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ABSTRACT 

The initial goal of this master thesis has been to explore the capabilities of 

Fractal Analysis and its applications to tumor detection on volumetric 

medical images. Study cases include images obtained with Computer 

Tomography or Magnetic Resonance equipment. 

This document refers to the current state-of-the-art of fractal analysis, and 

its applications to medicine. More in particular, it focuses on the detection, 

segmentation and classification of tumors in volumetric images. Fractals 

have proved to be a useful tool for image analysis. In this field, the study of 

multifractal spectrum, based on the multifractal formalism, has had a 

remarkable importance. In addition, a new approach called isofractal 

spectrum is proposed, which relies on the boxcounting fractal dimension 

calculation of iso-density surfaces. 

Based on these fractal techniques, a software module has been developed 

with the purpose of easing the detection of tumoral tissues found in 

MRI/CT liver images. The work has been divided in two big stages, the 

first one focuses on the construction of the fractal analysis tools;  the 

second deals with the study of tumoral and healthy areas and its fractal 

spectrum. This process has allowed defining spectrum descriptors, which 

are the core of tissue classifiers. Finally, the processes are applied to the 

data sets and the classification results are reviewed. 
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1 INTRODUCTION AND MOTIVATION 

Radiology is one of the most active and technologically advanced fields in medicine. It was 

born from the most advanced physics concepts, and it became a reality thanks to the state-of-the 

art of electronics and computer science. The advances of medical imaging have made possible 

the early detection and diagnosis of multiple affections that were not at our reach just some 

years ago. However, progress comes with a price. The raise of imaging machinery has implied 

that the number and complexity of technical parameters have grown in the same proportion, and 

the amount of information generated by the imaging devices is much larger. 

 In spite of technical progress, medical imaging supply chain invariantly finalizes at the same 

point: a human being, typically the radiologist or medical practitioner in charge to interpret the 

obtained images. At the end, it is not unusual that human operators check one by one two 

hundred slices of a Computer Tomography coming from a single routine control scanner.  It is 

not surprising if some tiny detail is missed when searching for “something wrong”, especially 

after some hours of continuous visualization, or due to insufficient time budgets. One of the 

milestones of this work is providing the reader with an overview of the field of volumetric 

medical imaging, in order to achieve a sufficient understanding of the problematic involving 

this discipline.  

This master thesis is mainly an exercise of exploration of a set of techniques, based on fractal 

analysis, aimed to provide any sort of computational help to the personal in charge of the 

interpretation of volumetric medical images. Fractal analysis is a set of powerful tools which 

have been applied successfully in multiple fields. The thesis goal has been to apply these 

techniques within the scope of tumor detection on liver tissues and evaluate their efficiency and 

adequateness. 
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2 ORGANIZATION 

This document is organized in three parts: 

 First part introduces the theoretical background required for the document. Medical 

image acquisition techniques are explored in Section 3. Section 4 covers the Fractals 

theory, as well as the Multifractal theoretical basis. 

 Second part, covered in Section 5, describes previous work related to the application of 

Fractal analysis in medical imaging, and more concretely on cancer detection. 

 Third part is devoted to the study of developments performed in the master thesis, 

aimed to build a tumor detector in MRI liver images. The contents can be found 

distributed in the chapter 6 to 11. Chapter 6 offers an encompassing view of the tumor 

detection system and its environment. It follows the description of the fractal analysis 

algorithms used for tissue analysis and their implementation (chapter 7). The next step 

is the characterization of malignant areas and the construction of a classifier, covered in 

chapter 8. The final classification results are shown in chapter 9.  

Chapter 10 covers some of the preliminary work done with CT images, offered just as a 

complementary view of the MRI imaging. 

Finally, conclusions and future work are detailed in section 11. 
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3 TECHNIQUES FOR MEDICAL IMAGE ACQUISITION 

Imaging techniques have had a significant 

influence in the development of modern 

medicine. They cover a wide range of 

applications, from educational purposes, as a 

teaching tool for future practitioners, to 

diagnosis and treatment planning. The 

information obtained by the means of medical 

imaging may be crucial for granting an early 

detection and an accurate diagnosis and staging 

without the need of applying invasive 

techniques. 

Diagnosis can benefit from 2D and 3D 

interactive visualization of acquired data. The 

imaging systems  do not limit themselves to 

display a raw image obtained from medical equipment, but image processing algorithms are 

applied, allowing to extract hidden data from images, which otherwise would remain invisible 

to the human eye. Images are employed to assess multiple organic parameters such as tissue 

density, blood perfusion, contrast agent enhancement, or metabolic behavior.  

Lately, the support of imaging has been extended to interoperative support, the medical 

visualization systems have entered inside the operating room. Preoperatively acquired images 

and intraoperative images are integrated to provide support during the operation. Surgeon is 

supported by Virtual Reality or mixed reality 

devices, such as see-through displays, semi-

transparent head-mounted displays or simple 

projectors, which provide instant information 

of the data required. 

Another growing area is the surgery simulation 

trainers, which combines visualization and 

haptic devices in order to permit the surgeon to 

have a hands-on trial before the real thing. 

Arthroscopic knee/shoulder surgical 

simulators
1
 or cataracts training simulation [2] 

are interesting examples of that area. 

For further information, an overview of the 

state-of-the art of imaging on medicine could 

be found at [1]. 

3.1 Radiography  

The discovery of X-Rays in 1895 by Wilhelm Konrad Rontgen was a revolutionary event in the 

history of medicine. For the first time it was possible to see interior parts of the body without 

actually cutting into it.  

X-ray imaging is based on the attenuation of X-ray quanta when travelling through the body. 

The remaining quanta reach a film, where a 2D image is formed. From the physical point of 

view, X-ray attenuation is caused by two different sources, the absorption and the scattering (or 

                                                      
1
 http://www.insightarthrovr.com/index_en.htm 

Figure 3.1: Liver Surgery Planning 

Figure 3.2: Intraoperative imaging projection 

in liver surgery 
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Compton effect). Absorption is the natural capture of the quanta within the tissue, which is the 

predominant effect for low energy X-ray beams (so called soft beams). In the other hand, 

scattering is provoked by the collision of high energy beams (hard beams) with electrons from 

the outer hull of an atom.  

X-rays are generated by electrons accelerated through an 

electric field.  When the electrons hit the anode, the kinetic 

energy is transformed into heat and X-ray quanta. The 

speed of electrons depends on the voltage applied during 

the field generation. We speak of hard beams when the 

voltage goes beyond 100kV. 

Scattering is the dominant attenuation effect for very dense 

tissues. Hence, hard beams are suitable in the acquisition of 

bones structures. When the goal is soft-tissue exploration, 

which is the case of mammographies, soft beams are 

applied. Since the dominant attenuation process for soft 

beams is absorption, it implies a higher impact of the 

radiation on the tissues, which makes it more harmful than 

hard beams. 

The images obtained using X-ray are a planar  

representation of the attenuation provoked by the whole 

pass of radiation through the body in a given direction. 

Hence, there is a natural integration of the attenuation 

provoked for different overlapped tissues found in the path 

of a ray. The result is that we obtain a 2D representation 

from a 3D object, a kind of projection, where it is difficult to locate precisely the organic 

structures, or its composition. In the other hand, those structures having its silhouettes 

orthogonal to beam‟s direction are relatively well defined.  In consequence, it is usual to take 

several images from different viewpoints, in order to capture details of the regions of interest. 

Imaging with clarity inner tissues or organs hidden behind other body structures are out of the 

reach of this technique. 

3.2 Computed Tomography 

Computed tomography also known as CT
2
 was the first device capable of providing a 

volumetric representation of an object.  CT scanner obtains a real 3D representation of the target 

object, which is formed by an array of 2D images representing slices of the scanned object.  

Just as radiographies, CT are based on the attenuation of  X-ray crossing the human body, but in 

this case the process for obtaining each of the slice-images it is quite more sophisticated. The 

scanning device has an X-ray source and an array of sensors attached to a rotating ring, each 

slice is the result of the intensity received by the detectors after a full loop. Intensity signal is 

post-processed using the Radon inverse transform [3], in order to compose a unique image. CT 

sensors read the integration of the X-ray attenuation of multiple beams, which coincides with 

the Radon transform mathematical definition. The problem here is to recover the model from 

the integration data, which is performed by the inverse Radon transformation.  

After an image has been calculated, the device is positioned for the next slice just by performing 

an axial step. 

                                                      
2
 The Spanish acronym is TAC: “Tomografía Axial Computarizada” 

Figure 3.3: Wilhelm Conrad 

Röntgen wife's hand. The first X-

ray photograph. 
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Notwithstanding the higher amount of radiation exposition required for CT scanners, which may 

be especially risky for young children, the advantages of CT over radiographies are 

overwhelming: 

 CT allows locating and obtaining a representation of inner anatomical structures. While 

X-ray images integrate X-ray absorption of multiple tissues crossed by the beams, CT 

records the attenuation provoked for small volume elements named voxels. 

 The sensitivity of CT is about two orders of magnitude greater than X-ray images. X-

ray images are not able to distinguish different soft tissues, whereas CT images permit a 

primary segmentation. It must be remarked that CT resolution may not suffice for 

certain applications involving soft tissues, which will require a different approximation: 

the MRI scanner. 

 CT is able to obtain high precision measures of the X-ray absorption for each voxel. 

This quantitative measurement of CT voxels is normalized and expressed in Hounsfield 

units (HUs). Precise and deterministic measurement is useful when determining the 

status of a given tissue, for instance, HUs help determining the bone density in 

osteoporosis diagnosis. It is also an important property for computerized aided 

diagnostic, since it is easier for engineers to establish invariant relationships between 

certain ranges of HUs and tissue types. 

  

Figure 3.4:  CT scanner schema Figure 3.5: CT scanner and control room 

3.3 Magnetic Resonance Imaging (MRI) 

MRI is an imaging technique capable of obtaining a volumetric representation of the body. The 

image intensity values are related to the density of water present on the tissues. MRI 

applications are rather complementary to CT, MRI is adequate for soft-tissues classification due 

to their high water content, but its performance is poorer in other areas such as skeletal 

structures, where CT excels.  MRI provides a high soft tissue contrast, being the perfect choice 

for neuro-imaging and joint diagnosis (shoulders and knees). Moreover, because of it relies in 

magnetism and do not uses ionizing radiation, it is not harmful for the patient. One of the main 

drawbacks for MRI is the complexity of interpretation of the resulting images, which usually 

require the participation of a specialized radiologist in addition to the physician. The difficulty 

is related to the large set of parameters that involve MRI captures. The final and most limiting 

constraint which impedes a further extension of MR imaging is the cost, which explains why 

CT equipment are found more frequently in the hospitals than MRI. 

The physic foundations of magnetic resonance are deeply related with the quantum mechanical 

property of spin, which characterizes subatomic particles such as protons. Certain nuclei such as 
1
H (protons), 

2
H, 

3
He, 

23
Na or 

31
P, have a non-zero spin, which provokes a magnetic moment. 

For organic tissues analysis, the most advantageous nucleid is the hydrogen isotope  
1
H , since it 
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is the most abundant of the three existing hydrogen isotopes (99,85%) , and its biological 

abundance in the human body is about 63%, which is basically related to the presence of water 

within the tissues.  

1
H atom is composed by a single proton, which has two spin states: "up" and "down". When 

protons are placed into a strong external magnetic field, their spins change, aligning with the 

direction of the field. Protons fall in one of the two available energy states, which are separated 

by a certain splitting energy. The total sum of individual proton‟s magnetic moments is known 

as Net magnetization (M). 

 

Figure 3.6: a) natural state of proton spins. b) effect of the MRI magnetic field on the H protons 

spin alignment, and the resulting net magnetization. 

Once the protons are spin-aligned, it is possible to change the Net magnetization by exposing 

them to a RF (radio frequency) pulse able to deliver the energy difference between the spin 

states. The frequency of the pulse must be a certain value known as Lamor frequency. If enough 

energy is put into the system, it is possible to saturate the spin system and make MZ=0.  The 

time which describes how MZ returns to its equilibrium after the pulse is terminated is called the 

spin-lattice relaxation time or T1.  

Immediately after the pulse is emitted, all protons spin turn on a similar phase. After few 

milliseconds the phases of the different protons recover its random distribution.  The time to 

reach that state is called the spin-spin relaxation time, T2. 

Both T2 and T1 parameters are measured and combined for determining the 
1
H proton density 

() present in a volume element (or voxel), and hence, the water presence. For instance, 

cerebrospinal fluid has 97% water content, while gray and white matter has respectively an 84 

% and 71%.  

21 ) k   
T

T

T

T ER

ee


   

The influence of T1 and T2 effects on  calculation depends on the times between the initial 

stimulation and the measurements (echo time TE) and the time between two stimulation cycles 

(repetition time TR). Adjusting those parameters, the operator may select the weight of T1 or T2 

phenomena in the measurement, which leads to three cases:  

 T1-weighted images (short TR and TE).  

 T2-weighted images (long TR and TE). 

 Proton-weighted (long TR and short TE). 
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Figure 3.7: Spinal Cord MRI : Left T1-weighted. Right T2-weitghted 

 

Figure 3.8: Effects of RF pulse at Lamor frequency on the magnetic moment of a single proton. 

In order to reconstruct the spatial information of the signal, two additional gradient magnetic 

fields are required, one enables the selection of the slice in z direction, while the other selects a y 

row within the current slice. 

One important advantage of MRI is that the slice direction can be configured at will, which is 

not possible with CT scanners, where the slice direction is always axial. This is convenient in 

order to ease medical analysis of the images. 

 

Figure 3.9: Several slice directions are available using MRI 

MR scanner is performed in a ring magnet that is large enough to enclose the whole patient. 

Inside this magnet, gradient coils are embedded in such a way that magnetic field gradients in 

three orthogonal directions (x, y and z) can be generated. 

For further information on physics and mathematical of MRI, please refer to [4]. 

 Mz0

 M rotates in xy plane (precesion) 

at Lamor frequency

 RF photon stimulus

a) Saggital scan b) Axial scan c) Coronal scan
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One of the downsides of MRI versus CT is that there is not a standard density scale. This means 

that the intensities in MR images do not have a fixed tissue-specific numeric meaning, not even 

within the same MRI protocol, for the same body region or even for the images of the same 

patient obtained on the same scanner. 

3.4 General purpose parameters of CT and MRI volume data  

Common parameters of datasets obtained using MRI and CT are related to the size and spatial 

resolution of the images. Basically, we should take care of: 

 Number of slices: it is the total number of image planes that form the whole dataset. It 

may vary depending on the scanning range (whole body, abdomen, head…) and the 

axial resolution of the scanner.  

