C1C2) ∈ G and |wPreG,LC1
|+ |wC2

| < k

is not possible due to the assumption that wC |iPos(wC ,k) is a context.

2

Lemma 3.5.6 Let G be an STG, let N be a non-terminal of G, let V be a
λ-set for G, let k be a natural number satisfying k ≤ |Pre(wG,N)|, and let G′

be kext(G,N, k).
Then, for every non-terminal N ′ of G it holds that VdepthG(N ′) =

VdepthG′(N ′), and for every new non-terminal N ′′ in G′ and not in G, it
holds that VdepthG′(N ′′) ≤ Vdepth(G). Moreover, the number of new added
non-terminals is bounded by Vdepth(G).

Proof. The identity VdepthG(N ′′) = VdepthG′(N ′′) for each non-terminal
N ′′ of G is straightforward from the fact that kext(G,N, k) does not change
the rules for the non-terminals occurring in G. We will prove the fact that
VdepthG′(N ′′) ≤ Vdepth(G) for each new non-terminal N ′′ in G′ and not
in G, plus the fact that at most Vdepth(G) new non-terminals have been
added by induction on depthG(N). The base case (depth(N) = 1) trivially
holds since, in this case, the STG G is not modified. For the induction step
we distinguish cases according to the definition of kExt(G,N, k). The only
interesting cases are either when (N → C1A2) ∈ G and k ≤ |wPreG,LC1

| or
(N → C1C2) ∈ G and k ≤ |wPreG,LC1

|. Note that these are the only cases
in which the grammar might be extended with new non-terminals after the
recursive call. We will solve the first one, the other is solved analogously.

Hence, assume that (N → C1A2) ∈ G and k ≤ |wPreG,LC1
|. In this case the

non-terminal N ′ in kext(G,C1, k) generating the subterm of wG,C1
at posi-

tion iPos(wG,C1
, k) is a either a term non-terminal or a context non-terminal.

We will solve the two cases separately. First assume that N ′ is a term
non-terminal. In this case kext(G,N, k) is constructed as kext(G,C1, k).
Since Vdepth(C1) < Vdepth(N), the lemma holds by induction hypothesis
in this case. On the other hand, if N ′ is a context non-terminal, the con-
struction of kext(G,N, k) is done by computing kext(G,C1, k) and adding
the rule A → N ′A2, where A is an additional new term non-terminal. By
Lemma 3.5.5, for all the new non-terminals N ′′ in kext(G,C1, k) and not in
G, VdepthG′(N ′′) ≤ VdepthG(C1). Moreover, the number of new added non-
terminals is bounded by VdepthG(C1). Hence, VdepthG′(N ′) ≤ VdepthG(C1)
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and, since Vdepth(C1) < Vdepth(N), at most VdepthG(N) ≤ Vdepth(G)
new non-terminals have been added in the construction of kext(G,N, k).
Furthermore, since VdepthG(N) = 1 + max(VdepthG(C1), VdepthG(A2)),
VdepthG′(A) = 1 + max(VdepthG′(N ′), VdepthG′(A2)) and VdepthG(A2) =
VdepthG′(A2), it also holds that VdepthG′(A) ≤ VdepthG(N) ≤ Vdepth(G).
2

3.6 A polynomial time algorithm for first-

order unification with STGs

From a high level perspective the structure of our algorithm described in
Section 3.1 is very simple and rather standard. Most algorithms for first-
order unification are variants of this scheme. They represent the terms with
directed acyclic graphs (dags), implemented somehow, in order to avoid the
space explosion due to the repeated instantiation of variables by terms. In
our setting, those terms are represented by STGs. In fact, the input is
an STG G, and two term non-terminals As and At representing s and t,
respectively. Since our algorithm is just an adaptation of the algorithm
defined in Figure 2.1 to the case where the inputted terms are represented
using STGs we will not argue about its correctness.

