SUMARIO

A		3
	A.1. Balances energéticos	3
	A.2. Dimensionado intercambiador de calor	9
	A.3. Dimensionado estructura metálica	20
	A.4. Comprobación soldaduras estructura metálica	28
	A.5. Comprobación uniones atornilladas	30
	A.6. Diseño de la transmisión	35
	A.7. Elección de los rodamientos	50
	A.8. Diseño de los árboles de transmisión	53
В	. SELECCIÓN DE MATERIALES	59
	B.1. Aleaciones con base cobre	59
	B.2. Titanio	64
	B.3. Selección de los materiales para tubos, válvulas y bombas en sistemas	de
	agua de mar	65
	B.3.1. consideraciones sobre la corrosión	65
	B.3.2. selección de los materiales para tubos en sistemas de agua de mar	68
	B.3.3. selección de los materiales en válvulas en sistemas de agua de mar	70
	B.3.4. selección de los materiales en bombas de agua de mar	75
	B.3.5. interacciones dentro del sistema que inducen a la corrosión	77
	B.3.6. conclusiones	78
С	. CATÁLOGOS	81
	C.1. Motores eléctricos SIEMENS	81
	C.2. Rodamientos SKF	91
	C.3. Rodamientos FAG	92
	C.4. Acoplamientos flexibles RWCOUPLINGS	117
	C.5. Acoplamientos flexibles THOMAS	118
	C.6. Juntas de estanqueidad EPIDOR	126

A. CÁLCULOS

A.1. Balances energéticos

En las condiciones de diseño correspondientes a la mayor productividad la desaladora necesita un aporte de 3000 m³ al día de agua de mar, con una concentración de sales de 38000 ppm, produciendo la cantidad de 1000 m³ al día de producto, con una concentración salina de 10 ppm. Los 2000 m³ restantes son devueltos al mar en forma de salmuera, con una concentración final de 56987 ppm. Esto es que el ratio de recuperación, que se define como la relación entre la caudal másico de producto que sale y el de agua marina que entra, es r_R = 1/3. Tal como se aprecia en la gráfica A.1 este valor implica que el trabajo mínimo de separación para obtener agua pura es bastante contenido. Un mayor aprovechamiento del agua de mar para producir más agua producto implica un ratio más elevado, incrementándose el trabajo de separación, sobre todo para valores altos. La diferencia que existe entre estos datos, para obtener agua pura, y los que respecta a este proyecto es mínima, pues el agua producto tiene una concentración de 0,001% de sales.

Figura A.1. Trabajo mínimo para obtener agua pura a partir de agua de mar en función del ratio de recuperación

Tanto el producto como la salmuera tienen en el momento de su salida de la desaladora una temperatura elevada, por lo que se puede extraer una cierta cantidad de potencia calorífica para ser aprovechada en calentar el agua de mar antes de entrar en el intercambiador, produciendo un ahorro energético.

Para ello se divide el caudal de agua de mar en dos. En uno de los intercambiadores el agua producto cede gran parte de su calor al agua de mar y en el otro es la salmuera la que transmite parte de su calor. A la hora de realizar los cálculos prácticos se parte del caso más desfavorable. Esto es que la temperatura del agua marina se encuentra a 11° C, que corresponde al periodo invernal.

El tipo de intercambiador escogido es de placas planas a contracorriente, exactamente de la empresa APV Heat Exchanger. Las placas tienen un grosor de medio milímetro y están construidas en titanio. Con la adición de nuevas placas se aumenta el área de transferencia de calor.

• Intercambiador de producto

El producto abandona la desaladora a una temperatura de 75,89° C, con un flujo de 11,57 kg/s. A su vez el agua de mar entra en el intercambiador a una temperatura de 11° C. Asumiendo que el salto de temperatura que se puede conseguir entre la salida del fluido caliente y la entrada del fluido frío es de 2,5° C, valor usual para este tipo de intercambiador, se puede conseguir que exista una diferencia semejante entre la entrada del flujo caliente y la salida del frío. Solo hay que determinar el caudal másico del agua de mar para que sea posible.

Para ello se calcula la potencia calorífica que cede el producto al agua de mar. Se supone un rendimiento unitario.

$$P_T = 3017kW = Q_M \times C_M \times \Delta T = Q_M \times C_M \times (73^\circ C - 11^\circ C)$$
(Ec. A.2)

$$Q_M = 12,17 kg / s$$

Por tanto el producto entra en el intercambiador a una temperatura de 75,89° C y lo abandona a una temperatura de 13,5° C. Al mismo tiempo, el agua de mar pasa de estar a 11° C a la entrada para incrementarse su temperatura hasta los 73° C en la salida.

Intercambiador de salmuera

La metodología empleada en el intercambiador de producto se repite en este otro intercambiador. La salmuera tiene una temperatura de 69,12° C, y el caudal de salida es de 23,15 kg/s. Pero en este caso ya se conoce el caudal de entrada de agua de mar, que es de 22,55 kg/s. Por lo tanto solo queda por averiguar la temperatura a la salida del intercambiador del agua de mar y comprobar si es un valor posible.

$$P_T = Q_S \times C_S \times \Delta T = Q_S \times C_S \times (69,12^{\circ}C - 13,5^{\circ}C) = 5060,3kW$$
 (Ec. A.3)

$$P_T = 5060, 3kW = Q'_M \times C_M \times \Delta T = Q'_M \times C_M \times (T_S - 11^{\circ}C)$$
(Ec. A.4)

$$Ts = 67, 1^{\circ}C$$

La diferencia de temperatura entre la entrada de la salmuera y la salida del agua de mar en el intercambiador es de 2º C, lo que se puede considerar como un valor razonable. Así, la salmuera se enfría desde los 69,12º C hasta 13,5º C en su paso por el intercambiador y el agua de mar se calienta de 11º C a 67,1º C.

Finalmente queda por saber cual es la temperatura del agua de mar al volverse a agrupar los dos flujos justo antes de entrar en la desaladora.

Caudal proveniente intercambiador producto = 12,17kg/s

Temperatura flujo intercambiador producto = $73^{\circ}C$

Caudal proveniente intercambiador salmuera = 22,55kg/s

Temperatura final = $69,1^{\circ}C$

Temperatura flujo intercambiador salmuera = $67,1^{\circ}C$

La potencia calorífica necesaria para separa la sal del agua y conseguir la concentración final deseada en el agua producto se determina de la siguiente forma. Con mayor exactitud se trata de la potencia mínima necesaria.

Primero se determina la fracción molar de sal y agua presente en los tres flujos involucrados en el proceso, que son el agua de mar, el producto y la salmuera.

Agua de mar:

$$X_{s} = \frac{18}{58,5 \times (\frac{1}{mf_{s}} - 1) + 18}$$
 (Ec. A.5); $X_{W} = 1 - X_{s}$ (Ec. A.6); $mf_{s} = 0,038$

$$X_s = 0.012$$
; $X_w = 0.988$

Salmuera:

$$X_{s} = \frac{18}{58,5 \times (\frac{1}{mf_{s}} - 1) + 18}$$
 (Ec. A.5); $X_{W} = 1 - X_{s}$ (Ec. A.6); $mf_{s} = 0,057$

$$X_s = 0.018$$
; $X_w = 0.982$

Producto:

$$X_{s} = \frac{18}{58,5 \times (\frac{1}{mf_{s}} - 1) + 18}$$
 (Ec. A.5); $X_{W} = 1 - X_{s}$ (Ec. A.6); $mf_{s} = 1 \times 10^{-5}$
$$X_{s} = 3,1 \times 10^{-6} ; X_{W} = 0,999$$

Con estos valores se puede calcular el trabajo mínimo para realizar la separación parcial del agua y las sales hasta la concentración deseada [Ref. 2].

$$W_{\min} = 0,4615 \times T \left[\frac{X_{S, marina} \times X_{W, producto} - X_{W, marina} \times X_{S, producto}}{X_{W, marina} \times X_{S, salmuera} - X_{S, marina} \times X_{W, salmuera}} (X_{S, salmuera} \ln \frac{X_{S, salmuera}}{X_{S, marina}} + \right] + \left[+ X_{W, salmuera} \ln \frac{X_{W, salmuera}}{X_{W, marina}} + X_{S, producto} \ln \frac{X_{S, producto}}{X_{S, marina}} + X_{W, producto} \ln \frac{X_{W, producto}}{X_{W, marina}} \right]$$
(Ec. A.7)

(kJ/kg_{producto})

La temperatura de trabajo es la correspondiente a la saturación para una presión de 0,3 bares, que es 69,12° C y que hay que convertir a grados Kelvin.

$$W \min = 2,165 \frac{kJ}{kg_{producto}}$$

Ahora, para conocer la potencia mínima hay que multiplicarlo por el caudal másico de producto.

$$\dot{W}_{\rm min} = 2,165 \frac{kJ}{kg_{producto}} \times 11,57 \frac{kg}{s} = 25,04 \, kW$$
 (Ec. A.8)

El agua de mar al contener una cantidad de sales no se comporta igual que el agua pura, ciertas propiedades se ven ligeramente modificadas, como puede ser la temperatura de cambio de fase. Para una presión de 0,3 bares la temperatura en la que el agua pasa de estado líquido a vapor es de 69,12° C. En el caso del agua de mar este valor se incrementa en medio grado centígrado.

Por lo tanto, el agua de mar que se introduce en la desaladora, a una temperatura de unos 69,1° C según se ha calculado con anterioridad debe ser calentada en su interior hasta los 69,62° C para que se comience a transformar en vapor.

La potencia calorífica que hace falta para incrementar la temperatura en medio grado centígrado del volumen de agua marina que pasa por la desaladora se obtiene al multiplicar la capacidad calorífica del agua de mar por el caudal másico y por el incremento de temperatura.

$$P_{\Delta T} = 4,00862 \frac{kJ}{kg \cdot K} \times 34,72 \frac{kg}{s} \times (342,77 - 342,27)K = 69,59kW$$
(Ec. A.9)

La mayor cantidad de energía o potencia térmica que hay implicada en el proceso de destilación del agua de mar es la necesaria para provocar la evaporación de la cantidad de agua que hace falta para conseguir el nivel de agua producto deseado. Con la diferencia de entalpía existente entre la fase líquida y la fase vapor a la presión de trabajo, 0,3 bares, y el caudal másico de producto se puede conocer cuanta potencia se debe aportar al proceso.

$$P_{evap} = 11,57 \frac{kg}{s} \times (2625,4-289,3) \frac{kJ}{kg} = 27028,7kW$$
 (Ec. A.10)

Solo resta sumarlo todo para obtener la potencia térmica total implicada en el proceso de desalación del agua de mar.

 $P_T = \dot{W}_{\min} + P_{\Delta T} + P_{evap} = 27123,33kW$ (Ec. A.11)

El vapor de agua producto se encuentra tras su paso por el compresor a una presión de 0,4 bares y una temperatura alrededor de 105° C, por lo tanto se trata de un vapor recalentado. Para esas condiciones la entalpía tiene un valor de 2683,8 kJ/kg. Este vapor se hace pasar por el interior de los tubos del intercambiador de calor. En la superficie externa de los tubos se produce la evaporación del producto gracias al calor que cede el vapor comprimido que se condensa en su interior. Es un intercambiador de calor en el que se produce un proceso de evaporación-condensación. Bajo las condiciones de diseño, el vapor comprimido abandona los tubos en estado líquido, justo cuando la fracción de agua es del 100%, pero sin llegar a convertirse en un líquido subenfriado. Por lo tanto, tiene la temperatura de saturación para la presión de 0,4 bares, que es de 75,89° C y una entalpía de 317,6 kJ/kg. Así, la potencia térmica que cede el vapor comprimido es el producto de la diferencia de entalpías entre la entrada y la salida y el caudal másico de producto que circula por el intercambiador de calor.

$$P_{C} = (2683, 8 - 317, 6) \frac{kJ}{kg} \times 11,57 \frac{kg}{s} = 27377kW$$
 (Ec. A.12)

El vapor comprimido aporta la potencia térmica suficiente como para que se produzca la evaporación de la cantidad estipulada en las condiciones de diseño.

A.2. Dimensionado intercambiador de calor

El intercambiador de calor donde se produce el proceso de destilación del agua de mar está formado por un total de 12000 tubos horizontales, con un diámetro exterior de 24 mm e interior de 21 mm. El material empleado en la construcción es la aleación de aluminio 5052, que tiene un coeficiente de conductividad térmica de k = 135W/(mK).

El caudal másico total que circula por la desaladora es de 11,57kg/s, así que para obtener el caudal que pasa por cada tubo hay que dividirlo entre el número total de tubos.

$$\dot{m}_i = \frac{\dot{m}_i}{N} = 9,64 \times 10^{-4} \frac{kg}{s}$$
 (Ec. A.13)

La velocidad de entrada del vapor en el intercambiador se haya al dividir el producto del caudal másico de cada tubo por la densidad entre el área de paso por tubo. La densidad es función de las condiciones de temperatura y presión imperantes a la entrada del intercambiador, que son una temperatura de 104,7° C y una presión de 0,4 bares.

$$v_{in} = \frac{\dot{m}_i \times \rho}{S_i} = 11,44 \, \frac{m}{s}$$
 (Ec. A.14)

Para el cálculo de la longitud de los tubos que forman el intercambiador se ha dividido en dos tramos de estudio. El primer tramo de tubo está comprendido desde que el vapor entra justo después de pasar por el compresor y finaliza en el punto en que el vapor se encuentra a la temperatura de saturación para 0,4 bares, que es de 75,89° C.

• Tramo vapor

Ante la ausencia de datos en la bibliografía consultada sobre ciertas propiedades físicas y termodinámicas para el vapor en las condiciones de entrada, se ha decidido emplear los valores referidos a la temperatura de saturación. Esto implica una discrepancia entre los valores teóricos calculados y los reales.

Después de hecha la aclaración, se realizan los cálculos necesarios para determinar la longitud de tubo que asegura el enfriamiento del vapor recalentado hasta su temperatura de saturación.

$$\mu_{g} = 0,1105 \times 10^{-4} Pa \cdot s$$

$$\rho_{g} = 0,25 \frac{kg}{m^{3}}$$
Valores para vapor a T= 75,89° C y P= 0,4 bares
$$\lambda_{g} = 0,0229 \frac{W}{m \cdot K}$$
Pr = 0,941

Primero se calcula el número de Reynolds para posteriormente conocer el número de Nusselt.

$$\operatorname{Re}_{D} = \frac{v_{in} \times d_{i} \times \rho}{\mu} = 5444,2$$
 (Ec. A.15)

Se trata de un valor entre la transición de flujo laminar a turbulento, por lo que la ecuación idónea para el número de Nusselt es:

$$Nu_{D} = \frac{C_{f} \times (\text{Re}_{D} - 1000) \times \text{Pr} \times \left[1 + \left(\frac{D}{L}\right)^{2/3}\right] \times \phi^{n}}{2 + 17,96 \times C_{f}^{0.5} \times (\text{Pr}^{2/3} - 1)}$$
(Ec. A.16)

$$C_f = \frac{1}{(1,58 \times \ln(\text{Re}_D) - 3,28)^2}$$
(Ec. A.17)

Los términos $\left[1 + \left(\frac{D}{L}\right)^{2/3}\right]$ y ϕ^n se pueden aproximar a la unidad sin riesgo de introducir un error significativo. Sustituyendo por los valores numéricos se obtiene:

$$C_f = 9,405 \times 10^{-3} \implies Nu_D = 20,371$$

El siguiente paso es averiguar el coeficiente de convección libre en la superficie interior de los tubos del intercambiador.

$$h = Nu_D \times \frac{\lambda}{d_i} = 22.2 \frac{W}{m^2} \cdot K$$
(Ec. A.18)

Para hallar el coeficiente de transmisión global de calor de la tubería en este primer tramo hace falta conocer el coeficiente de convección para el agua durante su fase de evaporación.

El coeficiente de convección para la superficie externa del intercambiador se halla mediante la ecuación empírica desarrollada por Chun y Seban (1971) para el proceso de evaporación en un intercambiador de calor del tipo *falling film*.

$$h_{evap} = 0.821 \times \left(\frac{\mu_l^2}{g \times \rho_l^2 \times \lambda_l^3}\right)^{-0.333} \times \text{Re}_{\Gamma}^{-0.22}$$
(Ec. A.19)

$$\operatorname{Re}_{\Gamma} = \frac{4 \times \Gamma}{\mu_l}$$
(Ec. A.20)

El término Γ se define como el caudal de líquido por unidad de longitud de dicho tubo. Por lo tanto, es necesario fijar un valor inicial de longitud para realizar los cálculos y comprobar posteriormente sí el resultado final se aproxima al valor estimado en un principio. Si la discrepancia es significativa se debe aplicar un proceso iterativo hasta que se obtenga un valor lo suficientemente correcto. El valor escogido inicialmente es de una longitud total del tubo, englobando el tramo vapor y el de condensación, de 4,5m.

$$\mu_{l} = 4,09 \times 10^{-4} Pa \cdot s$$

$$\rho_{l} = 978,5 \frac{kg}{m^{3}}$$
Valores para agua líquida a T= 69,12° C y
$$P= 0,3 \text{ bares}$$
Pr = 2,6

Sustituyendo por los respectivos valores numéricos se obtiene un valor de:

$$h_{evap} = 13701 \frac{W}{m^2} \cdot K$$

Ahora ya se puede calcular el coeficiente de transmisión global de calor para este tramo del intercambiador.

$$U = \left[\frac{\frac{d_{e'}}{2}}{\frac{h \times d_{i'}}{2}} + \frac{\frac{d_{e'}}{2} \times \ln\left(\frac{d_{e'}}{d_{i}}\right)}{k} + \frac{1}{h_{evap}}\right]$$
(Ec. A.21)

 $U = 19,39 \frac{W}{m^2 \cdot K}$

La potencia calorífica cedida por el vapor en su fase de estado recalentado hasta el punto del comienzo de la condensación, o lo que es lo mismo, desde los 104,7° C hasta los 75,89° C, en cada uno de los tubos que forman el intercambiador se calcula como el producto del caudal másico de cada tubo por la variación de entalpía que sufre el vapor.

$$\dot{q}_i = \dot{m} \times \Delta h = 9,64 \times 10^{-4} \frac{kg}{s} \times \left(\frac{2683,8 \frac{kJ}{kg} - 2636,9 \frac{kJ}{kg}}{2636,9 \frac{kJ}{kg}} \right) = 45,2W$$
 (Ec. A.22)

Ahora solo queda determinar la longitud de tubo necesaria para que el vapor de agua producto se enfríe hasta el momento anterior a que comience el cambio de fase.

$$\dot{q}_i = U \times \pi \times d_e \times L \times \Delta T$$
 (Ec. A.23)

$$\Delta T = \frac{(T_{amb} - T_f) - (T_{amb} - T_i)}{\ln \frac{T_{amb} - T_i}{T_{amb} - T_f}}$$
(Ec. A.24)

$$\dot{q}_i = 45,2W = 19,39 \frac{W}{m^2} \cdot K \times \pi \times 0,024m \times L \times 17,36K \Longrightarrow L = 1,78m$$

Durante el funcionamiento de la desaladora en ambas superficies del intercambiador se produce un progresivo ensuciamiento o *fouling* que conlleva una disminución progresiva de la capacidad en la transmisión de calor a través de los tubos. Para paliar este problema, en el momento del diseño inicial se aplica un coeficiente que sí tiene en consideración el ensuciamiento del intercambiador, y que permite obtener un dimensionado que asegura el funcionamiento después de una utilización prolongada.

Esto no evita que después de un largo periodo de uso de la desaladora sea necesaria una limpieza de las áreas de intercambio de calor. La limpieza se realiza mediante productos químicos, un ácido suave, que elimina todas las impurezas que existan en las superficies de los tubos.

Por lo tanto, después de cada limpieza o en la puesta en marcha inicial el intercambiador de calor se encuentra sobredimensionado. El valor del coeficiente depende del tipo de fluido, de la fase en la que se encuentre y otras variables. Según la bibliografía consultada [Ref.3] el valor usual para un intercambiador de calor como el que aquí se describe es de R_{ft} = 0,00051 (m²K)/W.

A partir de la relación que existe entre el área "limpia" de intercambio de calor y el área una vez ensuciada se obtiene la nueva longitud que hace falta.

$$\frac{A_f}{A_c} = 1 + U \times R_{ft} \quad \text{(Ec. A.25);} \quad A = \pi \times d_e \times L \quad \text{(Ec. A.26)}$$
$$A_f = 1626, 4m^2 \Longrightarrow L_f = 1,80m$$

Debido a las aproximaciones realizadas durante los cálculos y posibles inexactitudes introducidas, se aplica un coeficiente de seguridad para paliar los errores cometidos y asegurar que el intercambiador no está dimensionado "a la baja".

$$C_s = 1,4 \Longrightarrow L'_f = C_s \times L_f = 2,5m \tag{Ec. A.27}$$

Por lo tanto, la longitud que hace falta para enfriar el vapor de agua desalada hasta la temperatura de saturación es de 2,5m.

Por último queda calcular el segundo tramo del intercambiador, en el que el vapor se condensa y sale de éste. La metodología de cálculo, así como ciertos datos son los mismos que se han usado en el apartado anterior.

• Tramo condensación

En esta parte de los tubos el producto pasa por completo a forma líquida. Durante el cambio de fase la temperatura se mantiene constante, 75,89° C, y la presión no ha variado, 0,4 bares. Hay que recalcar que cuando el producto abandona el intercambiador no lo hace como líquido subenfriado.

$$\mu_{l} = 3,74 \times 10^{-4} Pa \cdot s$$

$$\rho_{l} = 973,71 \frac{kg}{m^{3}}$$

$$\lambda_{l} = 0,666 \frac{W}{m \cdot K}$$

$$\rho_{g} = 0,25 \frac{kg}{m^{3}}$$

- Valores para agua líquida a T= 75,89° C y P= 0,4 bares

$$h_m = \Omega \times \left(\frac{\lambda_l^3 \times \rho_l \times (\rho_l - \rho_g) \times g \times i_{lg}}{\mu_l \times d_i \times \Delta T}\right)^{\frac{1}{4}}$$
(Ec. A.28)

$$\Omega = 0.728 \times \alpha_g^{\frac{3}{4}}$$
 (Ec. A.29)

$$\alpha_g = \frac{1}{1 + \left(\frac{1-x}{x}\right) \times \left(\frac{\rho_g}{\rho_l}\right)^{\frac{2}{3}}}$$
(Ec. A.30)

El término x hace referencia a la fracción de vapor condensado en cada momento. Como este valor varía para punto del recorrido, se divide en 10 tramos con un incremento en cada uno de 0,1 en la fracción de vapor, desde 0 hasta 1. Para cada intervalo se aplica un valor medio dentro de su margen de valores. Esto es, se empieza por x = 0,95 y se acaba en x = 0,05.

El valor del incremento de temperatura, ΔT , es simplemente la diferencia entre la temperatura interior de condensación y la existente en el exterior del intercambiador, que es 69,12° C, la que corresponde a la temperatura de evaporación del agua a la presión de 0,3 bares.

El término i_{lg} hace referencia al valor medio de la entalpía del vapor en cada uno de los tramos. Una vez calculado el coeficiente de convección del agua durante el cambio de fase para cada intervalo se halla el valor del coeficiente global de transferencia de calor para cada tramo y finalmente se determina la longitud de tubo que corresponde con cada división.

Para x = 0.95:

$$\alpha_g = 0.9998 \rightarrow \Omega = 0.7279 \Longrightarrow h_m = 2458 \frac{W}{m^2 \cdot K}$$

Ahora hay que calcular el coeficiente global de transferencia de calor para este intervalo, que corresponde a x entre 1 y 0,9.

$$U = \left[\frac{\frac{d_e}{2}}{h_m \times d_i/2} + \frac{\binom{d_e}{2} \times \ln\binom{d_e}{d_i}}{k} + \frac{1}{h_{evap}}\right]$$
(Ec. A.21)

$$U = 1818,7 \frac{W}{m^2} \cdot K$$

La potencia calorífica cedida por el vapor durante el cambio de fase en cada uno de los tubos que forman el intercambiador se calcula como el producto del caudal másico de cada tubo por la variación de entalpía que sufre el producto.

$$\dot{q}_i = \dot{m} \times \Delta h = 9,64 \times 10^{-4} \frac{kg}{s} \times \left(\frac{2636,9 kJ}{kg} - 2404,9 kJ}{kg} \right) = 0,2236W$$
 (Ec. A.22)

Este valor se mantiene constante para cada una de las 10 divisiones. Ya solo queda por determinar la longitud de tubo necesaria para que la fracción de vapor de agua producto pase de 1 a 0,9.

$$\dot{q}_i = U \times \pi \times d_e \times L \times \Delta T$$
 (Ec. A.23)

$$\Delta T = \frac{(T_{amb} - T_f) - (T_{amb} - T_i)}{\ln \frac{T_{amb} - T_i}{T_{amb} - T_f}}$$
(Ec. A.24)
$$\dot{q}_i = 0.2236W = 1818.7 \frac{W}{m^2} \cdot K \times \pi \times 0.024m \times L \times 6.77K \Longrightarrow L = 0.25m$$

Este proceso se repite para cada uno de los nueve intervalos restantes.

x = 0.85:

$$\alpha_{g} = 0.9993 \rightarrow \Omega = 0.7276 \Longrightarrow h_{m} = 2399 \frac{W}{m^{2}} \cdot K$$
$$U = 1781.4 \frac{W}{m^{2}} \cdot K ; \dot{q}_{i} = 0.2236W$$
$$\dot{q}_{i} = 0.2236W = 1781.4 \frac{W}{m^{2}} \cdot K \times \pi \times 0.024m \times L \times 6.77K \Longrightarrow L = 0.255m$$

x = 0,75:

$$\alpha_g = 0.9987 \rightarrow \Omega = 0.7273 \Longrightarrow h_m = 2334 \frac{W}{m^2} \cdot K$$
$$U = 1740.7 \frac{W}{m^2} \cdot K ; \dot{q}_i = 0.2236W$$

$$\dot{q}_i = 0,2236W = 1740,7 \frac{W}{m^2} \cdot K \times \pi \times 0,024m \times L \times 6,77K \Longrightarrow L = 0,261m$$

x = 0,65:

$$\begin{aligned} \alpha_g &= 0.9978 \to \Omega = 0.7268 \Longrightarrow h_m = 2264 \frac{W}{m^2} \cdot K \\ U &= 1695.8 \frac{W}{m^2} \cdot K \ ; \dot{q}_i = 0.2236W \\ \dot{q}_i &= 0.2236W = 1695.8 \frac{W}{m^2} \cdot K \times \pi \times 0.024m \times L \times 6.77K \Longrightarrow L = 0.268m \end{aligned}$$

$$x = 0,55$$
:

$$\alpha_g = 0,9967 \rightarrow \Omega = 0,7262 \Longrightarrow h_m = 2187 \frac{W}{m^2 \cdot K}$$
$$U = 1646 \frac{W}{m^2 \cdot K} ; \dot{q}_i = 0,2236W$$

$$\dot{q}_i = 0,2236W = 1646 \frac{W}{m^2} \cdot K \times \pi \times 0,024m \times L \times 6,77K \Longrightarrow L = 0,276m$$

x = 0,45:

$$\alpha_g = 0.9951 \rightarrow \Omega = 0.7253 \Longrightarrow h_m = 2100 \frac{W}{m^2} \cdot K$$
$$U = 1589.3 \frac{W}{m^2} \cdot K ; \dot{q}_i = 0.2236W$$

$$\dot{q}_i = 0,2236W = 1589,3 \frac{W}{m^2} \cdot K \times \pi \times 0,024m \times L \times 6,77K \Longrightarrow L = 0,286m$$

x = 0,35:

$$\alpha_g = 0.9926 \rightarrow \Omega = 0.7239 \Longrightarrow h_m = 2000 \frac{W}{m^2} \cdot K$$
$$U = 1523.7 \frac{W}{m^2} \cdot K \quad ; \dot{q}_i = 0.2236W$$
$$\dot{q}_i = 0.2236W = 1523.7 \frac{W}{m^2} \cdot K \times \pi \times 0.024m \times L \times 6.77K \Longrightarrow L = 0.298m$$

x = 0,25:

$$\alpha_g = 0.988 \rightarrow \Omega = 0.721 \Longrightarrow h_m = 1882 \frac{W}{m^2} \cdot K$$
$$U = 1444.7 \frac{W}{m^2} \cdot K ; \dot{q}_i = 0.2236W$$
$$\dot{q}_i = 0.2236W = 1444.7 \frac{W}{m^2} \cdot K \times \pi \times 0.024m \times L \times 6.77K \Longrightarrow L = 0.314m$$

x = 0,15:

$$\alpha_{g} = 0,9777 \to \Omega = 0,7157 \Longrightarrow h_{m} = 1733 \frac{W}{m^{2}} \cdot K$$
$$U = 1343,1 \frac{W}{m^{2}} \cdot K ; \dot{q}_{i} = 0,2236W$$
$$\dot{q}_{i} = 0,2236W = 1343,1 \frac{W}{m^{2}} \cdot K \times \pi \times 0,024m \times L \times 6,77K \Longrightarrow L = 0,338m$$

x = 0,05:

$$\alpha_g = 0.9288 \rightarrow \Omega = 0.689 \Longrightarrow h_m = 1499 \frac{W}{m^2} \cdot K$$
$$U = 1179.8 \frac{W}{m^2} \cdot K ; \dot{q}_i = 0.2236W$$
$$\dot{q}_i = 0.2236W = 1179.8 \frac{W}{m^2} \cdot K \times \pi \times 0.024m \times L \times 6.77K \Longrightarrow L = 0.385m$$

La longitud total del tramo del intercambiador en el que se produce el cambio de fase es la suma de cada uno de los 10 intervalos creados en su cálculo.

$$\sum L = 2,931m$$
 (Ec. A.31)

Como sucedió en el apartado anterior, se debe tener en consideración el ensuciamiento y pérdida de rendimiento del intercambiador de calor por su uso continuo. El valor del coeficiente de ensuciamiento para el cambio de fase es ahora de $R_{ft} = 0,00067 \text{ (m}^2\text{K})/\text{W}$, mayor que el anterior. Por lo tanto, el área final se incrementa de una forma notable. Dicho factor se usa con la longitud total encontrada anteriormente.

$$\frac{A_f}{A_c} = 1 + U \times R_{ft} \quad \text{(Ec. A.25);} \quad A = \pi \times d_e \times L \quad \text{(Ec. A.26)}$$
$$A_f = 5405, 6m^2 \Longrightarrow L_f = 5,97m$$

Nuevamente se aplica un coeficiente de seguridad para cerciorarse que el intercambiador funciona de una forma correcta.

$$C_s = 1,4 \Longrightarrow L'_f = C_s \times L_f = 8,4m \tag{Ec. A.27}$$

Así que la longitud total de los tubos que conforman el intercambiador de calor es la suma de los dos tramos en que se ha dividido su estudio.

$$L_T = 2,5 + 8,4 = 10,9m$$
 (Ec. A.32)

Finalmente, también se ha determinado el grosor del aislamiento que se aplica a la virola central, la que tiene en su interior al intercambiador. Con ello se evitan pérdidas que imposibilitan el funcionamiento tal como se ha proyectado, y es una medida de seguridad, para evitar posibles quemaduras accidentales si alguna persona entrase en contacto con la superficie durante su funcionamiento. Según los cálculos realizados, el vapor comprimido proporciona una potencia calorífica de 27377kW y el proceso de evaporación necesita de 27123,33kW. Así que las pérdidas térmicas admisibles, siempre bajo la hipótesis de un funcionamiento ideal, son de 253,67kW.