 Number of pixels per slice: Refers to the image matrix size, measured in voxels x 

voxels. Typical sixe is 512x512 

 Intraslice resolution (Voxel size within a slice): Represents the real distance of the 

slice-adjacent voxels in the scanned body. 

 Interslice resolution (Voxel size along axial direction): It represents the gap between 

a slice and the following. 

CT and MRI provide a comparable spatial resolution, but MRI offers a better sensitibity or 

contrast resolution.  For all the cases, interslice resolution is always lower than intraslice 

resolution; hence, we speak of anisotropic datasets. Typical resolutions are in the range of 

millimeters.   

High definition CTs are available, which provide a smaller intraslice, at the cost of a higher 

exposition to radiation. Given its physics foundations, MRI allows more isotropic data fields, 

granting that the intraslice distance will be closer to the intraimage distance. 

3.5 Positron Emission Tomography 

FD-PET is a nuclear medicine volumetric imaging technique which permits displaying 

functional processes of the body.  

The tracer, a short-lived radiopharmaceutical substance, is injected and tracked throughout the 

body till it reaches its target area. Once there, the substance is processed by the metabolism and 

the radioactive isotope decays, 

emitting positrons, which in turn may 

collide with electrons, finally 

generating two gamma photons in 

opposed directions. Those protons are 

captured by sensors, and that provide 

information of the 3D coordinates. 

This technique allows a volumetric 

reconstruction of metabolism 

information, providing dynamical 

information of the body mechanisms. 

In modern scanners, the 

reconstruction is often accomplished 

with the aid of a CT X-ray scan, 

which is performed simultaneously 

Figure 3.10: FDG-PET Scan 
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during the same session, in the same machine. Resolution of PET is much lower than CT (2-

3mm per pixel), but the information provided can be precious. 

If the biologically active molecule chosen for PET is of fluoro deoxyglucose, similar to glucose, 

the concentrations of tracer tend to occupy areas with a high metabolic activity in terms of 

regional glucose uptake. This property is of the maximum interest in tumor detection and 

aggressiveness classification. Standardized uptake value, SUV, is a PET quantifier calculated as 

a ratio of tissue radioactivity concentration at a time T, CPET(T), the injected dose and the body 

weight. Cancer treatment response is usually assessed with FDG PET by calculating the SUV 

on the tissues affected by tumors. 

 

 



Master Thesis  -10- 

4 FRACTALS 

4.1 The Iterated Function System 

Iterated Function Systems (IFS) are the foundations of fractals. The ingredients for the simplest 

IFS are:  an initial input set x0, a transformation function f(x), and a simple iteration process. For 

each iteration step, the system will apply the function to the input set, creating an new output 

set. At each iteration, except the first one, the input of f(x) is the output of the previous iteration, 

hence we speak of a feedback process, defined by the equation xn+1 = f(xn). Iterating the process, 

the output sets x1, x2, …, xn are generated in the steps 1,2…n. It is understood that the result of an 

IFS is the result of infinite iterations, i.e. 
n

n
x


lim  

 

Figure 4.1: A simple Iterative Function System schema 

In order a system is to be considered a IFS, an extra condition must be fulfilled: it is required 

that transformation function f(x) accomplishes the contraction mapping principle
3
, which 

intuitively could be interpreted as a condition enforcing the function to cause reductive or 

contractive space transformations on the original set. In other words, f(x) set should be a spatial 

contraction of the original set x. If this condition is accomplished, despite of the initial value of 

x0, the IFS final result ( Axn
n




lim ) it is always the same. A is called a Fractal set, being also 

known as the Attractor of f(x).  

Formally, an IFS is a finite set of contraction mappings on a complete metric space. Therefore, 

we can create iterative processes using simultaneously multiple contraction functions fi(x), so-

called Hutchinson operators. 

In Figure 4.2, the famous Von-Koch‟s fractals curve construction process is shown. Initially, the 

IFS input x0 is a line segment. The IFS is formed by 4 “scale-down+rotate+displace” functions 

(shown as green boxes), which transform the original segment in 4 new segments belonging to 

x1. For each output segment, the same process is repeated. At the limit, we obtain a fractal curve 

of infinite length known as Von-Koch‟s curve. 

                                                      
3
 A mapping f is a contraction of the metric space X, provided that there is a constant, c, 0≤c<1, 

such that for all x, y in X , and d(x) is the distance function, is accomplished that: 

d( f(x),f(y) ) ≤ c · d(x,y) 

Where c is called the contraction factor 
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Figure 4.2: IFS Construction of the fractal Von Koch's curve. 

 Usually, for most renowned fractals, f(x) also accomplishes another property, the 

transformation is linear, and preserves the angles. Fractals created by nonlinear IFS are a 

specific area of research. We also can speak of statistical fractals in those cases were f(x) is not 

deterministic (i.e. could be modeled as a stochastic process), leading to another active branch of 

fractal geometry.  

4.2 Classic Fractals and Self-Similarity 

Self-similarity is one of the most important fractal properties, deeply related to the IFS process. 

The word self-similarity is quite self-explanatory; it defines those structures that look very 

similar when looked at different scales. This means that when a part of the structure is removed 

and compared with the whole, they are the same. If we use the Von Koch curve we have already 

built on previous section, we can easily notice self-similarity: 

 

Figure 4.3: Self-similarity of Von Koch curve 
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The comparison scale ratio at which self-similarity occurs is an intrinsic property of each fractal 

set. 

Fractal theory was build on top of the foundations of already-known mathematical sets, which 

defy the universal Euclidean rules.  Those sets were characterized for its irregularity, in contrast 

of smooth regular curves and surfaces, and its self-similarity. Curiously, most of the classical 

fractal sets were known much time before fractal geometry was stated. 

4.2.1 Cantor set  

The Cantor set was published in 1883, and has played an important role in many branches of 

mathematics, being the essential skeleton behind many other fractals. Building a Cantor Set is 

quite straightforward. We start with an initial set, X0, formed by the unit interval [0, 1], 

comprising the real numbers such that 0x1. Cantor sets are obtained by iteratively applying a 

simple transformation rule: Xn+1 set is obtained by removing the middle third of Xn. intervals. 

Hence, X1 will be ,1][][0, 3
2

3
1  , and X2 subdivides the two previous subintervals, obtaining 

,1][],[],[][0, 9
8

9
7

3
2

3
1

9
2

9
1  . Cantor set is the limit of the sequence when n tends to 

infinity.  

 

Figure 4.4: First iterations for Cantor set construction 

Cantor Set has some properties that make it peculiar: 

 It is an infinite and uncountable set. Its cardinality is the same as [0,1]  

 As expected, it is self-similar. The set contained in ][0, 3
1  is an exact copy of the entire 

cantor set scaled down by 1/3 factor.  

4.3 Deterministic and Natural fractals 

The fractals sets which have been already presented are known as deterministic or perfect 

fractals. They are, in fact, mathematical devices far from real objects. In the other side, it has 

been observed that multiple nature 

phenomena exhibit in some way fractal 

properties, but not in a fully 

deterministic manner. It was at 1982 

when Benoît Mandelbrot put in 

relation the fractal mathematics with 

plenty of natural structures in his 

reference book [5]. Classical examples 

of natural fractals are broccoli or 

cauliflower vegetables, trees and their 

branching structure, coastal-lines, 

lightning‟s paths or vessel of 

circulatory systems (arteries and 

veins). Other interesting examples 

related with biological growth may be 

found at [6]. A famous citation of 

X0

X1

X2

X3

X4

X5

X6

Figure 4.5: Romanesco-Cauliflower displays a clear 

self-similarity 
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Mandelbrot may be enlightening: 

“Clouds are not spheres, mountains are not cones, and lightening 

does not travel in a straight line. The complexity of nature's shapes 

differs in kind, not merely degree, from that of the shapes of 

ordinary geometry, the geometry of fractal shapes” 

However, natural or statistical fractals show non-exact self-similarity. They are non exact, since 

the replica may be noisy or present some degree of distortion. Additionally, there is a scale 

range-limitation, caused by the inherent resolution limitation of the natural structures, and the 

maximum size limitation defined by the object itself. In other cases, the fractal behavior is 

limited to certain range of scales, modeling only partially the object.  

Those effects are worsened by the fact that studying natural devices requires data sampling, 

which limits even more the maximum resolution available.  

4.3.1 Euclidean and Topological Dimension 

The Latin word dimensio means measure. Dimension is an evasive concept but it could be 

generally defined as a characteristic number associated with a metric space. Mathematics has 

developed multiple definitions of dimension, being each of them applicable to certain group of 

problems and situations. One of the most familiar dimensions is the Euclidean, DE, which takes 

into account the space occupied by an object. Euclidean geometry considers a structure one-

dimensional if it is contained on a straight line, two-dimensional if it is embedded on a plane 

and three dimensional if it is a volume in space. Points are dimensionless, in other words, their 

dimension is 0.  

Topological dimension DT is defined regarding the way in which an object can be divided. The 

point is dimensionless, since it cannot be further split. A curve is one-dimensional since it could 

be divided using zero-dimensional shapes (points). Surfaces are two-dimensional since we need 

one-dimensional curves for dividing them. In some cases, topological and Euclidean dimensions 

coincide, is the case of a point (DE=DT=0) or a straight line (DE=DT=1). In others cases, it is 

different, i.e. a curve (DE=2, DT=1) or a curved surface (DE=3, DT=2) 

Returning to our running example, the Van Koch curve, it is easily demonstrated that has 

infinite length. Length is used to measure sets of dimension one, while area measures objects of 

dimension two. Van Koch curve has a dimension larger than one but smaller than two, hence a 

dimension should be allowed to be a fraction. In fact, “fractal” derives from the Latin word 

frangere, which means „to break‟. 

It is clear that classic dimensions are not suitable when dealing with fractal sets, next sections 

describe other dimension that will permit fractal set characterization. All of them are based in 

Mandelbrot‟s fractal dimension, which in turn was motivated by the foundational Hausdorff 

dimension. Although the Hausdorff dimension is the most general result, it will not be covered 

here since its calculation is not feasible from a computational point of view.  

4.3.2 Self-similar dimension 

Self-similar dimension, DS, is a concept applicable only to deterministic self-similar fractals, 

with a well known IFS and a regular transformation mapping.  

Given a certain IFS, and its Hutchinson operators, let be r the reduction factor of the IFS, and N 

the number of scaled-down pieces into which any IFS input structure is going to be divided in 

the current iteration step, i.e. the number of Hutchinson operators. Self-similarity dimension is 

defined as the power-law relationship between N and r: 
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;SD
rN    lyequivalentor   

)log(

)log(

r

N
DS   

When applied to non-fractal, but self-similar Euclidean objects, such as lines, planes or cubes, 

DS obtain values that coincide with DT. For fractal objects, as expected, a non-integer dimension 

is obtained.  

 

 

DS   for Euclidean objects DS   for deterministic fractals 

Figure 4.6: Similarity dimension calculation 

 

4.3.3 Compass-Dimension 

Compass dimension is a simple technique which 

permits obtaining a fractal dimension for 

deterministic and natural fractal curves. The idea 

is quite simple: with the help of ruler and 

compass, we will perform some length 

measurements of the curve. An initial compass 

distance s is selected and, starting from a point, 

the entire curve is walked with the compass, 

counting the number of required steps, n.  Hence, 

the length of the curve at the scale s is l=n·s. The 

process is repeated at different compass 

distances, reducing s each time. Since the fractal 

dimension is the exponent of the power-law 

involving scale and length, one of the typical 

tools for estimating such exponent is the log-log 

plot. In this case, we represent in a plot the log(l) 

versus log(1/s). The exponent of the power law 

coincides with the slope of the line obtained as 

result of linear regression of the samples. 

Figure 4.7 : Obtaining Compass dimension. Above: calculating length at different scales using 

multiple compass sixes. Below: representation of the size against the compas’ arc size. Note that the 

dimension is the negative slope of the graph. 

 

1 3 4 1.261
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4.3.3.1 Box-Counting dimension 

When the analyzed set is not a deterministic fractal and its structure is not suitable to be traced 

with ruler and compass, a new approach to the problem may be taken. The box-counting 

algorithm studies the dimension by matching a grid against the set. At each step, the number of 

grid boxes containing set elements is counted. Afterwards, the grid resolution is increased 

(typically doubled, though other scale factors are possible), and the counting process is repeated. 

The process is iterated while the data set resolution allows it. The box-counting dimension is 

obtained as the exponent of the power-law relationship of the grid‟s resolution (s) versus the 

box count (N) at a given grid‟s resolution. Again, a log-log-plot is utilized, the graph of the 

log(N) vs log(s) is represented, and approximated by linear regression. The line slope coincides 

with the Box-counting dimension DB. 

(4.1) 
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Figure 4.8: Box-counting dimension on Von Koch curve. Left: increasing resolution covering grids. 

Righ: log-log plot and slope calculation. 

Box counting and its variations is the most used technique dimension in fractal measurements, 

since it has an easy computer implementation, and it is easy scalable to more-than-2 

dimensional spaces. In the other hand, obtaining reliable results require that the finest grid 

resolution must be sufficient to guarantee that the log-log-plot‟s slope tends to the fractal 

dimension.  

4.3.3.2 Differential box counting 

Until this moment, the methods to determine fractal dimension (FD) already discussed are 

applicable to binary sets. When dealing with grayscale images, it is required to use new 

approaches. The first and simplest option consists of representing the image as a 3D surface. 

The process is quite simple, given an MM  sized image, the algorithm works by mapping 

(x,y) pixel coordinates to (x,y) vertex‟s surface coordinates, and the intensity of the image pixel 

is mapped to the z vertex coordinate. At this moment, a 3D version of the well-known box-

counting is applied. The 3D space is partitioned in cubes of size rrr  . Regarding the z 

coordinate, in order to apply a homogeneous scaling, it is required to measure the image 

intensity using a unit derived from the quotient of the maximal intensity value Imax, and the 

image width M. I.e., an alternative image intensity I’ will be utilized: z= I’(i,j) = I(i,j)*M/Imax . 

In order to count the number of boxes required to cover the whole surface, the differential 

L0

L1

L2

L3

N0

N1

N2

N3

=1.2
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approach is used, which relies on utilizing the maximum and minimum intensity value within 

the cell, and applying the formula (4.2): 
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That system of box counting is called differential box counting or DBC, given the differential 

nature of the calculus.  

Finally, the total number of boxes per resolution is counted as (4.3), and fractal dimension is 

obtained by linear regression of log(Nr) versus log(r).  

As presented in [14], it is important to subtract and divide before flooring the result, and avoid 

calculating 

















r

I

r

I minmax
, since we will suffer from quantization errors. 

