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Chapter 1

Introduction

1.1 Motivation

Scientific visualization is focused on creating images that convey salient
information about underlying data and processes using interactive graphics
and imaging techniques. In last decades, it has emerged as a basic tool in
different scientific areas, such as medical processes, earth and space sciences,
biological processes or fluid dynamics.

Volume visualization is a field within scientific visualization, which is
concerned with volume data. Over the years, many techniques have been
developed to visualize volumetric data. The majority of them have been
used to visualize data from a unique origin, i.e., considering a single model.
However, in certain fields, such as medicine, science and engineering, the ca-
pability of visualizing different models in a single image will be interesting.
For instance, in a medical application, combining the complementary infor-
mation of a computed tomography and a magnetic resonance will enhance
the detection of a pathology.

The idea of multimodal visualization is to provide as many information
on the complementary aspects of the different input models as possible.
This process is complex and requires the application of different steps: (i)
a registration process to align the two or more images or volumes obtained
at different times, from different devices or from different viewpoints; (ii)
a fusion process which, based on different parameters such original values,
gradient magnitude, etc., converts the information of input volumes to a
single value and (iii) the visualization of the fused model.

Performing the fusion is one of the most challenging tasks of multimodal
visualization. The main difficulty is on determining the information of each
input model that has to be represented in the final visualization. In most
of the cases, the strategies that have been proposed rely this selection on
a user decision which makes difficult the application of the method in real
applications, specially when time requirements are imposed and automatic



techniques are desired.

1.2 Objective

The main goal of this master thesis is the development of new fusion strate-
gies that enhance multimodal visualization strategies. We will consider In-
formation Theory (IT) as a main tool to be applied in our approach. This
theory deals with the transmission, storage and processing of information
[26] and it is used in fields such as physics, computer science, mathemat-
ics, statistics, economics, biology, linguistics, neurology, learning, computer
graphics, etc. [6, 11]. In particular, IT provides powerful tools for medical
image registration [20] and segmentation [3].

Since medical imaging is the major application area of volume rendering
we will focus our interest on it.

To reach this objective we aim to:

e Study basic concepts of volume visualization and information theory
concepts, and review multimodal visualization strategies focusing on
the fusion process.

e Analyze how information theory tools can be applied in the context of
multimodal visualization to enhance it.

e Evaluate the proposed method in a real medical scenario.

An important step towards the development of new computer aided
diagnosis tools is the validation of proposed techniques in a real en-
vironment. Therefore, an essential part of our work is devoted to the
evaluation of the techniques in medical practice. Such an evaluation
required the implementation of a framework integrating all proposed
approaches. To carry out the evaluation process we will collaborate
with a team of medical experts.

1.3 Document Outline

This master thesis is organized into seven chapters. In this first chapter,
we introduced the project and its context and we presented the initial ob-
jectives. In Chapter 2, we describe the background on volume visualization
focusing our interest on direct volume rendering techniques. We also analyze
the state of the art of multi-modal visualization techniques and introduce
the most basic information theory concepts. In Chapter 3, we present the
framework that have been developed in this project for multi-modal visual-
ization, we introduce the different modules that have been integrated in the
framework, and we propose a classification of fusion strategies. In Chapter
4, we propose our first fusion approach based on the conditional entropy and



mutual information, which we call registration channel measures. In Chap-
ter 5, we present the second fusion approach based on higher-order entropy
measures: the entropy rate and erasure entropy. In Chapter 6, we present
the different experiments that have been carried out to evaluate the pro-
posed fusion techniques in a medical environment. The memory and time
requirements are also tested and analyzed. Finally, in Chapter 7, conclusions
and future work are presented.






Chapter 2

Background

Volume visualization is a method of extracting meaningful information from
volumetric data using interactive graphics and imaging, and it is concerned
with volume data representation, modeling, manipulation, and rendering. In
general, a volumetric data set consists of samples (denoted voxels) arranged
on a regular grid. Currently, the major application area of volume rendering
is medical imaging, In this context, volume data is obtained from medical
devices, such as Computer Tomography (CT) scanners and Positron Emis-
sion Tomography (PET) scanners. These produce three-dimensional stacks
of parallel plane images which can be represented as a volume model and
visualized for diagnostic purposes, planning of treatment, or surgery. The
development of new techniques to visualize and process images for support-
ing diagnosis has become a main focus of research. However, despite the ad-
vances produced in these fields, there are several challenges that need further
development. One of them is multimodal visualization, i.e., the visualiza-
tion of fused models where the different and, in some cases, complementary
information of image modalities is combined in a single image.

The idea of multimodal visualization is to provide as many information
on the complementary aspects of the different input models as possible.
This process is complex and requires the application of different steps: (i)
a registration process to align the two or more images or volumes obtained
at different times, from different devices, or from different viewpoints, (ii) a
fusion process which, based on different parameters such the original values,
the gradient magnitude, etc., converts the information of the input volumes
to a single value, and (iii) the visualization of the fused model.

In this chapter, the basic concepts of volume visualization are introduced.
Then, multimodal visualization strategies are reviewed, given special interest
to the fusion process. Finally, the main information theory concepts that
will be used in the scope of this master thesis are introduced.



2.1 Volume Visualization

Visualization, with the generation of visually comprehensible images, has
become one of the most important ways of exploring data. It is applied
in many scientific fields and application areas, such as material sciences,
fluid dynamics, environmental sciences, and medicine. Over the years many
techniques have been developed to visualize volumetric data. These methods
can be grouped into two different categories:

e Surface Rendering Techniques

These methods involve approximating a surface contained within the
data using geometric primitives.

Surface rendering techniques generate the polygonal approximation of
an isosurface, i.e., the surface that approximates the volume dataset
points with a given property, known as the isovalue. After extracting
this intermediate representation, the surface primitives are displayed.
This is a good approach for objects with sharply determined borders,
like bones in CT, but it is not suitable for amorphous objects which
are difficult to represent with surfaces. The most popular approach in
this group is the marching cubes algorithm, proposed by Lorensen et
al. [19].

In general, these methods require to make a decision for every data
sample whether or not the surface passes through it. The main limita-
tion of these methods is that one dimension of information is essentially
lost.

e Direct Volume Rendering Techniques

These methods were developed to capture the entire 3D data in a single
2D image. Instead of extracting an intermediate representation, vol-
ume rendering provides a method for directly displaying the volumetric
data. The original samples are projected onto the image plane in a
process which interprets the data as an amorphous cloud of particles.
Thus, it is possible to simultaneously visualize information about sur-
faces and interior structures without making any assumptions about
the underlying structure of the data. Direct volume rendering algo-
rithms include approaches such as ray-casting [18], splatting [33], and
shear-warp [17]. Volume rendering techniques convey more informa-
tion than surface rendering methods, but at the cost of increase of the
computational complexity, and, consequently, rendering times.

In the scope of this master thesis our interest will be focused on direct
volume rendering techniques applied to medical data.
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2.2 Direct Volume Rendering Techniques

The volume rendering approach displays data directly as a transparent
cloudy object, without any intermediate conversion, assigning attributes
such as color, opacity, and gradient vector to each volume element [18, 32,
33]. Volume rendering techniques require an illumination model to deter-
mine how the data volume generates, reflects, scatters, and occludes light.
An analysis of the main proposed optical models is presented by Max [22].
In Figure 2.1, the main steps of the rendering pipeline are illustrated.
The first step is the reconstruction process which constructs a continuous
function from the data set. This involves to traverse all data and interpolate
values. This step is necessary, since we want to sample the data at any
position. The next step is the classification process which assigns a color and
an opacity to a data value. This process requires the definition of a transfer
function. It is one of the most costly parts of the process. The shading
process applies the illumination model. Finally, compositing determines the
contribution of a classified and shaded sample to the final image.

Data Traversal

b

Interpolation

b

Classification

J

Shading

:

Compositing

Figure 2.1: Steps of volume-rendering pipeline

There are several possibilities in which these steps can be applied. Both
classification and shading can occur before reconstruction (pre-classification,
pre-shading) or after reconstruction (post-classification, post-shading). Pre-
classification assigns a color and an opacity to the samples before applying
a reconstruction filter. On the other hand, post-classification applies the
reconstruction filter to the original sample values and then classifies the re-
constructed function values. Pre- and post-classification will produce differ-
ent results whenever the reconstruction does not commute with the transfer
functions.
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2.2.1 Volume Rendering integral

The basis of most volume rendering techniques is the volume rendering in-
tegral in its low-albedo form. This integral is a simplification of the theory
of the physics of light transport in the case of neglecting scattering and fre-
quency effects [14, 16]. The volume is seen as a set of particles with certain
densities u, and rays are fired through each pixel on the image plane into
the volume. For any ray, the amount of light of wavelength A is given by

L
I = / C(s)p(s)e™ Jo #Bdt g (2.1)
0
where

e [ is the length of the ray

e ()\(s) is the light of wavelength A reflected at sample s in the direc-
tion of the ray. The calculation of C)\(s) can be based on the standard
Phong reflection model, given specification of light sources, the mate-
rial color (assigned by the transfer function), and the normal direction.

e 4 is the light extinction coefficient, which defines the rate at which
light is occluded per unit length due to scattering or extinction. The
weighting by u(s) reflects the density at the point.

The integral accumulates the intensity over the length of the ray, atten-
uated according to the density of the material through which it passes. This
attenuation is represented by the exponential term p [22].

The integral of Equation 2.1 has to be evaluated numerically. If n is the
number of steps along the ray at which sample values are taken, using a
very simple Riemman sum approximation, we have:

n

i—1
Iy =Y C(iA(s)u(irs)As [ | exp(—pu(iAs)As) (2.2)
i=0 j=0

Replacing the exponential of this sum by the first two terms of its Taylor
expansion, i.e.,

exp(—p(iAs)As) =1 — u(iAs)As

and defining the transparency t(iAs) as

t(iAs) = exp(—p(iAs)As)

so as to give
w(jAs)As) =1 —t(iAs) = a(iAs)
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where o = 1 — ¢ is the opacity.
This approximation converts Equation 2.2 in the compositing formula
that is commonly used in volume rendering:

n i—1
Iy =) Ca(iA(s))a(ids) [T (1 — a(jAs)) (2.3)
i=0 Jj=0

C and « values are only known at data points. Thus to calculate the
values at the sample points ¢As, an interpolation process is applied.
Using unit spacing, the Equation 2.3 is further simplified to

n i—1
L= Ca(i)a) [ - ali) (24)
i=0 j=0

In practice, this computation is done for R, GG, B separately. As it is a
sum of intensities of individual samples, each intensity is attenuated by the
product of transparencies accumulated as the light passes from sample to
observer. The computation can be done recursively by processing one sample
at a time, accumulating color for each sample i and opacity separately:

Cout = Cin, + (1 - ain)aicia (25)
and
Qoyt = Qtin + (1 - ain)aici- (26)

This is a front-to-back ordering, which can be reversed to work back-to-
front, in which case only the color needs to be accumulated:

Cout = Cia; + Cin (1 — o) (2.7)

Observe that compositing steps are associative. Thus, groups of samples
can be composited and, then, composite the groups, as long as the order
is maintained. However, the compositing is not commutative, which means
that the order of compositing is important.

2.2.2 Classification of Direct Volume Rendering Techniques

Volume rendering techniques can be classified into three main groups:

o Object-order volume rendering techniques, which use a forward map-
ping scheme where the volume data are mapped onto the image plane.

e Image-order algorithms, which use a backward mapping scheme. Rays
are cast from each pixel to the image plane through the volume data
to determine the final pixel value.
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o Domain-based techniques, which transform spatial volume data into an
alternative domain, such as compression, frequency, or wavelet and,
then, a projection is generated directly from that domain.

