Projecte de Fi de Carrera Enginyer en Organització Industrial

Towards sustainable energy systems The role of deregulated electricity markets

MEMÒRIA

Autor: Director: Convocatòria: Marco Prosdocimi Montserrat Sansalvadó Tribó Abril 2007 (pla 2000)

Escola Tècnica Superior d'Enginyeria Industrial de Barcelona

Resumen

Durante los últimos 20 años los gobiernos de muchos países han empezado un proceso de liberalización de sectores clave como los de telecomunicaciones, transportes y energía.

Tradicionalmente, estos sectores eran considerados monopolios naturales, pero a finales de los setenta los principios bases del modelo de monopolio fueron criticados por muchos economistas.

El 19 de diciembre de 1996, la directiva europea 96/92/CE fue el comienzo de un proceso de reforma estructural de enormes dimensiones. La directiva introdujo una nueva tipología de mercado eléctrico europeo basada en la desregulación del sector.

El siguiente trabajo, en la primera parte, trata de analizar la reforma del mercado eléctrico mediante un estudio y una crítica de las directivas europeas y del estado de progreso de los países europeos en la satisfacción de los requerimientos de la reforma.

La segunda parte es una elucubración del autor sobre los resultados que la reforma puede lograr con respecto al desarrollo sostenible.

El propósito del siguiente proyecto es encontrar una respuesta a la siguiente pregunta:

"Are the deregulated energy markets suitable to facilitate a development towards sustainable energy systems?"

Table of contents

Resumen	1
Table of contents	3
Abstract	5
1. Introduction	7
2. The evolution of the electricity sector	13
2.1 1870s – 1945	13
2.2 1945 – 1960s	13
2.3 1970s	14
2.4 1980s – 1990	15
2.5 1990s	15
3. Electricity market reform	17
3.1 Electricity market and its problems	17
3.2 The main goals of the electricity market reform	17
3.2.1 Economic efficiency	19
3.2.2 Security of supply	20
3.2.3 Environmental performances	21
3.3 Key issues	22
3.3.1 The electricity supply chain	22
3.3.2 Unbundling	23
3.3.3 Third party access	25
3.3.4 Customer choice	26
3.3.5 Market architecture	26
4. European directives	29
4.1 Directive 96/92/CE	29
4.1.1 Generation	29
4.1.2 Transmission and distribution	30
4.1.3 Retail supply	31
4.1.4 Unbundling	31
4.1.5 The lacks of the directive 96/92/CE	31
4.2 Directive 2003/54/EC	33
4.2.1 Generation	33
4.2.2 Transmission and distribution	33
4.2.3 Retail supply	33
4.2.4 Unbundling	34
4.3 Directive 2001/77/EC	35
4.4 Directive 2005/89/EC	35
5. About Directives	37
5.1 About Directive 96/92/EC and Directive 2003/54/EC	37
5.2 About Directive 2001/77/EC	38
5.3 About Directive 2005/89/EC	39
5.4 Summary tables	40
6. Map of the European electricity market	43
6.1 Competitiveness	43

Pág. 4 Memoria

6.2 Vertical unbundling	49
6.3 Prices	53
6.4 Cross-border exchanges	57
6.5 Security of supply	59
6.6 Environmental performances	60
7. Sustainable development in the European electricity market	65
7.1 Introduction	65
7.2 Three dimensional model	68
7.3 Are the deregulated energy markets suitable to facilitate a development towards	
sustainable energy systems?	70
7.3.1 Economic sustainability	70
7.3.2 Environmental sustainability	71
7.3.3 Social sustainability	74
7.4 Final discussion	75
8. References	77
Appendix A	81
A.1 Map of the European electricity market country by country	81
A.1.1 Introduction	81
A.1.2 Austria	82
A.1.3 Belgium	88
A.1.4 Denmark	93
A.1.5 Finland	97
A.1.6 France	101
A.1.7 Germany	107
A.1.8 Greece	112
A.1.9 Ireland	117
A.1.10 Italy	121
A.1.11 Luxembourg	126
A.1.12 Netherlands	130
A.1.13 Portugal	135
A.1.14 Spain	140
A.1.15 Sweden	145
A.1.16 UK	149

Abstract

Since 1996 the EU15 countries have been restructuring the electricity sector.

The electricity market reform should make possible to achieve potential benefits in terms of improved efficiency in the electricity sector and in the economy through lower prices for customers, lower costs for producers and competitiveness.

The following work intends to explain how the reform works, to show the improvements of the electricity sector in the European countries and to analyze the new market from the point of view of the sustainable development.

1. Introduction

Over the last twenty years, governments in many countries have dealt with the liberalization process of network industries like telecommunications, postal services, transports and energy.

Traditionally, network industries were organized as State monopolies. This attitude was supported principally by the following reasons:

- There was a belief that such industries were natural monopolies and so it could be only one undertaking in the market.
- Monopolies were entrusted to the monopolist to provide a public service of general economic interest.
- The importance of these industries was very high and governments believed that it was fundamental to consolidate them in one firm which they could control.

In the late 1970s, the basic principles of the monopoly model were queried by the economists. They commenced to argue that while some market segments in network industries have natural monopoly attitudes, others do not.

The industrial sector started feeling largely penalized by the high costs of essential production inputs, like electricity, gas, transports, telecommunications..., which were provided by public monopolies.

Eventually, in the 1980s, the European Community commenced to put forward several directives with the aim to liberalize the various network industries.

On 19th of December 1996 European Directive 96/92/EC gave the go-ahead to a structural reform process of big dimensions. This directive introduced a new conception of market for electricity in Europe mainly based on the deregulation of the sector.

In the current political and economic background, the energy sources have to be considered the lifeblood of a country. The European Commission has decided to change

Pág. 8 Memoria

totally the traditional structure of the electricity market with the aim of achieving a new market more efficient from the economic, energetic and environmental point of view.

Traditionally, in the European countries, the electricity market was owned and managed by the State, which exercised the control of the whole supply chain from the electricity generation until the distribution to the final customer.

Both, household and large customers have been constrained to a monopoly supplier to obtain electricity.

The European Union has phased in open markets for energy supplies, lowering the barriers to suppliers and promoting choice for customers. As with goods which can now be moved and traded freely throughout the European Union, energy supply services can now be offered in a common European market. (European Commission, 2004, [13])

The reform commenced ten years ago, but, unfortunately, there is still a strong heterogeneity among the European countries. Despite the efforts, the European Community cannot yet reach a purely European market for electricity.

There are several documents that intend to analyze the electricity market reform.

The documentation can be divided into two main categories:

- Documents from sources correlated to the European Commission
- Documents from sources not involved in the European Commission

In the first category there is a large variety of information: analysis about very specific themes like the unbundling, and also global analysis that intend to give a less deep but wider view of the electricity market.

In the second category it is much more common specific information and there are not overall studies

There is an important consideration. After a careful reading of documents from the first category the impression is that most of the time the information can no more be considered objective information, but it seems a defence of the decisions taken by the European Commission.

The criticisms that can be figured out from these documents are only about the policies of the individual countries or about the state of application of the directives by the countries. But it has never been put in doubt the efficiency of the community directives and the new market for electricity.

The documents that can be considered fundamental for the development of the work are:

- European Union, 1996. Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 concerning common rules for the internal market in electricity.
- European Union, 2003. Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 concerning common rules for the internal market in electricity and repealing Directive 96/92/EC
- European Commission, 2005. Report on progress in creating the internal gas and electricity market.
- European Commission, 2004. Third benchmarking report on the implementation of the internal electricity and gas market.
- European Commission, 2004. The share of renewable energy in the EU. Country profiles. Overview of renewable energy sources in the enlarged European Union.

As stated before, in the second category the information is more specific and not always very useful for the development of the thesis. Anyway, some articles have been very helpful:

- Meeus, L., Purchala, K., Belmans, R., 2005. Development of the internal electricity market in Europe. Energy Policies, Vol. 18, Issue 6, pp. 25-35.
- Polo, M., Scarpa, C., 2002. The liberalization of energy markets in Europe and Italy. Conference "Monitoring Italy", Rome, Italy.
- Serralles, Robert J., 2004. Electric energy restructuring in the European Union: integration, subsidiarity and the challenge of harmonization. Energy Policies 34, pp 2542-2551.

The following work thesis is a contribution to a long-term project called "Pathways to

Pág. 10 Memoria

sustainable European energy systems" - an AGS¹ project funded by industry.

The overall aim is to study and evaluate pathways towards a sustainable energy system with respect to environmental, technical, economic and social issues. The focus is on the stationary energy system in the European setting. Evaluations will be based on a detailed description of the present energy system and follow how this can be developed into the future under a range of environmental, economic and infrastructure constraints. The proposed project is a response to the need for a large and long-term research project on European energy pathways, which can produce independent results to support decision makers in industry and in governmental organizations.

The overall question to be answered by the project is:

"How can pathways to a sustainable energy system be characterized and visualized and what are the consequences of these pathways with respect to the characteristics of the energy system as such (types of technologies, technical and economic barriers) and for society in general (security of supply, competitiveness and required policies)?"

This means to study how possible and different pathways can contribute to achieve a sustainable energy system. (Johnsson, Rydén, 2005, [25])

Regarding the project "Pathways to sustainable European energy systems", the main goal of the following work is to intent to analyze the electricity market reform in Europe from the point of view of the sustainable development of the energy systems.

This means to analyze the electricity market reform and to make a point of its effectiveness.

The thesis intends to find an answer to the following question: "Are the deregulated energy markets suitable to facilitate a development towards sustainable energy systems?"

This work is divided in two main areas.

The first is a general analysis about the European electricity market with the purpose of giving an idea of the European Directives, the degree of deregulation, the instruments and

AGS is the Alliance for Global Sustainability. See www.ags.chalmers.se

_

the policies of the market in Europe.

The second part intends to find out the problems and the opportunities with respect to the sustainable development of the energy systems which the electricity market reform is generating.

Through the general analysis of the European market it wants to map the current situation of the reform, explaining the key concepts and highlighting the degree of liberalization of the single countries in the EU15.

From the studies of the first part, the second section intends to make a critical analysis of the reform with respect to the sustainable development of the energy systems.

The objective is to explain what sustainable development of an energy system means, and, once cleared the concept, to study what the problems and the opportunities, which the policy instruments provided by the reform, are.

This master thesis wants to be a reflection instrument about which should be the main objectives of the energy policies in Europe. The report wants to question the *forma mentis* of the modern world according to which the economic growth is the main, and maybe the only way to improve the well-being level of the population.

2. The evolution of the electricity sector

In the following paragraphs we consider the gradual development of the power sector during its whole existence for over 100 years described by the International Energy Agency.

During these years, it has changed in structure and regulatory approach influenced by technical and economic developments.

2.1 1870s - 1945

In the first years, the developing industry was very fragmented, more than it is now, and it was largely privately owned, and, in many European countries, not particularly controlled. The grid kept on developing only in major cities or industrial areas. There was a great competition among suppliers who had to provide the infrastructure as well as supply.

The first attempts by national or local governments to guide the market came in the 1920s and 1930s. Governments were beginning to view electric power less as a luxury and more as an everyday necessity.

In the 1920s and 1930s, national and local governments started to try to control the market. The electric power was beginning to become part of the day life and was stopping to be considered only as a luxury.

In the first 1930s there was a large development of hydroelectric infrastructures that grew the grid until the rural areas. The industry developed also a lot of private and public companies owning and operating distribution facilities. By the way, transmission remained fragmented, because there was not an efficient network control. (International Energy Agency, 1999, [22])

2.2 1945 - 1960s

In this period things dramatically changed because new economic concepts began to be applied universally to deal with the negative economic behaviour which then characterised the most part of the industry: price wars, cartels and other anticompetitive behaviour. At the same time, technical progress was changing the economics of power generation and transmission.

Pág. 14 Memoria

The minimum efficient plant size increased dramatically, and the increasing economies of scale caused many of the old, small power companies to become uneconomic. Many European governments decided that the entire sector was a natural monopoly. So all small producers had to be merged in a single nation-wide monopoly, or some large regional monopolies. They thought that the best way to avoid monopolistic behaviour was public ownership.

France created EdF in 1946. Italy was the last European country to follow this trend by creating the state-owned monopoly ENEL in 1962.

The industry for electricity was considered to be a natural monopoly, so many governments brought into effect legislation that either explicitly forbade new entry into the power sector or exempted it from general competition law. One of the few notable exceptions to this rule in Europe is Spain, where they have never created any statutory entry barriers, and where there continued to be some competition. (International Energy Agency, 1999, [22])

2.3 1970s

The first doubt about the regulated monopoly utility emerged in the United States.

The 1970s were the years of the oil shocks, which raised the price of what was at that time the key input fuel to electric power. So a number of countries was encouraged to step up the pace of existing nuclear programmes, and others to start such programmes for the first time.

The United States, Europe and Japan simultaneously tried to substitute coal for oil, and near prohibition of the use of gas and oil-fired power generation.

During this period, other changes were occurring in the sector.

First, the real cost of nuclear generation grew, substantially due to inflationary expectations. At the same time, citizens in many countries expressed increased concern about the safety of nuclear plant operation and disposal of spent fuel. This resulted in the adoption of additional safety measures, the expectation of increased future costs associated with existing plants, and an increased perception of the risk of such operations.

Second, the price of natural gas in the United States fell substantially with the regulatory reform of that sector. This further reduced minimum efficient scale for generation.

Third, the petroleum cost increases caused much greater cost consciousness and prompted further research into power generating cost. This research figured out that, depending on the country; the era of large efficient scales for fossil generation was over.

Other research suggested that the generation side of the power business was perhaps not a natural monopoly anymore, and raised the question whether it ever had been. (International Energy Agency, 1999, [22])

2.4 1980s - 1990

Since the early 1980s a variety of new political, environmental and technological ideas commenced to exercise considerable pressure on the centralized, static and monopolistic European electric energy industry.

Leaders of this ideology were Margaret Thatcher in the United Kingdom and Ronald Reagan in the USA. The neo-liberal economic aims of liberalization of markets, which are to be reached through the opening of the market to the competition, the privatization of the own-state industries and the deregulation of key industrial sectors, offered a new alternative to what was commonly seen as a highly regulated and centralized electric energy sector. (Serrallés, 2004, [33])

2.5 1990s

During the last twenty years, the electricity demand in the current EU15 Member States has increased at an average rate of 1.1%. And demand will continue to grow with an average growth rate of 1.1% to 1.4% in the period until 2020. Demand for electricity is rising more rapidly than for any other type of energy and it is expected to continue to rise. (European commission, 2005, [15])

Moreover, it has to be considered the high energetic dependence of Europe from the countries which produce oil and gas, the strong political tensions that exist in the Middle East, and the environmental problem that by now can be considered a real emergency.

The cluster of these factors have led to the need of a structural reform of the electricity market with aims of economic and energy efficiency and environmental performances.

Pág. 16 Memoria

Consequently it has been growing the importance of as clean as possible and alternative energy systems like renewable and low consumption systems. The reform of the new electricity market should gear the whole Europe to complain these goals through lower prices for customers, lower costs for producers and competitiveness.

3. Electricity market reform

3.1 Electricity market and its problems

The analysis of theoretical issues and options tied to the design of the electricity sector reform must commence from the consideration of some characteristics that depend on the nature of the technology and the demand, which distinguish the electricity sector.

Steve Thomas summarized the special factors for electricity as follows:

- **Inability to store power**: unlike other products, it is not possible, under normal operating conditions, to keep in stock, ration it or have customers queue for it.
- Need for supply and demand to match all times: energy demand is for its nature
 aleatory and fluctuant and for a good operation of the energy system, demand for
 electricity has to be satisfied just in time.
- Lack of substitutes: electricity is the most diffuse form of energy and mostly is not possible to replace it with other kinds of energy.
- Vital role in modern society: a failure of the electricity system will lead to immediate and serious welfare and economic impacts.
- **Electricity is a standard product**: there is no better or worse electricity, and it means that the electricity market is purely price driven.
- **Environmental impacts**: electricity generation is one of the most important causes of green house gas pollutions.

3.2 The main goals of the electricity market reform

The energy market reform for electricity should produce, progressively, a liberalized and competitive electricity market across the European Union.

It should contribute to European energy policy objectives of increased competitiveness through better service for energy consumers, improved environmental protection, and greater security of energy supplies, while ensuring the continued achievement of basic public service requirements. (European Commission, 1999, [22])

Pág. 18 Memoria

Directive 96/92/EC and Directive 2003/54/EC have been defined to create a single and a competitive market for electricity for an enlarged European Union, where customers have choice of supplier, and where all unnecessary impediments to cross border exchanges are removed.

Substantially, the directives would have to provide the way (the European single market for electricity) thanks to which is possible to achieve potential benefits in terms of improved efficiency in the electricity sector and in the economy through lower prices for customers, lower costs for producers and competitiveness.

EU Directive 96/92/EC says: "Establishment of the internal market in electricity is particularly important in order to increase efficiency in the production, transmission and distribution of this product, while reinforcing security of supply and the competitiveness of the European economy and respecting environmental protection." (EU, Directive 96/92/EC, Preamble 4, [17])

The International Energy Agency divided the different main goals in categories.

The first category consists of objectives which are not being met effectively in the prereform situation; the main is the economic efficiency of the electricity sector and, hence, its contribution to the wider performance of economies.

The second category includes objectives that are being met in the pre-reform situation but probably at disproportionate cost, the main is: security of supply.

Finally there is a third category that includes the objectives, which straddle the two previous categories: environmental performances.

To summarise, the main goals of the energy market reform, which can be identified, are:

- 1. Economic efficiency
- 2. Security of supply

3. Environmental performances

European Commission assure that the single market for electricity has been creating to guarantee:

- Increased efficiency by introducing competitive forces into the electricity market.
- To settle electricity price levels those vary enormously between Member States.
- Increasing efficiency to lead to lower prices.
- To provide essential public services such as ensuring electricity supply to all customers, protecting the old and disadvantaged, and protecting the environment.
- To require less reserve capacity.
- By the introduction of competition electricity producers should have to make better
 use of resources in the electricity production process to avoid wastes, and
 consequently should generate less pollution.
- By the introduction of competition, customers acquire the right to choose their supplier of electricity.
- Savings in investment costs
- Higher labour productivity
- Development of new energy services

3.2.1 Economic efficiency

In the market environment nobody does anything if he is not sure about possible incomes.

Economic efficiency is a *conditio sine qua non*: it means that it is not possible to achieve security of supply goals or environmental performances without assuring economic efficiency.

Not until the new market provides economic benefits can the other objectives be achieved. Electricity market reform is a strategic operation which involves different markets, different countries and different policies; it must be economic reliable because it deals with the whole European market.

Pág. 20 Memoria

The energy market can be defined economically efficient when it guarantees the following sub-objectives:

- Improved efficiency in the production
- Improved efficiency in the transmission
- Improved efficiency in the distribution
- Lower costs
- Lower prices
- Better allocation of resources
- Improved risk allocation

3.2.2 Security of supply

Electricity is the lifeblood of our modern economy.

Due to its usefulness and the fact that it is practically a not substitutable good for many end-users, the importance of electricity continues to grow for the increasing number of essential appliances in the home, for the expanding health and services sectors, for the information and communications technologies, for energy efficient industry applications. (EURELECTRIC, 2003, [5])

The International Energy Agency defines three different types of security of supply:

- **Short term security of supply** (system reliability): it refers to the short term capability of the power industry to cover demand at all times
- Long term security of supply (adequate capacity investment): it refers to the power sector's capacity for generating electricity
- Security of input energy supply (fuel diversification): it refers to the degree of diversity of primary energy sources

A good level of Security of supply has to guarantee:

- Electricity supply to all costumers
- Improved maintenance services and networks
- Perfect balance between demand and supply
- Measures to cover pick demand
- Measures to deal with shortfalls of one or more suppliers
- Less blackouts
- Less brownouts

3.2.3 Environmental performances

During the last three decades the environmental challenge has gained increasing importance: a will of protection of the environment and a strong criticism towards the not environment-friendly technologies like nuclear and fossil energy are being disseminating very quickly in the European society.

With electric energy currently responsible for almost 35% of global CO2 emissions (IPCC, 2001, [21]), the EU and the member states have established ambitious emission-reduction goals to comply with Kyoto protocol.

With such premised, it is clear that the new energy market reform for the electricity in Europe cannot omit absolutely the environmental theme.

The most difficult challenge is to conciliate economic goals with ecological goals because, generally, whichever type of environmental policy is not economically feasible or attractive.

Good environmental performances require:

- Less green house gas emissions
- Lower consumption of energy
- Development of renewable
- Lower waste of energy

Pág. 22

Global cooperation

3.3 Key issues

The European Directives and the national plans have designed a common pathway for energy markets to complete the transition from an highly regulated, centralized monopoly to a transparent competitive market in electricity built on the principle of the Third Party Access, unbundling of the incumbent activities and consumer choice.

Some key points must be addressed in the implementation of the liberalization process, which poses both theoretical and political challenges.

3.3.1 The electricity supply chain

In order to arrive to the final customer, electricity energy has to be produced by the central, and then it has to be transmitted through the grid and distributed in the places of use. Four main activities can be distinguished:

- Generation: is the transformation of some other form of energy into electric energy, either chemically through the combustion of fossil fuel such as coal, oil or gas, or physically through the use of nuclear fission, or kinetic energy from the wind or water motion.
- **Transmission:** is the high-voltage transport of electricity, it refers to transportation over an interconnected network, which is shared by all end users.
- **Distribution:** is the low-voltage transport of electricity, generally from the transmission system to the end user, or between generator and end user

• **Supply:** is the final process in the delivery of electricity to the consumer, it is contracting for, and selling of electricity to the end user, and includes all the services related to these activities.

3.3.2 Unbundling

Unbundling means separation. This is one of the key principles of the reform; it is considered an unavoidable step to approach the goals of the new electricity market.

There are two different types of disaggregation that countries have to achieve: vertical and horizontal.

Big companies are motivated to achieve high degrees of conglomerate to develop significant economies of scope, of scale, or of coordination. But this pursuit of efficiency can be at the expense of competition, because this is the way to acquire strong or dominant market position.

Vertical disaggregation has to break up the supply chain, through the separation of generation, transmission, distribution, and supply.

Horizontal disaggregation has to increase the number of entities active at the same level of the industry.

Vertical unbundling

Vertical unbundling is the separation of potentially competitive generation and supply from the natural monopoly activities of transmission and distribution networks.

The effective separation of generation and transmission activities prevents non-competitive behaviour by incumbent generators and assures non-discriminatory network access to others. Similarly, unbundling supply from distribution is to prevent discriminatory behaviours at the supply level.

The main reason is to avoid any kind of discrimination.

The International Energy Agency summarizes three different forms of discriminations:

• **Discrimination between generation and transmission**: a transmission owner who also owns generation capacity has the incentive to discriminate against the other

Pág. 24 Memoria

generators and to favour himself. To limit the access to the grid to the other generators which want to distribute their electricity, the transmission owner has the possibility to discriminate by setting high access prices, reserving transmission capacity for its own generation units, providing unequal access to technical information, or imposing abusive technical requirements.

- Discrimination between generation and distribution: the owner of distribution assets may favour his own generation and discriminate against other competing generators.
- Discrimination between distribution and end user supplier: the owner of the
 distribution grid has the incentive to discriminate the end user suppliers;
 competitors in the end-user supply market can be discriminated through abusive
 distribution pricing, cross subsidisation, unnecessary technical requirements and
 procedural and implementation delays.

Unbundling can take the form of functional, accounting, legal or ownership separation.

- Functional unbundling: investors are allowed to enjoy revenue streams from generation and transmission, but the operations of the grid are in the hands of strictly separate hands.
- Accounting unbundling: the accounts of the different businesses, which make up the company, are ring-fenced.
- Legal unbundling: there is a full legal separation between the two different entities.
- Ownership unbundling: is the strongest form of separation, it implies the full structural separation.

Horizontal structure

The aim of horizontal separation is to create sufficient competition and so, utopisticly, to achieve an atomistic market in which there are a large number of small producers and consumers, each so small that its actions have no significant impact on others; and the market sets the price that they must choose.

According with Polo and Scarpa, to facilitate competition and to encourage new entries in the long term there are two alternative ways:

- To force the incumbent to divest capacity until a sufficiently competitive structure has been achieved.
- To block the incumbent's expansion, relying on entry as the force, which will reduce prices.

The first approach assures the most immediate results. Under a fragmented structure, prices are, supposed to be set near the competitive benchmark.

On the other hand, the second one is more gradual and accepts that in the short run prices will be high, and because of the higher prices new competitors will be attracted in the market.

3.3.3 Third party access

"Member states shall ensure the implementation of a system of third party access to the transmission and distribution systems based on published tariffs, applicable to all eligible consumers and applied objectively and without discrimination between system users." (EU, Directive 2003/54/EC, Article 20, [19])

Equal access to the transmission and distribution networks constitutes one of the more challenging aspects of transition to a liberalized electricity energy market.

To provide a non-discriminatory third party access is a key element to obtain a free and competitive market, especially to have no discrimination in the access to transmission and distribution grids.

According with Polo and Scarpa, the first crucial issue is the redesign of the proprietary and industrial structure of the industry, in order to eliminate the incentive of the network owner to distort competition downstream.

Hence, it is studied that the basic externality comes from the fact that the access to the network increases the competition in the retail supply market, modifying the distribution of market shares and profits.