 

 

 

Figure 4.9: Differential Box Countig. Box of size r, 

and its z column. Selected box has a count of 3 boxes. 
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4.4 Multifractal theoretical overview  

4.4.1 Introduction 

The approach of Fractals is based in the study of sets. Elements may belong or not to a set, 

following a binary true or false relationship. However, this approximation is not adequate for 

representing most of the natural phenomena, where studied parameters may have larger 

dominions, ranging from a limited set of values to unlimited continuous levels. That is the 

motivation for the appearance of the measure concept. The idea behind multifractals is to extend 

fractal self-similarity from sets to measures. 

Another keystone of multifractal theory is the inexactitude of self-similarity in natural 

processes. The similarity observed at several scales is far to be exact in most of the natural 

phenomena.  Additionally, in the same process we may notice similarity at different scales, 

located in different areas. This means that multiple fractal sets lie interwoven, each one with 

their own scaling behavior. That is the origin of multifractal word. 

The theoretical contents found in this section are covered in the references [7][8][22] 

4.4.2 Definitions 

4.4.2.1 Measure 

A measure of a bounded subset S of n , expressed as μ(S), can be often considered as a sort of 

mass distribution. A metaphor may help understanding the concept; think of spreading a little 

handful of sand in a bounded surface, the mass sand distribution on the surface in a given point 

corresponds to the measure. 

4.4.2.2 Local behaviour: Holder Exponent 

First phase of multifractal analysis is to study the local behaviour of our data. To do so, we will 

be using a “magnifying lens” focused in a certain box B of side ε, and centered on an element of 

the set x. Given that settings, the coarse Hölder exponent [22] is defined as the exponent that 

regulates the power law of measure and scale. If limit when ε tends to zero is taken, we speak of 

fine Hölder exponent, which is a sort of local dimension. 
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The Hölder exponent is calculated for the whole data set. Depending on the nature of the studied 

process, the range of values [αmin, αmax] may vary. In some cases it is restricted to a small value 

interval, in others it can range from 0 to infinity.  

4.4.2.3 Global behaviour: Multifractal spectrum 

Once Hölder exponents have been calculated, we place an ε-resolution grid onto the analyzed 

set. Next, for each α value, we count the number of boxes of size ε having coarse Hölder 

exponent equal to that α, obtaining Nε(α). The coarse multifractal spectrum [22] is defined as: 
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When analyzing a data set, )(cf  gives a fractal dimension for each one of the subsets formed 

by those elements sharing a certain singularity pattern determined by α. 

Obtaining the fine multifractal spectrum may require calculating the Hausdorff dimension, 

which is computationally unaffordable, and it is out of the scope of this work. 

4.4.3 Methods for multifractal spectrum calculation. 

4.4.3.1 Method of the Histogram 

The direct approach for multifractal spectrum consists of four steps [7]: 

1) For each set element, calculate the coarse Hölder exponent at maximum resolution 

available, using the expression (4.4). 

2) Discretize the α range in Δα sized segments, giving a set { α1,.., αi} of discrete values 

3) Choose a set of box-grids with increasing resolution. 

a) For each grid find of scale εi, 

i)  For each αi 

(1) Calculate  Nε(α, Δα),  i.e. we count the number of boxes having Hölder 

exponent between αi and αi +Δα 

4) )(cf  is derived from equation (4.6) using linear regression: for each αi , the slope of  

log(Nε(αi, Δα) ) against log(εi)  equals )( icf   

4.4.3.2 Method of moments 

Direct method is time consuming from a computational point of view. A good alternative 

consist of using the method of moments, which is based in the concept of generalized 

dimension[7]. 

Generalized dimension Dq corresponds to scaling exponents for the q-th moments of the 

measure. It provides an alternative description of the singularity measure. Once again, covering 

the support of the measure with boxes of size l, and defining )(lPi  to be the probability of the 

i-th box, a series of exponents parameterized by q according to:  
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The exponent is calculated from the following expression: 
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Certain values of Dq have special significance; D0 coincides with the box-counting dimension. 

D1 is related with the information theory developed by Claude Shannon, being known as 

Information dimension. D2 is called correlation dimension.  

Generalized dimension could also be described using the parameter )(q  alternatively to Dq. 

Both concepts are easily obtained from each other: )1()(  qDq q . 
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There is a strong relationship between the multifractal spectrums and the generalized dimension. 

)(q  is related with f(q) through Legendre transform, which is described by the following 

equations: 

(4.9) ).()( qq
q

 



 

(4.10) ).()())(( qqqqf    

Therefore, one of the usual methods for obtaining the multifractal spectrum starts by obtaining 

the generalized dimension and, later on, utilizing the described equations to obtain  and f(). 

4.4.3.3 Direct determination of the f(α) singularity spectrum 

Chaabra and Jensen described a method [9] for calculating the multifractal spectrum without 

requiring the usage of Legendre transform. The following procedure is applied: 

a) We cover the experimental data set with boxes of size l, and compute the probability of 

each of the boxes )(lPi . Afterwards, normalized measures for multiple moments 

),( lqi are obtained using: 
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q acts an amplifier lens that permits exploring different regions of the measure. For q>1, those 

singular measures are amplified, for q<1, most frequent measures are analyzed. q=1 replicates 

the original measures. 

b) Finally, f(q) and α(q) are obtained from:  
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In both cases, it is required to perform a linear regression for each q and scale combination, in 

order to obtain the approximation of the limits. 
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4.4.3.4 Multifractal from Discrete Wavelet Transform (DWT) 

Last approach to multifractal spectrum calculation is done through the usage of the Discrete 

Wavelet Transform. Intuitively, it seems quite natural to find some similarities between both 

mathematical devices. DWT allows the exploration of a signal at multiple resolutions and 

locations, which is deeply related to multifractal analysis. 

By using sliding wavelets instead of boxes, we get rid of the grid position dependence that 

might mask singularities or perturb the estimation of Hölder exponents. The statistical approach 

for obtaining multifractal spectrum using wavelets is called Wavelet Transform Modulus 

Maxima (WTMM). As shown in [10], the mathematical background is complex, but method 

may be summarized in a few non-trivial steps: 

1) Calculate the DWT coefficients T, and obtain its modulus M.  

(4.14) 

 

2) Local maxima chains of M, so-called WTM skeletons, are calculated at different scale 

resolutions a. Maxima from different resolutions levels are linked using proximity criteria. 

3) Utilize wavelet transform skeleton to compute the  partition function Z(q, a) 

(4.15) 

 

Being L(a) the set of all maxima lines that exist at the scale a and which contain maxima at any 

scale a’ <a. 

4) τ(q) is obtained from the slope of linear regression of  the plot log(Z(q,a)) vs log(a) 

5) Finally, obtain f((q)) utilizing Legendre transform. 

 

Figure 4.10: (a) 32 grey-scale image. In (b) grey scale coded WTM. From (b) to (d), lines are 

maxima skeletons of WTM at varying resolution a. Dots show local maxima and its direction. 

Resolutions for (b), (c) and (d) are, a= 2w, a = 2
0.1
w, and a = 2

1.9
w, respectively. 

It could be noticed that Z takes into account the local maxima of the maximal lines at a certain 

scale a. Those points are, in fact, singularity points which could be thought as areas with the 

same holder exponent.  
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4.4.4 Basic properties of the multifractal spectrum 

Some of the fundamental multifractal spectrum 

properties need to be reviewed: 

1) The spectrum has an interesting relationship 

with the internal bisector of the axis α and 

f(α): 

a) The spectrum is below the bisector of the 

axis:  )(f  

b) The spectrum touches the bisector line at 

q=1. ))1(()1(  f  

2) The spectrum reaches its maximum D0, at 

q=0: α(0). ))0(())((  fqf    

3) For most general multifractal processes 

generated by multiplicative cascades, 

spectrum curve resembles a concave bell 

below the bisector. 

Figure 4.11: Typical multifractal spectrum, 

below the bisector and tangent at α(1) 

f((q))

(q)

(0)=D0

(1)=D1

(2)=D2

bisector
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5 PREVIOUS WORK.  

5.1 Fractals and Cancer. Is there a relationship? 

5.1.1 Angiogenesis and statistical growth processes 

Tumor vasculature is known to be more chaotic in appearance than normal vasculature. This is 

related to one of the most critical events in tumor progression: the angiogenesis. Tumoral cells 

emit signalling molecules to the host tissues, which stimulates the generation of proteins 

required for generating new blood vessels. Those vessels will be responsible for delivering 

nutrients and oxygen, and removing detritus of tumor cells. 

 

Experimental settings with mice have demonstrated that tumor have quite different vascular 

densities and growth characteristics, furthermore, the fractal dimensions of tumors vessels [15] 

has been found to be 1.89±0.04 whereas normal arteries and veins yield dimensions of 

1.70±0.03  

 

Figure 5.2: Skeletonized images of vascular networks. A) normal vessels. B) normal subcutaneous 

capillars. C) Tumoral vasculature 

Tumor growth has been deeply studied, and its pathological morphology has been described 

using Euclidean parameters such as size, diameter and volumes, but the tumor structure is 

difficult to characterize in that manner. Fractal geometry opens a new observation window, 

which permits quantifying some of those morphological characteristics which physicians rely on 

to describe malignancies, such as the irregular border or unstructured vascular growth. 

In fact, it has been found that using some mathematical models known as statistical growth 

processes, tumor and vascular growth can be reproduced. Furthermore, such models are also 

Figure 5.1: Blood vessel generation 

(angiogenesis) due to the signalers 

emitted by the tumor. 
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known to produce fractal structures. Following table describes three growth algorithms which 

are relevant in cancer study. 

5.1.1.1 Eden Growth 

EG is a statistical growth process that works on a planar grid of cells. Initially, a single cell is 

infected. Next site to be infected is chosen at random from among the nearest neighbors of the 

first site. Growth continues by randomly infecting the neighbors of growing cluster as it 

expands. 

5.1.1.2 Diffusion Limited Aggregation  (DLA) 

DLA, is a statistical growth model based on the Eden growth. EG 

model is enriched with the addition of a scalar field which 

represents a substance that is diffusing toward the cluster. That 

substance may simulate the presence of a nutrient, or a tumoral 

signaler. 

 In DLA the probability of growth of the candidate cells is not 

spatially uniform. The cells where the gradient of the diffusing 

substance is larger have higher probabilities to be selected. This 

process generates dendritic-like structures that have been 

suggested as model of growth of healthy arteries. The fractal 

dimension of a DLA cluster as a whole is known to be about 

1.71 in a plane with a minimum path dimension of 1,00. The 

minimum path dimension is the fractal dimension of the 

shortest path crossing the fractal structure. 

5.1.1.3 Invasion Percolation 

In several science fields, percolation is related to the movement and filtering of fluids through 

porous materials. This process may be simulated using a simple algorithm:  

a) A grid of cells is created, and a strength value is assigned randomly to each cell.  

b) A cell is selected as seed for a growing invader cluster.  

c) At each time step, the current invader structure is enlarged with the addition of the 

neighboring cell with the lower strength.  

Resulting percolation clusters showing up holes of many sizes, leading to a fractal dimension of 

1.89 in a plane for the cluster and a minimum path dimension of 1.13. It is important to remark 

that that the observed fractal dimension of the tumor vasculature corresponds to those produced 

by an invasion percolation. Invasion percolation results largely depend on the randomness of the 

background expansion network, which in the case of tumors is supplied by the host tissue. 

 

Figure 5.4: Invasion Percolation algorithm 

Initial condition After 13 growth steps An example of resulting cluster

Figure 5.3: DLA generated 

figure 
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5.1.2 Imaging using contrast agents 

Because of the peculiar vascular architecture of tumor vessels, the movement of blood-borne 

substances such as imaging tracers is different from normal veins or arteries.  When an imaging 

tracer is applied, the substance does not reach the whole tumor volume as expected. This is 

caused by the tortuousity of the vessels. Using MRI imaging it has been show that perfusion of 

the imaging marker in the tumor behaves like in a percolation network, flowing rapidly in some 

places, flowing slowly in others and not flowing at all elsewhere. It also has been found that the 

elimination of a tracer from a tumor has prolonged tail provoked for the heterogeneous 

transportation of vessels. 

5.1.3 Fractals and Cancer 

Regarding the applicability, a lot of studies established a clear relationship amongst cancer and 

fractals. Remarkable efforts have been done in the field of mammograms, where the fractal 

analysis tools have demonstrated to be really useful.   

In the other hand, it could not be generalized that tumors introduce more irregularity and imply 

the rising of fractal dimension. Counter-examples have been found for the rule. Is the case of 

metastatic bone marrow
5
 lesions, where the affected tissue shows a loss of fractal structure. 

Simulations performed with automata models showed that the fractal dimensions on the tumor 

border depend on a complex interplay of parameters such as tumor motility, the supportive 

framework of the organ or structure, the hormone signalers proliferation due to intra-cell 

communication or endocrine cells transmissions,  tumoral destruction ratio, etc. Nevertheless, 

fractal methods have shown has a powerful tool for examining the mechanistic origins of the 

pathology. Literature covers several examples of its usage for different tumoral pathologies such 

as pulmonary, prostatic o breast cancer. 

5.2 FA: Fractal Analysis on medical images 

This section covers some Fractal analysis techniques and its application to tumor detection and 

classification on medical images. The existing bibliography is abundant but rather 

heterogeneous, since this field has been covered by multidisciplinary range of specialists such 

as biologists, medical practitioners, physic experts and all sort of engineers.  

5.2.1 Study cases 

In [11], fractal analysis is applied to characterization of prostate cancer in MR images. For such 

purpose, T2-weighted images (T2WI) of 55 patients were used. T1-weigthed images are not 

suitable for prostate cancer detection, since they could not depict prostate zonal anatomy. From 

55 cases, 28 were biopsy-proven cancers, and 27 were normal. 

The study demonstrates a statistically significant relationship between texture fractal dimension 

(TFD) and histogram fractal dimension (HFD) with benignity or malignity of explored tissues. 

The experiment worked on a collection of manually selected 12x12 images of prostate regions 

of interest (ROI) selected from the group of MR images. The image size was small enough to 

guarantee that the tissue selected was fully inside the affected regions for those positive cases. 

The set of images were classified using TFD and HFD techniques. TFD is another name for 

differential box counting, already introduced, while HDG deals with the study of the fractal 

dimension of the image histogram. The histogram is a classical image processing analysis tool 

which shows the intensity distribution curve. Its fractal dimension is calculated using a 2D 

DBC.  

                                                      
5
 The substance inside bones which produces blood cells 



Master Thesis  -25- 

Next figure summarizes the results obtained when trying to differentiate normal and cancerous 

tissues. It could be seen that, in spite of both techniques are able to classify tissues, HFD 

performs fairly better. 

