

PROJECTE DE FI DE CARRERA

TÍTOL: Development of advanced multimedia services in P2P architectures

AUTOR: Alberto José González Cela

DIRECTOR: Antoni Oller Arcas

DATA: 9 de febrer de 2007

Títol: Development of advanced multimedia services in P2P architectures

Autor: Alberto José González Cela

Director: Antoni Oller Arcas

Data: 9 de febrer de 2007

Resum

La transmissió de fluxos multimèdia en temps real (streaming) s’ha convertit en
un tema punter i de gran interès al món de la recerca d’Internet, especialment
quan ens referim a aplicacions de transmissió d’àudio i vídeo en directe a
través de xarxes peer-to-peer (P2P). Generalment, aquestes aplicacions han
de fer front a molts problemes en el seu disseny i implementació deguts a la
dinamicitat i heterogeneïtat que per natura caracteritzen les xarxes P2P. En
aquest projecte, s’introdueixen noves característiques que les aplicacions de
transmissió multimèdia P2P actuals no contemplen.

Els requisits de connexió i maquinari són diferents per a la transmissió de
fluxos de baixa i alta capacitat, no obstant, tots els nodes s’acostumen a
considerar idèntics, cosa que no representa una aproximació gaire encertada
tenint en compte un medi tan heterogeni. A més a més, amb la finalitat
d’aconseguir distinció entre nodes, es fa necessari la introducció d’un
mecanisme que permeti l’intercanvi de les capacitats específiques de cada
node, incloent-hi les de transcodificació de fluxos. Un altre aspecte a destacar
és el fet que aquestes aplicacions són difícils d’ampliar, incorporar nous
serveis o modificar les dades que porten precarregades com ara la llista de
canals de televisió disponibles, cosa que impossibilita garantir la disponibilitat
de la font tot el temps. Per altra banda, els serveis interactius tampoc s’han
desenvolupat gaire.

Aquest projecte proposa el disseny i implementació d’una plataforma de difusió
multimèdia P2P cooperativa i interactiva que permet superar els problemes
esmentats. La plataforma integra diferents mecanismes que permeten la
distribució en temps real de continguts multimèdia en diferents qualitats
incloent fluxos d’alta capacitat (com per exemple HD). Aquesta plataforma és
una solució novedosa basada en JXTA, DONET i ALM (Arbres Multicast a
nivell d’Aplicació) que proporciona un sistema ampliable segons noves
necessitats i facilita la inserció de nous serveis de valor afegit. La plataforma
proposada es fonamenta en la creació d’una arquitectura de 2 capes lògiques
superposades: una capa lògica JXTA, encarregada bàsicament de la
senyalització i intercanvi de metadades, i una capa de transmissió basada en
sockets UDP unicast. D’aquesta manera, la diferència entre la capa de
transmissió i la capa física es pot veure reduïda a partir de la informació
obtinguda de la capa JXTA, la qual es va actualitzant al llarg del temps.

Title: Development of advanced multimedia services in P2P architectures

Author: Alberto José González Cela

Director: Antoni Oller Arcas

Date: February, 9th 2007

Abstract

Media streaming has become a hot topic in Internet research, especially when
it is related to live streaming audio and video applications and peer-to-peer
(P2P) networks. In general, they have to cope with challenging problems in
their design and implementation, due to the dynamic and heterogeneous
nature of P2P networks. In this project, some new features that other P2P
media streaming applications do not consider or barely specify are introduced.

The connection and hardware requirements are different if low bitrate or high
bitrate streams are transmitted. However, all peers are usually considered
identical, which is not a good approach considering a heterogeneous
environment. Furthermore, in order to achieve distinction among peers, it is
necessary to provide a mechanism that enables the exchange of the specific
capabilities (including transcoding) of each peer. Moreover, these applications
have difficulties to extend its features by adding new services or when trying to
modify any preloaded data such as the channel list provided to the user,
making impossible to guarantee the source availability all the time. Finally,
interactive services have not been deeply discussed.

This project proposes the design and implementation of a collaborative and
interactive media streaming platform that allows coping with the issues before
mentioned. The platform integrates different mechanisms that permit real-time
distribution of multimedia contents with different qualities including high bitrate
media streaming (e.g. HD). This platform is a novel hybrid solution based on
JXTA, DONET and ALM (Application Layer Multicast), providing a flexible and
extensible platform according to new requirements and future value-added
services. In addition, this platform allows creating an architecture with two
overlay layers: a JXTA based logical layer, which is in charge of signalling and
metadata exchange, and a UDP socket based layer, which is in charge of the
multimedia transmission of unicast traffic. Consequently, the mismatch
between transmission and physical layers can be reduced by means of the
data obtained from the JXTA layer, which is updated through time.

INDEX

CHAPTER 1. INTRODUCTION.. 1

1.1. The Proposal: CIMS-Live .. 2

1.2. Document Overview .. 3

1.3. Related Works.. 3

1.4. Context ... 4

1.5. Objectives... 5

CHAPTER 2. SPECIFICATION ... 6

2.1. Functionalities ... 6
2.1.1. Media Streaming .. 7
2.1.2. Videoconference... 7
2.1.3. Shared Calendar .. 7
2.1.4. Chat .. 7
2.1.5. File Sharing... 7
2.1.6. Group / Channel Creation... 8
2.1.7. Advertising (Yellow Pages)... 8
2.1.8. Monitoring and Statistics (Backoffice) .. 8

2.2. Technical Specification... 9
2.2.1. Media Streaming .. 10

CHAPTER 3. ARCHITECTURE... 12

3.1. System Overview... 12
3.1.1. JXTA Based Application ... 12
3.1.2. Multimedia Streaming and Interactivity .. 13

3.2. P2P Architecture.. 14

3.3. Peer Profiles... 16

CHAPTER 4. SYSTEM DESIGN.. 19

4.1. Graphical User Interface (GUI) ... 20
4.1.1. Model-View-Controller Design Pattern ... 20

4.2. JXTA Module .. 21

4.3. Streaming Module.. 23

CHAPTER 5. P2P MEDIA STREAMING MECHANISMS................................ 25

5.1. Low Bitrate Media Streaming ... 25

5.2. High Bitrate Media Streaming .. 27
5.2.1. Mesh Organization ... 27

5.2.2. Tree Organization... 30

CHAPTER 6. IMPLEMENTATION AND TESTING.. 32

6.1. Test Bed.. 32

6.2. Technologies and Tools ... 33

6.3. Forwarding Method ... 35
6.3.1. Implementation Tests ... 36

6.4. Functionalities ... 39

6.5. Application Layer Multicast (ALM) Structure ... 42

6.6. Graphical User Interface ... 44

6.7. CIMS-Live Prototype Test ... 46

CHAPTER 7. PLANNING AND COST ESTIMATION...................................... 48

7.1. Planning.. 48

7.2. Cost Estimation ... 50

CHAPTER 8. CONCLUSIONS... 52

8.1. Achieved Objectives ... 52

8.2. Future Work.. 53

8.3. Environmental Impact ... 55

8.4. Personal Conclusions... 56

CHAPTER 9. REFERENCES... 57

CHAPTER 10. ACRONYMS .. 59

ANNEX A. TECHNICAL SPECIFICATION... 61

ANNEX B. INTERACTION FLOW.. 65

ANNEX C. PAPER SUBMITTED TO EURO-NGI... 66

ANNEX D. GANTT DIAGRAM ... 77

ANNEX E. CIMS-LIVE QUICK GUIDE... 78

INDEX OF FIGURES

Fig. 2.1 Modules of the application... 9
Fig. 2.2 Services Module.. 10
Fig. 2.3 Multimedia streaming options.. 10
Fig. 3.1 JXTA Architecture ... 12
Fig. 3.2 Layered Architecture ... 14
Fig. 3.3 Start of the application... 15
Fig. 3.4 JXTA messaging efficiency ... 16
Fig. 3.5 Logical organization of peers... 17
Fig. 3.6 Transcoding process ... 18
Fig. 4.1 Generic system diagram of a peer .. 19
Fig. 4.2 Graphical User Interface.. 20
Fig. 4.3 MVC .. 21
Fig. 4.4 Detection of events and GUI update.. 22
Fig. 4.5 Streaming Module ... 23
Fig. 5.1 Buffer representation and sharing ... 26
Fig. 5.2 Scheduling algorithm overview.. 27
Fig. 5.3 Application Multicast Tree structure. It can be seen the active and

backup paths that conform a mesh-first approach 28
Fig. 5.4 Start a media streaming playback ... 29
Fig. 5.5 Stop a media streaming playback ... 29
Fig. 5.6 Peer C gets disconnected ... 30
Fig. 5.7 Peer F and its children are reorganized in a tree source-rooted scenario

.. 31
Fig. 6.1 Network diagram ... 32
Fig. 6.2 Cascade forwarding... 35
Fig. 6.3 Multiple node forwarding ... 36
Fig. 6.4 Chat 1:1... 40
Fig. 6.5 Chat 1:N .. 40
Fig. 6.6 Videoconference ... 41
Fig. 6.7 Media streaming channel JXTA advertisement 42
Fig. 6.8 Video streaming .. 42
Fig. 6.9 Non AVL tree and AVL tree ... 43
Fig. 6.10 Peer organization by hops and delay .. 43
Fig. 6.11 Connection process... 44
Fig. 6.12 Publication menu... 45
Fig. 6.13 Channels manager view.. 45
Fig. 6.14 Development scenario... 47
Fig. 8.1 Super peer architecture ... 53
Fig. 8.2 SOA proposed architecture ... 54

INDEX OF TABLES

Table 2.1 Start playback... 11
Table 2.2 Stop playback... 11
Table 2.3 Become a source.. 11
Table 4.1 Parameters under consideration... 22
Table 6.1 PC specifications.. 33
Table 6.2 Test results on Windows XP Pro .. 37
Table 6.3 Test results on Ubuntu 6.06 LTS.. 39
Table 6.4 Delivered Media.. 46
Table 6.5 DV stream specification.. 46
Table 7.1 Tasks.. 49
Table 7.2 Cost estimation of the project ... 51

Introduction 1

CHAPTER 1. INTRODUCTION

Recently, Peer-to-Peer (P2P) networks have gained popularity thanks to the
deployment of file-sharing applications. However, nowadays real-time media
streaming applications arouse a great interest both to commercial level and
academic research. Live streaming introduces new challenging problems [1], [2]
different to ordinary file-sharing. In general, media streaming solutions have
different features that determine the operation of the applications. For example:
the large volume of media data along with stringent timing constraints, the
dynamic and heterogeneous nature of P2P networks and the unpredictable
behaviour of peers.

It is possible to emphasize some important issues closely related to P2P media
streaming which are mainly associated to two aspects: collaboration between
peers and interactivity. With regard to collaboration between peers, the
following issues have to be taken into account: dynamic peer discovery, peer
relationship maintenance and exchange of capabilities (transcoding
information). Related to interactivity, the issues are the membership service and
the messaging exchange.

From the operative point of view, when a peer starts a streaming P2P
application, it has no information about other peers, which are also present in
the virtual network. This implies that an efficient discovery mechanism must be
initiated in order to find other peers and start receiving the desired media
stream from the best ones.

Another key point is the maintenance of the relationship among peers and their
update. Due to the heterogeneous environment of P2P networks and the
unpredictable behaviour of peers (e.g. constant appearance and
disappearance) stable and dynamic membership and presence mechanisms
must be incorporated to know which peers are up, especially to ensure the state
of the provider peers (partners) of a specific peer. Therefore, a peer must
update its relationships to replace those partners that are down and,
consequently, to not decrease the quality of the received stream.

The process of discovery is especially important when referring to live
streaming applications because depending on the number and specific features
of the found peers, the desired stream will be received under some conditions.
In the worst case, it will not be received or it will be received with losses or
delay, causing the rejection of the final user because of unacceptable visual
quality.

P2P networks are composed by thousands of different peers, each of them with
specific features, such as bandwidth, decoding capabilities or storage capacity.
It is a main issue to select the providers that better fulfil the capabilities and
requirements of a peer that wants to start receiving a media stream; therefore, a
dynamic mechanism to advertise the concrete capabilities of each peer must
exist. Once delivered a stream at a specific bitrate and codec, maybe not all of

2 Development of advanced multimedia services in P2P architectures

the peers in the network are able to receive this stream due to insufficient
downlink bandwidth. This problem is solved if the streaming platform enables to
advertise peers with adaptation or transcoding functions. For example, if a
source is sending a High Definition stream of 20 Mbps (MPEG2-TS, 1280x720),
maybe most of the peers with current Internet access (e.g. ADSL or Cable
Modem) can not receive this stream delivered at that bitrate, but if a peer has
transcoding capability, possibly this stream can be adapted to a smaller bitrate.

Regarding interactivity among peers, the existing P2P applications do not
promote value-added interactive services among connected peers, currently
known as social networks. When talking about terrestrial TV and radio
broadcasting the interaction with the viewers or listeners is a hot topic. A
possible way to interact with the audience is to make available an infrastructure
to receive SMS, which can be expensive and complex. It is also usual to install
devices dedicated to calculate the share gathered from a TV programme and
determine the success of the programme according to the obtained data. P2P
applications offer the possibility to create interactive experiences for the users
by providing cheap and simple mechanisms to interact with the connected user.
For instance, peers can chat at playing time. Using P2PTV, the broadcasters
can get the feedback of online users at real time, the same way that TV
broadcasters do in current TV channels with SMS, but with the difference that
IP infrastructure is much cost effective. Statistical information such as number
of current/average viewers, time of playback or the user profile can be directly
obtained thanks to an efficient membership service.

Moreover, it must be mentioned that popular streaming P2P applications
focused on delivering TV streams on the Internet, such as PPLive [3] or
SopCast [4], have a default static list of P2PTV channels, which identify the well
known media streaming sources. In spite of the fact that these lists can be
updated, this process is inflexible because when a change in the contents is
required, retrieval or addition of channels, the whole application must be
updated online or, even, it is mandatory to download a new release of the whole
application. This feature causes that these applications can not be easily
extended.

A problem derived from providing a static list of channels is source availability.
The fact that the list of channels is prefixed does not guarantee that they are
fully available. In this sense, it is when a user wants to view a channel that the
system checks if the source is available or not. In the case of being unavailable,
the user has wasted its time trying to view this channel.

1.1. The Proposal: CIMS-Live

Taking into account this environment and with the idea to solve the issues
before mentioned, this project proposes the design and implementation of a
media streaming platform called: CIMS-Live (Collaborative and Interactive
Media Streaming Platform). This platform is a hybrid solution based on the P2P
Java API called JXTA [5], DONET (Data-driven Overlay Network) [6] and ALM
(Application Layer Multicast) structure [7], [8]. Thanks to this platform, the

Introduction 3

publication and discovery of media streaming channels and peers can be fully
decentralized and automated. It also allows delivering any kind of multimedia
stream thanks to the cooperation among peers. This infrastructure makes
possible to create an extensible application which allows incorporating new
services. Furthermore, the flexible publication mechanisms provided by JXTA
allow announcing the specific capabilities of the different peers present in the
network and, consequently, finding the best peers that will become providers of
critical services such as media streaming.