If the owner of the network is involved also in the final market, giving access to a competitor implies a reduction in the income. Hence, the natural solution is, refusing the

Pág. 26 Memoria

access, to keep the final market monopolized through excessively high access prices or a simple refusal to supply.

3.3.4 Customer choice

A key element to open up the market to competition for the electricity market reform is choice.

All consumers have to be able to choose their electricity supplier.

This will be achieved in a step-by-step approach, commenced from large consumers in 1999 until reaching household customers in 2007.

European Directives established the dates for a gradually opening market:

- From February 1999, about 26% of the market had to be open
- From February 2000, about 28% of the market had to be open
- From February 2003, about 33% of the market had to be open
- From July 2004, all non-household were allowed to choose the supplier
- From July 2007, all customers will be allowed to choose the supplier

3.3.5 Market architecture

A market is an environment designed to help buyers and sellers interact and agree on transactions.

To fulfil the requirements of a liberalised market is necessary that also electricity buying and selling mechanism is as much liberalized as possible.

Liberalized market means a market where the prices are basically set by the intersection of the demand curve with the offer curve.

Unfortunately, due to the particular nature of this good, the participation of a "super partes" actor is unavoidable to take some measures for assuring total equilibrium between energy generation and energy demand.

In the following paragraphs the three principal types of market are analyzed:

- Bilateral trading
- Power exchange platform

Managed spot market

Bilateral trading

Buyers and sellers can buy and sell electricity through bilateral contracts without involving any external authority or organization.

There are two different forms of bilateral trading:

- Forward and long term trading: this kind of contracts is flexible because private
 parties manage them, and permits to satisfy their needs. Normally this trading is
 done to cover the forecast consumption portfolio in advance and over long period
 of time.
- Over the counter trading: as real consumption is not completely predictable and electricity cannot be stored, there is often the need of additional capacity in very short-term. These transactions involve smaller amounts of energy, the costs are higher and there is the problem of non-anonymity.

Power exchange platforms

The transaction costs of fine-tuning a portfolio via an over the counter type of spot market are high, hence a mixture of private and public initiatives of generators, suppliers, and transmission system operators has led to the creation of trading platforms operating dayahead and facilitating anonymous trade (Meeus, Purchala, Belmans, 2005, [28]).

A trading platform basically operates as follows.

Generators make bids to supply a certain amount of electrical energy at a certain price for every hour of the day.

Then the trading platform operators for every hour rank these offers in order of increasing price and a curve can be drawn to represent the supplier function for the market.

In the same way consumers declare their availability to buy electricity in terms of quantity and price per hour and the demand curve of the market is built ranking their offers in decreasing order of price.

Pág. 28 Memoria

The intersection of the supply and demand curves represents the market equilibrium point. All the bids submitted at a price lower or equal to the market equilibrium price are satisfied and generators can produce the amount of energy that corresponds to their accepted bids. Therefore, all the offers submitted by the consumers at a price higher or equal to the market equilibrium price are satisfied and in this way the trading platform guarantees minimum possible cost for the consumers.

Managed spot market

While a large proportion of the electrical energy can be bought and sold through an unmanaged open market, there is a smaller part that has to be managed by system operators.

Electrical system is subject to tightening technical constraints.

The most important is the need of a continuous and instantaneous balance between the amount of energy filled into the grid and the amount of energy taken from the grid.

Unbalances are frequently in the electricity market: mostly, buyers need a quantity of energy higher than they forecasted, and sellers have to provide more electricity than they predicted.

A managed spot market is able to fix quickly the production to the demand of electricity by adjusting the production of flexible generators.

4. European directives

The Council of Ministers adopted a Directive concerning common rules of the internal market in electricity on 19th December 1996, 96/92/EC.

This was replaced by Directive 2003/54/EC of 26th June 2003.

At the same time European Commission established others directives, which have relation with the reform of electricity market in Europe, to improve its effectiveness:

- Directive 2001/77/EC
- Directive 2005/89/EC

4.1 Directive 96/92/CE

The 1996 Directive established rules in four areas:

- Generation
- Transmission and distribution
- Retail supply
- Unbundling

4.1.1 Generation

There were two procedures that Member States could adopt for the construction of new power plants:

- Tendering procedure
- Authorisation procedure

With tendering, the power system continued to be centrally designed. There was an official body in charge that established how much capacity that would need to be built and the specifications bidders that would need to be met. It invited tenders for this, and the best bid won.

Pág. 30 Memoria

With authorisation, the timing and the location of generating capacity investments was the responsibility of individual investors. Member States laid down the criteria that the producer had to comply, in terms of factors such as safety and the commercial credentials of the company.

From the point of view of competition, authorisation was clearly the Commission's preferred option because a free market requires free entry and exit.

4.1.2 Transmission and distribution

Generators and retailers need to be guaranteed they have free access to the electricity market, and so there were measures to allow all competitors would be able to get non-discriminatory access to the network.

There were three possible choices:

- Negotiated third party access model
- Regulated third party access model
- The single buyer model

In the negotiated third party access model, prices for access to the network were negotiated with the network owners. The network owner could refuse access in case of lack of capacity.

The explanatory notes established that the network operators would not be obliged to build new capacity in response to a request for access if there was insufficient capacity.

In the regulated third party access, tariffs for access to the network were published. As with negotiated third party access, the network owner could refuse access on grounds of lack of capacity, but the explanatory notes did not make it clear whether the network owner had to build new capacity to satisfy a request for access that could not immediately be complied with. (Thomas, 2005, [34])

The single buyer model required the creation of a public body that was responsible for the purchasing and the sale of the country's electricity.

The Single Buyer option was not very clear and the provisions were muddled and it is not clear how the Single Buyer option would have worked in practice. (Thomas, 2005, [34])

4.1.3 Retail supply

The Directive required Member States to open their retail market for large users and distributors:

- By February 1999, 26% of the demand had to have choice (i.e. minimum consumption: 40GWh/year)
- By February 2000, 28% of the demand had to have choice (i.e. minimum consumption: 20GWh/year)
- By February 2003, 33% of the demand had to have choice (i.e. minimum consumption: 9GWh/year).

4.1.4 Unbundling

Aside from avoiding a discriminatory access and conflicts of interests, European legislation provided a separation of competitive from non-competitive segments.

Basically, a separation of accounts was required.

Therefore, the transmission and distribution system operators could be part of companies with other interests in the electricity sector, for example as generators or retailers but had to operate on objective and non-discriminatory procedures that did not favour, for example, power plants owned by them.

Network companies had to prepare separate accounts for their generation or retail activities to demonstrate that it was not being any kind of unfairly subsidised by their network activities.

4.1.5 The lacks of the directive 96/92/CE

Directive did not require a sector regulator, and without an official body that supervised and regulated constantly the electricity sector, it seemed very hard that unfair behaviours were avoided.

The following three areas were where the most important lacks were present:

Pág. 32 Memoria

- Market concentration
- Creation of a wholesale market
- Retail market opening

Market concentration

Excluding Luxembourg, because of its size, the market situation among Member States was:

- 6 were effectively monopolies: Belgium, France, Greece, Ireland, Italy and Portugal.
- 4 were effectively duopolies: Germany, Spain, Denmark and the UK.
- Only 4 had potentially competitive structure: Austria, Finland, the Netherlands and Sweden

Creation of a wholesale market

The directive established provisions to try to ensure producers had access to the network, but there were no provisions to ensure that competitive producers had a sensible possibility of finding a market for their power.

It means that mostly new generators, which could enter in the market, did not find anybody to sell their electricity power to.

The separation of accounts and the negotiated third party access were not sufficient: the problem was the possibility for the integrated companies to get around the rules for the non-discriminatory access to the networks and in this way to avoid a market opening to the competence. (Thomas, 2005, [34])

Retail market opening

No more than a few thousands of the very largest consumers would be given choice even six years after the Directive was passed and countries could meet the requirements partly by allowing distribution companies to shop around for their energy supplies. (Thomas, 2005, [34])

4.2 Directive 2003/54/EC

In June 2003, European Commission decided to introduce a new Directive to accelerate market opening, to deal with the criticism on network access and regulation and to eliminate the less liberal options.

The Directive established rules in the following areas:

- Generation
- Transmission and distribution
- Retail supply
- Unbundling

4.2.1 Generation

Since this Directive, there is only an option that Member States can adopt for the construction of new power plants: authorisation procedure.

Tendering procedure would be allowed only according to some special criteria.

4.2.2 Transmission and distribution

The negotiated third party access option and the single buyer option were eliminated.

The only possible option is the regulated third party access, but it is important to underline that the other options have not almost been used.

4.2.3 Retail supply

The new Directive accelerated the process:

- By July 1, 2004 all non-household customers were allowed to choose the supplier
- By July 1, 2007 all consumers will be allowed to choose the supplier.

Pág. 34 Memoria

4.2.4 Unbundling

New directive has strengthened the unbundling rule.

The basic elements of the new unbundling regime are the following:

- Legal unbundling of the transmission system operator and distribution system operator from other activities not related to transmission and distribution.
- Functional unbundling of the transmission system operator and distribution system operator, in order to ensure its independence within the vertically integrated undertaking
- Possibility of exemptions from the requirements of legal and functional unbundling for distribution system operators
- Accounting unbundling is a requirement to keep separate accounts for transmission system operator and distribution system operator activities.

APPLICATION OF UNBUNDLING RULES TO TSOS AND DSOS

	Legal Unbundling	Functional Unbundling	Accounting Unbundling
TSO	+	+	+
DSO above 100.000 customers	Exemption possible until 1.7.2007	+	+
DSO below 100.000 customers	Exemption possible	Exemption possible	+

4.3 Directive 2001/77/EC

On 27th September 2001, European Commission introduced Directive 2001/77/EC on the promotion of electricity produced from renewable energy sources in the internal electricity market: "The purpose of this Directive is to promote an increase in the contribution of renewable energy sources to electricity production in the internal market for electricity and to create a basis for a future Community framework thereof." (EU, Directive 2001/77/EC, Article 1, [18])

The renewable electricity directive introduced an overall target for renewable electricity of 22% indicative share of electricity produced from renewable energy sources in total Community (EU15) electricity consumption by 2010.

From this 22%, targets for each country have been defined.

4.4 Directive 2005/89/EC

The challenge of security of supply was faced in little determined way in Directive 2003/54/CE. Security of supply does not have the status of a priority aim of the Directive.

On 18th January 2006 European Commission introduced Directive 2005/89/EC, "this Directive establishes measures aimed at safeguarding security of electricity supply so as to ensure the proper functioning of the internal market for electricity and to ensure:

- An adequate level of generation capacity
- An adequate balance between supply and demand
- An appropriate level of interconnection between Member States for the development of the internal market" (EU, Directive 2005/89/EC, Article 1, [20])

Basically Directive says that governments are responsible for guaranteeing an adequate level of security of supply in their own country: "Member States shall ensure a high level of security of electricity supply by taking the necessary measures to facilitate a stable investment climate and by defining the roles and responsibilities of competent authorities, including regulatory authorities where relevant, and all relevant market actors and publishing information thereon..." (EU, Directive 2005/89/EC, Article 3, [20])

Pág. 36 Memoria

It is Member States' responsibility to assign the rules and tasks to the different actors, like generators, transmission system operators and distribution system operators to ensure security of supply.

5. About Directives

5.1 About Directive 96/92/EC and Directive 2003/54/EC

The process of market electricity reform for Europe officially begun 10 years ago; during these years several directives, whose impact has not been quite convincing, have been put forward.

Perhaps it is a little premature to define the new European market for electricity as a failure, mainly, due to the fact that it has not yet concluded the market opening stage, though it is clear that all of the initial objectives have not been reached.

There are three main goals that can be extrapolated from the official releases, the Directives, the green and white papers of the European Commission. They are economic efficiency, security of supply and environmental performances. However the ocean that separates Europe from these objectives is still very wide.

As stated in chapter 3, it is not possible to steer the whole market toward no lucrative scope if economic security is not guaranteed, and this would seem to be the way undertaken by European Union.

Directives 96/92/EC and 2003/54/EC are evidently geared toward an economic efficient and liberalized market.

This is, probably, the right strategy to achieve general consent and cooperation from a market whose main actors are not longer exclusively state bodies, but now includes private investors.

From a classical economic and theoretical point of view, Directives are faultless: a liberalized and European market, based on competitiveness should reduce the costs, diminish the prices and increase technical and economic efficiency...

The problem is that this does not appear to be happening: prices continue to vary among the different countries and there is no a EU wide convergent trend. Fragmentation at the

Pág. 38 Memoria

different levels of the supply chain is not always present (especially at the generation level). There is strong heterogeneity in progress towards the choice for customers, though there is not great enthusiasm for the construction of infrastructure necessary for cross-border exchanges in electricity. This is probably because some countries prefer to safeguard their own market from foreign competition.

One of the indicators of inertias within individual member states is the fact that some countries opened their market well before Commission deadlines whereas others opened at the last possible moment.

As such the decision taken with Directive 2003/54/EC to bring forward the opening deadlines would not have been a good idea, because it would have forced some countries to accelerate their process, and this might not have brought about satisfactory results.

Finally there is a deficit of authority emanating from the commission resulting in a lack of implementation and binding directives.

Generally the European Commission gives countries total freedom on what level to apply the directives and this makes the situation worse with respect to coordination and homogeneity in the European market for electricity.

5.2 About Directive 2001/77/EC

This directive could be a good point of departure to spread the production of energy from renewable sources; however two main lacks can be identified:

- There is no connection between this directive and the electricity market reform
- The targets, which have been fixed, are only indicative

Among the electricity market reform goals, there is also the task of environmental performances. It was clear the deficiency of Directive 96/92/EC on this topic, and it was clear the growing awareness of the environmental challenge by society.

So, Directive 2001/77/EC has been created to stimulate energy production from renewable sources. Unfortunately, there is no any refer to the new dynamics produced by the

liberalized market, but only some advice about the implementation of the use of renewable sources.

The second criticism is about the lacks of authority from European Commission. Only indicative targets have been defined, and so countries may not comply with the targets, because they are not mandatory.

Analyzing the progress that have been got until now by individual countries, it is obvious that the new market for electricity is not collaborating on the spread of the use of clean energy sources; such results can be seen in the summary table.

5.3 About Directive 2005/89/EC

Probably, the main lacks of Directive are two:

- The excessive action freedom left to the individual countries
- To consider that a liberalized market can achieve by nature a high level of security of supply

Scope of this Directive should be supporting Directive 2003/54/CE safeguarding security of electricity supply, defining rules and parameters to achieve a minimal level of security in the whole continent.

Unfortunately, Directive limits itself to give qualitative advice based on unexceptionable concepts like security, transparency, no-discrimination, etc... neglecting quantitative parameters that would homogenize security of supply in Europe.

Certainly, this criticism is still more valid considering that we are trying to reach the goal of the single European market for electricity, actually, if the single market was achieved, it would develop strong interdependences between different countries, it means some countries would import electricity from abroad and some other would export it abroad. Consequently, security of supply would not be a simply national affair, but the ability of a single country to cope with emergencies also would depend on other countries.

Pág. 40 Memoria

During the last years, the symptoms of this problem have been seen in United States and in Europe where some security of supply emergencies happened, causing, through chain reactions, huge and long blackouts.

For these reasons it is absolutely important to try to face the problem of security of supply from a global point of view, and so looking for a European solution.

The second criticism is about the consideration that a liberalized market by nature can assure security of supply.

In a competitive market, decisions on investments are taken by private investors with no explicit care about system security, but only with a view of profitability.

In the competitive parts of the market, no one is explicitly charged with responsibility for overall system security: it is assumed that a number of private firms, interested only in private profit, will collectively act to ensure adequate security levels.

Under the old monopoly systems there was generally an in-built bias toward "excessive" security-levels of security.

Under a competitive system the level of security could fall because private investors will be unwilling to maintain excess level of capacity, with the effect of depressing prices in a competitive market. (Lieb-Dòczy, Borner, MacKerron, 2003, [1])

5.4 Summary tables

Table 5.1 Directive 96/92/EC and directive 2003/54/EC

	Directive 96/92/EC	Directive 2003/54/EC
Generation	Tendering procedure	Authorisation procedure
	Authorisation procedure	

Transmission and	Negotiated third party	Regulated third party access
distribution	access model	
	Regulated third party access	
	model	
	The single buyer model	
Retail supply	By February 1999, 26% of	By July 1, 2004 all non-
	the demand had to have	household customers were
	choice (40GWh/year)	allowed to choose the
	By February 2000, 28% of	supplier
	the demand had to have	By July 1, 2007 all
	choice (20GWh/year)	consumers will be allowed
	By February 2003, 33% of	to choose the supplier
	the demand had to have	
	choice (9GWh/year).	
Unbundling	Accounting unbundling	Legal unbundling
		Functional unbundling
		Accounting unbundling

Table 5.2 Renewable targets for each country

COUNTRY	RES-E % 1997	RES-E % 2010
Belgium	1,1	6,0
Denmark	8,7	29,0
Germany	4,5	12,5
Greece	8,6	20,1
Spain	19,9	29,4
France	15,0	21,0
Ireland	0,84	3,6
Italy	16,0	25,0
Luxembourg	2,1	5,7
Netherlands	3,5	9,0

Pág. 42 Memoria

Austria	70,0	78,1
Portugal	38,5	39,0
Finland	24,7	31,5
Sweden	49,1	60,0
United Kingdom	1,7	10,0
Community	13,9	22,0

6. Map of the European electricity market

The liberalization reform, started through the communitarian directives for the electricity sector, is not yet successful in producing a completely convergence process in terms of competitiveness, electricity costs and opening degree among the Member States.

The following paragraphs intend to explain quantitatively the degree of development of the new market for the electricity.

Analyzing the following figures it can be noted the lack of homogeneity presents in the process of the electricity market reform.

Mainly, this is due to the strong differences of the productive characteristics present in the Member States, the different opening policies of the market, the different interpretation of the communitarian directives and to the strong constraints of the infrastructure that prevent an efficient integration of the national markets.

Although it is appropriate to underline that the reform, which the European Commission has started, is based on a gradual advance, and so this deficit of coordination could be partly justified.

The following study consists of the analysis of the parameters relating to 6 key aspects of the reform:

- Competitiveness
- Vertical unbundling
- Prices
- Cross-border exchanges
- Security of supply
- Environmental performances

6.1 Competitiveness

Table 6.1 reports the percentage of opening market of the individual Member States.

10 countries out of 15 have a totally open market, and 14 countries out of 15 have at least opened the market to all the non-household users.

Pág. 44 Memoria

In theory, from the 1st July 2007 all Member States should open completely their electricity market, and it is possible that the objective get reached. Although this does not mean that the reform is successfully concluded, because the degree of opening market is only a small step toward the complete electricity market reform.

Table 6.1 Degree of market opening (European Commission, 2005)

	% of market	Size of open	Eligibility
	opening	market (TWh)	threshold
Austria	100%	59	-
Belgium	90%	77	2
Denmark	100%	34	-
Finland	100%	87	-
France	70%	330	Non HH
Germany	100%	524	-
Greece	70%	36	Non HH ³
Ireland	100%	24	
Italy	79%	245	Non HH
Luxembourg	57%	3	20GWh
Netherlands	100%	114	-
Portugal	100%	48	-
Spain	100%	242	-
Sweden	100%	138	-
UK	100%	361	-

The number of clients that change supplier is a natural indicator of the efficiency of competitiveness.

If the customers have difficulties to change supplier, especially the large users that are very motivated for saving as money as possible, probably there is a problem in the market.

³ All customers in non-interconnected islands are non-eligible

² Full market opening in the Flanders region. Non-household in other regions

This does not mean that every customer has to change supplier, but in a competitive market there should be some switching.

The customers, who have changed supplier, in most of the cases, are less then 50%.

It means that there is not a regular negotiation between customers and suppliers, and frequently there is a dominant player.

Experts think that at least one every two customers should change supplier to identify a good level of competition in the market.

Generally, when there is a change of supplier, customers switch from the old supplier to another national supplier. The penetration by foreign companies is very low and this lack proves the deficit of integration in the European market.

Mostly, the foreign suppliers represent less than 20% of the market. The only exceptions are the markets in regions quite well integrated and countries where suppliers have been acquired by foreign companies.

The states with a good level of switching are Finland, Sweden and UK, where also a high percentage of small consumers has changed supplier.

It is important to underline that in several countries, the new market has not yet been totally opened; therefore it would be right to analyze only the situation of the large consumers, because the market for them is open in every Member State.

Considering only this part of the market, the results which have been reached are better: Denmark, Finland, Ireland, Italy, Sweden and UK have overcome the threshold of 50% of switching, and in Austria 100% of large and very large users have renegotiated with their supplier.

On the other hand, the countries that have not yet reached an adequate level of switching are France, Greece and Portugal.

Pág. 46 Memoria

Table 6.2 Volume of electricity consumption having switched by group - cumulative since market opening (European Commission, 2005)

		USER				
	Large and very large industrial	Small-medium industrial and	Very small and household			
		business				
Austria	29%4	29%	4%			
Belgium	20%	10)%			
Denmark	>50%	15	5%			
Finland	>50%	82%	30%			
France	15	0%	0%			
Germany	41% ⁵	7%	5% ⁶			
Greece	2%	0%	0%			
Ireland	>50%	15%	9%			
Italy	60	0%	0%			
Luxembourg	25%	3%	0%			
Netherlands	n.d.	n.d.	11%			
Portugal		16%				
Spain	25%	22%	19%			
Sweden	>50%	n.d.	29%			
UK	>50%	>50%	48%			

High level of concentration characterizes the electricity generation sector.

It is not yet possible to talk about concentration at European level, because the national markets, as stated before, are too much isolated and so a country where the market is very fragmentized cannot make up for the high concentration in another country (the only exceptions are the Scandinavian and Britannic markets where not even a problem of national concentration is present).

⁶ A further approximately 25-50% have renegotiated with their existing supplier

 $^{^4}$ 100% have renegotiated with their existing supplier

⁵ The remaining approximately 65% have renegotiated with their existing supplier

Hence, the countries that should improve their situation are Belgium, France, Greece and Ireland where the number of companies with at least 5% share of production capacity is small and the share of largest three producers is higher than 90%. Therefore in these states there is oligopoly or including monopoly.

Table 6.3 Wholesale market position (European Commission, 2004)

	Number of companies with	Share of largest 3	
	at least 5% share of	producers	
	production capacity		
Austria	5	54%	
Belgium	2	95%	
Denmark	2	40%	
Finland	10	40%	
France	1	96%	
Germany	5	72%	
Greece	1	97%	
Ireland	2	93%	
Italy	5	60%	
Luxembourg	1	88%	
Netherlands	4	69%	
Portugal	3	76%	
Spain	3	74%	
Sweden	10	40%	
UK	8	39%	

In some countries the number of supply companies is very high, but, mostly, these companies are affiliated to distribution companies, and frequently these suppliers have relationships with certain generation companies. (European Commission, 2005, [16]) Therefore the market is not totally free, and several times, these relationships at the different levels of the supply chain drive it.

Pág. 48 Memoria

In theory it would be possible to enter the market for the companies which wanted to be pure suppliers, easily buying the energy in the wholesale market and selling it to the clients. But in practice this type of supplier has to be a price taker in the wholesale market and could find it difficult to maintain an own and independent price policy for the final customers because the price depends on the price negotiated with the principal generators. (European Commission, 2005, [16])

In the following table it can be noted that in terms of market share and biggest actors the situation is quite similar between generation and retail market.

Summarizing, Belgium, France, Greece, Ireland and Portugal are the countries which should "atomize" their retail market.

Table 6.4 Retail market position (European Commission, 2004)

	Companies with market share over 5%	Number of fully independent suppliers (no network affiliates)	Market share of largest 3 companies large industrial users	Market share of largest 3 companies small/medium businesses	Market share of largest 3 companies very small commercial/household
Austria	5	4		60%	
Belgium ⁷	3/2	14/6	100%/92%	100%/99%	94%/100%
Denmark	-	3	-	-	-
Finland	5	<5	-		35-40%
France	1	20	91%	97%	96%
Germany	4	13	-	-	-
Greece	1	10	97%	97%	100%
Ireland	3	7	99%	99%	99%
Italy	6	119	33%	12%	93%
Luxembourg	4	4	9.	4%	95%
Netherlands	3	18	-		83%

⁷ Belgium data Flanders/Wallonia

Portugal	2	4	98%		
Spain	5	20	82%	86%	85%
Sweden	3	-	50%		
UK	6	3	65%	66%	59%

6.2 Vertical unbundling

As stated in chapter 3, the unbundling is a principle of the reform, because vertical separation should assure non-discriminatory behaviours.

As far as unbundling at transmission level is concerned, the situation is quite good because most of Member States satisfy the minimum requirements of the Directives.

Some countries have adopted also the ownership unbundling assuring a stronger fair behaviour.

Table 6.5 Unbundling of network operators: electricity transmission (European Commission, 2006)

	Legal	Functional	Accounting	Ownership
	unbundling	unbundling	unbundling	unbundling
	implemented?	implemented?	implemented?	implemented?
Austria	Y	Y	Y	N
Belgium	Y	Y	N	N
Denmark	Y	Y	Y	Y
Finland	Y	N	Partly	Y
France	Y	Y	Y	N
Germany	Y	Y	Y	N
Greece	N	N	N	N
Ireland	N	Y	Y	N
Italy	Y	N	N	Y
Luxembourg	Y	N	N	N
Netherlands	Y	Y	Y	Y
Portugal	Y	N	N	Y
Spain	Y	Y	Y	Y

Pág. 50 Memoria

Sweden	Y	Y	Y	Y
UK	Y	Y	N	Partly

At distribution level, the unbundling process is slower with respect to transmission level, probably due to less close deadlines and to the presence of more players. In fact, the distribution market is characterized by a higher number of participant companies then the generation market.

