
4. Discontinuous Galerkin methods for elastoplasticity

Until this point only elasticity has been considered. The main objective of this chapter is
to extend the formulation of the interior penalty method to the plasticity case obtaining
a consistent and stable discontinuous method. Going back to the primal formulation of
the interior penalty method in equation (3.14), it might seem logical to think that the weak
form for the plasticity case is obtained by substitution of C :

� suh by σ
h. However the

treatment of the symmetry term becomes ambiguous. This problem will be solved in two
steps, in Section 4.1 the consistent non-symmetric discontinuous Galerkin method will be
derived for plasticity. Once this has been done, in Section 4.2 a term will be added to obtain
a symmetric and consistent method.

4.1. Non-symmetric discontinuous Galerkin method

4.1.1. Weak form of non-symmetrical discontinuous Galerkin method

We consider the same problem as in Section 2.2. The local equilibrium equation in (2.7)
holds as well for plasticity, however, now the constitutive equation in (2.8) is no longer
valid. A new constitutive equation relating the rate of stresses and strains and depending
on the plasticity model adopted will be used.

Since equation (2.27) has been obtained through integration by parts of the local equilib-
rium equation in (2.7) and this is still valid for plasticity, equation (2.27) can still be used
now. Again it is considered that gD � 0. For the non-symmetric discontinuous Galerkin
method the numerical fluxes used for plasticity are the same as in elasticity, equations
(3.15)–(3.18), only changing the definition of σ̂ in equation (3.17), where 
 C :

� suh � is

substituted by 
 σh � ,

σ̂nK
� 


σ
h � nK � µ

r
uh

z
on ˜� 	 � D. (4.1)

Introducing these numerical fluxes into equation (2.27) the primal form is obtained,

�
˜� � s
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h : σ
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r
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h � nKd
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r
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h
z ηK

hK
D

r
uh

z
d

�

� �
˜� ω

h � f d ��� � � N
ω

h � gNd
�
. (4.2)

This is the nonlinear equation that will be solved through an incremental iterative proce-
dure in the next two sections. The definition of µ

� ηK
hK

D given for elasticity in equation
(3.13) remains unchanged for plasticity. This is because µ has no real physical meaning for
the non-symmetric discontinuous Galerkin method and only acts as a penalty. Any value
of µ is therefore valid, as long as the stability condition in equation (2.47) is satisfied. The
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4. Discontinuous Galerkin methods for elastoplasticity

chosen value of D can be seen in equation (3.40) for the one dimensional case and in (3.47)
for two dimensions.

See that the method is consistent since the numerical fluxes are consistent. However in
this case, and unlike the IP method, it is not adjoint consistent. The value of û takes a
different value at each side of ˜� , uh

∂K1
over ∂K1 and uh

∂K2
over ∂K2, see figure 3.1.

From this point, and to derive the incremental iterative procedure that will solve the
plasticity problem, there are two steps that need to be followed. These are the discretization
of the weak form, and then its linearization. The order on which this is done does not affect
the result. In this case discretization will be done first, followed by the linearization.

4.1.2. Spatial discretization of non-symmetric discontinuous Galerkin method

Using the defined notation in Section 3.5, equation (4.2) can be discretized for the interface
element in figure 3.1 as,

�
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� Be1 � T σ
h
e1

d � � �
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� Be2 � T σ
h
e2

d � � �
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σ

h � nKd
�
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� Ne � T gNd

�
. (4.3)

From the above expression the global equilibrium condition can be obtained,

Fext � Fint
� 0, (4.4)

where,

Fint
� �

K1

� Be1 � T σ
h
e1

d � � �
K2

� Be2 � T σ
h
e2

d � � �
˜� � NJ K

o 	 T 

σ

h � nKd
�

� �
˜� � NJ K

o 	 T ηK
hK

D NJ K
o ao d

�
, (4.5)

and

Fext
� �

K1

� Ne1 � T f d � � �
K2

� Ne2 � T f d � � � � N
� Ne � T gNd

�
. (4.6)

The equilibrium expression in (4.4) states that the internal virtual work, Fint, of the stresses
and contributions from interior boundaries, is equal to the external virtual work, Fext, of
the boundary tractions gN and body forces f [14].