Some of the most representative volume rendering techniques are:

o Volume Ray Casting. This technique can be derived directly from the
rendering equation [13]. In this technique, a ray is generated for each
desired image pixel. Using a simple camera model, the ray starts at the
center of the projection of the camera and passes through the image
pixel on the imaginary image plane floating in-between the camera and
the volume to be rendered. The ray is clipped by the boundaries of
the volume in order to save time. Then, the ray is sampled at regular
or adaptive intervals throughout the volume. The data is interpolated
at each sample point, the transfer function is applied to form a Red-
Green-Blue-Alpha (RGBA) sample, the sample is composited onto the
accumulated RGBA of the ray, and the process is repeated until the ray
exits the volume. The RGBA color is converted to an RGB color and
deposited in the corresponding image pixel. The process is repeated for
every pixel on the screen to form the completed image. It provides very
high quality results and is usually considered to give the best image
quality. Volume ray casting is classified as an image-order algorithm,
since the computation emanates from the output image, and not from
the input volume data.

e Splatting. This tecnique was proposed by Westover [33] and works
by representing the volume as an array of overlapping basis functions,
commonly Gaussian kernels with amplitudes scaled by the voxel val-
ues. An image is then generated by projecting these basis functions
to the screen. The screen projection of these radially symmetric basis
functions can be efficiently achieved by the rasterization of a precom-
puted footprint lookup table. Here, each footprint table entry stores
the analytically integrated kernel function along a traversing ray. A
major advantage of splatting is that only voxels relevant to the image
must be projected and rasterized. This can reduce the volume data
that needs to be both processed and stored [23]. However, depending
on the zooming factor, each splat can cover up to hundreds of pixels
which need to be processed.

e Shear Warp. In this technique, the viewing transformation is trans-
formed such that the nearest face of the volume becomes axis aligned
with an off-screen image buffer with a fixed scale of voxels to pix-
els. The volume is then renderered into this buffer using the far more
favorable memory alignment and fixed scaling and blending factors.
Once all the slices of the volume have been rendered, the buffer is
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then warped into the desired orientation and scaled in the displayed
image [17]. This technique is relatively fast in software at the cost of
less accurate sampling and potentially worse image quality compared
to ray casting. There is a memory overhead for storing multiple copies
of the volume, enabling us to have near axis aligned volumes. This
overhead can be mitigated using run length encoding.

o Texture Mapping. The use of 3D texture mapping was popularized by
Cabral [4] for non-shaded volume rendering. The volume is loaded into
texture memory and the hardware rasterizes polygonal slices parallel to
the viewplane. The slices are then blended back-to-front. Commodity
PC graphics cards are fast at texturing and can efficiently render slices
of a 3D volume, with realtime interaction capabilities. These slices
can either be aligned with the volume and rendered at an angle to the
viewer, or aligned with the viewing plane and sampled from unaligned
slices through the volume. Volume aligned texturing produces images
of reasonable quality, though there is often a noticeable transition
when the volume is rotated.

When the visualization involves more than one property per voxel the
visualization process requires a fusion process to reduce the data to a single
value. In this case specialized fusion techniques are required. In the next
section, we review some of the strategies that have been proposed to deal
with this situation.

2.3 Multi-Volume Visualization

Multi-volume visualization consists in visualizing the information repre-
sented in different volume models in a single image. To carry out this
process, a registration process to align the data of the original models is
required. Registration is an important focus of research and many different
techniques have been proposed to perform it with accuracy and robustness.
Once the data is registered, a fusion process is applied to reduce the data
to a single value that can be represented in the final image. This fusion
process can be done at different steps of the visualization pipeline leading
to different strategies. The fusion process is challenging since it is not clear
how it can be done in an automate manner while preserving the most rele-
vant information of the models. In addition, it is difficult to determine how
the fused model has to be rendered since it is not clear how data has to be
classified, i.e., how to define the transfer functions.

In the context of this project, we will focus on the fusion process. For our
purposes the registration process will be considered as a pre-processing step.
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A general definition of image fusion is given as 'Image fusion is the com-
bination of two or more different images to form a new image by using a
certain algorithm’ (Genderen and Pohl 1994). The goal of image fusion is
to reduce uncertainty and minimize redundancy in the output while maxi-
mizing relevant information particular to an application or task. There are
several benefits in using image fusion: wider spatial and temporal coverage,
decreased uncertainty, improved reliability, and increased robustness of sys-
tem performance. However, given the same set of input images, different
fused images may be created depending on the algorithm used. Moreover,
an algorithm which works fine in some medical imaging modalities could not
be used in other area such as meteorological simulation or army industry.
The goal is the same in all areas but the properties of each set of input im-
ages could be different. Therefore, many aspects have to be looked at before
being able to implement and use and image fusion approach. It is impor-
tant to know what kind of application has to be developed and to study
the properties of images that could be taken to be able to decide the most
relevant set of input images. The next step is the choice of a suitable fusion
algorithm and therefore the fusion level. There are different levels where the
fusion can be applied. This choice is important because the pre-processing
steps are depending on this.

In the context of medical data, volumes are created from sequences of
2D slices acquired by medical devices. In this way a volume can be seen as
a sequence of 2D images or as a 3D volume. Such an interpretation has lead
to the following classification of fusion strategies:

e Image-based fusion techniques which consider the fusion of images. As
it is illustrated in Figure 2.2 these methods can be classified in three
different categories according to the level at which the fusion is carried
out:

— Pizel-based fusion techniques considers the fusion at the lowest
processing level, i.e., the fusion of the measured physical param-
eters represented in the images. Multiresolution analysis is a
popular method applied by pixel-level fusion techniques. It con-
sists in generating for each input image a sequence of images that
represents information at different levels of detail (or resolution).
The main drawbacks of this approach are blurring effects, high
sensitivity to noise, and misregistration.

— Feature-based techniques extract features from the images and
use them to perform the fusion. This approach may be able to
minimize the pixel-based drawbacks. Piella et al. [24] proposes a
MR fusion algorithm which combines aspects of region and pixel-
level fusion. They use multiresolution recomposition to represent
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the input image at different scales and introduce a multiresolu-
tion/multimodal segmentation to partition the image domain at
these scale. This segmentation is then used to guide the sub-
sequent fusion process. Due to feature-base techniques use the
regions of the images, the extraction of the features requires the
application of objects recognition process.

— High-level fusion algorithms represent a method that uses value-
added data where the input images are processed individually for
information extraction. The obtained information is then com-
bined applying decision rules to reinforce a common interpreta-
tion and resolve differences and furnish a better understanding of
the observed objects.

N, I
—H _.‘_\. : L
Trmage | Trmiage: - I-lavl Livege: Ilmnelq
4 &ﬁt Feature Extraction | g‘
8. | Feature Itknl[ﬁculiun| &
2 — 1 '
2 il Decision
L g —
Evaluation
[ Evaluation

Figure 2.2: An illustration of the three processing levels in 2D image fusion.

o Volume-based fusion algorithms which consider the fusion of volumes.
Methods of this group can be classified according to the step of the
visualization pipeline at which the fusion is carried out [5]:

— The image-level intermixing is the simplest way for the fusion of
two modalities, but it has the disadvantage that the 3D infor-
mation is lost. Therefore this fusion technique is typically just
applied on single slices of the volume. Several techniques have
been developed for this purpose, such as alternating pixel display
or linked cursor [25, 27].

— The accumulation-level intermixing fuses the values after opti-
cal properties are assigned to each modality individually. In the
image-level intermixing, the fusion is done after the 2D images
have been rendered.

— In the illumination-model-level intermixing, optical properties are
assigned to a combination of values from the different modalities.
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A case study for the rendering of multivariate data, where mul-
tiple values are present at each sample point, was done by Kniss
et al. [15]. In this work, the idea of multi-dimensional transfer
functions to assign optical properties to a combination of values
was used. Akiba and Ma [2] used parallel coordinates for the
visualization of time-varying multivariate volume data.

Grimm et al. [10] developed methods to efficiently visualize multiple
intersecting volumetric objects. They introduced the concept of V-Objects,
which represent abstract properties of an object connected to a volumetric
data source. Also a method to perform direct volume rendering of a scene
composed of an arbitrary number of possibly intersecting V-Objects was
presented.

Ferre et al. [9] analyze the rendering of segmented unimodal, hybrid and
aligned multimodal voxel models. They propose a data structure that clas-
sifies the segmented voxels into categories, so that whenever the model has
to be traversed, only the selected categories are visited and the empty and
non-selected voxels are skipped. Their strategy is based on: (i) a decision
tree, called the rendering decision tree (RDT), which represents the hierar-
chy of the classification process and (ii) an intermediate run-length encoding
(RLE) of the classified voxel model. The traversal of the voxel model given
a user query consists of two steps: first, the RDT is traversed and the set of
selected categories computed; next, the RLE is visited, but the non-selected
runs are skipped and only the voxels of the original model that are codified
are accessed in selected runs of the RLE. This strategy has been used to
render a voxel model by back-to-front traversal and splatting as well as to
construct 3D textures for hardware-driven 3D texture mapping. The results
show that the voxel model traversal is significantly accelerated.

Abellan et al. [1] proposed a volume rendering application for multi-
modal datasets based on 3D texture mapping. The method takes as input
two pre-registered voxel models and constructs two 3D textures. It renders
the multimodal data by depth compositing view-aligned texture slices of
the model. For each texel of a slice, it performs a fetch to each 3D texture
and performs fusion and shading using a fragment shader. The application
allows users to choose either emission and absorption shading or surface
shading for each model. Shading is implemented by using two auxiliary 1D
textures for each transfer function. Moreover, data fusion takes into account
the presence of surfaces and the specific values that are merged, so that the
weight of each modality in fusion is not constant but defined through a 2D
transfer function implemented as a 2D texture. This method is very fast
and versatile and it provides a good insight into multimodal data.

A common feature of all related methods is that in all the cases the
transfer function has to be defined by the user, being a time-consuming and
also a non trivial task. Moreover, the user has to determine the information

18



of the original input models he wants to represent in the fused one. The
objective of our project is to automate this process as far as possible. To
reach this objective we will use information theory tools.

2.4 Information Theory

In this section, we review some information-theoretic concepts [6, 34] that
will be applied to the fusion methods proposed in this work.

2.4.1 Entropy

Let X be a discrete random variable with alphabet X and probability dis-
tribution {p(z)}, where p(z) = Pr{X = z} and « € X. This notation is
extended to other random variables.

Definition The entropy H(X) of a discrete random variable X is defined
by

Zp ) log p(z (2.8)

zeEX

where the summation is over the corresponding alphabet and the convention
0log0 = 0 is taken.

In this work, logarithms are taken in base 2 and, as a consequence, entropy
is expressed in bits. The convention 0logO = 0 is justified by continuity
since xlogxz — 0 as © — 0. The term — log p(x) represents the information
content (or uncertainty) associated with the result z. Thus, the entropy
gives us the average amount of information (or uncertainty) of a random
variable. Entropy fulfills that 0 < H(X) < log|X|.

The definition of entropy is now extended to a pair of random variables.

Definition The joint entropy H(X,Y) of a pair of discrete random variables
X and Y with a joint probability distribution {p(z,y)} is defined by

=—=> > plz,y)logp(z,y), (2.9)

reX yey
where p(x,y) = Pr[X = z,Y = y] is the joint probability of x and y.