Para la realización de los cálculos se supone que la temperatura interior del recipiente intercambiador es de 70° C, que se corresponde con la temperatura de cambio de fase para el agua a la presión de trabajo, y se impone que como máximo la temperatura de la

superficie exterior sea de 25° C. El aislante empleado es espuma de poliuretano, que tiene una conductividad térmica de λ = 0,026W/mK. Primero se determina potencia calorífica por metro lineal que se atribuye a pérdidas térmicas.

$$q'_L = \frac{253670}{4,82 \times \pi} = 16752, 2W'_m$$
 (Ec. A.33)

Ya solo resta por calcular el espesor de aislante necesario mediante la expresión de la transferencia de calor por conducción en una superficie cilíndrica.

$$\frac{q_{L}'}{ln\left(\frac{R_{2}}{R_{1}}\right)} = \frac{T_{int} - T_{ext}}{\ln\left(\frac{R_{3}}{R_{2}}\right)}$$
(Ec. A.34)
$$\frac{ln\left(\frac{R_{2}}{R_{1}}\right)}{2\pi \times \lambda_{AISI316}} - \frac{\ln\left(\frac{R_{3}}{R_{2}}\right)}{2\pi \times \lambda_{aislante}}$$

La incógnita es R_3 , que es el radio exterior del conjunto chapa de acero y el aislante, mientras que R_2 es el radio exterior de la chapa de la virola central. Sustituyendo los datos en la ecuación X.22 se obtiene que el grosor de aislante que hace falta sea:

$$e_{aislante} = R_3 - R_2 = 1mm$$
 (Ec. A.35)

El espesor de espuma de poliuretano que se necesita es de 1mm. En todo momento se trabaja bajo la hipótesis que las pérdidas térmicas se producen solo a través de la pared cilíndrica del recipiente.

A.3. Dimensionado estructura metálica

Para dimensionar la estructura metálica que soporta la desaladora se tienen en cuenta los esfuerzos originados por el peso del conjunto. Por tanto, es un estado de solicitación bajo cargas estáticas.

Se divide el conjunto de la desaladora en tres partes, que son:

- Parte anterior, formada por el motor, transmisión, compresor y virola delantera.
- Parte central, que consta del evaporador, virola central y condensador auxiliar.
- Parte posterior, que solo tiene la virola trasera.

Figura A.2. Conjunto desaladora

La masa de la parte anterior se ha estimado en M_A = 11 toneladas. Para el cálculo de la parte central, y más importante, se ha procedido ha calcular la masa de la virola central y el haz tubular, por ser los elementos que representan la mayor parte la masa final de este subconjunto.

Se calcula el volumen de material que ocupa dicha virola para, posteriormente, averiguar su masa gracias a la densidad del material empleado en su construcción. Se asimila que tiene una forma cilíndrica.

$$V = \pi \times \left(\left(\frac{D_{ext}}{2} \right)^2 - \left(\frac{D_{int}}{2} \right)^2 \right) \times L = 4,23m^3 \rightarrow M_1 = V \times \rho_{St} = 33748Kg$$
(Ec. A.36)

2. Masa de las bridas de la virola

Se vuelve a repetir el procedimiento de cálculo. Al existir dos bridas, la masa final resultante hay que multiplicarla por 2.

$$V = \pi \times \left(\left(\frac{D_{ext}}{2} \right)^2 - \left(\frac{D_{int}}{2} \right)^2 \right) \times L = 0,03m^3 \to M_2 = V \times \rho_{St} \times 2 = 420Kg$$
(Ec. A.37)

3. Masa de la tapa posterior

Esta pieza también tiene una forma geométrica sencilla, cilíndrica con un agujero pasante.

$$V = \pi \times \left(\left(\frac{D_{ext}}{2} \right)^2 - \left(\frac{D_{int}}{2} \right)^2 \right) \times L = 0,36m^3 \rightarrow M_3 = V \times \rho_{St} = 2891,3Kg$$
(Ec. A.38)

4. Masa de la placa fija

Tanto esta placa como la placa flotante, se considera que es un disco al cual hay que restar el volumen de los agujeros practicados para insertar los tubos.

$$V = \pi \times \left(\left(\frac{D_{ext}}{2} \right)^2 - \left(\left(\frac{D_{tubo}}{2} \right)^2 \times N \right) \right) \times L = 1,34m^3 \rightarrow M_4 = V \times \rho_{St} = 10716,1Kg \quad (Ec. A.39)$$

5. Masa de la placa flotante

Se repite el cálculo anteriormente practicado.

$$V = \pi \times \left(\left(\frac{D_{ext}}{2} \right)^2 - \left(\left(\frac{D_{tubo}}{2} \right)^2 \times N \right) \right) \times L = 0,37m^3 \rightarrow M_5 = V \times \rho_{St} = 2952,6Kg$$
(Ec. A.40)

6. Masa de los tubos del intercambiador

$$V = \pi \times \left(\left(\frac{D_{ext}}{2} \right)^2 - \left(\frac{D_{int}}{2} \right)^2 \right) \times L \times N = 14, 2m^3 \rightarrow M_6 = V \times \rho_{Al} = 38160 Kg$$
(Ec. A.41)

El valor final de la masa de la parte central es la suma de los elementos cálculos. Además se añade la masa estimada de los soportes del haz tubular y las pantallas soporte.

$$M_C = \sum_{i=1}^{i=6} M_i + M_e = 90488 Kg$$
(Ec. A.42)

Por último se calcula la masa de la parte posterior, para lo que se su forma geométrica se puede suponer la suma de una parte cilíndrica y un fondo esférico.

$$V = 0.64m^3 \rightarrow M_P = V \times \rho_{St} = 5107Kg$$
 (Ec. A.43)

La masa final de todo el conjunto resulta de sumar los valores encontrados con anterioridad, así como un ligero incremento, debido a las diversas simplificaciones realizadas y a los distintos niveles de agua acumulados en su interior.

$$M_T = M_A + M_C + M_P + \Delta M = 108100 Kg$$
 (Ec. A.44)

Una vez se conocen las masas existentes, se procede a calcular las cargas que debe soportar la estructura y su distribución. Se realiza la suposición que el soporte de la desaladora más próximo a la parte anterior recibe el peso de la parte anterior. Para el soporte más cercano a la parte posterior se usa la misma metodología, esto es, debe soportar el peso de la parte trasera. Finalmente, el peso correspondiente a la parte central, la de mayor masa, se reparte en un 75% entre los dos soportes centrales y el 25% restante entre los dos soportes de los extremos. Estos porcentajes se reparten por igual para cada pareja de soportes.

Figura A.3. Diagrama de esfuerzos

Esfuerzos	P _A	P _c	P _P	F ₁	F_2	F ₃	F4
Valor (N)	107800	901600	49980	216322	325565	350635	166858

Distancias	L ₁	L ₂	L ₃	L ₄	L_5	L ₆	L7	L ₈
Valor (mm)	3124	3700	1063	987	3700	2159	7887	6846

Tabla A.1. Esfuerzos y distancias del diagrama de esfuerzos

Al tratarse de una estructura para una edificación se ha tenido en cuenta las posibles acciones que pueden aparecer y que contempla la normativa básica en la edificación [Ref.11]. En concreto, las acciones térmicas y reológicas, que se prescinde de ellas por no existir una variación de temperatura superior a $\pm 10^{\circ}$ C en la estructura y tratarse de materiales metálicos, y de las acciones sísmicas. Para este último caso se considera que es una construcción de especial importancia, y para no aplicar la norma la aceleración sísmica de cálculo, a_c, sea inferior a 0,06 g, siendo g la aceleración de la gravedad.

La aceleración sísmica de cálculo se define como el producto:

$$a_c = \rho \times a_b = 1.3 \times 0.04g = 0.052g < 0.06g$$
 (Ec. A.45)

Donde a_b es la aceleración sísmica básica y ρ es un coeficiente adimensional de riesgo. Los valores de estos coeficientes son resultado de la ubicación geográfica y tipo de la construcción.

Además de todas las consideraciones previas, en construcciones metálicas se debe aplicar la Norma MV-103, que dispone unos coeficientes de ponderación. El coeficiente de mayoración que le corresponde a la estructura, según sus características, es $C_s = 1,33$.

Así que los valores finales de los esfuerzos que recibe la estructura son:

Esfuerzos	$F_1 \times C_s$	$F_2 \times C_s$	$F_3 \times C_s$	$F_4 \times C_s$
Valor (N)	287708	433002	466344	221921

Tabla A.2. Cargas ponderadas

Se comprueba que la carga más desfavorable se trata de F_3 , por lo que es el valor de referencia que se toma para dimensionar la estructura.

Figura A.4. Distribución de fuerzas

La carga F_3 se supone que se distribuye uniformemente a lo largo de la base del soporte de la desaladora. Los puntos A₃ y B₃ representan las reacciones de los puntales de la estructura que soporta la desaladora.

$$A_{3} + B_{3} = F_{3}$$

$$A_{3} = B_{3} = \frac{1}{2}F_{3} = 233172N$$
(Ec. A.46)

Estos valores son los esfuerzos más grandes que deben soportar las dos vigas longitudinales que forman la estructura y son los utilizados para el dimensionado de la estructura.

Al estar situadas las vigas verticales en los mismos puntos los soportes de la desaladora, la viga horizontal recibe las cuatro cargas y sus correspondientes reacciones en los mismos puntos, por lo que el esfuerzo preponderante a la hora del cálculo de resistencia es de tipo cortante.

El perfil seleccionado es del tipo HEB 220 y el material acero A-52. Para los perfiles laminados se puede simplificar al hecho que es soportado en gran parte por el alma de la viga. El esfuerzo cortante máximo que debe soportar es de:

$$\tau_{\max} = \frac{T_{\max} \times m_Z}{e \times I_Z} \cong \frac{T_{\max}}{e \times h_1} = \frac{233172}{9.5 \times 152} = 161.5 \frac{N}{mm^2}$$
(Ec. A.47)

Figura A.5. Distribución de cargas sobre vigas longitudinales

Según el criterio de resistencia de materiales de Von Mises, el esfuerzo cortante máximo que aguanta el perfil es $0,58\sigma_e$, que para el acero A-52 es:

$$\tau_{adm} = 0.58 \times \sigma_e = 0.58 \times 352.8 = 204.6 \frac{N}{mm^2}$$
 (Ec. A.48)

Se comprueba que $\tau_{adm} \ge \tau_{max}$ y por tanto el perfil resiste los esfuerzos cortantes.

El siguiente paso es comprobar que los perfiles transversales deben ser redimensionados o por el contrario, el tipo de perfil escogido resiste las cargas.

Sobre las vigas horizontales transversales se supone que la fuerza se distribuye de manera uniformemente a lo largo de toda su longitud, Fig. A.4. Para ese tipo de cargas, las expresiones de cálculo de los esfuerzos cortantes y los momentos flectores son:

$$T(x) = \frac{1}{2} \times q \times l - q \times x \qquad M(x) = \frac{1}{2} \times q \times l \times x - q \times \frac{x^2}{2} \qquad (Ec. A.49)$$

En este caso en particular, cuando el esfuerzo cortante es máximo, justo en los extremos del perfil, el valor del momento flector es mínimo y a la inversa, para el momento flector máximo, que corresponde con el punto central, el esfuerzo cortante es nulo. Solo hay que calcular las

tensiones debidas al momento flector en la sección central de la viga, ya que los esfuerzos cortantes los resiste perfectamente.

El valor del momento flector máximo correspondiente a la sección de cálculo es:

$$M_{\rm max} = \frac{1}{8} \times q \times l^2 = 233172Nm$$
 (Ec. A.50)

Y la tensión máxima para dicho punto es:

$$\sigma_{\max} = \frac{M_{\max}}{W_Z} = \frac{233172Nm}{736cm^2} = 316.8 \frac{N}{mm^2} \le \sigma_{adm} = 352.8 \frac{N}{mm^2}$$
(Ec. A.51)

Se comprueba que el perfil seleccionado resiste las cargas a las que es sometido.

Por último se debe dimensionar los perfiles verticales, que están sometidos a un esfuerzo normal de compresión. Además hay que tener en cuenta la parte proporcional del peso de las vigas horizontales.

$$C_3 = 233172 + \frac{1}{4} \times 6622 + \times \frac{1}{2} \times 2499 = 236077N$$
 (Ec. A.52)

El tipo de perfil que se emplea es HEB 100 y el material es ahora acero A-42.

$$\sigma_{\max} = \frac{C_3}{A_{HEB100}} = \frac{236077N}{2600mm^2} = 90.8 \frac{N}{mm^2} \le \sigma_{adm} = 254.8 \frac{N}{mm^2}$$
(Ec. A.53)

En este momento hay que considerar otro factor de cálculo, que es ver que el perfil no sufre pandeo. Para el tipo de perfil escogido el valor de la fuerza máxima que es capaz de soportar sin sufrir el citado pandeo es:

$$F_{\text{max}} = 43,9tn \equiv 430220N \ge C_3$$
 (Ec. A.54)

Los pilares resisten los esfuerzos a los que se ven sometidos. También se mira la flecha que sufren dichos elementos. La deformación se obtiene gracias a la expresión:

$$\Delta l = \frac{Long.}{E_{St}} \times \left(\frac{C_3}{A_{HEB100}} + \frac{\rho_{St} \times Long.}{2}\right) = -1,52mm$$
(Ec. A.55)

El resultado que se obtiene se considera aceptable porque se aplica el criterio que la deformación es inferior a una milésima parte de la longitud del perfil. El signo negativo indica que se comprime la viga.

A.4. Comprobación soldaduras estructura metálica

Las soldaduras que se someten a estudio son las que unen las vigas longitudinales con las transversales, al considerarse que están sometidas a mayores solicitaciones mecánicas.

Figura A.6. Tipo de soldaduras

Para el cordón de soldadura que corresponde al alma de la viga, se aplica un tipo de soldadura de unión en T, con doble cordón en ángulo cóncavo. Sufre un esfuerzo cortante de T = 233172N y un momento M = 0Nm.

$$\tau_{\max} = \frac{T}{l \times a} = \frac{233172N}{323mm \times 5mm} = 144.7 \frac{N}{mm^2}$$
(Ec. A.56)

Según la Norma DIN 4100 para uniones soldadas en construcción de estructuras metálicas, la tensión admisibles para el caso de carga H y acero A-52 es de 170N/mm², por lo que la soldadura resiste la solicitación.

En las soldaduras a tope, que corresponden a las alas del perfil, actúa un esfuerzo cortante T= 221598N y un momento M = 24944Nm. El cordón de soldadura es de espesor 5mm.

Para calcular la tensión nominal en los cordones debida a la fuerza transversal, se repite la metodología usada anteriormente.

$$\tau_{\max} = \frac{T}{l \times a} = \frac{221598N}{944mm \times 5mm} = 44 \frac{N}{mm^2}$$
(Ec. A.57)

Además, hay que hallar la tensión debida al momento flector, para lo que primero se debe calcular el momento de inercia total de ambas soldaduras.

$$I = 57,6 \times 10^6 mm^4$$

El valor de tensión resultante es:

$$\sigma'_{\rm max} = \frac{M_b}{I} \times y = 47.6 \frac{N}{mm^4}$$
 (Ec. A.58)

Por último solo queda calcular la tensión total en las secciones de los cordones de soldadura mediante la *hipótesis de resistencia de la tensión normal máxima*.

$$\sigma_{V}' = \frac{1}{2} \left(\sigma_{\max}' + \sqrt{{\sigma'}^{2}_{\max} + 4\tau^{2}_{\max}} \right) = 76.5 \frac{N}{mm^{2}}$$
(Ec. A.59)

Se comprueba que el valor obtenido se encuentra por debajo de la tensión admisible según la Norma, que son 170N/mm².

A.5. Comprobación uniones atornilladas

En este apartado que se comprueba que los tornillos que unen la parte anterior y la parte posterior a la central resisten los esfuerzos a los que son sometidos. Tales esfuerzos son generados por el peso de las respectivas partes que mantienen unidas.

Comenzando por la tornillería de la parte anterior, cada uno de los 36 tornillos sufre una fuerza normal y una fuerza de cortadura.

Figura A.7. Diagrama de fuerzas parte anterior

El centro de masas de la parte anterior se supone que se encuentra justo en el centro del cilindro en lo respecta al eje de la altura. El peso de esta parte es P_A = 107800N, por lo que el momento que genera sobre la brida es M_A = 250743Nm. Este momento se transforma en una fuerza normal en los tornillos. El valor máximo se produce en los tornillos que se encuentran los extremos superior e inferior, los puntos a y b de la Fig. A.7.

Se calcula en primer lugar la fuerza de montaje mínima para contrarrestar la fuerza transversal que tiende a separar la unión. Esta fuerza separadora transversal es constante y

se trata del peso de la parte anterior. Se supone que afecta por igual a cada uno de los tornillos.

$$F_{M} = \frac{P_{A} \times C_{S}}{n \times m \times \mu} = \frac{107800 \times 1,25}{36 \times 4 \times 0,1} = 9358N$$
 (Ec. A.60)

El valor del coeficiente de seguridad contra el deslizamiento, C_S , como el del coeficiente de fricción se extraen de la publicación *Unions Cargolades* [Ref. 12].

Hay que contemplar el fenómeno del asentamiento que produce una relajación de la unión, disminuyendo la fuerza de apriete. De forma simplificada se estima cuanto más hay que apretar el tornillo.

$$\Delta F_M \cong \frac{1}{3} F_M = \frac{1}{3} \times 9358 = 3119N$$
 (Ec. A.61)

Así que la fuerza mínima de apriete de los tornillos para que la unión soporte la carga transversal es:

$$F'_{M}(minima) = F_{M} + \Delta F_{M} = 9358 + 3119 = 12477N$$
 (Ec. A.62)

El siguiente paso es calcular la fuerza mínima de apriete para una carga axial. En concreto, la carga normal que actúa es consecuencia del momento M_A y el caso más desfavorable es el de los tornillos de los extremos. En el extremo superior el tornillo sufre tracción y en el extremo inferior se comprime. Se escoge el tornillo del punto *a*, Fig. A.7.

La fuerza de montaje para que el tornillo resista la fuerza separadora estática se obtiene de la expresión:

$$F_{M \max} = \alpha_C \times \left[F'_P + F_S \times (1 - c) + \Delta F_M \right]$$
(Ec. A.63)

Donde F'_P es la fuerza remanente después del asentamiento, F_S es la fuerza separadora, ΔF_M es la disminución de la fuerza de montaje y el termino α_C es el coeficiente de atornillado, que para una llave neumática lubricada se estima en 1,6. Los términos restantes se obtienen tal como siguen:

$$F_{S} = \frac{M_{A}}{d} = \frac{250743Nm}{2,477m} = 101229N$$
 (Ec. A.64)

Para conocer la disminución en la fuerza del montaje debido al asentamiento hay que calcular la rigidez del tornillo y de las piezas unidas. La rigidez del tornillo es:

$$k_T = \frac{A_T \times E_T}{l_T} = \frac{353 \times 2.1 \cdot 10^5}{140} = 529500 \frac{N}{mm}$$
 (Ec. A.65)

En el cálculo de la rigidez de las piezas unidas se averigua en primer término el área comprimida mediante el bicono de compresión.

$$A_{e} = \frac{\pi}{4} \times \left(D_{e}^{2} - d_{agujero}\right) = \frac{\pi}{4} \times \left(\left(44 + \frac{107}{2}\right)^{2} - 26^{2}\right) = 2208\pi m^{2}$$
(Ec. A.66)

A continuación se procede a calcular la rigidez de la unión y la relación de rigideces.

$$k_{P} = \frac{A_{P} \times E_{P}}{l_{P}} = \frac{2280\pi \times 2.1 \cdot 10^{5}}{107} = 13611262 \frac{N}{mm}$$
(Ec. A.67)

$$c = \frac{k_T}{k_T + k_P} = \frac{529500}{529500 + 13611262} = 0,04$$
 (Ec. A.68)

La disminución de fuerza en la unión se halla por medio de la expresión:

$$\Delta F_M = \delta_x \times c \times k_P = 9 \cdot 10^{-3} \times 0.04 \times 13611262 = 12250N$$
 (Ec. A.69)

El término δ_x corresponde a la deformación plástica de la unión atornillada, que depende del acabado superficial de cada una de las juntas así como de la rosca.

La fuerza remanente después del asentamiento, F'_P , se establece que sea la mínima que soporte la carga transversal, Ec. A. 62. Así que finalmente, sustituyendo los valores obtenidos en la Ec. A. 63, se tiene que la fuerza máxima en el montaje es:

$$F_{M \max} = 162166N$$

Los tornillos seleccionados son de métrica M24 y resistencia 10.9, por lo que su fuerza límite de montaje es $F_{M \, \text{lim}} = 248000N$, valor netamente superior a la fuerza máxima a la que son atornillados. El momento que hay que prescribir durante el montaje es el 90% del momento límite del tornillo, que es este caso es $M'_{M} = 720N$.

Para el estudio de los tornillos de la parte posterior se repite la metodología utilizada en el caso anterior, con las únicas variaciones de las fuerzas que actúan sobre las uniones y la longitud de los propios tornillos.

Figura A.8. Diagrama de fuerzas parte posterior

El centro de masas de la parte anterior se supone que se encuentra justo en el centro del cilindro en lo respecta al eje de la altura. El peso de esta parte es P_P = 49980N, por lo que el momento que genera sobre la brida es M_P = 63275Nm. Este momento se transforma en una fuerza normal en los tornillos. El valor máximo se produce en los tornillos que se encuentran los extremos superior e inferior, los puntos a y b de la Fig. A.8.

Se calcula en primer lugar la fuerza de montaje mínima para contrarrestar la fuerza transversal que tiende a separar la unión. Esta fuerza separadora transversal es constante y se trata del peso de la parte posterior. Se supone que afecta por igual a cada uno de los tornillos.

$$F_{M} = 4339N$$

En este punto hay que volver a estimar la fuerza de apriete que se pierde por el asentamiento de la unión, y de esa forma hallar la fuerza mínima de montaje para que se soporte la carga transversal.

$$F'_{M}(minima) = 5785N$$

El siguiente paso es calcular la fuerza mínima de apriete para una carga axial. En concreto, la carga normal que actúa es consecuencia del momento M_P y el caso más desfavorable es el de los tornillos de los extremos. En el extremo superior el tornillo sufre tracción y en el extremo inferior se comprime. Se escoge el tornillo del punto *a*, Fig. A.8.

Se repiten los pasos realizados con los tornillos de la parte anterior para llegar al resultado que la fuerza máxima de montaje es:

$$F_{M \max} = 57167N$$

Los tornillos que se utilizan continúan siendo del mismo tipo, esto es, métrica M24 y resistencia 10.9, por lo que su fuerza límite de montaje es $F_{M \text{ lim}} = 248000N$. Los tornillos resisten perfectamente el esfuerzo. El momento que hay que prescribir durante el montaje es el 90% del momento límite del tornillo, que es otra vez $M'_{M} = 720N$.

A.6. Diseño de la transmisión

El compresor que se utiliza para comprimir el vapor antes de que entre en el intercambiador debe proporcionar una potencia determinada, que se halla como el incremento de potencia que sufre el vapor en su paso por el compresor. Además hay que tener en cuenta el rendimiento isentrópico y mecánico del compresor. Con todo, el valor mínimo de potencia que debe suministrar al fluido es de 711,6 kW [Ec. 4.3].

Ahora se determina la velocidad de giro del mismo. La velocidad de entrada del vapor en la parte anterior de la desaladora queda determinada por el diámetro del conducto de vapor en esa parte, y por el caudal que fluye por el interior del mismo. Conocida la velocidad del vapor, se supone que ese valor corresponde a la velocidad media que se produce en la mitad del radio de las aspas, Fig. A.9.

Figura A.9. Perfil de velocidades en el aspa del compresor

La velocidad media de entrada del vapor es:

$$v_{med} = \frac{Q}{A} = \frac{58 \frac{m^3}{s}}{2m^2} = 29 \frac{m}{s}$$
 (Ec. A.70)

Para conocer la velocidad angular del compresor se supone que el diámetro del compresor es de 2 metros y que V_{max} es el doble de V_{med} , así que gira a una velocidad de:

$$n_{c} = \frac{\omega_{c} \times 60}{2\pi} = \frac{\frac{2 \times v_{med}}{D_{c}} \times 60}{2\pi} = 554 rpm$$
 (Ec. A.71)

Ya se dispone de la información referente al compresor que es necesaria en el dimensionado de la transmisión. Ahora queda por determinar la velocidad de funcionamiento para el motor. El motor eléctrico escogido es un Siemens H-Compact SH450 de 4 polos y velocidad nominal de giro de 1500rpm.

En este punto ya se conocen los datos necesarios para diseñar el tipo de transmisión más adecuada. Primero se determina la relación de transmisión.

$$i = \frac{\omega_m}{\omega_C} = \frac{n_m}{n_C} = \frac{1500 rpm}{554 rpm} = 2,71$$
 (Ec. A.72)

Se comprueba que se trata de un reductor y se decide que sea una transmisión por engranajes cilíndricos de dientes helicoidales. Permite transmitir una potencia elevada para el rango de velocidades en el que debe trabajar, es relativamente compacta y su rendimiento mecánico es elevado. Como la relación de transmisión no es grande, se utiliza una transmisión de una sola etapa.

Se fija el número de dientes del piñón, así como el ángulo de presión normal, el ángulo de inclinación de los dientes, el módulo del dentado y la anchura del propio piñón y de la rueda. No se aplica desplazamiento en el dentado.

PARÁMETROS	Piñón	Rueda			
Ángulo de presión normal	$\alpha_0 = \alpha_n = 20^\circ$				
Ángulo de inclinación	β = 25°				
Módulo del dentado	<i>m</i> ₀ = 6 <i>mm</i>				
Desplazamiento	x ₁ = 0mm	x ₂ = 0mm			
Anchura	b = 220mm				
Número de dientes	z ₁ = 30	Z ₂			

Tabla A.3. Parámetros de generación de los engranajes

Por medio de la relación de transmisión y una vez fijado el número de dientes se determina el número de dientes de la rueda.

$$z_2 = i \times z_1 = 2,71 \times 30 = 81,3 \approx 81$$
 (Ec. A.73)

Se comprueba la relación de transmisión real que queda, i = 2,7, que es prácticamente igual al valor teórico inicial.

El siguiente paso es definir el resto de parámetros de generación, definición y funcionamiento más relevantes.

• Diámetro de generación:

$$d = \frac{z \times m_0}{\cos \beta}$$
(Ec. A.74)

Piñón	Rueda
d ₁ = 198,6mm	d₂ = 536,2mm

Tabla A.4. Diámetros de generación

• Ángulo de presión transversal:

$$\tan \alpha_t = \frac{\tan \alpha_0}{\cos \beta}$$

(Ec. A.75)

Piñón	Rueda	
$\alpha_t = 21,9^\circ$		

Tabla A.5. Ángulo de presión transversal

• Diámetro de base:

$$d_{b} = \frac{z \times m_{0} \times \cos \alpha_{t}}{\cos \beta}$$
(Ec. A.76)

Piñón Rueda

*d*_{b1} = 184,3mm
*d*_{b2} = 497,5mm

• Diámetro de cabeza:

$$d_a \leq \left(\frac{z}{\cos\beta} + 2 \times (1+x)\right) \times m_0$$

(Ec. A.77)

d _{a1} ≤ 210,6mm	d _{a2} ≤ 548,2mm
Piñón	Rueda

Tabla A.7. Diámetros de cabeza

• Número equivalente de dientes:

$$z_v = \frac{z}{\cos^3 \beta}$$

(Ec. A.78)

Piñón	Rueda
$z_{v1} = 40,3$	z _{v2} = 108,8

Tabla A.8. Número equivalente de dientes

• Ángulo de funcionamiento:

$$inv\alpha' = inv\alpha_t + \frac{2 \times (x_1 + x_2) \times \tan \alpha_0}{z_1 + z_2}$$
(Ec. A.79)

Tabla A.9. Ángulo de funcionamiento

Recubrimiento frontal:

$$\varepsilon_{\alpha} = \frac{1}{2\pi} \left(z_1 \left(\sqrt{\left(\frac{d_{a1}}{d_{b1}}\right)^2 - 1} - \tan \alpha' \right) + z_2 \left(\sqrt{\left(\frac{d_{a2}}{d_{b2}}\right)^2 - 1} - \tan \alpha' \right) \right)$$
(Ec. A.80)

Piñón	Rueda	
$\varepsilon_{lpha} = 1,51$		

Tabla A.10. Recubrimiento frontal

La distancia entre centros que resulta es de a' = 367,4 mm. En este punto es preciso determinar las fuerzas que actúan en los dientes cuando engranan entre sí. Al tratarse de un engranaje cilíndrico helicoidal aparece una componente de carga axial con respecto uno de dientes rectos.

Se realiza una descomposición de fuerzas sobre el diente para a continuación calcular la magnitud de cada una de ellas y poder conocer las tensiones que aguantan los engranajes y ver que están dentro de valores admisibles.

Figura A.10. Descomposición fuerzas en el dentado

La componente tangencial está relacionada de forma directa del par exterior que se aplica al engranaje. El par resistente es el momento que corresponde a la salida del engranaje y hace mover el compresor, y el par motor es el actúa en la entrada del engranaje. Debido al rendimiento mecánico de la transmisión ambos valores no son idénticos. Para poder cuantificarlos se ha estimado que el rendimiento de la transmisión es $\eta_t = 0,96$. De esta forma se obtiene que el par motor es:

$$M_{m} = \frac{\frac{P_{C}}{\eta_{t}}}{\omega_{m}} = \frac{\frac{711,6kW}{0.96}}{\frac{2\pi \times 1500rpm}{60}} = 4723Nm$$
(Ec. A.81)

Ahora ya se pueden determinar los valores de las distintas cargas que aparecen en el dentado helicoidal del engranaje. En todos los casos cada una de las distintas componentes depende de la fuerza tangencial.

