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Abstract. A non invasive optical glucose monitoring devicaséd on a commercial
pulse oximeter has been the object of this studye fundamental principles of the
technology and the proprietary algorithm were stddiThe results of a prior clinical
trial were analyzed with advanced biostatisticalgo Finally, a preliminary optical set-
up was designed and utilized to study the potenfiadditional wavelengths to improve
the device/algorithm performance.

Keywords: Clarke’s Error Grid Analysis, Spectrometer, puts@netry, diffuse optics,
diabetes, glucose.

1. Introduction

Millions of people with Type-1 diabetes self-momitbeir glucose levels to assess glycemia.

As time goes by, people with this pathology sufeslow but continuous general deterioration
[1] [2] of their life conditions which affect thenmune system, develop eye cataracts [3], suffer
from obesity and other problems. Currently, thecgipic self-controls are being carried out
through traditional methods of finger prick bloodtraction. The extracted blood is then
deposited in a special stripe where an estimatigiiucose is produced via a series of chemical
processes. Through this process, diabetic peogle tesbe exposed daily to small injures and
often these injures get infected and take timeeal.HFurthermore, as the diabetes progresses
extremities suffer from hypoperfusion making thiegess difficult.

As a consequence, a significant amount of resegffolt is dedicated to develop different non-
invasive technologies [4] in the past two decadgsme of these are based on Raman
Spectroscopy, Polarization changes, FluorescenceOptical Coherence Tomography.
Unfortunately, none has been able to replace tigefiprick test due to problems in reliability,
user-friendliness and patient compliance. Main titidns cover many different factors like
instability in the laser wavelength and intensityerference related to other compounds rather
than glucose, sensitiveness to scattering processes

This project is a collaborative work between thediMal-Optics (PI: Dr Durduran) at ICFO and
a small company, SabirMedical (www.sabirmedical.rom Barcelona. SabirMedical has
developed and patented [5] an algorithm that eslithe output from a pulse-oximeter to infer
the glucose concentration in blood. They have edrout a pilot clinical study to compare their
results to that of a blood test (considered asld-gtandard). We were asked to evaluate their
findings to see if there were any factors that hatt®duced the observed systematic errors (to
be discussed below) that could be eliminated byebetpto-electronics and/or with a better
understanding of the physics behind the problemcesthey were using a device that is made
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for a different purpose, i.e. to calculate the blexygen saturation in the arterial component, it
is probable that a new design based on, for exarafdetter selection of the wavelengths could
improve the outcome.

We have undertaken this study from a bio-statistied physics perspective. After an initial
bibliography study about various attempts to meatlue glucose concentration, non-invasively
using optics, it was clear that this was a rel§yiveew approach without a solid physics
understanding. Instead, it is a systems approashdban biological modelling and complex
numerical approaches. The systematic errors inrelkalts could be attributed to the short-
comings of the pulse-oximeter design. For examphe, choice of wavelengths that are
optimized to differentiate the hemoglobins may bet providing the optimal, glucose level
dependent variations in the pulse-shape. Anothdengial component comes from the
inherently poor quantization of a commercial pudganeter. They are designed to raise alarms
when oxygenation falls below a certain thresholdoofollow-up trends rather than to provide
accurate values. For example, it does not takditiger diameter into account. Therefore, we
have hypothesized that by studying the existingjcdil data from a bio-statistical viewpoint, we
should be able to identify whether any physicalpprties such as the finger circumference
effects the results. The second hypothesis washihatesigning a set-up that allows us to
explore a wide-range of wavelengths, we can idenkié potential for other wavelengths and
pave the way to the development of a better phlysiwadel and/or a better device that is
optimized for this purpose.

2. Further details of the system

The system to be evaluated in this study basicalhsists of a pulse oximeter that is connected
to a computer. A custom software analyzes the kigmé creates an estimation of the glucose
level. The system basically establishes a physicébgnodel of the pulse wave and its energy
being correlated with the metabolic function of alee to generate a fixed-length vector
containing the values of the foregoing model. Tisisombined with other variables related to
the user such as, for example, age, sex, heighghtyestc. This fixed-length vector is then
utilised to feed a function-estimating system basedrandom forests” for the calculation of
the glucose concentration. It is beyond the scdp@is report and my research project to get
into the details of this patented algorithm.

In order to fully understand how it works it is iomant to review the concept of general photon
propagation in tissues and pulse-oximetry.