 

Figure 5.5:Box-plots of statistical distributions for TFDs (a) and HFDs (b), in the normal ROIs and 

cancerous ROIs. Red lines in the boxes represent median values, blue boxes cover the IRQ (50% of 

the samples). Whiskers extending from the boxes show the extent of 1.5 x IQR of the data (99.3% of 

the samples). 

ROC analysis confirms that HFD achieves better classification results than TFD, being their 

respective AUC
6
 0.966 versus 0,691. It is speculated that the reason for such a difference is that 

TFD is more sensible to spatial variation of intensity pixels. Since prostate cancer is multifocal 

in most of the cases, its spatial distribution sometimes could be similar to normal tissue. HDF is 

not sensible to spatial distributions, which makes it more accurate for that type of tumors. 

…………. 

Another interesting utilization of fractal analysis is 

performed in [12], where its application to aggressive and 

nonaggressive lung tumors was proposed. In this case, the 

goal of FD analysis is not focused on not tumor detection, 

but in tumor staging. Even for experienced radiologists, it is 

difficult to diagnose in a CT whether a small-cells lung 

tumor is aggressive (stages 3,4) or not (stages 1,2), which is 

capital when deciding the most adequate treatment to the 

patient. The authors found that there is a high correlation 

between the fractal dimension and the stage of tumors. The 

higher the FD, the higher the stage. 

The experimental data set was obtained using a contrast-

enhanced computer tomography (CE-CT), which generates a 

group time-sequence images where contrast diffusion is 

depicted. The authors divided the work in three phases: 

transformation, selection of affected regions, and fractal 

analysis. 

The transformation phase requires calculating a value of fractal dimension for each image pixel, 

generating a new image in the fractal dominium, the FD-image. For such a purpose, a scalable 

surrounding box around every input pixel is used, and its fractal dimension is calculated using 

DBC.  

                                                      
6
 AUC: Area under the ROC curve 

Figure 5.6: Fractal dimension 

Image. Arrow shows an early non-

aggressive tumor 
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The calculation of FD-images is a proper preprocess for CT images, easing human interactive 

selection of tumoral tissues. FD-images show a special sensitivity to irregular areas, and have 

the benefits of border enhancement. On these images, the physicians perform the selection 

phase by manually segmenting ROI images on lung‟s affected areas. Each selected area is 

displayed through the temporal series, allowing the operator to modify the position of the ROI 

in some temporal slices to correct the patient‟s possible respiratory motion.  

Once the ROI images are selected, they are studied during the time series, calculating the 

averaged FD (FDavg) of each temporal snapshot. Each ROI is represented with an unique 

parameter: its time-maximum FDavg.  

The test has been run on 15 cases clinically rated, and thresholds for separating the stages 4 and 

5 obtained, with a success rate of 83.55% for studied cases. FD showed strong correlation with 

corresponding standardized tumor uptake value obtained from FD-PET imaging.  

Furthermore, the CT acquisition parameters, voltage and intensity, has been manipulated in 

order to study its effects on the FD calculation. It has been found that the standard deviation of 

FD for consecutive time-slices in a study area varies depending on the parameter set. That 

experiment has determined the combination of voltage and intensity that ensures the most 

precise measure. 

 

Figure 5.7:  ROI’s FD time evolution of four stage tumors in 

different stages and four normal cases. It can be seen that the 

upper area groups lung tumor sequences, and that average FD 

is proportional to the stage. 
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5.3 MFA: Multifractals Analysis 

5.3.1 Multifractal Analysis: an interdisciplinary tool. 

Multifractal analysis was first introduced in physics, while studying the turbulence 

phenomenon. Since then, the technique has evolved, becoming a mathematical tool which has 

been applied in multiple scientific disciplines. Apart from biological structures, other multiple 

nature or human-driven phenomena show multifractal behavior, such as earth quake 

distribution, internet data traffic, stock market index evolution, etc. Two references are given 

below in order to get a glimpse of the wide spectrum of applications. 

Surprisingly, it has been stated that WAN traffic presents self-similarity when observed at 

different time scales. Feldman et al. [16] demonstrated that due the inherent nature of some 

WAN traffic related protocols (TCP/IP), there exists a mathematical multiplicative process 

which can model consistently the traffics. A direct consequence of that result is that the traffic 

must show multifractal properties due the properties of multiplicative processes. Such models 

may allow generating more realistic synthetic traffic, inferring instant (low-scale time) traffic 

from statistical samples (high-scale time) and providing a better understanding of network 

traffic. For the analysis of the real traffic samples, Discrete Wavelet Transform method has been 

applied in order to obtain the multifractal spectrum of the one-dimensional traffic signals.  

Another example of multifractal analysis is the characterization of soil particle-size distributions 

(PSD) [17]. PSD defines a combination of clay, silt and sand contents, which facilitates to group 

soil into classes. Multifractal analyses revealed PSDs with single (monofractal) and multifractal 

scaling. It was found that multifractal parameters were related to clay content. A clay content of 

10% marked the threshold from single to multifractal scaling. For the experiments, multifractal 

spectrum, f(q) vs. (q), was calculated as Chhabra and Jensen. 

5.3.2 Multifractals applied to cancer detection and segmentation. 

Huge efforts have been done in medical imaging in order to assist physicians in their fight with 

cancer. This chapter will focus in the applications of multifractals in breast cancers, which is 

one of the tumor classes with a higher impact and whose early diagnosis becomes determinant 

for treatment. For such purposes, multiple techniques have been developed in order to assist the 

radiologist and medicine practitioners in the diagnosis and treatment planning tasks. Diagnosis 

may be doubtful even for skilled radiologist, and support imaging tools can help on early 

detection, avoiding unnecessary biopsies (false positives) and help in a precise localization of 

affected tissues. Multifractal formalisms has demonstrated to be a powerful tool for both 

classification and segmentation tasks. Next section exemplifies each operation by studying two 

selected state-of-the-art papers. 

5.3.2.1 2D segmentation algorithm 

One of the significant signs of breast cancerous activity is the presence of small mineral 

deposits in the tissue, also known as microcalcifications. Mammographies are the most 

extended imaging technique for detection and diagnosis, and allow detecting detect those 

microcalcifications in a non-invasive manner. However, some microcalcifications have a small 

size and are situated in low-contrast areas, which make the detection error prone.  

Since multifractal analysis performs a study both at local and global scale, it is appropriate to 

detect the microcalcifications.  For such purposes in [20] the multifractal analysis is adapted to 

the specificities of the case, in order to be able to detect and segment microcalcifications. 

The approach relies on the calculation of multifractal spectra utilizing the histogram method, but 

adding some interesting tune-ups in order to make it more sensible to the target. First adaptation 

is to utilize a capacity measure instead of a simple measure. The simplest measure (i,j) for a 

pixel is its grey level g(i,j), which can be normalized dividing by the sum of grey levels of the 



Master Thesis  -28- 

whole image. A capacity measure consist of the usage a kernel in a surrounding area  around 

the pixel, which will give us a measure value, probably different than the pixel‟s own value. 

Multiple capacity measures are possible, but the authors have concentrated their efforts in the 

maximum and minimum capacity measures: 

(5.1) Maximum capacity measure: ),(max),(
),(

jigji
ji 

  

(5.2) Minimum capacity measure: ),(min),(
),(

jigji
ji 

  

In fact, those measures resemble the morphological operators of dilation and erosion. Hence, the 

shape of  determines the spatial behavior of the results. For microcalcification detection, the 

diamond shapes perform better than square or circular areas, and its size domain is 1, 3 and 5. 

 

 

Figure 5.8: Calculation of the maximum capacity measure for the pixel in the center of the image, 

using Diamond-shaped kernel and sizes 1,3 and 5. Dark grey is the measure value selected. 

 

The multifractal is calculated in three phases:  

1. The capacity measures are calculated 

2. For each pixel, we consider a set of boxes of increasing size j and centered on the pixel. 

Domain of j is {1,2,4,6,8,10,12,14,16}. For each box, the coarse Hölder exponent (c) 

is calculated using (4.4). Following step is to approximate the fine Hölder exponent  

by the slope of the linear regression of log(c) versus log(j).  

This step leads to an interesting result, the -image, which is an image whose pixel 

grey values correspond to ,  of course, adapting  dynamic range to gray scale 

available range. 

3.  values are quantized and box counting is applied to calculate corresponding f(), as 

explained in previous chapters. In a similar way, a f()-image is obtained. 

Several test show that maximum measure works better that the minimum, as could be 

appreciated in the Figure 5.9, where the -images are shown. 
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Figure 5.9: (a) -image using the maximum capacity measure. Microcalcifications are visible as 

little circles. (b)  shows the results with minimum measure 

An additional decision is taken on the basis that microcalcifications are characteristically bright 

parts. It is already known that the calculation of  relies on logarithm of measures. Logarithm 

acts as a magnifier on the lower gray band. Our interest is the opposite, since we would like to 

achieve the greatest resolution at high brightness levels. The adopted solution is straightforward: 

utilizing the inverted image, which forces to switch to the minimum measure capacity operator. 

Usually, microcalcifications are areas with a relative high contrast and we can consider them as 

rare events. Such properties indicate where to look for them within the multifractal spectrum; 

pixels having high  (high local contrast) and low f() (rare events) will be the target. Just by 

selecting the pixels in a certain f() range, and applying morphological operators in order to 

clean the result, this approach achieves really impressive results, even for hard cases. Next 

figures show the intermediate stages of the algorithm, and its final results. 

Figure 5.10: (a) Original 

mammogram 

(1024x1024) and (b) a 

detail view (128x128) 

 

Figure 5.11: (b) -image. 

(c) f()-image. White 

color corresponds to 

high levels. Notice that 

microcalcifications have 

a high  and low f(). 
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Figure 5.12: (a) mask 

formed by pixels having  

0≤f()<0.4. (b) mask for 

0≤f()<0.6. (c) and (d) 

represent the 

mammogram once the 

selection mask (a) or (b) 

are applied.. 

 

5.3.2.2 3D Classification algorithm 

This section will describe the methodology introduced in [21]. The paper has been selected as a 

remarkable example of multifractal spectrum wavelet calculation. Additionally, and interesting 

contribution is achieved: the generalization of the concept of multifractal spectrum to the three 

dimensional case.  

Authors define a framework for breast-area MRI image classification, with the aim of deciding 

whether a scan is either benign or malignant. For such a purpose, multifractal spectrum of the 

whole 3D data set is calculated by utilizing a DWT-based algorithm. The process obtains 7 

spectrums, one for each DWT direction. Afterwards, in order to avoid dealing with cumbersome 

spectrum curves, some scalar descriptors are chosen to reduce the dimensions of the problem. 

Those descriptors will be in used in the image classification process. 

 

Figure 5.13: BRMI Multifractal spectrums for each direction 
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The data set utilized consist of time-serial BMRI scans obtained from four women: 2 cancer and 

2 cancer-free cases. The scan series includes one pre-contrast image and four post-contrast 

images acquired at 1, 3, 5, and 7 minutes after the contrast is administered. Scanning data set is 

formed by 104 sagittal slices by 256x256 pixels, with slice thickness of 3mm. 

 

Figure 5.14: Dataset representation 

Since Wavelet transform requires a cubic dataset, the 104x256x256 images are boundary 

mirrored in order to reach the 256x256x256 size. Afterwards, wavelet coefficients are obtained 

and a multifractal spectrum for each direction is calculated. 

 

Figure 5.15: Left: definitions of the directions of wavelet transform. Right: explanation of the 

characterization parameter of the multifractal spectrum 

Each directional-multifractal spectrum can be approximately described by 3 scalar descriptors 

without loss of the discriminant information, which are:  

1) Spectral Mode (Hurst exponent, H or (0) ) represents the apex of spectrum or the 

Hurst exponent.  H could be understood as a measure the global irregularity of a scan,   

2) Left slope (LS) or left tangent (LT) represents the slope of the distribution produced by 

the collection of Hurst exponents with smaller values of the mode (H).  LS describe the 
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deviation from mono-fractality. The higher LS values, the greater mono-fractality. 

Theoretic pure fractals (monofractal) have infinite LS. 

3) Width spread (Broadness, B) or right slope (RS) or right tangent (RT). Broadness 

allows easily calculating RS and RT, while the reverse process is not so straight 

forward. Hence, B is the preferred over other parameters. B could be seen as a summary 

of the overall spectrum, showing the variability of the Hurst exponents.  

In the paper, BMRI data available consists in two cases and two controls.  

For all practical purposes, the descriptors which provide more accurate classification results are 

H and LS. In particular, the value is the one corresponding to hlv direction, which is the one that 

has pure high-frequency data. Given that set of markers, it is stated that healthy patients show a 

smaller H+LS value than cancer affected. Regarding the temporal behavior, it seems that 

studying the evolution of parameter B in hv direction shows significant selection capabilities.  

The authors stated that their findings are consistent with empirical evidence that healthy 

responses are characterized by irregularity (multifractality and low H+LS) and that increased 

regularity (monofractalty and high H+LS) may suggest pathologies. 

 

Figure 5.16: Left: LS vs H(hlv direction) case classification. Right: temporal evolution of  B. CC: 

Cancer Cases. NC: No Cancer 

 

Due the limited range of images studied, results are not conclusive and the applicability of 

formal classification is limited. In addition, the selection of decision parameters and thresholds 

is not justified. In conclusion, further study is required, but it is an interesting starting point, 

giving some clues for future developments. 
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6 OVERVIEW OF THE APPLICATION FOR HEPATIC 

TUMORAL TISSUE DETECTION 

This chapter is the starting point for the second block of the thesis, mainly presenting the 

development of a piece of software aimed to the detection of metastasic tissues in the liver 

through the usage of fractal analysis.  

The application has been created having in mind two main purposes. In the first phase of 

research, it was utilized as a tool for the application of fractal analysis techniques in the regions 

of interest and studying its behaviour. In a second phase, and in consonance with the thesis main 

goal, the application was extended to be able to detect and highlight areas containing tumoral 

tissues in the liver.   

Figure 6.1 depicts the pipeline of the detection algorithm that has been implemented. The 

process traverses the whole image volume, using an analysis unit composed by a 32x32 planar 

intraslice window. The window is slid in order to cover all the possible positions in the volume. 

For each window location, the system performs two type of Fractal analysis, obtaining the 

corresponding Multifractal spectrum and the Isofractal Spectrum, which is a new Fractal 

technique developed in this thesis. Chapter 7 fully covers the theoretical details and 

implementation issues regarding those fractal techniques. 