1.2. Document Overview

This document will first introduce in CHAPTER 2 the specification of the
functionalities that CIMS-Live will provide to its users. In CHAPTER 3, the
architecture of CIMS-Live is presented. Next, in CHAPTER 4, the design of the
system is presented and the different elements that constitute the application
are detailed. In CHAPTER 5, two P2P media streaming mechanisms used in
the solution are described, which allow real-time distribution of multimedia
content with different qualities. After that, in CHAPTER 6, a developed
prototype and its development environment are described in order to check the
different programmed functionalities and to validate the concepts on which the
application is based. In CHAPTER 7 it can be seen the planning and the cost
estimation of the project. Finally, CHAPTER 8 concludes this project suggesting
future works and presenting the inferred conclusions.

1.3. Related Works

In recent years, there have been significant researches into a variety of issues
related to P2P media streaming. However, it is necessary to mention that there
are some popular media streaming applications whose internal operation is
barely known; therefore, it is difficult to analyze the algorithms and mechanisms
used. On the other hand, there are academic developments associated to
universities or communities of developers that have been well specified and
published. One example of this last type is STARCast [9], which is a JXTA
based platform that offers streaming services.

STARCast uses an ALM structure for streaming tasks. But, opposite to CIMS-
Live, it treats all the streams in the same manner, that is, it does not distinguish
between low and high bitrate streams. In addition, there is no detailed
information about its concrete operations.

Moreover, there are different strategies related to the selection of the partners
and to the construction of an efficient overlay network for multimedia streaming.
Next, some techniques applied or associated to this study will be mentioned.

Borrowing ideas from IP multicast technology, tree-based protocols can be
considered simple, efficient and scalable. Specifically, the main goal of single
tree protocols is to build a scalable multicast tree with high efficiency. A
representative example of this is ZIGZAG [8], which is a P2P technique that

4 Development of advanced multimedia services in P2P architectures

allows the media server to distribute content to many clients, by organizing
them into an appropriate tree rooted in the server. Basically, it is ALM tree that
has height logarithmic with the number of clients. ZIGZAG deals with the
problem of one source towards multiple destinations with consideration of
network condition. The objectives are to minimize the end-to-end (E2E) delay,
to manage user dynamicity and to keep the overhead traffic as small as
possible to achieve scalability. ZIGZAG is a typical example of a Source-Driven
scheme.

Another well-known example is DONet. DONet proposes a Data-driven Overlay
Network for live P2P media streaming. The core operations in DONet are very
simple and do not need any kind of complex tree structure for data
transmission. Actually, every node periodically exchanges data availability
information with a set of partners, and retrieves unavailable data from one or
more partners, or supplies available data to partners. Authors show through
analysis that DONet is scalable with bounded delay and also address a set of
practical challenges for realizing DONet. An efficient member and Gossip based
partnership management algorithm is proposed, together with an intelligent
scheduling algorithm that achieves real-time and continuous distribution of
streaming contents. DONET is currently implemented in a commercial
application called CoolStreaming [6].

AnySee [10] is a P2P live streaming system based on an inter-overlay
optimization scheme and where the resources can join multiple overlays. This
system creates an overlay network of the peers in the application according to
location-aware topology matching (LTM), but it supposes a prominent
management effort.

1.4. Context

This project is interested in solving the problem of streaming live bandwidth-
intensive media (from low to high bitrates) in P2P networks, that is, streaming
from a single source to a large number of receivers. It is obvious that P2P
techniques provide a scalable and robust solution to streaming tasks in
comparison with pure centralized strategies which are based on a simple
strategy where it is dedicated an individual connection to stream the content to
each receiver. Centralized strategies consume tremendous bandwidth and
require great processing capabilities, so it is nearly impossible for a service
provider to serve quality streaming to large audiences while generating profits.

Nowadays, with the improvement of network bandwidth, multimedia services
based on streaming have grown in popularity. IP multicast could be the best
way to deliver multimedia streams but its deployment on the Internet is very
limited due to practical issues of routers.

There are two main approximations to solve media streaming delivery on P2P
networks. The first one is based on the construction of an Application Layer
Multicast (ALM) structure that can be a tree rooted at source or a mesh. The
other one is based on the segmentation of a media stream into blocks. Current

Introduction 5

P2PTV applications implement mechanisms based on one of these two
schemes.

Once constructed the multimedia streaming service, it can be provided
interactive services to the users connected to the streaming platform. It is easy
to develop new social networks that promote the relationship among peers
thanks to the virtual connections created.

1.5. Objectives

As it has been mentioned on the context section, this project expects to solve
the problem of delivering multimedia streams on a P2P network and the
creation of interactive applications. This is why it is proposed a platform that
allows the cooperation among peers in order to carry out heavy streaming tasks
and also offers interactive services such as chats which promote the creation of
social networks.

In order to achieve this, the main objective of this project is to study different
strategies and technologies which will allow delivering any kind of multimedia
stream using P2P mechanisms. These strategies are: ALM structures and
buffer segmentation.

One objective prior to starting with the development of the study is to detail a
prototype, specifying the functionalities it offers.

Moreover, it will be implemented a software prototype that will allow joining a
P2P network, discovering media streaming channels and starting the playback
of a stream using the studied strategies. The resulting application will be named
CIMS-Live.

Once studied the different strategies and implemented the prototype, some
conclusions will be inferred.

6 Development of advanced multimedia services in P2P architectures

CHAPTER 2. SPECIFICATION

This chapter details the basic functionalities defined for the proposed P2P
application named CIMS-Live.

CIMS-Live is a cooperative and interactive application. When it is mentioned
that it is proposed a collaborative platform, it is focused on a P2P strategy that
allows the different users to cooperate in order to provide multimedia streaming
services, which would suppose a heavy task for a single user. The other key
aspect is the creation of a platform that provides interactive services such as
chat and videoconference in order to promote the relationship among peers.

CIMS-Live is extensible, so new functionalities can be added to the application
when needed.

2.1. Functionalities

The functionalities of CIMS-Live are focused on the following logic elements.

• Users. Those peers which are present on the logical network of the
application (CIMS-Live-Net) or join one or more groups in the network
but are not on the list of contacts of a user. Other users can be found
when joining the application or when joining a specific group. CIMS-Live
is prepared to distinguish among 3 different types of users when being
part of a streaming task. There are specified 3 user profiles.

o Simple Peer. User that wants to play a channel.
o Source. Owner of a multimedia group (channel), it is the original

multimedia provider.
o Transcoder. A user that receives a multimedia stream from the

platform and can adapt it to another stream with some specific
features according to concrete needs of other users.

• Contacts. Those peers that a user adds to its contacts list.
• Groups and channels. Associations of users according to specific

affinities or interests. This project will be focused on a specific type of
group which is P2PTV or P2PRadio channel. These groups are specific
groups that peers can join in order to receive media streams. It is the
same concept as “channel” when talking about terrestrial or satellite
broadcasting.

The proposed functionalities are listed next.

Specification 7

2.1.1. Media Streaming

Any peer of the application can discover media streaming channels and can ask
the system for starting its playback.

It is also possible to create media streaming channels to deliver any kind of
media through the platform if the requirements of the user are enough. This
case implies that the user becomes a streaming source into the channel group
(see section 3.3 for deep review).

2.1.2. Videoconference

Any user with a webcam can start a videoconference with one of its contacts or
more than one (multiconference).

Thanks to the shared calendar functionality (see section 2.1.3)
videoconferences can be scheduled for a specific date and hour.

2.1.3. Shared Calendar

Those users that join this service can share a calendar among their contacts.
The users can edit tasks and events, share the information of their list of
contacts and arrange meetings or videoconferences.

2.1.4. Chat

All users of the application have a general chat (1:N chat) both in the application
group and in every specific group or channel. All the users in a group can chat
with the rest of the connected users in a single window.

It is also possible to create a user-to-user chat (1:1 chat) between two peers
when they are added in their respective lists of contacts. Then, they can start
private chat.

In addition, all the peers can specify their current state: away, busy, online,
offline. The state has global view in the system.

2.1.5. File Sharing

All the peers can exchange files among their contacts (point-to-point) but it is
also possible to share files among all the peers in a distributed scenario. So,
peers can look for specific files that other peers have made available for
download. The desired file is downloaded from multiple peers, in a typical P2P
scenario.

8 Development of advanced multimedia services in P2P architectures

2.1.6. Group / Channel Creation

Any user can create a group or media channel. These groups allow the peers to
associate according to specific affinities and interests.

2.1.7. Advertising (Yellow Pages)

The P2P application allows the peers to introduce their own advertisements in
the platform in a well classified manner. All the peers can discover these
advertisements.

Moreover, the searches can be filtered according to specific interests of the
user. These interests can be introduced in the application when configuring the
preferences of the user.

2.1.8. Monitoring and Statistics (Backoffice)

The users of the application can know the state of the network according to the
statistical data gathered by the application. A user can monitor the following
Quality of Service (QoS) parameters.

• Packet loss

• Delay between two users

• Received and transmitted bytes

• Available bandwidth

Another functionality related to monitoring is to enable the request of these
statistics by other peers on the network.

Monitoring is also important when talking about media streaming channels
because it is possible to create statistics in order to know which the real share
of a programme is according to some parameters such as number of viewers,
peak time of users connected and so on. These important statistics can
determine the success of a broadcaster and can be achieved in an easier way
when using an IP scenario in comparison with terrestrial or satellite TV
broadcasting. Some monitored parameters can be translated to other more
abstract parameters very useful for streaming providers. An example of this
would be to obtain the number of viewers of a stream when knowing the
number of opened connections for transmission. Note that this parameter has
no sense in a P2P scenario because the source is not the only peer that
delivers a multimedia stream. In a P2P network, this parameter would be
mapped to the number of peers joining a specific channel.

Specification 9

2.2. Technical Specification

The application interacts with different modules (Fig. 2.1) in order to offer the
functionalities above mentioned (section 2.1.). The services that offers the
proposed application are contained in a module called “Services”, which
includes:

• Multimedia

• File Sharing

• Monitoring

• Shared Calendar

• Yellow Pages

Fig. 2.1 Modules of the application

Fig. 2.2 shows the main services offered to a user by the application.

10 Development of advanced multimedia services in P2P architectures

Fig. 2.2 Services Module

In this section are shown some use case diagrams that allow observing the
functionalities of the application in detail. Just the most important one is
considered in this section: media streaming, included in the multimedia module.

Other technical specifications can be further seen in ANNEX A.

2.2.1. Media Streaming

The Media Streaming functionality offers to the user the actions shown in Fig.
2.3.

Fig. 2.3 Multimedia streaming options

A user can ask the application for starting a channel playback or stopping it
when the user wants (Table 2.1, Table 2.2).

Specification 11

Table 2.1 Start playback

Name Start playback.

Description Ask for starting the playback of a media stream delivered when joining a
specific media P2P channel.

Actors User.

Preconditions The peer has discovered the channel group.

Normal flow 1. User clicks on the panel of P2P channels.
2. The application shows the list of P2P channels.
3. User presses right-mouse button over the desired channel and selects
“Start playback”.

Postconditions The desired media stream starts its playback.

Table 2.2 Stop playback

Name Stop playback.

Description Ask for stopping the playback of a media stream delivered when joining a
specific media P2P channel.

Actors User.

Preconditions The peer has discovered the channel group and is currently playing the
desired media stream.

Normal flow 1. User clicks on the panel of P2P channels.
2. The application shows the list of P2P channels.
3. User presses right-mouse button over the desired channel and selects
“Stop playback”.

Postconditions The media stream is stopped. The user terminates the visualization.

Another key functionality that offers the application is the possibility of becoming
a streaming source when having enough capabilities (Table 2.3). If the
minimum requirements are satisfied, the application shows a simple panel
which allows the user to configure the channel that is going to be published and
the stream that is going to be delivered.

Table 2.3 Become a source

Name Become a source.

Description Any peer can become a media streaming source.

Actors User.

Preconditions The user has enough capabilities to start a media streaming process:
bandwidth, processing, devices,...

Normal flow 1. User clicks on the panel of P2P channels.
2. User clicks on “Publish Channel” button.
3. The application shows the panel which allows the peer to introduce the
required parameters in order to become a streaming source.
4. User clicks “Publish” button when is finished.

Postconditions No other tasks can be realized during the stream delivery process with an
exception, the peer can consult the statistics generated by the application.

12 Development of advanced multimedia services in P2P architectures

CHAPTER 3. ARCHITECTURE

The previous chapter specified the functionalities that CIMS-Live can offer to its
users. In this chapter it is commented the architecture that allows constructing
the logical platform created by the application. The architecture of the platform
can be separated into three well-defined layers that will be deeply described in
this chapter. These layers are the following ones.

• Physical layer. Contains all the nodes of the network physically
separated.

• Transmission layer. Overlay network disposed to carry out streaming
transmission tasks in an efficient way thanks to the data gathered from
the JXTA layer.

• JXTA layer. This is the most abstract overlay layer. It is in charge of
organizing the users into groups. In addition, it is used for signalling
tasks. This layer will enable to decrease the mismatch between the
physical layer and the transmission layer in order to optimize streaming
tasks.

3.1. System Overview

In this section it is going to be explained which are the mechanisms that allow
constructing the collaborative and interactive P2P media streaming platform and
how the peers are organized into different overlay networks.

3.1.1. JXTA Based Application

The proposed platform is based on the P2P Java API provided by the JXTA
project [31], [18], which offers automatic mechanisms for publishing and
discovering peers, groups of peers, and every desired resource. Thanks to this
API it is easy to develop a full featured P2P application where peers are self
organized into logical groups. The self-grouped peers can discover each others
in an easy way, and it is simple to create membership and presence
mechanisms. Next, Fig. 3.1 shows the JXTA architecture which allows creating
P2P applications.

Fig. 3.1 JXTA Architecture

Architecture 13

In addition, a goal feature offered by the JXTA platform is that the more time the
application is running, the more global knowledge of the logical network or
group can be achieved thanks to the discovery requests and events generated
or caught by the peers. According to the information gathered from the
discovery, membership and presence processes, a peer can optimize its
transmission layer by updating its relationships with other discovered peers.

The powerful mechanism for publishing advertisements of JXTA, also makes
easy to advertise the specific capabilities that each peer has, even it can be
done periodically if they change in time. Peers can work attending to three
profiles: source, transcoder and simple peer. In section 3.3 these profiles will be
further described.

3.1.2. Multimedia Streaming and Interactivity

As it has been mentioned, the platform makes possible to deliver media
streams, which supposes a key point. In this project it is proposed to adopt two
different strategies depending on the kind of stream that is going to be
delivered.