2.1 Pulse oximeter

In most tissues it was found [6] that there is actifal window where absorption of water and
hemoglobin (main absorbers in tissues) is relatigahall (mean absorption length >1cm) and
light scattering large (mean scattering length <Jmm
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Figure 1: Physiological Window
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This region is called “Physiological Window” (figBnd is located in the near infrared (650-
950nm).As a result, light can penetrate deepeisgué in a process similar to heat diffusion,
calledphoton diffusion, where light scattering dominates the photon pgapan.

Even though absorption in the near-infrared istingdly small, the spectra of oxy- and deoxy-
hemoglobin and water, differ significantly. Undbese conditions a physical model was built in
order to quantitatively separate tissue scattdrimg tissue absorption.

Within the context of light scattering, two lengticales are important. A short “scattering
length” which corresponds to the typical distartoe photons travel before they scatter and a
longer “random walk step” which corresponds totthgcal distance traveled by photons before
their direction is randomized. The reduced scaitecoefficient is the reciprocal of the random
walk step and it is wavelength dependent and ddr‘m;lpls- ()I) On the other hand, there is also

a wavelength dependent absorption path in tissaeé ¢brresponds to the typical distance
traveled by a photon before it is absorbed. Thermlbien coefficient is the reciprocal of this
distance and it is denoted py(1). Having clarified this, a pulse oximeter [7] islevice based

on the Beer-Lambert Law, which relates the absompdf light to the properties of the material
through which the light is travelling. In other wisr for a particular wavelength we have that
lo/li =10, Wherel, is the output light intensity; the input light intensitygthe extinction
coefficient for this wavelengthC the concentration of the absorber dnis the path length
travelled by the light.
The pulse oximeter is a device that applies threcept to the absorption of light by the oxy and
deoxy-hemoglobin at 660nm and 910 nm. Current
pulse oximeters are basically composed by two
LEDs that emit in those wavelengths and two
detectors as shown in fig2.
| As consequence, if we refdrto 660nm andi,to
== s/ 910nm and we apply Lambert-Beer's Law for both
= | Red andinfrared Dlodes  \ayelengths, we obtain:
Figure 2: Pulse-Oximeter A

_I 0 = 10_(£HbOZAk [HbO2]+ £, [HB) @

|,

|
|
!
|

i
lnuulnh‘

I

Whereli andlo are the input/output light intensities; k are tin different wavelengths;
[HbO2] is the concentration of oxy-hemoglobin; [HbEe concentration of deoxy-hemoglobin;

[TH] the total concentration of Hemoglobin—;HbOZAk the extinction coefficients of oxy-

hemoglobin for a given kgHbA" the extinction coefficients of deoxy-hemoglobin togiven k

andL the path length i.e finger’s thickness;
On the other hand, for any given wavelength, thealpdensity is defined as:

[L

k
Dy =-log IILk = |enbo2" [HDO2] + £, HD]
i

It can be then easy found that the oxygen saturatiblood is given by:

, — [HbOZ] —| gHbAl . D 1 DD/] _, ‘E‘Hb/]2 \
[TH] («9H|o/]1 ‘beoz/]z) D, : ( & _gHbOZAz)

EHb
However, in mid 1970 akuo Aogayi [8] (Nihon Kohden Corporation) discovered thatrénes
a pattern of pulsatile absorption due to the atgrulse. Pulsatile expansion of the arteriolar
bed produces an increase in the path length threréfereasing absorption [8]. All pulse
oximeters assume that the only pulsatile absorb@rbat of arterial blood (AC).

O
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2.2 A new approach

The device under evaluation is based on the ctiorldetween the characteristics of the
previous pulses and the percentage of glucoseowdbiThe reason behind sits on the complex
mechanisms of the endocrine system [10].

One of these functions is the auto regulation a€gse through the production of insulin in the
pancreas.

As any biological complex system, there are sevatafconnected processes that are related to
the concentration of glucose in blood and one efftlaffects the elasticity of the capillaries.
There is a direct link between the concentratiomglatose and the concentration of collagens
proteins that regulate the elasticity of these lzaps. Therefore, if the elasticity is altereldet
absorption pattern will also change.

The AC pulses present two differentiated phase§aise up” phase which is related with the
systolic pulsation of the heart and a “fall dowriage which is related to the diastolic one and
the reflexions suffered by this wave in the perighd the circulatory system.