4.1.3. Linearization of non-symmetric discontinuous Galerkin method

The problem is now reduced to finding an � uh � k � 1 � so that the updated displacements,
strains and stresses satisfy the equilibrium equation in (4.4) for a given level of load n, and
the calculated stresses lie within the permissible limits of the used yield surface.
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4.1. Non-symmetric discontinuous Galerkin method

The solution to this problem is obtained through an incremental-iterative procedure,
where the superscript k will be used to express the iteration number. Since the displace-
ment and strains have already been discretized in Section 4.1.2, instead of uh � k � 1 � , nodal
displacements will be used, a � k � 1 � . The steps to be followed are mainly,

1. Given a trial displacement increment update the nodal displacements,

a � k � 1 �
e

� a � k �
e � � a � k � 1 �

e , (4.7)

and with a � k � 1 �
e update the strains for each quadrature point,

ε
� k � 1 �
e

� Be a � k � 1 �
e . (4.8)

In the interior boundaries, the strains can be computed just by evaluating Be on each
of the sides of ˜� , ∂K1 and ∂K2, figure 3.1,

ε
� k � 1 �
∂K

� Be
�
∂K a � k � 1 �

e . (4.9)

2. For each quadrature point, given the strain field, ε
� k � 1 �
e , the plastic strain ε

p � k � 1 �
e

and hardening variables q � k � 1 �
e the corresponding stress σ

� k � 1 �
e is computed using a

classical return mapping algorithm. The same is done on ∂K1 and ∂K2 with ε
� k � 1 �
∂K ,

ε
p � k � 1 �
∂K and q � k � 1 �

∂K to obtain σ
� k � 1 �
∂K .

3. With σ
� k � 1 �
e , σ � k � 1 �

∂K and a � k � 1 �
o evaluate F � k � 1 �

int using expression (4.5).

4. For the given load level, f � n � and gN � n � , evaluate F � n �
ext using (4.6).

5. Check if the equilibrium equation in (4.4) is satisfied. If this is the case the solution for
the corresponding load level n has been found, go then to the next load level n � 1. If
this is not the case, continue.

6. Calculate the following displacement increment, set k � 1 equal to k and go back to
point one until the equilibrium equation (4.4) holds.

The only step which is not yet clear is the last one. What happens if after an increment
the equilibrium expression in (4.4) is not satisfied, and how is the following increment
calculated? Here, to determine this last step, and following [1], � a � k � 1 �

e will be obtained by
linearizing the expression of Fint, in equation (4.5), around the current state, a � k � 1 �

e , so that
the equilibrium equation (4.4) can be rewritten as,

F � n �
ext

� F � k �
int

� ∂Fint

∂a � k � 1 � � a � k � 1 � � 0, (4.10)
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4. Discontinuous Galerkin methods for elastoplasticity

where,

∂Fint
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�
.

(4.11)

Now the problem is reduced to obtaining an expression of the stress increment as a func-
tion of the displacement, so that the derivations in the first, second and third term of the left
hand side of the above equation can be calculated. Consider the constitutive equation for
the elastic case in (2.8). For plasticity this is not valid anymore since the tangent modulus
is not constant. However for a given infinetly small strain increment it holds that,

σ̇
� Cep :

� su̇, (4.12)

where,

˙� � � � ∂ � � �
∂t

. (4.13)

This infinetly small increment can be seen as a variation of the analyzed variable during
a small period of fictitious time. This notation will be used to refer to small changes. In
fact being more consistent the notation used should have been δ � � � � ˙� � � δt. However for
simplicity, and because it is an extended notation used in plasticity theory ˙� � � will express
a small change [1].