Table 6.6 Unbundling of network operators: electricity distribution (European Commission, 2006)

	Legal unbundling	Functional unbundling	Accounting unbundling	Ownership unbundling
	implemented?	implemented?	implemented?	implemented?
Austria	Partly	Partly	Partly	N
Belgium	Y	Y	N	N
Denmark	Y	Y	Y	N
Finland	Partly	Partly	Y	N
France	N	Y	Y	N
Germany	Y	Y	Y	N
Greece	N	N	N	N
Ireland	N	Y	Y	N
Italy	Partly	N	Y	N
Luxembourg	N	N	Partly	N
Netherlands	Y	Y	Y	N
Portugal	N	N	Y	N
Spain	Y	Y	Y	N
Sweden	Y	Y	Y	N
UK	Y	Y	N	N

In the table 6.7 it can be figured out the number of transmission system operators in the EU15 countries. In most of them there is only one operator. It means that in these countries, the transmission system operator is the only player at the transmission level and its role is fundamental for the good working of the market. So, in order to avoid unfair behaviours a solution could be the mandatory ownership unbundling in that countries where there is only one transmission system operator.

In France, legal, functional and accounting separation are guaranteed, hence, the unbundling requirements are satisfied. But RTE, the electricity transmission system, is owned by *Electricité de France* that is the most important electricity generator and supplier in France. Consequently, some anti-competitive behaviour could happen.

In the table 6.7 there are also the number of distribution system operators for each country, the number of distribution system operators with less than 100.000 customers and in the last column it can be figured out if a country has applied the 100.000 customer exemption rule. This rule, from the European directives, allows the exemption from the unbundling directives for that distribution system operators which have less than 100.000 customers. Hence, there are countries like France, Germany and Sweden that satisfy the unbundling requirements, but they also apply the 100.000 customers exemption rule. It means that most of the distribution system operators of these countries are not required to satisfy the unbundling requirements. In France, only 5/10 out of 160/170 distribution system operators are subject to the unbundling rules; in Germany only 120 out of 900; and in Sweden only 6 out of 175.

In the table 6.8, written up by the European Commission, it can be seen that several countries have not yet satisfied the unbundling requirements, and moreover, for the previous reasoning, in the other countries the efficacy of the unbundling is not always guaranteed.

Pág. 52 Memoria

Table 6.7 Number of TSOs and DSOs in EU15 (European Commission, 2006)

	Number of TSOs	Number of DSOs	Number of DSOs	100.000 customer
			< 100.000	exemption rules?
			customers	
Austria	3	133	122	Y
Belgium	1	27	-	N
Denmark	11	115	107	Y^8
Finland	1	91	85	Y (Modified) ⁹
France	1	160/170	155/165	Y
Germany	4	900	780	Y
Greece	1	1	-	-
Ireland	1	1	-	-
Italy	1+11 ¹⁰	> 39	n.a.	N
Luxembourg	2	n.a.	-	N
Netherlands	1	11	5	N
Portugal	1	1+10 ¹¹	10	n.a.
Spain	1	320	n.a.	N
Sweden	1	175	169	Y
UK	1	14	0	N

Table 6.8 Satisfaction of unbundling requirements

	Have the unbundling provisions of the Directives on electricity been satisfied?
Austria	Federal legislator: Yes
	Provincial legislator: No
Belgium	Yes
Denmark	Yes
Finland	Partially
France	Yes
Germany	Yes

¹¹ In Portugal there is only one big DSO than 10 very small DSO with less than 10.000 customers

⁸ The 100.000 customers exemption only applies to the requirement of management separation ⁹ According to the Energy market authority, 59 DSOs are exempted from the legal unbundling provision ¹⁰ In Italy there is one TSO (Terna) for more than 90% of the network

Greece	Yes but not completely. Legal unbundling have been transposed but not fully implemented.
Ireland	Partly
Italy	No
Luxembourg	n.a.
Netherlands	Yes
Portugal	No
Spain	No, because the Spanish legislation establishes the separate accounting bur not the full legal and functional unbundling for distributors.
Sweden	Yes
UK	Yes

6.3 Prices

As stated before, prices in the new market should diminish and converge in the whole Europe.

Actually, at the beginning, there was a drop in prices, but during the last years an increase is present.

It is possible that this trend is not due to the new market reform, but only to market fluctuations.

Generally increases in energy prices are not blamed on inefficiencies in the market, but to increases in oil, gas or general raw materials prices. Hence, for the same reason, it is not sure that a drop in prices is caused by the good work of the reform, but it could be caused by other factors that do not have absolutely anything to do with the reform.

It is not true that prices are lowest where market is more liberalized, because electricity is cheap where it has always been cheap.

For instance, in Greece electricity is cheap with respect to European average, though the reform has just commenced. In France the prices are low and carry on diminishing, though the liberalization is catching on laboriously.

Pág. 54 Memoria

Undoubtedly in Sweden, Denmark, Finland and UK, where the markets are very open, the prices are lower, but this has always been and moreover, in Scandinavian countries, during the last years, electricity prices are rising.

Table 6.9 Eurostat electricity retail prices before taxes (Euro/MWh) (EUROSTAT, 2006)

INDUSTRIAL IG (24000 MWh/year)

	Jan 2000	July 2000	Jan 2001	July 2001	Jan 2002	July 2002	Jan 2003	July 2003	Jan 2004	July 2004	Jan 2005	July 2005	Jan 2006	July 2006
AT								37	41	42	47	47	52	55
BE	55	58	57	59	58	58	58	56	58	57	53	62	72	80
DE	50	52	53	53	53	52	56	60	62	63	68	71	77	78
DK														
ES	54	54	49	49	47	47	48	48	49	49	58	58	61	64
FI	34	34	33	34	36	37	52	50	51	49	50	47	49	51
FR	49	47	48	48	49	49	45	45	46	45		46	46	46
GR	48	47	48	50	50	50	52	52	53	53	54	54	56	56
IR	53	53	53	53	65	65	64	64	67	67	77	77	90	90
IT	60	69	79	71	71	74	76	77	71	73	83	82	93	95
LX	45	43	38	38	39	38	40	40	42	42				
NL											56	56	56	56
PT	53	53	53	53	56	56	56	56	61	61	64	66	73	72
sw	28	30	31	31	26	26	62	37	45	47	38	47	51	63
UK	54	54	48	48	47	46	44	43	40	41	43	52	70	67

INDUSTRIAL IB (50 MWh/year)

	Jan 2000	July 2000	Jan 2001	July 2001	Jan 2002	July 2002	Jan 2003	July 2003	Jan 2004	July 2004	Jan 2005	July 2005	Jan 2006	July 2006
ΑT	157	126	112	102	96	97	98	89	95	96	103	109	116	125
BE	143	146	125	128	129	130	131	122	126	120	111	115	114	114
DE	139	134	133	133	131	126	131	134	142	149	152	155	162	165
DK	56	55	64	65	69	67	74	65	70	71	72	73	76	82
ES	98	98	98	98	99	99	95	95	97	97	104	104	109	109
FI	55	54	53	54	56	57	65	68	69	66	66	64	67	68
FR	87	85	85	85	86	86	83	83	84	84		84	84	84
GR	84	83	84	87	87	87	90	90	93	93	95	95	98	98
IR	126	126	126	126	127	127	128	128	131	131	143	143	154	154
IT	119	128	87	78	98	101	103	104	100	116	114	120	124	140
LX	133	131	119	121	122	122	127	127	130	147				
NL	78	101	104	106							108	109	116	125
PT	104	104	105	105	100	100	101	101	103	103	107	109	123	121
sw	56	53	40	41	36	36	71	46	70	72	68	71	80	93
UK	107	101	94	93	92	84	79	78	79	80	93	96	106	116

DOMESTIC DC (3500 kWh/year)

	Jan 2000	July 2000	Jan 2001	July 2001	Jan 2002	July 2002	Jan 2003	July 2003	Jan 2004	July 2004	Jan 2005	July 2005	Jan 2006	July 2006
ΑT	95	95	95	95	93	93	93	92	98	98	96	95	89	98
BE	117	117	118	118	114	111	112	112	115	114	112	110	112	114
DE	119	120	122	123	126	125	127	125	126	128	133	135	137	141
DK	72	72	78	82	87	84	95	87	92	91	93	96	100	107
ES	90	90	86	86	86	86	87	87	89	89	90	90	94	95
FI	65	64	64	67	70	70	74	80	81	79	79	78	81	83
FR	93	91	91	91	92	92	89	89	91	91	91	91	91	91
GR	56	55	57	58	58	58	61	61	62	62	64	64	64	64
IR	80	80	80	80	88	88	101	101	106	106	120	120	129	129
IT	150	160	157	146	139	142	145	147	143	141	144	151	155	155
LX	106	105	112	114	115	115	119	119	122	122	129	131	139	139
NL	94	108	98	89	91	98	97	109	103		110	111	121	124
PT	119	119	120	120	122	122	126	126	128	128	131	131	134	134
sw	64	65	63	68	70	69	84	86	90	84	85	81	88	98
UK	99	97	96	97	97	95	96	95	88	85	84	88	97	110

The graphs set out below show the price developments in individual Member States, firstly, for very large users (24000 MWh/year), and then for other smaller consumer category (50 MWh/year) and finally for domestic users (3500 kWh/year).

Pág. 56 Memoria

Figure 6.1 Eurostat electricity prices (Industrial IG) (Euro/MWh)

Figure 6.2 Eurostat electricity prices (Industrial IB) (Euro/MWh)

Figure 6.3 Eurostat electricity prices (Domestic DC) (Euro/MWh)

From the three graphs it can be seen that there is no convergence, and it keeps a big gap price between the countries with the cheapest electricity and the countries with the most expensive electricity.

This difference of price can come up to more than 100%:

- In the very large industrial consumer market (24 GWh/year) a MWh in Italy is sold for 95 Euros and in France it is sold for 46 Euros. The difference is 106%.
- In the small commercial consumers (50 MWh/year) a MWh in Germany is sold for 165 Euros, and in Finland it is sold for 68 Euros. The difference is 143%.
- In the domestic consumer market (3,5 MWh/year) a MWh in Italy is sold for 155 Euros, and in Greece it is sold for 64 Euros. The difference is 142%.

6.4 Cross-border exchanges

Another important aspect is the lack of integration of the energy offer at European level. It is very important to try to improve cross-border exchanges of electricity and to do this, it is essential to improve the electricity infrastructure among Member States. Actually, the lack of integration is principally due to insufficient interconnection capacity among most

Pág. 58 Memoria

of the Member States, and frequently in the cross-border exchanges there are congestion problems.

The European countries are not doing all that is necessary to allow foreign companies to enjoy the electricity national market. In most of the states the market is dominated by one or two big companies and mostly there are inadequate policies for cross-border competitiveness.

In table 6.10 it can be figured out that during the last 10 years, the transmission grid has been developing just a bit: from 1995 cross-border flows have only had a growth of 3,7%.

Table 6.10 Extent of cross border electricity flows (European Commission, 2005)

	Cross border flows – actual as % of consumption
1995	7%
2000	8%
2005	10,7%

The present interconnections are insufficient to ensure a properly functioning internal market in electricity and also to guarantee security of supply.

A few critical bottlenecks have been identified in the electricity sector, in particular:

- The borders between France and Spain
- The borders between Italy and France, Switzerland and Italy and Austria and Italy
- The borders between Belgium and Netherlands
- The borders West-Denmark and Germany
- Ireland
- The interconnection between the UK and continental Europe
- Greece

6.5 Security of supply

The important indicator in the following table is the figure for "remaining capacity" that sets out the extent to which reliably available capacity exceeds a forecast for maximum load.

Some Member States show negative figures, it means that they do not have sufficient spare capacity. Generally, there are neighbouring Member States that can provide the electricity in case of emergency, but not always it is possible because of the lacks of cross-border infrastructures.

Table 6.11 Security of supply (European commission, 2005)

	Peak demand recorded (MW) / (date)	Season	Total generation	Remaining capacity
	/ (date)		capacity (MW)	
Austria	9500 (16/12/05)	W	18300	55%
Belgium	13708 (20/12/04)	W	14600	-5%
Denmark	6480 (?)	W	12710	-
Finland	14040 (02/01/03)	W	16488	-
France	86000 (21/02/05)	W	112900	13%
Germany	77200 (16/12/05)	W	114800	10%
Greece	9510 (02/08/05)	S	11000	-3%
Ireland	4528 (20/12/04)	W	6400	-
Italy	54100 (28/06/05)	S	90800	13%
Luxembourg	994 (18/11/04)	W	1700	75%
Netherlands	15601 (21/12/04)	W	21100	5%
Portugal	8261 (09/12/05)	W	11800	17%
Spain	43708 (21/07/05)	S	64800	18%
Sweden	27000 (22/01/04)	W	33551	-
UK	54100 (13/12/04)	W	75700	-

The performance of the network is a key factor that affects the quality of service that is perceived by the final customer and has to be a high priority.

Pág. 60 Memoria

In the following table it can be seen the average duration of interruption per customer per year, performances are quite different, varying between 27 minutes per customer per year on average in the Netherlands, to 5 hours per customer per year on average in Portugal. The level of interruption that can be tolerated is a decision of individual Member States.

Table 6.12 Interruption from the distribution network (European Commission, 2005)

	Average duration of interruption per customer per year (minutes)
Austria	30
Belgium	-
Denmark	30
Finland	103
France	-
Germany	-
Greece	-
Ireland	162
Italy	180
Luxembourg	-
Netherlands	27
Portugal	300
Spain	-
Sweden	123
UK	68

6.6 Environmental performances

The following table indicates the ratio between the electricity produced from renewable energy sources and the gross national electricity consumption.

It measures the contribution of electricity produced from renewable energy sources to the national electricity consumption.

Electricity produced from renewable energy sources comprises the electricity generation from hydro plants, wind, solar, geothermal and electricity from biomass and wastes.

Gross national electricity consumption comprises the total gross national electricity generation from all fuels, plus electricity imports, minus exports.

In the last column the targets for each country, introduced by the European Commission in Directive 2001/77/CE in September 2001, are indicated.

During the last years, Europe is making progress, but it is clear that most of the Member States will not reach the 2010 targets.

This is probably the case of Belgium, France, Greece, Ireland, Italy, Portugal, and UK.

Finally, it is very strange and dramatic that Austria, France, Ireland, Italy and Portugal in 2004 (these are the most recent data that is possible to get) had a share of electricity from renewable energy to gross electricity consumption lower than that they had 10 years before.

Table 6.13 Share of electricity from renewable energy to gross electricity consumption (EUROSTAT, 2005)

	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2010
Austria	70.1	70.6	63.9	67.2	67.9	71.9	72.0	67.3	66.0	53.4	58.7	78.1
Belgium	1.1	1.2	1.1	1.0	1.1	1.4	1.5	1.6	1.8	1.8	2.1	6.0
Denmark	5.6	5.8	6.3	8.8	11.7	13.3	16.4	17.4	19.9	23.2	27.0	29.0
Finland	24.8	27.6	25.5	25.3	27.4	26.3	28.5	25.7	23.7	21.8	28.3	31.5
France	19.7	17.8	15.3	15.2	14.4	16.5	15.1	16.3	13.7	13.0	14.2	21.0
Germany	4.3	4.7	4.7	4.3	4.9	5.5	6.8	6.5	8.1	8.2	9.7	12.5
Greece	6.4	8.4	10.0	8.6	7.9	10.0	7.7	5.2	6.2	9.7	9.5	20.1
Ireland	5.5	4.1	4.0	3.8	5.5	5.0	4.9	4.2	5.4	4.3	5.1	13.2
Italy	18.0	14.9	16.5	16.0	15.6	16.9	16.0	16.8	14.3	13.7	15.9	25.0
Luxembourg	3.0	2.2	1.7	2.0	2.5	2.5	2.9	1.6	2.8	2.3	3.2	5.7
Netherlands	1.9	2.1	2.8	3.5	3.8	3.4	3.9	4.0	3.6	4.7	5.7	9.0
Portugal	36.1	27.5	44.3	38.3	36.1	20.5	29.4	34.2	20.8	36.4	24.4	39.0
Spain	17.7	14.3	23.5	19.7	18.6	12.8	15.7	20.7	13.8	21.7	18.2	29.4

Pág. 62 Memoria

Sweden	42.7	48.2	36.8	49.1	52.4	50.6	55.4	54.1	46.9	39.9	46.1	60.0
UK	2.1	2.0	1.6	1.9	2.4	2.7	2.7	2.5	2.9	2.8	3.7	10.0
EU15	14.2	13.7	13.4	13.8	14.0	14.0	14.7	15.2	13.5	13.7	14.9	22.0

In the following table, the electricity energy consumption *pro capite* of the individual Member States can be seen. In all of the European countries, except Belgium, the electricity consumption has growth with respect to 1999.

From the data, three Member States figure out because of their very high consumption with respect to the European average.

Table 6.14 Final electricity consumption (EUROSTAT, 2006)

	Final	electricity con	sumption per	capita (kWh/c	apita)	
	1999	2000	2001	2002	2003	2004
Austria	6326	6473	6720	6811	6811	6925
Belgium	7925	7573	7613	7609	7694	7753
Denmark	6065	6090	6086	6054	6010	6109
Finland	14381	14589	14919	15338	15530	15928
France	6405	6550	6687	6609	6821	6908
Germany	5698	5874	6143	6051	6170	6220
Greece	3764	3957	4074	4245	4415	4503
Ireland	5038	5347	5460	5598	5684	5718
Italy	4586	4787	4868	4953	5076	5097
Luxembourg	12892	13183	12831	12774	13417	14121
Netherlands	6010	6174	6219	6193	6208	6343
Portugal	3559	3764	3894	4015	4147	4264
Spain	4453	4706	4965	5042	5280	5447
Sweden	14296	14526	14936	14735	14478	14524
UK	5510	5606	5644	5629	5677	5696
EU15	5764	5938	6093	6090	6208	6279

In the following graph the curves of the electricity energy consumption *pro capite* of the individual Member States are drawn. Finland, Sweden and Luxembourg curves are the

highest ones: in 2004 the citizens of these 3 countries has used 154%, 131% and 124% more electricity than the average consumption in EU15.

A part of this gap in consumption could be due to the strong climate of these countries, but the gap is too high and it is obvious that there is a consumption excess, especially if it is compared with consumptions of countries with a similar climate like Netherlands and Denmark.

Figure 6.4 Electricity energy consumption pro capite (EUROSTAT, 2005)

7. Sustainable development in the European electricity market

7.1 Introduction

In 1972, during the Stockholm Conference, for the first time international countries admitted the need to protect and improve the environment.

After this conference it was founded the United Nations Environment Program (UNEP) that, currently, with the United Nations Development Programme (UNDP), the Food and Agriculture Organization (FAO), the United Nations Educational, Scientific and Cultural Organization (UNESCO), and the International Union for the Conservation of Nature (IUCN) is one of the most important organizations in the world about sustainability.

In 1987 the World Commission on Environment and Development (The Brundtland Commission) commenced talking about sustainable development and defined it as it follows:

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs." (Brundtland report, 1987)

Some years later, in 1992, in Rio de Janeiro, there was the United Nations Conference about Environment and Development (Earth Summit). For the first time non-governmental organizations (NGO) were involved.

This was one of the most important international meetings about sustainability. They set up the first approaches, which nowadays are still essential to design sustainable strategies.

The participating countries signed three agreements:

- Agenda 21
- The Rio Declaration on Environment and Development
- Statement of Forest Principles

And they signed also two legally binding conventions:

Framework Convention on Climate Change

Pág. 66 Memoria

Convention on Biological Diversity

In December 1993, in Brussels there was the first environment conference of regional ministers and politic leaders in the European Union. They established the real intention to implement the Agenda 21 in the European Union.

In November 1995, in Valencia, there was the second environment conference of regional ministers and politic leaders in the European Union. There have been defined instruments and goals of the environmental polices.

And in June 1997, in Gothenburg, there was the third environment conference of regional ministers and politic leaders in the European Union where there was developed proposals in three particular areas:

- The implementation and further development of Community environmental law
- Regional Agenda 21
- Sustainable development and the Structural Funds.

In December 1997, the Kyoto protocol was negotiated in Kyoto and it came into force on 16th February 2005 with the ratification by Russia.

They put forward an amendment to the international treaty on climate change, assigning mandatory targets for the reduction of greenhouse gas emissions to signatory countries.

During the last years, international conferences, congresses and meetings have taken place periodically, dealing with the problem of sustainable development widely and deeply, and producing a big (maybe too much big) amount of information, studies and strategies.

The definition of sustainable development since the early stages gave rise to several arguments about its real meaning.

Many people, actually, thought that the term sustainable development contained deep down an intrinsic contradiction, and so such expression was not so useful because of its "no-meaning".

In Robert B. Gibson's book "Sustainability assessment: criteria and processes" a series of original definitions of sustainable development is listed. They clarify the argument about Bruntland's definition.

Sustainable development is:

- A redundancy, since unsustainable activities cannot provide true development.
- An oxymoron (a self-contradiction) that amounts to believing that you can have your cake and eat it too.
- A case of developers getting the noun and environmentalists being left with the adjective.
- A dangerous delusion, promoted by those who are unwilling to recognize that we are already overstraining our planet's capacity to withstand our impositions.
- One of the landmark steps in human history, following opposable thumbs, the discovery of fire and the invention of progress
- An exceptionally popular term, invoked favourably by all manner of otherwise incompatible individual.
- A term that everyone can support, largely because no one knows what sustainability means and/or no one agrees on what development means.
- A term that offers an accommodation of opposing forces suggesting that responsible stewardship of nature and continuing gains in human material wellbeing are compatible.

With the time the term became so popular that it would be impossible to change it.

This debate about the definition of sustainable development is not only a semantic argument, but it highlights the contradictions and the innovation which are at the heart of the concept of sustainable development and that, at the beginning, were not immediately accepted.

In general terms, it can be affirmed that sustainable development focuses on improving the well-being of every citizen of the whole world, without increasing the use of natural resources and respecting the ties set from the ability to regeneration of the environment.

So, it is fundamental to understand that the concept of sustainable development includes environmental aims and, social and economic aims as well.

Pág. 68 Memoria

7.2 Three dimensional model

The most asserted model to describe sustainable development is the three dimensional model.

Sustainable development has three components:

Environmental sustainability: the use of natural resources for being considered sustainable must respect the ties set from the ability to regeneration and absorption of the environment.

Economic sustainability: it encompasses the requirements for strong and durable economic growth, such as preserving financial stability and a low and stable inflationary environment. (IEA, 2001, [23])

Social sustainability: it emphasises the importance of well functioning labour markets and high employment, of adaptability to major demographic changes, of stability and cultural systems, of equity and of democratic participation in decision-making. (IEA, 2001, [23])

So the model says that its three dimensions has the same importance.

A development geared to only environmental goals, or social goals, or economic goals cannot be considered sustainable.

Neither the attainment of 2 goals out of 3 is admitted by the model. Actually it pretends a three dimensional development.

The challenge consists of satisfying the three apexes of the triangle although they are geometrically opposite among them.

Most of the time, environmental sustainability goes in the opposite direction with respect to economic sustainability, which goes in the opposite direction with respect to social sustainability.

Eventually, the solution is to reach a trade off which permit to achieve the general goal of sustainability.

The economic, social and environmental processes cannot be considered separately, although, several times, the players only belong to one dimension out of 3 and so it is difficult for them to interact on the three dimensions at the same time. However they have to consider the externalities that whatever action generates.

Moreover, it is important to consider the variable time. Actually, an action in the present time can produce effects in the future. Although the future can be very far it has to be considered as well. The present needs are as important as the needs of the future generations.

In 1987, when sustainable development was defined, for the first time they questioned the model of development adopted by the industrialized countries. This model is based on the no ending growth, the maximisation of the product, consumptions with no control, squandering of the natural resources, above all the energetic ones. (Palea, 2006, [31])

According to sustainable development, the economic growth implies an exploitation of non-renewable sources (oil, coal, gas, etc...) totally uncoupled by the environmental pace according to the natural heritage is able to regenerate itself.

Pág. 70 Memoria

It is important to highlight that the sustainable development model does not want to question the need of economic growth, but it expects that also the other directions of development are considered as well.

If the unit of measurement was not the money, and it was possible to quantify the well-being of people of the present and future generations, it would be easier to implement with successful whatever sustainable development model.

7.3 Are the deregulated energy markets suitable to facilitate a development towards sustainable energy systems?

Mostly, when people talk about sustainable energy systems, they think that an energy system, which guarantees low emissions of CO₂, or low emissions of other gases like CO or NOx, is sustainable.

But the contribution to sustainable development by an energy system is something more complex.

So, as stated before, an energy system geared to the attainment of sustainable development should contribute positively to the as large as possible amount of social, environmental and economic aspects.

This thesis, as final goal, intends to answer the question "are the deregulated markets suitable to facilitate a development towards sustainable energy systems?"

In order to answer this question the three dimensional model has been used, weighing up for each dimension the effects which the new market reform has brought.

7.3.1 Economic sustainability

The main goal of the reform for the new electricity market is to guarantee a better economic efficiency.