Example pulse pattern

5a02 _\

Function
Pre-Process Estimating Post Process
V(n) System

Clinical Data

Figure 3: Glucose Estimation Process

The device uses the shape of these pulses ancetterigy to produce an estimation of glucose
level in blood. There are several steps in thegssc

Initially, the system establishes a physiologicaldel using the previous parameters to generate
a fixed-length vector containing the values of fim@going model together with other variables
relating to the user such as, for example, age fedght, weight, etc.

The fixed-vector V(n) is obtained in this part betpre-process through the application of the
stochastic model ARMA [11] and its application ottee Tiger-Kaiser operator.

This vector is utilized to feed a function-estimagtisystem based on “random forests” for the
calculation of the variable of interest. The prpati advantage of this parameter-estimating
system stems from the fact that it does not im@wsea priori restriction on the function to be
estimated, being moreover highly robust in relatiorheterogeneous data, such as the case of
the present invention.

3. Clarke’s Error Grid Analysis (EGA)

It is customary to evaluate glucose measuremeritegusing an EGA.

The original EGA [12] was developed in 1970s to rgifg the clinical accuracy of patient
estimates of their current blood glucose (BG) asmared to BG value obtained in their meter.

It was then used to quantify clinical accuracy @ Bstimates generated by meters as compared
to a reference value.

A description of the EGA appeared in Diabetes Gar&987 [13] and it became one “Gold
Standard” for determining the accuracy of bloodcghe meters.
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It uses the Beckham analyzer as the referencet @ondsists in a grid divided in five zones:
These five zones are defined as following:

ZONE A: Clinically Accurate.

ZONE B: Acceptable results.

ZONE C: Overcorrected. Unnecessary corrections that dealdito a poor outcome.

ZONE D: Dangerous Failure to detect.

ZONE E: Erroneous treatment.
The device was used to obtain in a preliminaryicdihtrial some data from 598 patients at
hospital. The 5.5% of the data belong to the hypmghic range (<70mg/dl) versus 56%
belonging to the hyperglycemic (>110mg/dl) one. A88.5% were located between them.
As we can see in figure 4, for low reference cotragion of glucose, there is a clear
overestimation of the readings of the device (yspdnd, on the other hand there is an
underestimation for high concentrations.
According to the definition of the different zonalsthe EGA, we got that 90.5% of the points
belong to the zones A and B (safe zones), 0.3%taf belong to C zone and 9.2% of total
belong to D zone. There are no points in E zones.

3.1 Clinical Data Analysis
In order to confirm the data distribution of prawvso EGA diagram, a Bland-Altman [14]
analysis was done.

This type of analysis makes the point that two méshthat are designed to measure the same
parameter (or property) will have a good correlatidhen a set of samples are chosen such that

the property to be determined varies a lot betvikem.

A high correlation for any two methods designednasure the same property is thus in itself
just a sign that one has chosen a wide spread safligh correlation does not automatically
imply that there is good agreement between the washods. In our particular case, for
concentration below 150mg/dl most of the pointslacated between tHamits of agreement i.e
between the minus or plus 1.96 the standard dewiafi the difference range.

However, we see a clear group of points out of eafiog concentration higher than 160mg/dl.
The location of these points under the lower boundéthe limit of agreement indicates a clear
under underestimation of the readings in this range

Summarizing, the inaccuracy in the system readisdscated within the ranges of hypo and
hyperglycemia, but according to the Bland-Altmaialgsis, we have a higher dispersion of the
points in the hyperglycemia area.
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3.2 A statistical Solution through CHAID

We have clearly identified the device’s difficulty process properly some readings, especially
when the reference concentration is higher thaarticplar threshold (150mg/dl) but as well
within the hypoglycemic range (<70mg/dl).

Within the first range, the dispersion of the psiimtcreases significantly, being some of them at
the right D zone of EGA.

One way to approach this problem would be to kneevdommon characteristics of the people
that fell into this particular cluster and to praedwan algorithm that easily identifies them.

In order to identify the characteristics of thesgsters a tree decision technique CHAID [15]
was applied. This technique detects interactionvéeh variables in a data set where it is
possible to establish relationships between a odget variable’ — in our case a variable called
“Newmarker” that label our points depending on whzone of the EGA diagram are located —
and other explanatory independent variables suagasweight, height, heart rate etc. CHAID
does this by identifying discrete groups of resmond and, by taking their responses to
explanatory variables, seeks to predict what thgaichwill be on the dependent variable.

With purpose of establishing possible discrimingitor our data set, we initially apply the
algorithm one by one to the following set of indegent variables: SpO2 (Saturation of
Oxygen), HR (Heart Rate), BMI (Body Mass Index),eAdsender and Reference (Glucose
concentration used as reference).