In the following stage, the obtained spectrums have to be summarized into a few meaningful 

scalar values in order to ease their classification. That is the role of the descriptors. Once the 

descriptors have been calculated, it is necessary to select which of them are more significant for 

tumor detection, and to establish the thresholds that separate benign from malignant tissues. 

Both decisions, referred as characterization phase, lead to the construction of tissue classifiers. 

The process of characterization of the spectrums, the distillation of descriptors and the classifier 

construction is detailed in the Chapter 8. 

Finally, the classifier decision leads into a windowed region tagged as malignant or benignant. 

In the former case, the voxels within the window receive a vote. Once the entire set of windows 

has been analyzed and the voxels have their vote results, the visualization of the model is 

performed. In this stage, the idea is to highlight the voxels using the number of votes as the 

selection intensity, allowing an enhanced visualization of tissues with higher probability of 

malignity. 
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6.1 System Overview 

All the software developments concerning the thesis has been integrated as a module in the 

Medical Imaging platform VRMedVolVisDicom, created by the MOVING
7
 research group from 

Universitat Politecnica de Catalunya (UPC).  The underlying programming language for all the 

works has been C++  

VRMed platform provides facilities for DICOM format management, easing the tasks of image 

and metadata loading, which is crucial since most 

of the medical images obtained from imaging 

equipments are compliant with the extensive 

DICOM standard (Digital Imaging and 

Communications in Medicine).  

The developed module, from now on DimFract, 

utilizes VRMed visualization capabilities to 

integrate analysis results into planar volume 

sections and volumetric views of the model. The 

application also generates some statistical and plot 

results in the form of Matlab
8
 language and stored 

in plain ASCII files. Matlab facilitates graph 

generation and allows any kind of data 

manipulation for further data exploration. 

The graphic user interface has been designed following the design guidelines defined by the 

VRMed team, based on the MVC pattern. The GUI development environment is based on the 

multiplatform Qt 4.4.3 library and QtDesigner from TrollTech.
9
  

Summarizing, Figure 6.3 shows the overall architecture of the system, delimiting the VRMed 

and DimFract interfaces, as well as its interaction with external data files.  

 

                                                      
7
 http://www.lsi.upc.edu/~moving/ 

8
 http://www.mathworks.com/ 

9
 http://www.qtsoftware.com/ 

Figure 6.3: System 

architecture overview 
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6.2 Data sets 

DICOM data sets utilized in this project were provided by the Vall d’Hebron Hospital, which 

include several confirmed cases of hepatic metastasis. Since the information for each patient 

was heterogeneous, one of the first tasks was to select the study cases amongst all available 

data, finally deriving in two representative cases, named A and B. 

 Case A Case B 

Type: High resolution MRI. T1-Weigthed / FAME 
(Fast Acquisition Multiphase Efgre3D) 

Contrast protocol, 4 MRI were taken: 
Basal-Arterial-Venous-Retarded. 

Low resolution CT scan. 

Range: Liver-centered Full head+torax+abdomen 

Image size: 512 x 512 x 76 voxels 512 x 512 x 257 voxels  

Dimensions: 460 x 460 x 190 mm 500 x 500 x 840.4 mm 

Bytes/pixel: 2 2 

Voxel size: 0.898438 x 0.898438 x 2.5  mm 0.976562 x 0.976562 x 3.27 mm 

The start-up idea of the project was to search for variations of fractal dimension provoked by 

tumoral angiogenesis. Hence, it was necessary to have images with a high level of definition in 

the affected areas, good enough to provide details due to vessels presence. One of the first 

impressions was to notice that normal CT images provide a poor accuracy in liver soft tissues, 

and they do not allow appreciating vessel structures. Figure 6.4 shows case B CT scan, where 

the liver and a metastasis area are shown. A detailed view is provided, where the gray levels 

scale has been modified ad-hoc to highlight the affected area. As it could be appreciated, the 

information on standard CT is on the texture (or noise) and the gray levels, rather than in the 

shapes. 

 

Figure 6.4: CT slice corresponding to case A 

In contrast, MR provides an enhanced view of the liver area, which allows differentiating 

tissues and vessels. Case A contains is a full MRI protocol, which is a complete studio 

consisting in different scan series varying the caption parameters. The studio includes T1 and 

T2 weighted images. For our purposes, T1WI images are more adequate, since they detail the 

vessel areas better. Furthermore, T1 images include a contrast time series, which permit 

temporal series analysis. 
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7 DEFINITION AND IMPLEMENTATION OF FRACTAL 

ANALYSIS ALGORITHMS FOR TUMOR DETECTION 

This chapter covers the definition and implementation details of the fractal analysis tools used 

for determining whether the tissues are healthy or malignant. Two main algorithms have been 

developed, the Multifractal Spectrum, calculated through the method of moments, and the 

Isofractal Spectrum which is one of the main contributions of this master thesis. Both 

techniques study the image set from different points of view; multifractal focus on the fractal 

distribution of irregularity, while Isofractal Spectrum studies the fractal geometry of isosurfaces. 

In initial phases of development, the primer input of ideas was the definition of Isosurface Box 

Counting, which consists of the calculation of the fractal dimension of an isosurface, i.e a 

surface that links images areas sharing the same density value. This technique was not 

sufficient, and had to be enhanced, leading to the creation of the Isofractal Spectrum, which 

could be understood as the representation of the fractal dimensions of the isosurfaces for the 

entire range of densities. 

The chapter finally describes how those fractal analysis tools could be applied into the images 

using the application and the way its results could be visualized. 

7.1 Isofractal spectrum analysis 

7.1.1 Isosurface Box counting 

If we consider the volumetric model as a 3D set, voxels could be tough as the nodes of a 3D 

grid. Each node has an associated value: its density 

value. If we choose a certain density value threshold, it 

is possible to extract a surface that separates the volume 

where the density value is greater from the volume 

where the density is lower than the threshold. This is 

called an isosurface. Multiple algorithms have been 

designed to extract an isosurface, most of them based on 

the marching cubes (MC) algorithm.  

The approach presented in this work consists of 

calculating the fractal dimension of the isosurface using 

boxcounting. Since we are not interested in the surface itself, but in its FD, it is not necessary to 

explicitly calculate the mesh surface. In order to apply 3D box counting, it is enough to be able 

to determine whether a cubic grid box 

formed by 8 voxels is crossed by the 

isosurface. If this is the case, the box is 

countable. The calculation is simple, for 

each voxel grid, determine whether is 

black (its value is over the threshold) or 

white (below the threshold); the grid box 

is crossed by the isosurface if there exist 

at minimum one white and one black 

vertex. The same process could be 

defined in 2D, just by working on a 

single scan slice. The process remains 

basically the same, but working with 2D 

squares, and isocurves. 

Figure 7.1: (left) grid of black and 

white voxels. (right) equivalent box 

counting view. Left box is countable, 

right box is not countable. 

Figure 7.2: (left) 3D surface obtained from an 

image, interpreted as height-map. (right) an iso-

curve extracted from the  height-map 
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The initial study was aimed to determine whether this kind of analysis could provide significant 

information for tumor location.  

At this point, it is interesting to recall differential box counting (DBC). DBC represents a 2D 

image as a height map which defines a 3D surface, in order to apply 3D box counting. In 

contrast, IBC calculates the FD of the iso-height curves, instead of calculating the FD of the 

height-map derived surface (Figure 7.2). 

7.1.1.1 Implementation 

The IBC has been developed both in 2D and 3D versions. From implementation point of view, 

the calculation of the box counting has been designed as a recursive process. The recursion 

starts at the lowest scale level (s0=1), from a box containing the entire analyzed volume, whose 

size is a power of two. At each recursion step it is needed to decide whether the current box at 

scale sn is countable, which in turn requires dividing the box using the next scale level (sn+1 = 

sn*2), and asking whether any of the smaller box contained is countable. If true, the current box 

is countable. 

The trivial case of recursion happens when the maximum scale is reached, the box coincides 

with the unit-box. Here, just looking at the threshold and voxel values, we can decide if the box 

is countable. 

 

Figure 7.3: Different stages of box counting recursion 

In order to accelerate the unit-box case, a cache has been created for storing the maximum and 

minimum density values of the voxels belonging to each unit size box. If the threshold value is 

in the range between max and min, the box is countable. 

Once the recursion is completed, the 

count of boxes (N) for each scale 

level is collected, and using linear 

regression, the slope of the plot 

log(N) versus log(1/s) is calculated. 

In order to obtain an accurate slope, 

the algorithm selects the samples 

that need to be used in regression. 

Two degenerate situations are 

considered: saturated areas, and 

almost-empty areas. Saturated areas 

are those containing a high number 

of active boxes, and all the boxes at 

low scale levels are countable. Till a 

certain scale level is reached, non-countable boxes do not appear.  

In the other hand, almost empty areas suffer from the opposite effect, for small scales, only one 

box is active. This is constant until enough zoom is achieved, and multiple active boxes appear.  

Both effects are shown in Figure 7.4, the algorithm simply discards the consecutive samples that 

lie on the saturation line defined by: 

s0 s1 s2

log(1/s)

log(NB)

1

1 2 3

2

3

saturation line. 

slope = dimension

single-box line

Figure 7.4: Linear regression on degenerate cases in a 3D 

box counting. 
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y=dimension·(x-1) 

or in the single-box line y=1. It permits obtaining a most accurate slope, since the discarded 

samples were not meaningful due to the lack of resolution. 

7.1.1.2 Scale range 

The nature of iterative implementation enforces a geometric evolution of scales, the resolution is 

doubled at each step. Hence, given a study area of size 32x32x32, the box sizes applied are 32, 

16, 8, 4, 2, 1. The number of scale levels is directly obtained from Nlevels=log(max_size)+1. 

Alternatively, an iterative solution has been tested. This solution is able to provide any set of 

scales, at the cost of increasing the computation time due to the augment of scale levels and the 

lack of reutilization of the high scale information in the low scale data which is naturally 

provided by the recursive solution. 

The iterative option has been tested, using box-side sizes ranging from 1 to total area width in 

unitary increments, but the results achieved in the tests were not satisfactory when compared 

with the recursive choice.  

7.1.2 Isofractal spectrum 

After preliminary tests on the medical images, it came to the light that the selection of a 

threshold isovalue is a burden, which enforces human interaction and multiple trial and error. In 

some cases it is possible to find a certain value which shows an increase of fractal dimension in 

the areas of interest, but results are not generalizable. The situation is worsened by the fact that 

MRI do not guarantee scaled density values, which means that if some interesting thresholds are 

found, they will be not reusable for other similar images since the density scale will be different. 

In the other hand, it is quite probable that the information is not tied to a given density value, 

but to the interaction between density levels within the data set.  With that in mind, it becomes 

natural to think of studying the evolution of fractal dimension along the density values existing 

in an image, which here it is named after Isofractal Spectrum (IS). 

 
Figure 7.5:  grey scale image obtained from CT (right), and its corresponding isofractal spectrum 

(right). Series correspond to different resolution of isolevels. 

Given the analysis set, the maximal and minimal density values are obtained. The range is then 

homogeneously quantized in R segments, and IBC is calculated for the resulting R+1 sampled 

density values. R becomes one of the critical parameters defining the spectrum, since in one 

hand determines the resolution of the spectrum, and in the other regulates the computational 

effort.  
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7.1.2.1 The scanline spectrum 

In order to study the behavior of the isofractal spectrum in regions of interest, DimFract module 

also provides of a functionality for representing the evolution of the IS along a scanline. By 

selecting a direction aligned to one of the axis ( i, j or k ), a starting point and a path length, the 

evolution of the spectrum could be represented graphically as a 3D graph, as shown in the 

Figure 7.6. 

  

Figure 7.6: (left) scanline spectrum corresponding to the scanline defined by the user in the 

application (right). 

This kind of representation may be helpful when determining the changes that characterize the 

transition from an area of interest to another. 

7.1.2.2 Significant test cases 

 

 

Figure 7.7: Case TC.A: IS for discrete gradient 

 

A large set of test-case images 

has been run against the IBC 

algorithm to learn about its 

behavior in different situations. 

Left column shows two cases 

were the results are according to 

the expectations.  

In TC.A there are 2 meaningful 

density values, showing 

increasing irregularity. This is 

perfectly depicted in its fractal 

spectrum, where the two peaks 

show a remarkable increase from 

reference dimension (1- straight 

line). 

Additionally, the algorithm has 

been run on a deterministic 

fractal, the Sierpinski gasket. As 

can be seen in case TC.B, the 

approximation to the exact value 

of fractal dimension (1.585) is 

pretty good. It may be surprising 

that the spectrum does not show 

a single peak of height 1.58, this 

is provoked by the antialiasing 

of the image, which creates 

density gradients around the 
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FD = log(3)/log(2) ≈ 1.585 

 

Figure 7.8:  Case TC.B: IS for sierpinsky gasket. 
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Theoretical results state that in the addition of sets, the fractal dimension should be that of the 

set having greatest FD. As could be seen in series 3, there is a sudden peak coinciding with the 

curve threshold. The cause of this non-desired effect is the insufficient level of resolution, which 

contaminates the slope calculated with regression. This anomaly remains as an open problem. 

7.1.2.3 Minimum Connected-Component filter 

Isosurface spectrum goes trough different density values and, for each of them, an isocurve is 

extracted. In fact, the isocurve is usually formed by a set of disconnected smaller isocurves. If 

we consider the effect of random noise in the images, it is easy to see that it introduces an 

undetermined number of small disconnected isocurves at different density values. These 

microcurves may alter the calculation of the regression, whose negative effects has been already 

noticed in the case TC.C. Hence, these noise-derived isocurves may alter the values of fractal 

dimension of the target curves. Since the goal pursued in this work is to find traces of the vessel 

structure, the main interest is focusing in isocurves with a noticeable connected length. 

Therefore, an extra preprocess step has been added to the IBC in order to get rid of small 

curves: a minimum connected-component filter. 

During the spectrum calculation, the filter is run once for each sampled density value. An image 

is formed containing all the isocurves corresponding to the current sampled density level. Here, 

the filter finds the connected components and labels each of them with its length. The algorithm 

works on a recursive way, using a seed-propagation strategy. Later on, the connected 

components which do not fulfill a minimum length requirement are discarded. Finally, FD is 

calculated on this reduced set. 

Hence, a new parameter is required for IBC: the minimum connected-component curve size 

(cc). From the implementation point of view, once the connected components are labeled, 

during the box counting process all the areas that belong to curves with a size below the cc 

threshold become not countable.  