The conditional entropy of a random variable given another is defined as the
expected value of the entropies of the conditional distributions.

Definition The conditional entropy H(Y|X) of a random variable Y given
a random variable X is defined by

HY|X)==>> pla,y)logp(ylz), (2.10)

rzeX yey
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where p(y|x) = Pr[Y = y|X = z] is the conditional probability of y given x.
The Bayes theorem relates marginal probabilities p(x) and p(y), conditional
probabilities p(y|z) and p(x|y), and joint probabilities p(z,y):

p(x,y) = p(z)p(ylz) = p(y)p(z|y). (2.11)

If X and Y are independent, then p(x,y) = p(x)p(y). Marginal probabilities
can be obtained from p(z,y) by summation: p(x) = Zyeyp(x, y) and p(y) =

> zex P(T,Y).-

The conditional entropy can be thought of in terms of a communication
or information channel X — Y whose output Y depends probabilistically
on its input X. This information channel is characterized by a transition
probability matrix which determines the conditional distribution of the out-
put given the input [6]. Hence, H(Y|X) corresponds to the uncertainty
in the channel output from the sender’s point of view, and vice versa for
H(X|Y). Note that in general H(Y'|X) # H(X|Y).

The following properties hold:

o« HX,Y)=H(X)+H(Y|X)=H(Y)+ H(X|Y)
o« HX,Y)< H(X)+H(Y)

o H(X)>H(X|Y) >0

2.4.2 Mutual Information

We now introduce the mutual information between two random variables
which expresses the shared information between them:

Definition The mutual information I(X;Y") between two random variables
X and Y is defined by

I(X:Y) = H(X)-H(X|Y)=H(Y) - H(Y|X)
_ e ) o (w,y)
= 2 2 eyl & p@p(y)’ (2.12)

reX yey

Mutual information represents the amount of information that one random
variable, the input of the channel, contains about a second random variable,
the output of the channel, and vice versa. That is, mutual information
expresses how much the knowledge of Y decreases the uncertainty of X, and
vice versa. I(X;Y) is a measure of the correlation or dependence between
X and Y. Thus, if X and Y are independent, then I(X;Y) = 0.

The following properties hold:

e /(X;Y) > 0 with equality if and only if X and Y are independent
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X;Y)
X;Y)
X;Y) < min{H(X),H(Y)}
X; X)

2.4.3 Entropy Rate

Using the property H(X1, Xo) = H(X1)+ H(X2|X1) (Section 2.4.1) and the
induction on n [34], it can be proved that the joint entropy of a collection

of n random variables X1,..., X, is given by
n
H(Xy,..., Xn) =Y H(Xi|X1,...,Xi1). (2.13)
i=1

We now introduce the entropy rate that quantifies how the entropy of a

sequence of n random variable increases with n.
Definition The entropy rate or entropy density Hx of a stochastic process!

{X;} is defined by
1
HX = lim *H(Xl,XQ,...7Xn) (2.14)
n—oo n
when the limit exists.
The entropy rate represents the average information content per symbol in

a stochastic process. For a stationary stochastic process?, the entropy rate
exists and is equal to

HX = lim Hx(n), (2.15)

n—oo
where
Hx(n) = H(Xl,...,Xn) - H(Xl,...,Xn_l)
= H(X,|Xn-1,...,X1). (2.16)
Entropy rate can be seen as the uncertainty associated with a given symbol

if all the preceding symbols are known. It can be also interpreted as the
irreducible randomness in sequences produced by an information source [8].

! A stochastic process or a discrete-time information source {X;} is an indexed sequence
of random variables characterized by the joint probability distribution p(z1,z2,...,Zn) =
Pr{(X1,X2,...,Xn) = (z1,22,...,2s)} with (z1,22,...,2,) € X" for n > 1 [6, 34].

2A  stochastic process {X;} is stationary if two subsets of the sequence,
{X1,X2,...,Xn} and {X141, Xo41, ..., Xnt1}, have the same joint probability distribu-
tion for any n,l > 1: Pr{(X1,...,Xn) = (x1,22,...,2n)} = Pr{(X141, Xoy1,. .., Xnp1) =
(z1,22,...,2n)}. That is, the statistical properties of the process are invariant to a shift
in time. At least, Hx exists for all stationary stochastic processes.
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2.4.4 FErasure Entropy

As we have seen in the previous section, the entropy of a sequence Xy, ..., X,
is equal to the sum of the conditional entropies of each symbol given all
preceding (or all succeeding) symbols. Conditioning on the past or the future
leads to the same measure of information content. However, conditioning
on both the past and the future leads to the following definition [31]:

Definition The erasure entropy of a collection of discrete random variables
X1,...X,, is defined by

H(Xy,...Xn) = Y H(Xi|X\) (2.17)
=1
= nH(X1,..., X,) - > H(Xy), (2.18)
=1
where

In addition, analogously to the conventional entropy, the erasure entropy
rate is defined as the limiting normalized erasure entropy, i.e., the limit of
the arithmetic mean of the conditional entropies of each symbol given all
preceding and succeeding symbols.

Definition The erasure entropy rate of a process X = {X;} is defined by

1
Hy = lim —H (X1,...X,). (2.20)

n—oo n

Erasure entropy is strictly lower than the conventional entropy (unless
the source is memoryless, in which case they are identical)[31].
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Chapter 3

A General Framework for
Multi-Modal Visualization

Although multi-volume visualization is a valuable tool for diagnosis, the
complexity of generating these visualizations hinders their application in
clinical practice. To overcome this limitation we decided to develop in the
scope of this project a software in which engineers and practitioners com-
bine their knowledge. Motivated by a common interest, the medical imaging
group of the University of Girona and medical researchers from the Hospital
Josep Trueta of Girona created a working group. We aimed at develop-
ing a tool that integrates the operations and tools required for multimodal
visualization and also where they can be tested and compared.

In this Chapter, we present the structure and the main functionalities of
the designed platform. In Section 1 and 2, we describe the registration and
segmentation modules. In Section 3, we present the fusion strategies that
have been implemented. In Section 4, we analyze the different visualization
strategies that have been implemented to present the results to the user.

3.1 Introduction

The design of the proposed multi-volume visualization platform is presented
in Figure 3.1. As can be seen it consists of three different levels:

e Medical Data Input/Output layer which integrates the modules that
perform medical image data reading and writing tasks.

e Kernel integrating the main modules of the application, each one de-
signed to support an specific operation.

e Graphical user interface (GUI) which interacts with the user by ob-
serving user actions, basically button press and mouse movements.
This layer is also responsible for the output display of the program.
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The proposed framework has been implemented using the National Li-
brary of Medicine Insight Segmentation and Registration Toolkit (ITK) [28],
which also guarantees the code quality for the library methods, Visualization
Toolkit (VTK) [30], which is a software system for 3D computer graphics,
image processing and visualization, and QT [29], which is a cross-platform
application and Ul framework.

I/O Supported File Formats

i e

[ Medical Data I/O ] <:> [ Graphical User Interface ]

!

4 \
Kernel
J

Figure 3.1: Multi-Volume Visualization Platform

3.2 Registration Module

Registration is a fundamental task in image processing used to match two or
more images or volumes obtained at different times, from different devices
or from different viewpoints. Basically, it consists in finding the geometrical
transformation that enables us to align volumes into a unique coordinate
space. Hence, it is the previous step for multi-volume visualization.

The image registration pipeline starts with the selection of the two im-
ages to be registered. One of the two images is defined as the fixed image
and the other one as the moving image. Given these images, registration

24



is treated as an optimization problem with the goal of finding the spatial
mapping that will bring the moving image into alignment with the fixed one.
This process can be described as a process composed of four basic elements:
the transformation, the interpolator, the metric, and the optimizer. The
transformation component represents the spatial mapping of points from
the fixed image space to points in the moving image space. The interpolator
is used to evaluate moving image intensity at non-grid positions. The metric
component provides a measure of how well the fixed image is matched by
the transformed moving image. This measure forms the quantitative crite-
rion to be optimized by the optimizer over the search space defined by the
parameters of the transformation.

We restricted our study to rigid or affine transformations, i.e., trans-
formations that preserve all distances, the straightness of lines (and the
planarity of surfaces), and all nonzero angles between straight lines.

To perform the registration we implemented the MultiResolutionIm-
ageRegistrationMethod provided by the ITK [28]. This method uses a coarse
to fine approximation as it is illustrated in Figure 3.2. For each image, a
pyramidal representation is created where each level of the pyramid repre-
sents a different level of resolution. The registration is first performed at
the coarsest level using the images at the first level of the fixed and moving
image pyramids. The transform parameters determined by the registration
are then used to initialize the registration at the next finer level using images
from the second level of the pyramids. This process is repeated until the
last level is reached.

As a transform we used itkAffine Transform which allows the definition
and manipulation of affine transformations of an n-dimensional affine space
(and its associated vector space) onto itself . The used metric is itkMattes-
MutuallnformationImage ToImageMetric which computes the mutual infor-
mation between two images to be registered using the method of Mattes et
al [21].

3.3 Segmentation Module

Image segmentation is the process of labeling each voxel in an image dataset
according to certain parameter or features. In the case of medical images,
the segmentation considers the tissue type or the anatomical structure con-
tained in the voxel. Since a segmented image provides richer information
than the original one, it is an essential tool in medical environments. It is
used to improve visualization of medical imagery, to perform quantitative
measurements of image structures, to build anatomical atlases, to search
shapes of anatomical structures, or to track anatomical changes over time.
Segmentation is considered a very difficult task and a lot of research is being
done to develop automatic segmentation techniques. The main aspects that
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Figure 3.2: Conceptual representation of the multi-resolution registration
process.

make this process so difficult are the imaging process itself and the anatomy
that is represented in the images. The imaging process is chosen so that its
interactions with the tissues of interest will provide clinically relevant infor-
mation about the tissue in the resulting output image. But this does not
mean that the anatomical feature of interest will be particularly separable
from its surroundings. The second aspect that makes segmentation difficult
is the complexity and variability of the anatomy that is being imaged. It
may not be possible to locate or delineate certain structures without detailed
anatomical knowledge. For this reason, in most of medical applications, seg-
mentation is carried out manually by an expert radiologist. This is a very
time consuming task and also sensitive to subjective errors.

Due to the importance of segmentation in the medical context we have
implemented a segmentation module to allow, if it is desired, the fusion of
segmented images. In the experiments presented in this master thesis, we
have only used a simple method which quantizes the original model in a suer
defined number of bins.

In Figure 3.3 we can see an input model and its quantizations using 16,
32 and 64 bins, respectively.

3.4 Fusion Module

This module integrates the different methods we propose in this master
thesis and we describe in detail in Chapters 4 and 5. All these methods are
based on information theory measures.

In our methods we propose two different approaches to carry out the
fusion:
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Figure 3.3: (a) Original model. This model is quantized using (b) 16, (c) 32
and (d) 64 bins, respectively.

e The symmetric fusion approach considers the two input models to
perform the fusion (see Figure 3.4a). According to the applied fusion
algorithm, in the fusion model it can appear the voxel of one model,
the voxel of the other model, or a combination of both models. The
criteria. used to determine the contribution of each input model is
defined by the applied strategy. In our methods, the criteria are based
on the evaluation of the information theory measures.