In previous sections we showed how to efficiently perform all the required
operations on STGs: Decide whether s and t are equal, generate a compressed
representation for pre(s) and pre(t), look for the minimum index k such
that pre(s)[k] 6= pre(s)[k], construct the term t|p, where p = iPos(t, k), and
replace the variable x = s|p by t|p everywhere.

The algorithm runs in polynomial time due to the following observations.
Let n and m be the initial value of depth(G) and |G|, respectively. We define
V to be the set of all the first-order variables at the start of the execution
(before any of them has been converted into a non-terminal). Hence, at this
point Vdepth(G) = n. The value Vdepth(G) is preserved to be n along the
execution of the algorithm thanks to Lemmas 3.5.4 and 3.5.6. Moreover, by
Lemma 3.5.6, at most n new non-terminals are added at each step. Since
at most |V | steps are executed, the final size of G is bounded by m + |V |n.
Each execution step takes time at most O(|G|3). Thus we have proved:

theorem 3.6.1 First-order unification of two terms represented by an STG
can be done in polynomial time (O(|V |(m + |V |n)3), where m represents the
size of the input STG, n represents the depth, and V represents the set of
different first-order variables occurring in the input terms). This holds for the
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decision question, as well as for the computation of the most general unifier,
whose components are represented by the final STG.

3.6.1 Example of execution

Let G = ({At, As, A,B1, B2, Ax, By}, {C0, C1, C2, C3, C4, C., D},
{g, f, a, x}, R), where R = {At → g(B1, A), As → g(B2, A), A → C4Aa, C4 →
C3C3, C3 → C2C2, C2 → C1C1, C1 → C0C0, C0 → f(C.), C. → •, Aa →
a,D → C3C2, B1 → DBx, B2 → C4By, Bx → x,By → y}, be an STG.
Note that wG,At

= g(f 12(x), f 16(a)), and wG,As
= g(f 16(y), f 16(a)). Hence,

〈G,As
.
= At〉 is an instance of first-order unification with STG. The goal is

to find a substitution σ such that σ(wG,As
) = σ(wG,At

).
The set of rules of the SCFG PreG obtained by applying the rules of

Figure 3.2. to G is
{PAt

→ gPB1
PA,PAs

→ gPB2
PA,PA → LC4

PAa
RC4

,PAa
→

a,PB1
→ LDPBx

RD,LD → LC3
LC2

,RD → RC2
RC3

,PBx
→ x,PB2

→
LC4

PBy
RC4

,LC4
→ LC3

LC3
,LC3

→ LC2
LC2

,LC2
→ LC1

LC1
,LC1

→
LC0

LC0
,LC0

→ fLC.
,LC.

→ λ,RC.
→ λ,RC0

→ RC.
,RC1

→
RC0

RC0
,RC2

→ RC1
RC1

,RC3
→ RC2

RC2
,RC4

→ RC3
RC3

,PBy
→ y, }.

Note that wPAt
= gf 12xf 16a and wPAs

= gf 16af 16a.
The SCFG PreG is not in Chomsky Normal Form, but it is easy

to adapt the algorithm of Figure 3.3 to this case. Thus, if we exe-
cute an adapted version of index(PAt

,PAs
,0,PreG), the following sequence

of calls is produced: index(PAt
,PAs

, 0, PreG), index(PB1
,PAs

, 1, PreG),
index(PBx

,PAs
, 13, PreG). The third call returns 1, the second one returns

13, and the first one returns 14, which corresponds to the first different po-
sition of wPAs

and wPAt
.

Note that iPos(wG,As
, 14) = 113. We compute now and extension

kExt(G,As, 14) of G, as described in Definition 3.4.1, such that a new term
non-terminal A′

s generates wAs
|113 . We obtain the following set of rules,

where rules in bold correspond to the added non-terminals due to the kext

constructions w.r.t to the STG G given as input: {A′
s → C2By, At →

g(B1, A), As → g(B2, A), A → C4Aa, C4 → C3C3, C3 → C2C2, C2 →
C1C1, C1 → C0C0, C0 → f(C.), C. → •, Aa → a,D → C3C2, B1 →
DBx, B2 → C4By, Bx → x,By → y}.