However, the number of “bad points” —
points located in the zone D of Clarke’s

Mewmarer
EGA- was significantly less than the
Node O “good points” i.e zones A and B of EGA,
Category %  n respectively. As consequence, we
R L randomly produced five sub-sets of 60
| m 2000 | Total 1000 117 “good” points that were merged with the
“““ | = 57 “bad” points of the original dataset.
Bl We then ran the algorithm over these
Al Prvaluesh ool Chrsquan=is new five sub-datasets and the results
'| i were averaged. A larger dataset would
enable us to increase the precision of this
<= 23 612751010 » 23 E1ZTE1010 technique.
We found no correlation for any
Eate;l‘:':;‘-'; ) Eateg’i‘:“-‘i ) parameter but for the BMI and the
Reference.
:;;333 3?;3 j“; :;;333 23;? §§ The results reflected in figure 6, show
Total 436 58 Total 504 59 two interesting conclusions.

The first one is related to the BMI.

The first draw in the first plot shows that
about 65% of the population located in both D zonaging as a common characteristic that
BMI value is higher 23.1 Kg/fn

The remaining 35% have a BMI less than 23 Kg/Bearing in mind that the BMI range for a
healthy persons goes from 18.5 to 25 Kg/mn initial conclusion is that the device has
problems is accurately obtaining readings in thgnemnt of the population that goes from
normal to obese people.

It makes sense to think that the thickness of thgef and the concentration of lipids are
affecting the prediction and the accuracy of tlgoathm.

In fact, this was one of our hypotheses.

The second draw reflects thamong the group of people (goods and bads) that shase th
characteristic, the 63% of them are class D wid% of them are “good” points. Therefore,
here it is our first discriminate variable.

On the other hand, the second plot is relateddadference concentration of glucose.

There are now two different boundaries, one coggettire points with Reference value less than
86.1 mmg/dl and another one for values higher t&hmmg/dI.

Figure 5: Chaid Tree Example
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Within the first range (ref<86.1) we see that ofl$% of total bad points share this
characteristic whilsamong of the total good and bad with ref<86.1 the 80%heim are”bad”
points.

These results fit with the previous conclusionsob&ined through the observation of the EGA:
lack of accuracy within the hypoglycemic range, ngeinow the boundary moved from
70mmg/dI to 86.1 mmg/dl.

On the other hand if we pay attention at the seegande of this plot (ref>138mmg/dl) we see
that 39% of total bad points share the characiesisf having a reference value higher than 138
mmd/dl. If we check all the poinamong this range, we find that 57% of them ame D
points i.e “bad” points.

If we merge both regions, we see that 94% of todal points have as a common characteristics
that they are either located in areas where Rel<86Ref>138. If we look at the total number
of good and bad points located within this new enge have found that 69% of them are
“bad” points.

We can therefore conclude that there is a clearcimacy in the readings of the device among
the hypo and hyperglycemic regions.

The reasons of this conclusion might sit on malfiomcof the device predictive algorithm when
it faces extreme hypo and hyperglycemic scenafiosther reason can be the insufficient data
within these ranges data for a pretrial analysis.
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Figure 6: BMI & Reference Box-Plots

4. Technology limitations and solutions proposed

The device is technologically limited by the useaopulse oximeter as it was created for a
different purpose. A pulse-oximeter is optimizedidain the arterial oxygen saturation.

The choice of wavelengths, the sampling rate aagbtbbe are all designed accordingly.

One of the goals of my project was to consider owpd technologies that are based on a better
understanding of the physics of the problem.

4.1 New set-up

An experiment was then proposed with the aim ofvimg heart pulsations can be found in
many different wavelengths. For this new set ugd a white light source, one spectrometer-
CCD camera system (Pixus 400), some optical filaed a special platform built to fix the
finger. A main optical fiber (600um) was then cocteel to the light source.

In order to avoid skin burns one optical filter wagt on the output of the lamp to get rid of
wavelengths below 400nm. This fiber was conneatethé other side to a platform where the
finger was fixed.
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On the other side of this structure, a similar ffilmas located and it collected the light intensity
transmitted through the finger. This fiber was thsgtit in three (200um each) and these new
fibers delivered their respective signals into@@D camera-spectrometer system.

The purpose of splitting the signal in three waaueraging them later.