An interesting property of this type of fusion is its simplicity. More-
over, they can be applied in an automatic way without user interaction.
This allows to obtain results in lower times. Some parameters can also
be modified.

e The asymmetric fusion approach defines one of the input models as
the main model and considers it as a reference (see Figure 3.4b). This
model is used to perform all the computations that will determine the
fusion. In contrast to the symmetric fusion, it is non automatic because
you have to decide which part of the model you want to visualize. To
enhance this selection process we defined a set of color maps that
identify the most representative parts of the volume.

3.5 Visualization Module

The visualization module integrates the algorithms required to present the
data to the user. We integrated the Ray Casting 3D visualization technique
and also 2D visualization strategies to generate color maps that allows to
identify the contribution of each part of the volume according to some in-
formation theory measure.
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Figure 3.4: Concept of (a) symmetric fusion and (b) asymmetric fusion.
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3.5.1 Ray-casting implementation

Most of the techniques that have been implemented to visualize fused mod-
els are based on ray-casting [40, 56]. An efficient splatting of run-length
encoded aligned multimodalities has been proposed by Ferre et al. [54].
The major drawback of these methods is that they are software-based, and
therefore, they are not fast enough to provide the interactivity needed by
physicians to analyze the data. Texture mapping [57] can provide this speed
because it exploits hardware graphics acceleration. Hong et al.[58] use 3D
texture-based rendering for multimodality. They use aligned textures in or-
der to use the same 3D coordinates to fetch the texture values in the two
models and combine the texel values according to three different operators.
Robler et al. [59] describe a visualization framework to handle multi-volumes
and render them using 3D textures, but they do not address the fusion of
data. Abellan et al. [55] describe a method that takes full profit of graphics
hardware capabilities and it proposes a general framework that not only
supports multi-volumes, but actually offers different ways of performing fu-
sion. The major novelty of this method is how it lets users specify the fusion
parameters.

We designed a parallelized CPU-based ray-casting implementation. For
the implementation, we used the VTK libraries [60]. Since VTK methods
do not support fused model visualization, we implemented a new wtkVol-
umeRayCastFunction that integrates the RayCast method and performs the
fusion using a VozelShader, one for each one of the proposed fusion strate-
gies. The VozelShader has as input a voxel p, the two volumes to fuse, their
respective transfer functions and the fusion strategy with the corresponding
information theory measure. The output of the VoxelShader is a colour and
an opacity.

The contribution of each input model in the fusion result is done in real-
time but, in order to improve the interactivity some calculations are done
and some auxiliary structures are generated in a pre-processing step. Every
fusion method has its particular auxiliary information as we will see in the
next chapter.

3.5.2 Color Coded Maps

Our fusion strategies depend on the value of an information theory measure
at a voxel. To represent these values we apply a color coded visualization
that allows to represent the measures all over the volume. We apply the color
codification illustrated in Figure 3.5. The voxel which has the minimum
value of the measure will be visualized using the blue color, the voxel with the
maximum value will be red, and the other values will take the intermediate
colors. Sometimes, the minimum value or the maximum value, or both, are
associated to very few values of the model. In these cases, red or blue colors
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Figure 3.5: Color scale used to colorize the information theory measures.
The blue color corresponds to the minimum value of the measure and the
red color to the maximum value.

are not represented as we can see in Figure 3.6. Therefore, in these cases it
is interesting to collapse a certain percent of values in order to balance the
map. In Figure 3.6 we can see the map of the conditional entropy measure
of a model which is described in Chapter 4. Both images correspond to the
same map of the same model but the right one is coloured collapsing the 10
percent of minimum values.

Figure 3.6: Comparison of (a) the original map of the conditional entropy
measure of a model and (b) the same colored map collapsing the 10% of
minimum values.

3.6 User Interface Design

In Figure 3.7 we illustrate the main areas of the user interface framework.
The main area is the viewer area which is divided in five viewers (see Figure
3.8). The left viewers are the input viewers and they contain the models
that will be fused. The model visualized in each viewer can be selected
using the menu that appears when the right button is clicked. The viewer
of the middle is the fused viewer. In this viewer, the fusion of the input
models is visualized. The right viewers are the helper or auxiliary viewers
where certain values computed on the input models are represented in a
color coded map. These viewers can be used to visualize complementary
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information of the fusion. Using these viewers, the user can analyze the
maps of the information theory measures of each input model used in the
fusion process, the partitioned models where each level is coloured using a
different color, and the contribution of each input model in the fusion result
can also be visualized.

aQ 9P o
Axial | | Sagital Coronal Zoom 3DRotation | | WW/WL Pan
.

Clipping Planes

EditCLUT | | Edit CLUT

(5)

) Symm:
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Right - Top

Colors map editor
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Figure 3.7: Framework User Interface.

The left area is the fusion option menu (see Figure 3.9). It controls all
the information related with the fusion and the information visualized in
the helper viewers. This menu can be divided in five parts.

On the top, there are two push buttons which are used to apply the fusion
and to register the models. The first time that the apply fusion button is
clicked, all the information theory measures are computed and the fusion
is visualized. If the models don’t change, the other clicks only update the
transfer functions. The register volume button registers the models taking
the top input model as the fized model and the bottom as the moving model.

After that, we have options which allow us to decide the fusion method.
Taking into account the classification described in Section 3.4 we can choose
between symmetric or asymmetric fusion methods. The methods of each
group are the fusion strategies described in Chapters 4 and 5.

The third part contains options to be able to choose what we want to
show in the helper viewers. We can show the maps of the information theory
measures and the contribution of each input model in the fusion result can
also be visualized using the combo boxes.

The last group of options allows us to manipulate the color maps of the
information theory measures presented in Section 3.5.2. The top slider is
used to collapse the minimum values and the bottom slider to collapse the
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Figure 3.8: Viewer area.

maximum values.

Finally, the top area is the tool bar which contains the tools to interact
with the viewers (see Figure 3.10). We are able to do basic actions such as
applying zoom and modifying the orientation or the window level. Moreover,
we added some advanced tools: a transfer function can be defined for each
input model, the bounding box of the models can be manipulated in order
to visualize the interior, and, finally, a synchronization tool is defined to be
able to visualize the same part of the model in all of the viewers.
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Chapter 4

Fusion using the Registration
Channel

4.1 Introduction

In this chapter, we present an information-theoretic approach for fusion
visualization which uses the conditional entropy and the mutual information
to decide the contribution of each input model for each voxel.

We group these two measures in the same approach because, even though
the meanings of the measures are quite different, both measures take into
account all input models to compute the information which will be used in
the fusion. Therefore, we compute the conditional entropy and the mutual
information for each input model taking into account the other input models.
If one of the input models is changed, the conditional entropy and the mutual
information measures of each model have to be recomputed.

Section 2 presents the conditional entropy method and the fusion strate-
gies associated with that measure. The mutual information method and the
corresponding fusion strategies are presented in Section 3. Finally, in Sec-
tion 4, we discuss about the structures and memory needed for each measure
to be able to achieve a good interaction in rendering time.

4.2 Conditional Entropy Method

First of all, 3D images or models A and B are registered using the MultiRes-
olutionImageRegistrationMethod provided by ITK [12]. Then, we consider
an information channel between A and B, called registration channel.

In the information theory context, the registration of two images A and
B is represented by an information channel X — Y | where random vari-
ables X and Y represent the images A and B, respectively. Their marginal
probability distributions, p(z) and p(y), and the joint probability distribu-
tion, p(x,y), are obtained by simple normalization of the marginal and joint
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intensity histograms of the overlapping areas of both images [20].

To compute the conditional entropy and mutual information of this chan-
nel, the joint histogram is constructed by counting the number of times a
combination of intensity values occurs. For each pair of corresponding points
(a,b), where a is a point in image A and b a point in image B, the entry
(fa(a), fB(b)) in the joint histogram is increased, where fa(a) and fgp(b)
represent the intensity values at points a and b, respectively. From now on,
fa(a) and fp(b) will be abbreviated as = and y, respectively.

4.2.1 Conditional Entropy of the Registration Channel

Given the information channel X — Y, the conditional entropy can be
computed. From Equation 2.10, the conditional entropy can be rewritten as

HY|X) = 3 p@)( = Y plyle) logp(yle) ) (4.1)

zeX yey
= ) p@)H(Y|x), (4.2)
reX
where
H(Y|x) == plylz)log p(ylz), (4.3)
yey

and X and ) represent the set of intensity values (alphabet) of images A
and B, respectively. For the registration channel, H(Y|X) represents the
uncertainty in Y known X, and H (Y |z), called color entropy, represents the
uncertainty in Y known the intensity value z. That is, H(Y|z) quantifies
the uncertainty we have on the intensity value y in image B when we have
a given value x in image A.

Figure 4.1 illustrates the conditional entropy (CE) maps of two different
images (CT and MR) which have been previously registered. Each con-
ditional entropy map shows the values H(Y|z) (Figure 4.1b) and H(X|y)
(Figure 4.1d) for each voxel, when X and Y represent, respectively, the CT
and MR images. These maps are colorized using the color scale described
in Section 3.5.2, where the blue color represents the minimum conditional
entropy value and the red color the maximum conditional entropy value.

Low values of CE are obtained when a value x in image A has a low
number of corresponding values y in image B. The color entropy H(Y|z)
is equal to zero when all the corresponding values of x in B have the same
intensity (not necessarily equal to ). The maximum entropy H (Y |z) is
obtained when all the corresponding values of z in B have different intensity
values.
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(a)

Figure 4.1: Original (a) CT and (c¢) MR models and (b) and (d) are their
corresponding CE colored maps.

4.2.2 Fusion Strategies

As we described in Section 3.4, we divide the fusion strategies into two
groups: symmetric and asymmetric fusion. The symmetric fusion compares
for each voxel the conditional entropy of the input models and computes,
using a given criterion, the contribution of each of them in the fusion visu-
alization. On the other hand, the asymmetric fusion takes one of the two
models as the reference and, for each voxel, whether its conditional entropy
fulfills a given criterion the information of this model is used for the fusion
visualization, otherwise the information of other model is used.

In this section we describe the fusion methods implemented using this
measure and we illustrate the results in some figures. In Chapter 6 we eval-
uate the performance of the proposed fusion methods taking into account
the opinion of medical experts. In all images we are working with a CT and
MR-T1 studies of training_001 patient which was obtained from the Retro-
spective Image Registration Evaluation Project database [7]. This project
was designed to compare retrospective CT-MR and PET-MR registration
techniques and has been used by a number of groups. The models provided
by this database is also known as the “Vanderbilt Database”.

In order to know exactly which is the origin of the information of each
pixel of the fusion model, the CT study is visualized using a red scale and
the MR-T1 is visualized using a green scale.

Using this measure we implemented two symmetric fusion methods and
two asymmetric fusion methods.

Symmetric fusions

The first symmetric fusion is called MinConditionalEntropy (MCE)
fusion. For each pair of voxels, the resulting F,(X,Y") intensity for voxel
p is obtained from the voxel of the input model which has the minimum
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conditional entropy:

v if H(Y|z) < H(X|y)

. (4.4)
y if H(Yl|z) > H(Xly)

Fy(X)Y) = {
where X and Y represent the input models A and B, F(X,Y) represents
the fused model, x = fx(a) and y = fy(b) are, respectively, the intensity
values associated with points a and b of images A and B and the subindex p
represents a 3D point in the fused model which matches with points a¢ and
b.

The main drawback of this strategy is that it is non flexible to allow
us to modify the fusion result to try to improve it. Figure 4.2 shows some
result of this method. The original CT and MR models and these models
quantized using 16, 32 and 64 bins are used to illustrated it. A 3D multi-
modal visualization using MCE fusion is shown in Figure 4.3.