Note that, in the extended grammar, wA′

s
= wAs

|iPos(wG,As ,14) = wAs
|113 =

f 4(y). Then, we need to check that the variable x does not occur in wA′

s
,

which can be done in linear time as shown in Lemma 2.8.14. Finally, we
perform the substitution {x 7→ A′

s}(G) by converting x into a non-terminal
of the grammar generating wA′

s
as stated in Definition 3.5.1. The set of rules

of the obtained grammar G′ after the kext construction and this assignment
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is {x → A′
s,A

′
s → C2By, At → g(B1, A), As → g(B2, A), A → C4Aa, C4 →

C3C3, C3 → C2C2, C2 → C1C1, C1 → C0C0, C0 → f(C.), C. → •, Aa →
a,D → C3C2, B1 → DBx, B2 → C4By, Bx → x,By → y}.

Note that wG′,A′

s
= wG,As

|iPos(wG,As ,14) = wG,As
|113 = f 4(y),

and thus, wG′,At
= g(f 12(wG′,x), f

16(a)) = g(f 12(wG′,A′

s
), f 16(a)) =

g(f 12f 4(y), f 16(a)) = g(f 16(y), f 16(a)) = wG′,As
. Hence, we state unifiability.

The solution σ is represented in the STG G′ as σ(x) = wG′,x.
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Chapter 4

First-order matching with

STGs

In this section we prove that the first-order matching problem can be solved
in polynomial time even when the input is compressed using STGs.

Definition 4.0.2 The first-order matching problem with STG has an STG
G representing first-order terms and contexts as input, plus two term non-
terminals As and At of G representing terms s = wG,As

and t = wG,At
, where

t is ground. Its decisional version asks for the existence of a substitution σ

such that σ(s) = t whereas its computational version asks for a representation
of σ.

First-order matching is a particular case of first-order unification. How-
ever, taking advantatge of the fact that one of the terms is ground leads to
a faster algorithm with respect to the one presented in the previous chapter.
We also improve previous results for this problem [GGSS08].

4.1 Outline of the algorithm

The structure of our algorithm is sketched in Figure 4.1. Note that, as com-
mented in Section 2.7, our algorithm is just an adaptation of the algorithm
defined in Figure 2.2 to the case where the inputted terms are compressed
using STGs. Hence, the input of the problem consists on a STG G as a
compressed representation of two terms s and t.

As in the first-order unification case, the algorithm works with represen-
tations of the preorder traversal words of the terms s and t to be matched.
Hence, we first compute a representation of pre(s) and pre(t). Then we find
the index k of the first ocurrence of a variable x in pre(s), and, given G and
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k, compute t′ = t|iPos(t,k). If t′ is undefined we halt giving a negative answer.
Otherwise we apply the substitution {x → t′}(s) and restart the process until
all variables are replaced. Finally, let s′ be the term obtained from s after
all replacements are done. We check whether s′ and t are syntantically equal
and answer accordingly. Note that, in contrast to unification algorithm, we

Input: An STG G and term non-terminals As and At.

(we write s and t for wAs
and wAt

and X for the set of variables in s).

Repeat |X | times:

Look for the minimum index k such that pre(s)[k] = x ∈ X.

If iPos(t, k) is undefined Then Halt stating that the initial s and t match.

Extend G by the assignment {x 7→ t|p}, where p = iPos(t, k).
EndRepeat

If s = t Then Halt stating that the initial s and t match.

Else Halt stating that the initial s and t do not match.

Figure 4.1: Matching Algorithm for STG-Compressed Terms

look for the first occurrence of a variable in pre(s) instead of looking for the
first difference between pre(s) and pre(t). This refines the approach used in
previous section for the unification general case of first-order unification and
improves time complexity results in previous work on first-order matching
with STGs [GGSS08].