As stated in chapter 3, in order to achieve this goal, it has to be guaranteed:

- Improved efficiency in the production
- Improved efficiency in the transmission

- Improved efficiency in the distribution
- Lower costs
- Lower prices
- Better allocation of resources
- Improved risk allocation

Currently, it can be asserted that the economic goals have not yet been reached.

Actually, the reform is late in guaranteeing all of that benefits which theoretically should gush from a market based on competitiveness.

But the process of the reform has not yet been completed and probably, sometime it will work better. A guarantee is due to the widespread presence of private investors in the supply chain; actually, no private investors would enjoy the market if it were not chance of profit.

A problem could be, when the market starts working, how much it affects the other two dimensions.

Currently, the most critical factors from the economic point of view are:

- · High prices
- The lack of price convergence
- The competitiveness that is not yet working
- The lack of integration among the markets of the different countries

7.3.2 Environmental sustainability

The environmental sustainability, theoretically, is a primary importance challenge. At institutional level, international associations and agencies meet periodically to discuss about environment, but from a practical point of view the efforts and the results are not as good as they should be.

The attainment of environmental performances is another main goal of the electricity market reform. As stated in chapter 3, the new market should assure:

Pág. 72 Memoria

- Less green house gas emissions
- Lower consumption of energy
- Development of renewable
- Lower waste of energy
- Global cooperation

But actually, the results reached are low and it does not seem that they are improving.

The tables 6.13 and 6.14 from chapter 6 show terrible data.

The targets introduced by the European Commission in Directive 2001/77/CE, which indicate the ratio between the electricity produced from renewable energy sources and the gross national electricity consumption, do not seem that they can be reached by most of the EU15 countries.

Moreover, the electricity consumptions have been growing for the last years.

The European Commission, in the report "Measuring progress towards a more sustainable Europe. Sustainable development indicators for the European Union (1990-2005)", in order to monitor and measure the progress towards a sustainable Europe, assessed the list of sustainable development indicators proposed by the United nations in the European context.

So, the "climate change and energy" indicators in figure 7.1 and the diagram in figure 7.2 confirm what stated in the lines before:

Figure 7.1 Climate change indicators (European Commission, 2005)

	EU-25	EU-15
Greenhouse gas emissions	:	~
Gross inland energy consumption	•	~
Climate change		
CO ₂ intensity of energy consumption	*	*
Energy		
Energy intensity of the economy	*	*
Final energy consumption	•	~
Gross electricity generation	•	~
Renewable energy	•	~
Consumption of biofuels		

Pág. 74 Memoria

Figure 7.2 EU15 total greenhouse gas missions and target according to Kyoto protocol as a percentage of base year emissions (European Commission, 2005)

NB: The dotted line shows the linear path of the reduction target for the first commitment period, 2008–12.

"Both greenhouse gas emission and energy consumption have increased since 2000. While the 1990s saw a decrease in the CO2 intensity of energy use and in the energy intensity of the economy, this has clearly slowed down since 2000. The share of renewable energy for electricity production has decreased due to a stabilisation in renewable energy use relative to a growth in overall energy consumption." (European Commission, 2005, [15])

7.3.3 Social sustainability

The social sustainability in the new market for electricity is very difficult to assess because it is mainly based on qualitative parameters.

The social variables identified, which are influenced by the new market, concern the following areas:

- Security of supply
- Employment

Security of supply in the social sector is the guarantee of connection to the network for all the European citizens, included those who live in isolated zones.

But, for sure, it depends on the economical assessment, because if the state does not bear the investment on infrastructures which are not economic feasible, certainly, there is no private investor who is prepared to lose money for "charity". This means that the new market does not guarantee improvements in this direction, but it depends on the social policies undertaken by the individual countries.

As far as employment is concerned, the report called "EPSU Contribution to the progress report on the internal market for electricity and gas. State of play" affirms that the internal market for electricity and gas has:

- Destroyed 300.000 jobs in 10 years (some figures indicate 330.000). While this job
 loss has contributed to an apparent increase in labour productivity, this was a oneoff effect and it has brought no long-term dynamic efficiency gains, undermining a
 central tenet of the competition theory.
- Reduced labour costs through income cuts of workers and their families. It is foreseen this will continue through outsourcing amongst others.
- Introduced more flexibility and insecurity for workers.

7.4 Final discussion

From the previous analysis of the three dimensions, it can be figured out that the new market is not improving Europe with respect to sustainability, although it is hoped that things will change.

Maybe the scenario just described is a little bit exaggerated, but probably it is not so far away from the reality.

The European governments has a fundamental role, because they will have to monitor and assure the fair play of all the players and the good working of the market that theoretically would work perfectly, but practically it is not producing good results.

Actually, just the market cannot achieve good results, but the collaboration among the individual countries and the European Commission (with stronger authority) could cause a synergy, which could generate strong improvements.

European Union constitutes a huge market, which is composed of 450 millions consumers, and an economically and technologically developed area. Theoretically, Europe could bear

Pág. 76 Memoria

the inevitable transition costs to go past to a sustainable economic model.

It is fundamental considering sustainable development at European level, because no country can face isolated and effectively the global problems of sustainability.

Actually, if a country reached, locally, a sustainable model, which worked well, it could not bear, for a long time, a market totally open, the hardness of the international competitiveness, the challenge with others economies which continued developing with no sustainability constraints.

Hence, the efforts that the member states are doing to achieve a single European market for electricity could return good results in the long term. But it is essential an active collaboration among all the European countries, and not only participation geared to satisfy the minimum requirements in order to not have to pay any sanction.

The French case is the most obvious. The European Commission cannot impose sanctions on the French government because the minimum requirements are satisfied, but it is evident that the French market is not competitive and probably it will not be competitive for a long time.

So, an overall improvement of the European energy system, the development of renewable sources, the progressive abandon of the nuclear, the reduction of the greenhouse gas emissions are goals that can be achieved by Europe. These efforts can lead to high benefits not only for the environment, but also for a stronger and, above all, lasting economy and also for improving the sanitary conditions of the population and the well-being. Summarizing, it is possible, through a general effort by the European Union, to improve the three parameters of the triangle of the three dimensional model of sustainable development.

8. References

- [1] Borner, A., Lieb-Doczy, E., MacKerry, G., 2003. Who secures the security of supply? European perspectives on security, competition, and liability. The Electricity Journal, December 2003, pp. 10-19.
- [2] Dubash, K., 2003. Revisiting electricity reform: The case for sustainable development approach. Utilities Policy 11, pp. 143-154.
- [3] EPSU (European federation of Public Service Unions), 2005. EPSU
 Contribution to the progress report on the internal market for electricity and gas.
 State of play.
- [4] ERGEG (European Regulators Group for Electricity and Gas), 2006. National Reports by Country.
- [5] EURELECTRIC, 2003. Ensuring investments in a liberalised electricity sector.
- [6] EURELECTRIC, 2005. Latest Industry Statistics as at 31st December 2005.
- [7] European Commission, 1999. Opening up to choice. The single electricity market.
- [8] European Commission, 2000. Green Paper: Towards a European strategy for the security of energy supply.
- [9] European Commission, 2004. Strategy Paper: Medium term vision for the internal electricity market.
- [10] European Commission, 2004. The share of renewable energy in the EU.
 Country profiles. Overview of renewable energy sources in the enlarged European Union.
- [11] European Commission, 2004. The unbundling regime. Country overview.

Pág. 78

• [12] European Commission, 2004. Third benchmarking report on the implementation of the internal electricity and gas market.

- [13] European Commission, 2004. Your power to choose.
- [14] European Commission, 2005. Energy and transport in figures 2005.
- [15] European Commission, 2005. Measuring progress towards a more sustainable Europe. Sustainable development indicators for the European Union (1990-2005).
- [16] European Commission, 2005. Report on progress in creating the internal gas and electricity market.
- [17] European Union, 1996. Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 concerning common rules for the internal market in electricity.
- [18] European Union, 2001. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market.
- [19] European Union, 2003. Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 concerning common rules for the internal market in electricity.
- [20] European Union, 2006. Directive 2005/89/EC of the European Parliament and of the Council of 18 1anuary 2006 concerning measures to safeguard security of electricity supply and infrastructure investment.
- [21] Gibson, Robert B., 2005. Sustainability assessment: criteria and processes.
 London, UK.
- [22] International Energy Agency, 1999. Electricity market reform. An IEA handbook.

- [23] International Energy Agency, 2001. Competition in electricity markets.
- [24] IPCC, Intergovernmental Panel on Climate Change, 2001. Climate change synthesis report. Cambridge University Press, New York, USA.
- [25] Johnsson, F., Rydén, B., 2005. Project plan Pathways to sustainable European energy systems, Period: 2006-2010. Chalmers University of Technology, Gothenburg, Sweden.
- [26] Kirschen, D., Strbac, G., 2004. Fundamentals of power system economics.

 University of Manchester Institute of Science and Technology, Manchester, UK.
- [27] Mc Gowan, F., 1996. European energy policies in a changing environment. Physica-Verlag, Heidelberg, Germany.
- [28] Meeus, L., Purchala, K., Belmans, R., 2005. Development of the internal electricity market in Europe. Energy Policies, Vol. 18, Issue 6, pp. 25-35.
- [29] Nordel, 2005. Annual statistic, 2005.
- [30] Norgaard, R., Rader, N., 1996. Efficiency and sustainability in restructured electricity markets: the renewable portfolio standard.
- [31] Palea R., 2006. Il ruolo dell'Unione Europea nella promozione e diffusione dello sviluppo sostenibile.
- [32] Polo, M., Scarpa, C., 2002. The liberalization of energy markets in Europe and Italy. Conference "Monitoring Italy", Rome, Italy.
- [33] Serralles, Robert J., 2004. Electric energy restructuring in the European Union: integration, subsidiarity and the challenge of harmonization. Energy Policies 34, pp 2542-2551. University of Oregon, Eugene, USA.
- [34] Thomas, S., 2005. The European Union gas and electricity directives. Public Services International Research Institute University of Greenwich, UK.

Pág. 80 Memoria

• [35] UCTE (Union for the Coordination of Transmission of Electricity), 2004. Statistical Yearbook 2004.

• [36] Wilson, R., 1999. Market architecture. Stanford University, Stanford, USA

Appendix A

A.1 Map of the European electricity market country by country

A.1.1 Introduction

In the following paragraphs, it has been analyzed the electricity market situation for every EU15 country.

For each country the key aspects of the electricity market reform are described:

- Unbundling
- Cross-border exchanges
- Security of supply
- Customer service
- Switching
- Competition
- Prices
- Environment

The main sources have been the following:

- European Commission, 2004. The unbundling regime. Country overview.
- European Commission, 2004. The share of renewable energy in the EU. Country profiles. Overview of renewable energy sources in the enlarged European Union.
- European Commission, 2005. Report on progress in creating the internal gas and electricity market.
- Nordel, 2005. Annual statistic, 2005.
- UCTE, 2004. Statistical Yearbook 2004.
- ERGEG National Reports by Country
- EUROSTAT webpage

Pág. 82

A.1.2 Austria

Background

• Population: 8.265.900

• Size: 83858 Km²

• GDP (2005): 245.102.800 Euros

• Growth rate of GDP volume (2005): 2,0%

• Final electricity consumption per capita (2004): 6.925 kWh/capita

• Degree of liberalization: 100%

• Primary production:

Unbundling

There are 3 transmission system operators, and they are legal, functional and accounting separated.

Legal, functional and accounting separation of distribution system operators for electricity is partly assured. There are 133 distribution system operators and 122 of these have less than 100.000 customers and they are subject to the exemption rules.

Cross-border exchanges

The electricity interconnector capacity of Austria with neighbouring countries amounts to 14000MVA line rating. Apart from the connections with Germany and Switzerland, congestion occurs frequently. Austria is an important transit country for electricity.

at_III_sld		0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	00	. 0	0	0	0	0	0	0 (0 (0 0	> <	o c	o c	. 0)
AT_UCTE_SLD	Balance	-	8	6	_	7	2	eo 5	4 K		4	4	6	4	8	4	N	S	8	8	0	4 1	_ <	0 0		9	9	0	0	ופס	2	о (0 5	4 (2 b	. ((. 6	,
AI_OCIL_OLD	_	9	8	e	φ	-73	φ	-75	8 8	-15	12	22	-231	우	17	28	61	우	6	48	8	8 3	33	5 5	6147	103	61	ගි	17	-14	٥,	Ŗ 8	8 8	3 8	3 8	9	345	=
AT_III_IMP		0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	00	• •	0	0	0	0	0	0	0 0	0 0	> 0	> 0) C	0	
AT_UCTE_IMP		1195	1064	1121	1078	296	546	653	932	1022	1235	1481	11544	1391	1161	1622	1662	1231	1353	1468	1654	1764	1671	2151	18742	2031	1766	1561	1343	833	609	868	1125	1240	1516	2073	16453	
SI→AT		0	0	0	0	0	0	- 0	0 0	0	0	4	2	20	32	34	2	0	0	6	56	28	0.1	n -	199	13	12	29	13	54	2	N Ç	8	٦.	4 5	48	234	
IT→AT	mport (+)	0	0	0	0	0	0	00	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	00	•	0	0	0	0	0	0 (0 0	0 0	> 0	00) C	0	J
HU→AT	шI	224	211	169	168	25	77	150	2 60	218	202	132	2018	79	2	52	81	97	99	67	64	= '	ωç	247	638	59	38	20	37	188	17	27	62	0,0	39	80	740	
DE→AT		631	551	699	662	300	586	211	0 67	589	586	864	5510	832	206	1047	934	466	515	280	833	980	914	10/0	9066	1296	1152	1000	757	40/	536	9 22	8 28	000	3 6	1240	8922	
CZ→AT		339	296	281	240	216	167	274	357	436	409	456	3636	452	391	489	636	622	692	742	694	723	738	949	7628	661	564	443	533	83	268	482	900	200	541	704	6248	
CH→AT		-	9	2	8	58	16	17	0 0	69	38	52	375	8	Ξ	27	9	46	78	06	37	55	2 2	- ¥	371	2	0	-	က	3/	33	5	60	2 0	9 6	; -	309	
at_III_exp		0	0	0	0	0	0	0 0	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	000	0	0	0	0	0	0	0	0 0	0 0	> 0	> 0) C	0	=
AT_UCTE_EXP		1134	976	1082	1139	1333	1361	1406	1206	1212	1111	200	13863	1287	983	1058	1050	1129	1155	1000	824	096	1354	900	12595	995	1150	1171	1170	888	1314	125/	895	242	1029	1107	12994	ĺ
AT→SI		311	279	267	351	382	303	328	2 6	348	288	140	3555	8	197	240	272	344	392	323	219	180	288	0 4 4 7	3066	136	161	165	168	22	908	210	45	100	174	19	2002	-
AT→IT	Export (-)	133	117	132	135	141	8	8 8	167	28	155	148	1687	150	132	141	145	151	137	138	74	15/	15/	27	1664	137	138	139	145	325	141	32 5	112	0 8	98	9	1621	
AT→HU	Ē	0	0	6	7	13	50	<u> </u>	0 0	0	0	2	65	21	27	32	Ξ	53	17	16	5	22	192	0 0	468	23	59	22	64	7	102	040	4 6	4 c	98	9	478	
AT→DE		289	299	343	265	280	672	676	510	489	380	282	5343	431	297	265	191	391	383	352	223	147	237	7 2 2	3333	254	297	326	324	104	542	6/4	427	2000	202	307	4465	
AT→CZ		-	က	7	Ξ	17	9	ro v	4 c	10	0	0	89	-	0	-	0	0	0	0	0	0	0 0	00	N	0	0	-	0	0	ω (0 0	0 0	> c	00) C	6	
АТ→СН		400	278	324	370	200	185	500	5 6	217	288	335	3145	453	330	376	431	20	226	171	287	421	469	2/3	4062	445	537	518	469	5/6	315	181	7.	- 10	379	220	4419	
MM_YY		1.99	66:11	66:III	66.VI	66.7	VI.99	VII.99	00 XI	66:X	66.IX	8.IIX	1999	1.03	II.03	III.03	10.03	V.03	VI.03	VII.03	VIII.03	X.03	X X	25.03	2003	1.04	11.04	H.04	V.04	40.0	VI.04	VII.04	VIII.04	5.5	2.X	XII 04	2004	

1 These physical energy flows were measured on the cross-frontier transmission lines (2 110 kV). These values may differ from the official statistics and the total physical balance in the table "Monthly values. Operation".

Security of supply

Installed capacity: 18700 MW

• Peak demand: 9500 MW

• Total electricity generation (2004): 60.600 GWh

• Total electricity consumption (2004): 62.100 GWh

New project amounting to in total around 2000 MW are in the pipeline and supposed to be implemented by 2010. In addiction, around 1300 MW from renewable sources of energy is supposed to be added by 2010.

Customer service

There are 5,12 million electricity customers in Austria. The electricity market was opened 100% in October 2001. General consumer protection legislation applies to electricity. In addition, specific consumer protection rules for electricity are under preparation.

In Austria there is no regulation of end-consumer prices. There is no supplier of last resort.

	2005
Not eligible customers	0
Eligible customers	5.120.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	59.000

Switching

Customers can change supplier without any charge, there are standard rules a standard process of changing. Around 29% of large consumers, 29% of Small-medium industrial and business users and around 4% of household have changed supplier since market opening.

Competition

The wholesale market is currently based on bilateral trading (largest part) and trading in the Austrian electricity exchange (EXAA).

Five companies have a share in overall production capacity of more than 5%.

Pág. 86

The share of largest three companies is around 54% of total production capacity.

Prices

Electricity end consumers prices in Austria are characterised by a relatively low component for energy and a relatively high component for network access charges.

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Austria price (July	55	125	98
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Austria in 2010 is 78% of gross electricity consumption.

Currently they have achieved 58,7% of gross electricity consumption.

The production of electricity by renewable energies in Austria is dominated by large hydropower.

There is wide variety of policy measures for the support of renewable energies in Austria, stimulated by the new feed-in tariffs steady growth is also expected in the sector of wind energy, biomass electricity as well as small hydro installations.

Feed-in tariffs:

- Small hydro: 3,15 6,25 Eurocents/kWh
- PV systems: 60 Eurocents/kWh for plants < 20 kWp, 47 Eurocents/kWh for plants
 > 20 kWp
- Wind systems: 7,8 Eurocents/kWh for new plants
- Geothermal energy: 7,0 Eurocents/kWh for electricity fed into the grid
- Solid biomass and waste with large biogenic fraction: 10,2-16,0 Eurocents/kWh (10-2 MW), 6,5 Eurocents/kWh (hybrid plants)
- Fuels including biogenic wastes: 6.6 12.8 Eurocents/kWh (10 2 MW), 4.0 5.0 Eurocents/kWh (hybrid plants)

- Liquid biomass: < 200 kW 13,0 Eurocents/kWh; > 200kW 10,0 Eurocents/kWh
- Biogas: 10,3 16,5 Eurocents/kWh
- Sewage and landfill gas: 3,0 6,0 Eurocents/kWh

Investment subsidy: subsidy of about 30% of the investment cost for solar thermal, biomass, geothermal, wind, hydropower on project basis.

Pág. 88

A.1.3 Belgium

Background

• Population: 10.511.400

• Size: 30.510 Km²

• GDP (2005): 298.540.900 Euros

• Growth rate of GDP volume (2005): 1,1%

• Final electricity consumption per capita (2004): 7.753 kWh/capita

• Degree of liberalization: 90%

• Primary production:

Unbundling

There is only one transmission system operator.

In Flanders there are 15 distribution system operators, in Wallonia 14 and in the Brussels-Capital region 1.

Legal and functional separation of both transmission and distribution system operators for electricity is assured.

Cross-border exchanges

New electricity interconnection projects have recently been completed between France and Belgium.

Physical exchanges in interconnected operation 1

BE_III_SLD	ce	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 6	0
BE_UCTE_SLD	Balan	-130	-169	-160	7	84	198	38.6	388	216	-124	8	714	817	613	741	581	899	468	189	-38	283	637	92 6	2965	6318	749	930	882	751	380	451	-95	496	728	951	788	791	/808
BE_III_IMP		0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	> 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 6	0
BE_UCTE_IMP		570	493	283	652	703	779	1152	1065	824	618	616	8918	1450	1295	1411	1194	1295	1419	1051	756	1037	1137	1409	- !	145/1	1363	1335	1316	1236	952	1246	727	1257	1247	1375	1336	1222	14612
NL→BE	Import (+	407	290	318	283	272	274	3 5	49	232	274	279	3088	408	249	301	569	239	167	8	\$	138	435	305	8 6	3212	406	802	288	480	219	8	171	88	398	351	461	281	4633
LU→BE		0	0	0	0	0	0 0	0 0	0	0	0	0	0	176	802	88	162	233	193	73	83	188	278	232	5 5	606	53	25	23	195	109	196	8	212	526	222	192	166	2382
FR→BE		163	203	271	328	431	202	1018	916	589	344	337	5830	868	844	1022	763	843	1059	845	619	651	484	8/5	25/	9400	728	518	208	561	624	870	352	856	623	805	88	475	1961
BE_III_EXP		0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 6	D
BE_UCTE_EXP	-	700	662	749	845	980	283	218	673	808	742	649	8204	633	682	670	613	627	951	891	854	754	200	X (220	8223	614	405	431	485	572	795	819	761	519	424	248	431	6804
BE→NL	Export (197	263	381	429	475	382	707	511	419	477	432	5248	448	496	462	408	443	742	982	702	208	528	80 60	5 [5//6	374	131	48	239	372	83	527	88	382	551	325	1/8	4053
BE→LU		167	166	178	163	\$	164	0 0	162	179	181	145	1946	135	123	167	142	128	124	\$	9	120	139	148	77.	1602	110	140	153	122	152	139	148	86	135	120	105	120	15/2
BE→FR		336	233	190	g	33	24	~ c	0	9	8	72	1010	20	63	41	8	26	82	25	25	156	135	/8	212	8/2	130	134	144	124	48	31	144	78	66	83	91	133	6/11
MM_YY		1.99	66.II	66∶Ш	66.∨	66.7	VI.99	86.11	66 X	66.X	XI.99	XII.99	1999	1.03	E.03	E.03	€.03	×.03	VI:03	VII.03	VIII.03	× 03	× 3	X.33	20.03	2003	<u>.</u>	<u>=</u>	= 8	₹.04	> 2	Z.94	VII.94	≥	X :	×.	X 5	XII.04	2004

1 These physical energy flows were measured on the cross-frontier transmission lines (≥110 kV). These values may differ from the official statistics and the total physical balance in the table "Monthly values. Operation".

Security of supply

Installed capacity: 15.700 MW

• Peak demand: 13.800 MW

• Total electricity generation (2005): 85.441 GWh

• Total electricity consumption (2005): 80.900 GWh

Customer service

In the Flemish region, all end customers are able to choose their supplier. In the other regions, non-household consumers are able to choose their supplier in Bruxelles-Capitale and in Wallonia, customers connected to the distribution network are able to choose supplier on request of the distribution company.

	2005
Not eligible customers	657.700
Eligible customers	4.401.300
Not eligible customers (GWh)	11.500
Eligible customers (GWh)	77.100

Switching

53% of all electricity clients in the Flemish region have changed supplier with around 20% moving to totally new company. There is no data available for the other regions.

Competition

Only 2 producers Electrabel and SPE have market share above 5%. But Electrabel itself owns over 70% of production capacity.

The wholesale market is based on bilateral contracts between producers and suppliers. A power exchange platform (Belpex) is going to be created in 2006.

Prices

Euro/MWh IG (24000 IB (50	DC (3500
---------------	--------------	----------

Pág. 92 Memoria

	MWh/year)	MWh/year)	KWh/year)
Belgium price (July	55	125	98
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Belgium in 2010 is 6% of gross electricity consumption.

Currently they have achieved 2,1% of gross electricity consumption.

There are three different green certificate markets in Belgium: one in Flanders, one in the Walloon region and one in the Brussels region.

These three different systems have complicated the implementation of RES-E market.

The main promotion schemes for renewable energy sources in Belgium are Green certificate system with mandatory demand or minimum feed-in tariff.

Minimum prices are:

Wind offshore: 9 Eurocents/kWhWind onshore: 5 Eurocents/kWh

• Solar: 15 Eurocents/kWh

Biomass and other RE: 2 Eurocents/kWh

• Hydro: 5 Eurocents/kWh

A.1.4 Denmark

Background

• Population: 5.427.500

• Size: 45.000 Km²

• GDP (2005): 208.546.100 Euros

• Growth rate of GDP volume (2005): 3,0%

• Final electricity consumption per capita (2004): 6.109 kWh/capita

• Degree of liberalization: 100%

Primary production:

Unbundling

In Denmark there is one transmission system operator (Energinet.dk), operating the 400 kV grid, that is ownership unbundled (state owned) since its establishment as of 1st January 2005. Furthermore, 9 regional transmission system operators that operate the lower voltage transmission grid and that are legal and functional unbundled.

Pág. 94 Memoria

Legal, functional and accounting separation of both transmission and distribution system operators for electricity is assured.

Cross-border exchanges

Interconnection capacity of Denmark is about 5.200 MW with Norway, Sweden and Germany. A further increase of 600 – 800 MW with Norway has been planned.

Invetsments in interconnectors between the Nordic countries as well as internal links having impact on the cross border trade is planned.