In order to proceed with the linearization, a definition of σ̇
h over ˜� is required. As

done for the elasticity case to obtain equation (2.31) through integration by parts of the
constitutive equation (2.8) to obtain equation (3.59) but now starting from (4.12) it yields,

�
˜� � s

ω
h : σ̇

hd � � �
˜� � s

ω
h : Cep :

� su̇hd � � �
˜� � �

 � s

ω
h : Cep � nK

� r
u̇h

z
d

�

� �
˜�

r � s
ω

h : Cep
z

nK
� 
 u̇h � d

� � �
˜� � �

 � s

ω
h : Cep � nK
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y

d
�

� �
˜�

r � s
ω

h : Cep
z

nK
� �

˙̂u � d
�
. (4.14)

For an infinetly small increment the numerical fluxes in (3.15) and (3.16) are expressed as,

˙̂u � u̇h
∂K on ˜� 	 � N , (4.15)

˙̂u � 0 on
� D, (4.16)

where gD has been considered equal to gD � 0. So equation (4.14) reduces to,

�
˜� � s

ω
h : σ̇

hd � � �
˜� � s

ω
h : Cep :

� su̇hd � . (4.17)
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4.1. Non-symmetric discontinuous Galerkin method

Since this holds for any ω
h 
 � h, it follows,

σ̇
h � Cep :

� su̇h in ˜� . (4.18)

Going now back to equation (4.11), the linearization of the first term of the left hand side
is, see [1],

�
K1

� Be1 � T ∂σh
e1

∂a � k � 1 �
e1

� a � k � 1 �
e1 d � � �

K1

� Be1 � T ∂σh
e1

∂ε � k � 1 �
e1

∂ε � k � 1 �
e1

∂a � k � 1 �
e1

� a � k � 1 �
e1 d � , (4.19)

from expression (4.18) it follows that in ˜� ,

∂σh
e1

∂ε � k � 1 �
e1

� Cep � k � 1 �
e1 in K1, (4.20)

and from equation (4.8),

∂ε � k � 1 �
e1

∂a � k � 1 �
e1

� Be1 . (4.21)

In expression (4.20) the elastoplastic modulus Cep � k � 1 �
e1 will be written as Cep

e1 to simplify
the notation. It has to be remembered however that it is not constant for every iteration nor
for every Gauss point. So with equations (4.20) and (4.21) expression (4.19) yields,

�
K1

� Be1 � T ∂σh
e1

∂a � k � 1 �
e1

� a � k � 1 �
e1 d � � �

K1

� Be1 � T Cep
e1 Be1 d � � a � k � 1 �

e1 . (4.22)

This procedure is completely analogous to the one that must be followed with the second
term of (4.11), but instead of over K1, now over K2, see figure 3.1.

With the third term of the linearized equation in (4.11), and due to the linearity of the
average operator, using equation (4.20) and (4.21) it yields,
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�
, (4.23)

again from expression (4.18),

∂σh
∂K1

∂ε � k � 1 �
e1

� Cep � k � 1 �
∂K1

in ∂K1, (4.24)
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4. Discontinuous Galerkin methods for elastoplasticity

and considering again equation (4.21), expression (4.23) yields
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where the term B � Cep �
o is calculated as in Appendix B, but now, instead of using the elastic

tangent matrix C, use is made of the elastoplastic tangent modulus at both sides of ˜� , Cep
∂K1

and Cep
∂K2

.
For the last term of the linearized form of Fint in equation (4.11) it automatically follows,
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Going now back to equation (4.10), to calculate � a � k � 1 � the following system will be
solved,

K � k � 1 � � a � k � 1 � � F � n �
ext

� F � k �
int , (4.27)

being K � k � 1 � the global stiffness matrix, obtained by assembling the corresponding contri-
butions of equations (4.22), (4.25) and (4.26) from each of the two elements and the interior
boundary of figure 3.1,
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F � n �
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� Ne1 � T f � n � d �� K2
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NT
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�
, (4.29)
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hK

D NJ K
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The obtained method is consistent, however an important drawback is that the rate of
convergence is not optimal, as seen in elasticity. Another disadvantage is that the resulting
stiffness matrix is not symmetric.
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4.2. Interior penalty method

4.2. Interior penalty method

A term will now be added that restores symmetry to the method and does not affect the
consistency. However, as will be seen, this is not straightforward, and some assumptions
will have to be made.