In previous section we already showed how to compute a succint represen-
tation of pre(s) and pre(t), compute, given a natural number k, the subterm
of a term t at position iPos(t, k), and apply a substitution. Hence, it only
rests to show how to compute k, the index of the first ocurrence of a variable
in pre(s).

4.2 Finding the first occurrence of a variable

The task of finding the index of the first occurrence of a variable in a com-
pressed word can be solved efficiently as stated in the following Lemma.

Lemma 4.2.1 Let P be a SCFG, and let p be a non-terminal of P repre-
senting the preorder traversal word of a first-order term. Then, the minimum
index k such that wp[k] is a variable can be computed in time O(|P |).

Proof. Let X denote the set of first-order variables. We define k =
index(p, P ) as follows:
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index(p,P )=























1 , if p → α ∈ P ∧ α ∈ X
index(p1,P ) , if (p → p1p2) ∈ P ∧

∃x ∈ X : x occurs in wP,p1

|wP,p1
| + index(X2,P ) , Otherwise.

Note that we assumed that P is in Chomsky Normal Form. If this was
not the case, we can force this assumption with a linear time and space
transformation. The fact that index(p, P ) computes the minimum index k

such that wp[k] is a variable can be shown by induction on depth(p). With
respect to the time complexity, for each non-terminal p of a SCFG P , both
the number |wp| and whether wp contains a variable can be precomputed in
linear time as stated in Lemmas 2.8.13 and 2.8.14, respectively. Once this
precomputations are done index(p, P ) can be computed by a single run over
the rules of P and hence, it runs also in linear time. 2

4.3 A polynomial time algorithm for first-

order matching with STGs

The algorithm presented in the previous section runs in polynomial time due
to the following observations. Let n and m be the initial value of depth(G)
and |G|, respectively. We define V := X to be the set of all the first-order
variables at the start of the execution (before any of them has been converted
into a non-terminal). As in the unification case, the final size of the grammar
is bounded by m + |V |n thanks to Lemmas 3.5.4 and 3.5.6. Our algorithms
iterates at most V times. By Lemmas 3.4.2, and 4.2.1 each iteration takes
linear time. Finally we check equality of two words generated by a SCFG
P , which takes time O(|P |3) thanks to Theorem 2.8.12. Hence, we have the
following:

theorem 4.3.1 First-order matching of two terms represented by an STG
can be done in polynomial time (O((m + |V |n)3), where m represents the
size of the inputted STG, n represents its depth, and V represents the set of
different first-order variables occurring in the inputted terms). This holds for
the decision question, as well as for the computation of the unifier, whose
components are represented by the final STG.

37



Chapter 5

Conclusion & further work

We presented instantiation-based algorithms for the first-order matching
problem and the first-order unification problem, that can be immediately
executed on the compressed representation of large terms and run in poly-
nomial time on the size of the representation. This results represent an im-
provement in time complexity with respect to previous work. Furthermore,
we believe that the obtained algorithms represent also a gain in simplicity
whichs makes their implementation feasible. It would be also interesting to
investigate optimizations for these algorithms, as well as finding an improved
upper bound. We also believe that it would be natural to consider the context
matching problem using an STG encoding for terms under certain restric-
tions like fixing the number of context variables (this restriction was already
consider using a dag representation in [GGSS08]). Finally, we think that our
techniques could be useful to decide the one context unification problem in
NP when the input is represented by an STG. This problem has been solved
for plain terms as input in [GGSST09].

This project has been useful for me for being introduced in several re-
search tasks such as those directly related to problem solving, those related
to the composition of a paper showing the obtained results as well as the ex-
perience of going throught a revision process for a conference. Furthermore,
in the context of this project I had the oportunity of presenting a paper in an
international conference. Without a doubt this has been a rewarding task.
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