Todos los valores de los esfuerzos de la tabla A.11 están en valor absoluto, no se ha tenido en cuenta el sentido de cada una de las fuerzas.

Esfuerzos	Fτ	F_N	F _R	F _X
Valor (N)	47564	55849	19102	22179

Se debe comprobar que los dientes de los engranajes resisten las tensiones a que se ven sometidos. Para hallar las solicitaciones así como los valores admisibles se ha seguida la metodología explicada en la publicación *Quadern CM3 Engranatges* [Ref. 13].

La solicitación en el pie del diente responde a la expresión:

$$\sigma_{b} = \frac{F_{T}}{b \times m_{0}} \times \mathbf{Y}_{F} \times \mathbf{Y}_{\varepsilon} \times \mathbf{Y}_{\beta} \times \frac{1}{K_{A} \times K_{v} \times K_{m}}$$
(Ec. A.82)

Como se aprecia, la tensión final depende de diversos coeficientes que deben determinarse y que están en relación con distintos factores, tanto de diseño como de servicio.

• Coeficiente de recubrimiento, Y_{ϵ} :

Este factor es el inverso del recubrimiento frontal y por lo tanto, es el mismo para el piñón y la rueda.

Tabla A.12. Coeficiente de recubrimiento

• Factor de forma, Y_F :

Dicho factor es función del número de dientes, z_v para un dentado helicoidal, del coeficiente de desplazamiento y del ángulo de presión normal. En consecuencia es distinto para piñón y rueda.

Piñón	Rueda
Y _{F1} = 2,4	Y _{F2} = 2,17

Tabla	A.13.	Factor	de	forma

• Coeficiente Y_{β} :

Es un coeficiente función del ángulo de inclinación primitivo β . Al tener el mismo ángulo, 25°, tanto piñón y rueda, no varía en ningún caso.

Piñón	Rueda		
$Y_{\beta} = 0,76$			

• Factor de servicio, K_A :

Este factor tiene en cuenta las irregularidades en la transmisión de par por los engranajes, debidos al órgano motor y a la máquina accionada y relaciona los momentos máximos y nominales. Para turbocompresores se tiene un grado de choque I, el órgano motriz es un motor eléctrico y funciona las 24 horas.

• Factor de velocidad, F_v :

El factor de velocidad o dinámico tiene en cuenta las cargas dinámicas que aparecen entre los dientes de los engranajes. Es función de la calidad ISO del engranaje, ISO 4 en este caso, y de la velocidad tangencial del mismo, $v_t = 15,6$ m/s.

Piñón	Rueda		
K _v = 0,88			

• Factor de distribución de carga, K_M :

Este coeficiente sirve para tener en consideración que la carga no se distribuye de manera uniforme a lo largo de los flancos de los dientes. Es función del cociente de la anchura entre el diámetro. El resultado es el mismo para piñón y rueda.

Piñón	Rueda		
K _M = 1			

Tabla A.17. Factor de distribución de carga

Sustituyendo los valores citados en la ecuación A.82 se obtiene las tensiones en el pie de los dientes del piñón y de la rueda. A continuación se debe comprobar que las solicitaciones producidas son inferiores a las máximas admisibles por los engranajes.

Piñón	Rueda
$\sigma_1 = 52,2 \ N/mm^2$	σ_2 = 47,2 N/mm ²

Tabla A.18. Solicitaciones en el pie del diente

La resistencia a la fatiga en el pie del diente es también dependiente de diversos factores que disminuyen la resistencia teórica del material de construcción de los engranajes. La expresión de cálculo es:

$$\sigma_{adm} = \sigma_{b \lim} \times K_{bL} \times \left(\frac{k_C}{0,814}\right) \times \left(\frac{1,8}{Y_S}\right)$$
(Ec. A.83)

El material escogido en la construcción del engranaje es un acero aleado cementado, en concreto el F-1560 (14NiCrMo13), que tiene una tensión límite de 90N/mm².

• Factor de duración, K_{bL} :

La fatiga admisible disminuye al aumentar el número de ciclos, aunque para el acero existe un número de ciclos a partir del cual la fatiga se mantiene constante. Para un cálculo rápido del número de ciclos que debe resistir el engranaje se toma la velocidad de giro del piñón, 554rpm, y multiplica por una duración de funcionamiento de 10 años de forma ininterrumpida y a la misma velocidad. El resultado es que el número de ciclos es superior a 10⁹. Según la literatura consultada para un número de ciclos mayor que el valor citado el factor de duración se mantiene constante.

Piñón	Rueda	
K _{bL} = 0,63096		

• Probabilidad de fallos, k_C :

Es un coeficiente que indica la fiabilidad del engranaje y que aumenta de forma pareja al aumento de fiabilidad que se imponga. En este caso se mantiene el valor predeterminado en un principio que corresponde a una probabilidad de un 1%.

• Factor de concentración de tensiones, Y_s :

Este factor corresponde a la relación entre los límites a fatiga pulsante de una probeta sin entallar y del diente considerado. Para la cremallera generatriz usada en este engranaje y el número de dientes se obtiene un valor medio ligeramente superior al que corresponde con el utilizado normalmente.

Tabla A.21. Factor de concentración de tensiones

Sustituyendo todos los valores encontrados en la ecuación A.83 se obtiene la resistencia a la fatiga en el pie del diente del piñón y de la rueda. El paso siguiente es comprobar que estos valores son superiores a las solicitaciones a que están sometidos los dientes durante el funcionamiento de la transmisión.

Tabla A.22. Resistencia en el pie del diente

Efectivamente, la tensión admisible es mayor que las tensiones máximas que se producen en el pie del diente de los engranajes.

Otro punto de control en un engranaje es la presión superficial, picado, sobre el diente. Para un engranaje helicoidal se consideran las tensiones en una sección normal al flanco de los dientes. La expresión que permite hallar estos valores es:

$$\sigma_{H} = \sqrt{\frac{F_{T}}{b \times d'} \times \frac{i+1}{i} \times \frac{1}{K_{A} \times K_{v} \times K_{m}}} \times Z_{E} \times Z_{C} \times Z_{\beta}$$
(Ec. A.84)

Los factores que afectan a la magnitud de la carga que actúa entre los dientes, K_A , K_v , K_m , son los mismos que se estudiaron en la determinación de las tensiones en el pie del diente, afectan igualmente a las tensiones entre los flancos de los dientes. Además aparecen nuevos factores que varían el valor final de las solicitaciones en los flancos de los dientes.

• Factor de material, Z_E :

$$Z_{E} = \sqrt{0.35 \times \frac{2 \times E_{1} \times E_{2}}{E_{1} + E_{2}}}$$
(Ec. A.85)

Piñón	Rueda	
Z _E = 271,11√N/mm ²		

Tabla A.23. Factor de material

El material es idéntico para ambos engranajes.

• Factor geométrico, Z_C :

$$Z_{C} = \sqrt{\frac{\cos\beta_{b}}{\sin\alpha_{t}' \times \cos\alpha_{t}'}}$$
(Ec. A.86)

• Factor de recubrimiento, Z_{β} :

$$Z_{\beta} = \sqrt{\frac{1}{\varepsilon_{\alpha}}}$$
(Ec. A.87)

Piñón	Rueda	
Z _c = 0,81		

Tabla A.25. Factor de recubrimiento

Ahora solo queda sustituir los valores de los distintos coeficientes en la ecuación A.84 y conocer las tensiones en los flancos de los dientes.

	Rueua
$\sigma_{H1} = 477,9 \text{ N/mm}^2$	$\sigma_{H2} = 290,9 \text{ N/mm}^2$

Tabla A 26	Tensión en	los flancos	de los	dientes
100107.20.		100 1101000	40.00	alonicou

Hay que calcular la tensión máxima admisible en los flancos de los dientes y corroborar que su valor es superior a las exigencias a las que se ven sometidos. Lógicamente la tensión admisible también depende de ciertos factores. La fórmula definitiva para conocer la solicitación admisible por el flanco del engranaje es:

$$\sigma_{adm} = \sigma_{H \, \text{lim}} \times K_{HL} \times \left(\frac{k_C}{0,814}\right) \tag{Ec. A.88}$$

El factor de probabilidad de fallos es el mismo que se ha comentado con anterioridad y en este caso vuelve a tener el mismo valor.

• Factor de duración, K_{HL} :

El sentido es semejante al utilizado en el factor de duración en la resistencia en el pie del diente.

Tabla A.27. Factor de duración

La tensión límite para el material empleado en la construcción del engranaje varía entre los valores de 1130N/mm²-1520N/mm². A la hora de realizar el cálculo se elige el valor inferior. Sustituyendo los valores en la ecuación A.88 se obtiene la tensión admisible.

Piñón	Rueda	
σ _{Hlim} = 524,5 N/mm ²		

Tabla A.28. Resistencia superficial flancos de los dientes

Las tensiones máximas se encuentran en todo momento por debajo de la solicitación admisible por los engranajes.

A.7. Elección de los rodamientos

En este apartado se debe determinar el tipo de rodamientos más adecuados para los ejes de los engranajes. Al tratarse de un engranaje con dentado helicoidal, uno de los rodamientos soporta una fuerza de componente axial, además de la carga en dirección radial. Por esa razón se decide utilizar rodamientos de rodillos cónicos, que proporcionan un contacto angular, adecuado para resistir ambas componentes de carga, radial y axial.

Para el cálculo de las cargas efectivas sobre los engranajes primero se determinan los valores de ciertos factores correctivos. Exactamente, los factores que representan la influencia de las fuerzas adicionales que se producen en los engranajes y por las máquinas a las que pertenecen los engranajes.

$$f_Z = f_K \times f_d = 1,1 \times 1,2 = 1,3$$
 (Ec. A.89)

La carga axial corresponde a la fuerza en la componente *x* que se produce en el diente del engranaje, es F_x en la tabla A.11. La suma vectorial de las fuerzas tangencial y radial, F_T y F_R , dan como resultado la carga radial que soportan los rodamientos. Se supone que cada uno de los rodamientos recibe la mitad de dicha fuerza. El valor definitivo se obtiene al aplicar el factor de corrección f_z .

$$F_{radial} = \frac{F_{T+R} \times f_Z}{2} = \frac{51256 \times 1.32}{2} = 33827N$$
 (Ec. A.90)

$$F_{axial} = F_X \times f_Z = 22179 \times 1,32 = 29277N$$
 (Ec. A.91)

Para los rodamientos del piñón se decide montar un sistema en tándem, ya que al girar a mayor velocidad, la correspondiente a la velocidad angular del motor, un montaje por parejas aumenta su tiempo de vida. Los rodamientos seleccionados para el eje del piñón son unos FAG 31320X.K11.A120.160. Para comprobar que resisten los esfuerzos se utiliza la metodología de cálculo proporcionada por FAG.

$$\frac{F'_{axial}}{F_{radial}} > e = 0,83$$
(Ec. A.92)

Al ser la relación entre la fuerza axial y radial superior al coeficiente *e*, el coeficiente *Y* tiene el valor de 1,2 y la expresión de cálculo de la carga dinámica equivalente es:

$$P = 0.67 \times F_{radial} + Y \times F'_{axial} = 74710N$$
 (Ec. A.93)

La fuerza axial que se toma en el cálculo de la carga equivalente no se corresponde con la carga axial producida por los engranajes, si no que hay que tener en cuenta que este tipo de rodamientos originan una fuerza axial de reacción. Por tanto, la fuerza axial que se emplea en los cálculos es:

$$F'_{axial} = F_{axial} + 0.5 \times \frac{F_{radial}}{Y}$$
(Ec. A.94)

Se considera que la carga es variable, que durante su funcionamiento la desaladora no está siempre a pleno rendimiento y que por tanto la carga disminuye en ciertos momentos. Por otra parte, la velocidad de giro se supone que permanece constante. Se toma como aproximación que un 70% gira a plena carga y que el 30% restante lo hace a media carga. Así que la carga equivalente dinámica definitiva es:

$$P_d = \sqrt[3]{P^3 \times \frac{70}{100} + \left(\frac{P}{2}\right)^3 \times \frac{30}{100}} = 67507N$$
 (Ec. A.95)

Mediante la fórmula reducida de la duración se obtiene la vida útil del rodamiento bajo las exigencias que se le impongan. Depende de la carga dinámica equivalente, de la capacidad dinámica del rodamiento y del factor de velocidad de giro del mismo.

$$f_L = \frac{C_d}{P_d} \times f_n \tag{Ec. A.96}$$

Para los rodamientos FAG seleccionados la capacidad dinámica es de 570000N y el factor de velocidad para 1500rpm es f_n = 0,319. El resultado que se obtiene es:

$$f_L = \frac{570000}{67507} \times 0.319 = 2.69$$
 $L_h \approx 13500h$

La vida estimada de los rodamientos del piñón se sitúa alrededor de unas 13500 horas de funcionamiento. Se considera también el efecto producido por la carga estando el rodamiento parado o funcionando a baja velocidad. Para ello, se calcula la carga estática equivalente con la fórmula siguiente:

$$P_0 = F_{radial} + Y_0 \times F'_{axial} = 74162N$$
 (Ec. A.97)

El coeficiente Y_0 tiene un valor de 0,8 según las especificaciones de FAG para los rodamientos escogidos y una capacidad de carga estática equivalente de 585000N. Se puede observar que existe un coeficiente de seguridad próximo a 8, con lo que no existen problemas por una solicitación excesiva.

El siguiente paso es determinar los rodamientos de la rueda. La estructura de cálculo es idéntica a la realizada en los rodamientos del piñón. En este caso, sin embargo, se decide usar rodamientos montados de forma individual, ya que al girar a una menor velocidad el compresor, para unos esfuerzos similares, no es necesario el uso de parejas de rodamientos ajustados uno contra otro.

Los rodamientos escogidos son unos SKF 32321 de rodillos cónicos. Como la relación entre la fuerza axial y radial, Ec. A.92, es superior al valor de la constante e = 0,35, el coeficiente Y tiene un valor de 1,7 según SKF. La fórmula de cálculo de la carga dinámica equivalente es:

$$P = 0.4 \times F_{radial} + Y \times F'_{Axial} = 80215N$$
 (Ec. A.98)

Se usa la misma expresión, Ec. A.95, para conocer la carga dinámica definitiva al considerarse las mismas condiciones de trabajo.

$$P_{d} = 72473N$$

Los rodamientos SKF empleados tienen una capacidad de carga dinámica equivalente de 520000N, mientras que el factor de velocidad para 554rpm es f_n = 0,43. La vida útil de utilización que resulta es:

$$f_L = \frac{520000}{72473} \times 0.43 = 2.79$$
 $L_h \approx 15000h$

Tienen una duración de alrededor de 15000 horas de servicio. También se comprueba de nuevo la capacidad de los rodamientos bajo una solicitación en estado estático. La relación entre la fuerza axial y radial determina la expresión de cálculo.

$$\frac{F'_{axial}}{F_{radial}} > \frac{1}{2 \times Y_0}$$
(Ec. A.99)

$$P_0 = 0.5 \times F_{radial} + Y_0 \times F'_{axial} = 83598N$$
 (Ec. A.100)

La capacidad de carga estática para este rodamiento según SKF es de 480000N, por lo que resiste perfectamente.

A.8. Diseño de los árboles de la transmisión

En este apartado se determina de forma aproximada los materiales de construcción y su resistencia a las solicitaciones. Es un apartado que sirve para un predimensionado, en ningún caso se ha diseñado por completo y de forma precisa cada uno de los árboles que forman parte de la transmisión.

Las cargas que se tienen en cuenta son las producidas por los engranajes durante su funcionamiento y en posiciones simétricas, obviándose los pesos de los distintos elementos que soportan cada uno de los árboles, así como su propio peso.

Figura A.11. Descomposición de fuerzas sobre árbol transmisión

Al suponer que las cargas se encuentran colocadas de forma simétrica respecto los extremos A y B, las reacciones en dichos puntos son idénticas. Tomando como referencia el punto B, la fuerza horizontal y vertical valen:

$$B_V = \frac{1}{2} \times F_T = \frac{1}{2} \times 47564 = 23782N$$
; $B_H = \frac{1}{2} \times F_R = \frac{1}{2} \times 19102 = 9551N$

La fuerza resultante en el apoyo B es $B = \sqrt{B_H^2 + B_V^2} = 25628N$.

Figura A.12. Reacciones en el punto B

Para realizar los cálculos se ha supuesto la distancia entre el punto de aplicación de la fuerza en el engranaje, su plano medio, y la reacción en B, que corresponde con el plano medio del rodamiento. En realidad es la cota entre las caras más próximas del engranaje y el rodamiento la que se le asigna un valor orientativo, por estar las dimensiones de los engranajes y rodamientos totalmente determinadas.

El momento flector máximo que se genera tiene un valor de:

$$M_f = B \times l = 25628 \times 0,2665 = 6830 Nm$$
 (Ec. A.101)

El paso siguiente es determinar el momento combinado, que tiene en cuenta el momento flector y el torsor debido a la rotación. En este caso es el árbol del piñón.

$$M_V = \sqrt{M_f^2 + \left(\frac{1,2}{2} \times M_T\right)^2} = 7023,4Nm$$
 (Ec. A.102)

Para conocer las tensiones a que se somete al árbol y poder seleccionar el material más adecuado hay que saber el diámetro de la sección de estudio. Se ha supuesto que todo el árbol tiene el mismo diámetro, que queda determinado por el diámetro del eje para el que están diseñados los rodamientos, que son d = 100mm.

$$d = 2,17 \times \sqrt{b' \times \frac{M_V}{\sigma}}$$
(Ec. A.103)

El coeficiente *b*' vale 1 para árboles macizos. Sustituyendo los valores conocidos se obtiene la tensión a la que se somete al árbol.

$$\sigma = 75,6 \frac{N}{mm^2}$$

Se escoge como material de construcción para el árbol del piñón el acero bonificado 34CrMo4 (F-1250).

Para el árbol de la rueda, que se corresponde con el compresor, se mantienen las mismas hipótesis. Los únicos datos que varían son el momento torsor, que aumenta y en consecuencia también lo hace el momento combinado, y el diámetro del árbol, que pasa a ser d = 105mm. Finalmente la tensión resultante es:

$$\sigma = 90.5 \, N / mm^2$$

Nuevamente se repite el material de construcción del árbol perteneciente a la rueda el acero bonificado 34CrMo4 (F-1250).

La siguiente parte objeto de estudio es el número crítico de revoluciones debido a la vibración producida por la flexión.

Para determinar el número crítico de revoluciones debido a la vibración por flexión del árbol hay saber la flecha que sufre el árbol. En las hipótesis realizadas solo se tiene en cuenta como única carga que actúa a la generada por los engranajes. La ecuación que permite hallar la flecha en los puntos de apoyo es:

$$f = \frac{F \times 6.8}{E} \left(\frac{l^3}{d^4} \right)$$
(Ec. A.104)

La distancia *I* es la que hay entre los puntos de apoyo y el punto de aplicación de la fuerza, Fig. A.12, y los diámetros son los mismos que se han empleado anteriormente. Se continúa suponiendo una configuración simétrica de las fuerzas. Por lo tanto, la flecha resultante para el apoyo A como para el B es idéntica y de valor:

$$f_A = f_B = 0,016cm$$

 $f_A = f_B = 0,013cm$
 $\dot{A}rbol de la rueda$

El número crítico de revoluciones por flexión se obtiene gracias a la fórmula:

$$n_{K} = 300 \times \sqrt{\frac{1}{f}}$$
(Ec. A.105)

Cada uno de los árboles tiene un número crítico de revoluciones que deben estar lo más alejados de la velocidad de funcionamiento. Para el árbol del piñón, y que gira a la velocidad del motor, es de $n_K = 2372rpm$ y $n_K = 2631rpm$ para el árbol de la rueda, que lo hace a la velocidad del compresor. Como se puede ver son valores muy parejos entre ellos y en ambos casos superiores a las velocidades de funcionamiento.

Por último se estima el posible fallo por fatiga. El límite de fatiga de una pieza se puede representar mediante la expresión:

$$S_f = k_I \times k_d \times k_S \times \frac{1}{k_f} \times S'_f$$
 (Ec. A.106)

Los distintos coeficientes que aparecen, coeficientes de modificación, tienen en cuenta la influencia de las condiciones no estándar.

Al tratarse de un material con una resistencia a la tracción inferior a 1400N/mm², el límite de fatiga del acero F-1250, para ensayo estándar, es la mitad del valor de R_m .

Como no se ha diseñado por completo ninguno de los dos árboles, se han tomado valores medios para cada uno de los diversos coeficientes. Así que el resultado es un dato simplemente orientativo que sirve para saber si las hipótesis hechas son posibles o por el contrario, si hay que tener en consideración especial algún aspecto.

Para la realización de este punto se ha consultado la publicación *La fatiga del elements mecànics* [Ref. 14].

Coeficiente de tipo de carga	k _i = 0,7
Coeficiente de tamaño	k _d = 0,75
Coeficiente de acabado superficial	k _s = 0,7
Coeficiente de concentraciones de tensiones teórico	k _T = 1,7
Sensibilidad a la entalla	q = 0,9
Coeficiente de concentración de tensiones	k _f = 1,63

Tabla A.29. Coeficientes de modificación

Sustituyendo los datos en la ecuación A.106 se tiene que el límite a fatiga de ambos árboles es de:

$$S_f = 101,5 \frac{N}{mm^2}$$

Este es un valor superior a las tensiones a que se somete a cualquiera de los dos árboles y que se han calculado antes en este mismo apartado. A priori, con los diámetros escogidos hasta ahora y el tipo de material seleccionado, conformarían una buena base para terminar de definir los aspectos de diseño que quedan por determinar.

B. SELECCIÓN DE MATERIALES

B.1. Aleaciones con base de cobre

Dentro del amplio abanico de materiales existentes y que puedan cumplir los requisitos necesarios, se ha optado por el uso de forma amplia de las aleaciones de cobre-níquel para todos aquellos elementos que no están sometidos a esfuerzos, por lo tanto no pertenecen a ninguna parte estructural, y que sí estén en contacto con el agua salada.

La elección final de cada tipo de aleación depende de las condiciones de corrosión que hay en cada una de las secciones de la planta desaladora así como del precio de los materiales.

Para las partes en contacto con agua de mar la causa más común de fallo en los materiales es el ataque sufrido por la corrosión-erosión. En concreto las aleaciones sometidas a estudio [Ref. 4] se muestran en la tabla B.1

Material	Ratio de fallos (%)	Coste
Latón de Al	6,8	Bajo
90-10 Cu-Ni	2,3	Bajo
70-30 Cu-Ni	1,6	Medio
66-30-2-2 Cu-Ni-Fe-Mn	0,05	Muy Alto

Tabla B.1. Relación entre fallos y coste para diversos materiales

Se comprueba que las aleaciones de Cu-Ni tienen una mayor resistencia a la corrosión bajo las condiciones de servicio que el latón de aluminio. Y dentro de estos, el que proporciona mejores resultados es el de coste más elevado.

La aleación 66-30-2-2 Cu-Ni-Fe-Mn se emplea mayormente en plantas de gran capacidad productora en lugar de la aleación 70-30 Cu-Ni, que raramente se utiliza. Para plantas desaladoras de tamaño medio y pequeño la elección habitualmente escogida es la aleación 90-10 Cu-Ni, debido a su relación coste-resistencia.

En las partes correspondientes al agua de mar desaireada al existir una menor concentración de oxígeno, la corrosión que se produce es menor que si el fluido fuese agua

de mar natural. Para los elementos de recuperación de calor se muestra en la tabla B.2 su comportamiento [Ref. 5].

Material	Ratio de fallos (%)
Latón de Al	1,07
90-10 Cu-Ni	0,38
70-30 Cu-Ni	0
66-30-2-2 Cu-Ni-Fe-Mn	0,02

A medida que el nivel de oxígeno se incrementa la resistencia del material a la corrosión varía. De los materiales tratados hasta el momento, el más sensible a dichas variaciones es latón de aluminio, como queda reflejado en la figura B.1, en la que se muestran los efectos de la concentración de oxígeno en la corrosión debida al agua de mar desaireada, bajo las condiciones de 104° C durante 90 días y una concentración de sales de 35000 ppm [Ref. 6].

Figura B.1. Corrosión en función de la concentración de oxígeno

Otro factor ha tener en consideración es el efecto del pH [Ref. 4]. Aunque un bajo pH no es

causa por si mismo de corrosión en las aleaciones de cobre, sí que puede dañar la capa protectora y permitir que la presencia de oxígeno cause corrosión, como evidencia la tabla B.3.

Material	Ratio de fallos con ácido (%)	Ratio de fallos con antiincrustante (%)
Latón de Al	9,0	0,02
90-10 Cu-Ni	0,36	0,60
70-30 Cu-Ni	0	0

Tabla B.3. Porcentaje de fallos en entornos ácidos

En condiciones normales de operación, en términos de pH, las diferencias en los ratios de los fallos se deben al funcionamiento fuera de las condiciones de diseño. En este aspecto, las aleaciones de Cu-Ni son más consistentes a las posibles fluctuaciones de las condiciones de funcionamiento de la planta.

Otra parte de las desaladoras basadas en la técnica de la destilación es la que se encuentra en contacto con los gases no condensables que deben ser extraídos de la cámara de destilación.

El agua de mar normalmente contiene una pequeña cantidad de amoniaco, y esta también pasa al espacio de recogida del vapor incrementando el poder corrosivo de los gases. Aunque esta amoniaco no es un problema en los calentadores de salmuera, ya que hay ausencia de oxígeno, sí puede causar serios problemas de corrosión en los conductos de cobre en las partes de mayor temperatura donde la presencia de algo de oxígeno es normal.

La experiencia aportada en la construcción de condensadores de plantas de generación eléctrica muestra que la aleación 70-30 Cu-Ni es la mejor elección para la zona de extracción de gases.

Las pruebas realizadas [Ref. 7] con soluciones de NH_3/NH_4CO_3 con unas concentraciones de 500ppm y 1400ppm, respectivamente, muestran en la tabla B.4 la superioridad de la aleación 70-30 Cu-Ni en estos tipos de ambientes.

Aleación	Ratio corrosión (mm/año)
Latón de Al	0,13
90-10 Cu-Ni	0,10
70-30 Cu-Ni	0,08

Tabla B.4. Corrosión en soluciones de NH₃/NH₄CO₃

Como el latón de aluminio puede sufrir corrosión por estrés debido al amoniaco presente en los gases no condensables, esta aleación no es usualmente usada en las etapas de alta temperatura, aunque ocasionalmente es usada en las etapas de recuperación de baja temperatura.

En el lado vapor la corrosión se experimenta de una forma más frecuente donde los gases no condesados provenientes de la planta son enfriados antes de ser expulsados a la atmósfera. En estas unidades la vida de las aleaciones de cobre es reducida, unos pocos años, por lo que el titanio o aleaciones de acero inoxidables suelen ser empleados.

Las aleaciones más frecuentes para la construcción de las placas de tubos en las plantas desaladoras son la aleación 90-10 Cu-Ni, bronce de aluminio y el latón naval.

Dentro de las aleaciones Cu-Ni, la que se emplea de forma preferente como material para las placas de tubos es la 90-10 Cu-Ni. Es fácilmente soldable y puede ser soldada directamente sobre acero, lo que simplifica la construcción. El bronce de aluminio también posee dichas características y además es menos costoso que el 90-10 Cu-Ni y tiene mejores propiedades mecánicas, lo que puede permitir el uso de un menor espesor.

Por último, el latón naval es el que tiene el menor precio de todas las aleaciones listadas anteriormente, pero también es el menos resistente a la corrosión de los tres. Además, su soldabilidad no es muy buena.

Los materiales más comunes para las cajas de agua son hierro fundido o acero suave, y éstos son a menudo recubiertos de goma o plástico para ampliar su vida útil. Sin embargo, la corrosión de las cajas de agua es un problema serio y existe una tendencia hacia las cajas no ferrosas. La figura B.2 muestra una caja de agua fabricada con la aleación Cu-Ni 90-10 para un condensador. El uso de este tipo de construcciones es económico, empleándose para la parte externa acero al C y solamente el cuproníquel para el metal en contacto con el agua de mar.

Figura B.2. Caja de agua fabricada en aleación Cu-Ni 90-10

Para soldar se emplea como material de aporte Cu-Ni 70-30 mediante una soldadura con gas inerte y los espesores de las planchas varían entre 2 milímetros y 3 milímetros.

Cajas de agua en bronce de aluminio con níquel también se utilizan, particularmente con los tubos de titanio, debido a consideraciones galvánicas.

Para el armazón de las cámaras evaporadoras se usa la aleación Cu-Ni 90-10, sobre todo en plantas pequeñas. También se emplea para el revestimiento de plantas mayores, gracias a su buena soldabilidad con el acero, lo que permite tener en la parte externa acero y en las zonas expuestas a la corrosión la aleación de cobre. Otro material que sirve como revestimiento es el acero inoxidable, el cual resulta más económico, aunque se necesita tener cuidado para evitar la corrosión por picadura durante las paradas, cuando el oxígeno accede al interior.

En conclusión, las aleaciones de Cu-Ni poseen una combinación de propiedades, como resistencia a la corrosión, facilidad de fabricación y resistencia mecánica que las hacen especialmente apropiadas para ser usadas en las plantas desaladoras. Estas aleaciones, particularmente la 90-10 Cu-Ni, han sido empleadas más que cualquier otro material en un amplio rango de aplicaciones.

B.2. Titanio

El titanio y la mayoría de sus aleaciones son resistentes a la corrosión en agua de mar. La aleación Ti-6Al-4V se selecciona regularmente para los usos donde se requiere una alta resistencia a la fuerza y a la corrosión. Es posible su soldadura mediante los procesos TIG y MIG. La iniciación de la grieta por fatiga es insensible a la presencia del agua de mar, aunque la propagación de una grieta es acelerada por el agua de mar, fatiga por corrosión, si hay períodos de la detención de la tensión, o si la frecuencia que tensiona el material es menor a 10Hz. También se puede utilizar titanio con un bajo contenido aleante, como Ti99,4Pd, que contiene un 0,2% de paladio, que mejora de forma apreciable la resistencia a la corrosión en ambientes reductores, sin afectar su resistencia. En contacto con agua de mar en movimiento o estática hasta temperaturas de 130º C, las superficies de titanio son inmunes a la corrosión y resisten la erosión en las condiciones que causan la deterioración rápida de otros metales y aleaciones comúnmente usados. El titanio es inmune a la corrosión producida por el agua de mar en posibles grietas superficiales hasta los 70° C, cuando algunos aceros inoxidables se limitan a 10° C. En la tabla B.4 se muestra el comportamiento de las aleaciones de titanio y otro tipo de materiales para diferentes tipos de corrosión en agua de mar natural y contaminada.