Figure 1 Nordpool exchange for electricity 2005 (GWh) (Nordel, 2005)

From:	To:	Denmark	Finland	Norway	Sweden	Other countries ¹⁾	∑ From
Denmark		-	-	470	759	10,394	11,623
Finland		-	-	131	1,394		1,525
Norway		4,712	164		10,816		15,692
Sweden		7,692	7,193	2,836		4,251	21,972
Other countries ¹)	594	11,312	215	1,606		13,727
∑ То		12,998	18,669	3,652	14,575	14,645	64,539 Nordel
Total to		12,998	18,669	3,652	14,575		49,894
Total from		11,623	1,525	15,692	21,972		50,812
Net imports		1,375	17,144	-12,040	-7,397		-918
Net imports/tota consumption	l	3.8 %	20.2 %	-9.6 %	-5.0 %		-0.2 %

¹⁾ Germany, Russia and Poland.

Security of supply

Following the blackout in Eastern Denmark and southern Sweden on 23rd September 2003, the Danish government decided to prepare an energy infrastructure plan. The scope of the plan was to provide an overview of the necessary investments in new major transmission network in order to ensure security of supply, incorporation of renewable energy, and efficient electricity market function.

• Installed capacity: 12.600 MW

Peak demand: 6.300 MW

• Total electricity generation (2005): 36.200 GWh

• Total electricity consumption (2005): 35.400 GWh

Customer service

The electricity market was fully opened in 2003.

	2005
Not eligible customers	0
Eligible customers	3.000.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	33.900

Switching

There are no available figures about switching.

The household market has been opened since 2004.

Competition

The wholesale market is integrated to the Nordic power market.

It consists of a bilateral trading market between generators on one hand and suppliers and industrial companies on the other hand, and of a voluntary Nordic power exchange Nordpool which has a spot market and a forward market.

The market share of Nord Pool Spot AS in 2004 was 42% of the physical delivery in the Nordic countries. The wholesale market in Denmark has been largely dominated by two producers, Elsam and Energi E2. The competition authority is preparing two cases concerning Elsam's abuse of dominant position.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Denmark price	-	82	107
(July 2006)			
EU15 average	70	122	109

Pág. 96 Memoria

Environment

The RES-E target to be achieved by Denmark in 2010 is 29% of gross electricity

consumption.

Currently they have achieved 27% of gross electricity consumption.

The main promotion schemes for renewable energy sources in Denmark are:

Act on payment for green electricity

Settlement price instead of formerly high feed-in tariff

Wind onshore: new installation receive spot price plus (on a monthly basis) an

environmental premium (maximum of 1,3 Eurocents/kWh) plus a compensation for

offsetting costs (0,3 Eurocents/kWh), in total limited to 4,8 Eurocents/kWh. Turbine

owners are responsible for selling and balancing the power. The tariff is insufficient to

attract new investments.

Wind offshore: new installations receive spot price plus (on a monthly basis) an

environmental premium (maximum of 1,3 Eurocents/kWh) plus a compensation for

offsetting costs (0,3 Eurocents/kWh), in total limited to 4,8 Eurocents/kWh. Turbine

owners are responsible for selling and balancing the power. The tariff can be well below

the 4,8 Eurocents/kWh in times of a low spot price.

Solid biomass: a settlement price of 4 Eurocents/kWh is guaranteed for a period of ten

years. Additionally and as a guarantee these plants receive 1 Eurocent/kWh in

compensation for a Renewable Energy certificate.

Biogas: a settlement price of 4 Eurocents/kWh is paid

Waste: a settlement price of 1 Eurocent/kWh is paid

A.1.5 Finland

Background

• Population: 5.255.600

• Size: 337.000 Km²

• GDP (2005): 157.377.000 Euros

• Growth rate of GDP volume (2005): 2,9%

• Final electricity consumption per capita (2004): 15.928 kWh/capita

• Degree of liberalization: 100%

Primary production:

Unbundling

In Finland there is only one transmission system operator (Fingrid Plc) that is ownership and accounting unbundled.

Legal and functional unbundling is required for distribution system operators in whose the annually transmitted quantity of electricity has been at least 200 GWh during the last three years.

Pág. 98

Cross-border exchanges

Fingrid Plc and Svenska Kraftnät, the transmission system operators in Finland and Sweden respectively, have decide to construct a new cross-border transmission connection of 600 - 800 MW between the countries. An interconnector to Estonia of a 350 MW capacity will be built.

Figure 2 Nordpool exchange for electricity 2005 (GWh) (Nordel, 2005)

From: To:	Denmark	Finland	Norway	Sweden	Other countries ¹⁾	∑ From
Denmark	-	-	470	759	10,394	11,623
Finland	-	-	131	1,394		1,525
Norway	4,712	164		10,816		15,692
Sweden	7,692	7,193	2,836		4,251	21,972
Other countries 1	594	11,312	215	1,606		13,727
∑ То	12,998	18,669	3,652	14,575	14,645	64,539 Nordel
Total to	12,998	18,669	3,652	14,575		49,894
Total from	11,623	1,525	15,692	21,972		50,812
Net imports	1,375	17,144	-12,040	-7,397		-918
Net imports/total consumption	3.8 %	20.2 %	-9.6 %	-5.0 %		-0.2 %

¹⁾ Germany, Russia and Poland.

Security of supply

Reserve margin is relatively low in Finland and in general in the Nordic market, but it is considered sufficient.

Installed capacity: 16.488 MW

• Peak demand: 13.475 MW

• Total electricity generation (2005): 81.200 GWh

• Total electricity consumption (2005): 84.900 GWh

Customer service

The electricity market was fully opened in January 1997.

	2005
Not eligible customers	0
Eligible customers	3.120.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	86.600

Switching

The network operator may not charge a customer for the change of supplier unless the time elapsed from the previous change of supplier is less than 12 months.

In the Finnish electricity market about 11% of household customers have changed the supplier by the year 2004.

Competition

The wholesale market in Finland is integrated to the Nordic power market.

It consists of a bilateral trading market between generators on one hand and suppliers and industrial companies on the other hand, and of a voluntary Nordic power exchange Nordpool which has a spot market and a forward market.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Finland price (July	51	68	83
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Finland in 2010 is 28,3% of gross electricity consumption.

Currently they have achieved 31,5% of gross electricity consumption.

Pág. 100 Memoria

The main promotion scheme for renewable energy sources in Denmark is the exemption from energy taxes for renewable electricity. Unlike electricity from fossil or nuclear sources renewable electricity is exempted from the Finnish energy tax paid by end-users.

A.1.6 France

Background

Population: 62.886.200

• Size: 547.030 Km²

• GDP (2005): 1.710.023.600 Euros

• Growth rate of GDP volume (2005): 1,2%

• Final electricity consumption per capita (2004): 6.908 kWh/capita

• Degree of liberalization: 70%

Primary production:

Unbundling

Legal, functional and accounting separation of the transmission system operator for electricity is assured. RTE is the only electricity transmission system operator in France and it is owned by Electricité de France that is the most important electricity generator and supplier in France.

Pág. 102 Memoria

Functional and accounting separation of distribution system operators for electricity is assured, and legal separation will be put forward by 1st July 2007. The 100.000 customers exemption is present, this means that only 5 out of 170 distribution system operators are subject to the unbundling rules.

Cross-border exchanges

The level of electricity interconnector capacity of France with neighbouring countries is quite high.

They decided to improve the interconnection grid between France and Belgium. The reinforcement structure started on 14th December 2005 and it has increased commercial capacity by at least 700 MW.

Commercial capacity of transits between France and Spain is currently around 1.600 MW. The Iberian Peninsula interconnection rate is one of the lowest in Europe. It is far from being in line with recommendations made by the European Summit held in Barcelona in 2002 (10% of domestic consumption, *id est* 4.000 MW).

The objective currently targeted by transmission system operators is to raise the capacity to 2.800 MW, and then to 4.000 MW at a later date

In 2004 it began to import significant quantities from both Germany and Switzerland. Two new interconnectors with Belgium have been undertaken and will be operational by 2007.

GWh		1 1																																	
ত	FR_III_SLD	nce	-1338	-1168	-1361	-1351	-1192	-1114	-1076	-1341	-1158	-1222 -14914	-618	39	-136	-119	-367	45	-299	540	12	-510	-2326	-876	-569	-201	-718	0.00	-912	-889	-748	-1271	808-	-6513	-
France	FR_UCTE_SLD	Bala	-3608	-3785	4346	3641	-3238	-3897	4289	-4287	-3859	-3928 -47283	-5533	-5615	9899-	-5293	-5572	-5116	-4059	-4821	-3791	-5670	-5223	-5043	-3633	-3782	-3780	-4437	-3563	-4239	-4291	-4804	4677	-4508	2000
╙│	FR_III_IMP		0	0	0 0	0	0	0 0	0	0	0	o o	32	282	235	243	194	247	112	287	308	178	2975	78	95	264	ဇ္ဗ	2 6	16	7	24	0	117	20.00	1
	FR_UCTE_IMP		573	493	380	198	349	307	363 494	300	367	422 4471	341	27.7	144	214	162	421	397	263	333	178	3523	392	456	487	417	194	703	472	333	340	427	5183	2
	GB→FR		0	0	0 0	00	0	0 0	00	0	0	o o	32	285	235	243	194	247	112	587	308	178	2975	78	95	564	88	2 0	16	7	24	0	117	812	
	IT→FR	ort (+)	38	35	32	16	36	20	33	10	20	441 35	37	33	36	32	88	4 r.	90	22	16	58	434 94	32	34	33	37	92	67	88	20	19	23	544	5
	ES→FR	lmp	99	22	50	38	35	56	62	40	47	69 289	132	61	21	43	54	41	7	20	09	9 62	602	66	84	119	32	- 64	4 4	99	15	29	9 9	260	?
	DE→FR		12	0	0 0	0 00	28	٠ D	- e	38	42	22 82 82	4	0	0	N	0 +	- 88	22	4	32	0 1	152	5	79	91	79	+ c	27	9	4	4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	3
	CH→FR		121	170	105	105	226	169	411	202	174	165 2209	118	120	46	71	40	187	249	91	156	51	1463	126	125	100	85	2 g	421	234	83	227	216	2304	-
	BE→FR :		336	233	190	3 8	24	_	0	9	8	1010	20	8	4	8	S S	2 8	1 23	126	135	37	872	130	134	144	124	8 %	144	78	66	8	5 9	1179	:
	FR_III_EXP		1338	1168	1361	1351	1192	1114	1076	1341	1158	14914	650	246	371	362	561	\$ 8 8	411	47	536	988	5301	954	199	465	751	0.00	928	968	772	1271	828	10324	-
operation ¹	FR_UCTE_EXP		4181	4278	4726	3839	3587	4504	4783	4587	4226	4350 51754	5874	5892	6830	5507	5734	5000	4456	5084	4190	5848	9000 65733	5435	4089	4269	4197	4691	4266	4711	4690	5144	5104	4830 56058	2000
	FR→GB		1338	1168	1361	1351	1192	1114	1076	1341	1158	14914	650	246	371	362	561	\$ 8 8	411	47	596	988	5301	954	661	465	751	0.29	928	896	772	1271	925	10324	
necte	FR→IT	Export (-)	1407	1386	1528	1350	1232	1190	1237	1422	1461	1495	1749	1701	1888	1666	1800	1334	872	1601	1373	1425	18025	1527	1416	1635	1479	1285	1376	1162	1362	1499	1523	17125	:
ntercor	FR→ES	В	531	560	600	521	503	706	648	655	729	7405	443	356	544	393	651	680	683	999	582	378	6389	400	374	537	402	460	593	366	528	498	561	6034	3
es in ir	FR→DE											13771													746	909	845	1434	1493	1672	1443	1453	1544	15482	2
Physical exchanges in interconnected	FR→CH											8978											11692				910							-	
cal ex	FR→BE	Ц	_									5830				_			_				9400			_	261				_	_			-
Phys	MM_YY		1.99	86'II	36 ≧	.96.>	VI.96	VII.95	86 XI	X 95	36.IX	XII.99 1999	1.03	11.03	III.08	№.0	S S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VIII.03	IX.03	X.0	X.X.	2003	1.04	II.04	≡.04	ŏ.ŏ.>	5 5	VII.04	VIII.04	X.04	×	X X	2004	1

· These physical energy flows were measured on the cross-frontier transmission lines (2 110 kV). These values may differ from the official statistics and the total physical batance in the table "Monthly values." Operation".

Pág. 104 Memoria

Security of supply

Installed capacity: 116.000 MW

• Peak demand: 86.024 MW

• Total electricity generation (2005): 563.100 GWh

Total electricity consumption (2005): 482.400 GWh

The government has started a pluri-annual investment project to improve the installed capacity of France:

232 MW of biomass and biogas generation facilities

 500 MW of offshore wind power generation and 500 MW of onshore wind power generation.

Customer service

There are 32 millions electricity customers in France.

All business clients and *collectivités territoriales* are able to select their supplier.

Significant customer protection is assured, mainly for low-income customers. Many prices are still regulated.

	2005
Not eligible customers	31.600.000
Eligible customers	1.400.000
Not eligible customers (GWh)	140.000
Eligible customers (GWh)	330.000

Switching

59.200 consumers have changed supplier by June 2005, representing 13% of the total volume of eligible consumption and 1,3% of the number of clients. Many other have negotiated a new contract with the incumbent supplier while leaving the regulated tariff.

Competition

Electricité de France has around 90% of installed production capacity.

The power exchange (Powernext) traded volumes of 14,2 TWh for day-ahead exchange and 12,9 TWh of futures market in 2004, in total 5,6% of consumption in France.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
France price (July	46	84	91
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by France in 2010 is 21% of gross electricity consumption.

Currently they have achieved 14,2% of gross electricity consumption.

The main promotion scheme for renewable energy sources in France is the feed-in tariff for renewable energy installation up to 12 MW, guaranteed for 15 or 20 years.

- PV-Systems: 15 Eurocents/kWh
- Biomass: standard rate of 4,9 Eurocents/kWh, premium up to 6 Eurocents/kWh
- Hydro: standard rate of 6 Eurocents/kWh, premium up to 7,5 Eurocents/kWh
- Sewage and landfill gas: standard rate of 3,5 Eurocents/kWh, premium up to 4
 Eurocents/kWh
- Municipal solid waste: standard rate of 3,5 Eurocents/kWh, premium up to 4 Eurocents/kWh
- Wind: 8,5 Eurocents/kWh for the first 5 years after installation, then 6,5
 Eurocents up to 10 years after installation and 3 Eurocents/kWh for a further 5 years

Pág. 106 Memoria

A tendering system is in place for renewable energy installation > 12 MW. Some projects have launched for biogas, wind on-shore and wind off-shore with a power capacity of 250 MW.

A.1.7 Germany

Background

Population: 82.438.000

• Size: 357.022 Km²

• GDP (2005): 2.241.000.000 Euros

• Growth rate of GDP volume (2005): 0,9%

• Final electricity consumption per capita (2004): 6.220 kWh/capita

• Degree of liberalization: 100%

Primary production:

Unbundling

Legal, functional and accounting separation of transmission system operators for electricity is assured.

The process of unbundling of distribution system operators is not yet finalised. Germany has many small distribution system operators, of which the largest part will be exempted from legal and functional unbundling in application of the 100.000 customer rules.

Pág. 108

Cross-border exchanges

The interconnection capacity in Germany amounts to 14,4% of installed electricity capacity.