• Low bitrate streams: streams delivered at less than 2Mbps (<2Mbps)

• High bitrate steams: streams delivered at more than 2Mbps (>2Mbps)

This distinction is done because the connection and hardware requirements are
not the same in both situations. For further detail, see CHAPTER 5.

On the one hand, it is used a similar mechanism to the one suggested by
DONET in order to deliver low bitrate streams, which is based on buffer
segmentation and multiple-peer retrieval of data blocks. Nevertheless, it is used
the information exchanged in the JXTA network to configure and update the
scheduling algorithm according to required information such as the Buffer Map
of each peer. Thanks to the JXTA layer, each peer can dynamically discover
other peers and optimize its transmission layer with the obtained information.
On the other hand, ALM structures are used to deliver high bitrate streams
because it is not required any complex process of the media streams.

Moreover, a peer can obtain information of proximity to other peers by
exchanging some messages at application level in order to discover what the
delay between two peers is. Once obtained the delay and its variation (jitter), a
peer can establish relationships with the best found peers.

Another new feature presented by this platform is that it enables everyone to
publish a stream, that is, to be a streaming source and make it available to
everybody. It is also allowed publishing into a specific streaming group
(channel) those peers with specific capability of transcoding in order to adapt
the media stream to other limited devices.

Finally, new interactive services such as chat, file sharing, opinion poll or survey
can be added to this platform. These services promote social networks.

14 Development of advanced multimedia services in P2P architectures

3.2. P2P Architecture

This section shows the proposed pure P2P architecture based on the Java API
named JXTA.

The architecture can be mapped to three different logical layers as can be seen
in Fig. 3.2.

Fig. 3.2 Layered Architecture

Fig. 3.2 depicts the layered architecture, structured as follows.

• Physical Network Layer. It represents the physical topology of the
different peers separated by physical links. The number placed over the
link represents a symbolic cost estimated by a function of hops/delay
between two end points.

• Transmission Overlay Network. This layer consists of a group of
unicast links between peers. It is responsible of transmitting the
multimedia packets.

• JXTA Logical Network. This is the most abstract level which contains all
the self-organized peers. This layer is in charge of signalling and
discovery tasks.

Architecture 15

All the peers are nodes physically separated by a certain number of hops and a
variable delay, which supposes that a data packet sent from one node to
another can go through many different links and cross many nodes until it
arrives to destiny. The physical topology is a layer joined by lots of
heterogeneous peers.

The physical topology is mapped to a logical overlay network, called JXTA
Logical Network, where all the peers that join the application are self organized.
Thanks to the JXTA API, these nodes can be advertised, discovered and self
organized in a logical group of peers.

When the application starts (Fig. 3.3), the first thing it must be done is to find the
peer group created by the application, which contains all the connected peers.
Then, if the peer finds the group it will join it and then will look for a Rendezvous
peer in the group. If the group has not been discovered, it will create the group.
This also occurs with the Rendezvous peer, that is, if the peer does not find the
Rendezvous, and it has enough capability, this peer will become Rendezvous.
Once connected to the Rendezvous, the peer will start a thread for managing
discovery events.

Fig. 3.3 Start of the application

In spite of the fact that JXTA provides mechanisms to send and receive data
(Pipes and JXTA Sockets) they are not optimum for high data volume
transferences due to the heavy weighted encapsulation of this data into XML
messages. Straight afterwards, Fig. 3.4 shows the proportion dedicated for
payload and headers (TCP/IP and JXTA) when sending a JXTA message of
three different services. It can be seen that the JXTA header can represent the
95% of the sent message.

16 Development of advanced multimedia services in P2P architectures

Fig. 3.4 JXTA messaging efficiency

This is the reason why it is used a unicast data transmission layer, specially
aimed at media stream delivery. The JXTA layer is the responsible of signalling
and other light services provided by the platform such as presence and chat.

Thanks to the dynamic information exchanged among different peers in the
JXTA network, a global view of the group can be achieved and the transmission
layer can be set-up to obtain the best possible performance. The peers are
always listening to the changes produced in the network, that is, the state of the
peers and their features. Then, it is proposed a feedback from the top layer to
the transmission layer.

Moreover, this architecture enables to optimize the relationships among peers
as more time they are up by discovering other new peers.

Another key issue is that when a peer generates a discovery request it waits for
some answers and, implicitly, just the closest peers will answer. With this
approximation, the mismatch between physical and logical layers can be
decreased. But this is not the only parameter to be taken into account when
constructing logical links between two peers; it is also considered the delay
between them.

3.3. Peer Profiles

It must be specified the different roles carried out by each peer of the P2P
system. It must be noticed that all the peers in the application belong to a
common group. The application creates a logical group that contains all the
peers in the system and all the groups created by the peers of the application.
This organization can be seen in Fig. 3.5.

Architecture 17

Fig. 3.5 Logical organization of peers

Different types of peers can be found according to its features. Each user
connected to the application will become a peer of the logical application group
and will be capable to discover and join other peers and groups present in the
logical system. Each peer publishes its features: bandwidth, maximum number
of connections accepted, delay to the source and hops to the source. In
addition, each peer publishes its role into the peer group: source, transcoder or
simple peer.

Source: the owner peer of a specific channel of media streaming and also the
peer that provides the stream to the group. A P2PTV or P2PRadio channel can
be mapped to a logical group in JXTA environment. This group is joined by all
the peers that want to play a concrete stream, that is, all the peers have a
common interest. When a peer wants to become a stream deliverer it must
create a JXTA peer group advertisement describing the characteristics of the
P2PTV channel: name, theme, description, bit rate, codec and any other
required parameter. When other peers discover the advertisements, they get
ready to try to receive the media stream.

Transcoder: a peer that can receive a media stream and can transcode (Fig.
3.6) it to another specific media format. Transcoders are peers that can
collaborate in the peer group by adapting the delivered streams for other limited
peers present in the group such as PDA and mobile phones.

18 Development of advanced multimedia services in P2P architectures

Fig. 3.6 Transcoding process

Simple Peer: this is the default profile of a user in the application group. Each
peer can discover and join the different groups in the JXTA world and discover
and use the services it offers: media streaming, file sharing, and so on. Also, if
the peer has enough capacity, it can become a source peer if it wants to deliver
a media stream.

System Design 19

CHAPTER 4. SYSTEM DESIGN

Once defined the proposed architecture for the collaborative and interactive
platform, the design of CIMS-Live can be described. CIMS-Live is a modular
application that can be extended in an easy manner. The design can be seen in
Fig. 4.1.

Fig. 4.1 Generic system diagram of a peer

Fig. 4.1 depicts the system diagram of a peer. It is composed by the following
modules.

• Graphical User Interface (GUI), it is the User front-end.
• JXTA Module, which maintains global view of the logical group,

establishes and maintains the partnership with other peers, publishes its
features and capabilities and discovers resources on the peer group.

• Streaming Module, which schedules the transmission of a media stream
to other peers in the system according to the information gathered from
the JXTA Module and also forwards the stream to the local player
embedded into the GUI for its playback.

The system has two key network interfaces.

• JXTA Logical Network Interface, which enables all the signalling
through the JXTA network. It is based on UDP unicast sockets.

• Transmission Network Interface, which allows the user to receive and
send streaming packets. The JXTA network interface is based on JXTA
Sockets, JXTA multicast Sockets and the JXTA discovery and publishing
services.

20 Development of advanced multimedia services in P2P architectures

4.1. Graphical User Interface (GUI)

The view of the application (Fig. 4.2) is constructed using the Java Swing
framework [15]. The user can view all the data gathered from the JXTA network
referenced to groups, media channels, chat rooms, connected peers,
advertising, shared resources and any other new service added to the platform
thanks to a generic services directory (yellow pages). The GUI listens to the
actions of the user and generates events for its later processing.

Fig. 4.2 Graphical User Interface

In order to create the visual interface of the user, it was followed the Model-
View-Controller (MVC) [11], [19] design pattern, which is mainly used for
developing GUIs.

4.1.1. Model-View-Controller Design Pattern

The MVC is a design pattern used in software engineering. In complex
computer applications that present lots of data to the user, one often wishes to
separate data (model) and user interface (view), so that changes to the user
interface do not impact the data handling, and that the data can be reorganized
without changing the user interface. The model-view-controller design pattern
solves this problem by decoupling data access and business logic from data
presentation and user interaction, by introducing an intermediate component:
the controller. The interaction between each module and the tasks carried out
by each of them are shown in Fig. 4.3.

System Design 21

Fig. 4.3 MVC

MVC is generally used as follows.

1. The user interacts with the user interface in some way, for instance, user
presses a button.

2. A controller handles the input event from the user interface, often via a
registered handler or callback.

3. The controller accesses the model, possibly updating it in an appropriate
way to the action of the user. For example, the controller updates the
state of the user.

4. A view uses the model to generate an appropriate user interface, for
example, the view produces a screen change on the colour of the user
icon. The view gets its own data from the model. The model has no direct
knowledge of the view. However, the observer pattern can be used to
allow the model to indirectly notify interested parties of a change.

5. The user interface waits for further user interactions, which begins the
cycle anew.

Thanks to this design pattern, the GUI can be changed without affecting to the
rest of the code. So, it supposes a structure that allows reusing the code.

Other design patterns [19] such as Singleton, Factory, Command and Observer
have been also used in order to improve the performance of the application and
provide a reusable code.

4.2. JXTA Module

This module is the responsible of interacting with the JXTA network interface.
The main task it must carry out is the signalling of the system which will be
managed by the partnership and membership submodules. All the signalling is
based on JXTA socket messages and on publish and discovery events.

22 Development of advanced multimedia services in P2P architectures

All the information gathered from peers, groups, resources and services is
stored in a model container submodule which represents the model layer of the
application.

Membership Manager submodule. This submodule is entrusted of managing
all the data discovered from the JXTA overlay network thanks to a dedicated
thread (Fig. 4.4) that listens to the generated events. These events are linked to
new advertisements of peers, groups and other JXTA resources discovered by
the application. When any advertisement or event of this kind is found, the GUI
is automatically updated.

Fig. 4.4 Detection of events and GUI update

The main functions of the membership manager are:

• Manage connections and departures of peers.

• Manage groups: connection and disconnection through JXTA
Membership service.

• Update of the model container.

This submodule handles all the data contained on the model container, that is,
every resource published in the JXTA network such as peers, groups,
resources, publishing, state of peers and Buffer Maps.

Partnership Manager submodule. This submodule is focused on maintaining
a selection of the best found peers which a user will interact with in streaming
tasks. The selection of these peers is based on different parameters (Table 4.1)
according to the kind of stream which is desired and to the specific features and
capabilities of the requesting peer. This module includes or rejects the
streaming partners of a peer.

Table 4.1 Parameters under consideration

System Design 23

High bitrate stream
Maximum number of connections accepted, time of
playback, proximity to the source and end-to-end delay.

Low bitrate stream
Available bandwidth, end-to-end delay, all the Buffer
Maps of the known peers and the number of peers with
the desired data available.

When referring to low bitrate streaming, this module contains a list of partner
peers and their Buffer Maps. It will interact with the Publish Manager submodule
in order to publish the Buffer Map periodically through JXTA Sockets. When
talking about high bitrate streaming it will contain a list with the main parent, its
children and a backup parent. Both cases will manifest the potential suppliers.

Publish Manager submodule. This module is dedicated to any process that
requires a publishing operation in JXTA network. It can publish among others:

• Peer Advertisement: contains the basic description of a peer (peer ID).

• Communication point: JXTA socket (Pipe).

• PeerGroup Advertisement: it is the specification of a group of peers. It is
used a specific peer group advertisement in order to advertise media
streaming channels, basically P2PTV and P2P Radio.

• Digital resources: media files, digital documents, and others.

• Publishing.

This module is also the responsible of periodically propagating the state of a
peer through the presence service, its features and the Buffer Map when being
part of a low bitrate streaming task. This module is implemented with JXTA
multicast and unicast sockets in a specific peer group.

4.3. Streaming Module

This module is the responsible of managing the streaming operations based on
the updated information contained in the list of partners provided by the
partnership manager. It is basically composed by the following different
submodules (Fig. 4.5): buffer, buffer map, scheduler and forwarder.

Fig. 4.5 Streaming Module

24 Development of advanced multimedia services in P2P architectures

Buffer. This submodule storages in local memory the datagrams of the
received media stream. The buffer is divided into uniform data blocks. It holds
the data that will be sent to the player for local playback of the desired media
stream and, at the same time, that data will also be made available to other
peers into the system. It must be big enough in order to temporally
accommodate a part of the media stream. There must be a trade-off between:
required memory space, end-to-end delay requirements and peer failure
detection and correction.

Buffer Map. This submodule manifests the state of the buffer.

• Low bitrate: indicates which blocks are available and the corresponding
deadline of each block (timestamp).

• High bitrate: indicates the state of the buffer (how many blocks
accommodates) and the current playback time.

Scheduler. This submodule decides which peer will be the supplier for each
block (low bitrate) or media stream (high bitrate). Just selects the peer who will
be asked for a part of its buffer.

Forwarder. This submodule is in charge of sending multimedia packets to the
partners of a peer. When talking about low bitrate streams, it sends just the
requested packets. Otherwise, in a high bitrate transmission, it sends to the
partners (children) all the packets it receives, that is, just forwards the stream.
These streaming mechanisms are further detailed in CHAPTER 5. The
operations carried out by this module can be compared to the ones carried out
by a RTP Proxy.

P2P Media Streaming Mechanisms 25

CHAPTER 5. P2P MEDIA STREAMING MECHANISMS

Two strategies are adopted when a peer wants to start receiving a media
stream. Both strategies are focused on the kind of stream that is going to be
asked for: low bitrate stream or high bitrate stream.

First, it must be clarified the conceptual separation between low bitrate streams
and high bitrate streams. In this project it is referred as low bitrate stream those
streams delivered at a bitrate lower than 2 Mbps, which is a common top bitrate
used in popular P2PTV applications and offers a wide coverage for current
broadband Internet access. So, when talking about high bitrate streams, it is
assumed a bitrate above 2Mbps which allows delivering any other high bitrate
format such as High Definition (HD), Standard Definition (SD), Digital Video
(DV) and others.

These two strategies are adopted because the requirements of bandwidth and
buffering of a peer are not the same when trying to receive a low or high bitrate
stream. High bitrate streams require large bandwidth availability and strong
buffering capabilities, uncommon in current Internet broadband domestic
connections and devices.

Nevertheless, it must be mentioned that the logic applied by both streaming
mechanisms can be updated when needed. The same occurs with the
scheduling algorithms applied.

5.1. Low Bitrate Media Streaming

For low bitrate streams it is used buffer segmentation for subsequent sharing.

A video stream is divided into segments of uniform length by the source peer,
and the availability of the blocks in the buffer of a node can be represented by a
Buffer Map (BM).

Each peer periodically publishes its BM notifying the other peers which
segments it has. Then, compares which segments lack in its BM and asks for
them to the known best peers. An example of this situation can be seen in Fig.
5.1.