! Calibration Lamp
| Spectrometer

CCD Camera

Figure 7: New Set-Up
4.2 Experimental results

| collected data for two different individuals &.@&Hz for 20 seconds obtaining 300 frames.
The acquisition time plus the read out time of ray i was up to 64ms. Once, | centered the
grating of the spectrometer at 800nm, the disperaias about 19.09 nm/mm, the resolution
with 200/240 um fiber was from 4.6 to 5nm and the/glength range from 540nm to 1055nm.
Before data collection, | registered the BMI andrteate of two individuals being respectively
1.2Hz and 20Kg/Aper individual 1 and 0.9Hz and 25Kd/per individual 2.

| obtained then three different light intensities fany wavelengths with a total number of
different wavelengths recorded up to 1043, raniom 540nm to 1054nm. Once the data was
collected | averaged the three intensities.
Heart's pulsations were found for all the wavelénginge for both individuals.

In order to reduce this wavelength range, | alserayed the intensities over plus or minus 5nm
around each center wavelength, obtaining a simgjh intensity for the following wavelengths:
600, 650, 700, 750, 800, 850, 900, 950, 1000 abd hen.
With the aim of checking if the frequency of thelgations matched the heart rate of the
individuals registered before a Fourier Transformaksis was applied and the frequency of the
pulsations matched the expected values of 1.2 &ZnHDrespectively.
A high pass digital filter was also applied to #ignal to get rid of low frequencies.
These results are reflected in figure 8, wheredwamples of the PSD (Power Spectral Density)
per individual show the frequency of the pulsatiah®.9Hz and 1.2Hz for 750nm and 900nm,
as we expected.
We can also see that for different wavelength weioba different value in the peaks of the
PSD. This confirms that absorption is wavelengtbetelent.

In order to check if there was a particular wavgtenwhere the absorption was higher, we
compared the values of the PSD for both individaddsig the same wavelength range (fig 9).
We have found that both absorption profiles differd the reason could be related to the
different BMI value of the individuals. As we caeesin figure 9, individual 1 shows an initial
maximum of absorption located at 660 nm, (wheredwabin absorption is maximum in this
spectral window) whilst this maximum is located7idOnm for individual 2.
On the other hand, the absolute maximum absorptadne for individual 1 is located at
1050nm whilst this value was not significant fodiwvidual 2.
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The reason might sit of the physiological differeatetween both individuals, reflected on this
study through the BMI parameter as a discriminatéable.

In one side we have a slim person with BMI aboutkzfim’ and on the other side a robust
person with BMI value of 25 Kg/mBoth constitutions differ also significantly iizs.

As consequence, light at 1050nm was not able tsescttwe finger of individual 2 so good as it
did for individual one.

On the other hand, it is easy to think that higb@mncentration of lipids in individual 2 have
distorted somehow its absorption pattern if we carag it with the individual 1.

5. Conclusions

| have evaluated the existing clinical trial datanfi SabirMedical that uses a novel algorithm to
extract the blood glucose concentration from thpuuof a commercial pulse-oximeter. | have
shown that the instrument systematically over/usd#imates the "gold-standard" values for
BMI values higher than 23 Kg/and for true glucose levels lower than 86.1mmrdl higher
than 138mmg/dl. These could be due to shortcomimgise training of the analysis algorithm
due to the small data set, possible complicatiarestd the extremes in the patient physiology
and, perhaps, in the most relevant manner to thr& due to the shortcomings of the usage of a
device optimized to extract the arterial oxygerusaton. Given this information, | have put
together a bench-top set-up that has enabled msterve the pulsatile signals in a wide-range
of wavelengths and observed that the results deperttie chosen wavelength. The next steps
in this project would be to develop a physical mddesxplain this wavelength dependence and
try to improve the analysis algorithm.

During this work | have gained substantial knowkedly data analysis, basics of diffuse optics,
pulse-oximetry, the set-up and usage of a whitetligptical system using a CCD based
spectrophotometer and | have learned the basisiestatistics.

Individual 1 - Filtered, Power Spectrum Wavelength 750 nm Individual 1 - Filtered, Power Spectrum Wavelength 900 nm

Power/frequency (dB/Hz)
3 @ 8 b
Power/frequency (dB/Hz)

0
Frequency (Hz)
Frequency (Hz) aueney

Individual 2 - Filtered, Power Spectrum Wavelength 750 nm Individual 2 - Filtered, Power Spectrum Wavelength 900 nm
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Figure 8: Filtered PSD reflecting heart's pulsation
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Normalized Spectral Density of the Pulsations of Two Individuals
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Figure 9: Normalized PSD of pulsations for 2 indiwiluals
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