28 2896 15 2896 44 189 17 24 94 1190 25 18 18 18 18 18 18 18 18 18 18 18 18 18	THE STATE OF THE	20 2896 38 45 45 5 6 6 74 18 20 14 14 17 17 18 18 18 14 14 17 18 18 18 14 14 17 18 18 18 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18	_	Physical exchanges in interconnected	onnecte	-	operation ¹	-											Ğ	Germany	any	25	GWh
Balan Bala	18 1894 36 289 346 456		DE→PL DE→LU DE→FR DE→CZ			DE→DK_W	DE → DK²	DE→SE		DE_III_EXP			FR→DE	LU→DE	NL→DE	PL→DE	DK_W→DE	DK² → DE	SE .) DE	DE_UCTE_IMP	DE_III_IMP	DE_UCTE_SLD	DE_III_SLD
18 3984 36 289 465 989 49 28 50 n.a. 506 112 2207 648 177 20 32598 41 349 489 1050 45 18 30 n.a. 500 112 2207 68 76 -69 48 1050 45 18 30 126 2568 376 103 4 14 140 248 38 175 66 38 171 20 18 24 48 175 30 18 24 49 180 20 18 20 48 175 30 18 30 110 30 30 18 175 31 17 18 30 30 18 175 31 18 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3	18 3984 36 289 445 989 49 28 50 n.a. 530 112 2207 648 77 20 32538 41 349 448 1050 45 18 30 n.a. 550 131 234 66 366 349 418 409 117 20 n.a. 550 131 2207 688 76 -69 36 37 1422 41 140 2443 36 36 36 128 30 136 244 36 <td< th=""><th>18 3894 38 289 445 989 45 989 46 96 46 <</th><th>Export (-)</th><th>Export (-)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>dul</th><th>ort (+)</th><th></th><th></th><th></th><th></th><th></th><th>Balanc</th><th>e.</th></td<>	18 3894 38 289 445 989 45 989 46 96 46 <	Export (-)	Export (-)											dul	ort (+)						Balanc	e.
1,000 1,00	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	6 12 361 1456 148 8 0 326 1171 142	1456 148		n.a.	18	18					993	49	28	30 20			112		648		640
1, 280.9 3 2.65 3.46 3.27 1422 4.2 18 2.3 13. 141 140 2.445 3.51 1.25 1, 280.0 2.4 6.72 6.86 46.2 914 54 103 24 1.25 1.25 1.25 1, 287.7 4.8 6.76 5.92 4.94 54 102 24 1.25 1.25 1.25 1.25 1.25 1, 287.7 2.8 6.76 5.92 5.92 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1, 287.5 2.8 5.16 5.96 3.88 137.5 6.0 5.7 3.0 n.a. 2.57 6.5 2.93 30.2 9.6 3.2 1, 39.0 5.0 5.0 5.0 5.8 13.7 6.0 5.7 3.0 n.a. 2.57 6.5 2.93 30.2 9.6 3.2 1, 40.32 4.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8	1 20099 3 200	1 28899 3 2805 346 327 1422 42 42 42 42 42 43 44 44	0 0 342 1304 75 n	1304 75 n	=	r ci	0 0	-					1221	4 5	17	888			126		676		675
2877 48 75 48 4	2 2 3 3 4 5 4 5 4 5 6 6 6 6 6 7	0 277.2 4.6 67.6 87.6 97.7 97	14 0 343 1400 193 n.;	1400 193 n.s	2 0	ങ്	ω ç	- 0					1422	42	9 2	8 8			140		53.1		578
0 2774 46 676 321 434 122 43 101 17 n.a. 278 131 2814 409 40 10 2375 218 569 366 1571 53 151 24 n.a. 278 489 889 644 1199 71 24 n.a. 274 94 318 389 306 96 388 644 1199 71 24 36 128 388 307 96 389 308	0 2774 46 676 321 424 1222 43 101 17 n.a. 262 43 3183 284 409 40 15 2847 156 569 386 1571 50 151 24 36 388 375 36 36 388 375 36 36 388 375 36 37 37 38 38 375 36 36 36 36 37 36 37 38 37 38 37 38 37 38 37 38 37 38 38 37 38 38 37 38 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38	0 2774 46 676 321 424 122 43 101 17 n.a. 256 43 36 436	4 28 334 1577 115 n.a	7 115	9 6	نہ نہ	24	0					914	54	3 8	24			136		436		412
15 2.8.7 2.6 2.9.9 3.2 4.5 4.9.9 3.0.9 3.2 4.5 4.5 4.9.9 3.0.9 3.0.9 3.0.9 7.1 2.4 3.0 1.2 4.9.9 7.1 2.4 3.0 1.2 3.0 1.2 3.0	15 2847 218 518 508 826 644 1199 71 24 86 n.a. 474 94 3151 568 90 90 90 90 90 90 90 90 90 90 90 90 90	13 2.847 1.56 2.96 3.86 1.57 3.1 3.4 4.8 6.6 4.8 6.4 1.96 7.1 2.4 3.6 1.4 4.8 6.4 1.96 7.1 2.4 3.6 1.4 4.8 6.4 1.96 7.1 2.4 3.6 1.4 1.96 7.2 3.4 1.8 1.4 4.4 <t< td=""><td>1423 188</td><td>3 188</td><td>n.a.</td><td></td><td>45</td><td>0 ;</td><td></td><td></td><td></td><td></td><td>1222</td><td>8 5</td><td>5 5</td><td>17</td><td></td><td></td><td>131</td><td>_</td><td>409</td><td></td><td>364</td></t<>	1423 188	3 188	n.a.		45	0 ;					1222	8 5	5 5	17			131	_	409		364
32 3056 115 489 688 644 1199 71 24 36 na 474 94 3151 588 92 1 4032 489 689 78 34 81 na 676 464 15 2219 489 -181 283 4031 670 431 572 689 78 34 81 na 676 494 15 2219 489 -181 285 4091 670 431 273 1231 1660 71 91 34 na 464 15 2219 400 -80 -90 78 34 179 12 401 37 222 34 173 179 13 366 400 78 36 172 34 37 34 37 44 48 48 48 48 48 48 48 48 48 48 48 48 <td>32 3659 105 489 688 644 1199 71 24 36 n.a 474 94 3151 368 100 38370 696 507 786 36 71 24 36 n.a 474 14 277 38 48 100 38370 696 503 1371 657 665 368 n.a 5119 1287 2275 38 -6010 285 4091 670 693 1371 657 665 368 n.a 5119 1287 2276 169 71 91 14 454 15 2278 160 70 91 34 160 70 91 44 16 71 91 71 18 71 18 71 18 71 18 71 18 71 18 71 18 71 18 71 71 71 71 71 <th< td=""><td>32 39569 105 489 688 644 1199 71 24 36 n.a. 474 94 3151 368 97 1 00 38306 15 386 507 786 909 78 34 81 n.a. 676 142 2775 818 -531 2830 15 380 504 786 369 78 48 18 n.a. 676 142 2775 818 -589 285 4091 670 431 77 44 77 44 77 44 77 44 78 39 36 17 47 n.a. 519 78 378 19 47 n.a. 519 78 49 78 49 47 48 48 665 38 n.a. 48 78 48 18 48 665 38 n.a. 18 7 48 18 48 1</td><td></td><td>186</td><td>n. n.</td><td></td><td>45</td><td>0 P</td><td></td><td></td><td></td><td></td><td>1375</td><td>8 8</td><td>57</td><td>30 %</td><td></td><td></td><td>3 5</td><td></td><td>302</td><td></td><td>147</td></th<></td>	32 3659 105 489 688 644 1199 71 24 36 n.a 474 94 3151 368 100 38370 696 507 786 36 71 24 36 n.a 474 14 277 38 48 100 38370 696 503 1371 657 665 368 n.a 5119 1287 2275 38 -6010 285 4091 670 693 1371 657 665 368 n.a 5119 1287 2276 169 71 91 14 454 15 2278 160 70 91 34 160 70 91 44 16 71 91 71 18 71 18 71 18 71 18 71 18 71 18 71 18 71 18 71 71 71 71 71 <th< td=""><td>32 39569 105 489 688 644 1199 71 24 36 n.a. 474 94 3151 368 97 1 00 38306 15 386 507 786 909 78 34 81 n.a. 676 142 2775 818 -531 2830 15 380 504 786 369 78 48 18 n.a. 676 142 2775 818 -589 285 4091 670 431 77 44 77 44 77 44 77 44 78 39 36 17 47 n.a. 519 78 378 19 47 n.a. 519 78 49 78 49 47 48 48 665 38 n.a. 48 78 48 18 48 665 38 n.a. 18 7 48 18 48 1</td><td></td><td>186</td><td>n. n.</td><td></td><td>45</td><td>0 P</td><td></td><td></td><td></td><td></td><td>1375</td><td>8 8</td><td>57</td><td>30 %</td><td></td><td></td><td>3 5</td><td></td><td>302</td><td></td><td>147</td></th<>	32 39569 105 489 688 644 1199 71 24 36 n.a. 474 94 3151 368 97 1 00 38306 15 386 507 786 909 78 34 81 n.a. 676 142 2775 818 -531 2830 15 380 504 786 369 78 48 18 n.a. 676 142 2775 818 -589 285 4091 670 431 77 44 77 44 77 44 77 44 78 39 36 17 47 n.a. 519 78 378 19 47 n.a. 519 78 49 78 49 47 48 48 665 38 n.a. 48 78 48 18 48 665 38 n.a. 18 7 48 18 48 1		186	n. n.		45	0 P					1375	8 8	57	30 %			3 5		302		147
2 3306 15 380 507 786 909 78 34 81 n.a. 676 44 15 2775 818 -1813 100 38370 698 5443 588 1577 656 386 n.a. 419 727 419 170 3837 98 -1813	2 3300 15 380 500 78 34 81 n.a 676 142 15 277 818 -581 100 38370 698 5343 5885 5693 13771 657 665 388 n.a 519 1287 3236 6406 -6010 285 4091 670 431 273 1231 1660 71 91 34 n.a 102 5 3791 107 -300 228 3272 714 287 222 1014 1974 52 101 43 n.a 191 224 405 160 1824 55 101 43 7 36 489 184 43 172 184 489 184 485 184 489 184 485 184 489 184 489 184 489 184 489 184 489 184 489 184 489	283 380 507 786 99 78 84 81 175 221 469 78 84 81 175 365 366 366 366 186 77 81 187 221 469 180 78 81 72 866 78 84 18 186 469 4	1598 201		n.a.			32	_				1199	71	24	36			8		268		463
100 38370 698 5343 5863 5693 13771 657 665 368 n.a. 5119 1287 3230 6406 -6010 288 4091 670 431 223 1231 1660 71 91 34 n.a. 102 5 3791 107 -300 251 4244 582 282 1011 1974 55 101 n.a. 171 1362 288 -569 391 576 1148 1844 65 16 16 n.a. 251 17 362 288 -569 391 576 148 184 65 16 16 n.a. 251 17 322 488 391 576 148 184 65 16 16 n.a. 251 17 320 289 -889 -899 289 -899 -899 -899 481 489 125 148 17 186	100 38370 698 5343 5863 1971 657 665 368 n.a. 5119 1239 6406 71 91 34 n.a. 1102 5 3791 107 300 285 3272 74 237 1231 1660 71 91 34 n.a. 182 5 90 192 5 3791 107 308 251 4244 828 266 283 1011 1974 52 10 17 12 364 183 373 10 389 289 289 381 57 17 381 17 384 65 16 16 n.a. 251 17 389 289 289 381 57 172 174 31 18 16 18 16 18 16 18 16 18 16 18 16 18 18 18 18 18 18	100 38370 698 5343 5863 5693 13771 657 665 368 n.a. 5119 1287 32360 6406 500 288 4091 670 431 273 1231 1660 71 91 43 n.a. 161 73 1 378 107 308 223 4041 573 1231 1660 71 91 43 179 1 3646 180 -569 223 4171 712 191 324 971 1620 59 20 17 n.a. 251 17 3646 180 -569 36 46 56 10 48 36 468 982 172 77 174 31 16 174 184 65 16 17 179 17 3646 96 -56 469 469 469 469 469 469 469 469 469	85 397 1445	9 113 5 228	n.a. n.a.			2 -					909 865	72	34 8	13			142		818 469		803 426
288 4091 670 431 273 1231 1660 71 91 34 n.a. 102 5 3791 107 -300 258 3282 244 287 222 1001 1974 55 101 n.a. 191 22 3890 183 3890 289 288 265 288 1011 1974 55 10 n.a. 170 17 3800 88 -5890 289 289 288 391 576 1148 1844 65 16 16 n.a. 224 22 408 181 7 320 288 -589 398 265 289 -589 398 286 -889 -589 189 -589 189 -589 189 -589 189 -589 -889 -589 -589 -589 -589 -589 -589 -589 -589 -589 -589 -589 -589 -589 -589	288 4091 670 431 273 1231 1660 71 91 34 n.a. 102 5 3791 107 308 253 3247 744 252 1008 1824 55 101 43 n.a. 181 2 3580 183 308 223 4171 712 191 324 971 1620 59 17 n.a. 251 17 360 289 389 365 489 155 191 17 320 288 365 489 155 14 n.a. 224 224 26 16 n.a. 224 26 26 28 31 n.a. 324 373 348 365 489 1251 194 48 66 8 31 n.a. 224 26 48 88 177 174 48 88 174 176 48 88 174 48 174 </td <td>285 4091 670 431 273 1660 71 91 34 na. 102 5 3791 107 308 251 4244 828 2872 714 297 252 1008 1824 55 101 42 5 101 42 5 101 42 5 101 42 5 101 42 5 101 42 5 5 10 10 30 5 5 5 10 10 30 5 5 5 10 10 30 5 5 5 10 10 30 5 5 10 10 30 5 5 10</td> <td>_</td> <td>_</td> <td>n.a.</td> <td></td> <td></td> <td>9</td> <td>_</td> <td></td> <td>-</td> <td></td> <td>13771</td> <td>657</td> <td>999</td> <td>368</td> <td></td> <td></td> <td>287</td> <td>_</td> <td>9406</td> <td></td> <td>2708</td>	285 4091 670 431 273 1660 71 91 34 na. 102 5 3791 107 308 251 4244 828 2872 714 297 252 1008 1824 55 101 42 5 101 42 5 101 42 5 101 42 5 101 42 5 101 42 5 5 10 10 30 5 5 5 10 10 30 5 5 5 10 10 30 5 5 5 10 10 30 5 5 10 10 30 5 5 10	_	_	n.a.			9	_		-		13771	657	999	368			287	_	9406		2708
251 474 878 2.65 2.87 100 102 101 </td <td>251 718 228 1000 1024 52 101<td>251 4244 886 265 287 100 1024 50 101<td>1 4 433 1453 236 n.a.</td><td></td><td>n.a.</td><td></td><td></td><td>285</td><td>_</td><td></td><td></td><td></td><td>1660</td><td>71</td><td>6 5</td><td>34</td><td></td><td></td><td>2 0</td><td></td><td>107</td><td></td><td>-563</td></td></td>	251 718 228 1000 1024 52 101 <td>251 4244 886 265 287 100 1024 50 101<td>1 4 433 1453 236 n.a.</td><td></td><td>n.a.</td><td></td><td></td><td>285</td><td>_</td><td></td><td></td><td></td><td>1660</td><td>71</td><td>6 5</td><td>34</td><td></td><td></td><td>2 0</td><td></td><td>107</td><td></td><td>-563</td></td>	251 4244 886 265 287 100 1024 50 101 <td>1 4 433 1453 236 n.a.</td> <td></td> <td>n.a.</td> <td></td> <td></td> <td>285</td> <td>_</td> <td></td> <td></td> <td></td> <td>1660</td> <td>71</td> <td>6 5</td> <td>34</td> <td></td> <td></td> <td>2 0</td> <td></td> <td>107</td> <td></td> <td>-563</td>	1 4 433 1453 236 n.a.		n.a.			285	_				1660	71	6 5	34			2 0		107		-563
223 4171 712 191 324 971 1620 59 20 17 n.a. 251 17 3202 268 -969 -969 233 2805 920 381 247 889 1812 67 74 31 n.a. 412 93 489 1251 137 2253 481 184 65 16 16 n.a. 412 93 489 1251 184 3423 707 223 191 867 1684 78 66 8 n.a. 352 68 3117 420 305 1261 184 3423 707 223 191 867 1684 78 66 8 n.a. 352 68 3117 420 305 489 165 5481 4681 382 172 482 78 68 8 n.a. 352 68 3117 420 <	223 4171 712 191 324 971 1620 59 20 17 n.a. 251 17 3202 288 -989 233 2805 920 391 576 1148 1844 65 16 16 n.a. 224 26 249 224 26 249 224 26 448 66 8 n.a. 412 36 3483 365 1491 1491 144 144 149 149 149 149 149 149 149 149 36 317 405 369 1251 149	223 4171 712 191 324 971 1620 59 10 n.a. 251 17 3202 889 -989 1251 17 n.a. 224 20 17 n.a. 224 20 4056 20 4056 20 4056 20 4056 20 4056 20 4056 20 4056 20 4056 20 4056 20 4056 20 4056 20 4056 20 4056 4056 20 4056 4056 20 4056 4056 20 4056 <td>1178 196</td> <td>3 196</td> <td></td> <td></td> <td></td> <td>251</td> <td></td> <td></td> <td></td> <td></td> <td>1974</td> <td>25 25</td> <td>2 5</td> <td>\$ 4</td> <td></td> <td></td> <td>۷ –</td> <td></td> <td>8 8</td> <td></td> <td>648</td>	1178 196	3 196				251					1974	25 25	2 5	\$ 4			۷ –		8 8		648
253 2805 9AA 387 256 1448 65 16 16 n.a. 224 25 4050 243 445 150 1484 150 16 16 n.a. 412 25 4405 254 481 16 16 n.a. 412 33 486 181 66 8 n.a. 481 17 481 17 481 17 481 17 481 17 481 17 481 481 482 35 68 311 481 481 481 481 482 481 481 482 481 482 481 482 482 482 482 <t< td=""><td>253 2800. 9AJ 387 276 1448 184 65 16 16 n.a. 224 25 4050 243 348 175 149 340 275 275 275 275 275 275 276 174 31 n.a. 412 33 348 355 481 177 474 31 n.a. 417 481 475 71 481 475 71 278 380 385 481 475 71 481 475 71 284 385 481 475 481 475 71 481 482 92 3475 481 482 92 3475 482 92 3475 481</td><td>253 2800. 9AA 381 276 1148 1844 65 16 16 n.a. 224 25 4050 5AB 1148 184 65 16 n.a. 412 25 4050 23 48 125 184 45 26 8 n.a. 412 405 348 355 48 125 104 89 1722 7 174 31 n.a. 455 68 317 40 385 -889 184 3423 707 223 191 867 1684 78 66 8 n.a. 556 83 317 40 30 32 7 n.a. 516 83 317 40 30 30 317 40 30</td></t<> <td>1235 286</td> <td>286</td> <td></td> <td></td> <td></td> <td>223</td> <td></td> <td></td> <td></td> <td></td> <td>1620</td> <td>59</td> <td>50</td> <td>17</td> <td></td> <td></td> <td>17</td> <td></td> <td>268</td> <td></td> <td>444</td>	253 2800. 9AJ 387 276 1448 184 65 16 16 n.a. 224 25 4050 243 348 175 149 340 275 275 275 275 275 275 276 174 31 n.a. 412 33 348 355 481 177 474 31 n.a. 417 481 475 71 481 475 71 278 380 385 481 475 71 481 475 71 284 385 481 475 481 475 71 481 482 92 3475 481 482 92 3475 482 92 3475 481	253 2800. 9AA 381 276 1148 1844 65 16 16 n.a. 224 25 4050 5AB 1148 184 65 16 n.a. 412 25 4050 23 48 125 184 45 26 8 n.a. 412 405 348 355 48 125 104 89 1722 7 174 31 n.a. 455 68 317 40 385 -889 184 3423 707 223 191 867 1684 78 66 8 n.a. 556 83 317 40 30 32 7 n.a. 516 83 317 40 30 30 317 40 30	1235 286	286				223					1620	59	50	17			17		268		444
137 2753 524 352 463 982 1722 77 174 31 n.a. 518 107 3801 625 1048 184 3423 707 223 191 867 1684 78 66 8 n.a. 352 68 3177 420 -306 165 4537 4691 467 178 1014 1396 70 32 7 n.a. 316 19 230 99 59 27 1048 98 19 60 8 n.a. 356 68 3177 420 -306 99 50 4210<	137 2753 524 352 463 982 1722 77 174 31 n.a. 518 107 3801 625 1048 184 3423 707 223 191 867 1684 78 66 8 n.a. 516 197 3801 625 1048 184 3423 707 1223 191 867 1684 78 66 8 n.a. 352 68 3117 420 -306 165 4551 566 221 107 1322 191 867 168 317 420 -306 157 5481 499 457 57 482 92 3475 574 -200 1224 4691 83 192 172 481 601 285 n.a. 599 557 410 574 -200 183 5176 426 221 191 80 18	137 2753 524 352 463 982 1722 77 174 31 n.a. 518 107 3801 625 1048 184 3423 707 223 191 867 1684 78 66 8 n.a. 352 68 317 420 306 165 4957 4451 4691 467 178 104 1386 70 7 n.a. 316 107 3801 625 110 300 <td>1056 238</td> <td>238</td> <td></td> <td></td> <td></td> <td>150</td> <td></td> <td></td> <td></td> <td></td> <td>1812</td> <td>67 89</td> <td>e 8</td> <td>3 2</td> <td></td> <td></td> <td>8 8</td> <td></td> <td>505</td> <td></td> <td>م 9</td>	1056 238	238				150					1812	67 89	e 8	3 2			8 8		505		م 9
184 3423 707 223 191 867 1684 78 66 8 n.a. 352 68 317 420 -306 188 3733 446 147 178 1014 1366 70 32 7 n.a. 316 19 2844 355 -2108 165 4551 566 221 109 1312 1877 81 3 16 n.a. 457 57 3619 514 -889 157 5481 439 195 125 1143 1911 80 18 3 n.a. 482 92 3475 574 -2006 2241 46213 7610 333 3128 1294 601 285 n.a. 487 57 369 574 -2006 122 46213 7610 323 1126 187 601 285 n.a. 487 57 4202 574	184 3423 707 223 191 867 1684 78 66 8 n.a. 352 68 317 420 -306 188 3733 446 147 178 1014 1366 70 32 7 n.a. 316 19 2844 355 -889 165 4551 566 221 109 1312 1877 81 3 16 n.a. 317 57 369 596 571 -889 157 5481 439 195 125 1143 191 80 18 3 n.a. 485 92 3475 574 -2016 2241 46213 7610 333 3128 1979 20227 83 n.a. 3999 557 41202 456 -5011 122 4691 469 324 146 1519 71 6 344 46 -5014 -5014 -	184 3423 707 223 191 867 1684 78 66 8 n.a. 352 68 317 420 -306 188 3423 4467 178 1014 1364 176 104 136 7 n.a. 316 19 2844 385 -389 165 4551 568 221 109 1312 1877 81 3 16 n.a. 457 57 3619 514 -382 157 5481 439 195 125 1143 1911 80 18 3 n.a. 457 57 3619 514 -382 157 4581 166 18 3 n.a. 457 57 369 574 -2006 2241 4691 186 18 n.a. 457 57 369 574 -2006 122 461 167 461 18 n.a.	698 227	227				137					1722	77	174	31			107		625		101
88 3/3/3 440 147 178 1014 1396 70 32 7 n.a. 316 19 2844 33 -2.208 165 4551 566 221 107 1227 903 79 4 32 n.a. 555 71 2589 596 -2208 157 5481 439 195 125 1143 1911 80 18 3 n.a. 482 92 3475 574 -2208 1224 46513 7610 333 3128 12794 20227 83 60 3475 574 -2006 122 46513 7610 224 160 28 74 46 574 574 -2006 122 4699 346 176 176 6 394 146 108 30 176 6 2007 122 4699 346 17 46 178 46 <td>88 3/5/3 440 147 178 1014 1396 70 32 7 n.a. 316 19 2844 33 -2.084 335 -2.084 335 -2.084 335 -2.084 335 -2.084 335 -2.086 19 2.844 33 -2.086 19 -2.086<td>88 3/3/3 440 147 178 1014 1396 70 32 7 n.a. 516 19 2844 330 -2.208 165 4551 568 221 10 112 187 8 7 7 n.a. 516 596 520 20 22 1 20 1 2 8 9 345 51 50 36 2 1 2 1 1 2 8 9 347 57 5 369 5 7 3 6 2 2 1 1 1 3 1 1 2 3 1 2 3 1 2 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4</td><td>856 246 n.a.</td><td>246 n.a.</td><td>n.a.</td><td></td><td></td><td>184</td><td></td><td></td><td></td><td></td><td>1684</td><td>78</td><td>99</td><td>100</td><td></td><td></td><td>89</td><td></td><td>420</td><td></td><td>-287</td></td>	88 3/5/3 440 147 178 1014 1396 70 32 7 n.a. 316 19 2844 33 -2.084 335 -2.084 335 -2.084 335 -2.084 335 -2.084 335 -2.086 19 2.844 33 -2.086 19 -2.086 <td>88 3/3/3 440 147 178 1014 1396 70 32 7 n.a. 516 19 2844 330 -2.208 165 4551 568 221 10 112 187 8 7 7 n.a. 516 596 520 20 22 1 20 1 2 8 9 345 51 50 36 2 1 2 1 1 2 8 9 347 57 5 369 5 7 3 6 2 2 1 1 1 3 1 1 2 3 1 2 3 1 2 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4</td> <td>856 246 n.a.</td> <td>246 n.a.</td> <td>n.a.</td> <td></td> <td></td> <td>184</td> <td></td> <td></td> <td></td> <td></td> <td>1684</td> <td>78</td> <td>99</td> <td>100</td> <td></td> <td></td> <td>89</td> <td></td> <td>420</td> <td></td> <td>-287</td>	88 3/3/3 440 147 178 1014 1396 70 32 7 n.a. 516 19 2844 330 -2.208 165 4551 568 221 10 112 187 8 7 7 n.a. 516 596 520 20 22 1 20 1 2 8 9 345 51 50 36 2 1 2 1 1 2 8 9 347 57 5 369 5 7 3 6 2 2 1 1 1 3 1 1 2 3 1 2 3 1 2 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4	856 246 n.a.	246 n.a.	n.a.			184					1684	78	99	100			89		420		-287
165 4551 566 221 109 1817 81 3 16 n.a. 457 57 3619 514 -882 157 5481 439 185 125 1143 1911 80 18 3 n.a. 482 975 574 -500 2241 46213 7610 333 3128 1794 2027 834 601 285 n.a. 482 957 4700 456 -5011 123 5127 420 277 21 165 74 66 394 146 108 3101 68 501 501 122 4899 346 326 17 2 465 17 461 186 104 2451 761 2289 124 3955 531 146 1035 845 64 3 87 251 110 65 2504 426 146 146 146	165 4551 566 221 109 1817 81 3 16 n.a. 457 57 3619 514 -882 157 5481 439 195 125 1143 1911 80 18 3 n.a. 482 92 3475 574 -2006 2241 46213 7610 3333 3128 12794 20227 834 601 285 n.a. 482 92 3475 574 -2006 122 46213 761 26 27 16 17 6 394 146 108 200 57 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	165 4551 566 221 109 1817 81 3 16 n.a. 457 57 3619 574 -882 157 5481 439 185 125 1143 1811 80 18 3 n.a. 482 975 574 -892 2241 46213 7610 333 3128 1794 2027 89 601 285 n.a. 482 95 375 574 -2006 123 5176 426 276 17 6 394 146 108 371 486 504 506 122 4689 326 176 176 6 394 146 108 222 14 441 16 108 222 148 16 444 461 16 426 504 426 176 426 176 426 176 426 176 426 176 426 176	e e	5 207 n.a. 5 189 n.a.	e e			88 140					1396	2 9	8 2 4	35 ~			2 2		596		01.0
157 5481 439 195 125 1143 1911 80 18 3 n.a. 482 947 574 -2006 2241 46213 7610 333 3128 1794 2027 834 601 285 n.a. 3999 557 14202 456 -2007 123 5127 426 297 72 1055 746 55 1 2 394 140 2451 761 -2889 122 4899 346 326 172 185 44 461 196 104 2451 761 -2889 124 3955 531 324 146 1035 845 64 3 87 251 110 65 2504 426 -1451 144 3955 531 401 473 1326 444 461 196 104 2264 4261 107 4261 107 4261	157 5481 439 195 125 1143 1911 80 18 3 n.a. 482 9475 574 -2006 2241 46213 7610 333 3128 1794 2027 83 601 285 n.a. 399 557 41202 456 -5011 123 5127 426 297 72 1055 746 55 1 2 344 146 108 224 146 108 224 146 108 224 146 108 244 461 166 109 265 110 65 2504 426 -501 144 3955 531 122 84 64 3 87 251 110 65 2504 426 -1451 144 3955 532 1496 60 22 11 261 0 139 378 380 1076 175 233	157 5481 439 195 135 1143 1941 184 184 18	1652 191	191				165					1877	81	က	16			22	_	514		-52
133 5176 426 254 81 1164 1519 71 6 6 394 146 108 3101 648 -2075 122 5127 404 297 72 1055 746 55 1 2 343 152 83 2228 578 -2899 122 4699 346 326 172 1237 603 54 15 44 461 196 104 2451 761 -2899 144 3955 531 324 146 1035 845 64 3 87 251 10 4251 761 -2848 175 2334 573 326 1494 60 22 11 261 0 19 3787 380 1444 101 2192 86 674 380 1493 61 81 80 196 146 10 14 3848 479 1	133 5176 426 254 81 1164 1519 71 6 6 394 146 108 3101 648 -2075 123 5127 404 297 72 1055 746 55 1 2 343 152 83 2228 578 -2899 144 489 346 172 1237 603 54 15 44 461 196 104 2451 761 -2899 148 2711 461 401 473 1326 1494 60 22 11 261 0 149 479 146 175 2334 573 350 1496 64 3 7 6 82 254 376 300 1414 175 2334 573 350 1069 146 61 97 14 212 6 82 3748 379 166 101	133 5176 426 254 81 1164 1519 71 6 6 349 146 108 310 648 -2075 123 5127 404 297 72 1055 746 55 1 2 343 152 83 2228 578 -2889 144 385 326 172 1326 172 137 60 22 11 261 10 62 254 11 66 228 578 2288 -2888 1494 461 11 66 2286 146 461 478 148 66 22 11 261 10 426 426 146 466 22 11 261 10 426 426 146 466 146 466 22 11 261 16 86 146 466 146 466 146 466 146 466 146 466 146 <td>.1 1 442 1819 397 n.a. 2 152 4956 15038 2761 n.a.</td> <td>397</td> <td></td> <td></td> <td></td> <td>241</td> <td></td> <td></td> <td>.,</td> <td>_</td> <td>1911</td> <td>834 834</td> <td>601</td> <td>382</td> <td></td> <td></td> <td>95</td> <td></td> <td>574</td> <td></td> <td>135 3054</td>	.1 1 442 1819 397 n.a. 2 152 4956 15038 2761 n.a.	397				241			.,	_	1911	834 834	601	382			95		574		135 3054
12	122 4699 549 297 72 1053 746 550 1 2 345 152 655 656 6	123 5157 404 297 72 1035 74 93 1 2 344 195 104 245 761 2220 761 22204 144 3955 534 126 172 4699 172 469 174 245 176 4267 761 22048 144 3955 534 146 1035 845 64 3 87 251 110 65 2504 426 -1451 175 2234 573 538 1326 1494 60 22 11 261 10 426 426 -1461 175 2292 578 538 1496 14 212 6 82 3748 300 1414 176 2202 576 427 380 1027 1472 60 187 479 166 144 479 166 167 5 60 3808 232	1611 338	338				133					1519	71	9 +	9			108		848		222
144 3955 531 324 146 1035 845 64 3 87 251 110 65 2504 426 -1451 148 2711 461 401 473 1326 1494 60 22 11 261 0 119 3787 380 1076 107 2292 572 11 261 6 82 3748 300 1414 107 2292 578 57 380 1069 1493 61 17 6 16 17 3848 479 1656 169 2202 578 380 1027 1672 60 197 36 166 16 17 3848 479 1656 94 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 493 -328 50 450 450 46	144 3955 531 324 146 1035 845 64 3 87 251 110 65 2504 426 -1451 175 2234 571 461 473 1326 1494 60 22 11 261 0 119 3787 380 1076 175 2234 573 542 328 1190 1416 61 97 114 212 6 82 3748 300 1474 169 25502 338 1027 1475 61 81 3748 300 1444 169 25602 169 1493 61 81 80 166 166 17 3848 479 1656 169 25602 138 143 65 108 27 346 10 147 3848 479 1656 169 256 288 292 1443 65 108	144 3955 531 324 146 1035 845 64 3 87 251 110 65 2504 426 -1451 148 2711 461 401 473 1326 1494 60 22 11 261 0 119 3787 380 1076 175 2292 573 52 149 61 27 14 212 6 82 3748 300 1076 169 2202 576 427 380 1069 1493 61 80 166 17 3848 479 166 94 3202 576 427 380 1027 172 60 197 86 166 166 17 3848 479 166 94 3494 276 332 258 932 1443 65 108 27 346 10 147 3166 479 166	238	238	98			3 5					603	25	- 15	2 4 2			2 2		2/6		415
148 2711 461 401 473 1326 1494 60 22 11 261 0 119 3787 380 1076 175 2234 573 532 1326 1416 61 97 114 212 6 82 3748 300 1414 101 2192 578 578 50 169 143 61 81 86 166 17 3848 479 1656 169 22002 576 427 389 1027 167 60 197 36 167 5 60 3808 322 1306 94 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 493 -328 40 450 400 400 4153 64 16 3 456 101 416 3 45 300 1023 </td <td>148 2711 461 473 1326 1494 60 22 11 261 0 119 3787 380 1076 175 2234 573 562 1326 1446 61 97 144 212 6 82 3748 300 1414 169 25602 336 1436 1436 61 81 81 96 166 17 3848 479 1656 94 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 479 1656 94 3494 276 288 219 1006 1453 65 108 27 346 0 147 3166 493 -208 94 3494 276 288 219 1006 1453 64 16 3 445 0 147 3166 493 -208</td> <td>148 2711 461 401 473 1326 1494 60 22 11 261 0 119 3787 380 1076 175 2294 573 528 1490 1446 61 97 144 212 6 82 3748 300 1414 169 22602 576 427 389 1027 1446 61 97 144 212 6 82 3748 300 1444 169 22602 576 427 389 1027 1472 60 187 6 187 5 60 3808 322 186 94 3494 276 388 278 1443 65 108 27 346 17 3166 483 -328 81 4072 286 288 279 1443 65 108 27 346 10 147 3166 493 -328 <td>1737 149</td><td>149</td><td>218</td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td>845</td><td>\$</td><td>9</td><td>87</td><td></td><td></td><td>65</td><td></td><td>426</td><td></td><td>-105</td></td>	148 2711 461 473 1326 1494 60 22 11 261 0 119 3787 380 1076 175 2234 573 562 1326 1446 61 97 144 212 6 82 3748 300 1414 169 25602 336 1436 1436 61 81 81 96 166 17 3848 479 1656 94 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 479 1656 94 3494 276 288 219 1006 1453 65 108 27 346 0 147 3166 493 -208 94 3494 276 288 219 1006 1453 64 16 3 445 0 147 3166 493 -208	148 2711 461 401 473 1326 1494 60 22 11 261 0 119 3787 380 1076 175 2294 573 528 1490 1446 61 97 144 212 6 82 3748 300 1414 169 22602 576 427 389 1027 1446 61 97 144 212 6 82 3748 300 1444 169 22602 576 427 389 1027 1472 60 187 6 187 5 60 3808 322 186 94 3494 276 388 278 1443 65 108 27 346 17 3166 483 -328 81 4072 286 288 279 1443 65 108 27 346 10 147 3166 493 -328 <td>1737 149</td> <td>149</td> <td>218</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td>845</td> <td>\$</td> <td>9</td> <td>87</td> <td></td> <td></td> <td>65</td> <td></td> <td>426</td> <td></td> <td>-105</td>	1737 149	149	218			4					845	\$	9	87			65		426		-105
175 2234 573 542 328 1190 1416 61 97 114 212 6 82 3748 300 1414 171 2192 336 674 330 1069 1493 61 81 80 196 166 117 3848 479 1666 159 2502 576 427 339 1027 167 60 197 36 167 5 60 3808 232 1306 150 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 493 -328 150 3494 276 288 219 1006 1453 64 16 3 445 101 11 3049 707 -1023 150 345	175 2234 573 542 328 1190 1416 61 97 114 212 6 82 3748 300 1414 101 2192 336 674 330 169 1493 61 81 80 196 166 117 3848 479 1656 169 25602 576 427 389 1027 1672 60 197 36 167 5 60 3808 232 1306 94 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 493 -328 81 4072 295 288 219 1006 1453 64 16 3 345 101 161 3049 707 -1023 94 3494 276 298 219 1006 1453 64 16 3 445 101 161 3049 707 -1023 95 9489 390 292 165 1081 1544 63 12 32 415 189 63 3189 657 -1440 94 3446 345 345 345 346 346 346 346 346 346 346 95 346	175 2234 573 542 328 1190 1416 61 97 114 212 6 82 3748 300 1414 1219 2250 236 674 390 1069 1493 61 81 80 196 166 117 3848 479 1656 159 2494 276 233 258 292 1443 65 108 27 346 0 147 3166 493 328 150 4629 301 292 165 1081 1544 63 12 32 415 189 63 3189 697 11023 160 5544 256 307 39 994 1254 73 0 8 551 223 161 2729 395 3116 1446 46735 4784 4465 2786 1316 15482 751 558 450 4042 1294 1270 37608 6906 9127 150 4629 307 307 307 307 307 307 307 150 4629 307 307 307 307 307 307 307 307 150 4629 307 307 307 307 307 307 307 150 4629 307 307 307 307 307 307 150 4629 307 307 307 307 307 307 150 4629 307 307 307 307 307 150 4629 307 307 307 307 307 150 4629 307 307 307 307 307 150 4629 307 307 307 307 150 4629 307 307 307 307 150 4629 307 307 307 307 150 4629 307 307 307 150 4629 307 307 307 150 4629 307 307 307 150 4629 307 307 307 150 4629 307	1217 221	7 221	286			148					1494	9	22	Ξ			119		380		8
10	169 2502 530 674 530 1007 1175 672 60 101 7 00 100 100 100 100 100 100 100 1	150 2.552 2.50 4.75 389 1027 1672 60 91 91 91 91 91 91 91 9	1 62 396 1054 76 337	147	337			175					1416	61	97	1 8			1 8		300		-273
94 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 493 -328 81 4072 286 288 219 1006 1453 64 16 3 445 101 161 3049 707 -1023 60 60 60 60 60 60 60 60 60 60 60 60 60	94 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 493 -328 81 4072 295 288 219 1006 1453 64 16 3 445 101 161 3049 707 -1023 69 483 12 32 415 189 63 3189 657 -1402 416 584 51 5189 65 3189 657 -1400 518 518 518 518 518 518 518 518 518 518	94 3494 276 333 258 932 1443 65 108 27 346 0 147 3166 493 -328 81 4072 285 288 219 1006 1453 64 16 3 445 101 161 3049 707 -1023 106 4673 484 278 16 3 445 101 161 867 -1023 108 4673 484 278 48 15 23 41 189 63 -3145 -1440 1446 4673 4784 4465 2786 1316 1548 751 558 450 404 1270 37608 6006 -9127	927 185	185	304			169					1672	. 9	197	38			2 9		232		344
81 4072 295 288 219 1006 1453 64 16 3 445 101 161 3049 707 -1023	81 4072 295 288 219 1006 1453 64 16 3 445 101 161 3049 707 -1023 50 4629 301 292 165 1081 1544 63 12 32 415 189 63 3189 657 -1440 108 5844 510 307 004 154 72 0 6 551 319 67 070 005 004 154 72 0 6 551 319 67 070 005 004 154 72 0 6 551 005 005 005 005 005 005 005 005 005	81 4072 285 288 219 1006 1453 64 16 3 445 101 161 3049 707 -1023 50 4629 307 292 145 181 15 189 67 -1440 106 5844 259 307 39 994 124 73 0 8 551 223 161 2729 395 -3115 1446 46735 4784 4465 2786 1316 15482 751 558 450 4042 1294 1270 37608 6906 -9127	1165 271	271	182			95					1443	65	108	27			147		493		217
AND	30 4962 301 222 100 1001 1034 4 03 12 32 413 103 03 3109 001 1440 1440 310 03 3109 001 1440	106 5844 289 137 38 994 124 73 0 8 551 223 161 2729 395 371 1446 46735 4784 4465 2786 1316 1548 751 558 450 464 1276 385 375 3760 994 1446 46735 4784 4465 2786 1316 1548 751 558 450 4042 1294 1270 37608 6606 -9127	6 4 422 1516 363 171 15 7 420 1548 324 148	363	171			5 21					1453	8 8	5 5	တင္က			161		707		412