Fig. 5.1 manifests the situation where Peer A has as partners both Peer B and
Peer C. Peer A does not have in its buffer the following blocks: 50, 69, 70, 101,
102 and 103, marked in red in the Buffer Map chart representation. After
calculating which the best supplier for each block is, using a scheduling
algorithm, it asks for the missing blocks. Consequently, Peer A retrieves 50, 69
and 70 from Peer B and 101, 102 and 103 from Peer C.

26 Development of advanced multimedia services in P2P architectures

Fig. 5.1 Buffer representation and sharing

When a peer starts the media streaming process, it interacts with some known
peers. But the more time it is up, the more new peers it can discover and can
calculate the delay between them and how does it change in time by sending
some probe packets. The delay can become a fine grained property, very
important to determine the supplier of a media block. This is why the scheduler
must be intelligent in order to optimize the task of media blocks requesting, so it
is proposed to use the CoolStreaming/DONET scheduling algorithm. Given the
BMs of a node and that of its partners, the schedule is to be generated for
fetching the expected segments from the partners.

The scheduling algorithm strikes to meet two constraints.

• The playback deadline for each segment.

• The heterogeneous streaming bandwidth from the partners.

If the first constraint cannot be satisfied, then the number of segments missing
should be kept as minimum as possible.

It is not easy to find an optimal solution, particularly considering that the
algorithm must quickly adapt to the highly dynamic network conditions.
Therefore, CoolStreaming/DONET resorts to a heuristic algorithm. The heuristic
algorithm (Fig. 5.2) first calculates the number of potential suppliers for each
media block by consulting the BMs of each partner. Notice that a segment with
less potential suppliers is more difficult to meet deadline constraints, so the

P2P Media Streaming Mechanisms 27

algorithm determines the supplier of each block starting from those with only
one potential supplier, then those with two, and so forth. Among the multiple
potential suppliers, the one with the highest bandwidth and enough available
time is selected.

for block i Є set_of_segments_to_be_fetched do{
 n=0 // number of potential suppliers for segment i
 for j=1 to number_of_partners do{
 T[j,i] = deadline[i] – current_time //check deadline of segment i for partner j
 n=n+BM[j,i] //Buffer Map node j, has segment i. Increment number of suppliers n
 } //end for j
 if n=1{ //segments with only one potential supplier
 supplier[i] = k //get the supplier for segment i

…
}//end for i

for n=2 to number_of_partners{
 for each i do{ //for each segment , i
 //get supplier[i] with better Bandwidth and enough available time
 …
 }
…
}

Output: supplier[i]: supplier for unavailable segment.

Fig. 5.2 Scheduling algorithm overview

The segments to be fetched from the same supplier are marked in a BM-like bit
sequence which is sent to the supplier, and these segments are then delivered
in order through the transmission network interface of each partner.

5.2. High Bitrate Media Streaming

High bitrate streaming needs high bandwidth and buffering requirements. This
is why an ALM structure of paths is proposed (connection-oriented-like scheme)
formed by the peers that receive and forward the stream.

5.2.1. Mesh Organization

This project proposes a mesh-first [7], [17] approach which builds up a mesh
among the participating peers. The mesh is optimized towards the application
requirements and is dynamically adjusted to accommodate the underlying
network changes: peer arrival or departure. The distributed ALM algorithm can
be run at each node.

In this scenario (Fig. 5.3), there is no need of complex processing of the
buffered data, just play it on local player and forward it to children. Peers do not
only receive the requested stream, but also contribute to the media stream
delivery by forwarding it to other peers.

28 Development of advanced multimedia services in P2P architectures

When a high bitrate channel is joined by a peer, the peer tries to find the best
parent, which is the closest to the source and has enough number of available
connections.

Fig. 5.3 Application Multicast Tree structure. It can be seen the active and
backup paths that conform a mesh-first approach

Every peer supports a maximum number of connections (maxConnections)
according to its available bandwidth. This maxConnections parameter
determines how many children it can have.

Moreover, all the peers that join the high bitrate P2PTV channel have an active
connection with a fixed parent and a backup parent peer in order to minimize
the effects of network failure when a peer fails or leaves the channel.

In this connection-oriented scenario, the forwarding algorithm can be a simple
Round Robin at delivery time. It must be said that, the proposed system allows
updating the scheduling and forwarding algorithms in both cases (low and high
bitrate schemes). It is not a closed issue. It can be easily reconfigured thanks to
the modular design of the application.

Fig. 5.4 shows a generic process when a peer wants to start a media streaming
playback once discovered the P2PTV channel in the JXTA network. The peer
joins the discovered group, finds the peers in the group and discovers their
features. With the gathered data it selects the potential suppliers and runs a
parallel process to construct a backup list of partners. When the buffer is filled
enough, the peer can start playing the stream.

P2P Media Streaming Mechanisms 29

Fig. 5.4 Start a media streaming playback

The termination process of the streaming playback is shown in Fig. 5.5.

Fig. 5.5 Stop a media streaming playback

There are two ways of leaving a group: leave a group voluntarily or leave it
involuntarily due to a peer failure. When a peer leaves voluntarily a group it
must notify the event to the peer group through the JXTA Membership service.
Otherwise, when a peer leaves involuntarily, it must be detected by its children
or parent through the presence service.

30 Development of advanced multimedia services in P2P architectures

In a high bitrate scenario, the mesh must be restructured. Nevertheless, other
algorithms can be easily added as it has been said and will be further studied in
future work.

5.2.2. Tree Organization

Otherwise, focusing on the realized implementation, it has been proposed an
ALM tree structure rooted at source due to its simplicity in comparison with the
mesh organization, especially focused on managing a peer departure situation
which requires reorganizing the tree. Note that the reorganization of the tree is a
critical process.

So, when the ALM must be reorganized due to a peer departure, it is proposed
that just a branch of the ALM tree will suffer the effects of the disconnection.
Note that this approach implies that the source peer at level 0 must have global
information of the connected peers, because it will determine which peer
updates its relationships into the ALM tree or which one will switch to its backup
path. The cost of having centralized global view on the source is not a
restriction due to the fact that it consists of metadata, not the exchanged data,
and it does not suppose a heavy task of maintenance. Moreover, when having a
global view of the ALM structure, it can be guaranteed a logarithmic cost
proportional to the number of users, O log (n), when it is required to search a
peer. Another advantage of constructing an ALM tree managed at a single point
is that the tree can be always balanced in order to always guarantee a
logarithmic lookup cost.

Fig. 5.6 shows the departure of peer C in the ALM tree structure. Then, Fig. 5.7
shows the tree view rooted at source after the departure.

Fig. 5.6 Peer C gets disconnected

P2P Media Streaming Mechanisms 31

A

B F

D E

H I J K

L G

Y M N O

Z

Last Level

First Level (0)

Fig. 5.7 Peer F and its children are reorganized in a tree source-rooted scenario

32 Development of advanced multimedia services in P2P architectures

CHAPTER 6. IMPLEMENTATION AND TESTING

This chapter describes the main issues related to the realized implementation
according to the design which has been carried out.

First, it is defined the test bed scenario where the implementation has been
done and the technologies and tools that allowed creating a prototype of the
CIMS-Live application.

6.1. Test Bed

The test bed manifests the hardware and software requirements for the project.

The whole development of the application has been done in the room SI2CAT.
This space was enabled by MediaEntel, located in the Escola Politècnica
Superior de Castelldefels (EPSC).

In order to test the communication among peers and enable multimedia streams
delivery, it was needed a switch to connect the different involved PCs (Fig. 6.1).
Some tests where also done using a Mobile PC connected to the scenario via a
Wireless access point. When developing the software it was mainly used two
PCs. However, it was also used up to four PCs to test the streaming platform.

There were used two switches during the testing periods: a Fast Ethernet switch
and a Gigabit Ethernet Switch. The usage of one or other was determined
according to the required bandwidth of the test. That is, when the total
bandwidth exceeded 80 Mbps, it was used a Gigabit Ethernet switch.

Fig. 6.1 Network diagram

The specification of the PCs used for development and test is shown in Table
6.1.

Implementation and Testing 33

Table 6.1 PC specifications

Desktop PC

Intel ® Pentium ® 4 CPU HT at 3.2 GHz
RAM Memory: 1024 MB

10/100/1000 Ethernet card
Operating System: Windows XP Pro

Mobile PC

Intel ® Pentium ® M CPU at 1.6 GHz
RAM Memory: 1024 MB

10/100/1000 Ethernet Card
Operating System: Windows XP Pro

The only requirement that must be emphasized is the necessity of providing the
PCs involved in development tasks with a Fast or Giga Ethernet card. Wireless
card are accepted for low bitrate transmissions, but when the stream bitrate
exceeded 8 Mbps it was required wired Ethernet network interfaces.

All the software development has been done under Windows XP Professional
Operating System but the code can also run under Linux Distributions. In spite
of having used open source and multiplatform technologies, the code can only
work on both above mentioned operating systems due to the fact that jVLC is
currently available for these two platforms.

VideoLan Client (VLC) is also a key software requirement. It is used as
streaming server for the time being.

The programming tool used for the implementation of the Java-based
application was Eclipse Project. This powerful tool offers the developer a user-
friendly GUI and many debugging and compilation options in order to make
easier the development task.

Java version 5 has been selected as the version of Java Virtual Machine
because it is the most stable release and it is fully compatible with the rest of
the used software components.

6.2. Technologies and Tools

This section enumerates and describes the different technologies and tools
used by this project.

JDK 5.0: Java Virtual Machine and Development Kit version 5. The different
libraries that it provides are used in order to develop the Java-based
application.

Eclipse SDK 3.1: Open development and compilation platform for Java
comprised of extensible frameworks, tools and runtimes for building, deploying
and managing software across the lifecycle. A large and vibrant ecosystem of
major technology vendors, innovative start-ups, universities, research
institutions and individuals extend, complement and support the Eclipse

34 Development of advanced multimedia services in P2P architectures

platform. Its basic features can be extended through plugins. The whole
application has been developed using this development platform.

JXTA (Juxtapose) 2.3.7: Opensource-based peer-to-peer infrastructure
developed by Sun Microsystems. This is the P2P Java-based API used in order
to develop the P2P functionalities. This platform is defined as a set of XML
based protocols that allow any device connected to a network to exchange
messages and collaborate in spite of the network topology. JXTA is the most
mature P2P framework currently available and was designed to allow a wide
range of devices such as PCs, cell phones and PDAs to communicate in a
decentralized manner. The main functionalities offered by JXTA are:

• Dynamic discovery of JXTA resources such as peers, groups, pipes,
sockets and so on even with the presence of firewalls.

• Creation of groups that offer services.

• Remote monitoring of peers.

• Secure communication with other peers.

JMF (Java Media Framework) 2.1.1e: Java Library that enables audio, video
and other time-based media to be added to Java applications and applets. This
optional package, which can capture, playback, stream, and transcode multiple
media formats, extends the Java Platform, Standard Edition (Java SE) and
allows development of cross-platform multimedia applications. This framework
is used for enabling videoconference and multiconference services.

VideoLan Client (VLC): Free media player software and streaming server. It is
a highly portable multimedia player, encoder and streamer that supports many
audio and video codecs and file formats as well as DVDs, VCDs and various
streaming protocols. It is able to stream over networks and to transcode
multimedia files and save them into various different formats. This is the
software used for streaming tasks.

jVLC [14]: Java VLC Bindings. It provides some libraries that allow embedding
a VLC player in a Java application. For the moment, it is just available for Linux
and Windows platforms. These libraries allowed embedding the local player of
the application into the GUI.

Log4j [20]: Java-based logging utility. The main criterion for introducing a
logging system to the application is that it helps with debugging tasks.
Furthermore, it is especially useful for distributed application such as the one
proposed in this project. With Log4j it is possible to enable logging at runtime
without modifying the application binary. The Log4j package is designed so that
these statements can remain in shipped code without incurring a heavy
performance cost. Logging behaviour can be controlled by editing a
configuration file, without touching the application binary.

SAX (Simple API for XML) [24]: Serial access parser API for XML. SAX
provides a mechanism for reading data from an XML document. It is a popular
alternative to the Document Object Model (DOM). This API allowed parsing the
XML contents added to the XML-based advertisements of JXTA.

Implementation and Testing 35

Apache Ant 1.6 [21]: Java-based build tool. It is like a Makefile when talking
about a C environment. It allows a lot of tasks such as compile, execute, copy
files, create directories, create JAR/WAR files, run unitary tests, and so on. It
uses XML syntax and it is platform independent.

Apache Commons Collections – Buffer [22]: This API offers some
implementations of the buffer interface such as priority buffer and circular buffer.
It is used for allocate the data received in a streaming task.

CVS (Concurrent Version System) [23]: Implements a version control system.
It keeps track of all work and all changes in a set of files, typically the
implementation of a software project, and allows several (potentially widely
separated) developers to collaborate. CVS has become popular in the free
software and open-source worlds.

Excelsior JET [25]: Excelsior JET is a toolkit and complete runtime
environment for optimizing, deploying and running applications written in the
Java programming language. JET is a powerful solution that enables your
desktop and server side Java applications to take full advantage of the
underlying hardware. Moreover, JET effectively protects your intellectual
property by making your programs as hard to reverse engineer as if they were
written in C++. Excelsior JET was used in this project to translate Java code to
Native Code in order to increase the performance of the developed prototype.

Advanced Installer [37]: Windows Installer tool. It offers a friendly and easy to
use Graphical User Interface for creating and maintaining installation packages
(EXE, MSI, etc.) based on the Windows Installer installation technology. It was
used for creating an installer of CIMS-Live from the Java code (ANNEX E.1.2).

6.3. Forwarding Method

The final prototype of CIMS-Live is the consequence of developing some
previous prototypes that allowed forwarding multimedia streams from a source
to other peers using simple unicast UDP connections.

First, the peers forwarded the stream in a cascade scenario as can be seen in
Fig. 6.2.

Fig. 6.2 Cascade forwarding

Then, this basic prototype was extended by adding a simple protocol of
communication in order to allow mesh and tree configurations for forwarding the

36 Development of advanced multimedia services in P2P architectures

stream as is shown in Fig. 6.3. This forwarding method is the one used in the
final prototype of CIMS-Live.

Fig. 6.3 Multiple node forwarding

Every peer receives UDP datagrams (stream) continuously from a single parent
and forwards it to the local player and to its connected peers, called children.
The forwarding algorithm in this scenario is a simple Round Robin.

6.3.1. Implementation Tests

It must be mentioned that the execution of the prototypes is single thread, that
is, just a thread accesses to the buffer, gets and deletes information from the
buffer and then forwards it to the children of a peer. It was also developed a
multithread prototype where a dedicated thread was used for attending each
connected child. Nevertheless, it was very difficult to manage and control the
access to the buffered multimedia data by all the threads and there were lots of
losses of multimedia data when forwarding. It could be noticed in the field study
carried out of P2P streaming applications that many developers avoid
multithread environments due to synchronisms problems.