4.2.1. Weak form of interior penalty Method

The numerical fluxes in equations (3.1), (3.2) and (3.4) remain unchanged, and only the
numerical flux in equation (3.3) changes into,

σ̂nK
� 


σ
h
int
� nK � µ

r
uh

z
on ˜� 	 � D. (4.31)

Again gD � 0. Note that if the real solution u is substituted into equation (4.31),σbound
� 0

and it yields,

σ
�

σint, (4.32)

so finally,

σ̂
� u � nK

� � σint � nK � µ JuK �
σnK on ˜� 	 � D . (4.33)

As in the elastic case, a consistent and conservative numerical fluxes is obtained. The used
value of µ is the same as in the elastic case, see equations (3.40) and (3.47).

The weak form to be solved can be obtained by inserting the new numerical fluxes into
equation (2.27) to obtain,

�
˜� � s

ω
h : σ

hd � � �
˜�

r
ω

h
z � 


σ
h
int
� nKd

� � �
˜�

r
ω

h
z ηK

hK
D

r
uh

z
d

�

� �
˜� ω

h � f d � � � � N
ω

h � gNd
�
. (4.34)

In order to solve equation (4.34) an expression must be given between σ
h and σ

h
int. How-

ever the definition given for σ
h
int in equation (3.52) is not valid for plasticity, since the con-

stitutive equation in (2.8) has been used for its derivation. To obtain this expression, as for
the non-symmetric discontinuous Galerkin method, for a given infinetly small increment
expression (4.14) will be considered. For û the numerical fluxes appearing in equations
(3.1) and (3.2) will be used. An infinetly small increment of these numerical fluxes will be
considered and due to their linear properties of the average operators,

˙̂u � 
 u̇h � on ˜� 	 � N , (4.35)

˙̂u � 0 on
� D . (4.36)

Inserting equations (4.35) and (4.36) into equation (4.14),
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45



4. Discontinuous Galerkin methods for elastoplasticity

Note that for the IP method and unlike the non-symmetric dG method, equation (4.18), an
expression of the stresses in ˜� depending on two components is obtained,

σ̇
h � Cep :

� su̇h � Cep : R �
r

u̇h
z 	 in ˜� , (4.38)

where R � � � , defined in equation (3.51), is the lifting operator,�
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The first component of the stress rate, which is called σ̇
h
int, is the same that can be found

in the continuous case and it comes from the deformation of the interior of the elements,

σ̇
h
int

� Cep :
� su̇h. (4.40)

The second component, called σ̇
h
bound, comes from the jump on the interior boundaries ˜� ,

and it is equal to,

σ̇
h
bound

� Cep : R �
r

u̇h
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Using this notation and equation (4.38) the stress rate over ˜� can be rewritten as,
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With equation (4.37) but now considering small finite increments,�
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This equation can be expressed in a non-incremental way by adding a total of k increments,
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where it cannot be said that the last term of the right hand side of the above expression is
equal to,
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because the value of Cep � i � is not constant in every iteration. Note in equation (4.44) that the
expression of σ

h as a function of σ
h
int and duh � i � is not exact since the component associated

to σ
h
bound has been obtained from an addition of displacements increments.