Tipo de corrosión	Aleaciones de Cu	Acero inox. 316	Aleaciones de Ti	
Corrosión general	Resistente	Resistente	Resistente	
Corrosión por grieta	Susceptible	Susceptible	Resistente (<80° C)	
Pitting	Susceptible	Susceptible	Inmune	
Corrosión por tensión	Susceptible	Susceptible	Resistente	
Corrosión por fatiga	Susceptible	Susceptible	Inmune	
Ataque galvánico	Susceptible	Susceptible	Inmune	
Corrosión por microorganismos	Susceptible	Susceptible	Inmune	
Corrosión soldadura	Susceptible	Susceptible	Resistente	
Corrosión-erosión	Susceptible	Resistente	Altamente resistente	

Tabla B.4. Comportamiento de diferentes aleaciones bajo condiciones corrosivas

B.3. Selección de los materiales para tubos, válvulas y bombas en sistemas de agua de mar

Los problemas de corrosión en los sistemas que trabajan con agua marina se han estudiado en profundidad a lo largo de muchos años, pero a pesar de la información publicada sobre el comportamiento de los materiales en agua de mar, los errores todavía ocurren. Los factores económicos tienen que ser considerados a la hora de seleccionar los materiales para estos sistemas y en este contexto, esencialmente dos tipos de sistemas puede ser considerado, que responden a los siguientes criterios:

Un sistema de coste inicial bajo basado en gran parte en el acero y el hierro fundido, que requerirán un mantenimiento considerable durante la vida de la planta. Tal sistema es una opción razonable en áreas donde los costes de trabajo están bajos y el material está fácilmente disponible.

Un sistema basado principalmente en aleaciones de diversos materiales, que si están diseñados y fabricados correctamente requerirán un mantenimiento mínimo y funcionarán de forma fiable.

El agua de mar, aunque corrosiva, no causa normalmente fallos catastróficos de una forma rápida. Por ejemplo, el acero al C sumergido en agua de mar se corroe entorno a 0,1 milímetros al año, mientras que en ácido diluido, se corroe 100 veces más.

Sin embargo, cuando se desea un funcionamiento seguro durante un periodo de tiempo prolongado, 20 años o más, con un coste de mantenimiento bajo, la elección de aleaciones resulta la mejor opción, aunque el desembolso inicial sea superior.

B.3.1. Consideraciones sobre la corrosión

El comportamiento de la corrosión de los materiales usados comúnmente en sistemas de agua de mar depende de la velocidad del fluido y de la temperatura.

• Efecto de la velocidad

La velocidad es el factor más importante que tiene influencia en el diseño y la corrosión en sistemas que trabajan con agua marina. La velocidad del agua de mar a través del sistema

influye en las posibles pérdidas de presión y por tanto, en los costes de bombeo. La velocidad de diseño elegida controla las dimensiones de muchos componentes, como son los tubos y las válvulas. Mientras que los costes de estos componentes aumentan rápidamente con el diámetro de la tubería, entonces los costes de bombeo y del componente tienen que ser optimizados. Sin embargo, la velocidad también influye en el comportamiento de la corrosión en los materiales, y la velocidad de diseño elegida finalmente busca minimizar los efectos de la corrosión.

La corrosión del acero al C en agua de mar es controlada por la disponibilidad del oxígeno en la superficie del metal. Así, bajo condiciones estáticas, el acero al C se corroe entre 0,1 milímetros y 0,2 milímetros al año, mientras que bajo condiciones de alta velocidad, unos 40 m/s, la corrosión puede aumentar en un factor de 100, ya que se incrementa el flujo de oxígeno a la superficie del metal. Galvanizar solo confiere una ventaja limitada, pues la corrosión del cinc también aumenta con la velocidad. Para los gruesos usados normalmente en tuberías de agua de mar, el galvanizado ampliará la vida de la tubería tan solo seis meses.

En las aleaciones con base de cobre, la velocidad está limitada por el efecto hidrodinámico causado por el agua de mar al fluir a través de la superficie de tales aleaciones [Ref. 8] y que quita la película protectora y se produce la corrosión-erosión. Así, estas aleaciones, si deben exhibir alta resistencia a la corrosión, la velocidad de diseño debe de estar por debajo del valor límite.

Los aceros inoxidables son propensos a las picaduras y la corrosión por grieta bajo condiciones baja velocidad y se debe tener en consideración cuando estas aleaciones se utilizan en agua de mar.

Las aleaciones con base níquel, tales como las aleaciones Inconel 625 o Hastelloy C-276 y el titanio no están sujetas a la corrosión por picaduras o por grietas en agua de mar a baja velocidad, ni sufren corrosión a alta velocidad. Sin embargo, el precio limita su uso a aplicaciones especiales dentro de los sistemas de agua marina.

La tabla B.5 proporciona datos de algunos de los materiales usados comúnmente en sistemas de agua de mar.

	Baja velocidad (0,06m/s)		Corrosión	Corrosión
Aleación	Corrosión general (mm/año)	Pitting máximo (mm)	mm/año a media velocidad (8,25 m/s)	mm/año a alta velocidad (35-42 m/s)
Acero al C	0,075	2,0	-	4,5
Fundición gris	0,55	4,9	4,4	13,2
Acero inox. 316	0,02	1,8	<0,02	<0,01
Latón admiralty	0,025	0,025	0,4-1,0	0,75-1,1
Bronce rojo Cu85Sn5Zn5Pb5	0,018	0,030	1,0	1,3
Bronce al aluminio CuAl10Ni5Fe5	0,055	1,2	0,42	0,7-1,0
Cu-Ni 70-30	0,0010	0,28	0,22	0,5
Monel 400	0,02	1,3	<0,01	0,01

Tabla B.5. Corrosión de distintos materiales en sistemas de agua de mar para varias velocidades

Sobre las consideraciones de velocidad, es importante observar que las velocidades locales pueden variar considerablemente de la velocidad de diseño. Esto es particularmente importante donde las características del sistema, tales como radios pequeños de codos, los orificios, las válvulas o los rebordes mal alineados pueden generar turbulencias, dando lugar a las altas velocidades locales que pueden acelerar la corrosión. Por lo tanto, en el diseño y fabricación se debe buscar el objetivo de reducir al mínimo los puntos generadores de turbulencias.

• Efecto de la temperatura

Pocos datos están disponibles sobre el efecto de la temperatura dentro de la gama materiales normalmente usados en los sistemas de agua de mar. Los datos disponibles muestran que para el acero al C aumenta en aproximadamente un 50% entre el invierno, temperatura media 7° C, y el verano, temperatura media entre 27° C y 29° C. Aunque la solubilidad del oxígeno tiende a bajar con la subida de la temperatura, la temperatura más alta facilita la reacción del oxígeno con el metal.

Para las aleaciones de cobre, el aumento de la temperatura acelera la formación de la película protectora. Para una temperatura de 15° C se precisa cerca de un día, mientras que para valores más bajos, sobre 2° C, se tarda una semana.

Para los aceros inoxidables y otras aleaciones propensas a las picaduras y a la corrosión por grietas, un aumento de la temperatura tiende a facilitar la iniciación de estos tipos de ataques

[Ref. 9]. La temperatura también tiene una influencia sobre la actividad biológica, la cual influye en la acción corrosiva.

B.3.2. Selección de los materiales para tubos en sistemas de agua de mar

• La instalación de tubos en sistemas de costes iniciales bajos.

Los datos sobre los aceros demuestran que el valor de la corrosión en agua de mar aumenta desde 0,1 milímetro por año bajo condiciones estáticas a casi 1 milímetro por año para una velocidad de 3 m/s. Mientras, las velocidades en áreas locales, debido a las turbulencias, pueden exceder fácilmente los 3 m/s, incluso cuando la velocidad de diseño es mucho más baja, acelerando la corrosión en tales áreas. El hierro fundido se comporta de una manera similar al acero al C.

• Sistemas de alta fiabilidad. Sistemas de aleación de cobre.

Dos aleaciones con base cobre se han utilizado extensamente para el agua de mar, el latón de aluminio y la aleación Cu-Ni 90-10, aunque en los últimos años, particularmente para tuberías de diámetro grande se ha producido una fuerte tendencia hacia el empleo de Cu-Ni 90-10. Al usar una tubería no ferrosa, el sistema se debe diseñar en base a la velocidad del agua que evite la potenciación de la corrosión, incluso cuando una cierta turbulencia, que provoca altas velocidades locales, pueda ocurrir.

La figura B.3 indica cómo la probabilidad del fallo por el ataque del agua marina aumenta con la velocidad de diseño [Ref. 10]. Para un sistema con un diseño que confiera una alta fiabilidad, las velocidades que se toman como referencia se muestran en la tabla B.6.

Cobre	0,75 m/s	
Latón de aluminio	2,5 m/s	
Cu-Ni 90-10	3,0 m/s	
Cu-Ni 70-30	3,5 m/s	

Tabla B.6. Velocidades de diseño recomendadas para cada material

El uso de Cu-Ni 70-30 se confina a sistemas donde se precisa alta resistencia. Debido a la baja velocidad que permite y por lo tanto a los grandes tamaños de la tubería, el cobre se emplea poco en el diseño de sistemas por no resultar económico, a excepción de tuberías de diámetro pequeño y usos esencialmente domésticos.

De modo que la opción verdadera está entre el Cu-Ni 90-10 y el latón de aluminio. Ambos materiales son técnicamente satisfactorios, con tal que el sistema se diseñe para las velocidades del agua citadas en la tabla B.6, y ambos se han utilizado con éxito en muchos sistemas de agua de mar. Sin embargo, la tendencia actual es el uso de Cu-Ni 90-10, debido a su mejor soldabilidad, su alta resistencia a la corrosión por tensión, no requiere normalmente ningún tratamiento de alivio de tensión después de la fabricación, y su demostrada alta fiabilidad.

La tabla B.7 proporciona ciertos datos sobre el diámetro de la tubería en la velocidad crítica

del Cu-Ni 90-10 en el agua de mar a 5° C. Temperaturas más altas darían velocidades críticas más altas.

Diámetro mínimo de la tubería (mm)	Velocidad crítica (m/s)	
72,15	4,70	
103,00	4,85	
154,25	5,08	
212,30	5,25	
315,00	5,42	
447,20	5,52	

Tabla B.7. Efectos del diámetro de la cañería en la velocidad crítica para la aleación Cu-Ni 90-10

Los valores en la tabla B.7 se basan en pruebas experimentales y, como es de esperar, son más altos que las velocidades de diseño teóricas. Así, estos valores no se deben utilizar como valores de diseño, más bien como una guía para el diseñador a la hora de economizar costes del sistema.

B.3.3. Selección de los materiales en válvulas de sistemas de agua de mar

Muchos problemas provocados por la corrosión se producen en las válvulas de sistemas que están en contacto con el agua de mar. Tales problemas son a menudo debidos al uso de válvulas de acero o de hierro fundido con una tubería de material no ferroso. Aunque la vida de tales válvulas en un sistema con la tubería de acero o hierro fundido es corta, es decir, dos a tres años, cuando están en contacto con sistemas realizados en aleaciones no ferrosas, puede ser menor a un año debido a los efectos galvánicos de la tubería. Los tres componentes principales de una válvula son el cuerpo, el asiento de válvula y el eje o el vástago, que son considerados por separado.

• Cuerpo de la válvula en sistemas no ferrosos.

La válvula básica de bajo coste usada en sistemas donde la tubería es de material ferroso tiene el cuerpo de hierro fundido. Dependiendo del diseño, los índices de corrosión que pueden ocurrir en el cuerpo de la válvula son de varios milímetros al año. Por esta razón es necesario el empleo de materiales que presenten una buena resistencia a la corrosión. Las aleaciones con base cobre exhiben resistencia a la corrosión tanto a baja como alta velocidad del fluido. La tabla B.8 da ciertos datos bajo distintas condiciones de servicio de algunas aleaciones de cobre.

Aleación	Baja velocidad (0,06m/s)		Corrosión mm/año a	Corrosión
	Corrosión general (mm/año)	Pitting máximo (mm)	media velocidad (8,25 m/s)	velocidad (35-42 m/s)
Latón admiralty	0,025	0,25	0,4-1,0	0,75-1,1
Bronce rojo Cu85Sn5Zn5Pb5	0,018	0,030	1,0	1,3
Bronce al aluminio CuAl10Ni5Fe5	0,055	1,2	0,42	0,7-1,0
Cu-Ni 70-30	0,0010	0,28	0,22	0,5

Tabla B.8. Efectos de la velocidad en algunas aleaciones de cobre

En lo referente a la tabla B.8, es interesante observar que en algunos casos la corrosión cerca de 35-42 m/s es similar a 8,25 m/s. Esto indica que el ataque corrosivo está ocurriendo en la velocidad más baja y, bajo estas circunstancias, el aumento en la velocidad produce un pequeño aumento en la corrosión. En todo caso estos datos son valores orientativos que sirven como guía inicial ahora de diseñar un sistema, pero siempre que exista la posibilidad de que se den velocidades puntuales superiores a la de diseño es preferible optar por aleaciones de alta resistencia, como son el bronce de aluminio con contenido de níquel o cuproníqueles.

Válvulas de hierro con contenido de níquel se utilizan a menudo en sistemas ferrosos para mejorar la fiabilidad de ésta. También se utilizan en sistemas no ferrosos pero las válvulas de aleación de cobre son más comunes en tales sistemas. El bronce de aluminio más níquel es altamente resistente lo que le hace particularmente atractivo, sobretodo para las válvulas grandes. También, tiene alta resistencia a la acción corrosiva del agua marina y suele ser empleado en las válvulas del globo usadas de alivio.

• Asientos de válvulas y vástagos en sistemas no ferrosos.

En los asientos de las válvulas, particularmente aquellos que durante su servicio experimentan altas velocidades en el agua, se utilizan materiales con alta resistencia al agua de mar que fluye deprisa, como son aceros inoxidables, aleaciones de base níquel y la aleación Monel 400 [Ref. 8]. La experiencia demuestra que cuando los fabricantes aumentan el material del cuerpo utilizan a menudo los mismos materiales para los asientos y el vástago que en una válvula de hierro fundido, es decir, latón 60-40. Bajo estas condiciones la vida de las partes internas de la válvula es extremadamente corta porque, perdiendo la protección catódica del cuerpo ferroso, fallan por descincificación en algunos meses. La figura B.5 es una demostración de la descincificación de un latón 60-40 en una válvula de bronce. Ésta es probablemente la causa más común de fallos en válvulas no ferrosas. Aunque este tipo de corrosión es bien sabido, el índice de corrosión es a menudo asombrosamente alto. La pieza de la figura B.5 falló en menos de un año y el diámetro original era 25 milímetros.

Figura B.5. Descinficación de un latón 60-40

Aunque el acero inoxidable AISI 316 da buen rendimiento en una válvula no ferrosa, las aleaciones de níquel-cobre son una mejor opción, más cuando se trabaja bajo la base del coste durante el ciclo vital de la válvula. Otro problema que tienen los aceros inoxidables es el uso frecuente de aceros de un contenido de elemento aleante más bajo que el AISI 316, tales como son el AISI 410 y el AISI 430. El uso de estas aleaciones en sistemas de agua de mar da lugar a menudo a un fallo prematuro. En válvulas de bola y de mariposa, uno de los asientos puede ser no metálico, por ejemplo un elastómero.

La aleación Inconel 625, que posee una alta resistencia a la corrosión en agua de mar indistintamente de la velocidad, se utiliza para producir superficies altamente resistentes en

áreas críticas de válvulas, ejes y también en bastidores de bombas. También se puede utilizar como un recubrimiento para evitar o reparar áreas dañadas por la corrosión en aceros poco aleados y componentes de acero inoxidable.

• Efecto del diseño de la válvula en la selección de los materiales.

Las válvulas son una parte relativamente costosa de un sistema de agua de mar pero el coste de una válvula depende del diseño usado. La tabla B.9 muestra el incremento de peso y pérdida de presión para cada uno de los tipos de válvulas más usuales en comparación con la de tipo mariposa. Aparte de cualquier dificultad en la fabricación, es evidente que una válvula de globo es mucho más costosa que una válvula de mariposa debido a su peso mucho mayor. Es generalmente más satisfactorio seleccionar válvulas más simples y emplear materiales con mayor fiabilidad que utilizar una válvula de diseño costoso, e intentar economizar en los materiales. Donde sea deseable el uso de una válvula de globo, por sus buenas características de control del flujo, el coste adicional de materiales apropiados resistentes a la corrosión bajo las condiciones de diseño debe ser aceptado.

<u> </u>	Gate	Ball	Globe	F Butterfly
Weight of valve (relative to butterfly valve)	1.8	3.6	4.3	1
Pressure loss (relative to butterfly valve)	1	0.4	25	1

Tabla B.9. Diseños de válvulas

La tabla B.10 proporciona un resumen de los materiales más convenientes para cada tipo de válvula de agua de mar en sistemas no ferrosos.

Tipo de válvula	Material del cuerpo	Material del asiento, bola o disco	Material del vástago
Válvula de mariposa	- Bronce de aluminio con 5% Ni - Cu-Ni 70-30 - Fundición revestida con goma	- Bronce de aluminio con 5% Ni - Cu-Ni 70-30 - Aleaciones Monel - Acero inox. AISI 316	- Bronce de aluminio con 5% Ni - Aleaciones Monel - Acero inox. AISI 316
Válvula de bola, compuerta y globo	- Bronce de aluminio con 5% Ni - Cu-Ni 70-30	- Bronce de aluminio con 5% Ni - Cu-Ni 70-30 - Aleaciones Monel - Acero inox. AISI 316	- Bronce de aluminio con 5% Ni - Aleaciones Monel - Acero inox. AISI 316
Válvula de membrana	- Fundición revestida con goma	- Goma (membrana)	- No es crítico si no hay agua de mar

Tabla B.10. Materiales empleados según el tipo de válvula en agua de mar para sistemas no ferrosos

• Consideraciones galvánicas en válvulas.

Es una buena práctica que el material de ajuste al cuerpo sea catódico, por ello el uso de aleaciones tales como Monel 400 y Monel K-500 y los aceros inoxidables. El uso de las válvulas de aleación de cobre es deseable en sistemas donde también lo es la tubería, para conservar la compatibilidad galvánica. El uso de válvulas ferrosas desprotegidas en sistemas no ferrosos debe ser evitado. Para los sistemas de acero inoxidable, la compatibilidad galvánica no es un problema en el sistema en sí mismo, aunque diversas aleaciones se pueden utilizar para diversos componentes. El cuidado es necesario, sin embargo, si el acero inoxidable se utiliza en intercambiadores de calor hechos con una aleación de cobre ya que puede haber un efecto galvánico pronunciado entre ellos. Esto se puede resolver utilizando ánodos de sacrificio en las cajas de agua. Los ánodos de hierro, de cinc o de aluminio pueden ser empleados. Los iones de hierro en el agua de mar son beneficiosos para las aleaciones con base cobre, así que ánodos de hierro son aconsejables.

Figura B.6. Serie galvánica en agua de mar

De la figura B.6 se desprende que todas las aleaciones con base cobre tienen un potencial similar y se pueden utilizar juntas sin miedo de efectos galvánicos serios.

B.3.4. Selección de los materiales en bombas de agua de mar

Las bombas centrífugas se utilizan normalmente en sistemas de agua de mar y son conducidas a menudo por motores eléctricos de velocidad constante. A la velocidad normal de rotación, la velocidad en la parte más externa del álabe puede alcanzar los 20 m/s y a esta velocidad, la mayoría de las aleaciones de cobre se corroen rápidamente en agua de mar. Sin embargo, solamente ciertos componentes de la bomba se exponen a estas altas velocidades, y aparte de estos componentes, las aleaciones con base de cobre se pueden utilizar generalmente con éxito.

• Cubiertas de las bombas

En bombas de aleación de cobre hay normalmente suficiente separación entre los álabes y la cubierta de modo que el agua que fluye por los álabes no afecte directamente a la cubierta, y es absorbida en la corriente más lenta del agua que fluye sobre la superficie del metal hacia la tubería de descarga de la bomba. Con tal que se evite el choque directo, los materiales tales como el bronce admiralty, el bronce de aluminio y el Cu-Ni 70-30 se emplean de forma satisfactoria. Cuando se han experimentado fallos, la vida de la cubierta ha sido muy corta, cercana a los 18 meses. Para evitar fallos de este tipo, el diseño debe intentar reducir la velocidad del agua de mar en la superficie del metal, o utilizar materiales de una resistencia más alta. La experiencia demuestra que el bronce de aluminio con un contenido del 5% en níquel y el Cu-Ni 70-30 tienen una resistencia más alta que otros tipos de bronces o latones. Cuando las piezas de la bomba son fabricadas soldando con autógena partes de bronce de aluminio con níquel existe un serio riesgo de la producirse corrosión en la zona afectada por el calor de la autógena. Esto puede provocar que se agriete si es tensionada, por ejemplo, por los efectos de un golpe de ariete.

• Impulsores de la bomba

El impulsor de la bomba está en contacto con el flujo a alta velocidad y con agua de mar altamente turbulenta, con lo que para las bombas de circulación que están en uso durante la mayoría del tiempo deben ser hechas de un material con alta resistencia bajo las citadas condiciones. La tabla B.11 proporciona datos de la corrosión en agua de mar a alta velocidad para varios materiales de la bomba. Se desprende de esos valores que el uso de hierro fundido o de acero suave solo se puede contemplar en bombas que funcionan de vez en cuando. Las aleaciones Monel 400 y Monel K-500 y el acero inoxidable AISI 316 tienen una resistencia muy alta al agua de mar en movimiento y por tanto, estas aleaciones se prefieren para los impulsores de la bomba.

Aleación	Ratio de corrosión (mm/año)	Velocidad del agua de mar (m/s)
Fundición gris	13	38
Acero al C	9,5	40
Monel 400	0,010	43
Monel K-500	0,010	43

Tabla B.11. Datos de corrosión en agua de mar a alta velocidad

0,005

Debe ser observado, sin embargo, que las picaduras que se experimentaran son probablemente a menudo menos severas que la corrosión general que puede ocurrir en los extremos de un impulsor hecho de una aleación de base cobre y por lo tanto, un acero inoxidable o una aleación Monel 400 se prefiere para este uso.

B.3.5. Interacciones dentro del sistema que inducen a la corrosión

• Efectos galvánicos

Acero inoxidable

Donde sea posible, los componentes de potencial galvánico similar se deben utilizar para la construcción del sistema. Donde no sea posible esto, las pautas siguientes deben ser utilizadas:

Hacer el componente "dominante" de un material más noble. Por ejemplo, usar una aleación con base cobre en una válvula con el cuerpo de hierro fundido.

Asegurarse que el material de un potencial más bajo esta presente en un área mucho más grande que el material más noble.

Pintar el material más noble. Esto puede ser beneficioso porque se reduce el área del cátodo incluso cuando la película de la pintura es incompleta.

43

Los tubos de titanio tienen un efecto galvánico fuerte en la mayoría de las aleaciones de base cobre y pueden estimular la corrosión en las cajas de agua hechas de Cu-Ni y las placas de tubos. Es necesario evitar la corrosión galvánica cuando se utilizan los tubos de titanio y también cuando se emplean inyectores de Cu-Ni en intercambiadores de titanio.

• Adiciones Químicas

El cloro se agrega a menudo al agua de mar para prevenir el crecimiento de fauna marina que causaría la obstrucción del tubo dando como resultado una pérdida de transferencia de calor. La adición de cloro debe realizarse con unas ciertas precauciones porque el exceso de la cloro puede producir efectos corrosivos en las aleaciones de base cobre y el acero. Hay que mantener las concentraciones de cloro en niveles bajos, sobre 0,1-0,2 ppm.

B.3.6. Conclusión

Solo tratando los sistemas de agua de mar desde una perspectiva global es posible realizar una construcción fiable y resistente a la corrosión con unos costes de mantenimiento bajos.

La tabla B.12 resume la información comentada anteriormente y sugiere los materiales, en este caso con base de cobre, que se pueden utilizar para alcanzar una alta fiabilidad y un menor mantenimiento o aceptando unos costes de mantenimiento más altos y una menor fiabilidad, los que proporcionan un sistema con costes iniciales mínimos.

Pág. 79

Componente	Mínimo coste inicial y alto coste de mantenimiento	Alta fiabilidad y bajo coste de mantenimiento
Tubería	Acero galvanizado	- Cu-Ni 90-10
Bridas	Acero	- Aleación Cu-Ni - Bronce de cañón - Acero recubierto de Cu- Ni
Placas de tubos	- Latón naval - Latón 60-40	- Bronce de aluminio + Ni - Cu-Ni 90-10
Tubos	Latón de aluminio	- Cu-Ni 90-10 - Cu-Ni 70-30
Cubierta bomba	Fundición	- Aleación Cu-Ni - Bronce de aluminio + Ni - Bronce admiralty
Impulsor bomba	Bronce de cañón	- Monel 400 - Acero inox. - Bronce de aluminio + Ni
Eje bomba	Latón naval	- Monel 400 o K-500 - Acero inox. AISI 316 - Bronce de aluminio + Ni
Válvula	Ver tabla B.8	Ver tabla B.8
Cuerpo filtros	Fundición	 Bronce de cañón Aleación Cu-Ni Bronce de aluminio + Ni
Filtros	Hierro galvanizado	- Monel 400

Tabla B.12. Sistemas de agua de mar

C. Catálogos

C.1. Motores eléctricos SIEMENS

Great performers in even the tightest space Latest generation of high-voltage motors

Space costs money in industry. When designing our H-compact high-voltage motors, this is the reason that we have consciously kept the envelope dimensions as low as possible – without having a negative impact on the performance.

You are right in expecting that your drive system operates reliably – but without taking up unnecessary, valuable space. We have especially focused on achieving the highest degree of reliability and lowest envelope dimensions. The result of our development work: H-compact, the high-voltage motor that adminably fulfills both of these requirements: reliable power and compact design.

Different versions available

We supply H-compact in versions for direct online operation, for drive converter operation and for use in hazardous zones.

Horizontal

Standard motors with type of construction IM 83 – on request other types of construction are available, for example IM 835.

Vertical

IM V1 with protective roof assembly. IM V1 without protective roof assembly.

Degrees of protection IPS5 and higher.

Cooling type IC411 or IC416.

2

With the longest lifetime and highest reliability Working to serve you

For many years now, H-compact stands for the highest degree of quality and ruggedness. When developing the new series, we again placed topmost plicity on these features – as you have come to expect from Siemans. There suits: maximum reliability and long lifetime.

For instance, the frame and end shields are ribbed and manufactured out of gray cast iron with a sophisticated aerodynamic shape. The frame tapers in at some locations in order to optimize the cooling airflow. The motors have a high degree of strength and stiffness thanks to the internal ribs in the area around the stator winding overhang as well as the box section feet along the complete length. The gray cast-iron frame in conjunction with high-quality and corrosion protection and paintfinish protect the motors against the effects of the weather overmany years.

The innovative two-circuit cooling conceptnot only permits a high power density, but also ensures that the temperature is uniformity distributed in the motor: one of our measures to guarantee you the high extreliability!

H-compart motors are generally equipped with rolling contact bearings. For higher speed, load capability and operating conditions, we can also equip our motors with deve bearings.

Flange-type sleeve bearings are used and are suitable for both clockwise and counter-clockwise rotation without having to make any changes. Depending on the bearing load, they have an oil ring lubrication system with natural cooling either through radiation or convection or a circulating-oil lubricating system with oil cooling. It is possible to retrofit motors with a circulating-oil system at any time without having tomake any modifications.

The driveendand non-drive end bearings are floating bearings. The maximum axial play is ± 3.5 mm. In this case, the motor rotor and the mechanical transmission line must be axially located using a limitedend-float coupling at the driven load.

Technology that has proven itself

The Siemers M CALASTIC® insulating system, proven worldwide and used

for high-rating high-voltage motors, is also used in the H-compact. This

means that your motor shave an insulation which is absolutely

world class when it comes to reliability and long lifetime.

Well-proven MICALASTIC VPI insulation

For many decades now the Siemens MICALASTIC® insulating system has proven itself workdwide. The VPI technique (Vacuum Pressure Impregnation), harmonized with the insulation design, is an important element of the MICALASTIC insulation system. This technique guarantees that the insulation is almost free of any voids, therefore providing favorable partial discharge characteristics. A good thermal transition between the winding and laminated core is guaranteed. The long electrical lifetime is achieved, among other things, by using a high percentage of mica in the insulation. In conjunction with the high mechanical strength and thermal endurance, these factors ensure an extremely high winding lifetime – even under tough ambient conditions.

Reliable and rugged

In the lower power range, H-compact motors are equipped with aluminum die-cast rotors. Copper cage windings are optionally available. Both of these versions provide excellent performance. The aluminum die-cast technology has the additional benefit of being extremely rugged due to the form-fit connection between the rotor bars and laminated core.

Low noise and good cooling Well conceived for you

Safety at work is becoming increasingly important. The new series of H-compact motors is especially quiet. We optimized both the fan assembly as well as the frame to achieve even better a coustic properties -- and less noise. Hear for yourself. The appropriate safety at work regulations are generally maintained withouthaving to apply costly and complex noise reducing measures.

innovative cooling

high-vid tage motors. Good heat dissipa - cooling and low bearing and winding tion allows a high power density to be reached. An additional goal is to achieve a uniform temperature level. This reduces the thermal load on the motor components (e.g. winding and bearings) thus increasing the lifetime and reliability of your motor.

The Siemens two-circuit coolling system

Siemens high-voltage motors have surface as well as inner cooling. The frame acts as a heat exchanger between the internal and external air. The frame has been aerodynamically optimized to guide the external cooling airflow. This is the reason that it has a tapered shape which ansures that there is an optimum contact. between the cooling airflow and the frame.

The internal cooling airflow dircuit has been harmonized with the characteristics of the closed motor. The rotor has coding air ducts through which the internal fan, located at the non-drive end, draws in air: This cooling air issubject to high turbulence at the internal ribs of the frame and the and shield ribs which means that it is intensively cooled down. Air in the motor flows through four air ducts in the frame, in the same direction

as theouter airflow, to the driveend. This Effective cooling is a deckive factor for oddirectional principle ensures uniform temperatures at the drive end.