· These physical energy flows were measured on at cross-frontier transmission lines. These values may differ from the official statistics and the total physical balance in the table "Monthly values.: Operation" 2 Physical exchanges year 1999 and 2003 as sum Denmark, year 2004 exchanges with Denmark East

Pág. 110 Memoria

Security of supply

In 2004, Germany improved its installed capacity by around 3.000 MW, of which 2.180 MW were from renewable energy sources plants.

Installed capacity: 114.900 MW

• Peak demand: 77.200 MW

Total electricity generation (2005): 547.000 GWh

Total electricity consumption (2005): 550.000 GWh

Customer service

The electricity market has been totally open since 1998. Significant customer protection is assured, mainly for household customers. But special tariffs for low-income customers do not exist.

	2005
Not eligible customers	0
Eligible customers	45.000.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	524.000

Switching

Switching rates are not yet enough high, but a high percentage of them have renegotiated with their existing supplier.

Competition

The German wholesale market is almost totally dominated by bilateral trading, even if an increasing share of overall trade (around 10%) is done at the German power exchange (EEX). The 4 largest generation companies control around 70% of total generation capacity.

The German competition authority considers that the largest two companies (E.ON and RWE) maintain together a dominant position.

Prices

Household prices continue to be regulated (price caps) until 1st July 2007.

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Germany price	78	165	141
(July 2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Germany in 2010 is 12,5% of gross electricity consumption.

Currently they have achieved 9,7% of gross electricity consumption.

The main promotion scheme for renewable energy sources in Germany is the Renewable Energy Act.

Feed-in tariffs:

- Wind: 9 Eurocents/kWh for at least 5 years after installation. Reduction of tariff to
 6 Eurocents/kWh depending on yield of system. Yearly reduction of tariff by 1,5%.
- Biomass up to 500 kW: 10 Eurocents/kWh, up to 5 MWp: 9 Eurocents/kWh, up to 20 MWp: 8,6 Eurocents/kWh
- Hydro, landfill gas, sewage gas: up to 500 kW: 7,7 Eurocents/kWh, from 501 kW to 5 MW: 6,6 Eurocents/kWh
- Photovoltaics: 48 Eurocents/kWh, yearly reduction of tariff by 5%.

Market Incentive Program: investment subsidy for most sources except wind Income tax regulations on wind energy investment

Environment and energy efficiency programme: subsidised loans for major share of wind investments

Pág. 112 Memoria

A.1.8 Greece

Background

Population: 11.125.200

• Size: 131.940 Km²

• GDP (2005): 181.087.500 Euros

• Growth rate of GDP volume (2005): 3,7%

• Final electricity consumption per capita (2004): 4.503 kWh/capita

• Degree of liberalization: 70%

• Primary production:

Unbundling

The "Hellenic Transmission System Operator" S.A. (HTSO), established by Ministerial Decree 328/12.12.2000 is the Transmission System Operator. 51% of the HTSO is state owned and 49% is owned by the generators. The Public Power Corporation SA (PPC) is the only power generator in the Greek territory, therefore PPC controls 49% of the shares of the HTSO and appoints members to the Board of Directors of HTSO.

Legal and functional separation of the transmission system operator for electricity is assured.

Unbundling has not yet been implemented for the Distribution System Operator. PPC, the exclusive owner of the Distribution Network, is appointed as the Distribution System Operator under the legislation in force. PPC is the single distributor in Greece.

Cross-border exchanges

During 2004, the total net transfer capacity of the Northern interconnectors was 600 MW in each direction. The capacity of the undersea interconnections between Greece and Italy amounts to 500 MW for imports to Greece and 300 MW for exports to Italy. New interconnection capacity with Turkey and Bulgaria will be built.

Physical exchanges in interconnected operation 1

	H		NI C	n ++	- 0	0 ~		ım			_	_	0	_	m	"	10	m	0	m	01.	m .	m (T. (1	m •	+ 1	•	_	m	'n	ΔI	0	'n	10	0	_	m	Ф	Φ.	_
GR_III_SLD	nce	10	000	50	. *	ģ	έģ	16.00	175	P	φ	Ŕ	-126	Š	÷	Ψ	φ	φ	2	-	-	ĕ	₩;	Ψì	íĢ	7	-72	ή	ŏ	•	==	4	4	4,	γ̈́	7	ĕΫ	φ	φ	ë
GR_UCTE_SLD	Bala	96	000	000	3	48	Ŧ	106	85	2	-43	-47	-91	11	187	159	245	193	186	320	466	340	205	154	188	238	2881	270	190	109	110	153	318	498	200	248	225	195	314	3130
GR_III_IMP		a	۶ ٥	3 %	3 8	5 5	250	208	217	168	32	16	8	1254	15	13	٢	٢	0	0	0	0	0 ;	٦,	80 (N i	51	10	2	28	24	S	49	R	12	0	0	2	0	205
GR_UCTE_IMP		14	± 8	3 E	3 8	8 7	1 5	107	87	7	16	3	9	229	196	170	301	306	409	300	484	469	8 i	22	33	40	4168	377	386	337	257	307	345	50	28	413	422	395	414	4657
AL→GR	ort (+)	C	0 0	o e:	7	4 0	3 5	1 5	2	· m	0	0	Ø	126	15	13	-	-	0	0	0	0	0 ;	= '	ω (N i	21	9	Q	58	24	23	49	52	12	0	0	C)	0	202
MK→GR	dul	17	± 8	3 5	2	8 7	7 -	107	87	7	16	13	9	529	39	41	6	140	128	109	75	11	20	8 8	37	19	838	12	51	9	157	118	79	71	28	49	81	46	51	833
IT→GR		c	> 0	00	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	9	en (0 (27.	က	0 (28	0	0	0	0	0	0	107	85	-	0	-	0	191
BG→GR		α	0 8	3 8	100	100	174	196	210	165	55	16	58	1128	157	129	204	166	281	289	399	389	358	233	315	382	3302	365	335	277	100	189	266	323	363	363	341	348	363	3633
GR_III_EXP		170	2 5	- 5 - 5	2	70	4 6	43	4	67	116	83	156	1204	33	19	26	24	20	73	72	109	88	90	99	9/9	9//	4	90	22	12	7	က	50	32	71	88	61	69	516
GR_UCTE_EXP		CH	2	0 10	,	62	900	8 -	٠ ۵	-	59	9	6	448	6	1	26	113	83	78	18	129	503	/11	167	163	1287	107	196	228	147	154	27	6	6	165	197	800	100	1527
GR→AL	ort (-)	101	7 7	119	- 4	- ÷	- 6	84	43	99	101	157	96	096	33	19	26	24	20	73	72	109	88	9 6	9 6	9	776	4	8	55	12	7	က	20	35	71	88	61	69	516
GR→MK	Exp	C	8 6	9 40	,	63	300	8 -	٠ ۵	-	29	9	26	448	6	80	0	9	0	2	4	N ;	= 9	5 1	27	89 (153	51	9	80	-	S	-	N	က	Ξ	N	8	4	102
GR→IT		c	> <	00	0	0 0	0 0	00	0	0	0	0	0	0	0	က	26	107	553	73	14	127	192	4 6	139	52	1133	26	190	220	146	149	56	0	0	154	195	192	96	1424
GR→BG		40	0 5	, r	9	0 +	- •	- c	·	-	15	99	9	244	0	0	0	0	0	0	0	0	0 (0 ,	- (ο,	-	0	0	0	0	0	0	-	0	0	0	0	0	-
MM_YY		00	000	66 G	200	00.0	00.17	86.IV	86 1117	1X.99	X.99	XI.99	XII.99	1999	1.03	II.03	II.03	10.03	V:03	VI.03	VII.03	VIII.03	X.03	× 33	XI.03	XII.03	2003	.04	1.04	<u>≡</u> .04	V.04	×.04	VI.04	VII.04	VIII.04	X.04	X.04	XI.04	XII.04	2004

1 These physical energy flows were measured on the cross-frontier transmission lines (2:10 kV). These values may differ from the official statistics and the total physical balance in the table "Monthly values. Operation".

Security of supply

Reserve margins are relatively low, but two 400 MW plants are under construction.

The 2005 Grid and Power Exchange Code introduced a generation capacity assurance mechanism to increase the security of supply. This mechanism should reduce business risk of the investors of the new power plants, by providing guarantees for covering part of their capital cost.

Installed capacity in the interconnected system: 11.350 MW

• Installed capacity in the non-interconnected islands: 1.605 MW

Peak demand: 9510 MW

Total electricity generation (2005): 59.500 GWh

Total electricity consumption (2005): 61.200 GWh

Customer service

Families with more than three kids, consumers in the agricultural sector and Public Power Corporation (PPC) employees enjoy discount retail tariffs.

	2005
Not eligible customers	6.850.000
Eligible customers	7.100
Not eligible customers (GWh)	36.500
Eligible customers (GWh)	15.700

Switching

Practically, all customers connected to the medium and low voltage system are supplied by PPC. A few licensed suppliers operating in the retail market supply small amounts of electricity to commercial and light industrial sectors' customers. In 2004 this amounts to 398 GWh thus 0,78% of the overall consumption in the interconnected system.

Pág. 116 Memoria

Competition

The 2005 Grid and Power Exchange Code developed an organized daily wholesale market, where all electricity produced and consumed in Greece have to pass. But there is no a real time balancing market.

Prices

In 2005 electricity prices increased by an average of 3,5%. But electricity in Greece is still among the cheapest in Europe, especially for household consumers.

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Greece price (July	56	98	64
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Greece in 2010 is 20,1% of gross electricity consumption.

Currently they have achieved 9,5% of gross electricity consumption.

The main promotion schemes for renewable energy sources in Greece are:

- Law 2244/94 (feed-in tariff) and Law 2773/1999 (liberalisation) (Feed-in tariff of about 7,8 Eurocents/kWh on the islands and 7 € cents/kWh on the mainland)
- Development Law 2601/98. The Law supports investment activities (including energy investments) of private companies (investment subsidy of about 30%).
- The Operational Programme "Competitiveness" of the Hellenic Ministry of Development is part of the 3rd Community Support Framework (State aid for renewable energy sources investments, ranging from 30% to 50%).
- Law 2364/95 introduces a reduction of the taxable income of final users who install renewable energy systems in private buildings (75% of costs for purchase and installation is tax-deductible).

A.1.9 Ireland

Background

• Population: 4.209.000

• Size: 70.273 Km²

• GDP (2005): 161.162.800 Euros

• Growth rate of GDP volume (2005): 5,5%

• Final electricity consumption per capita (2004): 5.718 kWh/capita

• Degree of liberalization: 100%

Primary production:

Unbundling

There is one transmission system operator and one distribution system operator.

Functional and accounting separation of transmission system operators for electricity is assured.

Legal unbundling legislative framework has been introduced for the transmission system operator.

Pág. 118 Memoria

Functional and accounting separation of distribution system operators for electricity is assured, but not yet legal separation.

Cross-border exchanges

The governments of the Republic of Ireland and Northern Ireland agreed to the creation of an all-Ireland energy market. Interconnection capacity is now 330 MW. A further capacity will be built.

An undersea interconnection between Ireland and Great Britain of up to 1.000 MW is planned.

Security of supply

Margin reserve is considered low, but the planned investment in further capacity will guarantee improvements in security of supply.

• Installed capacity: 5.800 MW

• Peak demand: 4.500 MW

• Total electricity generation (2005): 27.400 GWh

• Total electricity consumption (2005): 26.900 GWh

Customer service

The electricity market has been totally open since February 2005.

Consumer protection guidelines have been put forward and minimum standards have been established by the regulatory agency.

	2005
Not eligible customers	0
Eligible customers	1.900.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	24.400

Switching

Customers can change supplier without charge or delay. Around 30% have switched from the incumbent supplier or moved from a regulated to a competitively determined tariff.

Most switching has been from industrial and commercial customers. However some households have changed to renewable suppliers.

Competition

The wholesale market in Ireland is currently a bilateral trading market between generators and suppliers. Probably it will change to a centralized Pool structure that will manage the all-Ireland market for electricity.

Until 2000, the incumbent Electricity Supply Board (ESB) owned all generation plant.

The main new entrant into the generation market is Viridian which has 400 MW plant and is planning a further unit.

ESB's market share is still very high (80-90% of capacity).

There are seven independent electricity suppliers whose market share is 30% of total demand (among them it is also present ESB).

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Ireland price (July	90	154	129
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Ireland in 2010 is 13,2% of gross electricity consumption.

Currently they have achieved 5,1% of gross electricity consumption.

The Alternative Energy Requirement (tendering scheme) is the main support instrument.

Pág. 120 Memoria

Technology	Support lev	evel	Specifics
	(Eurocents/kWh)		
Large scale wind	5,216		Up to 400 MW
Small scale wind	5,742		Up to 85 MW
Offshore wind	8,4		Up to 50 MW
Biomass	6,412		Up to 8 MW
Biomass-CHP	7,0		Up to 28 MW
Biomass-anaerobic	7,0		Up to 2 MW
digestion			
Hydro	7,018		Up to 5 MW

A.1.10 Italy

Background

Population: 58.751.700

• Size: 301.336 Km²

• GDP (2005): 1.417.241.400 Euros

• Growth rate of GDP volume (2005): 0%

• Final electricity consumption per capita (2004): 5.097 kWh/capita

• Degree of liberalization: 79%

Primary production:

Unbundling

Until October 2005, the transmission system operator was the state owned company GRTN (*Gestore della Rete di Trasmissione Nazionale*). It managed the national transmission system, while TERNA, belonging to the Enel group, was the owner of the largest part of the grid. GRTN and TERNA merged, and Enel sold 29,99% of TERNA capital.

The Electricity Decree started to reorganize distribution that was carried out on a municipality basis. However, although the rules supporting the aggregation of minor

Pág. 122 Memoria

players, distribution remains very high fragmenteted in Italy, with monopolies of various sizes. As far as the unbundling rules concerned, legal unbundling was mandatory for distribution system operators with more than 300.000 customers, but now is applicable on a facultative basis. However, accounting unbundling is mandatory.

Cross-border exchanges

Italy has 18 electricity interconnection: 5 with France (2.500 MW), 9 with Switzerland (3.890 MW), 1 with Austria (220 MW), 2 with Slovenia (430 MW) and one undersea cable with Greece (400 MW). But these interconnections are not enough and there are several congestion problems.

Imports cover more than 14% of the demand.

_
_
_
_
_
<i>,</i> –

Italy

Physical exchanges in interconnected operation 1

IT_III_SLD	9	0	0	0	0	0	0	0	0	0	0 0	0 0	0	•	0 0	0 0	0 0	0 0	0 (0 0	> 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
IT_UCTE_SLD	Balance	3540	3227	3591	3635	3827	3578	3799	2386	3482	3730	3522	43043	45012	4699	4351	4835	4688	4367	4099	1500	302	4514	3949	4041	50790	4156	4021	4267	3912	3532	3371	3537	2475	3692	3902	4375	4273	45513	
IT_III_IMP		0	0	0	0	0	0	0	0	0	0 0	0 0	o c	•	0 0	0 (0 0	0 (0 (0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
IT_UCTE_IMP		3586	3276	3634	3663	3850	3617	3870	2475	3551	3742	3544	42530	45333	4736	4385	4881	4723	4401	4148	45//	3 - 10 434F	4040	3980	4071	51309	4189	4055	4300	3949	3571	3419	3711	2652	3743	3924	4431	4321	46265	
sı) ı⊤		262	208	232	270	341	306	358	526	295	8 8	17	200	2400	564	5 6	808	494	381	402	† č	100	438	369	398	1548	425	530	478	571	444	516	217	28	445	244	718	764	9180	,
GR→IT	Import (+)	0	0	0	0	0	0	0	0	0	0 0	0 0			0 0	n (B 5	10/	223	£ 2	± 5	2 2	24	139	52	1133	29	96	220	146	149	8	0	0	72	8	192	96	1424	
FR→IT	ll ll	1407	1386	1528	1281	1350	1232	1190	781	1237	1422	1461	222	0//0	1/49	1001	1888	1666	1600	1327	3 6	2/01	1373	1425	1489	8025	1527	1416	1635	1479	1353	1285	1376	1162	1362	1499	1523	1508	7125	
сн→іт																										_	2044												_	
AT→IT									78					•	_											•			_		٥.		152					_	_	
IT_III_EXP		0	0	0	0	0	0	0	0	0	0 0	0 0	0	•	0 0	0 0	0 0	0 0	0 (0 0	0 0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	:
IT_UCTE_EXP		46	49	43	28	23	39	71	88	69	15	22.0	200	170	37	40	946	35	34	949	0 0	9 0	- ac	3.5	30	519	33	34	33	37	39	48	174	177	51	55	26	48	752	
IT→SI		8	14	œ	2	0	2	0	-	0	0 0	N T	- 00	00	0 0	۰ د	- 0	0 0	0 (0 0	> 0	30	b C	0	0	43	-	0	0	0	0	0	0	0	0	0	0	0	က	,
IT→GR	Export (-)	0	0	0	0	0	0	0	0	0	0 0	0 0	o c		0 0	0 0	0 0	0 0	0 (0 0	2 °	0 0	5	(0	0	28	0	0	0	0	0	0	107	85	-	0	-	0	191	
IT→FR		88	32	98	92	16	98	2	87	g	₽ 8	R 18	8 4	-	3/	3 8	8 8	8 8	g :	Q 1	8 8	8 8	7 £	2 8	8	434	82	8	8	37	æ	\$	29	88	ß	6	SS	8	544	
іт→сн		0	0	0	0	7	-	-	-	36	0	0 0	9	9	0 +	- ‹	500	0,		0 0	v +	- <	0 0	0	0	14	0	0	0	0	-	0	0	2	0	က	5	0	14	
ıt→at		0	0	0	0	0	0	0	0	0	0 0	0 0	o c	•	0 0	0 0	0 0	0 0	0 (0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MM_YY		66.1	66'11	66'Ⅲ	66.VI	66.7	VI.99	66.IIV	66.ⅢV	66.XI	66.X	86.1X	1000	666	.03	E0.II	III.03	10.03	V.03	VI.03	20.11.0	20.5	X 03	XI.03	XII.03	2003	1.04	11.04	1.04	IV.04	7.04	VI.04	VII.04	V≡.04	1X.04	X.04	XI.04	XII.04	2004	.

These physical energy flows were measured on the cross-frontier transmission lines (2 110 kV). These values may differ from the official statistics and the total physical balance in the table "Monthly values. Operation".

Pág. 124 Memoria

Security of supply

In 2005 there was an increase in generating capacity, which rose by more than 5 GW, from 81.5 GW in 2004 to 86.8 GW in 2005.

Installed capacity: 86.800 MW

Peak demand: 55.015 MW

Total electricity generation (2005): 302.400 GWh

Total electricity consumption (2005): 329.400 GWh

Customer service

A range of customers is guaranteed protection measures: universal services, disconnection practice and service quality.

	2005
Not eligible customers	28.330.000
Eligible customers	5.082.000
Not eligible customers (GWh)	67.200
Eligible customers (GWh)	244.700

Switching

Electricity customers can change supplier without charge or delay. About 126.000 have actually changed supplier. It represents 60% of total consumption of eligible customers.

Competition

An electricity exchange is active since 1st April 2004. The types of market present in that market platform are: day-ahead market, balancing market and ancillary service market.

In the Italian electricity generation market there is one dominant player (Enel) whose market share is 43,9%. There is one main competitor (Edison) whose market share is 12,1%, and it also owns 40% of Edipower which has 9% of the market.

There are 119 distribution companies, but most of them are very small. *Enel distribuzione* has more than 50% of the distribution market.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Italy price (July	95	140	155
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Italy in 2010 is 25% of gross electricity consumption.

Currently they have achieved 15,9% of gross electricity consumption.