Finally the weak form in equation (4.34) can be obtained as a function of σ
h
int by intro-

ducing equation (4.44) into equation (4.34),

�
˜� � s

ω
h : σ

h
int d � � k

∑
i � 1

�
˜�

 � s

ω
h : Cep � i � � nK

� r
duh � i � z d

� � �
˜�

r
ω

h
z � 


σ
h
int
� nKd

�

� �
˜�

r
ω

h
z ηK

hK
D

r
uh

z
d

� � �
˜� ω

h � f d � � � � N
ω

h � gNd
�
. (4.46)

This is finally the non-linear equation that needs to be solved through an incremental iter-
ative procedure.
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4.2.2. Spatial discretization of interior penalty method

As done in Section 4.1.2, and using the notations introduced in Section 3.5, the expression
of the weak form of the IP method in equation (4.46) can be discretized for the interface
element in figure 3.1 as,
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where B � Cep �
o has been defined in equation (4.25). From there Fint can be found,
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A new term has been added compared to expression (4.5). This new term, as will be seen
in the following section restores symmetry to the method.

Fext remains unchanged, see equation (4.6),

Fext
� �

K1

� Ne1 � T f d � � �
K2

� Ne2 � T f d � � � � N
� Ne � T gNd

�
. (4.49)

The weak form in equation (4.34) can finally be expressed as a global equilibrium expres-
sion as done in (4.4), as a function of Fint and Fext,

Fext � Fint
� 0. (4.50)

4.2.3. Linearization of interior penalty method

The solution is again found through an incremental-iterative procedure with the same steps
as in Section 4.1.3.

1. Update the displacements and the strains given a trial nodal displacement over ˜� and
on ˜� ,

a � k � 1 �
e

� a � k �
e � � a � k � 1 �

e , (4.51)

ε
� k � 1 �
e int

� Bea � k � 1 �
e , (4.52)

ε
� k � 1 �
∂K int

� Be
�
∂Ka � k � 1 �

e . (4.53)

2. Given the strain field, ε � k � 1 �
e int , the plastic strainε

p � k � 1 �
e and hardening variables q � k � 1 �

e ,
the corresponding stress is computed for each quadrature point using a classical re-
turn mapping algorithm. However the stress appearing in the weak form in equation
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(4.46) is not, as in Section 4.1.3, the total stress. It is only the stress corresponding to
what was called the interior part σ

� k � 1 �
e int of σ

� k � 1 �
e . To obtain σ

� k � 1 �
e int only εh

e int will
be calculated and introduced in the return mapping algorithm. The strain that comes
from the jump, R �

r
uh

z 	 , has not been considered. However it will be seen in Section

4.3 that even when low penalty values are used and the contribution of R �
r

uh
z 	 to

the total strain is larger, the method yields acceptable results. Bear in mind that the
dG method is an approximate method, and will converge to the real solution as the
number of elements and the penalty values are increased if the method is consistent
and stable, which is the case here.

The same is done in ∂K1 and ∂K2 with ε
� k � 1 �
∂K , εp � k � 1 �

∂K and q � k � 1 �
∂K to obtain σ

� k � 1 �
∂K int.

3. With σ
� k � 1 �
e int , σ � k � 1 �

∂K int and a � k � 1 �
o , F � k � 1 �

int is evaluated with equation (4.48).

4. For the given load level, f � n � and gN � n � , F � n �
ext is evaluated using (4.49).

5. Check if equilibrium equation, in (4.50) is satisfied. If this is the case the solution for
the actual loading level is found. If this is not the case go to step six.

6. Calculate the next displacement increment, and set k � 1 equal to k and go back to
one.

Again it is the last step the one that has not been explained yet. To solve this, equation
(4.48) is again linearized and then introduced in the global equilibrium equation (4.50),

F � n �
ext

� F � k �
int

� ∂Fint

∂a � k � 1 � � a � k � 1 � � 0, (4.54)

where,

∂Fint
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e
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e1 int
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o 	 T ∂ � 
 σh
int
� nK 	

∂a � k � 1 �
o

� a � k � 1 �
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� �
˜� � NJ K

o 	 T ηK
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D NJ K
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∂ao

∂a � k � 1 �
o

� a � k � 1 �
o d

�
. (4.55)

Note that now, from equation (4.38) and (4.42),

σ̇
h
int

� Cep :
�

u̇h in ˜� . (4.56)