The application of this filter eliminates spurious areas of the spectrum while maintaining the 

most significant peaks. Figure 7.10 shows the effect of increasing the minimum connected size 

from 0 to 32 units in the spectrum calculation. 
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Figure 7.9: Case TC.C: IS evolution for curve addition. 
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Figure 7.10: Effect of the connected-component filter in Isofractal Spectrum. (right) isocurves for 

different density values. Connected components are labeled with a color code which represents its 

length. 

 

 

Noisy area 

  

Figure 7.11: Isofractal spectrum of a  gaussian noise affected area, and the evolution when 

increasing the connected components filter threshold. 
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7.1.3 Problems with resolution in volumetric models 

One of the most remarkable characteristics of volumetric images is their limited resolution in 

the axial direction. This is especially dramatic for ordinary CT images, which supply the poorest 

resolution. In our data sets, the proportion of voxels‟ interslice size (i,j) dimension versus 

intraslice size (k) is 2.78 for MRI and 3.35 for CT. Hence, the spatial sampling anisotropy is 

around a 3 factor, which greatly questions the validity of exploiting the spatial coherence in the 

k axis direction. 

The three-dimensional IBC requires working 

with cubic windows, having equal number of 

samples in each direction. In this case, it means 

that the in the real space, the “cube” is in fact a 

right prism of square, whose height is 3 times the 

base side. For increasing window sizes, the effect 

of anisotropy is devastating, in most of the cases 

is not possible to apply the fractal analysis to the 

desired areas, since the range in k direction is so 

large that the studied area becomes highly 

heterogeneous, which in turn invalidates the 

calculation of fractal dimension. 

A naïve work-around would be using trilinear interpolation for providing estimated samples in 

order to recover isotropy. Again, this approach is not attractive, since we are speaking of 

generating data for a 3mm gap between slices. The structures that we are looking for could fit 

completely inside this intraslice space; small vessels‟ branchings, local variations of tissue 

density, holes, and other structures may fall fully between slices.  

The resolution limitation finally leads to a disfiguration of the results obtained using 3D 

analysis windows, unless tiny areas were used, which will not guarantee a precise fractal 

dimension calculation. Both isofractal and multifractal spectrum suffer the effects of this 

problem.  

 

7.2 Multifractal spectrum analysis 

Isofractal spectrum is related to a geometrical interpretation of the set, where the isocurves are 

studied and their fractal dimension calculated. Multifractal approach is much more abstract, here 

we will be calculating the fractal dimension of areas with the same singularity behavior, which 

has nothing to do with the density level, but with the variation of density levels in different 

scales. It could be thought that the information obtained from multifractal analysis is 

complementary to that calculated with isofractal spectrum. 

The implementation of multifractal analysis is based on the system introduced in [9] by Chhabra 

and Jensen, which is defined by the equations (4.11)(4.12)(4.13). The method requires 

computing the moment q of the measures at several scales. The calculation uses a normalized 

measure, which help avoiding numerical overflows, as defined in (4.11). The voxel‟s density 

value is directly used as cell probability P.  

(4.11). 
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Figure 7.12: Approximate representation of 

the volumetric model data. 
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The algorithm requires the following steps: 

a) A multiscale representation is calculated from the original voxel set. Scale is indicated 

as l 

b) Choose a set of q values for which the Multifractal spectrum is going to be calculated. 

In this case the selected range is q{-10, .., +10} using  steps of size 0.25. 

c) For each scaled image and q value, calculate the matrix of total moments 


j

q

j lPlqM )]([),(  

d) For each scaled image and q value, calculate the matrix ’(q,l) and f’(q,l) 

e) Apply linear regression to the each of the rows of ’(q,l) and f’(q,l) against log(1/l). 

This will provide (q) and f(q). 

 

The implementation is quite similar in 2D and 3D, the main differences are found in step (a), 

where in the three-dimensional case, the sum of 4 voxels forming a 2x2 square is replaced by 

the sum of 8 voxel defining a 2x2x2 cube. 

In some cases the linear regression will not provide a reliable slope because of the samples 

distribution is not linear. Those cases where the coefficient of regression is below 0.97 are 

discarded in the final spectrum. That usually happens for values of q situated in the low and in 

the high band of the range. 
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7.2.1 Validation 

The Chhabra and Jensen method provides an accurate spectrum, especially in the area near q=0. 

In order to verify the correctness of the algorithm, it has been verified that the resulting 

spectrums are compliant with the basic properties of the multifractal spectrum. As could be 

observed in Figure 7.13, the whole curve is below the bisector (q) =f(q), and f(q)<f(0)= D0 for 

any q. Furthermore, the curve is tangent to the bisector at q=1. The value of f(1) is often 

referred as the information dimension or D1. 

 

Figure 7.13: (top right) Multifractal spectrum of a MRI 32x32 area (top left), and a detail view 

(bottom) showing the tangency with the bisector at q=1. 

7.2.2 The MF spectrum scanline 

In a similar manner, the variation of the singularity spectrum along a scan line defined within 

the image could be analyzed. In this analysis, the variation of the spectrum broadness is easily 

visualized, but the slope or (0) (maximum positions) variations are difficult to perceive since 

the scale of variation is really small when compared with the whole spectrum‟s broadness. 
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7.3 Application of the fractal analysis techniques 

The DimFract module is a workbench which offers to the user different alternatives of 

application of the fractal algorithms which has been presented to the volumetric models. Those 

processes are well classified by using the following ontology:  

 Global or local: differentiating whether the application of the process involves the 

whole image or just affects a restricted area. 

 Static or dynamic: regarding the temporal applicability. Static methods work in a 

single image, while dynamic work in multiple temporal snapshots. 

7.3.1 Global operations 

Global operations are related to the application of a fractal analysis operator to the volumetric 

model completely, or in a whole slice otherwise. Such operator must be able to obtain a scalar 

value from a small window of size W centered on a given voxel. The operator is run for every 

voxel found on a regular grid of size r, which is equivalent to slide the window through the 

image in gaps of size r.  If the maximum resolution is required, r is set to 1, which means that 

the calculation is performed for all the voxels, but for the sake of running time, it is reasonable 

to adjust r to greater values (3, 5…).  

The selection of an adequate value for W is high 

dependant of the application context. W regulates the 

accuracy of the calculation (the greater, the most) and the 

area precision (the smaller, the best), both aspects are 

important and we need to find a balance between them. A 

good heuristics consist of choosing the greatest W which 

ensures resolution enough when compared with the target 

ROI size. Finally, there is another important issue, big 

values of W increase the process time, but this could be 

compensated using greater r. 

Once the scalar values have been calculated, they are 

visualized in combination with the model. The system 

merges the luminosity of the original density image with 

the hue obtained from a color mapping of the scalar value generated by operator, based on HSV 

palette. If r is greater than 1, the scalar value for a given voxel grid is extended to its 

neighboring voxels (using r/2 radius) where the operator result is not available. 

But, which are the available operators?  In fact, there are multiple of them, belonging to one of 

the three categories: isofractal dimension, isofractal spectrum and multifractal spectrum. With 

exception of the IFD, it is necessary to define parameters that summarize the spectrums 

information in a single scalar. The parameterization is covered in the following sections. 

Next figure is an example of a fractal image representing the fractal dimension for the density 

1090, which delivers a proper segmentation of liver zone. The image has been obtained using 

r=3 and W=16. 

Figure 7.15: Calculation of the 

Fractal image 

W

r

W

w1 w2
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Figure 7.16: Iso-fractal Dimension image for the density value 1090. 

7.3.2 Local operations 

In some situations, it is required to study specific regions of interest. DimFract permits selecting 

interactively those areas and obtaining their characteristics multifractal and isofractal spectrums, 

given a set of input parameters. The raw data and the plot are written in a Matlab file, which 

could be directly executed within the Matlab GUI. 

 

The application is also capable 

to batch the analysis processes 

through the usage of a test 

configuration file. The file 

contains a list of operations to 

be executed; each of them 

specifies the 3D coordinates of 

the areas to be analyzed and the 

type of analysis to be performed 

as well as the input arguments 

for each process. It is also 

possible to create series of 

operations that will be plotted 

together in order to ease the 

comparisons. This capability has 

been really helpful in the 

characterization of ROIs. For 

more details on the file 

structure, please refer to the appendix 13.6. 

Finally, the last local operation is the scan-line analysis. This functionality demands the user to 

select a region of interest, the axis direction and length of the scan line where the spectrum is 

going to be calculated. This time, the results come into the form of 3D plot, since we will be 

visualizing the spatial evolution of the fractal spectrum. 
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7.3.3 Dynamic operations 

We refer to dynamic operations when the data utilized is coming from multiple images of the 

same patient captured in different instants. Precisely, the working data set A is a contrast MRI 

formed by the basal image (before the contrast) plus three images (namely, arterial, venous and 

retarded) which show the diffusion of the contrast agent propagated through the vessels into the 

tissues. 

Basal Image Arterial Phase Venous Phase Retardaded Phase 

 
   

Figure 7.18: MRI contrast image sequence 

Since the VRMed application has been designed to work with an image at a time, the 

management of dynamic operations is provided in a rudimentary manner. The four images have 

been preprocessed using fractal analysis and the main descriptors have been saved in 

independent custom files in order to be able to load the required information from multiple 

sources from the software. 

7.4 Summary 

In this chapter, the fractal analysis techniques utilized in the project has been detailed. The 

novel Isofractal Spectrum gives a geometric vision of the window, summarizing the fractal 

dimension of all the isosurfaces within a region. In its calculation several issues have arisen, 

specially regarding to the lack of resolution and its effects on the regression, which were 

amended by discarding degenerated samples. 

Another problem detected in the calculation of Isofractal Spectrum was the response to additive 

combination of signals. Due the lack of resolution, the result differs from theoretical 

expectations, since the regression lines are contaminated with the contribution of different 

signals, which provoke fractal dimensions to be higher than reference values. Noise has similar 

effects on the images. In order to reduce the effect of small isocurves, the usage of a connected 

component filer has been proposed. It allows focusing in the contribution of the largest 

isosurfaces, lessening the weight of noise of low FD areas. 

The fractal analysis could be done in 3D or 2D regions. It has been shown that the sampling 

anisotropy of the volumetric images do not permits to utilize the 3D option, since the size of the 

region and the lack of spatial coherence in the axial direction invalidate the obtained results. 

Regarding Multifractal Spectrum, the implementation has been done using the method of 

moments and its variant for direct f() calculation, which permits a light-weighted processing 

while obtaining an accurate spectrum.  

The chapter is closed by the classification of the application scopes of the fractal tools. It could 

be summarized as local versus global application (a single delimited region versus the entire 

volume), and static versus dynamic (within a single image or using multiple images in a 

timeline). 
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8 ANALYSIS AND CLASSIFICATION OF MRI BASED 

ON FRACTAL CHARACTERIZATION 

At this point, we are aware of the analysis tools that have been packed within DimFract module. 

The second part of the project, and probably the more time consuming, has been the study, 

definition and test of tissue classifiers.  The complexity of this phase is related to the high 

number of input parameters and to the fact that the algorithms output are spectrums, which is to 

say signals.  That point makes the problem rather more uncomfortable to manage. In this 

context, the best strategy applicable is to search for scalar descriptors of the fractal spectrums in 

a way that we retain the characteristics that allow differentiating tumoral tissues from healthy 

tissues. Lately, the ranges of descriptors which correspond to malignant areas will be set, and 

classifiers will be obtained by the combination of multiple descriptors.  

The effort on that stage has been centered in the data set A, the MRI with contrast, which is 

formed by four volumetric images: basal, arterial, venous and retarded phase. For static analysis 

the arterial image has been used since it provides the best vessel representation. Dynamic 

analysis involved all the images. 

It is fair to advance that after the primer test, the 3D analysis was discarded, since the results 

obtained were not applicable to tissue classification. This decision has his foundations in all the 

problems already detailed in previous chapters. Therefore, all the results provided here will be 

dealing with 2D intraslice analysis. 

8.1 Methodology 

For static characterization, a test set formed by 35 MRI regions of 32x32 voxels have been 

defined, which will be referred as Regions of Interest (ROI). These regions are representative 

for non-liver tissues (10 samples distributed in different types of tissue: pulmonary, knees, 

peritoneal areas, intestines, etc.), as well as 25 liver tissue regions, which in turn are divided in 

10 healthy areas (normal, vessels and border areas) and  15 tumor areas ( 6 fully inside, and 9 

border areas ).  

On a first phase, the characterization, the spectrums for some of those areas have been 

represented individually, and progressively they have been gathered together in order to 

compare the differential characteristics of the affected areas. Both multifractal an isofractal 

spectrums were analyzed utilizing different approaches. For the sake of concision, only the most 

relevant experiments are going to be reviewed. 

The second phase is the descriptor definition. Bearing in mind the characterization experiments, 

the most discriminating properties observed in the spectrums are converted in a set of scalar 

descriptors, which retain the classification information.  

During the third phase each one of the descriptor was calculated for the 35 ROI set. The results 

were conveniently plotted, trying to find out which descriptors are able to separate the 

metastasic tissues from the healthy tissues. Finally, the best descriptors were combined, in order 

to obtain the most discriminatory tissue-classifier. 
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8.2 Characterization phase 

8.2.1 In-and-out scanlines 

Before proceeding to the analysis of specific test case 

areas, one of the first contacts procedures has 

consisted of the spectrum evolution observation while 

crossing the affected areas. In these scan-lines, it was 

expected to detect some determinant differences that 

were easily translated into selection parameters. Figure 

8.1 shows the sweeping path performed by a 32x32 

sliding window. The track is made of 128 steps 

(4x32), entering and leaving the metastasis area. Only 

the first box (dark blue) and the queue boxes (green 

and yellow) are neatly outside the tumor. Figure 8.2 

shows the multifractal and isofractal spectrums 

through the path. There, it could be noticed that exists 

a clear relationship between the broadness and the 

density range existing in the regions.  

 

Figure 8.1: Scanline crossing the 

metastasis- The path starts in the dark 

blue box, and ends in the yellow one. 
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Figure 8.2: Isofractal (left) and Multifractal spectrum  (right) of the scanline in Figure 7.1 

Path segments B and D, correspond to homogeneous liver tissues, with a small range of densities, and thus, smaller spectrum width. 

Multifractal in tumor area (C) is wider; this is mainly provoked by a growth of the right slope. In contrast, the left slope seems to keep its width similar to the 

healthy areas, but the shape it is changed, since the position of (0),  (1) and  (2) ( marked in red ) start to diverge when entering the tumor.  