In a first single thread approximation, no incoming buffer (reception buffer) was
specifically implemented in order to allocate the stream coming from the parent
peer. This lack of buffering capabilities produced high losses when receiving
high bitrate streams (concretely when exceeding 6 Mbps). This is why it was
introduced a buffer in order to allocate some packets. Subsequent tests and
prototypes where carried out using the implemented buffer.

From the operative point of view, all the tests of the prototypes were done using
Java Blocking Sockets (java.io). However, it was also ran a test using Java
Non-Bloking Sockets (java.nio). The difference between blocking and non-
blocking sockets is that when a packet arrives to a computer, java.io processes
the packet if a thread is available, otherwise it drops the packet. Nevertheless,
java.nio allocates internally a packet until a thread in the system can process it.

Implementation and Testing 37

Initially, it was expected better results in a non-blocking sockets scenario in
comparison with blocking ones, but in the tests that were carried out the
performance of non-blocking sockets was poorer. The reason of these results
points out to inefficient code implementation.

Another forwarding method based on JXTA multicast sockets was tested but
there were lots of losses at playback time due to the heavy encapsulation of the
payload into XML messages, as it was expected.

In addition, in order to improve the performance of the single thread scenario,
the prototype was translated to Native code using Excelsior JET application.
Java is an interpreted programming language which needs the Java Virtual
Machine in order to translate Java code to a bytecode that the computer can
compile. This translation process makes Java less inefficient than compiled
code such as the one generated by C programming language. After translating
the Java code to native code, the performance was improved but the playback
of a HD stream was still unsatisfactory under Windows XP due to some
playback losses.

Finally, in order to improve this transmission layer, it has been tested the UDP
Packet Reflector / Forwarder [26] code developed by CESNET with no
significant improvement in performance. This program is written in C and it was
expected to obtain considerably better performance than in a single thread
scenario.

Next, Table 6.2 synthesizes the obtained results running on Windows XP
Professional Operating System.

Table 6.2 Test results on Windows XP Pro

Stream (VBR)

Method
Low bitrate
stream

High bitrate
stream

Comments
CPU
Usage

RAM
Memory
Usage

End User
Evaluation

java.io
single
thread
(no

buffering
capability)

Streams above
6Mbps present

losses at
playback time.

5 % - 6%
48 MB
aprox.

The playback
quality is fully

acceptable up to
6Mbps.

Streams above
6Mbps offer
unsatisfactory

playback quality.

�

�

java.io
single

thread + 5
MiB buffer

Streams up
to 2 Mbps

3.5 Mbps
streams

-

8 Mbps
(SD)

streams

-

 20 Mbps
(HD)

streams

Streams above
10Mbps aprox.
present less
losses at

playback time
in comparison

with no
buffering
capability.

5 % - 6%
48 MB
aprox.

The playback
quality is fully

acceptable up to
10Mbps.

Streams above
10Mbps offer
unsatisfactory

playback quality.

�

�

38 Development of advanced multimedia services in P2P architectures

java.nio
single
thread

Streams above
8Mbps present

losses.
6 % - 7%

55 MB
aprox.

The playback
quality is

acceptable up to
8Mbps.

Streams above
8Mbps offer
unsatisfactory

playback quality.

�

�

java.io
multithread

All kind of
streams

present losses.

Not
measured

Not
measured

Fully
unsatisfactory

�

java.nio
multithread

All kind of
streams

present losses.
15% - 20%

80 MB
aprox.

The playback
quality is

acceptable up to
8Mbps.

Streams above
8Mbps offer
unsatisfactory

playback quality.

�

�

JXTA
multicast
sockets

All kind of
streams

present a lot of
losses.

100 %
Not

measured
Fully

unsatisfactory
�

Packet
Reflector

Streams above
15Mbps

present lots of
losses.

4% - 8%
2.5 MB
aprox.

The playback
quality is

acceptable up to
15Mbps (present
some notable

losses).

Streams above
15Mbps offer
unsatisfactory

playback quality.

�

�

Native
Excelsior

JET

Streams up
to 2 Mbps

 3.5 Mbps
streams

-

8 Mbps
(SD)

streams

-

 20 Mbps
(HD)

streams

It can be
appreciated
that streams
above 10Mbps
present less
losses at

playback time
in comparison
with java.io +
buffering
capability.

3% – 4%
29 MB
aprox.

The playback
quality is fully

acceptable up to
10Mbps.

Streams above
10Mbps offer
unsatisfactory

playback quality.

�

�

Due to unsatisfactory results obtained when receiving high bitrate steams above
10 Mbps, it was decided to run some tests under a Linux operating system. The
Linux distribution that was used is Ubuntu 6.06 LTS (Debian-based). Table 6.3
synthesizes the obtained results running on Ubuntu Operating System.

Implementation and Testing 39

Table 6.3 Test results on Ubuntu 6.06 LTS

Stream (VBR)

Method
Low bitrate
stream

High bitrate
stream

Comments
CPU
Usage

RAM
Memory
Usage

End User
Evaluation

java.io
single

thread + 5
MiB buffer

No losses
noticed when
delivering any
kind of media
stream [1.5
Mbps to 20
Mbps]

5 % - 6%
Not

measured
Fully satisfactory

playback
�

java.nio
single
thread

java.nio
multithread

Not tested due to satisfactory results with java.io single thread

Packet
Reflector

Streams up
to 2 Mbps

3.5 Mbps
stream

-

8 Mbps
(SD)

streams

-

 20 Mbps
(HD)

streams

No losses
noticed when
delivering any
kind of media
stream [1.5
Mbps to 20
Mbps]

5 % - 6% 2.5 MB
Fully satisfactory

playback
�

When comparing both tables (Table 6.2 vs. Table 6.3) we can realise that the
developed implementations work much better running on a Linux platform. It is
supposed that this occurs because the implementation of the IP stack on this
distribution of Linux is optimized for networking purposes. No considerable
losses were observed when running the mentioned forwarding prototypes on
Linux when using streams up to 20 Mbps. Moreover, it could not be tested the
top bitrate tolerated by the implemented methods because there were not
available videos at bitrates above 20 Mbps at that moment. Nevertheless, it is
supposed that the maximum bitrate tolerated by a forwarding method based in
C, such as Packet Reflector, would be higher than the one that can be achieved
by a Java-based prototype.

Finally, the single thread forwarding prototype based on Java Blocking Sockets
(Fig. 6.3) with a 5 MiB buffer was used for implementing the transmission layer
(Transmission Network Interface) of the CIMS-Live prototype. The final
prototype is the consequence of integrating the transmission prototype with a
graphical user interface and a JXTA core application.

6.4. Functionalities

CIMS-Live, finally is a P2P application that offers the following functionalities to
the peers which join the JXTA network created by the application.

40 Development of advanced multimedia services in P2P architectures

• 1:1 Chat

Each peer has a ContactSocket and a UserSocket. The ContactSocket is
implemented using a JXTA server socket that waits for connections coming
from other peers through a UserSocket. The UserSocket is a JXTA socket
that allows starting one-to-one communications. The peers exchange JXTA
messages which contain the text messages of the chat (Fig. 6.4).

Fig. 6.4 Chat 1:1

The application recognises that the exchanged messages are chat
messages because it is used a simple text protocol that adds the following
key tag.

TXTMSG:[UserName]:[data]

• 1:N Chat

Each peer creates a JXTA multicast socket in each group that it joins (Fig.
6.5). This multicast socket allows receiving and sending text messages
from/to all the known peers in a group. It uses the same protocol as 1:1 chat
in order to send messages.

It must be commented that the group created by the application which is
joined by all the peers at start-up, uses a JXTA multicast socket in order to
update the state of the peers. This is called presence service and uses the
following message format.

PRESENCE:[UserName]:[state]

Fig. 6.5 Chat 1:N

Implementation and Testing 41

• 1:1 File sharing

It is used the same JXTA socket connection defined in chat 1:1, but it
defines a new type of message which allows defining the start / stop of file
transmission.

FILESTART:[fileName]:[data]

• Videoconference

Fig. 6.6 Videoconference

Each peer that wants to start a videoconference must publish and discover
four peergroup advertisements first (Fig. 6.6).

o AudioGroup: peergroup for transmitting the audio stream (RTP).
o VideoGroup: peergroup for transmitting the video stream (RTP).
o AudioCtrolGroup: peergroup for transmitting the control packets

(RTCP) for the audio flow and to generate statistics of QoS.
o VideoCtrolGroup: peergroup for transmitting the control packets

(RTCP) for the video flow and to generate statistics of QoS.

The data is gathered from a webcam thanks to Java Multimedia Framework
(JMF) [34]. The media streams and control streams are sent through JXTA
multicast sockets on the created peer groups.

The videoconference module is reused from a module developed in a
subject named “Design of Telematic Networks and Applications” (DXAT)
cursed in EPSC (2006).

• Live video streaming

When a peer wants to become a streaming source, that is, create a media
streaming channel, it must publish a JXTA PeerGroup advertisement,
showed in Fig. 6.7.

42 Development of advanced multimedia services in P2P architectures

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jxta:PGA>

<jxta:PGA xmlns:jxta="http://jxta.org">

 <GID>

 urn:jxta:uuid-

FEB568DACA1643368C5B8590C90136C2547A93762DF54C69834EB93D3BD3383A02

 </GID>

 <MSID>

 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010306

 </MSID>

 <Name>

 P2PTV-Mediacat

 </Name>

 <Desc>

<channelDesc>

<Source>169.254.153.237</Source>

<Type>Films</Type>

<Desccription>Mediacat</Description>

</channelDesc>

 </Desc>

</jxta:PGA>

Fig. 6.7 Media streaming channel JXTA advertisement

o Source field specifies the IP address of the source peer.
o Type field describes the theme of the channel.
o Description field is a brief description that the streaming peer

wants to include.

Fig. 6.8 Video streaming

6.5. Application Layer Multicast (ALM) Structure

In this project, it has been implemented a simple ALM source-rooted tree
structure for creating the source view that will allow delivering high bitrate
streams. In order to construct the ALM structure it has been used an AVL tree
implementation.

Implementation and Testing 43

An AVL tree is a self-balancing binary search tree. In an AVL tree the heights of
the two child subtrees of any node differ by at most one, therefore it is also
called height-balanced. Lookup, insertion, and deletion all take O(log n) time in
both the average and worst cases. Additions and deletions may require the tree
to be rebalanced by one or more tree rotations. The balance factor of a node is
the height of its right subtree minus the height of its left subtree. A node with
balance factor 1, 0, or -1 is considered balanced. A node with any other balance
factor is considered unbalanced and requires rebalancing the tree. The balance
factor is either stored directly at each node or computed from the heights of the
subtrees. Fig. 6.9 shows a Non-AVL tree and the same tree height balanced
(AVL tree).

Fig. 6.9 Non AVL tree and AVL tree

When a peer in a channel group wants to start receiving a media stream, it asks
the source to get a parent peer, which will be its media supplier.

In order to determine this parent supplier, the source inserts into its AVL the
new peer according to the number of hops and delay to the source provided by
the new peer. The source has a Hashtable structured according to the number
of hops (integer) to the source. Inside each entry of this Hashtable, it contains
an AVL tree where peers are self-introduced and balanced according to the
delay to the source (Fig. 6.10). AVL tree structures guarantee that the searching
cost is proportional to the logarithm of the number of entries.

Fig. 6.10 Peer organization by hops and delay

44 Development of advanced multimedia services in P2P architectures

According to this information, the source tries to find the best parent for this new
peer, which is the one that has similar cost to the source. Once, the new peer
obtains its parent he asks the parent to start receiving the desired media
stream. This connection process can be seen in Fig. 6.11.

Fig. 6.11 Connection process

However, it must be noticed that this returned parent may be not the most
suitable for the new peer because nobody can guarantee the minimal
separation between the new peer and its parent. This is why it is proposed that
peers can get restructured themselves the more time they are up and the more
peers they discover through the most abstract layer which is the logical layer
built by CIMS-Live on top of the architecture. Thanks to this high level layer,
peers can have a global view of the groups they join, and can discover peers
with specific capabilities and can also test performance of the connection by
sending probe packets in order to find out which the delay between them is.

6.6. Graphical User Interface

This section shows the developed GUI in detail. The main views that must be
described are the publication menu and the media streaming channels view.
The whole GUI has been implemented using Java Swing Framework.

• Publication menu

This menu (Fig. 6.12) allows any peer to publish a media streaming channel
into the P2P application.

Implementation and Testing 45

Fig. 6.12 Publication menu

• Media streaming channels view

The application allows the user to find media streaming channels and list the
connected peers in order to interact with them (Fig. 6.13).

When a media streaming channel is discovered, a peer can ask for its
playback. Then, the application launches a local VLC player embedded into
the GUI, implemented with jVLC, and starts the playback. The user can also
stop the playback of the stream whenever he wants.

Fig. 6.13 Channels manager view

46 Development of advanced multimedia services in P2P architectures

6.7. CIMS-Live Prototype Test

CIMS-Live uses JXTA for discovery and publication tasks. Blocking UDP
unicast sockets have been used in order to receive and forward the high bitrate
and low bitrate media streams. In Table 6.4 can be seen the specification of the
different streams that were delivered by the prototype at testing time.

Table 6.4 Delivered Media

 High Definition (HD) Standard Definition (SD) Low bitrate stream

Video Codec MPEG 2 MPEG 2 MPEG 1

Resolution 1280 x 720 720 x 576 352 x 288

Duration 52 min 19 min 4 min

Stream bitrate 18 Mbps 8 Mbps 1.5 Mbps

Stream encapsulation MPEG_TS MPEG_TS MPEG_TS

Source codification VBR VBR VBR

One requirement needed for media streaming delivery is that the streams must
be encapsulated using a Transport Stream (TS) protocol. Transport stream (TS,
TP, or MPEG-TS) is a communications protocol for audio, video, and data
which is specified in MPEG-2 Part 1, Systems (ISO/IEC standard 13818-1). Its
design goal is to allow multiplexing of digital video and audio and to synchronize
the output. Transport stream offers features for error correction for
transportation over unreliable media, and is used in broadcast applications such
as DVB and ATSC. If the video stream is not multiplexed with audio into a
single stream, two streams would be needed in order to deliver video with
audio. Note that this situation supposes a greater effort for stream
synchronization.

In all the tests, a source peer creates and publishes a P2PTV channel into the
application group and acts as Rendezvous. This peer loads video files encoded
with the features shown in Table 6.4. It can also load the media stream provided
by a DV Camera for live streaming if the corresponding control layer is
developed. It was run a test in order to check the correct delivery of DV streams
using VideoLan as streaming software. It was verified that VideoLan allows
sending DV transcoded streams, but it is not possible to send raw DV stream.