NormalizedMinConditionalEntropy (NMCE) fusion is the sec-
ond symmetric fusion strategy implemented:
z if H(Y|z)
y if H(Y|z)

where H represents the normalized conditional entropy with values between
0 and 1:

H(X|y)

A(xly) (#5)

F(X,)Y) = {

<
>

H(Y|z) — H(Y |min)

H(Yz) = H(Y|maz) — H(Y [min)

(4.6)
where :

e z,min,max € X, and

e Vuec X H(Y|u) > H(Y|min) , and

e Vue X H(Y|u) < H(Y|max)

This method is similar to the MCE fusion but the conditional entropy
has been normalized for each input model individually. We implemented it
in order to relax the rigidity of the MCE fusion.

The mechanism to interact with the fusion works like the mechanism to
modify the colour map described in Section 3.6. If we collapse a percent of
the minimum values of H(Y|X) or H(X|Y), their value are replaced by 0.
Otherwise, if we collapse a percent of the maximum values of H(Y|X) or
H (X]Y), their values are replaced by 1. Therefore, if we collapse a percent
of the minimum values of H(Y|X), these values will be more relevant in
the fusion because the minimum value is selected. On the other hand, if we
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(iv.a) (iv.b)

Figure 4.2: (a) Fusion results of the CT and MR model shown in Figure
4.1 using MCE fusion. (b - ¢) Conditional Entropy maps of the CT and
MR-T1 models, respectively. (i) Original resolution models. These models
have been quantized using (ii) 16, (iii) 32, (iv) 64 bins, respectively.
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Figure 4.3: 3D fusion visualization using MCE strategy.

collapse a percent of the maximum values of H(Y|X), H(Y|X) will be less
relevant.

Figure 4.4 shows some fusion results using NMCEFE fusion without any
collapse and applying some collapse. In order to show the collapse applied,
we include the percent in the colored maps where min or mazr means that
low or high values have been collapsed. Figure 4.5 shows a 3D multi-modal
visualization using NMCE fusion.

Asymmetric fusions

The asymmetric strategies implemented are based on the visualization of
the reference model if its conditional entropy is less than a threshold or if it
is greater than a threshold. Otherwise, in both strategies, the other model
is visualized.

e ConditionalEntropyMore Than Threshold-based (CEMTT) fusion

z if HY|z)>T

y if HY|z)<T (4.7)

FP(X>Y) = {

where T is a threshold value defined by the user and X is the reference
model.

o ConditionalEntropyLess ThanThreshold-based (CELTT) fusion

z if HY|z)<T

y if HY|z)>T (4.8)

F(X,)Y) = {

These strategies are opposed but it is interesting to have both in order
to cover all the possibilities. In Figure 4.6 we can see an illustration of the
CEMTT and CELTT fusions using the CT and the MR-T1 as a reference
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Figure 4.4: (a) Fusion results of the CT and MR model shown in Figure 4.1
using NMCE fusion without applying any collapse and (b) applying some
collapse. (c - d) Conditional Entropy collapsed maps of the CT and MR-T1
models respectively. (i) Original resolution models. These models have been
quantized using (ii) 16, (iii) 32, (iv) 64 bins, respectively.
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Figure 4.5: 3D fusion visualization using NMCE strategy.

model, respectively. Some results using CT and MR-T1 models quantized
using 16, 32 and 64 bins are presented in Figure 4.7. In Figure 4.8, we show
a 3D multi-modal visualization using CELTT fusion strategy.
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(a) < 85% (b) > 85%

(d) < 85% (e) > 85%

Figure 4.6: Fusion results of the CT and MR model shown in Figure 4.1
using (a) CELTT fusion and (b) CEMTT fusion where the reference model
is the CT study. Fusion result of (b) CELTT fusion and (d) CEMTT fusion
where the reference model is the MR-T1 study. (c, f) Conditional Entropy
maps of the CT and MR-T1 models respectively.

43



(i.a) < 85% (i.c) < 65%

(il.a) > 92% (ii.c) < 70%

(iii.a) > 90% (iii.b) (iii.c) < 65% (iii.d)

Figure 4.7: Fusion results of the CT and MR model shown in Figure 4.1 using
CELTT fusion or CEMTT fusion using (a) CT and (c) MR-T1 models as
a reference. The models are the original models quantized using (i) 16, (ii)
32, (iii) 64 bins, respectively.
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Figure 4.8: 3D fusion visualization using CELTT strategy.

4.3 Mutual Information Method

4.3.1 Mutual Information of the Registration Channel

Given the information channel X — Y, mutual information can be com-
puted. From Equation 2.12, the mutual information can be rewritten as

I(X;Y) =) pla)I(z;Y), (4.9)

reX
where

o ) 1og PWI2)
I(w,Y)—yez;p(y\ ) log OB (4.10)

For the registration channel, I(X;Y") represents the shared information
or dependence between 3D images A and B and I(x;Y) gives as the degree of
correlation between the intensity values x in image A and the corresponding
intensity values in image B. We can also consider that I(z;Y") represents
the (shared) information associated with the intensity value z.

Figure 4.9 illustrates the mutual information (MI) maps of two different
images (CT and MR) which have been previously registered. Each mutual
information map shows the I(x;Y") (Figure 4.9b) and I(y; X)(Figure 4.9d),
respectively, for each voxel. The maps are colorized using the color scale
described in Section 3.5.2 where the blue color represents the minimum mu-
tual information value and the red color the maximum mutual information
value.

4.3.2 Fusion Strategies

Following the same structure used in Section 4.2.2, we describe the fusion
strategies implemented using the mutual information measure and we illus-
trate the results in some figures. In all images we are working with the CT
and MR-T1 studies of training_001 patient and the CT study is visualized
using a red scale and the MR-T1 is visualized using a green scale.
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(a)

Figure 4.9: Original (a) CT and (¢) MR models and (b) and (d) are their
corresponding MI colored maps.

Using this measure we implemented two symmetric fusion methods and
two asymmetric fusion methods.

Symmetric fusions

The first symmetric fusion called MazMutuallnformation (MMI) fusion com-
pares, for each pair of voxels, the voxel of the input model and visualize the
voxel which has the maximum mutual information:

x if I(x;Y) < I(y; X)
y if I(xY) > I(y; X)
where X and Y are the input model and F(X,Y) is the fused model.

Fy(X,Y) = { (4.11)

Some results can be seen in Figure 4.10 and Figure 4.11 shows a 3D
multi-modal visualization using this fusion strategy. A drawback of this
method is that it has the same problem related with the flexibility that the
MCE fusion described in Section 4.2.2 has. In order to avoid that, we im-
plemented the NormalizedMaxMutuallnformation (NMMI) fusion.

NMMI fusion, as can be seen in Equation 4.12, works in the same way
as the MMI fusion but with the only difference that NMMI works with the
mutual information of each input model normalized between 0 and 1:

I:(y;X)
I(y; X)

x if I(z;Y)

<
y if I(z;Y) >

Fy(X,Y) = { (4.12)

where [ represents the normalized mutual information with values between

0 and 1:

I(z;Y) — I(min;Y)
I(max;Y) — I(min;Y)

I(z;Y) = (4.13)
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Figure 4.10: (a) Fusion results of the CT and MR model shown in Figure
4.9 using MMI fusion. (b - ¢) Mutual Information maps of the CT and
MR-T1 models, respectively. (i) Original resolution models. These models
have been quantized using (ii) 16, (iii) 32, (iv) 64 bins, respectively.
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Figure 4.11: 3D fusion visualization using MMI strategy.

where :
e z,min,max € X, and
e Vue X I(w;Y)>I(min;Y) , and

e Vue X I(w;Y)<I(max;Y)

The interaction with the fusion works in the same way as the NMCE
fusion described in Section 4.2.2. If we collapse a percent of the minimum
values of I (X;Y) or I (X;Y), their value is replaced by 0. Otherwise, if
we collapse a percent of the maximum values of I(X;Y) or I(X;Y), their
values are replaced by 1. Therefore, if we collapse a percent of the minimum
values of [ (X;Y), these values will rarely be used in the fusion because the
maximum value of the pair of values is selected. On the other hand, if we
collapse a percent of the maximum values of I (X;Y), these collapsed values
will be more relevant.

Figure 4.12 shows some fusion result using NMMI fusion without any
collapse and applying some collapse included in each MI map. Figure 4.13
is an illustration of a 3D multi-modal visualization using this strategy.

Asymmetric fusions

The asymmetric strategies are based on the visualization of the reference
model whether its mutual information is less than a threshold or it is greater
than a threshold. Otherwise, in both strategies, the other model is visual-
ized.

e MutuallnformationMore Than Threshold-based (MIMTT) fusion

x if I(x;Y)>T

‘ (4.14)
y if I(z;Y)<T

F(X)Y) = {
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(i.c) 6% min
& 75% max

(ii.c) 52% min (ii.d)

(iv.a) (iv.b) (iv.c) 55% min (iv.d)

Figure 4.12: (a) Fusion results of the CT and MR model shown in Figure 4.9
using NMMI fusion without applying any collapse and (b) applying some
collapse. (c - d) Mutual Information collapsed maps of the CT and MR-T1
models respectively. (i) Original resolution models. These models have been
quantized using (ii) 16, (iii) 32, (iv) 64 bins, respectively.

49



Figure 4.13: 3D fusion visualization using NMMI strategy.

where T is a threshold value defined by the user and X is the reference
model.

e MutuallnformationLess ThanThreshold-based (MILTT) fusion

z if I(x;Y)<T

, (4.15)
y if I(z;Y)>T

Fp(XvY) = {

In Figure 4.14 we can see an illustration of the MIMTT fusion and
MILTT fusion using the CT and the MR-T1 as a reference model. It is an
interesting example in order to justify the implementation of both strategies
even though they are opposite. Considering a good fusion the result obtained
using the MIMTT fusion when the reference model is the CT study, if we
want to generate a similar fusion using the MR-T1 as the reference model
the MILTT fusion has to be applied. Therefore, we need both strategies in
order to cover all the possibilities, due to the most useful method may vary
depending on the reference model used.

Figure 4.15 shows some results of these methods using CT and MR-T1
models quantized using 16, 32 and 64 bins. In Figure 4.8, we show a 3D
multi-modal visualization using MIMTT fusion strategy.
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(d) <20%

Figure 4.14: Fusion results of the CT and MR model shown in Figure 4.9
using (a) MILTT fusion and (b) MIMTT fusion where the reference model
is the CT study. Fusion result of (b) MILTT fusion and (d) MIMTT fusion
where the reference model is the MR-T1 study. (c, f) MI maps of the CT
and MR-T1 models respectively.
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(il.a) > 63% (ii.c) > 40%

(iii.a) > 60% (iii.b) (iii.c) > 36% (iii.d)

Figure 4.15: (a) Fusion results of the CT and MR model shown in Figure 4.9
using MILTT fusion or MIMTT fusion using (a) CT and (c¢) MR-T1 models
as a reference. The models are the original resolution models quantized using
(1) 16, (ii) 32, (iii) 64 bins, respectively. (b,d) MI maps of the CT and MR-T1
models respectively.
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Figure 4.16: 3D fusion visualization using MIMTT strategy.

4.4 Implementation Details

In order to achieve an interactive frame rate, the conditional entropy and the
mutual information measures have to be precomputed. The memory needed
depends on the intensity range of the input models taking into account that
the range can be different for each input model. Therefore, it means that if
we increase the intensity range the needed memory will be greater.