The first and the second term of the right hand side of the discretized equation (4.55), as
done in (4.22) now yield,

�
K1

� Be1 � T ∂σh
e1 int

∂a � k � 1 �
e1

� a � k � 1 �
e1 d � � �

K1

� Be1 � T Cep
e1 Be1 d � � a � k � 1 �

e1 , (4.57)
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and the third term follows directly as,

∑
i

�
˜�

B � Cep �
o NJ K

o
∂ � a � i �

o

∂a � k � 1 �
o

� a � k � 1 �
o d

� � �
˜�

B � Cep �
o NJ K

o d
� � a � k � 1 �

o . (4.58)

To linearize the forth term of the right hand side of expression (4.55), it is done as in equa-
tion (4.25),

�
˜� � NJ K

o 	 T ∂ � 
 σh
int
� nK 	

∂a � k � 1 �
o

� a � k � 1 �
o d

� � �
˜� � NJ K

o 	 T
B � Cep �

o d
� � a � k � 1 �

o , (4.59)

and with the last term of equation (4.55), see (4.26),

�
˜� � NJ K

o 	 T ηK
hK

D NJ K
o

∂ao

∂a � k � 1 �
o

� a � k � 1 �
o d

� � �
˜� � NJ K

o 	 T ηK
hK

D NJ K
o d

� � a � k � 1 �
o . (4.60)

Finally to obtain � a � k � 1 � , equation (4.54) is again considered,

K � k � 1 � � a � k � 1 � � F � n �
ext

� F � k �
int , (4.61)

where from expression (4.55), (4.57), (4.58), (4.59) and (4.60),

K � k � 1 �
o

� � � K1
BT

e1
Cep

e1 Be1 d �� K2
BT

e2
Cep

e2 Be2 d � � � � ˜�
B � Cep �

o NJ K
o d

� � �
˜� � NJ K

o 	 T
B � Cep �

o d
�

� �
˜� � NJ K

o 	 T ηK
hK

D NJ K
o d

�
, (4.62)

and from equation (4.49)

F � n �
ext

� � � K1
� Ne1 � T f � n � d �� K2
� Ne2 � T f � n � d � � � � � N

NT
e gN � n � d

�
, (4.63)

and finally from (4.48),
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int �

� � K1
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e1
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BT
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D NJ K
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�
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o (4.64)

The obtained method is again consistent, but now it is adjoint consistent and symmetric
as well. Note however, that the linearization is not exact since the different increments of
the symmetry terms are directly summed up in the second term of the right hand side of
equation (4.64).
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Figure 4.1. Plasticity model used.

4.3. Plasticity examples

4.3.1. One dimensional example

The example considered is the same used in the elasticity case in figure 3.4. However, now
plasticity will be assumed using the linear hardening model, as appearing in figure 4.1,
with the material parameters taken as,

E � 1 N � m2,

Hiso
� 1 � 3 N � m2,

Hkin
� 1 � 3 N � m2, (4.65)

σy
� 1 N � m2,

where Hiso is the isotropic hardening modulus, Hkin the kinematic hardening modulus and
σy the yield stress.

For the plasticity case an analytical solution is not known. To determine the convergence
rate a benchmark is needed to which the obtained results can be obtained. For this purpose
the numerical solution using 1000 continuous quadratic elements has been calculated.

Two different discontinuous methods will be analyzed. The non-symmetric discontin-
uous Galerkin method derived in Section 4.1 and the IP method, derived for plasticity in
Section 4.2.

As stated before the used values of D appear in equation (3.40) for the one dimensional
case and in (3.47) for two dimensions.

Non-symmetric discontinuous Galerkin method

The results obtained for the non-symmetric discontinuous Galerkin method can be seen
in figure 4.2. The displacement calculated with traditional continuous Galerkin method
is plotted in black. In figure 4.2(a) the discontinuous solution for linear elements using

50



4.3. Plasticity examples

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

PSfrag replacements

u

� x

�

xF

(a) In black cG, in blue dG ηK
� 2 and in red ηK

� 5
for 10 linear elements.