Table 6.5 DV stream specification

Source Digital Video (DV) Camcoder

Video Codec MPEG 2

Resolution 1024 x 576

Duration Live

Stream bitrate 3.5 Mbps

Stream encapsulation MPEG_TS

Source codification VBR

Then, the source waits for some requesting peers in order to start the
forwarding process. The deployed scenario can be seen in Fig. 6.14.

Implementation and Testing 47

Fig. 6.14 Development scenario

Every peer that acts as source configures the transmission network interface to
receive the desired stream from a streaming server such as VideoLan (VLC)
[12]. This is achieved by adding a control layer to VLC [30].

The peers connected to the source receive the media stream from the most
suitable peer (parent), which is the one returned by the source. Then, they can
start forwarding media to other connected peers.

When a peer receives a media stream, it is temporally accommodated into a 5
MiB buffer. Taking into account that each media packet sent from the source
has a length of 1316 Bytes, the buffer can store up to 3983 packets. The time
equivalence of this amount of packets depends on the bitrate of the stream.

The buffer has been built using the Priority Buffer implementation of Apache
Commons Collection [13]. The main criterion for choosing one type of buffer is
the process of the contained data that is going to be done. In our case it is
proposed to order the received packets according to a sequence-like number.
This will allow getting a defined BM.

The received media stream is sent to the local player provided with the
prototype application and to the children of the peer. This player is implemented
using the jVLC Project [14], which enables to embed a VideoLan Player into the
GUI developed with the Java Swing Framework.

The prototype development has been done following some well-known design
patterns. The main one is Model-View-Controller (MVC), which allows
separating the data plane (model) and the user interface (GUI) by introducing
an intermediate component known as controller. The benefits of applying this
pattern is that the application can grow easily when it is required a modification
or addition in its components.

48 Development of advanced multimedia services in P2P architectures

CHAPTER 7. PLANNING AND COST ESTIMATION

This chapter describes the planning and cost estimation of the realized project.
In the planning section are described the fulfilled tasks and also specifies how
long did it take to finalize them. Finally, it is provided a cost estimation of the
project.

7.1. Planning

The planning is focused on the following tasks:

• Previous research

It has been done a deep research of the current state-of-the art in order
to determine the mechanisms applied in P2P streaming for live
multimedia spreading and the technologies that can be used to
implement them. This research allows identifying which problems must
be overcame.

• Design

Once defined the problems to fulfill, it must be done a proposal specifying
how they are going to be overcame. This task requires a definition of the
functionalities, architecture and design of the application that is going to
be implemented.

• Implementation

This task consists of developing the designed application using the
technologies and tools selected, which are supposed to best fit our
proposal. First, it is done a simple prototype and then it can be grown
over it by adding new functionalities. Unitary tests must be carried out in
order to test the correctness of every new addition to the application.

• Testing

Testing allows verifying the correctness of the implemented application
on a testbed. Several tests must be done in order to determine the
correctness of the operations carried out by the application. The testing
process allows fixing existing problems or finding new ones if they are
present. Unitary tests have been done in order to test little pieces of code
before integrating them into the final code.

Planning and Cost Estimation 49

• Documentation

Elaboration of a written document including all the tasks carried out
during the development of the project. This document is necessary to
close the project; it consists of the final report of the project.

• Project Tracking

This task consists of periodically revisions of the state of the project
carried out by the tutor of the project.

Table 7.1 shows the time estimation of the main tasks that have been realized
in this study. The total amount of dedicated hours is approximated to 660 hours.
A Gantt diagram can be seen in ANNEX D.

Table 7.1 Tasks

Phase Task Description Hours

Previous
research

First contact Search of P2P streaming applications on the
Internet (PPLive, SopCast, PPStream, AnySee).

20

Previous
research

First tests Test some P2P streaming applications. 25

Previous
research

P2P mechanism Study of P2P streaming mechanisms used by
commercial and academic applications. Many
papers have been searched and read. This task
was done in parallel with other tasks too.

200

Design Features
required

Defining all functionalities that our project needs
to implement.

25

Design Architecture Definition of the proposed collaborative and
interactive architecture based on JXTA..

20

Implementation /
Testing

First prototype
(Cascade)

Java.io./ Java.nio Cascade forwarding
implementation and testing. Delivery of different
types of multimedia streams.

35

Implementation /
Testing

Second
prototype (Mesh
+ Buffer)

Java.io Mesh/tree forwarding implementation and
testing. Delivery of types of multimedia streams.

70

Implementation /
Testing

Multithread
prototype

Implementation of the multithread prototype and
testing.

15

Implementation /
Testing

JXTA multicast
prototype

Implementation and testing of a JXTA multicast
prototype.

15

Implementation /
Testing

Native
translation

Native translation of the second prototype with
Excelsior JET.

10

Implementation /
Testing

Packet Reflector Test the Packet Reflector code provided by
CESNET.

10

Implementation /
Testing

CIMS-Live Integrate the second prototype with a graphical
user interface and the JXTA core application.

100

Testing Linux test Test the second prototype and the packet
reflector on Linux.

30

------ Paper Paper submitted to the 3
rd
 EURO-NGI

conference. Many parts of the paper have been
reused in the final report document.

8

Documentation Final report Write the final report of the developed study. 80

50 Development of advanced multimedia services in P2P architectures

7.2. Cost Estimation

In order to make a cost estimation of the project, some aspects must be
considered.

• Delivery Time

The planning showed in section 7.1 details the delivery time. The project
must be realized in five months approximately, which supposes a little
time for implementing the whole specified and designed application. A
previous study was realized in order to determine the state-of-the-art in
P2P streaming and the technologies and strategies that guided the
design and implementation.

• Achieved objectives

The cost estimation can depend on the achieved objectives and final
results obtained at the deadline of the project. Depending on the number
and type of the achieved objectives (milestones) the project can produce
a positive balance or a negative balance. The worst situation would be
when any objective is achieved at the deadline of the project, so the final
balance of the project would be considered negative (loss of time, money
and resources).

• Risks

Some risks related to the project are: results of the research (field study),
selection of technologies and tools and unpredicted problems.

Initial complexity of the project is based on the ignorance of the great
amount of paradigms that P2P streaming proposes and has to overcome.

This is a vast project which requires the study of high performance
mechanisms and strategies for an efficient stream delivery. The
application has to overcome critical issues such as latency and losses
decrease in order to achieve a pleasant user experience and
consequently achieve successfully results.

• Staff

A single student of Telecommunications Engineering realizing the final
thesis of the M.S. degree in Telematic Engineering. The student does not
receive any salary during the project duration.

The average time estimation is 6 hours per day.

• Tools and equipment

The development of the project has been realized on Windows XP
Professional. This operating system requires the payment of a license.

Planning and Cost Estimation 51

However, the whole development could be done on Linux distributions,
which is free software.

The development tool, Eclipse Project, is also free software. Other
technologies and tools (6.2) are also free, but not Excelsior JET (it has
been used a trial version).

Two PCs were used in order to make easy the development of the P2P
application.

It has been used a Fast Ethernet switch and a Gigabit Ethernet switch in
order to test the developed prototypes with four PCs.

The hardware, software and Internet connection costs are assumed by
the University, so a real cost estimation is difficult to obtain. Hardware
and software can be reused for other projects.

• Economical Result

Once considered all the issues listed in this section, it can be noticed that
precise cost estimation can not be obtained. The final cost can be
expressed as a function where the involved variables are: time, staff,
achieved results and material costs.

Nevertheless, it can be mentioned that the global cost of the project is
bearable. So, an approximated cost can be estimated by calculating the
salary that the student should have received.

In Table 7.2 is estimated the cost of the project. The price of a working
hour fixed in the table is obtained from a reference scale proposed by the
university. The university determines the minimum cost of the hour that a
person can receive according to a specific level of education and training.

Table 7.2 Cost estimation of the project

Hours per day (h/day) 6

Total amount of working days (day) 110

Cost per hour (€/h) 7

TOTAL 4620 €

52 Development of advanced multimedia services in P2P architectures

CHAPTER 8. CONCLUSIONS

8.1. Achieved Objectives

In this project it was pointed out some topics of P2P media streaming and it was
proposed CIMS-Live as the platform that offers solutions to them, specially
focused on improving the collaboration among peers and enabling an
interactive experience. This platform is a novel hybrid solution based on JXTA,
DONET and ALM which allows delivering any kind of media stream. Besides, it
provides a flexible and extensible platform according to new requirements and
future value-added services.

It was implemented a Java-based prototype that enabled the provisioning of the
interactive services described in section 6.4 and allowed P2P multimedia
streaming using an ALM tree mechanism. These functionalities were checked
on a test bed.

The main conclusion inferred from this project is that thanks to JXTA it is
possible to construct logical overlay networks in an easy manner. This
technology enabled the interactivity among users thanks to powerful discovery,
publication and binding mechanisms. Nevertheless, it defines a heavy weight
messaging system based on XML (Fig. 3.4), this is why JXTA was basically
used as a signalling layer that enables the configuration of the transmission
layer according to the information gathered from the JXTA layer, which is the
most abstract one. Thanks to the global view of the JXTA layer and the
exchange of the capabilities among the present peers, the transmission layer
can be configured in an optimum way when a user multimedia wants to start
receiving a media stream, that is, collaborate selecting the best possible peers.

The results showed that the prototype allowed delivering any kind of multimedia
stream, including High Definition streams using ALM structures.

Another interesting conclusion is that Windows XP Professional is not an
optimum operating system for High Definition streams delivered at bitrates
above 20 Mbps. On the contrary, the Linux distribution called Ubuntu supported
these bitrates without problems.

Finally, it can be mentioned that the proposed objectives were achieved.

It must be also mentioned that the development of this project allowed
submitting a paper to the 3rd Euro-NGI Conference on Next Generation Internet
Networks - Design and Engineering for Heterogeneity which presented the
described platform and the prototype developed called CIMS-Live. The paper
titled “CIMS-Live: Collaborative and Interactive Media Streaming Platform in
P2P Environment'” is attached in ANNEX C.

Conclusions 53

8.2. Future Work

The P2P platform proposed in this project is pure and unstructured, so it is
under consideration to develop a structured organization of peers in order to
offer a better and more reliable service. This is the reason why an overlay
network of Rendezvous/Relay super peers [16] can be built on top of the
architecture (Fig. 8.1). This new layer can maintain and guarantee the existence
of a unique logical network and can also provide a powerful discovery
mechanism based on Distributed Hash Algorithms (DHT). The use of these
techniques makes possible to improve the performance of the searching
mechanisms by reducing the delay of a discovery query in a time proportional to
the logarithm of the number of nodes that join the P2P network, Olog(n).
Moreover, the overhead weight can be reduced, and the availability of a found
resource can be guaranteed. However, it supposes higher storage and update
costs.

Fig. 8.1 Super peer architecture

Furthermore, it will be considered to separate and distribute the streaming tasks
(Streaming Module) into a different computer by using a Service-Oriented
Architecture (SOA) scenario (Fig. 8.2). This will enable to separate heavy
buffering and stream processing tasks into a powerful computer which will offer
these services in order to construct peers with low requirements. Then, the
streaming module will interact with the rest of the peer entity by using suitable
SOA interfaces, such as Web Services.

Another key feature, maybe the most important and value-added, of decoupling
the streaming tasks using an interface based on Web Services is that the
system will enable to configure any kind of Media Server based on any
streaming software such as Digital Video Transmitting System (DVTS [27]),
UltraGrid [28] or others. In this case, it is only necessary a Streaming Control
Layer which allows configuring the streaming software. Basically, this layer
consists of a software component that translates streaming commands such as
play or stop to the format understood by the streaming software.

54 Development of advanced multimedia services in P2P architectures

Fig. 8.2 SOA proposed architecture

Other future tasks that must be considered are listed below.

• Further study of ALM structures in order to improve the performance of
high bitrate scenario and improve the involved management tasks,
especially in those ones that refer to peer departures detection and
reorganization.

• Implementation of the low bitrate scenario.

• Test high bitrate transmissions above 20 Mbps in order to determine the
top transmission bitrate that can be achieved using the implemented
methods (java.io with buffer and Packet Reflector).

• Secure communications between peers through JXTA sockets. JXTA
allows adding security to the communications by using cryptographic
protocols such as Transport Layer Security (TLS) [29].

• Optimize JXTA messaging by compressing the exchanged messages
using algorithms such as GZIP.

• Consider the Session Initiation Protocol (SIP) [35] as P2P signalling
protocol. It can be followed the SIP-CMI [36] guidelines. SIP-CMI
platform is an open, flexible, scalable testbed to support a wide and
extensible set of next-generation continuous media services. This
platform follows the principle that any continuous media service can be
accessed by using the SIP protocol, regardless of the nature of the
service; for example videoconference or streaming.

Conclusions 55

8.3. Environmental Impact

Nowadays, the environmental impact of a project is a very important issue to
take into account and on many occasions it determines the feasibility of a
project and, therefore, its approval or rejection.

However, when talking about software projects the estimation of the
environmental impact can be difficult to obtain or maybe it can not be noticed at
first sight. Next are listed some positive and negative aspects consequence of
the development of network applications, which is the environment where P2P
applications are applied.

Negative aspects

• Increase of the number of infrastructures. Networks are composed by
wires, data centres, high voltage power lines, aerials, computers,
interconnection devices and so on. This supposes big infrastructures that
the society and the environment must assume in order to guarantee the
provisioning of network services. These infrastructures normally provoke
visual impact.

• Hardware devices get obsolete very fast. Every year the requirements
needed by some applications grow. Consequently, hardware must be
updated in order to run the applications properly. This situation causes
that many devices are thrown away and are replaced by new ones,
increasing the generation of residues. Most of the residues derived from
hardware devices are not biodegradable.

• Health impact. The presence of electromagnetic radiations in the
environment is continuously growing mainly due to the intensive
deployment of wireless technologies and infrastructures. Although there
are no conclusive studies about the effects of electromagnetic radiations
on human health, many people reject the deployment of these
technologies because it is believed that these kinds of radiations are
harmful.

• Social impact. Unfortunately, P2P is currently used mainly for the illegal
spreading of copyrighted files. We believe that P2P is the future of
content distribution and will mature from the current 'wild west' into a
respectable business solution.

• Network impact. P2P is not in decline; in fact it is growing at a sharp
rate [33]. The "vast majority" of P2P traffic (60 % of the total of the traffic
in Internet in 2004) is of files more than 100MB. While most of this is
video, there are other things such as CD images for open source
software. This great volume of traffic can collapse current available
bandwidth.

Positive aspects

• Social networks. People can communicate with their contacts thanks to
text, audio and video applications everywhere and whenever they want.
People can also meet new contacts according to specific interests.

56 Development of advanced multimedia services in P2P architectures

• Telematic communications. Decrease of the necessity to use urban
transport avoiding face-to-face communications or meetings. This
implies a reduction of fuel consumption and other types of energies,
decreasing environmental pollution.