Harmonized system solutions for variable-speed operation

System solutions can be implemented by combining H-compact with SIMOVERT MV or SIMOVERT MASTERDRIVES. They can be optimally tailored to your individual requirements. Medium-voltage drive systems with a high degree of availability can be configured using SIMOVERT MV. In conjunction with our SIMOVERT MASTERDRIVES you can create a high-performance low-voltage system.

Lower energy consumption

Drive converters allow large amounts of energy to be saved —up to 50% — as the drive power can be flexibly adapted to the requirements of the plant or system. This is because pumps, fans and compressors are frequently operated in the partial load range. For fixed speed drives the material flow must, for example, be reduced using a throttle valve. This means that without flexible speed control a high proportion of the drive power is unused. And today, who can tolerate such a waste?

More precise processes have a short payback time

In many cases, AC drive converters allow processes to be controlled moreprecisely. Soft starting and stopping using continuous speed control reduces the stress on the mechanical system. This reduces your operating costs and plays a role in reducing payback times.

With local service We are there for you

Select the right motor – and the right partner. With Siemens, you are in better shape from the word go.

We are one of the leading electrical and electronic engineering companies in the world and we are there for you in 130 countries and 450 cities. Our employees can optimally support you locally – wherever you are. From the initial help to create the optimum motor concept up to reliable support for maintenance, troubleshooting and much more.

With Semens, everything runs smoothly – and you always have somebody you can personally talk to.

Simply ask us - we will take care of the rest. Our Hodine: +49 (0) 180 / 505 02 22

We offer far more than technology ...

We will flexibly actives: your individual requirements. This is all made possible by our logistics and production control system.

... and high-quality components and materials

We carefully select our suppliers. For us, quality checks and assurance means a qualified incoming goods process. Further, we have sophisticated production monitoring procedures so that we can quickly intervene where necessary. Our final check ensures that only perfect products leave our factories. When so requested, we can also fulfill specific customer test criteria.

lated motor power 2500 kV 3-5-64 2000kW 500 kW 94500 SHS00 94500 10.00 kW SH450 94450 94500 SH400 94450 SH400 9145(SH400 500 kM 9-0-95 SH95 SH400 9-055 SH310 SH3 10 HE a-ra-2 3000 1500 7<u>8</u> 1000

C.2. Rodamientos SKF

Dimens	iones		Capacidad	es de carga	Carga	Velocidades		Masa	Designación
principa	ales		dinámica	estática	limite	Velocidad	Velocidad		
					de fatiga	de referencia	limite		
d	D	T	С	C0	Pu				* - Rodamiento SKF Explorer
mm			kN		kN	rpm -		kg	•
105	160	43	246	430	45,5	2800	3800	3,05	33021/Q
105	190	39	270	355	40	2600	3400	4,25	30221 J2
105	190	53	358	510	55	2600	3400	6,00	32221 J2
105	225	81,5	605	815	85	2000	3000	14,5	32321 J2
110	150	25	125	224	24	3000	4300	1,25	32922 X/Q
110	170	38	233	390	42,5	2600	3600	3,05	32022 X/Q
110	170	47	281	500	53	2600	3600	3,85	33022
110	180	56	369	630	67	2600	3400	5,55	33122
110	200	41	308	405	45	2400	3200	5,10	30222 J2
110	200	56	402	570	61	2400	3200	7,10	32222 J2
110	240	54,5	473	585	62	2200	2800	11,0	30322 J2
110	240	63	457	585	62	1900	2800	12,0	31322 XJ2
110	240	84,5	627	830	86,5	1900	2800	17,0	32322
120	165	29	165	305	32	2600	3800	1,80	32924
120	170	27	157	250	26,5	2600	3800	1,70	T4CB 120
120	180	38	242	415	44	2400	3400	3,25	32024 X
120	180	48	292	540	56	2600	3400	4,20	33024
120	215	43,5	341	465	49	2200	3000	6,15	30224 J2
120	215	61,5	468	696	72	2200	3000	9,15	32224 J2
120	260	59,5	561	710	73,5	2000	2600	14,0	30324 J2
120	260	68	539	695	73,5	1700	2400	15,5	31324 XJ2
120	260	90,5	792	1120	110	1800	2600	21,5	32324 J2
130	180	32	198	365	38	2400	3600	2,40	32926
130	200	45	314	540	55	2200	3000	4,95	32026 X
130	230	43,75	369	490	53	2000	2800	7,60	30226 J2

Rodamientos de rodillos cónicos, de una hilera

C.3. Rodamientos FAG

Tapered roller bearings 313

main dimensions to ISO 355 / DIN 720, can be dismantled,

adjusted or in pairs

The datasheet is only an overview of dimensions and basic load ratings for the selected series. Please ensure that you note all the guidance in these overview pages. Further information is given on many products under the menu item "Description". You can also request comprehensive information material via Catalogue selection (www.fag.de/media-service), by e-mail (sales_promotion@fag.de) or by telephone +49 (9721) 91 - 45 84.

	d mm	D	Tmm
31304	20	52	16,25
31305-A	25	62	18,25
31306-A	30	72	20,75
31307-A	35	80	22,75
31308-A	40	90	25,25
31309-A	45	100	27,25
31310-A	-50	110	29,25
31311-A	-55	120	31,5
31312-A	60	130	33,5
31313-A	65	140	36
31314-A	70	150	38
31315	75	160	40
31316	80	170	42,5
31317	85	180	-44,5
	d	D	т
	mm	mm	mm

1

2006-10-29 13:05

	d	D	т
	mm	mm	mm
31318	90	190	46,5
31319-A	95	200	49,5
31320-X	39	215	56,5
31322-X	110	240	63
31324-X	120	290	68
31328-X	130	280	72
31328-X	140	300	77
31330-X	150	320	82
	d	D	т
	mm	mm	mm

2006-10-29 13:05 2

2006-10-29 13:05 3

Figure 1,	Figure 2	
d	20 mm	
D	52 mm	
т	16,25 mm	
1		
8	16 mm	
в	15 mm	
C	11 mm	
Canin	3 mm	
Canin	5 mm	
di	37,3 mm	
Damax	45 mm	
tia max	27 mm	
Damin	40 mm	
Dawin	48 mm	
thonis	27 mm	
f1,2min	1,5 mm	
fâ, 4 min	1,5 mm	
famac	1,5 mm	
fb max	1,5 mm	
1		
m	0,174 kg	Mass
Cr	31000 N	Basic dynamic load rating, radial
	0,73	
Y	0,82	
Car	30000 N	Basic static load rating, radial
Yo	0,45	
nG	14000 1/min	Limiting speed
na	9500 1/min	Reference speed
Car	3300 N	Fatigue limit load, radial

2006-10-29 13:05 4

31305-/	A	
Figure 1,	Figure 2	
d	25 mm	
D	62 mm	
т	18,25 mm	
1		
8	20 mm	
в	17 mm	
c	13 mm	
Camin	3 mm	
Camin	5 mm	
d1	46,3 mm	
Damax	55 mm	
tia max	34 mm	
Damin	47 mm	
Damin	59 mm	
tho min	32 mm	
f1,2min	1,5 mm	
f2, 4 min	1,5 mm	
famai	1,5 mm	
fb max	1,5 mm	
)		
m	0,297 kg	Mass
C:	38000 N	Basic dynamic load rating, radial
8	0,83	
Y	0,73	
Car	39500 N	Basic static load rating, radial
Yo	0,4	
ng	12000 1/min	Limiting speed
na	8500 1/min	Reference speed
	T7FB025	Comparative designation to ISO 355
Car	4400 N	Fatigue limit load, radial

2006-10-29 13:05

5

31306-	A	
Figure 1,	Figure 2	
d	30 mm	
D	72 mm	
т	20,75 mm	
8	24 mm	
в	19 mm	
C	14 mm	
Canin	3 mm	
Canin	6,5 mm	
d1	54 mm	
Damax	65 mm	
tia reax	40 mm	
Damin	55 mm	
Damin	68 mm	
tho rain	37 mm	
f1,2nin	1,5 mm	
f3,4 min	1,5 mm	
famac	1,5 mm	
fb max	1,5 mm	
m	0,441 kg	Mass
Cr	46500 N	Basic dynamic load rating, radial
	0,83	
Y	0,73	
Car	48000 N	Basic static load rating, radial
Yo	0,4	
ng	10000 1/min	Limiting speed
na	7500 1/min	Reference speed
	T7FB090	Comparative designation to ISO 355
Car	5300 N	Fatigue limit load, radial

2006-10-29 13:05

6

Pág. 98

FAG

31307	7-A	
Figure 1	, Figure 2	
đ	35 mm	
D	80 mm	
т	22,75 mm	
		1
8	28 mm	
в	21 mm	
C	15 mm	
Canin	4 mm	
Camin	7,5 mm	
di	59,9 mm	
Damax	71 mm	
damax	44 mm	
Damin	62 mm	
Damin	76 mm	
thomis	44 mm	
ři,2nin	2 mm	
f3,4 min	1,5 mm	
famai	2 mm	
fb max	1,5 mm	
		1
m	0,582 kg	Mass
Gr	61000 N	Basic dynamic load rating, radial
	0,83	
Y	0,73	
Car	66000 N	Basic static load rating, radial
Yo	0,4	
na	9000 1/min	Limiting speed
na	6300 1/min	Reference speed
	T7FB035	Comparative designation to ISO 355
Gar	7400 N	Fatigue limit load, radial

2006-10-29 13:05

7

31308-	-A	
Figure 1.	Figure 2	
d	40 mm	
D	90 mm	
т	25,25 mm	
1		
8	30 mm	
в	23 mm	
C	17 mm	
Canin	4 mm	
Canin	-8 mm	
d1	68,2 mm	
Damax	81 mm	
danax	51 mm	
Damin	71 mm	
Damin	86 mm	
the rais	49 mm	
ŕ1,2 min	2 mm	
f3, 4 min	1,5 mm	
famac	2 mm	
fb max	1,5 mm	
1		
m	0,727 kg	Mann
Gr	78000 N	Basic dynamic load rating, radial
	0,83	
Y	0,73	
Car	89000 N	Basic static load rating, radial
Yo	0,4	
na	7500 1/min	Limiting speed
na	6000 1/min	Reference speed
	T7FB040	Comparative designation to ISO 355
Car	9400 N	Fatigue limit load, radial

2006-10-29 13:05 8

31309-A			
Figure 1, Figure 2			
đ	45 mm		
D	100 mm		
т	27,25 mm		
1			
8	32 mm		
в	25 mm		
C	18 mm		
Canin	4 mm		
Canin	9 mm		
dı	75,8 mm		
Damax	91 mm		
tianax	56 mm		
Damin	79 mm		
Damin	95 mm		
threin	54 mm		
f1,2nin	2 mm		
fâ, 4 nin	1,5 mm		
famai	2 mm		
fb max	1,5 mm		
ļ.			
m	0,998 kg	Mass	
Cr	98000 N	Basic dynamic load rating, radial	
8	0,83		
Y	0,73		
Car	110000 N	Basic static load rating, radial	
Yo	0,4		
ng	6700 1/min	Limiting speed	
ne	5300 1/min	Reference speed	
	T7FB045	Comparative designation to ISO 355	
Car	12600 N	Fatigue limit load, radial	

2006-10-29 13:05

9

31310	31310-A			
Figure 1	Figure 1, Figure 2			
đ	50 mm			
	110 mm			
т	29,25 mm			
8	35 mm			
в	27 mm			
C	19 mm			
Camin	4 mm			
Camin	10 mm			
di	81,4 mm			
Damax	100 mm			
tia max	62 mm			
Damin	87 mm			
Damin	104 mm			
thorain .	60 mm			
11,2 min	2,5 mm			
12, 4 min	2 mm			
fa max	2,5 mm			
fb max	2 mm			
1				
m	1,23 kg	Maso		
Gr	112000 N	Basic dynamic load rating, radial		
	0,83			
Y	0,73			
Car	129000 N	Basic static load rating, radial		
Yo	0,4			
ng	6300 1/min	Limiting speed		
na	4800 1/min	Reference speed		
	T7FB050	Comparative designation to ISO 355		
Car	14600 N	Fatigue limit load, radial		

2006-10-29 13:05 10

31311-A		
Figure 1, F	igure 2	
d	55 mm	
D	120 mm	
т	31,5 mm	
8	39 mm	
в	29 mm	
С	21 mm	
Camin	4 mm	
Camin	10,5 mm	
d1	88 mm	
Damax	110 mm	
tia max	68 mm	
Damin	94 mm	
Damin	113 mm	
tib min	65 mm	
f1,2 min	2,5 mm	
f3i, 4 min	2 mm	
famas	2,5 mm	
fb max	2 mm	
m	1,57 kg	Masa
Gr	129000 N	Basic dynamic load rating, radial
8	0,83	
Y	0,73	
Car	142000 N	Basic static load rating, radial
Yo	0,4	
ng	5600 1/min	Limiting speed
ne	4500 1/min	Reference speed
	T7FB055	Comparative designation to ISO 355
Gar	16300 N	Faligue limit load, radial

2006-10-29 13:05

11

31312-4	Ą	
Figure 1, F	Figure 2	
d	60 mm	
D	130 mm	
т	33,5 mm	
1		
8	41 mm	
в	31 mm	
C	22 mm	
Camin	5 mm	
Clamin	11,5 mm	
di	95,6 mm	
Damax	118 mm	
tia max	73 mm	
Damin	103 mm	
Dawin	123 mm	
the rais	72 mm	
f1,2 min	3 mm	
12, 4 min	2,5 mm	
famai	3 mm	
fb max	2,5 mm	
1		
m	1,94 kg	Mass
Cr	151000 N	Basic dynamic load rating, radial
	0,83	
Y	0,73	
Car	174000 N	Basic static load rating, radial
Yo	0,4	
ng	5300 1/min	Limiting speed
na	4300 1/min	Reference speed
	T7FB080	Comparative designation to ISO 355
Car	20100 N	Fatigue limit load, radial

2006-10-29 13:05 12

31313-A				
Figure 1	Figure 1, Figure 2			
d	65 mm			
D	140 mm			
т	36 mm			
8	44 mm			
в	33 mm			
C	23 mm			
Camin	5 mm			
Camin	13 mm			
dı	102,6 mm			
Damax	128 mm			
tianax	79 mm			
Damin	111 mm			
Damin	132 mm			
domin	77 mm			
fi,2nin	3 mm			
f3,4 min	2,5 mm			
famai	3 mm			
fb max	2,5 mm			
m	2,36 kg	Masa		
Cr	170000 N	Basic dynamic load rating, radial		
	0,83			
Y	0,73			
Car	197000 N	Basic static load rating, radial		
Yo	0,4			
ng	5000 1/min	Limiting speed		
na	4000 1/min	Reference speed		
	T738085	Comparative designation to ISO 355		
Car	22400 N	Fatigue limit load, radial		

2006-10-29 13:05

13

31314-A				
Figure 1, Figure 2				
đ	70 mm			
D	150 mm			
т	38 mm			
1				
8	47 mm			
в	35 mm			
с	25 mm			
Camin	5 mm			
Camin	13 mm			
dı	109 mm			
Damax	138 mm			
tia reax	84 mm			
Damin	118 mm			
Damin	141 mm			
tho min	82 mm			
f1,2min	3 mm			
f2i, 4 min	2,5 mm			
fa max	3 mm			
fb max	2,5 mm			
m	2,9 kg	Mass		
Cr	196000 N	Basic dynamic load rating, radial		
8	0,83			
Y	0,73			
Car	230000 N	Basic static load rating, radial		
Yo	0,4			
ng	4800 1/min	Limiting speed		
na	3800 1/min	Reference speed		
	T7GB070	Comparative designation to ISO 355		
Car	29000 N	Fatigue limit load, radial		

2006-10-29 13:05 14

31315				
Figure 1,	Figure 1, Figure 2			
d	75 mm			
D	160 mm			
т	40 mm			
1				
8	50 mm			
в	37 mm			
C	26 mm			
Canin	6 mm			
Camin	14 mm			
d1	115,8 mm			
Damax	148 mm			
tianax	91 mm			
Danis	127 mm			
Damin	151 mm			
tăs neis	87 mm			
f1,2nin	3 mm			
f3,4 min	2,5 mm			
famai	3 mm			
fb max	2,5 mm			
1				
m	3,79 kg	Maso		
Cr	210000 N	Basic dynamic load rating, radial		
	0,83			
Y	0,73			
Car	245000 N	Basic static load rating, radial		
Yo	0,4			
ng	4500 1/min	Limiting speed		
na	3600 1/min	Reference speed		
	T7GB075	Comparative designation to ISO 355		
Car	27500 N	Fatigue limit load, radial		

2006-10-29 13:05

15

31316			
Figure 1, Figure 2			
d	80 mm		
D	170 mm		
т	42,5 mm		
1			
8	53 mm		
в	39 mm		
C	27 mm		
Canin	6 mm		
Camin	15,5 mm		
di	122,4 mm		
Damax	158 mm		
tia reax	97 mm		
Damin	134 mm		
Damin	159 mm		
thomin	92 mm		
f1,2 min	3 mm		
f3, 4 min	2,5 mm		
famac	3 mm		
fb max	2,5 mm		
1			
m	4,19 kg	Mass	
Gr	235000 N	Basic dynamic load rating, radial	
8	0,83		
Y	0,73		
Car	275000 N	Basic static load rating, radial	
Yo	0,4		
ng	4500 1/min	Limiting speed	
na	3400 1/min	Reference speed	
	T7GB080	Comparative designation to ISO 355	
Car	30500 N	Fatigue limit load, radial	

2006-10-29 13:05 16

31317		
Figure 1,	Figure 2	
d	85 mm	
D	180 mm	
т	44,5 mm	
8	55 mm	
в	41 mm	
C	28 mm	
Canin	6 mm	
Cania	16,5 mm	
di	129,3 mm	
Палак	166 mm	
danax	103 mm	
Damis	143 mm	
Damin	169 mm	
thomis	99 mm	
ři,2nin	4 mm	
12, 4 min	3 mm	
famai	4 mm	
fb max	3 mm	
m	4,88 kg	Maso
Cr	265000 N	Basic dynamic load rating, radial
8	0,83	
Y	0,73	
Car	315000 N	Basic static load rating, radial
Yo	0,4	
ng	4300 1/min	Limiting speed
na	3200 1/min	Reference speed
	T7GB085	Comparative designation to ISO 355
Car	34000 N	Faligue limit load, radial

2006-10-29 13:05

17

3	1318		
Fig	gure 1, i	Figure 2	
đ		90 mm	
		190 mm	
Т		46,5 mm	
8		58 mm	
В		43 mm	
C		30 mm	
C	amin	6 mm	
0	à min	16,5 mm	
di	1	135,9 mm	
	amax	176 mm	
d	a reak	109 mm	
	amin	151 mm	
	b min	179 mm	
dt	nin	104 mm	
ri	2 min	4 mm	
n	, 4 min	3 mm	
ra	mak	4 mm	
rb.	mak	3 mm	
m	1	5,5 kg	Maen
0		285000 N	Basic dynamic load rating, radial
		0,83	
Y		0,73	
0	0r	340000 N	Basic static load rating, radial
m	0	0,4	
n	2	4000 1/min	Limiting speed
ni	a	3000 1/min	Reference speed
		T7GB090	Comparative designation to ISO 355
C		35500 N	Fatigue limit load, radial

2006-10-29 13:05 18

FAG

31319-	A.	
Figure 1,	Figure 2	
d	95 mm	
D	200 mm	
т	49,5 mm	
1		
8	61 mm	
в	45 mm	
C	32 mm	
Canin	6 mm	
Camin	17,5 mm	
di	142,5 mm	
Damax	186 mm	
tianax	114 mm	
Danis	157 mm	
Damin	187 mm	
thomin	109 mm	
ŕ1,2min	4 mm	
f3,4 min	3 mm	
famai	4 mm	
fb max	3 mm	
)		
m	7,08 kg	Mass
Gr	320000 N	Basic dynamic load rating, radial
6	0,83	
Y	0,73	
Car	385000 N	Basic static load rating, radial
Yo	0,4	
ng	3600 1/min	Limiting speed
na	2800 1/min	Reference speed
	T7GB095	Comparative designation to ISO 355
Car	40000 N	Fatigue limit load, radial

2006-10-29 13:05

19

31320-X Figure 1, Figure 2 d 100 mm D 215 mm т 56,5 mm a 68 mm в 51 mm С 35 mm Camin 7 mm 21,5 mm Camin di 159,5 mm Damax 201 mm tia nax 121 mm Damin 168 mm Damin 202 mm 114 mm tắc nin f1,2min 4 mm 3 mm fà, 4 min 4 mm famak fb max 3 mm m 8,81 kg Mass Cr 400000 N Basic dynamic load rating, radial 0,83 8 γ 0,73 Car 500000 N Basic static load rating, radial Yo 0,4 ng 3000 1/min Limiting speed nii 2400 1/min Reference speed T7GB100 Comparative designation to ISO 355 60000 N Fatigue limit load, radial Car

2006-10-29 13:05 20

31322-	-X	
Figure 1,	Figure 2	
d	110 mm	
D	240 mm	
т	63 mm	
1		
8	75 mm	
в	57 mm	
с	38 mm	
Canin	7 mm	
Canin	25 mm	
di	178 mm	
Damax	226 mm	
tia max	135 mm	
Danis	188 mm	
Dawin	224 mm	
thorein	124 mm	
f1,2min	4 mm	
f2,4 min	3 mm	
famai	4 mm	
fb max	3 mm	
1		
m	12,3 kg	Maso
Cr	475000 N	Basic dynamic load rating, radial
8	0,83	
Y	0,73	
Car	600000 N	Basic static load rating, radial
Yo	0,4	
ng	2800 1/min	Limiting speed
na	2200 1/min	Reference speed
	T7GB110	Comparative designation to ISO 355
Car	70000 N	Fatigue limit load, radial

2006-10-29 13:05

21

FAG

;	31324-X		
	Figure 1, Figur	e 2	
	d	120 mm	
	D	260 mm	
	Т	68 mm	
	8	82 mm	
	В	62 mm	
	С	42 mm	
	Camin	9 mm	
	Carrin	28 mm	
	dı	192 mm	
	Damax	246 mm	
	tia max	145 mm	
	Damin	203 mm	
	Damin	244 mm	
	tắc min	134 mm	
	f1,2nin	4 mm	
	f3i, 4 min	3 mm	
	famai	4 mm	
	fb max	3 mm	
	m	15,4 kg	Mass
	Cr	560000 N	Basic dynamic load rating, radial
	8	0,83	
	Y	0,73	
	Car	720000 N	Basic static load rating, radial
	Yo	0,4	
	ng	2600 1/min	Limiting speed
	ne	1900 1/min	Reference speed
		T7GB120	Comparative designation to ISO 355
	Car	82000 N	Fatigue limit load, radial

2006-10-29 13:05 22

FAG

31326-3	x	
Figure 1,	Figure 2	
d	130 mm	
D	280 mm	
т	72 mm	
1		
8	87 mm	
в	66 mm	
С	44 mm	
Canin	9 mm	
Canin	28 mm	
di	206 mm	
Damax	282 mm	
tia max	157 mm	
Danis	218 mm	
Dawin	261 mm	
tāb min	148 mm	
f1,2nin	5 mm	
f3, 4 min	4 mm	
famai	5 mm	
fb max	4 mm	
1		
m	19,1 kg	Mass
Gr	630000 N	Basic dynamic load rating, radial
8	0,83	
Y	0,73	
Car	810000 N	Basic static load rating, radial
Yo	0,4	
ng	2400 1/min	Limiting speed
na	1700 1/min	Reference speed
	T7GB130	Comparative designation to ISO 355
Car	91000 N	Fatigue limit load, radial

2006-10-29 13:05

23

SCHAEFFLEN GROUP

3	1328-X		
Fi	igure 1, Figure	2	
d		140 mm	
)	300 mm	
Т		77 mm	
8		94 mm	
B	3	70 mm	
0	3	47 mm	
0	Carerin .	9 mm	
0	là min	30 mm	
d	1	223 mm	
	la max	282 mm	
đ	a reax	169 mm	
	la min	235 mm	
	Da min	280 mm	
đ	b nin	158 mm	
r	1, 2 min	5 mm	
6	à, đi nin	4 mm	
n	a max	5 mm	
n	b mate	4 mm	
Ł			
n	n	23 kg	Mass
10	2a	710000 N	Basic dynamic load rating, radial
		0,83	
Y	r	0,73	
0	3ar	920000 N	Basic static load rating, radial
Y	ία.	0,4	
n	G .	2400 1/min	Limiting speed
n	9	1600 1/min	Reference speed
		T7GB140	Comparative designation to ISO 355
0	lar -	101000 N	Fatigue limit load, radial

2006-10-29 13:05 24

31330-	-X	
Figure 1,	Figure 2	
d	150 mm	
D	320 mm	
т	82 mm	
1		
а	100 mm	
в	75 mm	
с	50 mm	
Canin	9 mm	
Camin	32 mm	
d1	237 mm	
Damax	302 mm	
tianax	181 mm	
Damin	251 mm	
Damin	300 mm	
tho min	168 mm	
f1,2 min	5 mm	
F2, 4 min	4 mm	
Га пак	5 mm	
fb max	4 mm	
)		1
m	28 kg	Mass
Cr	820000 N	Basic dynamic load rating, radial
	0,83	
Y	0,73	
Car	1080000 N	Basic static load rating, radial
Yo	0,4	
ng	2200 1/min	Limiting speed
ne	1500 1/min	Reference speed
	T7GB150	Comparative designation to ISO 355
Car	115000 N	Fatigue limit load, radial