In a similar manned, the isofactal spectrum grows wider in C. Its shape seems to be characterized by a single centered peak, but it is not applicable in the 

entire path.  In this case it is quite difficult to establish a characterization rule, due the complexity and variability of the curves. 
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8.2.2 Multiple area comparison 

8.2.2.1 Isofractal Spectrum 

One of the limiting aspets of isofractal spectrum is that 

some of the information available is related to an 

absolute density value. Since the gray scales in MRI are 

“volatile”, being high dependant of the scanning 

conditions, it is not convenient to use descriptors 

resulting in absolute density values when characterizing 

the spectrums. 

Figure 8.3 is a collection of curves from affected areas 

(a), border areas (b) , healthy liver (c) and other tissues 

(d). It has been quite difficult to find a pattern to 

characterize the tumoral areas. First and second order 

statistic operators have proved to be unable to provide 

acceptable classification; mean, variance and maximum 

are not able to differentiate the tumoral curves from the 

others. This could be seen in Figure 8.5, where 

discontinuous lines represent the tumor areas. 

Fourier analysis has been also attempted without results.  

One of the characteristics that seem more promising is 

the width of the spectrum, furthermore, the broadness of 

spectrum above a certain FD threshold. It seems that the 

tumoral areas have a bigger fragment of spectrum on the 

high range of fractal dimension. It could be interpreted 

as a sign of high irregularity at multiple levels. In any 

case, this characteristic is far from being sufficient for 

classification in the case of a single image.  
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Figure 8.3: Isofractal spectrum of different ROI. 
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After some careful observation, it can be noticed that tumoral spectra is characterized by a 

triangular shape. Following that thread, the spectrum is preprocessed using a low pass filter kernel 

of size 3 in order to get rid of oscillations, and the program calculates the standard deviation of the 

error committed by the approximation of the spectrum with a pyramidal signal. The pyramid is 

situated on top of the value 1.0 of Fractal Dimension, its width is the 85% of the analyzed spectrum, 

and the peak placed equidistant from the extremes, having a height equivalent to the maximal 

Fractal dimension of the spectrum.  The pyramid is slided and matched against the spectrum using 

the 15% marginal width, searching for the minimum error. Given such a definition, when 

combining the values of spectrum broadness above a DF threshold of 1.2, and the deviation error 

from the pyramid, we get a classifier that is able to successfully group the test case ROI, only two 

samples are erroneously categorized, a false positive and a false negative. 
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8.2.2.2 Multifractal Spectrum 

Results obtained from Multifractal analysis of ROIs are 

quite resolutive. In Figure 8.6, the tumoral tissues have 

been marked with a star, and tumor border with a 

diamond. Normal healthy areas are straighlines. 

In the first overview image (A), it could be seen that the 

liver areas are conveniently grouped, which is a sign of 

a higher level of monofractality in liver when compared 

with other tissues. When focusing into the area occupied 

by liver curves (B), it could be noticed that there exists a 

separation of tumoral tissues from tumor border areas or 

normal areas. The healthy homogeneous areas (bold 

pink) show a great level of monofractality, observing 

that the enter process provokes a progressive 

displacement towards multifractallity. The (0) 

becomes greater inside the tumor, as well as the 

displacement between f(0) and f(1). 

It also could be observed that the liver areas containing 

normal vessels fall in the same (0) range than 

metastasic tissues, which in fact is quite reasonable. In 

that case, the segregation could be obtained using the 

left slope of the spectra or the vertical balance. 

 

Figure 8.6: Mutifractal Analysis on 35 ROI 
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8.3 Second phase: Descriptors definition 

8.3.1 Isofractal spectrum descriptors 

a) Spectrum width (ISW). The isofractal 

width contains information on the density 

range of a region. If we ask for the width 

over a certain fractal dimension threshold, it 

could be through as an indicator of global 

irregularity. The effect is enhanced when 

augmenting the value of the connected 

components filter. 

b) Density peak position (DP). Surprisingly, 

the maximum FD is not significant for 

separating tumor areas. In the other hand, it 

may be handy when detecting pulmonary 

tissues, which have a remarkable high FD. 

In contrast, the peak density position seems to be meaningful for separing areas affected 

in the case of CT images. 

c) Pyramid Shape Factor (PSF). As explained, the PSF is the result of matching the 

spectrum against a pyramidal-shaped signal. The pyramid signal is adjusted in function 

of the analyzed spectrum, adjusting its width to 85% of the spectrum, and the peak FD   

levered to coincide with the spectrum maxima.  The standard deviation of the 

approximation error is calculated, obtaining PSF as final result. 

8.3.2 Multifractal spectrum descriptors 

a) (0) (A). Marks the position of the spectrum maxima f(0). It is quite sensible to 

variations of the overall image complexity. 

b) Spectrum Width (MSW). Is the range of  values which are occupied by spectrum 

samples. It is proportional to the variability of the image, and the range of different 

densities existing in the area. 

c) Left Slope (LS). It is a measure of the fractality of the area, the greater the slope, the 

more monofractal behavior. Monofractal can be considered to be more regular or “pure” 

than multifractal, where multiple fractal sets are mixed. 

d) f(0)-f(1) = (D0D1). It is a derived descriptor that has demonstrated to gather quite 

interesting information. In fact, it contains indirect information about spectrum and left 

slope, due to the basic properties of the fractal spectrum. 

e) Horizontal and vertical balance (HB / VB). These parameters are used to represent 

the shape factor which permits capturing the general proportions of the spectrum with 

respect the apex (0). 
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8.4 Third Phase: Classifier definition 

8.4.1 Static classifiers 

The static classifiers have demonstrated a low to medium performance on the arterial and 

retarded images. As will be seen, best results were achieved using multifractal descriptors. 

8.4.1.1 Isofractal static classifier 

The quality of selection using the isofractal descriptors already detailed is not sufficient, and 

more work will be required in order to obtain better results. The best selection was reached 

using the following combination: 

C0=    
250150:2

015.0:1





SWIS

PSFIS
 

Isofractal spectrum generation is to be done using windows of 32x32. The size of the windows 

selected for fractal study is 32 voxels. This value has shown a good balance between spatial and 

fractal precision but, again, the size is highly dependent on the target area size. The algorithm 

has been adjusted to a resolution of 100 samples, and the threshold for the filter of connected 

components has been set to 20 voxels. 

8.4.1.2 Multifractal static classifier.  

The characteristics of multifractal spectrum for retarded static MRI are remarkably captured 

using D0D1 and SW. The result is enhanced when constraining the HB and VB. The classifier 

could be defined as follows: 

C1=    

5.1:4

4:3

47.013.0:2

0135.010005.0:1









VBMS

HBMS

SWMS

DDMS

 

The window size of the multifractal filter is set to 32x32, the same used in isofractal analysis. 

Both sizes are kept the same for equaling the capability of resolution in space and linear 

regression accuracy. 
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8.4.2 Dynamic classifiers 

The analysis of dynamic parameters has been performed by observing the value of each 

parameter along the different image stages. In next table the time evolution of some of these 

parameters is shown. Each plot contains the value of the observed parameter for each of the 35 

ROI. Discontinuous lines belong to marked tumoral zones, while bold lines are tumor borders. 

 

ID1 ( based on ISW ) 

The tumor areas show a differential 

behavior regarding ISW descriptor. 

Most of the ROI suffer an important 

gain from basal to arterial image, but 

most of them fall again for retarded 

image, with the exception of tumoral 

regions, which kept part of the gain 

or even increase its value even more.  

The marker works much better if the 

gain is defined as percentage:  

ID1 = (ISW.R-ISW.B)/ISW.B 

For ID1 > 2.0, the area is selected. 

 

MD2 ( based LS) 

Tumor areas show a clear descend 

on LS from basal to arterial   image, 

which imply an increase of 

multifractality due to tumor vessel 

illumination. 

MD2 = (LS.A-LS.B) 

For MD2<-1, the area is selected. 

 

 

MD3 (Based on D0-D1) 

D0-D1 shows a great raise-up for 

arterial phase in most of the tissues, 

and a progressive recovery of the 

original status, achieved at retarded 

phase. Tumoral tissues show a small 

but continuous growth which differ 

from other areas. 

MD3 = D0D1.R-D0D1.B 

For MD3>0.003, the area is selected. 
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9 MRI CLASSIFIERS AND RESULTS 

As a kind of conclusion, this chapter refers to the three classifiers that obtained the best results. 

The performance of the classifiers is 100% in the ROI classification studies, but it is far from 

perfect in the final volume visualization, where the entire volume is analyzed. 

Although there is one of the classifier that excels, the others have been included as 

representatives of the usage of a restricted range of descriptors. 

Additionally, the visualization part and the mechanism of tumor highlighting is described. 

9.1 Final classifiers 

A large number of classifiers may be defined by the combination the descriptors already 

introduced. For the sake of simplicity, it is interesting to reduce at maximum the number of 

descriptors required for the classifier. Therefore, a choice of 2 descriptors is quite convenient, 

but unfortunately it is not possible to fulfill that requirement in some scenarios. 

As it has been already presented, descriptors may fall into static/dynamic and 

isofractal/multifractal categories. Several classifiers have been built, using different 

combinations of classifier categories. In first place, static descriptors have been tested, trying 

multifractal and isofractal independently and in cooperation mode. Later on, dynamic 

descriptors were tested. Finally dynamic and static were combined.  

From the results of the tests, it has been verified that the most successful classifiers are: 

 C1 = { MS1, MS2, MS3, MS4 } : Just static monofractal parameters.  

 C2 = { MS1, ID1 }: One static multifractal and a dynamic isofractal 

 C3 = { DS1, DD2 }: Both dynamical multifractals. 

All the classifiers are successful in the separation of the tumoral areas in the 35 ROI set used in 

the characterization phase. Figure 9.1 and Figure 9.2 show the results of applying  C2 and C3 

over the ROI testing set. The metastasic tissues, marked with a star, could be found grouped in 

the blue boxes. 

In spite of the positive results, once the classifiers are applied to the whole volume, some 

healthy areas appear highlighted as tumoral. Hence, the final quality criterion was set to the 

incidence of false positives and the sensibility to surrounding tumoral areas in the final volume 

visualization. More details on this phase are covered in the following section. 

C2 is, by far, the best classifier. It provides the smaller number of false hits, and it is really 

accurate in the description of the tumor area while using a reduced number of parameters. The 

counterpart is that requires multiple images from the contrast MRI studio. 

In contrast, the main advantage of C1 is that works in a single image, though it requires a high 

number of descriptors, which make it difficult to parameterize in the hypothetic case of 

application in different images. Furthermore, it has multiple false positives on the liver borders 

and in external regions. 

C3 restricts the filtering to the usage of multifractals, but it seems that there is not information 

enough to provide such discriminative results as in C2.  
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9.2 Region voting and visualization 

The selection process works by applying a classifier on a sliding window inside the plane of a 

slice. If the result is positive, all the voxels within the region are given a vote. In order to make 

use of spatial coherence, the adjacent voxels lying in the previous and next neighboring slices 

are also voted. Each voxel may receive multiple votes, coming from overlapping sliding 

windows placed in different positions on the same slice, or from adjacent slices.  

In the visualization phase, the volumetric model is shown by using the default transfer function 

as usual. Additionally, the voxels which exceed a certain vote threshold are highlighted. The 

visualization is quite simple, the higher the number of votes, the higher and the selection index. 

This index is transformed using a color map in a hue, which is applied to the voxel, respecting 

its luminance value.  

The application let the user to specify the minimal number of votes for considering a region 

selected, which permits adjusting the sensibility of the results.  

The results could be displayed in 2D or 3D, though tridimensional visualization requires more 

adjustment effort. In Figure 9.3 the classification results for C1, C2 and C3 are shown in 2D, 

using a selection color is in the range of reds. As has been advanced, the C2 performs better 

than the other classifiers. 

In the following figures, 9.4, 9.6 and 9.5, the results of C2 are shown using volumetric 

visualization. In this case, the selection color is in the range of blues. In those figures, the 

“tumoral cave” structure within the liver could be noticed.  

 

9.3 MRI Classification Results 

 

Figure 9.1: Classifier C2: DS1 versus DD1. Tumoral areas marked with letter M fall grouped in the 

blue box. 
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Figure 9.2: Classifier C3: DS1 versus DD2. Tumoral areas marked with letter M fall grouped in the 

blue box. 
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C1 ( 6 votes) C2 (6 votes) C3 (8 votes) 

 

Figure 9.3: Classifiers applied to MRI test set A. MRI images has been inverted for an improved 

visualization. 
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9.4: Volumetric representation of Liver 

area. Blue areas are those marked as 

tumoral by C2 classifier. 

9.5: The image has been obtained hiding all the healthy tissue. It 

could be appreciated the irregular cavity of the tumor. 

9.6: Cross section of the previous 

volume, showing cleary the blue 

metastasic tissue selected by the C2 

classifier. 



Master Thesis  -62- 

10 ANALYSIS AND CLASSIFICATION OF CT BASED 

ON FRACTAL CHARACTERIZATION 

10.1 Introduction 

Despite the thesis core is devoted to MRI analysis, this chapter intends to summarize some of 

the works done with CT images following a similar methodology. It is interesting to realize the 

notable differences between CT and MR imaging, and to know how the already presented 

techniques behave with CT images. 

For such purposes, the dataset B has been explored. This image can be considered a difficult 

challenge for a radiologist. The metastasis is in a preliminary stage, it is relatively small, and the 

image is a routine control CT and, hence, low-resolution.  Given the metastasis shape, it is 

barely visible in a unique slice (#135), and could be easily missed. 

 

Figure 10.1: CT #135 slice showing a metastasis area circled in red. 

In fact, the visualization problem here it is due to the fact that the increment of the density of the 

metastasis tissue is so small when compared to the 

whole dynamic range that is lost in terms of visual 

perception. The solution here is quite 

straightforward if applying a drastic restriction of 

the dynamic range, focusing to the levels of 

interest. The result, after applying a color mapping 

is shown in Figure 10.2. 

In the processed image, the affected area is clearly 

highlighted. If the same process is applied to the 

neighbor slices, it reveals some nearby areas that 

may be fragments of the same metastasis that were 

not visible by the naked eye. However, the results 

in those slices are not relevant by themselves, only 

are remarkable when taking into account the 

vicinity to the reference slice. The results are 

shown in Figure 10.3. 

Figure 10.2: CT slice #135 after applying a 

range limitation and a color map. 
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10.1.1 Fractal analysis characterization 

10.1.1.1 Multifractal analysis 

From the point of view of fractal analysis, the techniques already presented have shown little 

applicability. The multifractal spectrum is not able to separate affected areas from normal 

homogeneous tissue. It happens that the texture differences from metastasic tissue to normal 

tissue are not perceptible from the multifractal approach. In the Figure 10.4 could be appreciated 

that the spectrum corresponding to tumoral area (green-starred) is not separable from other 

homogeneous healthy areas of liver (series 3,4 and 5). The spectrum main parameters such as 

width, slopes and (0) are identical. The unique differentiating parameter is the spectrum width, 

but as could be seen in the left figure, it is far from being selective enough. 