For each model, we have to compute the conditional entropy and the mu-
tual information of each intensity value and we store these computed values
in an array (one for each measure). Moreover, some auxiliary information
is needed in order to compute these measures. We have to compute:

e The histogram of each input model, which is an 1D array where its
length depends on the intensity range values.

e The joint histogram, which is a 2D array and the length of each di-
mension also depends on the intensity range of the models.

However, the auxiliary information needed is common for both mea-
sures. Therefore, we can minimize the computation time if we compute
both measures at the same time. Moreover, this is only needed during the
preprocessing.

Figure 4.17 shows the preprocessing and rendering steps of the process.
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Figure 4.17: Main steps of fusion using registration channel measures.
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Chapter 5

Fusion using Higher-Order
Entropy Measures

5.1 Introduction

In this chapter, we present an information-theoretic approach for fusion vi-
sualization that uses the entropy rate and the erasure entropy as criteria for
the fusion process. In contrast to the measures presented in the previous
chapter, these measures are computed for each input model without consid-
ering the other models. Therefore, only the properties of the model that we
are working with are considered.

This chapter is divided in three sections. In Section 2 we introduce
the entropy rate and the fusion strategies associated with that measure.
Erasure entropy measure and the fusion strategies implemented using it are
presented in Section 3. In Section 4, we discuss about the structures and
memory needed for each measure to be able to achieve a good interaction
in rendering time.

5.2 Entropy Rate Method

5.2.1 Entropy Rate Measure

In this section we use the concept of entropy rate to analyze the contribution
of each voxel to the entropy rate of an image. The computation of entropy
rate is approximated taking blocks of three intensity values on the three
tetrad axes of a cube.
As we have seen in Section 2.4.3 the entropy rate or information density
is given by
HX = lim HX(TL), (51)

n—oo

where
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Hx(n) = H(Xi,...,Xn)—H(Xy,...,X,1) (5.2)
H(X | X1, .., X1).

Entropy rate can be seen as the uncertainty associated with a given
symbol if all the preceding symbols are known.

Due to the high dimensionality of the intensity alphabet, we calculate
the finite version of entropy rate (Equation 5.3) using a quantization of an
image and short blocks of n consecutive intensity values. In particular, in
our computations we use quantizations of 16, 32, 64 and 256 intensity values
and blocks of n = 3 consecutive values.

For n = 3, Equation 5.3 can be written as

Hx(3) = H(X3|X2,X1) (5.4)
= — > plar, w9, 33)log plas|wa, x1). (5.5)
Z1,22,L3

where — logp(xs|ze, 1) is interpreted as the information density or unpre-
dictability of x3 known the rest of the block, i.e, x1,z2. Hence, we can
compute the information density of a given voxel a, called color informa-
tion density, as the average of the information densities of the six blocks
associated to this voxel (see Figure 5.1):

o= 2 o plasfab. o) — L S nog LRI )
= —— ogp(T3|Ty, 1) = — =% (0] ) .
Tt 6= 7 plaf,ab)

where k stands for the axis on which the block is taken. In Figure 5.1,
we can observe that the voxel a, which intensity is =3, is taken as the center
of a cube and the six blocks around it are taken on the 3 tetrad axes of the
cube.

Figure 5.2 illustrates the entropy rate (ER) maps of two different images
(CT and MR) which have been previously registered. Each entropy rate
map shows the H, (Figure 5.2b) and Hy(Figure 5.2d), respectively, for each
voxel. The maps are colorized using the color scale described in Section
3.5.2 where the blue color represents the minimum entropy rate value and
the red color the maximum entropy rate value.

High values of H, correspond to the most informative or unpredictable
voxels. Frequently, these voxels correspond to edges or singularities inside
the most homogeneous regions.

5.2.2 Fusion Strategies

Using the classification of the fusion methods presented in Section 3.4, we
developed two symmetric and two asymmetric fusion methods where the
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Figure 5.1: Representation of the six blocks associated to a voxel.

Figure 5.2: Original (a) CT and (¢) MR models and (b) and (d) are their
corresponding ER colored maps.
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entropy rate is the measure used in order to determine the contribution of
the input models in the fusion visualization.

In this section we describe the fusion methods implemented using this
measure and we illustrate the results in some figures. In all images we use
the CT and MR-T1 studies of traning_001 patient and the CT study is
visualized using a red scale and the MR-T1 is visualized using a green scale.

Symmetric fusions

MaxEntropyRate (MER) fusion is the first method implemented.

xz if Hy > Hy

. (5.7)
y if H, < Hy

F(X)Y) = {
where X and Y are the input models and F(X,Y) is the fused model.

For each pair of voxels, we visualize the voxel of the input model which
has the maximum entropy rate. It produces useful and nice results but it is
non flexible and it does not allow us to interact with the fusion result. Fig-
ure 5.3 shows some results of this method and Figure 5.4 a 3D multi-modal
visualization.

NormalizedMazEntropyRate (NMER) fusion is the second symmetric fu-
sion strategy developed. The goal of this method is to allow the user to be
able to interact with the fusion:

x if ﬁa>ﬁb

PP (5.8)
Yy if HagHb

F(X,)Y) = {
where H represents the normalized entropy rate with values between 0 and
1:

H, = Mo = Hin (5.9)
Hmaw - Hmzn

where :
e a,min,maxr € X, and
e VieX Hl-ZHmm,and

o Vie X H; < Hpaq

In this case, the interaction with the fusion works in the same way as the
NMCE and NMMI fusion strategies described in Chapter 4. If we collapse
a percent of the minimum values of H, or Hj, their values are replaced
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(iv.b)

Figure 5.3: (a) Fusion results of the CT and MR model shown in Figure
5.2 using MER fusion. (b - ¢) Entropy Rate maps of the CT and MR-T1
models respectively. These models have been quantized using (i) 256, (ii)
16, (iii) 32, (iv) 64 bins, respectively.
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Figure 5.4: 3D fusion visualization using MER strategy.

by 0. Otherwise, if we collapse a percent of the maximum values of H, or
H,, their values are replaced by 1. Therefore, if we collapse a percent of
the minimum values of H,, these values will rarely be used in the fusion
because the maximum value of the pair of values is selected. Otherwise, if
we collapse a percent of the maximum values of H,, these collapsed values
will be more relevant.

Figure 5.5 shows some fusion results using NMER fusion without any
collapse and applying a collapse included in each ER map. Figure 5.6 shows
a 3D multi-modal visualization using this strategy.

Asymmetric fusions

The asymmetric strategies are based on the visualization of the reference
model whether its mutual information is less than a threshold or it is greater
than a threshold. Otherwise, in both strategies, the other model is visual-
ized.

e EntropyRateMoreThan Threshold-based (ERMTT) fusion

x if Hy>T

F,(X,Y) = 5.10
p( ){yifHagT (5.10)

where T is a threshold value defined by the user and X is the reference
model.

e EntropyRateLessThanThreshold-based (ERLTT) fusion

v if H,<T

F(X,Y) = 5.11
H(XY) {y et (511)

In Figure 5.7 we can see an illustration of the MIMTT fusion and MILTT
fusion using the CT and the MR-T1 as a reference model. In order to show
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111 a

(iv.a) (iv.b)

Figure 5.5: (a) Fusion results of the CT and MR model shown in Figure 5.2
using NMER fusion without applying any collapse and (b) applying some
collapse. (c - d) Entropy Rate collapsed maps of the CT and MR-T1 models
respectively. These models have been quantized using (i) 256, (ii) 16, (iii)
32, (iv) 64 bins, respectively.

(iv.c) 85% max (iv.d)
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Figure 5.6: 3D fusion visualization using NMER strategy.

the collapse applied, we include the percent in the colored maps where min or
max means that low or high values have been collapsed. Some results using
CT and MR-T1 models quantized using 16, 32 and 64 bins are presented in
Figure 5.8. Figure 5.9 shows a 3D multi-modal visualization using ERMTT
fusion.
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(a) < 23% (b) > 23%

(d) < 40% (e) > 40%

Figure 5.7: Fusion results of the CT and MR model shown in Figure 5.2
using (a) ERLTT fusion and (b) ERMTT fusion where the reference model
is the CT study. Fusion result of (b) ERLTT fusion and (d) ERMTT fusion
where the reference model is the MR-T1 study. (c, f) ER maps of the CT
and MR-T1 models respectively.

63



(ii.a)

(ii.d)

(iii.d)

(iii.a)

(iii.c)

Figure 5.8: Fusion results of the CT and MR model shown in Figure 5.2 using
ERLTT fusion or ERMTT fusion using (a) CT and (c) MR-T1 models as a
reference. The models are the original resolution models quantized using (i)
16, (ii) 32, (iii) 64 bins, respectively. (b,d) ER maps of the CT and MR-T1
models respectively.

64



Figure 5.9: 3D fusion visualization using ERMTT strategy.

5.3 Erasure Entropy Method

5.3.1 Erasure Entropy Measure

As we have seen in Section 2.4.4, the erasure entropy of a collection of
discrete random variables { X1, ... X, } is given by

n
H™(X1,... Xp) = > H(X|X\;), (5.12)
i=1
where
Similarly to the entropy rate case, in our computation we use the finite
version of the erasure entropy (Equation 5.12) with quantizations of 16, 32,
64 and 256 intensity values and blocks of n = 3 consecutive values.
For n = 3, Equation 5.12 can be written as

3
H™(X1,X2,X3) = > H(Xj|Xy) (5.14)
=1

= — Y p(x1,72,33) log p(as|zs, 21)

Z1,T2,T3

— > plx1, w2, 23) log plwalas, v1)

Z1,22,T3

- Z p(x17x27x3) 10gp(:):1|x3,x2). (515)

T1,72,23

where — log p(x3|xz2, x1) is interpreted as the erasure entropy associated with
block {x1,x9,x3}. Hence, we can compute the erasure entropy of a given
voxel a, called color erasure entropy, as the average of the erasure entropy
of the three blocks associated to this voxel (see Figure 5.10):

3 3
Hy = -3 log plai, 3, 75) (5.16)
¢ 3 k—1 p($lf,$2)p(xlfa$§)p($2»xl§)
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where k stands for the axis on which the three blocks are taken. In Figure
5.10 we can observe that the voxel a which intensity is xo is taken as the
center of a cube and the three blocks around it are taken on the 3 tetrad axes
of the cube. Observe how the erasure entropy (Figure 5.10) considers less
information around the voxel a than the entropy rate (Figure 5.1). While
the entropy rate takes two neighbor values of @ in the six directions around
it, the erasure entropy is computed with only one neighbor value.

Figure 5.11 illustrates the erasure entropy (EE) maps of two different
images (CT and MR) which have been previously registered. Each erasure
entropy map shows the H, (Figure 5.11b) and H, (Figure 5.11d), respec-
tively, for each voxel. The maps are colorized using the color scale described
in Section 3.5.2 where the blue color represents the minimum erasure entropy
value and the red color the maximum erasure entropy value.

2
2
X3 X33
1
X1 X,
1<——E w—
X3!
3
X 2
1 X

Figure 5.10: Representation of the six blocks associated to a voxel.

(a) (d)

Figure 5.11: Original (a) CT and (c) MR models and (b) and (d) are their
corresponding EE colored maps.
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5.3.2 Fusion Strategies

Using the classification of the fusion methods presented in Section 3.4, we
developed two symmetric and two asymmetric fusion methods where the
Entropy Rate is the measure used in order to determine the contribution of
the input models in the fusion visualization.