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

cG
NS η

K
=1.5

NS η
K
=5PSfrag replacements

u � x �x

F

(b) Plastic response using linear elements for x �

1.2 m.
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(d) Plastic response using quadratic elements for
x � 1.2 m.

Figure 4.2. Non-symmetric method for different values of ηK .

ηK
� 1.5 is plotted in blue, while in red the solution for ηK

� 5 is shown. In figure 4.2(c)
quadratic elements are used. In blue the solution is plotted for ηK

� 5 and in red for
ηK

� 10.

Figures 4.2(b) and 4.2(d) show the displacement of the midpoint section, x � 1.5 m, of
the considered example under increasing load using linear and quadratic elements respec-
tively. See that it is not until 20% of the load is applied that plastic flow begins. The plastic
response using linear and quadratic elements is plotted again with the same colors as in
figures 4.2(a) and 4.2(c), respectively.

In figure 4.3 the rate of convergence can be seen for linear and quadratic elements. Note
that the rate of convergence is approximately optimal for the considered values of ηK. How-
ever, the main problem associated with the resulting method is that it is not symmetric.
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(c) Error in displacement using quadratic elements.
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(d) Error in stresses using quadratic elements.

Figure 4.3. Error for non-symmetric discontinuous method using linear and quadratic
elements.
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(a) In black cG, in blue dG ηK
� 2 and in red ηK

� 5
for 10 linear elements.
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(b) Plastic response using linear elements for x �

1.2 m.
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(d) Plastic response using quadratic elements for
x � 1.2 m.

Figure 4.4. Interior penalty method for different values of ηK.

Interior penalty method

The results obtained for the same example and values as used in Section 4.3.1 but now
using the interior penalty method can be seen in figure 4.4.

In figure 4.4 a certain deterioration of the results can be seen compared to the non-
symmetric method for the same values of ηK . This is because the strain used in the return
mapping algorithm is evaluated only by means of the strain caused in the interior of the
elements. The strain from the boundaries ˜� is not considered. Since there is a component
of the stress missing in the IP case the level of yielding is not the same for the cG and the
IP method. However, with a relatively low value of ηK

� 3 in the linear case, figures 4.4(a)
and 4.4(b), and ηK

� 10 for the quadratic, figures 4.4(c) and 4.4(d), the results obtained are
improved considerably.
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Figure 4.5. Detail of displacement for x � 1.2 m for interior penalty method with ηK
� 10

using linear elements.

In figure 4.5 it can be seen that one of the properties of the IP method for the one di-
mensional elasticity case is lost. Note that the continuous solution cannot be obtained by
calculating the average of the displacements of the IP method. This is caused by the reason
explained before. If the jumps in the edges were considerably reduced so that the contri-
bution to the total strain from the jump was very small in comparison to the contribution
from the interior this property would be obtained again for plasticity.

The IP method however, even after not considering the component related to ˜� still con-
verges, and as the value of ηK increases an optimal rate of convergence is obtained for dis-
placements as well as stresses, figure 4.6. The difference with the non-symmetric method
is that the IP method is now symmetric.

Unloading has also been tested for the two studied methods, interior penalty and non-
symmetric discontinuous Galerkin method, considering ten linear elements yielding the
results appearing in figure 4.7.

Another difference between the non-symmetric Galerkin method and the interior penalty
method is the number of iterations needed to obtain a converged solution. Note that the
linearization of the interior penalty method is not exact. The term giving symmetry to
the method can then lead to unloading. This causes a larger number of iterations to reach
convergence for the interior penalty method than for the non-symmetric discontinuous
and the continuous Galerkin methods. In Table 4.1, the number of iterations used for the
example in figure 3.4 is shown. The plasticity model adopted is the same as before, using
a total number of ten linear elements. The stabilizing parameter is taken equal to ηK

� 10
for both the interior penalty and the non-symmetric discontinuous Galerkin method. The
load is applied in only one increment. The criterion used to guarantee convergence is the
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(a) Error in displacement using linear elements.
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(c) Error in displacement using quadratic elements.
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(d) Error in stresses using quadratic elements.