2006-10-29 13:05

25

C.4. Acoplamientos flexibles RWCOUPLINGS

MODEL	BK	1											
IECHNICAL SPECI	FICAT	TIONS											
1= A* =	1		1- 1	F#		Propert	ios:	• •	locial des	algin applic	at ker		
	+	_	Ľ	1-44	4	Materia	al:	Balto	wis maada Kezes se ool	of highly hub mab	filoziblici h orkal: skoe	tigh grada A	-
		4	1	1	Y	Design.		The H tooks mach	lutes have , and the inead to 15	HB and OC VO H7 tota	cled motio Dare cons turicas.	ic mountle contrically	1g 1
	-] '	C	-	/	Temper	ature	Hubs bolt c	with cust incles and	tom bone s Lava Rabia	siao, mou Eupon ice	nting thro quest.	eets and
						range: Speeds	:	-30 k	10,000 g	(3.6 F - Z) on, In eac	10:1) 1255 of 10	.000 with	
								nnah	tolarico	d varsion.			
						Service	life:	These	coupling ical limits	p-are mail 1 are not e	nt ana maa ta concerted	iroa if the	1
Ordering succession						Backla	sh:	Ateo	lutionly bear	kirsh tro	a due to b	inted con	notice
									the second se				BROAD IN
ordering example						Briefor	ver load se	Arres	nueldate	to 15 tin	es the w	in stori	fied.
B	K1/15	0 / 62 /	xx			Brief on Tolerau	veriloadis:	Acce Do to	ptable up a hub /shr	ito 1.5 tim aft connac	es the wa	iu spaci to 0.05 m	fied. m
Model Series /Ne Oscial length Nen standard and standard series	(1/15		XX			Briefon Tolerau Non-sta applica	ver load s: co: an dard tion:	Acce Do to Custo non s upon	ptable up a hub /shi m design tanclard a request.	to 1.5 tin off.connac is with va naterial a	es the va tion 0.01 riet tolen nd bellow	fun spacif 10 0.05 m ances, key vs are ava	fied. m yworys, itabło
Model BV 1	K1/19		XX			Briefon Toleran Non-sta applica	ver load s: loe: an dard dion: So	Acce Do to Casto non-s upon	ptable up a hub /str im design tanchind n roquest.	to 1.5 tim aft connac is with va naterial a	esthe vo tion 0.01 riet toloo nd bellow	fiai sparf to 0.05 m ances, key vs are ava	ned. m worys, itable
Model BK 1	K1/15	15	<u>XX</u>	60	150	Brief on Tolerau Non-sta applica	rer load sc cez an dard tton: Se 300	Acce On to Custo non a upon	ptable up a hub ish m design tandard n raquest. 800	to 1.5 tim rft connac is with va nateriata	es the ve tion 0.01 riet telop nd bellow	fue spacif to 0.05 m ances, key vs are avo	ficit. m weiys, dablo
Model BK 1		15	XX 30	60	150 110	Brief on Tolerau Non-sta applica	rer loads: ce: andard tion: Se 300 300	Acce On to Casto non-s apon Cles 500 Sol	ptable up a hub/shi m design tandind n mquast.	to 1.5 tim rft connact rs with var material a	es the vo tion 0.01 rief tolos nd bellow	file spacif to 0.05 m ances, tey vs are avo	Rati. m Watys, itabla
Model BK 1 Sector Proposed Provider Statements Model BK 1 Sector Provider Statements Model BK 1 Sector Provider Statements		0/62/ 15 15 30 17	XX 30 30 21 44	60 63 43 53	150 130 30 U	Brief on Tolerau Non-sta applica 200 201 50 50 50 50 50 50 50 50 50 50 50 50 50	roricads: co: andard tion: Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec	Acce Do to Custo nun-s upon Class Sol Sol H Tr	ptable up a hub /str m design tarclard i request. 800 m 124	to 1.5 tim rft connects is with variation for material for 1500 1500	es the vo tion 0.01 riest toles nd believe 4000 146	fine spacif to 0.05 m ances, hey as are into ances, hey as are into ances, hey ances, hey ances, hey ances, hey ances, hey ances, hey are an ances, hey are an an an an an an an are an an an an an an an are an an an an an an are an an an an are an an an are an an an an are an an an an are an an an are an an an are an an an are an an are an an are an an are an an are an an an are an an are an an an are an an an are an an are an an an are an an an are an an an are an an are an an are an an an are an an an are an an are an an an are an an an an are an an an an ar an an an an an an ar an an an an an ar an an an an an an an an ar an an an an an an an an an ar an an an an an an an an an an ar an an an an an an an an an an an an an an an a	Nort. m warys, dablo 10000 1000 1000
Model BK 1 Model BK 1 Sensitive of between the set of		0/62/ 15 18 30 17 41 74	XX 30 30 30 31 4 31 31	60 83 43 13 18 19	150 150 50 E7 11	Brief on Tolerau Non-sta applica 200 200 50 50 200	rericads: ce: andard tion: Se 300 40 100 100 100	Acce Do to Custo upon 500 501 M T To Y	ptable up a hub /stru m design tanciard n request.	to 1.5 tim rft connac rs with var national a 1500 1500 1500 1501 22	esthe w tion 0.01 rief toler nd belinv 4000 146 200	fice space to 0.05 m ances, key vs are avo see see to to to to to to to to to to to to to	Mad. m ways, ilablo 10000 1000 1000 1000
Model BK 1 Model BK 1 Rain target Pro Control tar		0/62/ 15 18 30 11 44 15 28	30 30 30 31 31 32 41 32	60 80 41 51 81 91	150 110 20 E7 81 13 20	Brief on Tolerau Non-sta applica 50 50 50 50 50 50 50 50 50 50 50 50 50	roricandis: cos: an daard tion: 300 411 110 110 110	Acce Do to Caste upon 500 501 M Tr DH 10 10	ptable up a hub /shi m design tanciard i request. 900 010 010 111 120 116 116	to 1.5 tim rft connact s with var material a 1500 1500 1500 1500 1500 1500 1500 150	4000 4000 146 146 146 146 146 146 146 146 146 146	fun spach to 0.05 m ances, key vs are ava s ava s ava s are ava s are ava s	Mod. m ways, ilablo 10000 1000 1000 1000 1000 100 100 100
Model BK 1 Model BK 1 Model BK 1 Rain tanger Par Data tanger failure (m) Rain tanger (15 15 30 11 41 7.5 28	XX 30 32 44 35 38 56	60 83 43 53 85 33 50 50	150 150 20 E7 31 13 50	Brief on Toterau Non-sta applica 500 500 500 500 500 500 500 500 500 50	roricads: cc: andard tion: Sec 40 10 110 13 14 10 10	Accer Do to Custo non-s upon 500 500 500 500 500 500 500 500 500 50	Plable up a hub Ash an design tanciard i request. 900 010 010 010 010 010 010 010 010 010	to 1.5 tim rft comac rs with var material a 1500 1500 1500 1500 1500 1500 1500 150	es the witten 0.01 rief teletion of believe 4000 4000 546 520 310 310 310	fun spach to 0.05 m ances, key vs are invo coor 100 100 100 100 100 100 100 100 100 10	10000 1000 1000 1000 1000 1000 100 100
Model BK 1		15 15 30 11 41 15 20 17	XX 30 32 44 35 38 38 38 38	60 83 43 53 85 38 38 43 43 50 85 98	150 150 50 E2 31 13 50 50 50 50 50 50 50 50 50 50 50 50 50	Brief on Toterau Applica 501 501 503 503 503 503 503 503 503 503 503 503	rericeeds: ce: andard tton: 300 300 300 40 300 40 300 40 300 40 300 40 300 40 300 40 300 40 40 40 40 40 40 40 40 40 40 40 40 4	Accer Do the Custo non-s upon 500 500 500 500 500 500 500 500 500 50	Plable up a hub /shi m design tancind n request. 900 000 000 000 000 000 000 000 000 00	to 1.5 tim rft connect revelth var material a 1500 1508 100 1508 100 1508 100 1508 100 1508 100 1509	es the witten 0.01 rieft teleti nd believe 4000 146 200 340 340 340 340 340 340	ine spacif to 0.05 m ancas, key ys atte zwa soatte zwa soatte zwa soatte zwa soatte zwa soatte zwa soatte zwa soatte zwa soatte zwa soatte zwa soatte	10000 10000 1000 1000 1000 1000 1000 10
Model BK 1	K1/15 7 T= 7 A 8 B 0 C 1 D 1 C	15 11 12 13 11 14 15 13 11 14 15 17 14 14 14	XX 30 30 30 30 30 30 30 30 30 30 30 30 30	日 日 日 田 1 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 1	150 150 50 E2 11 13 50 VE	Briefor Toleras Non-sta applica 50 50 50 50 50 50 50 50 50 50 50 50 50	rericeeds: ce: andard ttou: 300 300 40 300 40 110 120	Acces Do to Cursto non s upon 500 500 500 500 500 500 500 500 500 50	Plable up a hub /shi m design tancient i request. 900 m 103 103 105 105	to 1.5 tim rft connect s with var material a 1500 1908 100 1908 100 1908 100 1909 100 1909 100 1909	es the witten 0.01 ried toles nd believ 4000 145 200 140 145 200 140 145 200 140 140 140 140 140 140 140 140 140 1	ine spacif to 0.05 m ances, key vs ate zwa sources sources ate zwa sources ate zwa ate zwa sources ate zwa sou	100000 10000 1000 1000 1000 1000 1000
Model BK 1 Model		15 15 15 15 15 15 15 15 15 15 15 15 15 1	XX 30 30 30 30 30 44 31 31 31 31 31 31 31 31 31 31	60 80 41 10 10 11 11 10 11 10 11 10 10 10 10 10 1	150 130 20 17 31 13 13 13 13 14 50 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Briefor Toleras Non-sta applica 50 50 50 50 50 50 50 50 50 50 50 50 50	rericeeds: ce: andard ttou: 300 300 40 300 40 100 100 100 100 100 100 100 100 10	Acces Do th Cursto non s upon 500 500 500 500 500 500 500 500 500 50	etable up a tubi istr an design tandard n request. 800 80 80 80 80 80 80 80 80 80 80 80 80	to 1.5 tim rft connect is with variant and real real and 1500 1508 100 1508 100 1508 100 1508 100 1508 100 1509 1509 1509 1509 1509 1509 1509	es the witten 0.01 tion 0.01 riet toles nd believ 4000 146 200 146 300 300 300 300 300 300 300 44 44	ine spacif to 0.05 m ancas, key ys ate awa source source ate awa source ate awa source ate awa source ate a source ate ate a source ate ate a ate a source ate	100000 10000 1000 1000 1000 1000 1000
Model BK 1 Series /Ne. Overall lamph: Non standard up, standars via Model BK 1 Lind targer Per Seriel Lamph: Annual Per Ling thread clipting Per L	K1/15 T _m A B C C C C C C C C C C C C C	15 15 15 15 15 15 15 15 15 15	XX 30 30 30 30 30 44 31 31 31 31 31 31 31 31 31 31	60 80 41 10 10 11 11 11 11 11 11 11 11 11 11 11 1	150 130 20 87 131 13 13 13 12 13 131 125 14	Briefor Toleras Non-sta applica 50 50 50 50 50 50 50 50 50 50 50 50 50	rericeeds: ce: andeard tton: 300 300 40 300 40 10 10 10 10 10 10 10 10 10 10 10 10 10	Acces Dn th Cursto non s apon 500 500 500 500 500 500 500 500 500 50	etable up a tubiðstr m design tandind i request. 800 010 111 113 115 115 115 115 115 115 115 115	to 1.5 tim rft connect is with variant and reader to 1.4 1500 1508 100 1508 100 1508 100 1508 100 1509 1509 1509 1509 1509 1509 1509	es the witten 0.01 tion 0.01 riet toles nd believ 4000 146 200 146 200 146 140 140 140 140 140 140 140 140	ine spacif to 0.05 m ancas, key ys atta awa source source awar 100 200 100 100 100 100 100 100 100 100	100000 10000 1000 1000 1000 1000 1000
Model BK 1 Series /Ne Overall langth Need langth Need langth Need langth Model BK 1 and targer Par and targer Partice the globased digth inter merchanises IF inter a tatering Preside the discusser IF inter a tatering Preside the discusser IF inter a tatering Preside (DP Need	K1/15 T _m A B C C C C C C C C C C C C C	15 15 15 15 15 15 15 15 15 15	XX 30 30 30 30 44 31 31 32 31 30 30 30 30 30 30 30 30 30 30	60 80 41 60 10 10 10 10 10 10 10 10 10 10 10 10 10	150 130 20 17 31 13 30 45 45 13 13 13 13 13 13 13 13 13 13 13 13 13	Brief or Toleras Non-sta applica 50 50 50 50 50 50 50 50 50 50 50 50 50	rericeeds: ce: andard tton: 300 300 40 300 40 110 110 110 110 110 110 110 110 11	Acces Dn th Cursto non s upon 500 500 500 500 500 500 500 500 500 50	etable up a tubi istr m design tandard n request. 900 010 111 115 115 116 116 116 116 116 116 116	to 1.5 tim rft connect is with variantial a realistical a realistical a realistical realis	4000 4000 4000 4000 4000 4000 4000 400	i un spach to 0.05 m ancas, key ys ana awa soar soar 100 200 100 100 100 100 100 100 100 100	100000 10000 1000 1000 1000 1000 100 10
Model EX 1 Series /Ne Oscal langh Needlangh Needlangh Needlangh Model EX 1 and targe Par and targe Par and targe Par and targe I along Par ar atom of Salaran I ar a target based dipting I ar a target based ar a t	1 Tm 1 Tm 2 Tm 2 Tm 3 Tm 4 Tm 5 Tm 6 Tm 7 Tm 6 Tm 7 Tm	15 18 18 18 18 18 18 18 18 18 18	XX 30 30 30 44 81 38 44 81 38 14 15 10 28 14 15 10 10 10 10 10 10 10 10 10 10	EU 83 41 53 81 54 81 64 82 63 93 63 93 63 93 63 93 63 93 63 93 63 93 63 93 63	150 130 20 E2 31 13 50 50 50 50 51 13 135 135 135 135 135 135 135 135 1	Brief on Toteras Non-sta applica 501 501 501 501 14 150 14 150 14 150 140 0.01 140 0.01 140 0.01 140 0.01 140 0.01 140 0.01 140 150 140 150 140 150 140 150 150 150 150 150 150 150 150 150 15	rericeeds: ce: andard tton: 300 300 40 300 40 110 110 110 110 110 110 11	Acces Dn th Cursto non s upon 500 500 500 500 500 500 500 500 500 50	etable up a tubi/str m design tandird n request. 900 010 111 123 116 116 116 116 116 116 116 116 116 11	to 1.5 tim rft connect is with variant rational 1500 1500 1500 1500 1500 1500 1500 150	4000 4000 4000 4000 4000 4000 4000 400	ine spacif to 0.05 m ancas, key scale aver scale aver scale aver to to to to to to to to to to to to to	100000 1000 1000 1000 1000 100 100 100
Model Series / Ne Coord Targer (Ne Coord Targer (Ne Coord Targer (Ne Coord Targer (Ne Model BK 1 and targer (Ne and targer (Ne) (Ne and targer (Ne) (Ne and targer (Ne) (Ne) (Ne) (Ne) (Ne) (Ne) (Ne) (Ne)	Tmm	15 18 18 18 18 18 18 18 18 18 18	XX 30 30 30 30 30 30 30 30 30 30	E/L 83 41 43 81 51 31 51 44 63 93 635 11 635 12 635 13 13 14 13 15 2 15 2 15 2 15 2	150 120 20 12 31 13 50 50 50 12 31 13 12 13 12 13 12 13 51 12 13 51 12 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 51 13 13 13 13 13 13 13 13 13 13 13 13 13	Briefor Toteras Non-sta applica 50 50 50 50 50 50 50 50 50 50	rericeeds: ce: mdard tion: 300 48 70 110 14 08 40 10 110 14 08 10 10 10 10 10 10 10 10 10 10	Acces Dn th Cursto non s upon 500 500 500 500 500 500 500 500 500 50	Plable up a hub/shr m design fandind i request. 900 m m tan 10 m 10 m 10 m 10 m 11 m 10 m 11 m 11	to 1.5 tim rft connect s with var national 1500 1500 1500 1500 1500 1500 1500 150	4000 4000 4000 4000 4000 4000 4000 400	i un spach to 0.05 m ancas, key is alle aver soll aver s	100000 1000 1000 1000 1000 100 100 100
Ander ing example Bi Ander An	1 1 1 1 2 3 3 0 4 0 5 0 7 4 2 3 3 0 4 0 5 0 6 0 7 Name 7 Name	0 / 62 / 15 15 15 20 17 48 0.07 0.07 10 10 10 10 10 10 10 10 10 10	XX 30 30 30 30 41 31 31 31 31 31 31 31 31 31 3	EU 83 41 43 81 53 31 53 45 0.32 0.35 0.32 31 45 1.5 2 0.27 0.25 1.5 1.5	150 120 20 12 31 13 50 50 50 11 13 13 13 13 13 13 13 13 13 13 13 13	Briefor Toteras Non-sta applica 50 50 50 50 50 50 50 50 50 50	serioads: ce: idard iton: 300 480 110 14 00 110 14 01 110 140 110 140 110 110 110 110 110 110 125 325 325 121 11	Acces Dn th Cursto non s upon 500 500 500 500 500 500 500 500 500 50	Plable up a hub/shr m design fandind i request. 900 010 111 123 116 116 116 116 116 116 116 116 116 11	to 1.5 tim rft connect is with variant is with variant	4000 400 4000 4	i un spach to 0.05 m ancas, key is alle aver solle aver solle 100 200 100 100 100 100 100 100 100 100	100000 1000 1000 1000 100 100 100 100 1
Model M	Tmm	0 / 62 / 15 15 15 23 17 48 7.5 28 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	XX 30 30 30 30 41 31 31 31 31 31 31 31 31 31 3	E/L 83 41 43 81 51 31 61 0.30 0.32 331 45 1.5 2 0.27 0.28 1.5 4.8 1.5 2 0.27 0.28	150 130 20 E2 31 13 42 42 42 13 13 13 13 13 13 13 13 13 13 13 13 13	Briefor Toteras Non-sta applica 308 50 508 508 508 508 508 508 50	ser load sc ccc indard iton: 300 300 400 110 120 110 121 110 110 110 110 110 110 110 110 110 110 110 110 110 1110 <	Acces Dn th Cursto non s apon 500 500 500 500 500 500 500 500 500 50	Plable up a hub/shr m design fancind i request. 900 m m tan 10 m 10 m 10 m 116 m 117 m 116 116	to 1.5 tim rft connect is with variant raterial a 1500 1508 150 150 150 150 150 150 150 150	4000 4000 4000 4000 4000 4000 4000 400	i un spach to 0.05 m ancas, key is alle aver soll soll ful col ful col ful col ful col ful col ful col ful col ful soll ful ful ful ful ful ful ful ful ful f	100000 1000 1000 1000 1000 100 100 100

www.rwcouplings.com

R+W 5

Thomas

C.5. Acoplamientos flexibles THOMAS

IPD8R

ACOPLAMIENTOS DE LAMINAS SERIE 54RD

Los ac oplamientos Thomas® de la serie 54RD, están diseñados para facilitar el mantenimiento de las uniones de maquinas. Este acoplamiento único, con su pieza central partido en dos mitades, puede emplearse generalmente en el lugar de acoplamientos lubricados.

 La pieza central, partida en dos mitades, permite la sustitución del paquete de láminas, sin tocar el plato o desplazar y realinear el equipo conectado.

2 Un reborde interno de centrado para el elemento intermedio, asegura un excelente equilibrado yun fácil desmontaje.

3 Los paquetes de láminas elásticos aceptan la inevitable desalineación sin necesidad de lubricación. El diseño del paquete de láminas múltiples permite ser inspeccionado visualmente sin desmontarlo, a fin de pader detectar fallos prematuros.

4 La capacidad para grandes diámetros de taladro y el diseño con mínimo diámetro exterior son ideales para reemplazar los acoplamientos de engranajes y de fleje.

5 Tornillos hexagonales grado 8 auto blocantes.

6 Platos mecanizados, disponibles en una granvariedad de específicaciones de agujeros.

FACIL MONTAJE Y DESMONTAJE

Para mayar información vea instrucciones de montoje y mantenimiento.

Desmontar los tomillos y sa car las piezas intermedías.

Demonitar las tuercas del paquete de láminas, deslizando el adaptador sobre el plato contrario. Sacar el paquete de láminas entre los platos.

Insertar el paquete de láminas de repuesto entre los platos y volver a deslizar el adaptador en su posición. Fijar de nuevo el paquete de láminas.

Instalar las dos mitades de la pieza intermedia, apretar lastuecasautoblocanies y tornillos.

6

Información técnica en unidades métricas

Ref.	KW/r.p.m.	Máx. r.	Par	Par de	Peso	WR	Desolineación	
	fadar de servida 1.0	Sin equilibrar	Equilibrado::)	continuo Nm	pico Nm	Kg.O	© Kgm	aziai mm. O
162 200 225 262 312 350 375 425 450	0,0515 0,101 0,207 0,208 0,400 0,400 0,405 0,858 0,949	4.200 3.200 3.500 3.600 2.000 2.200 2.200 2.200	7.000 6.000 5.500 4.500 4.500 4.500 3.700 3.400	493 959 1.210 1.980 2.750 3.850 5.770 8.170 9.290	985 1.920 2.420 3.470 7.710 11.500 16.300 18.400	4,39 7,85 8,89 14,4 21,5 31,0 42,8 56,7 74,8	0,0071 0,0208 0,0255 0,0558 0,117 0,207 0,267 0,363 0,562 0,849	±0,914 ±0,914 ±0,914 ±1,09 ±1,30 ±1,42 ±1,42 ±1,57 ±1,70
500 550 600 700	1,47 2,54 3,18 4,09	(2.000) 1.900 1.800 1.700	2.800 2.500 2.500	14.000 24.300 30.400 39.100	28.000 48.600 60.800 78.200	1 07 2 17 3 23	1,39 2,87 4,83 9,33	± 2,08 ± 2,34 ± 2,59 ± 2,92

Para dimensiones mayones consultenos

Bazado en la graduación de sensibilidad del sistema según ANSI/AGMA 9000-C90. Para mayores velocidades consultenas.
 Con toladro máxima.
 Las acoptamientos de láminas elásticas Thomas® cumplen con las especificaciones NBMA MO1-14.37 sin modificaciones ni dispositivos de retención de desalineaciones aciales.

NOTA: dimensiones ajetas a cambios. Bajo petición se puede arministrar certificados dimensionales del material.

EPID6R

LPID®R

ACOPLAMIENTOS DE LAMINAS CON ESPACIADOR SERIE 71

Los acoptamientos de la serie 71 de Thomas® están diseñados para aplicaciones que requieren una amplia separación entre los extremos de los árboles. Es ideal para la coneción de bombas según A®⁶ 610, dan de la ficibilidad yel equilibrado dinámico son muy importantes. El distanciador central está disponible en varias longitudes para cubrir las especificaciones ANSI, sobre requerimientos de separación de los árboles.

 El adaptador centra el plato asegurando los mismos valores de equilibrado. La brida del plato proporciona a este, una superficie de referencia para facilitar la alineación del acoplamiento.

2 El distanciador central, ensamblado en fábrica como una sola unidad, puede desmontarse sin tocar los platos o el paquete de láminas.

3 Existen platos estándar que pueden adaptarse a especificacion es especiales de taladros. Opcionalmente se puede dispon er de platos de mayor longitud para agujeros largos.

4 Los paquetes de láminos múltiples en acero inoxidable resisten a la corrosión y permiten un control visual para la detección rápida de fallos, sin necesidad de desmontaje.

5 Un anillo guía de poliureta no minimiza las vibraciones y el contacto metal-metal en caso de un fallo del paquete de láminas.

6 El sistema de fijación patenta do, permite utilizar los tornillos de los platos para comprimir el paquete de láminas, facilitando el montaje y desmontaje del componente central.

FAGL MONTAJE Y DESMONTAJE

"API - Instituto Americano del Petróleo "Para max información, vea las instrucciones de montaje y mantenimiento.

Desmonte los tornillos situados en los extremos de los platos, instale estos mismos tornillos en los agujeros del distanciador central.

10

Apriete los tornillos para comprimir los paquetes de láminas y permitir el desplazamiento del distanciador central.

El distanciador central puede desmontarse y sustituirse el paquete de láminas, o puede volver a instalarse un nuevo conjunto completo.

Saque los tomillos de compresión y fije los platos al distanciador central emplicando los mismos tornilos.

																				E	LPID 84
ACOPLAMIENTO DE LAMINAS CON ESPACIADOR SERIE 71																					
B -1.					C(m	n.)	_	_	_	_	Raf.	8561 Aguiero	82 Aquiaro	^	8	61 ©	82	C Istánd.	c Min	L Máx	G
	39	100	111	127	140	178	1 30	190.5	203.2	2 28.6		máz©	máz.©		-	_					
150	:		:	:							150	39 50	64	91,28 1 05.6	20,2 29,7	42,9	41,3	89 89	87	52,3 65.0	58,7
225	·	•		·	•	•	•				225	55	87	125,4	50,8	61,5	52,4	127	87	78,5	84,9
3 00				1: 1	:	:	:				300	81	110	151,6	66,7 79,4	82,6	69,9	127	102	104.6	112,8
				· .							1.41	~	120		100	140	1.01.0	1.4.7	140	12,7,0	1.8.8,9
3,75				·	•	:	:				375	100	13.7	193,7	82,6	101,6	82,6	139,7	127	134,9	143,7
462						:	÷.				462	130	166	220,2	104.8	127.0	_	178	1.78	160.0	173.8
512						•		•			512	1.40	18.7	254,8	114,3	136,5	-	178	1.78	179,3	193,7
5.62									•		5.62	156	20.0	2,78,6	1 27,0	152,4	-	203,2	203	195,3	212,7
600										•	600	165	22.0	297,7	130,4	161,9	-	228,6	2.29	211,1	227,0
712											712	199	-	352,4	158,8	_	_	218,1	225	258,6	271,1
8 00											8.00	224	-	E,291	1,77,8	-	-	276, 2	260	288,8	304,8
875											875	241	-	435,0	196,9	-	-	304,8	289	317,5	300,4
							_	-		-		200									

Info	mación té	enica									
Ref.	KW/c.p.m	Máx.r.p	an.o	Par continuo	Par de pica	Page Kar	Page Combinence	J	J Combinera	Deflex.	N* Intellige
	servida=1,0	Sin equilibrar®	Equilbrada	Nm	Nm	~ *	an de QKg.)	©	an de C (Kg.cm [*])	mm.©	par disco
150	0,011	9.00.0	20.800	105	210	3,05	0,017	32	0,04	± 1,3	4
175	0,019	8.300	17.000	184	368	4,24	0,025	60	0,10	± 1,8	4
225	0,036	7.700	16.000	346	69.2	6,30	0,004	1 20	0,29	± 1.9	6
30.0	0,086	6.800	14.000	820	1.640	11,75	0,046	3.60	0,76	$\pm 2,2$	6
250	0,158	6.200	13.500	1.515	3.030	19,4	0,075	7.60	1,36	$\pm 2,3$	6
375	0,228	5.650	12.000	2.180	4.360	25,1	0,077	1.250	1,87	$\pm 2,4$	6
41.2	0,266	5.350	11.000	2.540	5.050	32,0	0,107	1.800	3,34	±, 2, 8	6
46.2	0,478	5.000	10.000	4.565	9.130	45,8	0,140	3.290	5,36	\pm 3,0	6
512	0,651	4.700	9.200	6.215	12.400	61,2	0,185	5.400	8,55	± 3,3	6
562	0,995	4.350	8.300	9.500	19.000	84,4	0,229	8.900	12,0	$\pm 3,7$	6
60.0	1,085	4.150	7.800	10.360	20.720	100,4	0,313	12.500	20,2	$\pm 4,1$	6
712	1,29	3.450	7.200	12.400	24.800	1.61	0,245	26.650	19,5	$\pm 2,1$	8
300	1,90	3.250	6.800	18.200	36.400	2.29	0,387	47.700	38,2	$\pm 2,3$	8
875	2,78	3.050	6.400	26.500	53.000	305	0,400	77.550	52,5	$\pm 2,6$	8
10018	4,09	2.900	5.800	39.100	78.200	490	0,573	1 65.0 00	85,7	$\pm 2,9$	8

Ø. Vea página 5-22 en el boletín No. 2000W para explicación de las límites de RPM y recomendaciones de equilibrado.
Ø. Peao y Momento de Inercia con platos de longitud estándaç toladro máximo y "C" estándac.
Ø. El plato con aguijero cónico es mas largo, ya que induye una zana de mayor diámetro para poder montar el extremo roscado del eje cónico.
Ø. Longitud del plato grande. Si necesita otras dimensiones a las indicados en la tabla, consultenos.
Ø. Longitud del plato grande. Si necesita otras dimensiones a las indicados en la tabla, consultenos.
Ø. Longitud del plato grande. Si necesita otras dimensiones a las indicados en la tabla, consultenos.
Ø. Longitud del plato grande. Si necesita otras dimensiones a las indicados en la tabla, consultenos.
Ø. El montaje de acoptamientos de la serie 71 cumple: con la norma ISO G6.3 EQUILBRADOS, cuando está ejecutado con talados arabados.
Ø. El montaje de la 100 G2.5 está disponible bajo pedida.
Ø. Longitud de la 100 G2.5 está disponible bajo pedida.

Seguna trata da se da la 130-600 suministrados in agujero acobado son degos. Los platos de talla 712 y mayores tendrán un taladro mínimo en bruto, si no se especifica un acobado concreto.

NOTA: dimensiones sujetas a cumbios. Bajo petición les podemos entregar certificado dimensional del acoptamiento.

11

EPID8R

SELECCION DE ACOPLAMIENTOS

PROCEDIMIENTO DE SELECCION DEL ACOPLAMIENTO

Paraseleccionar un acopiamiento, en la mayoría de las aplicaciones se puede emplear uno de los siguientes procedimientos. En aplicaciones en que los ciclo sy cargos normales de trabajo, o el diseño del acopiamiento no se corresponde con los valores y datos indicados en las tablas, tendrá que seleccionarse teniendo en cuenta una serie de consideraciones especiales. En este caso rogamos nos consulten.

Procedimiento en función del Par de Torsión

 Seleccione el tipo de acoptamiento (diseño Omegar® o Thomas®).

2 Calcule el Par de trabajo (Nm) = 9550 x (KW/RPM)

3 Multiplique el Par de trabajo por el factor de servicio obtenido de la tabla inferior, o de la página siguiente

4 Seleccion e la dimensión del acoplamiento con una resistencia a la torsión igual, o mayor que la determinada en el paso 3. Asegúrese de emplean el ratio de potencia y servicio relacionado para el tipo de acoplamiento seleccionado en el paso 1.

- 5 Compruebe también los siguientes parámetros:
- Velocidad máxima detrabajo del acoplamiento.
- Diámetro máximo del agujero del cubo.

FACTORES DE SERVICIO

Los factores de servicio son parámetros que sirven para dasificar equipos y aplicaciones diferentes, dentro de los diversos tipos de carga a que se ve sometido el acoplamiento. Dimensiones del chavetero, diámetro exterior del acopia-

- miento ylongitud. • Condiciones ambientales.

Procedimiento en función de la relación KW/RPM

1 Seleccione el tipo de acoplamiento (diseño Ornega ¹⁴ o Thomas®).

2 Calcule el ratio KW/RPM

 Multiplique el valor KW/RPM calculado, por el factor de servicio obtenido de la tabla inferior, o de la página siguiente.

4 Seleccione el acoptamiento con la relación KW/89M igual o mayor que la determinada en el paso 3. Asegúrese de emplear el valor y el factor de servicio indicado para el tipo de acoptamiento seleccionado en el paso 1.

- 5 Compruebe también los siguientes parámetros:
- Velocidad máxima de trabajo del acoplamiento
- Diámetro máximo del agujero del cubo
- Dimensiones del chavetero, diámetro exterior del acopiamiento y longitud.
- Condiciones ambientales

Factor de servicio lpos de corgo funcionamiento en continuo del equipo y targas de tonsión variando ligenamente. Gama de temperatura para acopla-1.0 mientas Omega™ (ambiente) de -40°C de -40°F +93°C +200°F Cargas de tanián variando continuamente urante el funcionamiento del equipo. 1.5 a Cargas de tassián variando continuamente durante el funcionamiento del equipo con Aiuste de factor de servicio agra altas temperaturas de los acoplamien-tas Omega⁷⁴ 2.0 equentes paras y arrangues. Can cargas de chaque y variaciones importantes de tanián 2.5 Temperatura ambiente Ajuste del factor de servicio +66°C (1909) an cargas de chaque importantes a leves +0.253.0 ansmisiones de contramarcha. +70°C (165%) +0.50a existencia de cargas de tonión de contramarcha. +82°C (180%) +0.75o significa, necesariamente, la invensión del sentido de gira. +93°C (2004) +1,00 Dependiendo de la severidad de inversión de torsión. tales cargas deben dasificanse entre "medias" y "extremas". Consultar 12

Dichos factores se usan para ajustar el par nominal de la instalación a los requerimientos de latransmisión.