• Multimedia content digitalization. Digital support supposes a decrease
on the space required for contents storage. In addition, streaming
applications allow the distribution of multimedia content without the
necessity of material support and enables the reuse of these contents.

• P2P computing. P2P applications allow optimising digital transmissions
creating a virtual network where all the peers can cooperate for achieving
a common interest. When talking about applications that require a great
usage of network resources such as bandwidth, P2P computing
becomes a suitable scheme.

Once defined all the positive and negative aspects it is time for defining a
valuation of the environmental impact of a project. A specific weight can be
given for each point under consideration, and a final valuation can be obtained
according to a symbolic mark.

This project consists of the creation of a virtual network that enables interactivity
among its users and the addition of new value-added services. The proposed
platform can be deployed under current network infrastructures, so the harmful
environmental impact of the project can be valued as very low. However, the
social impact can be high but in a useful or beneficial way.

8.4. Personal Conclusions

This project has been very interesting and motivating for me. P2P streaming
supposes a hot topic in current network applications as manifests the increasing
popularity of P2P streaming applications [32] that can be found on the Internet.
Moreover, current dominant network operators are launching IPTV solutions to
deliver TV and Radio on streaming over their multicast networks, these
solutions represent a cornerstone of their commercial catalogue. P2P
applications can be considered nowadays as killer applications, so it is a
privilege for me to have the opportunity of contributing to this field.

It must be emphasized that it is being considered a big project. It supposes a
great effort to develop an efficient P2P streaming application, specially focused
on high quality streams of audio and video.

A part from learning new useful concepts, technologies and tools, the most
important thing that I learned was to adopt an attitude when trying to solve the
problems I found, which I needed to overcome. An enterprising spirit, self
learning and workgroup capabilities are key features in the world of software
development. Current technologies offer solutions to current necessities but as
new problems appear or current necessities change, these technologies and
tools get obsolete and new ones must appear. This is why an adaptable and
innovative attitude must be adopted.

References 57

CHAPTER 9. REFERENCES

[1] D. Meddour, M. Mushtaq and T. Ahmed, “Open Issues in P2P Multimedia

Streaming”, MULTICOMM’06, June 2006, Turkey.
[2] C. Yeh and L. S. Pui, “On the Frame Forwarding in Peer-to-Peer

Multimedia streaming”, P2PMMS’05, November 2005, Singapore.
[3] PPLive software, Website: http://www.pplive.com/en/index.html
[4] SopCast software, Website: http://www.sopcast.org/
[5] Sun Microsystems, “JXTA v2.3.x Java Programmer’s Guide”, April 2005.

http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf
[6] X. Zhang, J. Liuy, B. Liz, and T. P. Yum, “CoolStreaming/DONet: A Data-

Driven Overlay Network for Efficient Live Media Streaming”. In Proc.
IEEE INFOCOM, March 2005.

[7] T. Su-Wei and G. Waters, “Building Low Delay Application Layer
Multicast Trees”. In Proc. EPSRC, Liverpool, June 2003.

[8] D. A. Tran, K. A. Hua and T. Do, “ZIGZAG: An Efficient Peer-to-Peer
Scheme for Media Streaming”, In Proc. IEEE INFOCOM 2003.

[9] T. Tsuchiya, H. Yoshinaga, K. Koyanagi, A. Honda and A. Minami,
“STARCast: Streaming Collaboration Platform using the Overlay
Technology”, In Proc. SAINTW’06, IEEE Computer Society, January
2006.

[10] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-to-Peer Live
Streaming”, In Proc. IEEE INFOCOM, April 2006.

[11] B. Eckel, “Java Thinking in Patterns”, May 2003.
http://www.mindview.net/Seminars/ThinkingInPatterns.

[12] VideoLan Home Site, WebSite: http://www.videolan.org/
[13] Apache Commons Collections of Buffers, Website:

http://jakarta.apache.org/commons/collections/apidocs/org/apache/comm
ons/collections/buffer/package-summary.html

[14] jVlc Project, Website: https://trac.videolan.org/jvlc
[15] Java Swing Framework. Website: http://www.newt.com/java/swing.html
[16] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J-C.

Hugly, E. Pouyoul and B. Yeager, “Project JXTA 2.0 Super-Peer Virtual
Network”, May 2003.
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf.

[17] N. Magharei and R. Rejaie, “Understanding Meshbased Peer-to-Peer
Streaming”, in Proc. International Workshop on Network and Operating
Systems Support for Digital Audio and Video, Newport, Rhode Island,
May 2006.

[18] L. Gong, “Project JXTA: A Technology Overview”, Website:
http://www.jxta.org/project/www/docs/jxtaview_01nov02.pdf

[19] MVC overview. Website: http://java.sun.com/blueprints/patterns/MVC-
detailed.html

[20] Homesite of Log4J Project, Website:
http://logging.apache.org/log4j/docs/index.html

[21] Homesite of Apache Ant Project, Website:
http://ant.apache.org/manual/index.html

58 Development of advanced multimedia services in P2P architectures

[22] Homesite of Apache Commons Collections, Webiste:
http://jakarta.apache.org/commons/collections/apidocs/index.html

[23] CVS definition by Wikipedia, Website:
http://en.wikipedia.org/wiki/Concurrent_Versions_System

[24] Homesite of SAX Project, Webiste: http://www.saxproject.org/
[25] Excelsior JET software homesite, Website: http://www.excelsior-

usa.com/jet.html
[26] Packet Reflector Project developed by CESNET. Website:

http://www.cesnet.cz/doc/techzpravy/2003/rtpreflector/
[27] DVTS information, Website: http://www.sfc.wide.ad.jp/DVTS/
[28] UltraGrid information, Website: http://ultragrid.east.isi.edu/
[29] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol

Version 1.1”, Request for comments RFC number 4346, Network
Working Group, April 2006.

[30] P. Lorente, “Diseño y desarrollo de un Media Procesor basado en
servidores de streaming utilizados en Internet 2”, EPSC-UPC thesis,
February 2005.

[31] A. J. González, “Sistema de Localización Multimedia Distribuido”, EPSC-
UPC thesis, January 2005,
http://bibliotecnica.upc.es/PFC/arxius/migrats/35777-1.pdf

[32] Complete list containing Opensource/freeware p2p streaming systems
available on the internet today (February 2007), Website:
http://orblive.com/modules/newbb/viewtopic.php?topic_id=13&forum=4

[33] Study of the impact of P2P in 2005, Website:
http://www.cachelogic.com/home/pages/studies/2005_06.php

[34] Java Multimedia Framework, Website: http://java.sun.com/products/java-
media/jmf/

[35] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley, and E. Schooler, "SIP: Session Initiation Protocol,"
IETF RFC 3261, June 2002.

[36] M. Hurtado, A. Oller, and J. Alcober, "The SIP-CMI Platform- An Open
Testbed for Advanced Integrated Continuous Media Services,"
TridentCom 2006.

[37] Advanced Installer by Caphyon, Webiste:
http://www.advancedinstaller.com/java.html

Acronyms 59

CHAPTER 10. ACRONYMS

ADSL Asymmetric Digital Subscription Line

ALM Application Layer Multicast

API Application Programming Interface

ATSC Advanced Television Systems Committee

AVL balanced binary search tree

BM Buffer Map

CBR Constant BitRate

CIMS-Live Collaborative and Interactive Media Streaming Platform

CPU Central Processing Unit

CVS Concurrent Version System

DHT Distributed Hash Table

DONET Data driven Overlay Network

DV Digital Video

DVB Digital Video Broadcasting

DVD Digital Versatile/Video Disc

DVTS Digital Video Transmitting System

GUI Graphical User Interface

HD High Definition

IP Internet Protocol

IPTV Television over IP

JDK Java Development Kit

JMF Java Multimedia Framework

jVLC Java VideoLan Client

JXTA Juxtapose

LTM Location aware Topology Matching

MPEG-TS Moving Pictures Expert Group Transport Stream

MVC Model View Controller

P2P Peer to Peer

P2PRadio Radio streaming over P2P

P2PTV TV streaming over P2P

PC Personal Computer

PDA Personal Digital Assistant

QoS Quality of Service

RAM Random Access Memory

RTCP Real Time Control Protocol

RTP Real Time Protocol

SAX Simple API for XML

SD Standard Definition

SMS Short Message Service

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

VBR Variable BitRate

VCD Compact Disc Digital Video

VLC VideoLan Client

XML eXtensible Markup Language

Technical Specification 61

ANNEX A. TECHNICAL SPECIFICATION

This annex contains an extension of technical specifications not described in
the main document.

A.1. Technical specification

The application interacts with different modules in order to offer the
functionalities described.

Next it is shown some use case diagrams that allow observing clearly the
functionalities that the system offers to the users. Proceedings are described
using cards.

A.1.1. Front-end Module (GUI)

The GUI contains several flaps as the following ones:

o List of contacts
o Groups. Shows a chart of the found groups. Making double click over a

precise group, it is possible to see expand the tree in order to see which
peers are contained.

o Channels. The same as the groups but with media channels information
o File sharing. Offers the user an interface for searching contents

published on the P2P application.

A.1.2. Start-up Module

This module is in charge of (Fig. A.1):

- Authentication of the user in the application
- Configuration of the user preferences and profile

user

Authentication

On application

Configuration of

The profile

Fig. A.1 Start-up

The application accesses will have to interact with the authentication service.
This service can be implemented in a distributed way across the P2P net (it

62 Development of advanced multimedia services in P2P architectures

could be considered a supernode net in charge to keep the net authentication
service). A more centralized vision alternative it would be to create an
authentication service based in web services.

Nevertheless, first the authentication will be local. That is, the access data is
going to be read from a local file.

Once the user starts the application, it is well authenticated, it can set-up its
user preferences. These preferences allow setting up the following issues.

- GUI Skin.
- Type of bandwidth, connection.
- Searching filters (e.g. parental control for adult contents).
- Force searching criterion (e.g. codecs, file types, and so on).

Preferences data is locally stored into an XML file.

Name Start

Description Authentication of the user

Actors User without being authenticated

Preconditions User has started the application

Normal flow 1. System shows the register panel to insert the user name and the
password.
2. User inserts data.
3. System checks the validity of the data (in a local or distributed way, or
using WebServices) and loads the application with the user information.

Alternative flow 3. If the introduced data is not correct, the user is able to try to
authenticate once again.

Output Known user.

Preferences

Name Preferences

Description Modify/Add user preferences

Actors Authenticated user

Preconditions User correctly authenticated

Normal flow 1. System shows for the first time the preferences configuration panel if
the user accedes to the service for the first time.
2. The user inserts his/her preferences (skin, type and connection velocity,
filters, credentials changes, multimedia module’s options).
3. Once the data is inserted it is stored and each time the user
authenticates itself in the application it is loaded.

Alternative flow 1. The authenticated user is not the first time that accedes to the service.
2. Loaded preferences.
3. It is possible to manual modify them through the application tool menu.

Output Authenticated user and with stored preferences.

A.1.3. User/group management module

Fig. A.2 shows the actions that an application user can do with other users.

Technical Specification 63

user

Search for users in

the group of the

application

Add a contact

List users in a

group

1:1 chat

Fig. A.2 Actions with users

Fig. A.3 shows the actions that a user can do with the groups present in the
application.

Start general chat

List existing

groups

user

See joined groups

List users into a

group

Join / leave a

group

Create group

Add favourite

group

Fig. A.3 Actions with groups

Addition /suppression of a group or contact

Name To Add/eliminate a group

Description To add or to eliminate a group or a contact from a user’s contact list

Actors Authenticated User

Pre-conditions

The User clicks the button of adding/eliminating group/contact

Normal Flow

1. The application shows a panel to insert the data and to realize the
requested action.
2. The user inserts the data
3. The application verifies the validity of the same ones and if it is possible
it realizes the needed action.

Alternative Flow

3. If the data is not correct or it is incomplete the application allows the
user to reinsert the data.

Output Modification of the contact list.

64 Development of advanced multimedia services in P2P architectures

Change of the state of the user

Name Change of the state of a user

Description Chance of changing the current user’s state.

Actors Authenticated User

Pre-conditions The User clicks the changing state button

Normal Flow

1. The application list the possible states that a user can set
2. The user chooses the conditions in which he/she wants to remain
3. The application spreads among the other peers its current state

Post-conditions General modification of the user state

List groups/users

Name To list groups and/or users

Description To list concrete groups or users

Actors Authenticated User

Pre-conditions The user starts the application

Normal Flow

1. The user starts the application and can observe the state and in what
group his/her contacts are present

Alternative Flow

1. The user wants to list the users of a concrete group and clicks the
button for listing groups/peers
2. The application verifies the data and displays data

Post-conditions The user knows the existence of other peers and groups

Favourite Groups

Name Favourite groups

Description To add a group into favourite groups

Actors Authenticated User

Pre-conditions The User clicks the favourite groups button

Normal Flow

1. The application shows a list with the groups which the user belongs to.
2. The user selects what groups he/she wants to add to his favourite
groups.
3. The application verifies the information, realizes the action and adds
the group or groups to a new one, which is more accessible for the user.

Post-conditions The application has a new section where appear the groups that belong to
favourite groups.

Chat

Name Chat

Description To initiate a text conversation between the user and one o more contacts

Actors Authenticated User

Pre-conditions The user clicks Chat's button

Normal Flow

1. The application shows a panel with the possible contacts for starting
chat
2. The user selects the concrete contacts
3. The application loads a panel where the user can realize some actions
as sending texts, files, synchronization of agenda’s information
4. The user realizes any action
5. The application takes charge of sending the action to one or more
contacts.

Alternative Flow

If some type of problem exists, the application will notify to the user the
inability to realize the action

Post-conditions Two contacts are communicated

Interaction Flow 65

ANNEX B. INTERACTION FLOW

Fig. B.1 shows the interaction among different modules in order to provide a
generic service.

Fig. B.1 Start-up and service interaction

66 Development of advanced multimedia services in P2P architectures

ANNEX C. PAPER SUBMITTED TO EURO-NGI

The paper submitted to the 3rd EURO-NGI Conference on Next Generation
Internet Networks - Design and Engineering for Heterogeneity titled “CIMS-Live:
Collaborative and Interactive Media Streaming Platform in P2P Environment“
which presents the proposed P2P platform is attached next. This paper is
currently under review and pending for approval.

Paper Submitted to EURO-NGI 67

Abstract--. Media streaming has become a hot

topic in Internet research, especially when it is

related to live streaming audio and video

applications and peer-to-peer (P2P) networks. In

general, they have to cope with challenging

problems in their design and implementation, due

to the dynamic and heterogeneous nature of P2P

networks. In this paper, some new features that

other P2P media streaming applications do not

consider or barely specify are introduced. The

connection and hardware requirements are

different if low bitrate or high bitrate streams are

transmitted, but all peers are usually considered

identical, which is not a good approach

considering an heterogeneous environment.