Figure 4.6. Error for interior penalty method using linear and quadratic elements.
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Figure 4.7. Unloading for examples in figure 4.4(b) and figure 4.2(b).

so-called force norm criterion. With this criterion iterations are added until the change in
the norm of the unbalanced force vector is smaller than a prescribed value ε times the value
of the unbalance force in the first iteration of the loading step [14],

�
�
� F � n �

ext
� F � k �

int

�
�
�

2

�
ε

�
�
� F � n �

ext
� F � 1 �

int

�
�
�

2
, (4.66)

where, as seen in Chapter 4, the superscript n stands for the increment step, in this case
equal to one, and k stands for the iteration number. The choice of ε will be taken equal to
ε � 5 � 10 � 10. So for each iteration in Table 4.1, the value of,

�
�
� F � 1 �

ext
� F � k �

int

�
�
�

2�
�
� F � 1 �

ext
� F � 1 �

int

�
�
�

2

, (4.67)

is shown.

See how for the continuous Galerkin method and the non-symmetric discontinuous Galerkin
method, the amount of iterations needed is equal to two, while for the interior penalty
method, four iterations are needed. For the IP method in iteration number two and three
there is a certain oscillation around the reached solution.
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Iteration number k cG NS IP
1 1 1 1
2 6.22 � 10 � 15 7.79 � 10 � 14 5.98 � 10 � 4

3 � � 2.56 � 10 � 4

4 � � 5.09 � 10 � 14

Table 4.1. Iterations used to obtain convergence in the Newton scheme for the continuous
Galerkin method (cG), non-symmetric discontinuous Galerkin method (NS) and interior
penalty method (IP)

4.3.2. Two dimensional example

The example considered in this section is the same as in Section 3.7.3. However, now plas-
ticity will be assumed using the following material properties,

F � 5000 N � mm,

L � 1000 mm,

h � 50 mm,

ν � 0.3, (4.68)

E � 210000 N � mm2,

Hiso
� 10000 N � mm2,

Hkin
� 0 N � mm2,

σy
� 240 N � mm2.

Again the non-symmetric as well as the IP method will be considered. The solution for the
non-symmetric method are given in figure 4.8 and for the IP method in 4.9.

The observed problems for the one dimensional case can be seen as well for two dimen-
sions. The preference of the interior penalty method over the non-symmetric method in
the elastic case changes in plasticity. As seen in Section 4.3.1 two are mainly the prob-
lems observed for the IP method. The first problem is related to the omission of the strain
component ε

h
bound in the return mapping algorithm, and the second related to the inexact

linearization of the weak form. The first problem explains why the observed distortion oc-
curs in figure 4.9(b), blue line for ηK

� 5. It also explains why in figures 4.9(c) and 4.9(d)
for a lower value of ηK the displacements are actually smaller than for a greater value of
ηK , opposite to the observed behavior for elasticity.
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(a) Displacement of the beam in figure 3.13. In
black cG, in blue non-symmetric dG with ηK

� 10
and in red with ηK

� 100.
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(b) Plastic response for x � 500 mm. In black cG,
in blue non-symmetric dG with ηK

� 10 and in red
with ηK

� 100.
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(c) Detail of figure 4.8(a).
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(d) Detail of figure 4.8(a).

Figure 4.8. Non-symmetric discontinuous Galerkin method two dimensions plane strain
example.
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(a) Displacement of the beam in figure 3.13. In
black cG, in blue IP method with ηK

� 10 and in
red with ηK

� 100.
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(b) Plastic response for x � 500 mm. In black cG,
in blue IP method with ηK

� 10 and in red with
ηK

� 100.
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(c) Detail of figure 4.9(a).
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(d) Detail of figure 4.9(a).

Figure 4.9. Interior penalty method two dimensions plane strain example.
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