										LP:	DBR
FACTORES DE S	SER	vic	IO TIPICOS - EQ	UIP	05	ACCIONADOS P	ÖR	MC	TORES Y TURBI	NAS	5
						Adlastones and	ana la	~			
Aplicaciones indu	stric	les	Máquinas convertidoras,			Apricaciones gene	er a is	<u>a</u>	Dinanámetras	1,0	1,0
Cemento, proceso de ário	in.		escepto constores	2,0*	1,5	Agitadares (verticales	٧.				
Homes de mineria	2,5	2,0	Cortadota de chapa	2,0*	2,0	horizonnaiez, de helize	i, de		Elevadore a		
Notices de holes	3.0	2,0	Clindos	2,0*	2,0	tarisilio o de poletos) Unido auto	1.5	1.0	Decatador de cestiliza	2,2	2,2
Titandora de		- i - i	Limaladora de fieltro	2.0*	2.0	Densided vertable	2.0	1.5	Bicoleta menónica	2.5	1.5
minerales o aindra	3.0	2.0	Preventer	2.0*	2.0		-	.,	Discorgador de provedad	2.5	1.5
Homos de cemento	2,5	2,0	E obines	2.0*	1.5	Sophintex				- ,	.,
Secadores rotativos	2,0	2,0	Lavadora	2,0*	1,5	Centrifuga s	1,0	1,0	Directores		
Molinos de matillo	2,5	2,0				De lóbulos o poletos	1,5	1,5	Dr plático	2,0	2,0
Molino de Fotación o			industria del caudho						Dis metal	2,5	2,5
de tambor	2,0	2,0	Meadadora Banaury	3,0	3,0	Volguete	2.0	2.5			
Hormigoneras	2,0	2,0	Calandra	2,5	2,0			-,	Ventiladiares		
			Máquina de construcción	2,0	2,5	Comión de arrante	2,0	1.5	Gentrifugos, forzados		
Posto y popel							-,-		oinducidos	1.5	1,5
Siema de cinto, siema cincular	2,0	2,0	Prensa montradona			Confictores	1,25	1,0	Asiales, Foa ados o inducidos	1.5	1,5
Cantradora, asiasal			de cubiertos Retrinedes y colodos	1,0	1,0				Para minas De ballice	1.0	1.0
peterador, tritunadora	2,5	2,0	criticador y catador	2,0	2,0	Compressore			Tarras da californación	1,2	1,2
Pangorte de Voncos	2,2	2,0	industrie dei graph			Gentiligos	1,0	1,0	torns tai mingintazin	2,0	1,2
Rodil Ios, no revealed es	2,0	2,0	Familiator	2.0	2.0	Potrativos de Lólaulo			Alimento de cos		
Coto to reveal and a to	2,3	2,0	Banco de estivado	20	2.5	o de paletas	1,5	1,5	Di trabajo Basti	1.5	1.5
de anolo	1.5	2.0	Tenemisión de contendor	2.0	2.0	Rotativo de tomilio	1,25	1,5	Di trajagio gesado	2.5	2.5
Ginta trans actado ta	1,10	-	Devanadora	2.0	2.0	Alternativos	°	°			
de madera	2.0	1.5	Meso de descorgo			Asians	1,0	1,0	Generadarte		
Meso declosificación	2,0	1,5	sin comanantia	3,0	2,5	Tennestedana			Cargo uriforme	1,0	1,0
Description - tipo tarrier	si,a	2,5	Mesa de descarga			Da alaren o faldoran			Para montacangas o		
Agtador	1,5	2,0	con contramarcha	4,5	3,0	de coccera, de cardecoa	1.5	1.5	servicios de fenociantes	2,0	1,5
Desfiaradora	2,0	2,0	Tenemisión de cubierta			Red atocos	ъ́л	2.5			
Bl angunadora	1,0	1,0	del foso de recalentamiento	3,0	2,5	Do tomillo sinfin	1,25	1.0	Skhemak de impresión	Φ	1,5
Colondra	2,5	2,0	Rodil lo de transmisión tutado	12,5	2,0						
Descantilladora	3,5	3,0	Estinado de al amiane	2,0	2,0	Grúce y elevador es			Bombox		
Cilindro secador	2,0	2,0	and some data and			Grua principal -			Contraga - Telesian economics (Uniteda)		
Tensor de Selho	1,0	1,2	Des Reader	2.0	1.0	traisajo mediano	2,0	2,0	Costification - Coldern		1.0
Poundrinier	2,0	2,0	Calaadaa	2,0	2.0	Grüs prinsipal -			Centrifican - Kasi dan si mama	ĩ.	1.4
Toman	2,2	2,0	Cardadora	20	0.5	trabajo prezido	2,5	2,0	Gratiliza - dragado	20	20
Moledom de a las	2,2	2,0	Cilindro secodor	2.0	2.0	Montraca rgas	2,0	2,0	Rediatora ide aidonesi-	5	8
Ciliadas estructor	1.5	1.5	Teñidora	1.0	1.5	De pórtico, de puente,			Ritativa, engranaies,		-
Bornian entractions proteil una	1.25	2.0	Tetor	2.0	1.5	o colgante	2,0	2,0	Idiaulos yapletas	1.5	1.5
Bomba esta dora alternativa	2.5	2.0	Planchadiona	1,5	1,5	Deserve			<i>p</i> ,		
Borniao estradora inteliva	2.0	1.5	Penhadora	1,5	1,5	Consta da a rotito	2.0	2.0			
Rodil los de succión	2,5	2,0	Enjabonad ora	21,5	1,5	Transa octod or	20	1.5			
B obina dona	2,5*	2,0	Máquina de hillar	2,0	1,5	Di mineral cotrate	4,0	1,14			
Rodil los de coji rates	2,0*	2,0	6 outidor	2,0	1,5	de canal ones	3.0	2.5			
Cadena de al imentación		-	Devanadora	2,0	1,5	En bornisce, origos,					
de aspilladoras	$2,0^{0}$	2,0				transmistories, hactnadores	2,0	2,0			
Montacargias	$2,0^{2}$	2,0				Tono de grúa	2,0	1,5			
Recortado ra	2,0*	2,0				tono de maniolas	2,5	2,0			
Descerteactions, hidróidica	2,0*	2,5									
Descentracións, mecánica	2,0*	2,5									

O Los factores de servicio relacionados solo sirven como guía general y para fuentes de potencia suaves, tales como motores eléctricos y turbinas de vapor. Para las máquinas motices recipracas, tales como motores Diesel o de gas se deben a tadir los siguientes valores: -para 8 o más dindros, atadir (9,5, --para 6 o indros, atadir (1,9; para 4 o indros, atadir 1,5, -para 6 o indros, atadir (1,9; para 4 o indros, atadir 1,5, -para 6 de 4 o indros, atadir (9,5, -).

Si ambas, el transmisor y el equipo accionado, son reciprocos, constituenos. Anada 0,5 al factor si es sin valante O Los acoplamientos de elastómeno no deben recomendarse debido a las necesidades de rigidez tonsional del sistema, o la temperatura de trabaja. O Consultar.

NOTA IMPORTANTE D'onde existan vibraciones tonionales como en motores de cambustión interna, compresares alternativos o aplicaciones en bombas, verificar la talla del acoptamiento para determinar la posibilidad de que produzos una vibración tonional de gran amplitud. También conviene considenar el cosficiente de rigidas tonional del acoptamiento, disponible as través de Remond, ya que está relacionado con el análisis de frecuencia del fabricante del equipo.

PRECAUCIÓN.

En mecanismos sensibles al movimiento Asial, tales como los de rodamientos de manguito, podría ser recesario limitar la fuerza axial y/o de empuje. Considence para determinar el procedimiento adecuado de instalación.

			P	
		٠	h	
		-		

EPD86

INSTRUCCIONES PARA LA ALINEACIÓN DE LOS ACOPLAMIENTOS

Cualquiera de los mitodos expresados a continuación pueden emplearse para la alineación de acoplamientos Reenord. El montaje y la alineación correcta garantizan una larga vida y un servicio uniforme y sin problemas. Vea la hoja de instrucciones que está incluida en cada envío para el tipo de acoplamiento a montar. Para una información completa rogamos contacten con no so tros - pida el boletín MT-SS-004-01 sobre la alineación de acoplamientos.

COMPROBACIÓN MEDIANTE UN COMPARADOR (SISTEMA RECOMENDADO)

Comprobación de la desalineación angular:

El indicador mide la variación axial máxima de la separación entre platos en una rotación de 360°.

1 Fije el comparador al cubio mediante abrazaderas u otro sistema. Gire el acoptamiento 360° para localizar el punto de lactura minima en la sofera; gire entonces el cuerpo o la carátula del indicador de manera que la fectura cero se alinee con el puntero.

2 Gire el acoptamiento 360°. Observe el indicador para la las una de desalineación.

3 Los árboles conductores y conducidos estarán alineados cuando la lectura del indicador esté dentro de la variación máxima admisible para este tipo de acoplamiento. Veainstrucciones específicas demontaje para el acoplamiento a monta;

Comprobación de la desalineación radial:

El india ador mide el degalizzamiento de una línea del centro del eje respecto a la otra.

4 Reajuste el puntero a cero y repita la operación 1 y 2 auando aualquier unidad (accionada o transmisora) se mueva durante los ensayos de alineación.

5 Compruebe la desalineación radial tal como se muestra. Mueva o calce las unidades para que la desalineación ra dial quede dentro de las variaciones máximas admisibles según el tipo de acoplamiento.

6 El acoplamiento debe ginarse varias veces para asegurar la uniformidad de la desalineación.

7 Apriete todos los tornillos. No gire los pernos.

8 Vuelva a comprobar y apretar todos los tornillos después de varias horas de trabajo.

COMPROBACION MEDIANTE REGLA Y COMPAS

Comprobación de la desalineación angular:

 Emplee un calibre o compáspara comprobar la distancia entre los platos. Esta distancia debe ser la misma en todos los puntos alrededor de los platos.

2 Coloque la regla sobre las bridas de los platos. Cuando el acoplamiento está a lineado la regla debe descansar uniformemente y ambos paquetes de laminas deben quedar paralelos y en ángulo recto respecto a los árboles.

Comprobación de la desalineación radial:

3 Apriete todos los tornillos. No gire los pernos.

4 Después de varias horas de trabajo vuelva a controlar el huezo entre platos y vuelva a controlar la tensión de todos los tomilos.

MATERIALES PARA JUNTAS DE BRIDA

C.6. Juntas de estanqueidad EPIDOR

MATERIALES PARA JUNTAS DE BRIDA

Indice general

roducto

introducción

introducción

CÓ Frenzel II

Frenzelit, especialista en juntas

Al principio de los artos BO, Frenzelit optó por desarrollar una nueva técnica para la fabricación de juntas ecológicas, reemplazanda el amianto por nuevos materiales. La multiplicidad de soluciones a aportar a las problemas técnicos desembodo en una gran variedad de productos. Para simplificar la bioqueda de la junta adecuada, Frenzelit ha desarrollado un abanico reducido de materiales de estanqueidad basado en las esigencias técnicas de los usuarios de la induatria.

I+D, Aplicaciones tecnicas, Servicio

La estrategia de innovación de Frenzelit , contrastada a lo largo de los años, asegura que los resultados de sus propias investigaciones y la colaboración con sus dientes sean trasladados a los nuevos productos. De este modo, los efectos en la producción y en la aplicación son visibles en conto fermo.

El concepto de servicio Frenzelit se basa en la orientación al consumidor desde la I+D hasta la aplicación del producto. Muchos años de esperiencia y la elevada competencia de sus ingenienos, garantizan la calidad de dicho servicio.

NovaDISC

NovaDISC es un softesse desarrollado por Frenzeit que permite seleccionar el material mán adecuado para cada aplicación, encoger la junta apropiada para cada tipo de brida y calcular los pares de apriste de los tornillos, teniendo en cuenta el tipo de brida y el material de la junta a utilizar.

Política de Calidad

Innovación y productividad van intimamente ligadas cuando se trata de conseguir un grado de calidad óptima en todos los procesos.

El sistema de Aseguramiento de la Calidad Franzelit ha obtenido las orniticaciones DINISO 9001 y QS 9000/VCA 6.1, que garantizan la fabilidad y seguridad en el campo de la producción y el servicio. Certificado de gestión medicambiental DIN EN ISO 14.001

ROCI43			Gama	de productos			
	Ref.	Material	Campos de aplicación	Dimensiones de la plancha (mm)	Espesor (mm)	Pag.	
Novate:	Prumium	Grafito + Fêras de Kevlar +NBR	Uao universal Ind. Química Vapor	2000 x 1500	1-1.5-2-3	10	
0	System	Novatec Premium + PIFE	Fluidos agresivos	Pieze terrriroda para bridas DIN y <i>N</i> ISI	1.5-2-3	12	
Novapht	Super HPC	Grafito espandido + multimefuerzo de ince	Temperaturas y presiones altas	1000 x 1000	1.5-2-3	13, 14	producto
	SSIC	Grafito espandido + refuerzo de ince.	Temperaturas y presiones altas	1000 x 1000	1-1.5-2-3	13, 14	tablas de
2	vs	Grafito espontédo	Altas temperaturas y presiones medias	1000 x 1000	0.5-1-1.5-2	13, 14	
Ø	Basic	Fibras de ararrida + NBR	Agua y aire	1000 x 1500 1500 x 1500 3000 x 1500	0.3-0.5-0.75-1- 1.5-2-3-4	15	
T.	Flexible 815	Fibras de ararrida + NBR	Aceites y gases	1000 x 1500 1500 x 1500 3000 x 1500	0.3-0.5-0.75-1 -1.5-2-3-4	17	
Isoplan	SK	Compuesto a ramídico + malla metálica	Gases a altas temperaturas	1000 × 1000 1000 × 1500	0.8-1-1.2-1.5-2	19	
	750 1190	Fibras minerales Fibras minerales y centimicas	Aislante térmico hosta 750°C Aislante térmico hosta 1100°C	1000 x 1000 1000 x 1000	1.3-1.5-2-3-4- 5-6-7-8-9-10 1.3-1.5-2-3-4 -5-6-7-8-9-10	20	

з

					Tat) a de (dimens	iones							¢¢) Frances
					Dime	nsione	s de ju	ntas seg	gun Di	N 2690) para b	ridas I	æ			
	ØN	Ø int.	PH2.5	PNG	El exterior PN10	PNIG	PN 25	PN40	ØN	Ø int.	PH2.5	PNS	El estaria PN10	PNIG	PN25	PN40
	4 6 10 15	6 18 14 18 22	20 20 30 40	38 33 39 43	18 43 45 50	31 42 45 51	11 12 13 13	20 20 20 20 20	900 1000 1200 1400 1400	1000 1000 1220 1400 1620	950 1850 1250 1450 1300	998 1098 1385 1538 1778	1015 1128 1340 1545 1779	1110 1125 1340 1540 1360	1140 1140 1340 1545 1345	1020 11930 12935 1615 11020
	20 25 32 40 50	28 35 43 45 61	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	884	80 30 82 117	611 711 82 92 107	81 71 12 12 117	81 71 12 12 10	1808 2808 2208 2408 2408 2508	1820 2020 2020 2020 2020 2020	1900 2700 2505 2505 2305	1931 2135 2345 2555 2761	1974) 2180 2580 2500 2500 2500	1960 2765 2505 2505 2505	21100 222 5 0	
ő	85 80 180 125 150	77 90 115 141 168	115 132 152 152 250	115 132 152 152 152 152 207	127 142 162 182 218	123 142 162 162 278	12) 142 163 155 225	12) 142 163 155 225	2000 2000 2200 3400 2000	2020 2020 2020 2020 2020 2020 2020	2800 3100 3000 3500 3500 3100	2070 2170 2380 2530 2600	3018 325			
product	135 280 250 380 350	195 228 274 225 368	233 282 318 333 423	237 262 318 373 423	248 213 328 318 438	248 273 338 335 445	255 205 342 412 453	202 202 353 418 435	301 401	3620 4020	38£) 41£)					
tablas de	400 450 500 600 700 800	421 471 521 521 521 521 521 521	473 528 538 688 785 888	473 528 578 768 785 785 785	40 540 555 655 675 575	400 560 611 735 816 911	516 585 731 831 941	547 532 628 745 851 931								
				Dime	nsiones	de jur	ntas seg	jún AN:	SI B16.	21 par	a brida	s ANSI	B16.5 F	IF.		
	© Na	minal	ØInt	erior	1: P	50 lbs. 11 20)	30 (P	00 lba N 50)	1	3 Extoria 400 Ibs (PN 63)	r o	600 Bas PN 100)	9 (P	00 Bas N 150)	15 07	00 lbs N 250)
	1	1/2" 1/4" 17 1/4" 1/2"	2	27 27 28 42 44		48 57 67 75 65		54 12 12 12 15		54 67 72 82 85		54 67 73 82 85		64 20 20 88 98		14 31 35 111 31
	2 3	7 17 7 17	6 7 8 10 11	31 73 86 12	1	05 24 35 61 74		111 131 145 145		111 130 149 161 138		111 120 149 161		142 165 168		142 165 134 -
			14 16 21 22	41 18 19	1 2 2 2 3 3	96 22 30 40		270 250 300 302 432		210 240 385 358		241 206 200 400 457		247 298 358 484 498		254 202 352 454 531
		H T T T N	26 40 40 50	20 20 20 20	4555	ET 14 49 05 17		486 540 533 534 734		40 53 534 64 70		402 505 613 602 700		520 534 638 638		530 641 714 755 900
	Dimen	siones en	imm.	-												

EPIDOR

Aspectos a tener en cuenta para el montaje de juntas de brida

Para que el sistema de estanqueidad funcione correctamente, es esencial un esmenado montoje de la unión. Este proceso está influido por un gran número de variables. Del control de las mismas dependenti en gran parte el rendimiento de la junta de estanqueidad.

Herramientas

Uno de los factores que más afectan al buen funcionamiento del sisterra es el control de la fuerza que ejercen las bridas contra la junta. Por ello, las herrarrientas utilizadas para el apriete de los tornillos como llaves dinamonetricas, tensores hidratulicos, etc., han de ser calibrados periódicamente.

Limpieza

Al desmontar la junta es corriente que fragmentos de la misma permanezcan sobre la brida. Se han de eliminar completamente antes de proceder al montaje de la nueva junta. Los tornillos, tuercas y anandelas se han de limpiar con un cepillo metálico para eliminar la suciedad de la rosca.

Apriete de los tornillos

Es de vital importancia controlar la fuerza aplicada a la brida mediante los tornillos, ya que esta determina la deformación de la junta. Por tanto, se ha de utilizar siempre una llave dinamoniétrica o cualquier otro dispositivo termioriador

Para el apriete de los tornillos recorrendarsos utilizar el sistema cruzado, tal y como se indica en la fig.1, teniendo en cuenta las siguientes operaciones:

1- Roscar las tuercas monualmente según el esquerna de la citada figura, dejando cierta holgura. A continuación apretar las tuercas manualmente en la misma secuencia.

2- Con una llave dinamométrica, apretar un 30% del par establecido.

3- Girar hasta un máximo del 80% del par, siguiendo sierepre la secuencia de la Fig.1

4- Apretar hasta el par establecido

Todos los tomillos han de soportar la misma carga. En la mayoría de los materiales la relajación comienza en un periodo triese, por lo que es recomendable realizar un respriete entre las 14 y 24 horas siguientes al montaje.

Guía para minimizar los fallos en las uniones de brida

Los fallos en las uniones de brida se pueden producir por el fallo de cualquiera de sus componentes, la brida, los tornillos o la junta. La consequencia de un mal funcionamiento es una fuga en la unión, que puede ser prácticamente indetectable al principio y acumulanse a lo largo del tierapo, o puede ser un fallo drástico y repentino. A continuación se enumeran algunos fallos contunes

Fallos debidos a los tornillos

Montaje de juntas de brida

Los tornillos insuficientemente apretados son la causa rata común de fallos en las uniones, esto puede ser el resultado de:

- un montaje incorrecto
- un fallo del tomillo
- el auto-aflojansiento del tornillo • la fatiga o relajación a lo largo del tiempo

Si los tornillos se aprietan escesivamente, la unión puede fallar debido a un aplastarrierto de la jurta, incremento de la fatiga e incluso se puede acelerar la corrosión de la brida.

El fallo del torrello se produce cuando la carga aplicada supera la resistencia limite del tornillo, esto puede courrir por varias razones:

· los tomilos no cumplen las especificaciones de diseño (se rompen durante el montaje o a temperaturas elevadas) • apriete escesivo durante el montaje

- corresión
 corresión bajo tensión
- fatiga

Fallos debidos a la junta

Pueden ser resultado de diversas causas, coreo

• elección de una junta incorrecta para las condiciones de trabajo elección de un espesor de junta incorrecto, especialmente en juntas blandas

 funcionarriento fuera de las condiciones normales de operación, o flexión de los tuberias

 juntas datadas en el almaceramiento, manipulación o instalación juntas aplastadas por una carga escesiva durante el montaje. • deterioro a lo largo del tiempo

• juntas reutilizadas

venjuste del apriete tras esposición a temperaturas de servicio (elevadas)

ÇÇ Pranzeli

Montaje de juntas de brida

Fallos debidos a la brida

Es bastante inusual, pero pueden danse como resultado de:

- superficies de la brida dartadas
 bridas deformadas
- bridas no para lelas
- corrosión
- falta de limpieza en las bridas

Minimización de los riesgos de failos en las uniones de bridas

De la relación espuesta anteriormente sobre las principales causas de fallo en las uniones, resulta obxio que la selección de los materiales correctos es fundamental. Asegúnese de que todos los componentes de la unión son compatibles entre si y con las condiciones a las que tienen que hacer frente durante el servicio.

Ha de comprobar que existe un margen adicional de seguridad, por si las condiciones de aplicación son superiores a las condiciones operativas previntas.

Sign las recomendaciones sobre almacenamiento, manipulación de juntas y conte de las mismas cuando proceeds, así como las de limpieza e impección visual, para asegurans de que los como las de la unión no tienen defectos y som aptas para su uso. La fata anterior también destaca la mocesidad de unas prácticas de

La fata anterior también destaca la necesidad de unas prácticas de montaje adecuadas. No se puede esperar que una unión proporcione un cierre seguro si las bridas no se unen con el suficiente cuidado.

Corrosión

La corrosión es uno de los efectos rada consumes. Puede afectar al mantenimiento del apriete de la brida, reduciendo la vida de los componentes de la unión.

Para que se produzos el Fenómeno de corrosión tienen que existir estas oustro condiciones:

- un ánodo
- un catodo

un electrolito
una conexión eléctrica entre sinodo y catodo

Si puede eliminarse alguna de estas condiciones, no se producirá la corrosión. Una solución es mantenes seca la zona realizando agujeros de drenaje (pero esto no siempre es factible), otra abernativa es ublizar tornillos fabricados con un material resistente a la corrosión. El método

tornillos fabricados con un reaterial resistente a la corrosión. El método masusfizado en la aplicación de algún revesimiento protector sobre el tornillo y/o la brida.

Corrosión bajo tensión

Es el resultado de combinar el apriete con el ataque electroquímico. Simplemente el sir el tornedo o una huella dactifar sucia son aficientes para iniciar la corrosión bajo tensión. Es una forma especifica de corrosión y requiere:

• un material susceptible de ser atacado

un electrolito

un defecto inicial

• niveles de apriete por encirna de un limite

Todos los tornillos metáficos son susceptibles de la corronión bajo tensión en ciertas condiciones, paro la mayor parte del problema puede minimizanse con un tratarmiento térmico adecuado. Al igual que con la corrosión, la aplicación de un revestimiento adecuado (aluminio, cerámica, grafito) sobre los tornillos puede minimizar el contacto con el electrolito. Sin ensbargo, el control del esfuerzo en la forma más común de reducir este problema masteriendo el nivel de enfuerzo en los tornillos por debajo de un límite determinado (específico de cada material).

Fatiga

La fatiga depende del tiempo y requiere:

- riveles de esfuerzo por encirra de un límite de resistencia
 un esfuerzo ciclico de termión
- un defecto inicial

En general, cuanto mayores sean las cargas, más rápidamente se fatigant el material. El aspecto que normalmente tiene un mayor efecto sobre la reducción de la fatiga de la unión es la reducción de las deviaciones de carga.

Por tanto, se muy importante obtener la precarga correcta en los tomilos. Siendo conveniente sustituir periodicamente los tomillos para evitar el fallo (es acoragiable llever registros de cuatro han durado entre fallos, y reducir un poco el tiempo para lograr un margen de seguridad nazonable). Lo ideal, por supuesto, es utilizar tomillos nuevos cada vez que es desmonten las bridas.

Auto-aflojamiento

El auto-aflojarriento se produce normalmente en presencia de vibraciones y requiere:

 un movimiento relativo entre el tomillo, la tuenca y los componentes de la unión

•cargas ciclicas perpendiculares al eje del torrillo

Se solucions frecuentemente evitando el deslizamiento entre el tornillo, la tuenca g/o los componentes de la unión, mediante el uno tuences o anandelas autoblocantes, de tope medinico, o mediante el uno de adresivo.

Homologaciones de los materiales Frenzelit

Homologaciones para Gas: Certificado DIN-DVGW

Homologaciones para trabajar en contacto con Oxgeno: Certificado BAM

Homologaciones para agua potable: Certificados KTW y WRC Homologación para altas temperaturas con gas: Certificados HTB Las homologaciones concretas de cada material están indicadas en las tablas de características de los mismos.

Pág.	133
i ug.	

EPIDOR									Б	ы	ad	le c	om	pat	ibi	lidades							
MESIC	NAMES OF TAXABLE	ADD DOG NOT	SLATINES! A	STREET, D	2004 PARA	AN COLUMN	NORTHNE SE	WEND	NUMBER OF TAXABLE	CONTROL INCO	SUATINGS1.4	ST INVITES	TEXT IN A REAL PROPERTY OF	THE REAL PARTY AND	ICON-COM CO	MING	AUTO CALING	COPPLICATION OF COMPANY	A TERMINES	SUPPLIC.	KARPA FIRE	ANY PROCESS.	IS INCLUS
NUE (1000 NUE (1000 NUE (1000 NUE (1000 NUE (1000 NUE (1000 NUE (1000	00000	000 0	00000	00000	00000	00000		REDICIALENCI REDICIALENCI REDICIALENCI REDICIALENCI REDICIALENCI REDICIALENCI REDICIALENCI REDICIALENCI	00000	000	000	00000	00000	00000		194-195000 F 1950 194-19500 (1950) 194195 1950 194195 1950 1941 1950 1941 1950 1941 1950 1941 1950 1941 1950 1941 1950 1941 1950 1950 1950 1950 1950 1950 1950 195	00000	00 00	00 00	00000	00000	00000	0
AT AT A DETAILS AT AT AT A DETAILS AT AT AT A DETAILS AT AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DETAILS AT A DET	00000	0000	00000	00000	00000	00000		INTERPORT	000	0 0	0 0	00000	00000	00000		8781 670 0.001 345 670 0.001 345 670 0.002 345 670 0.002 345	00000	00000	0000	00000	00000	00000	
EXIT OFFICE, > TOPY EXIT OFFICE EXIT FOR ALLED EXIT FOR AUTOMIN EXIT FOR AUTOMINE EXIT TRACE > TOPY	00000	0000	0000	00000	00000	00000		REDICTION CALLS REDICTION CALLS REDCTION CALLS REDCTIO	0000	0 00	0 00	00000	00000	00000		ESTAN HEIMILS JATE Estan Heimils Tahte Estantill Estantill Estantill Estantill	00000	0000	0000	00000	00000	00000	
NOME TRANSPOSE TO STATE Nome State and De Nome S	00000	000	0 0	00000	00000	00000		ACOLONIA E ANZA (MESTA) ACOLONIA E ANGA ACOLONIA E ANGA ACOLONIA ACOLONIA E ANGA ACOLONIA ACOLO	0000	000	000	00000	00000	00000		NET NOTALI, U NJ 201 (22 + 125) NJ 201 (22 + 125) NJ 201 (201 FA/125) NJ 201 (201 FA/125) NJ 201 (201 FA/125) NJ 201 (201 FA/125)	00000	0 0 0	0 0 0	00000	00000	00000	
EXTENSION OF COMPANY EXTENSION OF COMPANY EXTENSION OF COMPANY EXTENSION OF COMPANY EXTENSION OF COMPANY	00000	•	•	00000	00000	00000		NCELO DARFACO NCELO DARFACO NC	0 0 0 0	。 。	0 0 0	00000	00000	00000		7 HE 2 AN 11 HE 2 AN 12 HE 10 14 HE 10 14 HE 10 HE 10 14 HE	00000	0.0	0.0	00000	00000	00000	
1.002 01 07 070 0012 01 070 001112 772 > 00103 772 < 00103	00000	00	000	00000	00000	00000		NAME TO US OLUTION NAME TO US OLUTION NAME TO US OF THE NAME TO US OF THE NAME TO US OF THE NAME TO US OF THE NAME THE	00000	0000	00 0	00000	00000	00000		INCOMENTS INTO INCOMENTS INTO INCOMENTS INTO INTO INTO INTO INTO INTO INTO I	0 0 0 0	0 0 0 0	0 0 0 0	00000	00000	00000	
2010 20110 2010 20100 2010 20100 2010 20100 2010 20100 2010 20100	00000	0 0 0 0	000	00000	00000	00000		NANTI AN CONSEANT Santi Urisini Bau Bau Guidht Santi (< 76570) Bau Distand	0000	0000	0000	00000	00000	00000		ISENA RUSINA ILIMUTAD ILIMUD ILIMUDAN ILIMUDA	00000	0 0 0 0	0 0 0 0	00000	00000	00000	técnica
ATHO BURNO ATHO BURNO BURNO ATHO BURNO ATH ATHO BURNO ATHO ATHO BURNO ATHO ATHO BURNO ATHO	0 000	0 00	0 00	00000	00000	00000		7 (2), > 181,030,850 nin: 7 10 (191,030,850 10 40,000 (193,850 10 40,030,030,850 10 40,030,050 10 40,050 10 40,050 1	0 000	0 0	000	00000	00000	00000		ELITECAE (C-1) (- 100) ELITEC (DI TORC) ELITECAE ELITECAE ELITECAE ELITECAE	00000	0.0	0.0	00000	00000	00000	mación
EXTRO MERI COLO Extro Heri-Onico Extro 5 tecto Extro 5 demonstrato - (195 Extro 6 demonstrato (196) te	0000	00	0 0	00000	00000	00000		DO ADHADI Dink Di Canini Di Canini Addi Nici Di Canini Addi Nici	00000	00000	00000	00000	00000	00000	2	CALL HERMANN CARANNE IN SAME CO CARANNE IN POLICIO CARANNE IN POLICIO CARANNE IN POLICIO	00000	0000	0000	00000	00000	00000	infor
KOO KUND KOO KUNDEDO KOO KUNDEDO KOO KUNDE < 11% KOO KUNDE > 11%	°			00000	0000	0000		ALEXAN ALEXANDER - 2010 ALEXAN ALEXANDER - 2010 ALEXAN ALEXANDER ALEXAND FILMA ALEXAND ALEXANDER	00000	00	00	00000	00000	00000		(24.07967) Canv.Ru II: Hono(3.02) Canv.Ru II: Hono(3.02) Catal & Hono Catal & Hono Catal & Hono	0000	000	000	00000	00000	00000	
KINO NA ATAR KINO NA ARAW KINO NA ARAW KINO NA ARAW SIPT, 37% KINO NA ARAW KINO NA ARAW	0000	00	00	00000	00000	00000		ALENAL PENALTURA ALENAL PEPALTA ALENALTS ALENALTS ALAN INAL	00000	0000	0000	00000	00000	00000		COCREMENTS - DOI-TO II CORRECTIONS CORRECTIONS CORRECTION - TYPE CORRECTION - TYPE CORRECTION - TYPE	00000	0 0 0	0 0	00000	00000	00000	
KUIO DE MURZINO KENDO KUIO DE MURZINO KENDO KUIO DE MURZINO KENDO	00 0			00000	0 0 0 0	0000		E INDEE E INDEE IN HEIDO E INDEE IN FOILDO E INDEE IN FOILDO E INDEE IN FOIL INDEE E INDEE IN FOIL INDEE E INDEE INDEE INDEE E INDEE IN FOIL IN FOIL INDEE E INDEE IN FOIL INDEE IN FOIL INDEE E INDEE IN FOIL INDEE E INDEE IN FOIL INDEE E INDEE IN FOIL INDEE IN FOIL INDEE E INDEE IN FOIL INDEE IN FOIL INDEE E INDEE IN FOIL INTER E INDEE INTER E INDEE INTER E INDEE IN FOIL INTER E INDEE INTER E INTER E INDEE INTER E INDEE INTER E INTE	00000	0000	0 0 0 0	00000	00000	00000		CORD 2000 CORI GE HUNDI(+ 1000 CORI GE SEC CORIGENZON CORIGENZON CORIGENZON	0 0	0		00000	0 000	0 00 0	
KORO RZEWINOJ < 1985 KORO RZEWINOJ < 1985 KORO FRANCI	00	00	•	000	000	000		246 < 001120000000000	000	00		000	00	000		CORDINED CORDINES CORDING	000	°	•	000	000	000	