The main supporting policies are:

- Certificate system with mandatory demand
- Carbon dioxide tax with exemption for renewable energy sources
- Funds for specific technologies and/or municipalities

Pág. 126 Memoria

A.1.11 Luxembourg

Background

Population: 459.500

• Size: 2.586 Km²

• GDP (2005): 29.396.400 Euros

• Growth rate of GDP volume (2005): 4%

• Final electricity consumption per capita (2004): 14.121 kWh/capita

• Degree of liberalization: 57%

Primary production:

Unbundling

Legal separation has been applied to the transmission system operators.

Cross-border exchanges

Luxembourg has two electricity transmission networks that are not interconnected between each other, but are integrated into its neighbouring countries: Belgium and Germany.

Luxembourg GWh

Physical exchanges in interconnected operation 1

LU III S	SLD		0	0	0	0	0	0	0	0	0	0	0 0			0 (0 0				00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Balance																																						
LU_UCTE_S	SLD	Ba	479	447	479	464	433	444	465	377	459	498	203	470	9100	321	254	2 6	246	259	425	390	270	287	279	303	3765	243	265	306	261	380	278	295	208	253	286	270	322	3367
נוטיווי	IMP		0	0	0	0	0	0	0	0	0	0	0 0		o	0 (0 0	0 0	0 0	0 0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LU_UCTE_)	IMP	port (+)	528	492	520	909	482	498	208	430	519	269	581	6175	6/10	268	511	202	200	510	575	501	528	584	592	564	6558	543	535	573	520	549	535	260	483	544	572	525	561	6500
DE→	LU	mI	361	326	342	343	328	334	330	321	357	330	400	1000	6774	433	388	000	000	305	421	401	408	445	444	442	4956	433	395	420	398	397	396	412	382	409	422	420	441	4928
BE→	LU		167	166	178	163	154	164	178	109	162	179	181	1046	0 10	135	2 5	140	1261	124	154	100	120	139	148	122	1602	110	140	153	122	152	139	148	86	135	150	105	120	1572
נווייון	IMP		0	0	0	0	0	0	0	0	0	0	0 0		o (0 (0 0	0 0	0 0	0 0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LU_UCTE_I	IMP	MPort (-)	49	45	41	42	49	54	43	53	09	7	7.9	657	/60	247	25/	040	926	080	150	=======================================	258	297	313	261	2793	300	270	267	259	169	257	265	275	291	286	255	239	3133
LU→	DE	IM	49	45	41	42	49	25	43	83	9 i	_	78	657	20 i	7	S S	N C	60	3 2	10	78	20	79	81	80	834	71	22	\$	8	9	61	61	9	92	4	8	73	751
LU→	BE		0	0	0	0	0	0	0	0	0	0	0 0	0	ָר פ	176	202	200	2010	103	73	83	188	218	232	181	1959	229	215	213	195	109	196	204	215	226	222	192	166	2382
MM_	ΥΥ		1.99	11.99	66'111	10.99	V.99	VI.99	VII.99	66:III.	1X.99	×.99	XI.99	1000	666	50 ::	88	200	3.5	3 5	× = 03	VIII 03	X.03	X.03	XI.03	XII.03	2003	1.04	1.04	<u>=</u>	N.04	V.04	VI:04	VII.04	VIII.04	X.04	×.04	XI.04	XII.04	2004

1 These physical energy fows were measured on the cross-forther transmission lines (2.110 KV). These values may differ from the official satistics and the total physical balance in the table "Monthly values. Operation".

Pág. 128 Memoria

Security of supply

In this case security of supply is not a relevant concept considering Luxembourg alone because of the high level of interconnection with border countries.

Installed capacity: 1700 MW

• Peak demand: 994 MW

• Total electricity generation (2005): 4.300 GWh

• Total electricity consumption (2005): 6.100 GWh

Customer service

All non-household customers are able to choose their supplier.

	2005
Not eligible customers	-
Eligible customers	-
Not eligible customers (GWh)	-
Eligible customers (GWh)	-

Switching

Customers with a total of around 10% of total national consumption have changed supplier.

Competition

There is no a real competition, because it is mainly from neighbouring countries.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Luxembourg price	Not available	Not available	139
(July 2006)			

EU15 average	70	122	109

Environment

The RES-E target to be achieved by Luxembourg in 2010 is 5,7% of gross electricity consumption.

Currently they have achieved 3,2% of gross electricity consumption.

The main supporting policy is the feed-in tariff.

- Wind, hydro, biomass, biogas: up to 3 MW for 10 years 2,5 Eurocents/kWh
- PV for municipalities: up to 50 kW for 20 years 25 Eurocents/kWh
- PV for non-municipalities: up to 50 kW for 20 years 45 55 Eurocents/kWh

Pág. 130 Memoria

A.1.12 Netherlands

Background

Population: 16.334.200

• Size: 41.526 Km²

• GDP (2005): 505.646.000 Euros

• Growth rate of GDP volume (2005): 1,5%

• Final electricity consumption per capita (2004): 6.343 kWh/capita

• Degree of liberalization: 100%

• Primary production:

Unbundling

At present, the transmission system operator (TeeneT) and all the distribution system operators are legal, functional and accounting separated.

And the transmission system operator is totally separated and owned by the national government as separate company.

Cross-border exchanges

The Netherlands is well connected with neighbouring countries. Transmission capacity on the interconnectors with Belgium and Germany is 3650 MW. They have just started the construction of a cable 700 MW to Norway.

The Netherlands GWh

Physical exchanges in interconnected operation 1

NL_III_SLI) jce	c	0 0	0 0	0 0	0 0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NL_UCTE_SLE	Balance	1218	2 5 5	1350	200	246	17/1	1595	1691	1698	1756	1758	1578	1564	18653	1404	1045	1326	1354	1496	1568	1076	1388	1326	1623	1705	1693	17004	1573	1361	1404	1493	1348	1402	1140	1129	944	1400	1427	1598	16219
NL_JII_JMF	,	U	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NL_UCTE_IMF	mport (+)	1653	1434	1685	000	1859	2123	1972	1955	1983	1962	2017	1886	1877	22406	1901	1395	1640	1643	1751	1798	1383	1558	1556	2062	2010	2120	20817	1985	1964	2017	1976	1589	1679	1392	1512	1450	1767	1900	2179	21410
DE→NI	٤	1456	175	1304	100	1400	1648	1577	1423	1276	1451	1598	1409	1445	17158	1453	899	1178	1235	1308	1056	698	856	1048	1836	1652	1819	15038	1611	1833	1883	1737	1217	1054	865	927	1165	1516	1548	2001	17357
BE→NI		197	263	381	000	459	475	395	532	707	511	419	477	432	5248	448	496	462	408	443	742	685	702	508	226	358	301	5779	374	131	134	239	372	625	527	585	285	251	352	178	4053
NL_III_EXF	Ī	c	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NL_UCTE_EXF	Export (-)	435	808	335	000	L 2	352	377	264	285	206	259	308	313	3753	497	350	314	289	255	230	307	170	230	439	305	427	3813	412	603	613	483	241	277	252	383	506	367	473	581	5191
NL→DE	Ex	86	gα	0 1	- 7	200	90	103	101	151	22	24	8	34	665	91	101	13	20	16	83	174	99	32	4	e	18	601	9	-	15	က	22	97	81	197	108	16	12	0	228
NL→BE		407	2 6	230	5 6	200	2/2	274	163	134	149	232	274	279	3088	406	249	301	569	88	167	133	104	198	435	302	409	3212	406	802	598	480	219	180	171	186	398	351	461	581	4633
MM_Y	,	66	86	n o	000	S. S.	66.7	VI.99	VII.99	VIII.99	66.XI	X.99	X.99	XII.99	1999	1.03	E.03	III.03	IV:03	V.03	VI.03	VII.03	VIII.03	IX:03	×.03	XI.03	XII.03	2003		1.04	≡ .04	₹0.2	V .04	VI:04	VII.04	VIII.04	X.04	×.04	XI.04	XII.04	2004

These physical energy flows were measured on the cross-frontier transmission lines (2110 kV). These values may differ from the official statistics and the total physical balance in the table "Monthly values. Operation".

Security of supply

Installed capacity: 20.000 MW

• Peak demand: 16.500 MW

• Total electricity generation (2005): 102.000 GWh

• Total electricity consumption (2005): 118.000 GWh

Customer service

The electricity market has been fully open in July 2004.

	2005
Not eligible customers	0
Eligible customers	7.600.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	113.600

Switching

Since July 2004, 1.022.058 customers have switched supplier. This represents 13.5% of the domestic consumers.

Competition

The three largest generators hold 69% of installed capacity and also have 83% of the supplier market. There are 18 other suppliers which each has a small part of the market below 5%.

The Dutch wholesale market is developed in various marketplaces: the bilateral market, the over the counter market, the day-ahead market and the balancing market.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Netherlands price	56	125	124

Pág. 134 Memoria

(July 2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Netherlands in 2010 is 9% of gross electricity consumption.

Currently they have achieved 5,7% of gross electricity consumption.

Subsidies are the main supporting policy for renewable energy sources in Netherlands:

• Mixed biomass and waste: 2,9 Eurocents/kWh

• Wind on shore: 7,7 Eurocents/kWh

• Wind off shore: 9,7 Eurocents/kWh

• PV: 9,7 Eurocents/kWh

• Tidal: 9,7 Eurocents/kWh

• Wave: 9,7 Eurocents/kWh

Hydro: 9,7 Eurocents/kWh

A.1.13 Portugal

Background

• Population: 10.569.600

• Size: 92.391 Km²

• GDP (2005): 147.378.400 Euros

• Growth rate of GDP volume (2005): 0,4%

• Final electricity consumption per capita (2004): 4.264 kWh/capita

• Degree of liberalization: 100%

Primary production:

Unbundling

Red Electrica Nacional is the only transmission system operator; it does not belong to any company involved in generation or supply activities, so for this reason the unbundling requirements are not applicable.

In Portugal there is one big distribution system operator that is not vertically separated, and then there are 10 very small distribution system operators which have less than 10.000 customers. Only the accounting separation is assured.

Pág. 136 Memoria

Cross-border exchanges

Mibel (Mercado Ibérico de electricidade) should have started in 2003, but it is not yet operational.

Interconnection capacity is around 1.000/1.545 MW (it depends on season and direction) and should reach 1.610/2.330 MW by year 2007-2008.

In 2004 the imports from Spain covered 14,1% of total demand.

Physical exchanges in interconnected operation 1

PT_III_SL	.Б	eg e	0	0	0	0	0	0	0	0	0	0	0 0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PT_UCTE_SL	.D	Dalance	117	38	-17	-253	-341	-280	-63	-55	174	-33	-163	-64	-940	81	91	104	168	269	162	316	414	341	352	191	174	2663	421	403	513	736	611	615	629	638	467	537	378	415	6393
PT_III_IN	IP		0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PT_UCTE_IN	IP	(+) nodmi	454	361	380	226	141	200	386	139	425	270	220	311	3513	443	388	383	418	586	470	280	595	544	523	405	455	57.70	689	618	701	850	754	733	805	753	625	727	595	673	8523
ES→F	т		454	361	380	226	141	200	386	139	425	270	220	311	3513	443	388	383	418	586	470	290	595	544	523	405	455	5770	689	618	701	850	754	733	805	753	625	727	595	673	8523
PT_III_E)	Р		0	0	0	0	0	0	0	0	0	0	0 0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PT_UCTE_E)	(P	Export (-)	337	323	397	479	482	480	449	194	251	303	383	3/5	4453	362	297	279	250	317	308	274	151	203	171	214	281	3107	268	215	188	114	143	118	146	115	158	190	217	258	2130
PT→E	s		337	323	397	479	482	480	449	194	251	303	383	3/5	4453	362	297	279	250	317	308	274	151	203	171	214	281	3107	268	215	188	114	143	118	146	115	158	190	217	258	2130
MIMLY	Υ		66.1	66:11	66:Ⅲ	IV.99	٧.99	VI.99	VII.99	VIII.99	66.XI	66.X	8.1.39	XII.99	1999	1.03	E0.II	E0.III	IV.03	V.03	VI.03	VII.03	VIII.03	1X.03	×.03	×.03	XII.03	2003	-04	E.04	1.04	N.04	40.7	VI.04	VII.04	VIII.04	×.04	×.04	×.94	×=.8	2004

1 These physical energy flows were measured on the cross-frontier transmission lines (2:110 kV). These values may differ from the official statistics and the total physical balance in the table "Monthly values. Operation".

Pág. 138 Memoria

Security of supply

Installed capacity: 11.708 MW

• Peak demand: 8.249 MW

Total electricity generation (2005): 52.300 GWh

Total electricity consumption (2005): 52.500 GWh

Customer service

In theory all electricity consumers since August 2004 are eligible, but in practice eligibility of household customers can only be implemented when the required computer platform becomes operational.

	2005
Not eligible customers	0
Eligible customers	6.139.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	47.800

Switching

Customers can change supplier without charge or delay and switch back to the regulated tariff. Switching out of the regulated sector represents 19,8% of national market.

Competition

The wholesale market in Portugal is currently a bilateral trading market between generators and suppliers. The incumbent EDP still generates 52,9% of national consumption, and owns 69,4% on installed capacity.

Retail competition was developed principally thanks to imports from Spain where competition already exists.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
----------	-----------	--------	----------

	MWh/year)	MWh/year)	KWh/year)
Portugal price (July	72	121	134
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Portugal in 2010 is 39% of gross electricity consumption.

Currently they have achieved 24,4% of gross electricity consumption.

Feed-in tariffs are the main supporting policy for renewable energy sources in Portugal:

- Photovoltaic (< 5 kW): 41 Eurocents/kWh
- Photovoltaic (> 5 kW): 22,4 Eurocents/kWh
- Wave: 22,5 Eurocents/kWh
- Small hydro: 7,2 Eurocents/kWh
- Wind (beyond 2.600 hours): 4,3 Eurocents/kWh
- Wind (From 2.400 hours to 2.600 hours): 5,1 Eurocents/kWh
- Wind (From 2.200 hours to 2.400 hours): 6,0 Eurocents/kWh
- Wind (From 2.000 hours to 2.200 hours): 7,0 Eurocents/kWh
- Wind (First 2.000 hours): 8,3 Eurocents/kWh

In addiction, investment subsidies and tax deductions are used to support renewable energies.

Pág. 140 Memoria

A.1.14 Spain

Background

• Population: 43.758.300

• Size: 505.811 Km²

• GDP (2005): 905.455.000 Euros

• Growth rate of GDP volume (2005): 3,5%

• Final electricity consumption per capita (2004): 5.447 kWh/capita

• Degree of liberalization: 100%

• Primary production:

Unbundling

Transmission is almost totally owned by *Red Eléctrica de Espana* (REE), which is unbundled in ownership terms.

Distribution is carried out principally by *Endesa, Iberdrola, Union Fenosa, Hidrocantabrico* and *Viesgo-Enel* and then there are some smaller companies. Legal, functional and accounting unbundling of distribution system operators is guaranteed.

Cross-border exchanges

During 2005, trade volumes exchanged with neighbouring member states represented about 7,64% of the energy in the wholesale market. Spain exports a big amount of electricity to Portugal and also exports to Morocco and Andorra. Spain also imports more than 7 million MWh from France.

Spain GWh

ES_JII_SLD	ıce	-67	9	φ	-64	-203	-175	-186	-198	-51	-185	-192	-198	-1803	-148	-100	-127	-184	-212	96-	-73	96-	-124	φ	-112	-102	-1457	-135	-127	98	-169	-123	-121	-183	-118	-82	-192	-137	-145	-1558
ES_UCTE_SLD	Balar	348	467	267	789	824	748	713	93	427	848	845	677	95/	88	8	419	182	358	519	333	322	599	170	125	4	124	120	.113	-92	429	.176	188	110	338	46	106	123	387	119
=													_	_													69	_	_		_	_	_	_	_		_	_	_	<u>-</u>
ES_III_IMP		О	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	-	c)	4	N	ෆ	-	-	0	21
ES_UCTE_IMP		868	883	997	1080	1003	983	1155	867	833	928	1112	1053	1858	805	653	823	643	998	1011	954	834	863	753	592	297	9496	899	589	725	516	659	587	739	481	989	688	778	1078	3164
	rt (+)	0	0		0	0	0	0	0	0	0 (0 1	0,																											_
MA→ES	Impo						_							_											_		_						-,	•		•			0	2
PT→ES		337	333	397	479	482	480	449	\$	52	88	383	375	4453	362	297	279	250	317	308	274	12	58	17	214	281	3107	268	215	188	114	143	118	146	115	8	98	217	528	2130
FR→ES		531	280	909	601	521	503	706	673	648	922	729	678	7405	443	356	544	388	651	703	989	683	999	285	378	316	6389	400	374	537	402	486	469	593	386	228	498	561	820	6034
es_III_exp		67	60	49	64	203	175	186	198	211	185	192	198	1803	148	90	127	184	212	98	73	96	124	81	112	102	1457	135	127	87	169	124	126	127	120	82	193	138	148	1579
ES_UCTE_EXP		520	416	430	291	179	235	445	164	472	310	267	376	4102	575	449	404	461	610	492	63	579	264	283	467	557	6372	788	702	820	945	805	775	849	819	640	794	655	691	9283
ES→MA	Export (-	67	9	9	64	203	175	186	198	211	185	192	198	1803	148	9	127	184	212	98	73	96	124	8	112	102	1457	135	127	87	169	124	126	127	120	82	193	138	148	1579
ES→PT		454	361	380	226	141	200	386	139	425	270	220	311	3513	443	388	383	418	286	470	290	265	544	523	405	455	2220	689	618	701	820	754	733	802	753	625	727	595	673	8523
ES→FR		99	25	22	65	38	32	29	52	47	9 !	47	9	289	132	61	21	43	54	55	4	14	50	9	62	102	602	66	84	119	92	51	42	44	99	15	67	9	18	160
MM_YY		1.99	11.99	66 III	€6.∨I	66.7	VI.99	VII.99	VIII.99	X.99	× 39	XI.99	XII.99	1999	1.03	E03	III.03	€0.03	V.03	VI.03	VII.03	VIII.03	X.03	X.03	XI.03	XII.03	2003	1.04	<u>=</u>	₩ 107	₹.04	V.04	VI.04	VII.04	VIII.04	X.04	×.04	XI.04	XII.04	2004

· These physical energy flows were measured on the cross-frontier transmission lines (2:10 kV). These values may differ from the official statistics and the total physical balance in the table "Monthly values. Operation".

Security of supply

Installed capacity: 64.800 MW

• Peak demand: 43.378 MW

Total electricity generation (2005): 262.100 GWh

• Total electricity consumption (2005): 262.000 GWh

Customer service

Since January 2003, all Spanish customers are able to freely negotiate their supply contracts with any authorized electricity energy supplier.

	2005
Not eligible customers	0
Eligible customers	23.000.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	242.000

Switching

Customers can change supplier without any charge.

Competition

The generation companies with the largest market share are Iberdrola, Endesa and Uniòn Fenosa, whose market shares are up to approximately 84%.

There are 11 smaller companies which act in the market and which are independent of the electricity transport network and distribution managers.

Nine stranger commercialisation companies have penetrated the retail market, which share of the external commercialisation companies is about 8%.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)

Pág. 144 Memoria

Spain price (July	64	109	95
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Spain in 2010 is 29,4% of gross electricity consumption.

Currently they have achieved 18,2% of gross electricity consumption.

Renewable energy sources producers can choose between a fixed preferential tariff or a (variable) premium price on top of the market price:

Tariff specified for 2003	Premium (Eurocents/kWh)	Feed-in (Eurocents/kWh)
Photovoltaic (< 5 kW)	36,0	39,6
Solar (other	18,0	21,6
installations)		
Solar thermal electric	12,0	-
Wind	2,66	6,21
Primary biomass	3,32	6,85
Secondary biomass	2,51	6,05
Geothermal, wave and	2,94	6,49
tidal		

A.1.15 Sweden

Background

• Population: 9.047.800

• Size: 449.964 Km²

• Final electricity consumption per capita (2004):

• GDP (2005): 287.706.300 Euros

• Growth rate of GDP volume (2005): 2,9%

• Final electricity consumption per capita (2004): 14.524 kWh/capita

• Degree of liberalization: 100%

Primary production:

Unbundling

Sweden has one transmission system operator (Svenska Kraftnät) that is ownership unbundled and is part of the Swedish state.

Sweden has 175 distribution system operators, and only 6 of these have more than 100.000 customers. But they have a share of 60% of all customers. Because Sweden has adopted

Pág. 146 Memoria

the 100.000 customers exemption, 169 distribution system operators do not have to be unbundled in functional terms.

All of the distribution system operators are legally and accounting unbundled.

Cross-border exchanges

Interconnection capacity of Sweden is about 8.500 MW with Norway, Finland, Germany and Poland. An increase of 600 - 800 MW with Finland has been planned.

Figure 3 Nordpool exchange for electricity 2005 (GWh) (Nordel,2005)

10,394 11,623 14 . 1,525 16 . 15,692 14,251 21,972
6 . 15,692
4.251 21.972
.,
6 . 13,727
75 14,645 64,539 Nordel
5 49,894
2 50,812
-918
% -0.2 %

[®] Germany, Russia and Poland.

Security of supply

Installed capacity: 33.200 MW

• Peak demand: 27.000 MW

• Total electricity generation (2005): 142.400 GWh

• Total electricity consumption (2005): 148.400 GWh

Reserve margin is relatively low, but in the Nordic market as a whole, taking into account the interconnectors, it is considered sufficient.

Customer service

Since 1999, all customers for electricity are able to choose freely the electricity supplier.

	2005
Not eligible customers	0
Eligible customers	5.125.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	137.700

Switching

In the Swedish electricity retail supply market about 54% of household customers have changed supplier or renegotiated their contracts between 1996 and 2004.

Competition

The wholesale market in Sweden is integrated to the Nordic power market. It consists of a bilateral trading market between generators on one hand and suppliers and industrial companies on the other hand, and of a voluntary Nordic power exchange Nordpool which has a spot market and a forward market.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
Sweden price (July	63	93	98
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by Sweden in 2010 is 60% of gross electricity consumption.

Currently they have achieved 46,1% of gross electricity consumption.

Electricity certificates for wind, solar, biomass, geothermal and small hydro were introduced in May 2003. The system has created an obligation for end users to buy a

Pág. 148 Memoria

certain amount of renewable certificates as part of their total electricity consumption. Non-compliance leads to a penalty which is fixed at 150% of a year's average price.

For wind energy investments grants which offer 15% reduction of costs will remain available. As a transition measure, an environmental bonus for wind will also be available.

A.1.16 UK

Background

• Population: 60.393.100

• Size: 244.820 Km²

• GDP (2005): 1.790.671.200 Euros

• Growth rate of GDP volume (2005): 1,9%

• Final electricity consumption per capita (2004): 5.696 kWh/capita

• Degree of liberalization: 100%

• Primary production:

Unbundling

Great Britain has gone beyond the requirement of the Directives with the introduction of the British Electricity Transmission Trading Arrangements (BETTA) that introduced a single system operator independent of generation and supply interests for the whole United Kingdom.

Legal and functional unbundling are guaranteed, and ownership unbundling is guaranteed

Pág. 150 Memoria

in terms of operations.

As far as distribution concerned, there are 14 distribution system operators with more than 100.000 customers, and legal and functional unbundling has been guaranteed since 2000.

Cross-border exchanges

There are interconnections between Great Britain and France and Ireland. Increased connections between Republic of Ireland and Northern Ireland are likely in the context of the creation of an all-Ireland energy market.

A new undersea interconnection between Ireland and UK of up to 1.000 MW is being discussed. A project between Great Britain and Netherlands is also possible.

Security of supply

Installed capacity: 77.400 MW

Peak demand: 62.200 MW

• Total electricity generation (2005): 395.000 GWh

• Total electricity consumption (2005): 392.300 GWh

Reserve margin is around 20%. An additional 1.800 MW capacity is expected by 2008.

Customer service

In Great Britain there are 30 million electricity customers. The market has been fully open since 1998 and since 2002 there is no price control. There are some customer protection guidelines: a code of practice on billing and late payment, protection of vulnerable customers, transparency relating to contract conditions, rules for terminating contracts.

	2005
Not eligible customers	0
Eligible customers	30.000.000
Not eligible customers (GWh)	0
Eligible customers (GWh)	360.700

Switching

45% of customers have changed supplier. Almost all industrial and commercial customers have changed supplier at least once.

Competition

The British wholesale market is a bilateral market. There are more power exchange platforms and UKPX is the biggest one.

8 companies produce a share of 70% of total capacity.

Prices

Euro/MWh	IG (24000	IB (50	DC (3500
	MWh/year)	MWh/year)	KWh/year)
UK price (July	67	116	110
2006)			
EU15 average	70	122	109

Environment

The RES-E target to be achieved by United Kingdom in 2010 is 10% of gross electricity consumption.

Currently they have achieved 3,7% of gross electricity consumption.

The main supporting policies are:

- Obligatory targets with tradable green certificate system. The non-compliance "buy-out" price for 2003-2004 was set at 30,51£/MWh. This buy-out is annually adjusted in line with the retail price index.
- Climate Change Levy: renewable electricity is exempted from the climate change levy on electricity of 0,43 p/kWh.
- Grants schemes: funds are reserved from the New Opportunities Fund for new capital grants for investments in energy crops/biomass power generation, small scale biomass, CHP heating and planting grants for energy crops.

Pág. 152 Memoria