In this section we describe the fusion methods implemented using this
measure and we illustrate the results in some figures. In all images we use
the CT and MR-T1 studies of training_001 patient and the CT study is
visualized using a red scale and the MR-T1 is visualized using a green scale.

Symmetric fusions

The symmetric fusion strategies implemented are the following:

e MazErasureEntropy (MEE) fusion.

if H- > H,_
F(x,y)=3{" 1 a7
y if Hy <H,

where X and Y are the input model and F(X,Y) is the fused model.

(5.17)

For each pair of voxels, we visualize the voxel of the input model which
has the maximum Erasure Entropy. It is an automatic fusion strategy
which means that any parameter has to be given by the user. Figure
5.12 shows some results of this method and Figure 5.13 is a 3D multi-
modal visualization.

e NormalizedMaxErasureEntropy (NMEE) fusion is the second symmet-
ric fusion strategy developed. The goal of this method is to allow the
user to be able to interact with the fusion:

if H; >H,
F(X,y)y=4" " e~ (5.18)
y it H; <H,
where H™ represents the normalized erasure entropy with values be-
tween 0 and 1:

N H- — H .
H = ——"n (5.19)
Hiaaz — Hmzn
where :
— x,min,max € X, and

-Vie X H; >H_ and

min
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(iv.a)

Figure 5.12: (a) Fusion results of the CT and MR model shown in Figure
5.11 using MEFE fusion. (b - ¢) Erasure Entropy maps of the CT and MR-T1
models respectively. These models have been quantized using (i) 256, (ii)
16, (iii) 32, (iv) 64 bins, respectively.

68



Figure 5.13: 3D fusion visualization using MEE strategy.

~Vie X H; <H,

max

In this method, the interaction with the fusion works in the same way
as the NMFER presented in Section 5.2. If we collapse a percent of
the minimum values of ﬁ; or ﬁb_ , their values are replaced by 0.
Otherwise, if we collapse a percent of the maximum values of H, o O
H , » their values are replaced by 1. Therefore, if we collapse a percent
of the minimum values of H o, these values will rarely be used in the
fusion because the maximum value of the pair of values is selected.
Otherwise, if we collapse a percent of the maximum values of H P

these collapsed values will be more relevant.

Figure 5.14 shows some fusion results using NMFEFE fusion without any
collapse and applying a collapse included in each EE map. Figure 5.15
shows a 3D multi-modal visualization using this strategy.

Asymmetric fusions

The asymmetric strategies are based on the visualization of the reference
model whether its erasure entropy is less than a threshold or it is greater than
a threshold. Otherwise, in both strategies, the other model is visualized.

e ErasureEntropyMoreThan Threshold-based (EEMTT) fusion
x it Hy >T

5.20
y if H <T (5.20)

F(X)Y) = {
where T is a threshold value defined by the user and X is the reference
model.

o ErasureEntropyLessThanThreshold-based (EELTT) fusion
x if H;y <T

5.21
y if H;y>T (5:21)

F(X,Y) = {
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(iv.a) (iv.b)

Figure 5.14: (a) Fusion results of the CT and MR model shown in Figure
5.11 using NMEFE fusion without applying any collapse and (b) applying
a collapse. (c - d) Erasure Entropy collapsed maps of the CT and MR-T1
models respectively. These models have been quantized using (i) 256, (ii)
16, (iii) 32, (iv) 64 bins, respectively.

(iv.c) 80% max (iv.d)
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Figure 5.15: 3D fusion visualization using NMEE strategy.

In Figure 5.16 we can see an illustration of the EEMTT fusion and
EELTT fusion using the CT and the MR-T1 as a reference model. Some
results using CT and MR-T1 models quantized using 16, 32 and 64 bins are
presented in Figure 5.17. A 3D multi-modal visualization using EEMTT
fusion is shown in Figure 5.18.

5.4 Implementation Details

As you can see in Chapter 6, where we discuss the memory requirements of
the fusion approaches presented, the approaches presented in this chapter
need more memory than the approaches presented in Chapter 4.

The higher-order entropy measures are computed for each model without
taking into account the other input models and they have to be stored
in a 3D array because they have to have the input model measurements.
Moreover, in order to compute them, we need some auxiliary information
which depends on the intensity range of the input models and it varies
depending on the measure.

On one hand, the entropy rate needs:

e A 2D histogram which depends on the intensity range of the model.

e A 3D histogram which also depends on the intensity range of the
model.

In Figure 5.19, the workflow can be seen to compute the entropy rate.
On the other hand, the erasure entropy needs:

e Three 2D histograms which depend on the intensity range of the model.

e 3D histogram which also depends on the intensity range of the model.
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(a) (b)
(d) (e)

Figure 5.16: Fusion results of the CT and MR model shown in Figure 5.11
using (a) EELTT fusion and (b) EEMTT fusion where the reference model
is the CT study. Fusion result of (b) EELTT fusion and (d) EEMTT fusion
where the reference model is the MR-T1 study. (c, f) EE maps of the CT
and MR-T1 models respectively.
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(iii.a) (iii.b) (iii.c) (iii.d)

Figure 5.17: Fusion results of the CT and MR model shown in Figure 5.11
using FELTT fusion or EEMTT fusion using (a) CT and (¢) MR-T1 models
as a reference. The models are the original models quantized using (i) 16,
(ii) 32, (iii) 64 bins, respectively. (b,d) EE maps of the CT and MR-T1
models respectively.
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Figure 5.18: 3D fusion visualization using EEMTT strategy.
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Figure 5.19: Main steps of fusion using entropy rate measure.
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Figure 5.20: Main steps of fusion using erasure entropy measure.
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Chapter 6

Testing of Fusion Methods

In this chapter we evaluate and discuss the performance of the proposed
fusion strategies. We consider the fusion strategies based on conditional
entropy, mutual information, entropy rate and erasure entropy presented in
previous chapters. To carry out the experiments we consider the real and
synthetic data sets described in Section 1. The methods were applied to
these models and a group of experts (an anatomist, a neuroradiologist and a
radiologic technician) evaluated them considering the parameters described
in Section 2. The results of the experiment are also presented in Section 2.
Moreover, a study about the requirements of the fusion methods proposed
is described in Section 3.

6.1 Testing Data Sets

To evaluate the performance of the proposed fusion methods two different
sets of models were used. The first one, was obtained from the Retrospective
Image Registration Evaluation Project database. This project was designed
to compare retrospective CT-MR, and PET-MR registration techniques and
has been used by a number of groups. This database is also known as
the “Vanderbilt Database”. From this database we select for our tests the
models represented in Table 6.1.

The second group was composed of real-data sets obtained from differ-
ent patients from the Hospital Josep Trueta of Girona. For all images, an
informed consent was obtained in accordance with the guidelines of the in-
stitutional review board for human subject studies. For each patient, a CT
and a MR was acquired. First of all, we analyzed each one of the patients
to determine if they were suitable for our study. Since the resolution of the
CT and MR models in some of the cases differs considerably we perform a
selection process to determine which models can be used for the test. During
the selection process, the quality of the CT-MR registration is one of the
parameters considered. Note that in the case of the Vanderbilt data this
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process is not required since the quality of the registration can be ensured.
In Table 6.1, we illustrate the real models used for the tests describing their

features.

training-001

Dimensions: 512 x 512 x 29
Thickness: 4.0 mm

Dimensions: 256 x 256 x 26
Thickness: 4.0 mm

patient_109

N |

Dimensions: 512 x 512 x 40
Thickness: 3.0 mm

Dimensions: 256 x 256 x 52
Thickness: 3.0 mm

Real patient

Dimensions: 512 x 512 x 28
Thickness: 5.0 mm

Dimensions: 288 x 288 x 20
Thickness: 6.0 mm

Table 6.1: Patients used in the test




6.2 Quality of the Fusion

6.2.1 Evaluation Criteria

Determining the quality of a fusion strategy is a difficult task. The knowl-
edge of an expert is required to determine in each situation the information
of the input models that have to be represented in the fusion. These infor-
mation can vary according to the image modality and the pathology. To
overcome these limitations we contacted with a set of experts of different
units of an image diagnosis service. The first one is an expert in anatomy
from the Hospital Clinic from Barcelona, the second one is a neuroradiologist
from the Hospital Josep Trueta from Girona and the last one is a radiology
technician from the same hospital.

First of all, we asked to the anatomist to evaluate each one of the image
modalities (CT and MR) and determine for each one which parts he consid-
ers that have to be represented in the fused model. His selection was clear
and was the following. From the CT he wants to see the bone structure and
the paranasal sinuses. These parts can be considered crucial in a CT-MR
fusion since they define the boundaries of the brain parenchyma (see Figure
6.1). From the MR model he is interested in the brain parenchyma which
contains the white and grey matter, the subcutaneous fat, the ventricles and
the extension of the injury if it exists.

Paranasal Sinuses

. Soft Tissues
Ventricles

Parenchyma

Bone Structure

Figure 6.1: Basic parts of the brain.

Taking into account these considerations we define the form of Table 6.2
where each column represents the type of material and also the data model
from which we want to obtain it to be represented in the fused model (i.e.
parenchyma from MR, ventricles from MR, soft tissues from MR, injury
from MR, bone from CT and sinuses from CT). Each row corresponds to
one of the fusion strategies. Using our framework, for each one of the testing
data sets we apply the different fusion strategies and the expert evaluates
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the results ranking as perfect match “4++”, good match “+”, and no match
W

As we have seen in previous chapters, we proposed automatic and semi-
automatic fusion methods. Using the semi-automatic methods the medical
experts can modify the fusion result in order to improve it or to vary the
contribution of each model in the final result. Basically, the semi-automatic
methods are the asymmetric fusion methods (see Section 3.4). However,
in some symmetric fusion methods some modifications can be done. To
guarantee that all the evaluators analyze the same images, for each method
we define the best configuration and we do not allow to modify it during
the tests. These configurations were based on the considerations that the
anatomist previously defined.

Strategy (MR) (MR) (MR) (MR) | (CT)

Fusion parenchyma | ventricles | soft tissues | injury | bone | sinuses

MCE

NMCE

NMCE collap.

MMI

NMMI

NMMI collap.

CELTT (CT)

MIMTT (CT)

CELTT (MR)

MILTT (MR)

MER

NMER

NMER collap.

MEE

NMEE

NMEE collap.

EEMTT (CT)

ERMTT (CT)

Table 6.2: Test table used in order to evalute the fusion approaches devel-
oped. In the table, collap. means that fusion result had been manipulated
and (CT) or (MR) means the CT or MR is the reference model.

To reduce the complexity of the evaluation process, we show to the eval-
uator the grey scale images and also the colour maps generated using the
green and red scales just to highlight the contribution of each model (see
Figure 6.2). The use of the green to red scale visualization allows us to use
the helper viewer to visualize other information. However, the evaluators
prefer the gray scale mode.
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Figure 6.2: There are two ways to evaluate the fusion. In (a) we can see
the contribution of each model in the helper viewers and in (b) we apply a
green and red scales for each model in order to know exactly which is the
origin of the information of each pixel.
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6.2.2 Results

In this section, we present the obtained results. Each evaluator analyzed
3 models and 18 fusion techniques which leads to 3 forms. For the sake
of simplicity, we grouped the results of the evaluators in models. In the
following forms we report the obtained results.