 

Figure 10.4: (Right)  isofractal spectrums for several areas inside the liver. The green starred line 

represents the metastasic tissue. It could be appreciated that is quite indistinguishable from other 

areas. (Left) The width of the spectrum has been used as spectrum descriptor, with non-acceptable 

results. 
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Figure 10.3: Metastasis is clearly visible in the slice 135. Expanding the dynamic range also 

enables the detection of traces in the surrounding slices (134 / 136) 
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10.1.1.2 Isofractal analysis 

In that case, isofractal spectrum is able 

to obtain better results than multifractal 

spectrum since the most relevant 

information is in the underlying density 

level. It could be seen in Figure 10.5 

that the spectrums for the areas inside 

the metastasis (green starred) are found 

displaced to the high density band. 

Besides that, there are no remarkable 

features in the shape of the spectrum, 

neither the width nor the height. The 

first and second order statistics do not 

give further information. The unique 

property that provides some 

classification potential is the peak 

position, which corresponds to the 

density value with a higher fractal 

dimension. Using that descriptor we 

obtain a classifier with similar results to those given by the dynamic range compression. 

Anyway, the fractal approach seems to be slightly more sensible and accurate than the direct 

range manipulation as shown in Figure 10.5.  

 

Figure 10.6: CT slices showing the density value corresponding to the peak of the spectrum. 

Window size used is 8, and the connected component filter is set to 10. 

At this point, we may ask if the extra computational cost required by isofractal technique is 

worth the effort for this slight visual gain. The answer would be probably negative in most of 

the cases. 
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Figure 10.5: Isofractal spectrums of CT liver areas. 

Green starred is inside the tumoral area, while the 

others are healthy zones. 
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11 CONCLUSIONS AND FUTURE WORK 

In this work the construction of a liver metastasis detection system on MRI datasets has been 

presented. The detection algorithm relies on Fractal Analysis for obtaining the characteristics of 

the tissues. In previous works it has been demonstrated that Fractal Analysis is a powerful tool 

for cancer detection and staging, and multiple techniques and variations has been presented. In 

this work, two different approaches have been taken, one of them based on the well-known 

Multifractal Spectrum, and a new contribution, the Isofractal Spectrum. Both techniques have 

demonstrated to be in some way complementary.  

Isofractal spectrum has been run against a testing set in order to determine its properties and 

weaknesses. Given its geometric nature, the technique is sensible to the presence of high 

complexity isocurves within the volume, but its precision is affected by the lack of spatial 

resolution, which limits the reliability of the fractal dimension calculation through box counting. 

In order to soften the negative effects of additive curves in the regression slope calculation, it 

has been proposed the usage of a component connected filter to reduce the noise contribution. 

A group of selected regions of interest within an MR image have been studied, by comparing 

the shapes and features of the fractal spectrum for malignant and benignant tissues. This survey 

permitted the definition of two set of descriptors, one for each of the fractal techniques. 

Multifractal descriptors were already known, though this work adds two new ones, horizontal 

and vertical balance, which has been useful in the static characterization of the signal. Isofractal 

descriptors are entirely original. 

The phase of spectrum characterization was initially performed in a static image. In that sense, 

multifractal descriptors have demonstrated better capabilities for tumor detection than isofractal. 

In a second phase, the temporal evolution of the MR contrast image was analyzed. The values 

for the descriptors were tracked in the time-line, studying the changes provoked by the contrast 

blood perfusion. Here, both techniques show good selection capabilities when comparing the 

basal phase values with arterial or retarded phase values. 

Based on the characterization phase, the descriptors were combined to form classifiers. Those 

classifiers had been tested to successfully separate the tumor regions from the healthy regions in 

the 35 ROI testing set. When the detection scheme is applied in combination with the 

visualization pipeline, the system is capable of highlighting those areas classified as malignant. 

The voxels within the areas classified as malignant receive a vote. The number of votes is 

increased if the voxel belongs to several affected windows, which is a way to exploit the spatial 

coherence of the affected areas. Finally, the number of votes acts as the highlight weight factor 

in the resulting image. 

Based on the visualization results, the final classifiers allowed the detection of the metastatic 

tissue, in spite of some false positive areas. The most proficient classifier has been proven to be 

the one using a combination of multifractal static and isofractal dynamic descriptors.  

It is important to remark that the classifiers are applied to the entire volume, there is not a prior 

liver segmentation to reduce the working set. Hence, it is clear that the algorithm is quite 

sensible to certain properties only existing in the liver tumor. 

The results points towards the suitability of multifractal analysis as a tissue classification tool, 

especially when the areas could be characterized by its textural irregularity properties. 

Regarding Isofractal Spectrum, it has demonstrated its effectiveness when comparing 

differential properties of an area in its time-line. When combining the two techniques, the 

classifiers benefits from both worlds, obtaining remarkable segmentation results.  
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On the other side, this work lefts multiple open issues, deserving a special mention the 3D 

analysis. Most of the work has been done in 2D. It seems reasonable that making the jump from 

2D to 3D may provide a richer analysis and accuracy in the results, but the current lack of 

resolution make this approach quite difficult.  The classifiers should also be tested on additional 

MRI datasets in order to generalize the results. 

Another important point which requires further work is the characterization of isofractal 

spectrum, probably using some other statistical analysis tool, or even fractal analysis, since the 

spectrum reflect some level of autosimilarity. 

In relation with dynamical analysis, the amount of information that could be obtained in such 

kind of scanners is huge. Probably another type of image or volume analysis based of physic 

models of perfusion may contribute in a much better exploration of the images. In the other 

hand, some problems are derived from the time lapsed scans, one derived from the micro 

displacements of the person between MRI snapshots due to the respiration or other involuntary 

movements that may introduce distortion in time series. The other problem, which exclusively 

affects the MR imaging is due to the differences in the gray ranges between images for 

equivalent tissue densities. In such a case, it would be interesting to have some “prove areas” 

that permit equalizing the images corresponding to the same temporal series. 

The master thesis has focused in classification using contrast MRI, but for cost reasons CT 

images are more commonly used. Liver CT captions are noisier and more difficult to interpret 

that MRI, which makes it a target of computer aided imaging. Further developments need to be 

taken in that direction. 

Continuing with medical image types, it is usual that CT or MRI datasets also attach PET 

images. It would be of high interest that the systems provide a registered representation of 

information coming from different sources, or even more, the ability of displaying an historic 

evolution of the images of the same patient. Next generation aided-image analysis systems will 

need to take into consideration all these information to obtain reliable results. 

More in the line of algorithmics, another interesting approach that could be explored is the 

usage of wavelet transformations for obtaining multifractal spectrum. The usage of DWT could 

probably improve the processing time and it could extend the power of multifractals by 

introducing the concept of spectrum directionality. 

In the same direction, there are other fractal techniques to be tested, such as those related with 

Lacunarity, which basically deals with the study of the gaps between fractal sets. Fractal 

analysis could also be combined with other methods of image processing and pattern 

recognition, which may boost the accuracy of the results. 
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13 APPENDICES 

13.1 Synthetic Test cases for multifractal and isofractal spectrum. 
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Effect of  low-frequency gradient on the image. 
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Multifractal spectrum is the most affected, while figure 2 

spectrum shows a peak of FD which corresponds to the density 
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spectrum suffers non-critical variations on D0 and D1, and a more 

significant decrement of the right slope. Hence it could be 

deduced that this approach is less sensible to low frequency noise. 
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13.2.1 Homogeneous liver area ( l=32, {118,238,37}). 
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13.2.2 Homogeneous Tumoral border area ( l=32, {113,220,47}) 
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13.2.3 Non-Homogeneous Tumoral border area ( l=32, {152,202,47}) 
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13.2.4 Inside the  Tumoral area ( l=32, {128,213,47}) 
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13.2.5 Liver border and vessels ( l=32, {173,236,38}) 
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13.2.6 Scan-line in and out the metastasis. 64 samples path.  
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13.3 User Interface 

The user interface of the DimFract module is organized in four sections, each one enclosed 

within a group box. The module widget is shown in the left area on the figure below: 

 

Figure 13.1: DimFract user interface widget 

13.3.1 Static selector 

The first section is utilized for static global selection. Here the idea is visualizing the fractal 

dimension or any of the descriptors of the isofractal or the multifractal spectrum. The top area is 

devoted to the common variables, such as window size, gap size and 3D/2D box counting. It 

also provides a checkbox to limit the process to the current slide.  

The bottom area is a tabbed control where the user could select the algorithm to be used and 

adjust its specific working parameters set. Let‟s describe the options with more detail: 

 Fractal dimension: A density value is required in order to select the isocurve whose 

fractal dimension is calculated. Additionally, a minimum threshold could be supplied in 

order to select only those areas above the supplied value.  

 Isofractal spectrum: The user must choose a descriptor that will represent the 

spectrum, and a minimum and a maximum value for the given descriptor in order to 

range the visualization. If the values are zero, the range boundaries are ignored. The 

following descriptors are available (their description may be found on the section 8.3): 

o Spectrum width (ISW) 

o density peak position (DP) 
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o spectrum mean 

o spectrum variance 

o Pyramid Shape Factor (PSF) 

 Multifractal spectrum: It utilizes the same mechanism than the former, but in this case 

applied to multifractal spectrum. In this case the parameters are: 

o Spectrum Width (MSW) 

o f(0)-f(1) = (D0D1) 

o (0) (A). 

o Left Slope (LS) 

 

13.4 Dynamic selector 

The second section covers the global search, but 

this time taking into account the evolution of 

certain parameters in time, by using the contrast 

sequence formed by four images (basal-arterial-

venous-retarded). The values of the main iso and 

multifractal parameters have been precalculated 

and stored in files in order to accelerate the 

visualization process, which would be unfeasible 

otherwise. The user could select the parameter 

constraints used to select the affected areas. Each 
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parameter consist of a condition which is true when a given spectrum descriptor is inside a 

predefined range. Each windowed region that accomplish the parameter condition, receives a 

vote.  

Parameters could be combined in order to obtain more restrictive selectors. Default combination 

is performed using and AND operator, but this could be changed to OR by enabling the 

corresponding checkbox. In addition, since the parameters are calculated in a 2D fashion, it is 

possible to explode the 3D spatial coherence by activating the 3D checkbox. If enabled, the 

selected regions extend the vote to neighbouring areas on adjacent slices.  

Finally, the user can adjust the minimum number of votes required for an area to appear as 

active. The default value is 1. 

13.5 Local selection 

Local selection utilities group is used mainly to 

locate, select and study certain areas of the volume. 

It permits window placing by interactively moving 

the selected area with the mouse, or alternatively 

the user may specify directly the ijk window 

coordinates. The shape and dimensions of the 

window are determined by the size and direction 

variables. If size is one, the analysis window is a 

square of size W. If size is greater than 1, the 

analysis windows is a parallelepiped of W x W·size. 

The parallelepiped longer side direction is 

determined by the axis selected, which could be 

switch to i, j or k. If the user deselects the 2D 

checkbox, the program will select cubes instead of 

boxes. 

Once the selection cursor highlights the desired 

area, the user could launch the calculation of the 

isofractal or multifractal spectrum using the 

corresponding buttons. This action will generate a 

matlab file called graph.m, which contains the spectrum data and plots a graph showing up the 

spectra. 

13.6 Test cases 

Finally, the last option permits launching the test 

cases file. The program expects the existence of the 

file “./testCases/index.test” in the execution path. If 

it is found, it will execute the instructions contained 

in the file. Finally, the application will store the results in the graph.m file.  

index.test is a plain text ASCII file. Each line contains the description of a test case, and all the 

parameter set required for its calculation. The fields inside the test-case line are tab-separated 

values following a closed specification. Each line starts with a test-case code type.  

There are two main categories of test cases, those applied to a specific synthetic image, which 

must supplied in the shape of a raw format file, and those applied to the volumetric image which 

has been already open in the application.  The next table shows the test-case types available, as 

well as their codes. 
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Type Code Test-case description 

Synthetic image ( images 

must be squares with side 

n
2
+1 ) 

0 Isofractal analysis applied to the whole image 

1 Multifractal analysis applied to the whole image 

Volumetric image ( applied to 

the current image ) 

2 Isofractal analysis. Defines an isofractal analysis on a 

user-defined window. 

3 Multifractal analysis.  Defines a multifractal analysis 

on a user-defined window. 

4 Crossed-Parameter analysis. Given a pair of specific 

descriptor codes and an area, the application generates 

a plot, using each descriptor as x and y coordinates 

respectively, and placing a marker in the coordinates 

corresponding to the specified area.  

 

The test cases could be easily grouped in a same plot by indicating an adequate total and serial 

number in the line (fields [TTC] and [#TC]). The specification of the fields‟ descriptions for 

each test-case type is detailed below: 

0 [TTC]: Total of 

test cases in the 

serie. (1 if it is a 
single test case)  

[#TC]: Number of test 

case in the serie (1 if 

it is a single test case)  

Image 

path 

Side pixel size (n2+1) [NS]:Isofractal 

spectrum number 

of sample levels 

[MCCT]: 

Minimum  

connected 
components 

threshold. 

 
1 [TTC] [#TC] Image path Side pixel size 

(n2+1) 
  

 
      Window 

Coordinates 

    

             

2 [TTC] [#TC] [D]:Dimen

sion 

[ 2 | 3] 

[WS]: 

Window 

Size (n2) 

[NS] I J k [AD]:Axis 

direction 

[i | j | k] 

[NBAD]:Number 

of boxes in the 

axis direction ( 1 

if square ) 

[MCCT] [CM]: 

Comments 

 
3 [TTC] [#TC] [D] [WS]  I J k [AD] [NBAD]  [CM] 

 
4 [TTC] [#TC] [D] [WS] [NS] I J k [AD] [NBAD] [MCCT] Parameter 

x code 

Parameter 

y code 

DF minimum threshold 

for isospectrum width 

calculation. 

[CM] 

 

The descriptor codes for type 4 are selected from the following table: 
0 Density peak position (DP) 

1 General IsoSpectrum width (ISW) 

2 Not in use 

3 alfa(0) (A) 

4 f(0)-f(1) (D0D1) 

5 Multi spectrum width (MSW) 

6 IsoSpectrum width above a certain FD threshold (ISW) 

7 Multi spectrum Horizontal balance (HB).  

8 Multi spectrum vertical balance (VB).  

9 Left Slope (LS) 

10 Pyramid Shape Factor (PSF) 
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13.7 DimFract module Class Diagram 
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