NUMBER

3

a

3

000

3

Q

0000

00000

00000

3

Q

3

a

0000

0000

3

Q,

000

00 00

00 00

a

a

00000

00000 00000

000

000 000

00000

00000

00000

00000

MEDID

CORE ENCO CORENEINO CORENEINE (ENN 20)

0.000 0.000 CORRECT AND CO

CORENE EMILICO CORENE CALCO

CORERN DE LE UNO CORERN DE LE UNO

CORDER NOTIFICATION CORRECT: HORIZAN CORRECT: LTD (AANSI)

CORRECT MALE CORDER STREET CORINE PORCE

000003100 018 0300.0000 0 1311 030005200

CESIL (IDIDIISI) Constant o Particular Constant o Subject

CHINA 36 ION CT 2N DECTORECTION Desting

ורח סמנאנסס 1912 – הרו סמנאנסס 1912 – הרו סמנאנסס DELIBRITINO - ED

			i	Ta	Ыa	de compatibilida	des											¢,	рн		etii
1011010100	STATISTICS.	AURIOR IS	102 JIANO	STREET, STORE FILL	TO PERSONAL PROPERTY.	MEDID	AVAILATE AND A	2010 CONTRACTOR OF	SIMPRIM	CONTRACT IN	DOMY-11 22(E	Decision cleaned	X5 MICLINE	NENO	NUMBER OF TAXABLE	TANK TANK	P FEERALVES	ST BOARD	ANNUAL SOL	NUMBER OF TAXABLE	TO PROVIDE THE
	0.0	00000	00000	00000		ITA DI PENGINA ITA DI ALIO ITA DI PENGINA ITA	00000	0	0	00000	00000	00000		(2.8386542) Gueso 55.5300 Gueso 55.630 Halio Halio Halio (4)	00000	00000	00000	00000	00000	00000	5
000	000	00000	00000	00000		IT SELLON IT DOURING IT DUALON IT DUALON IT DUALON	00000	0 0	•	00000	00000	00000		FERREN IN ALTERNAL FERREN FERREN FERREN FERREN FERREN FERREN	00000	00000	00000	00000	00000	00000	
, ,	0 0	00000	00000	00000		TI ISTREMINI D TI ISTR TI ISTR TI ISTREMINI TI ISTREMINI - TO T TI ISTREMINI - TO T	0000	•	•	00000	00000	00000		HERRIGANICAREINATI SODEL HERRIGANISULATI SODEL HERRIGANISULATI SECO HERRIGANISULATI HERRIGANISULATI	00000	00000	00000	00000	00000	00000	
0000	0000	00000	00000	00000		NZM Szementesteren Tre < Gene Tre < Gene Communication	0000	0 0	0 0	00000	0000	000 0		70015-2005-2004020082000 70015-2005-2004002008200 2005-000044400200800 200604400000000000000000 2006040000000000	00000	0 000	000	00000	00000	00000	
00 00	00 00	00000	00000	00000		E IN CALORI SUMICI Roban De Anto Roban De Anto Roban Anto Roban Anto Roban I Antonico	00000	00 00	° °	00000	00000	00000		HORINDA CACID HORINDA DI SUDO HORINDA PITALO HORINDA PITALO HORINDA PITALO HORINDA PITALO	00000	0.0	000	00000	00000	00000	
	0	00000	00000	00000		OFFENDE FONDER CONTRACTOR Status OFFENDER OFFENDER CONTRACTOR CONTRACTOR	00000	0.0	0.0	00000	00000	00000		19738-1987 U SUDCU 198255 1974 - 1985 U - 128 + 321 1972 U B J - 128 - 129 1992 U B J - 128 1992 U B U	00000	0000	0000	00000	00000	00000	s
	a	00000	00000	00000		101200 11701 - 11701 11800 - 11701 1180 - 11701 - 11701 1180 - 11701 - 11701	00000	0	o	00000	00000	00000		EXTERTING EXTERT	00000	00000	00000	00000	00000	00000	
2	o	00000	00000	00000		0.0. (2. 0.0. (2. 1) 0.0. (2. 5 0.000 0.00.02. (041002)	00000	000	000	00000	00000	00000		LINEN PHERESPIC, WE LICE BARGET IN 1932 LICE HOUSINGLERO LICE HOUSINGLERO LICE HOUSINGLERO LICE HOUSINGLERO	00000	0	0	00000	00000	00000	

00000

00000

6

00

00000

000

00000 00000

a Q,

9 a

00 00

 C
 INFORMATION

 C
 INFORMATION

ATTANU ATTILISIN ATTINI ATTINI ATTINI

HTMAN ARTANIA HTMAN ARTANIA HTMAN PHOTONIA HTMAN SAUCH HTMAN SAUCH

7% > OACHERING 7% < OACHERING 7% CACHERING OACHERING

0000 0

0000 0000

0000 00000

0000

00000

00000

00000

000 000 000

000

000

0.80.800.06.00 0.220 (\$2+25+194) 0.40 (\$40+125+52) 0.57 (\$3+145+124)

7106 - CHEN GLA GLA X 7106 - CHEN GLA X 20 7106 - Horsheld X 7108 - Horsheld X 20 7109 - Horsheld X 20 8200201 X 20

2 CONSTRUCTION NOT IN THE NUMBER Of the State of the State of State of the State of the State of State of the State of the State of State of the State of the State of the State

THE COMMUNICATION AND

GIZ ON Giz I No Giz XI Giz No

400001.0 4001. 41.0**2**6

GE H.00 2

00000 00000

00000

00000 00000

000

000

DELIBRITATION 1,4 DELIBRITATION 1,4 DELIBRITATION - 172 DELIBRITATION - 172 DOLINEROC MITLE DC TRANK DE TRAJER DENLINE

DETAILAR TANI Distant tata dar DESCRIPTION

> DIATURAN Diaturnan DOTAL CCIENT IL CARINO CCIENT IL CARINO CCIENT IL CARINO

DELINEN DELEGATION DESIGN

DISTURBED BUILDED DISTURBED DISTURBE

DELUTIONS GROUD DELETIONS FOR THE BALLSINGS FOR THE 1710/24 DRM

DISCRETE OF COLUMN TWO

1312403100 STR. E TANI E TANI

E TANLANDA E TAR E TARBET DO

Pág.	135

									T	abl	ac	le o	om	pa	üЫ	lidades							
NEINO	NUMBER OF TAXABLE	TANK OCCUPATION	SATURAL A	SUMMURS.	200J FIANO	SHE KING I MARK	TO REAL PROPERTY AND INCOME.	MEDICO	ALL REAL AND	DUPPECIA INCUT	SUATINGS14	ST INVITE	155 (16400	THE REAL PARTY AND	CURPAN IL	Mac	NUMBER OF TAXABLE PARTY.	2011010100	STATISTICS OF	01/1400	2014 MARCO	NUMBER OF STREET STREET.	TO RELATE A
UNU < 2007 UNU > 2007 UNU > 2007 UNU UNU UNU UNU UNU UNU UNU UNU UNU UNU	000	00	00	00000	0 0 0	0 0 0		8 TIK 8 TIM 8 TIJ 8 TIJ 8 TIJ 8 TIJ 8 TIJ 8	00000	00000	00000	00000	00000	00000		SEDA GAUS THE SUBTICUE HARANCE SUBTICUE ACTOR SUBTICUE ACTOR SUBTICUE SUBTICUE ACTOR SUBTICUE SUBTICUE ACTOR SUBTICUE SU	00000	0000	0000	00000	00000	00000	
NDA IN CALINA INDA IN PROPERTY INTERNA INTERNA INTERNA	0 0 0	0	0 0	00000	00000	00000		8 125 8 1236 8 1346 8 1466 8 1468 8 1478	00000	00 00	00000	00000	00000	00000		CING2COBULC UNIG2 CORULE CONNER INFOLE CONNERS 21 INFOLE INFERENT 21 INFOLE	00000	000	000	00000	00000	00000	
1990AD 1990AD 1990AD 1990 D 1990AD 1990AD 1990AD 1990	00000	000	000	00000	00000	00000		6 1436 6 1586 6 1536 6 158 8 158 8 758	00000	00000	00000	00000	00000	00000		19010 1000 2001 -> 1000 2001 -> 1000 2001 -> 1000 100 2001 -> 1000 100	00000	00	00	00000	00000	00000	
INNANAN IN PILADO INTERNA MENANO INTERNA POLINI INTERNA STRO INTERNA	00000	00	0.0	00000	00000	00000		8 288 (=780788) 8 4016 (22+1038+104) 8 4016 (22+1038+104) 8 4016 (22+103+20) 8 4016 (22+105+20) 8 4018 (22+105+20)	00000	00000	00000	00000	00000	00000		UNDERSONNE UNDERSONNE UNDERSONNE UNDERSONNE UNDERSONNE UNDERSONNE UNDERSONNE UNDERSONNE UNDERSONNE	• •			00000	00000	00000	
SECONI Lango Tenge Tenge Tang Tenge Tenge Tang Tenge Tenge Tang Tenge Tenge Tang Tenge Tenge Tenge Tenge Tenge Tenge Tenge Tenge Tenge Ten	00000	000	000	00000	00000	00000		8 4016 (72+718+203) 8 4016 (72+718+203) 8 4016 (72+718+203) 8 4016 (72+725+7146) 8 4016 (72+725+7146) 8 4016 (72+725+7146)	00000	00000	00000	00000	00000	00000		T NUCLERI E CHI SPT T NUCERI RINI T NUCLERI RINI T NUCLERI T NUCL	0 00	•	•	00000	00000	00000	
TANANA Tana bi Tanini Tana bi Tanu Tana Tana (a.1970)	00000	00 0	00 0	0 00 0	0 000	0 00 0		8, 400 C (22+125+1048) 8, 400 G (22+1408+105) 8, 405 G (22+1408+104) 8, 405 G (22+1408+104) 8, 901 (22+100 G) 8, 911 (22+10)	00000	0000	0000	00000	00000	00000		11.10 MI Hanasali II < 1507 Hanasali II > 1507 Hanasali II > 1507 Hanasali II > 1507 Hanasali II = 1507 Hanasali III - 1507	00000			00000	00000	00000	
IERNED IERNECH IERNECHVII IERNINGINEI (1,3-) IERNING	0000	0000	0000	00000	00000	00000		8 90 97 + 116) 8 90 97 + 20) 8 90 948 + 20) 8 90 948 - 25) 8 90 9 - 500 1000) 8 70 - 200 1000	00000	0000	000	00000	00000	00000		NECCONTROL = 107 NECCONTROL NUM NECCONTROL NUM NECCONTROL NUM NETLONAL NETLONAL	00000	•	•	00000	00000	00000	
2 10 2 11 2 17 2 17 2 17 2 17 2 17 1 17 1 17	00000	0	0 00 0	00000	00000	00000		8630 8738 8738 8740883 (junu) 8838383 (junu)	00000	•	00000	00000	00000	00000		1886 1975: >1471 1975: <1471 1985: 199 198: Sille Ancient Sider	00000	0000	0 0	00000	00000	00000	
2 TE 2 TE 21 2 TH 2 TH 2 TH 2 TH 2 TH 2 TH 2 TH 2 TH	00000	0 0	0 0 0	00000	00000	00000		SAUGAZON Sauczania Sauczania Sauczania Sauczania Sauczania	00000	00000	00000	00000	00000	00000		NILAN PERSON VILAN PERSON NUMBER OF THE D	0000	000	00	000	000	000	
27 27 28 29 27 27 27 27 27	00000			00000	00000	00000		SALE PLAN Sale I Produsal Sales al (2000) Sales al (2000) Sales al (2000)	00000	00000	0 000	00000	00000	00000									
2 40 2 41 2 50 2 110 2 111	00000	000	000	00000	00000	00000		SUIS II, UCAUSE) SUIS II, WUAL SUIS II, PLIRE SUIS II, IN SUIS II, IN	00000	00000	00000	00000	00000	00000									
8 112 8 1128 8 113 8 1158 8 1158 8 114	00000	00000	00000	00000	00000	00000		50000 501065300 < 1007 501065300 > 1007 510610 500700 50000	00000	0	0	00000	00000	00000									
11148 111482 1115	000	000	000	000	000	000		SILIZIA AZARIA Silizia azaria Sisa	000	000	000	000	000	000									

CO Hensell

Mound	and 1	Drom	11 8 22
The second second	A	- M	

Composición del material

Naterial para fabricación de juntas planas, compuesto por grafito comprimido, fibras de Kevlar[®] y un bajo porcentaje (3 a 10%) de NER de alta calidad.

Su excelente resistencia química y termica, alta estabilidad en servicio y baja permeabilidad a los gases le permite reemplazar los materiales de grafito reforzado con acero (poco Resibles y dificiles de trabajar), en situaciones inasta ahora impernables para juntas de fibras comprimidas.

La composición de grafito y Kevlar[®] del Novate: Premium configura un material de unas características totalmente nuevra, superando en el funcionamiento a todos los resteriales habitusles utilizados corres

juntas planas para alta presión. El alto contenido en grafito junto con el bajo contenido de aglutinante. hacen que su resistencia a la temperatura y a los medico sea escelerte.

Aplicadones

Uso universal en aplicaciones de alto grado de exigencia , procesos químicos (ácidos, bases y disolventes), vapor, aceites termicos, gases y fusidos refrigerantes. Para verticar los breites de presión y temperatura les recomendantes consultar los gráficos del apartado "recomendaciones de aplicación"

Con el Rovatez Premium se pueded cubrir el 80% de las diversas aplicaciones existentes en la industria.

Caraderísticas

• Seguridad de trabajo a temperaturas de 250°C, en contacto con

nceites. Productos religiorantes, vapor y gases hanta 360°C. • Escelente adaptabilidad a las irregularidades de las bridas. La capa anti-adherente de su superficie, facilita el desmontaje durante las impecciones de la brida.

- May baja permeabilidad a los gases
 Homologaciones DVGW, HTB, NTV, WRC y BAM, también para oxigeno liquido.
- «Escelente estabilidad en la relajación de ternión. Ofrece una escalente seguridad a largo plazo, minimizando los costes de

- Ato grado de festbilidad
 Facilidad en el corte y manipulación.
 Protección de útiles. El alto porcentaje de grafito protege los útiles de porte.

Ereayo	Norma de ensaye	Unidades	Valor
Desided	FM 2008-2	plan ²	15
Beistende a la tracité	18 52/1	1.1	
Impluinal		North	18
traneal		Nor	14
Belgistite de tersiter		08 52911	
Ti ba TEX		Nim ²	3.
16h a 38095		Mino ²	五
Comprohibited	#SN F361		6
Bengemeitte de alasticidad	KSIM FOCI	- K	茲
Compatibilitation for self	18 2001-2		6
happeneite all	FB 20091-2		3
Financia na cadanta n201 gradua	88 2001-2	2	6
Responsito en calveta e 200 grades	18 2001-2	5	1
Paulie estains (K)	18 2008-2	Nim ²	140
Pennesbillehel a be genes	18 335	or Vist.	=1
Ende de lago específica (2,0	18 2009-2	Hg/s'm	×1
Beisterin a be melle	ASM F 140		
Amonto de espere XIM Sacilio. 3			
SHITSPE		5	si 10
ASIA ENTE			
5h090		*	s 10
Aurento de pero ESM fiud No. 3			
Sh /19PE		*	::5
ASM Evel			
96 d39C		- K-	- 15
forologaines	FRA, FE, DA. S	FE, EM	
但等限的	T31 keri6PE (opp	en huide y genera)	
lendinists	life ad		

Valores fraces

Se requiere un acuerdo especial antes de utilizarlos en una etpecificación.

Todas las propiedades de acuerdo con DIN 28.090-1 están deporibles bajo petición

Dimensiones de fabricación.

Material estándar de almacen Plancha: 2000 x 1500 mm.

Espenares: 1/1.5/2/3 mm.

EPIDOR

Juntas de grafito para condiciones de trabajo extremas

Composición del material

Material combinado formado por grafito espandido de una puneta del 98 S. sobre una rejita metalica de acero inosidable 1.4404 (AISI 316 11

La rejilla de acero de un espesor de 0.15 mm se somete a un proceso de expansión para conseguir una estructura tridimensional de un espesor projectado de 0.5 mm, la cual se recubre con el grafito espandido.

Novaphit Super HPC. Naterial de capas múltiples. En función del espesor puede estar formado hasta por sinco capas de grafito y tres espeso puede eser terresco nanta por cinco capas de grante y me laminas de noem espansionado. Las latininas se colocan gintendadas 00º una con respecto a la otra, para asegurar un alto grado de estabilidad longitudinal y transvenal. Novophit SSTC. Material formado por dos capas de grafito puro

sobre una lámina de acero espansionado. Novaphit VS. Material formado de grafito espandido.

En ningún caso el grafito contisne aglutinantes

Aplicaciones

Material diseñtado para juntas que han de cumplir con sevena exigencias de funcionamiento. Uno universal en todas las namas de la industria quimica.

Novaphit Super HPC. Especialmente indicado para temperaturas y presiones muy altas.

Novophit SSTC. Indicado para altas temperaturas y presiones Novophit VS. Indicado para altas temperaturas y presiones medias.

Características

•Alta capacidad termica, puede trabajar a temperaturae comprendidae entre -240°C y +550°C • Presiones de hasta 250 bar (depandiendo del tipo de Novaphit.)

- Propiedades de transformación escelentes, debido a las aberturas de la malla. Y por tanto buen rendimiento de la herramienta de corte
 Resistencia a casi todos los ácidos orgánicos e inorgánicos, alcali.
- aceites y dis olvertes
- · Homologaciones de acuerdo con DVGW. KTW y BAW (según tipo de Novaphit]
- · Informe de ensayo de seguridad contra incendios de acuerdo con 85 y APL

• Resistencia y establidad de forma, independientemente de la temperatura, presidn o influencias químicas

• Basto dad permanente • Flexibilidad, el material se adapta perfectamente a la superficie de las bridas, lo que le hace especialmente indicado para bridas de materiales fragiles.

Dimensiones de fabricación

	Super HPC	SSTC	VS
Panha :	1800 # 1080 +==	1080 a 108 ers	1008 a 1880 eary
Igner	1.50/0	11523	8577.52

Selección del material en función del medio, presión y temperatura

novaph					CO Maka
ropiedades físicas					
Alores de ensayo en prob	etza de Zrem de espesor				
= valor tipics					
Emayo	Normas de ensayo	Unidades	Super HPC	SSTC	15
lefetiven			tin syldinaria na organic	1	
Forsionariona			DIN		
			EW	DRIV. CTN	
			EMA Frenh	2.3.2.2	
las attabants			a i name	001.00	WOM.
Date			line only.	line cole	Base code
Talenarche de dimendée y anneue	100 2003 1		1.3.	inde i see	and a line
leasting in	101 20 101-4		0411-0-201-0	0.110.100.0	0818444
Bentikel	381 20 808-2	alar)	14 ± 115	1.5 = 1.15	1.8 ± 1.15
Baldania a la trachia	100.02111	1	100 million (100 m	1000000	1000
havin faul		Klend	-31		100
terrord		Herel	-31		1
Reiterts a la compatite	MI (2111)			1	1.4
THE		Black			
304		Head	-0"	12	12
town total a	WINE SET	E.		7.6	77
An operation	ATTRE 35 1	ž.	- 5	-15	-71
Summitted on State of F	NU CONTRA		28.72	21.381	20 22*
Annual and a start	100 22001.7	*	1.0	1	-E*
Danie o odate a TR T	10 2001.2		-7	1.2	0.1*
Annual in column 1989	NH 2001.7		10	1	4
Augustan in General Control	MH 22000 7		-107	0.82	-0.87
Respective a	10 237	and the second s	-12	-1	-1
And another in the 120	100 52001.7	and the	-102	-087	-0.62
Animali alla mala	ACTIVITIES .	abera	1842	- AND	10.000
ICM CM CAT PLATER	ALC: N				
CIN MEDIA - SHIDUA			1.00		
An a set of parts		i i	- 21		-18
KIN Lais - Shops				19	5.18
Theories of seco		E.	-31	-3*	
Reparing the suscent		¥.	-1"	5	di
Control in the closery	Server: #94/14	107	<30	3	(30)
Contentite de Samon	Semen # 34/4	100	< 30	3	<30
Dame which	Same # 1014		-0	-01	-0
	Salada de Prote	11	5.20	1.04	1.58

Homologaciones

	Super HPC	5570	
Ges	1958	DISA	
÷	+	IN .	
Futs uniques graveflattine y liquida	SIM harts 130 ion. 300 Y	NM tests 100 tor. 2001	
Envige de registikel pertenistroender	20022300000	Region Lings 55 6/55 parts 2	
and the second		Plastick 80	

Garantias

Dada la diversidad de condiciones de montaje y trabajo se como de storicos de oplicación y procesos, las indicaciones de este catálogo deben considerans como orientación sin compromiso. Por tanto, no se puede derivar ningún derecho de garantía de la información sepuede.

EPIDOR

Novapress basic

Composición del material

Nexte equilibrada de materias primas compuesta de fibras superiores de anamida, de materiales de rellero especiales y de caucho NBR (nimi butadiene)

Aplicaciones

Amplio abanico de aplicaciones en sectores donde las recesidades de temperatura y presión no con may elevadas

- Técnica saritaria (almentación de gas y agus) Constituciones
- Construcción de maquinaria · Construcciones mecánicas

Propiedades

•Buena resistencia a los rescico •Estanqueidad al gas conforme a los normes •Buena resistencia a la presión

Dimensiones de fabricación

Planchus : 1000 s 1500mm 1500 ± 1500mm 3000 ± 1500mm

0,3/0,5/0.75 Espenor en mm;

1.0/1.5 2.0/3.0/4.0

Recubrimiento superficial: Revestimiento adherente por una cara para el modelo estándar

Tolerancias

Para un espesor <1 rate +/-0,1 mm Para un espesor >1 mm +/-0,2 mm Tolerancias en longitud y en ancho: +/- 50 mm

Características del Novapress basic

	irnayo	Norma de orna yo	Unid.	Valor
les .	Apleannia			NIS .
panin	fba			knik
ndatives a la recepciónie	lojnán	BNE2810112		14-41-6
Hulk	Tempetates realizes catitions		10	W
-	Temperatum pica		10	20
latestes	Imial	BAE 2010012	10	11+40,8
Nim .	Beinteria a la tación tanental	11210	(filmer?)	>1
ligener de la	Neistecia a la comparior (2001)	11213	(feed)	⇒IJ
maile	Terpedidal	ISME361	14	6-15
20	hapmein	KEN FOGT	14	>5
	Pacin mines upphial Spea R		(Nire?)	3
	Nain rains spelial Spa 10		(lirer)	120
	Nersebilitat a la gant	11 355 14	(mitrie)	<11
	Reductions and William and P.D. (SACO)	ENFIA:		
	Internatione prot		14	<1
	howman and an an and an a		154	<1
	Reducion Kill or fail B (Sh224)	ASIME 146		
	Investor pra		14	<1
	Investore relation		154	<1
	fordeprizes			DATA, HB,
	Ge.			
	No. 1 A Concept Procession			the second
	NAME AND ADDRESS OF THE OWNER.			IN COLUMN
				100
				ALC: N

EPIDOR

Novapress flexible 815

Composición del material

Caucho nitril butadieno combinado con fibras de aramida

Aplicaciones

Gracias a la particularidad de las propiedades de los materiales utilizados, novapresa Nexible / 815 es ideal para los construcciones "Igenas" de bridas y para todas las aplicaciones que exjan buena resistencia al aceita.

- Nimentación de gas y de agua
 Construcción de máquines y aparatos
 Construcción de tubertas

Propiedades

·Resistencia estrema al aceite

•Hindhamiento minimo en aceites y gasolinas •Adaptabilidad •Baja permeabilidad a los gases con una presión superficial minima

Dimensiones de fabricación

Plancha:	1000 ± 1500 mm 1500 ± 1500 mm 3000 ± 1500 mm
Espesor en mm:	0.3/0.5/0.75 1.0/1.5

2.0/3.0/4.0

Tolerancias

Para un espesor < 1 ren +/- 0,1 mm Para un espesor > 1 ren +/- 0,2 mm Toleranciae en longitud y en ancho: +/- 50 mm

Características de los materiales

	Ernayo	Norma de ensayo	Unid	Valor
lates .	References in			188
a starting	Fibrar			knib
elatives a la emposicion	Despuise	38 E2102112		F8-810
	kepy das mains sortius		(1)	160
	lempentara pico		69	30
-	Devided	IN E2102012	(plurit)	15+/40,8
lin	Reistonia a la tación tanoneal	18 52 980	(fired)	>1
Espenie de la	Reineria a la serpecien (EUPQ)	1862903	(Nirre)	>5
ante	Comparabilited	ACTU FOR 1	60	6-14
ų —	Respectation	EN F3U	69	>55
	Provint matima reportinal Signa NU		(lim)	3
	Prein mains spetiolSigneT0		(tim)	120
	Perceptified a largest	10 35E14	(m ³ lrii)	<15
	Hindramisets #570 or acris #19 (53-6295)	JETU E146		
	legements en pou		69	<5
	insents in talants		69	<1
	Hindramisets #510 on Fed B (55/0340)	ALC: NO FIG.		
	ircoments en pesi		69	<8
	Incoments on malaness		69	<1
	Henliguine			82
	101121.0171			HW,
				100
	Color			stides:

EPIDOR

Novaform SK

Composición del material

•Material especial exerto de attianto con inserción de malla de acero 1.0314.

Aplicación

 Hara condiciones mecánicas y termicas estremas, especialmente en instalaciones de gases de escape, turbo compresores y compresores.

«Usar preferiblemente en combinación con envoltura metálica.

Dimensiones de fabricación

Tananto en mm: 1000 a 1000 mm. 1000 a 1500 mm. [Or os formatos bajo padido] Espanor en mm: 0.80 / 1.00 / 1.20 / 1.50 / 2.00 / 3.00 [Or os espanores bajo padido]

Características del material

10

.....

	Iraayo	Norma do omayo	Unid	Valor
	Aphenatic:			SCIER.
-	besterniets artichesete			to existin
	Gán:			adar nar aque (receve)
	Desided	1821081-2	[jwi]	10 ± 0,1
	Reinstein alle Tarcite	185291		
-	Impitation		[him]	$+22^{\circ}$
	tansed		[fimil]	$+Z^{*}$
i	lacitancia a la composite	1052910		
	18.1		[lim]	-42"
	300 °C		[lim?]	+47
	Corposition	KIM FILT	14	1.5
	bapende	KSIM F BL I	14	-47
	Reitterie a la maño	ISM F VAC		
	ACTIN COM SHE	Sh/HD/E		
	Canada in a ser parte		N	s ∎
	Eartheir wir expecter		14	×10
	Beistenia a la tection, tere	enul	[fimil]	+22°
	ER Full	5h/23'T		
	Combie on peor		14	< Z
	Cardio or operat		M	si 10
	Benitanzia a la Bazzin, Bom	netal	[fmill	-22°
	LEFRICE DAVE - MON (SOST)	2° 001 \rid		
	Canadais en pece		14	≼∄)
	Combine and annual of		M	s 10
	the second se		and the	
	Beisteria a la tección, terre	menul	[birn/]	+22
	Beitaria a la tección, terr GRE OL	56/23%	[New]	-22
	Beisteria a la tección, tene CABIOL Condecempera	sh/231	[4]	-27 < 30
	Benitarria a la tección, terr CASI OL Cardia en pero Cardia en opero	sh/23"t	[Nim*] [4] [4]	<30 <10

Garantias

12

Dada la diversidad de condiciones de montaje y trabajo ast como de técnicas de aplicación y procesos, las indicaciones de este catálogo deben consideranse como orientación en compromiso. Por tanto, no se puede derivar ningún derecho de garante de la información espuesta.

CO Homester

Isoplan

Composición del material

Fibros cerámicas y minerales especiales.

Combinadas con materiales de relleno y aglormerantes, se obtiene una gran resistencia a las temperaturas continuos. Su baja conductividad terraica le confiere unas esculentes cualidades sinlantes,

Los aglorsetantes orgánicos se eliminan a una temperatura entre 300° C $_{\rm 2}$ 400° C. La coloración resultante desaparece a temperaturas más elevados.

Juntas planas de ISOPLAN

ISOPLAN se caracteriza por una deminidad "uniforme". Puede ser utilizado, tanto como sinfante de temperaturas elevados, como dejunta contra gases inertes hasta 3 bar.

Dabe de teneros en cuenta, cuando se una como junta plana, que la presión superficial no debe rebasar los 10 Wrent² y respetar el anche minimo de la junta.

Aplicadones

Los campos de aplicación de SOPLAN como material aislante se determinan por las temperaturas límite de utilización, y por las valores de conductividad termica.

- industria del acero • fundiciones
- · construcción de horrios y cubas
- querrador en de gas y de fuel bocas de chimeneus
- puertas conta-fuego
- sislantes de sire caliente
- calderertas e instalaciones de secado
- construcción mecónica y de máquinas aparatos eléctricos
- industria del vidrio

Dimensiones de fabricación

Planchast 1000 s 1000 mm (Otros formatos loajo pedido) 1.3/1.5/2.0 Espenor en mitt 3.0/4.0/5.0 6.0/7.0/8.0

9.0/10.0 doble a partir de 8.0 mm.

Tolerancias

Toleranciae en espezor y en dimensiones +/- 10%

Características de los materia los

Imayo	Horma de emayo	Unid. IS	Valor OPLAN 750	Valor ISOPLAN1100
Riem per 3 am, in oper termini <0.5%				
Temperature limits de utilizació		(1)	758	110
Resided	INE 20 00012	(glan)	O.H.S appear.	0,95 aprox.
Loyobilis	ENF31	69	-23	<2
Acquarite clatics	ENFER	69	⇒3I	>31
Reliterie a le textite	115291			
Impircleal		(im)	-41	>43
trend		(8)==)	>2,1	>2,8
Ineps a 40%/h	0152911			
pendida al fungo		69		<10
dominación de especo		69.	<0.8	<0,8
den apefitie en lorgita	1	69	<0.5	<0,5
den upsfile taurend		69	-05	<05
Encape a MOTOTA	11:291			
pendida of forge		69	12,0+/-2,0	17,0+/-2,8
deninucia de especa-		69	~75	<25
donu pattis logisti v	ul l	69	<1,1	<1,1
fin a pattis turorna		69	~1,1	<1,1
Nor is endatblish				
terrics a 400K		6.68	0.13	0.11

Diagrama de aislamiento