Fusion parenchyma | ventricles | soft tissues | injury | bone | sinuses

Strategy (MR) (MR) (MR) (MR) | (CT) | (CT)
MCE + - - + + +
NMCE + - ++ ++ + +
NMCE collap. ++ + + ++ - +
MMI ++ ++ + ++ - -
NMMI - - + - - -
NMMI collap. ++ ++ + ++ | ++ +
CELTT (CT) ++ ++ - ++ | + -
MIMTT (CT) ++ ++ + ++ |+ -
CELTT (MR) + - - + _ T
MILTT (MR) + - - + 4 +
MER + + - + - +
NMER + - - + - +
NMER collap. + + - + T I
MEE + + + + - ++
NMEE collap. ++ + - + + i
ERMTT (CT) + + - + [ ++ | ++
EEMTT (CT) + + - + + ++

Table 6.3: Evaluation results of patient training_001
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Fusion parenchyma | ventricles | soft tissues | injury | bone | sinuses

Strategy (MR) (MR) (MR) (MR) | (CT) | (CT)
MCE ++ ++ ++ ++ - -
NMCE ++ - ++ ++ - +
NMCE collap. + + + T - ¥
MMI + + - + + +
NMMI - -+ - + 44+ +
NMMI collap. ++ ++ - ++ | ++ +
CELTT (CT) ++ ++ ++ ++ |+ [+
MIMTT (CT) ++ +oF - ++ [+ |+
CELTT (MR) + - + 4+ - ¥
MILTT (MR) ++ - - - - -
MER - + + + - -
NMER - + + + - -
NMER collap. ++ ++ ++ ++ | ++ | ++
MEE + + + + - -
NMEE - + - + - _
NMEE collap. + + - + + +
ERMTT (CT) + + - + + _
EEMTT (CT) + + - + i -

Table 6.4: Evaluation results of patient patient_109
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Fusion parenchyma | ventricles | soft tissues | injury | bone | sinuses

Strategy (MR) (MR) (MR) (MR) | (CT) | (CT)
MCE - - - - - -
NMCE ++ - + ++ - -
NMCE collap. ++ ++ + +-+ - -
MMI - ++ + - - +
NMMI - ++ + - + -
NMMI collap. ++ ++ + ++ + -
CELTT (CT) ++ ++ ++ ++ [ ++ | A
MIMTT (CT) ++ ++ + ++ |+ -
CELTT (MR) - - - - - -
MILTT (MR) ++ - + ++ - -
MER + - - + - -
NMER + - - + - -
NMER collap. + + - + + +
MEE - - - - - -
NMEE + - - _ _ -
NMEE collap. + - + - + +
ERMTT (CT) + - - + [+ |+
EEMTT (CT) + - - + | ++ [+

Table 6.5: Evaluation results of the real patient

From the above evaluation forms we can observe that the fusion methods
generate similar results when we change the input models even though in
some cases the results are quite different, such as the results obtained using
MinConditionalEntropy fusion. On the other hand, analyzing in depth the
tables we can observe that:

e MinConditionalEntropy (MCE) is a very irregular method. It gener-
ates a bad fusion in the real patient, it detects the interest MR parts
in training-001 and CT parts in patient_109. It is not able to detect
all the MR and CT parts in any case.

o NormalizedMinConditionalEntropy (NMCE) uses the same measure
used in the MCFE fusion but it has been normalized. Working with
the normalized CE measure of CT and MR models we can obtain more
consistent results. It detects very well the parenchyma, the soft tissues
and the injury extension but it does not identifies well the ventricles
and the bone in any patient. However, it is a semi-automatic strategy
which allow us to manipulate the results. In that case, we are able to
achieve a good or very good detection of the ventricles as it can be
seen in NMCE collap. rows.
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MazxMutualInformation (MMI) is not a regular strategy even though
it is more regular than the MCE fusion. It detects well the ventricles,
the soft tissues and the sinuses. The other materials not always are
detected, it depends on the patient.

NormalizedMazMutualInformation (NMMI) is a semi-automatic method
which uses the normalized MI measure. It generates interesting re-
sults when some adjustments are applied. It detects very well the
parenchyma, the ventricles and the injury extension. The bone struc-
ture, the soft tissues and the sinuses are not always well identified,
it depends on the patient. Therefore, it can be qualified as a good
method.

ConditionalEntropyLess Than Threshold (CELTT) is an asymmetric fu-
sion which needs a reference model. Analyzing the results we can con-
clude that it is not useful when MR model is considered the reference
model. On the other hand, when CT is the reference model very in-
teresting results are obtained. Note that all the materials, except soft
tissue, are well detected. This method can be considered as one of the
best methods.

MutuallnformationMore ThanThreshold (MIMTT) fusion, as in CELTT
fusion, only generates useful results when the reference model is the
CT study. It detects very well all the materials.

MazxEntropyRate (MER) and NormalizedMazEntropyRate (NMER) use
the ER measure and both generate similar bad results. However, ma-

nipulating the fusion, more consistent results can be achieved, as can

be seen in NMER collap. rows. It detects the parenchyma, ventricles,

bone structure, injury extension and the sinuses but never identifies

the soft tissues.

MazErasureEntropy (MEE) is a non consistent fusion. It detects a lot
of materials in patient training_001 but only the parenchyma in the
real patient. The drawback of this method is the non detection of the
bone structure which is an important part.

NormalizedMazErasure Entropy (NMFEE) produces more consistent re-
sults than MEFE approach, since it is able to detect the bone structure.

Finally, we can observe that EntropyRateMore ThanThreshold (ERMTT)
and ErasureEntropyMore ThanThreshold (EEMTT) fusions produce very
similar results. Both approaches detect the parenchyma, injury exten-
sion and bone structure which are considered the more relevant parts.
Note that the ventricles and the sinuses are not always identified while
the soft tissues are never detected.
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Considering all the experiments, the three evaluators agree that the best
approaches are the CELTT and MIMTT fusion since they are able to de-
tect from each model the relevant materials. They also consider that the
NMMI strategy also performs well although it does not detect the soft tis-
sues correctly. The NMFER method also has to been considired an approach
to be taken into account. Note that all these methods are semi-automatic
approaches. On the other hand, all evaluators agree that the worse meth-
ods are the asymmetric strategies when the MR is considered the reference
model.

6.3 Performance Requirements

The next test was designed to evaluate the requirements of the fusion method
in terms of memory and computation time. Obtaining a good results is
the most important goal. However, we are working with big models and a
computer with limited memory to allocate them, and we also have to take
into account that we are developing a software which has to be used in a
real environment where the time is crucial.

In Sections 4.4 and 5.4 we describe the structures needed for each of the
proposed methods. Now, we compare them considering, first, the memory
requirements and, then, the computation time. In both tests we use the CT
and MR-T1 studies of training_001 patient described in Section 6.1.

6.3.1 Memory Requirements

To evaluate the memory requirements we measured the megabytes required
to compute the measures of each fusion strategy. We consider the input
models represented quantized with 16, 32, 64, 128, 256, 512 and 1024 inten-
sity values. The obtained results are represented in Table 6.6 .

16 32 64 128 256 512 1024
CE | 0,0013 | 0,0046 | 0,0171 | 0,0654 | 0,2559 | 1,0117 | 4,0234
MI | 0,0013 | 0,0046 | 0,0171 | 0,0654 | 0,2559 | 1,0117 | 4,0234
ER | 116,07 | 116,52 | 120,06 | 148,25 | 373 2168 | 16516
EE | 116,07 | 116,55 | 120,19 | 148,75 | 375 2176 | 16548

Table 6.6: The memory in megabytes required using two models and varying
their intensity range values.

If we analyze the table, we can see that the memory required to compute
the conditional entropy and mutual information measures is negligible com-
pared to the memory required to store the models. On the other hand, the
higher-order entropy measures need more than the memory required to store
the models. The difference between these two groups of measures is that the
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higher-order entropy measures need 3D arrays and too much space is needed
if we have to work with models which have more than 256 intensity values
using current computers. However, in the previous chapters we showed how
the approaches work when we vary the intensity rang and we concluded
that the results with quantized images are similar or better compared to the
original models. Therefore, this is an interesting property because we can
work with these models decreasing the intensity range values.

Moreover, we can also appreciate the importance to avoid the 3D tables if
we compare the higher-order entropy measures. The erasure entropy needs
two 2F tables more than entropy rate but it is not a drawback since the
excess of memory required is negligible compared to the memory required
to store the 3D table.

The plot of Figure 6.3 illustrates the difference in terms of memory re-
quired by the measures.
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Figure 6.3: Memory requirements for the computation of the different mea-
sures considering different quantizations of the original input models.

6.3.2 Computational Time Requirements

In this section, we evaluate the computational time required for the compu-
tation of the different measures used in our fusions methods. All the tests
have been done using a MacBook Pro which has an Intel Core 2 Duo 2.2
GHz processor and 4GB of RAM memory.
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In Table 6.7 we describe the time in milliseconds required to compute the
measures for the CT and MR models varying the intensity range of values.

Although the Conditional Entropy and the Mutual Information share
information and hence one can benefit from the computation of the other,
we have considered that each measure has been computed independently.
The obtained results are illustrated in Table 6.7. If we carry out the com-
putation of one measure considering the computations of the other one the
time required to obtain the second measures is less than 10 milliseconds.

16 32 64 128 256 512
CE | 240 237 235 237 244 271
MI | 240 236 236 237 245 273
ER | 12758 | 12707 | 12840 | 13229 | 14026 | 17433
EE | 11610 | 11658 | 11811 | 12288 | 12862 | 15541

Table 6.7: The time in milliseconds required for the computation of the
measures applied in the fusion methods considering different quantizations
of the input models.

In Figure 6.4 we plot the time required to compute the measures when
considering different quantizations of the input models. Note that there is
a big difference between the conditional entropy and mutual information
measures and the higher-order entropy measures. The CE and MI group
of measures is 60 times faster than the HE. This is due to large amount of
memory required for the computation of the higher-order entropy measures.
They need a lot of time in order to fill the histogram tables and to compute
the measure and store it in a 3D table.

Focusing our interest on higher-order entropy measure we can see that
the erasure entropy is faster even though two more 2D tables are required
to compute the measure. Although the entropy rate has two 2D tables less,
it has to compute more values in order to fill the tables.
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Figure 6.4: The time in milliseconds needed to compute the measures using
two models and varying their intensity range values.
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Chapter 7

Conclusions

Multimodal visualization is a powerful tool to be considered in medical ap-
plications. The development of new techniques that reduce the complexity
of current fusion strategies allowing to assist and enhance visual image in-
terpretation in a timely and accurate manner is fundamental in real clinical
environments. The aim of this master thesis has been to contribute to the
research of these techniques.

Next, the main contributions of this thesis are described:

e Several information theoretic tools have been presented in order to
define new fusion strategies. A key point of our work has been the re-
duction of user interaction when defining the fusion process. We have
achieved this objective proposing approaches which use the registra-
tion channel or higher-order entropy measures.

e An important part of our work has been the validation of the proposed
techniques in a real medical environment. We have developed a multi-
volume visualization framework that integrates different techniques to
register, segment, and fuse medical volume data sets. We have imple-
mented also different visualization strategies to enhance the validation
process. Our techniques have been tested on synthetic and real data
sets and we concluded that the best approaches are the ConditionalEn-
tropyLess ThanThreshold and MutuallnformationMore Than Threshold
fusion since they are able to detect from each model the most relevant
materials.

In future work, we will investigate how to automatically define a transfer
function to achieve a high quality multi-volume visualization. We will also
concentrate our effort on how the segmentation process can be exploited
during fusion.
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