Furthermore, in order to achieve distinction

among peers, it is necessary to provide a

mechanism that enables the exchange of the

specific capabilities (including transcoding) of

each peer. Moreover, these applications have

difficulties to extend its features by adding new

services or when trying to modify any preloaded

data such as the channel list provided to the user,

making impossible to guarantee the source

availability all the time. Finally, interactive

services haven’t been deeply discussed. This paper

proposes the design and implementation of a

collaborative and interactive media streaming

platform that allows coping with the issues before

mentioned. The platform integrates different

mechanisms that permit real-time distribution of

multimedia contents with different qualities

including high bitrate media streaming (e.g. HD).

This platform is a novel hybrid solution based on

JXTA, DONET and ALM (application layer

multicast), providing a flexible and extensible

platform according to new requirements and

future value-added services. In addition, this

platform allows creating an architecture with two

overlay layers: a JXTA based logical layer, in

charge of signalling and metadata exchange, and a

UDP socket based layer, in charge of the

multimedia transmission of unicast traffic.

Consequently, the mismatch between transmission

and physical layers can be reduced by means of

the data obtained from the JXTA layer, which is

updated through time.

Index terms—Peer-to-Peer, DONET, JXTA,

Media Streaming, HD.

I. Introduction

Recently, P2P networks have gained
popularity thanks to the deployment of file-
sharing applications. However, nowadays real-
time media streaming applications arouse a great
interest both to commercial level and academic
research. However, live streaming introduces
new challenging problems [1], [2] different to
ordinary file-sharing. In general, media
streaming solutions have different features that
determine the operation of the applications. For
example: the large volume of media data along
with stringent timing constraints, the dynamic
and heterogeneous nature of P2P networks and
the unpredictable behaviour of peers.

It is possible to emphasize some important
issues closely related to P2P media streaming
which are mainly associated to two aspects:
collaboration between peers and interactivity.
Related to collaboration between peers, the
following issues have to be taken into account:
dynamic peer discovery, peer relationship
maintenance and exchange of capabilities
(transcoding information). Related to
interactivity, the issues are the membership
service and the messaging exchange.

From the operative point of view, when a
peer starts a streaming P2P application, it has no
information about other peers, which are also
present in the virtual network. This implies that
an efficient discovery mechanism must be
initiated in order to find other peers and start
receiving the desired media stream from the best
ones.

Another key point is the maintenance of the
relationship among peers and their update. Due
to the heterogeneous environment of P2P
networks and the unpredictable behaviour of
peers (e.g. constant appearance and
disappearance and stable and dynamic
membership), presence mechanisms must be
incorporated to know which peers are up,
especially to ensure the state of the provider
peers (partners) of a specific peer. Therefore, a
peer must update its relationships to replace
those partners that are down and, consequently,
to not decrease the received stream quality.

Department of Telematics Engineering, Technical University of Catalonia / I2cat Foundation.
Barcelona, Spain.

Email: {andre.rios\antoni.oller\ jesus.alcober}@upc.edu, alberto.jose.gonzalez@i2cat.net

 André Ríos, Alberto J. González, Antoni Oller and Jesús Alcober

CIMS-Live: Collaborative and Interactive

Media Streaming Platform in P2P Environment

68 Development of advanced multimedia services in P2P architectures

The process of discovery is especially
important when referring to live streaming
applications, because depending on the number
and specific features of the found peers, the
desired stream will be received under some
conditions. In the worst case, it will not be
received or it will be received with losses or
delay, causing the rejection of the final user due
to unacceptable visual quality.

P2P networks are composed by thousands of
different peers, each of them with specific
features, such as bandwidth, decoding
capabilities or storage capacity. It is a main issue
to select the providers that better fulfil the
capabilities and requirements of a peer that
wants to start receiving a media stream;
therefore, a dynamic mechanism to advertise the
concrete capabilities of each peer must exist.
Provided a stream is delivered at a specific
bitrate and codec, not all of the peers in the
network can receive this stream because they
have not got enough downlink bandwidth. This
problem is solved if the streaming platform
enables to advertise peers with adaptation
functions or transcoding. For example, if a
source is sending a high definition stream of 20
Mbps (MPEG2-TS, 1280x720), maybe most of
the peers with current Internet access (e.g.
ADSL or Cable Modem) can not receive this
stream delivered at that bitrate, but if a peer has
transcoding capability, possibly this stream can
be adapted to a smaller bitrate.

Related to interactivity among peers, existing
P2P applications do not promote value-added
interactive services among connected peers,
currently known as social networks. When
talking about terrestrial TV and radio
broadcasting the interaction with the viewers or
listeners is a hot topic. A way to interact with the
audience is to make available an infrastructure to
receive SMS, which can be expensive and
complex. It is also usual to install devices
dedicated to calculate the share gathered from a
TV programme and determine the success of the
programme according to the obtained data. P2P
applications offer the possibility to create
interactive experiences to the users by providing
cheap and simple mechanisms to interact with
the connected user. For instance, peers can chat
at playing time. Using P2PTV, the broadcasters
can get the feedback of online users at real time
of the same way that TV broadcasters do it in
current TV channels with SMS, but with the
difference that IP infrastructure is much cost
effective. Statistical information such as number
of current/average viewers, time of playback,
user profile can be directly obtained thanks to an
efficient membership service.

It must be also mentioned that popular

streaming P2P applications focused in delivering
TV streams on the Internet, such as PPLive [3],
SopCast [4], have a default static list of P2PTV
channels, which identify the well known media
streaming sources. In spite of the fact that these
lists can be updated, this process is inflexible
because when a change in the contents is
required, retrieval or addition of channels, the
whole application must be online updated or,
even, it is mandatory to download a new release
of the whole application. This feature causes
that these applications can not be easily
extended.

A problem derived from the provided static
channel list is related to the source availability.
The fact that the list of channels is prefixed, it
does not guarantee that they are fully available.
In this sense, it is when a user wants to view a
channel that the system checks if the source is
available. In the case of being unavailable, the
user has wasted its time trying to view this
channel.

Taking into account this environment and
with the idea to solve the issues before
mentioned, this paper proposes the design and
implementation of a media streaming platform
called: CIMS-Live (Collaborative and
Interactive Media Streaming Platform). This
platform is a hybrid solution based on the P2P
Java API called JXTA [5], DONET (Data-driven
Overlay Network) [6] and ALM (Application
Layer Multicast) structure [7], [8]. Thanks to this
platform, the publication and discovery of media
streaming channels and peers can be fully
decentralized and automated. This infrastructure
makes possible to create an extensible
application which allows incorporating new
services. Furthermore, the flexible publication
mechanisms provided by JXTA allows
announcing the specific capabilities of the
different peers present in the network and,
consequently, finding the best peers for critical
services such as media streaming.

This paper will first introduce in the section
II the related works about P2P streaming
applications. In section III, the system overview
is presented and also the work environment and
the P2P architecture used is described. In section
IV, the system design is presented and the
different elements that constitute the application
are detailed. Next, in section V, two P2P media
streaming mechanisms used in the solution are
described, which allow the distribution in real
time of multimedia content with different
qualities. Finally, in section VI, a developed
prototype and its development environment are
described in order to check the different
programmed functionalities and to validate the
concepts on which the application is based. In
the section VII and VIII concludes this paper
with the future woks and conclusions.

This work was supported by MCyT (Spanish Ministry
of Science and Technology) under the project TIC2003-

08129-C02, which is partially funded by FEDER.

Paper Submitted to EURO-NGI 69

II. Related Works

In recent years, there have been significant

researches into a variety of issues related to P2P
media streaming. However, it is necessary to
mention that there are some popular media
streaming applications whose internal operation
is barely known; therefore, it is difficult to
analyze the algorithms and mechanisms used.
On the other hand, there are academic
developments associated to universities or
developer communities that have been well
specified and published. One example of this last
type is STARCast [9], which is a JXTA based
platform that offers streaming services.

STARCast uses a ALM structure for
streaming tasks. But, opposite to CIMS-Live, it
treats all the streams in the same manner, that is,
it does not distinguish between low and high
bitrate streams.

Moreover, there are different strategies
related to the selection of the partners and to the
construction of an efficient overlay network for
multimedia streaming. Next, some techniques
applied or associated to this study will be
mentioned.

Borrowing ideas from IP multicast
technology, tree-based protocols can be
considered simple, efficient and scalable.
Specifically, the mail goal of single tree
protocols is to build a scalable multicast tree
with high efficiency. A representative example
of this is ZIGZAG [8], which is a P2P technique
that allows the media server distributing content
to many clients, by organizing them into an
appropriate tree rooted in the server. Basically, it
is ALM tree that has height logarithmic with the
number of clients and a node degree bounded by
a constant.

Another well known example is DONET,
which is a P2P technique that does not need any
kind of complex tree structure for data
transmission. DONET includes a Gossip based
partnership management algorithm and an
intelligent scheduling algorithm in order to
provide a continuous distribution of streaming
contents. DONET is currently implemented in a
commercial application called CoolStreaming
[6].

AnySee [10] is a P2P live streaming system
based on an inter-overlay optimization scheme
and where the resources can join multiple
overlays. This system creates an overlay network
of the peers in the application according to
location-aware topology matching (LTM), but it
supposes a prominent management effort.

III. System Overview

In this section it is going to be explained

which are the mechanisms that allow

constructing the collaborative and interactive
P2P platform and how the peers are organized
into different overlay networks.

The proposed platform is based on the P2P
Java API provided by the JXTA project, which
offers automatic mechanisms for publishing and
discovering peers, groups of peers, and every
desired resource. Thanks to this API it is easy to
develop a full featured P2P application where
peers are self organized into logical groups. The
self-grouped peers can discover each others in an
easy way, and it is simple to create membership
and presence mechanism.

In addition, a goal feature offered by the
JXTA platform is that the more time the
application is running, the more global
knowledge of the logical network or group can
be achieved thanks to the discovery requests and
events generated or caught by the peers.
According to the information gathered from the
discovery, membership and presence processes,
a peer can optimize its transmission layer by
updating its relationships with other discovered
peers.

The powerful mechanism for publishing
advertisements of JXTA, also makes easy to
advertise the specific capabilities that each peer
has, even it can be periodically done if they
change in time. Peers can work attending to
three profiles: source, transcoder and simple
peer. Tin the next section, the profiles will
further be described.

As it has been said, the platform makes
possible to deliver media streams, which
supposes a key point. In this paper it is proposed
to adopt two different strategies depending on
the kind of stream that is going to be delivered:
low (< 2Mbps) or high (> 2Mbps) bitrate steams,
because the connection and hardware
requirements are not the same in both
environments. For further detail, see section V.

On one hand, it is used a similar mechanism
to the one suggested by DONET in order to
deliver low bitrate streams, which is based on
buffer segmentation and multiple-peer retrieving
of data blocks. Nevertheless, it is used the
information exchanged in the JXTA network to
configure and update the scheduling algorithm
and also exchange the required information such
as the Buffer Map of each peer. Thanks to the
JXTA layer, each peer can dynamically discover
other peers and optimize its transmission layer
with the obtained information.

Moreover, a peer can obtain information of
proximity to other peers by exchanging some
messages at application level in order to discover
what the delay between two peers is. Once
obtained the delay and its variation (jitter), a peer
can establish relationships with the best found
peers.

70 Development of advanced multimedia services in P2P architectures

Another new feature presented by this
platform is that it enables everyone to publish a
stream, that is, to be a streaming source and
make it available to everybody. It is also allowed
publishing into a specific streaming group
(channel) those peers with specific capability of
transcoding in order to adapt the media stream to
limited devices.

Finally, new interactive services such as chat,
file sharing, opinion poll or survey can be added
to this platform.

A. P2P Architecture

This section shows the proposed pure P2P

architecture based on the Java API named JXTA.

The architecture can be mapped to different
layers. All the peers are nodes physically
separated by a certain number of hops and a
variable delay, which supposes that a data packet
sent from one node to another can go through
many different links and cross many nodes until
it arrives to destiny. The physical topology is a
layer joined by lots of heterogeneous peers.

This physical topology is mapped to a logical
overlay network, where all the peers that join the
application are self organized. Thanks to the
JXTA API, these nodes can be advertised,
discovered and self organized in a logical group
of peers. See Figure 2.

When the application starts (Figure 1), the
first thing it must be done is to find the peer
group created by the application, which contains
all the peers connected to the application. Then,
if the peer finds the group it will join it and then
look for a Rendezvous peer in the group. If the
group was not discovered, it will create the
group. This also occurs with the rendezvous
peer, that is, if the peer does not find the
rendezvous, and it has enough capability, this
peer will become rendezvous. Once connected to
the rendezvous, the peer will start a thread for
managing discovery events.

Figure 1: Start of the application.

In spite of the fact that JXTA provides
mechanisms to send and receive data (Pipes and
JXTA Sockets) they are not optimum for high

data volume transferences due to the heavy
weighted encapsulation of this data into
SOAP/XML messages. This is the reason why it
is used a unicast data transmission layer,
specially aimed at media stream delivery. The
JXTA layer is the responsible of signalling and
other light services provided by the platform
such as presence, chat, and others.

Thanks to the dynamic information
exchanged among different peers in the JXTA
network, a global view of the group can be
achieved and the transmission layer can be set-
up to achieve the best possible performance. The
peers are always listening to the changes
produced in the network, that is, the state of the
peers and their features. It is proposed a
feedback from the top layer to the transmission
layer.

This architecture enables to optimize the
relationships among peers as more time they are
up by discovering other new peers.

Another key issue is that when a peer
generates a discovery request it waits for some
answers and, implicitly, just the closest peers
will answer. With this approximation, the
mismatch between physical and logical layers
can be decreased. But this is not the only
parameter to be taken into account when
constructing logical links between two peers; it
is also considered the delay between them.

Figure 2: Layered architecture. 1) Physical Network Layer:
it represents the physical topology of the different peers

separated by physical links, the number placed over the link

represents a symbolic cost estimated by f(hops, delay)
between two end points; 2) Transmission Overlay Network:

this layer consists of a group of unicast links between peers,

this layer is responsible of transmitting the media packets;
3)JXTA Logical Network: this is the most abstract level

which contains all the peers self organized. This layer is in

charge of signalling and discovery tasks.

B. Peer Profiles

It must be specified the different roles carried

out by each actor of the P2P system. It must be
noticed that all peers in the application belong to
a common group. The application creates a
logical group that contains all the peers in the

Paper Submitted to EURO-NGI 71

system and all the groups created by the peers of
the application.

Different types of peers can be found
according to its features. Each user connected to
the application will become a peer of the logical
group of the application and will be capable to
discover and join other peers and groups present
in the logical system. Each peer publishes its
features: bandwidth, maximum number of
connections accepted, delay to the source, hops
to the source and role into the peer group:
source, transcoder or simple peer.

Source: the owner peer of a specific channel
group of media streaming. A P2PTV or
P2PRadio channel can be mapped to a logical
group in JXTA environment. This group is
joined by all the peers that want to play a
concrete stream, that is, all the peers have a
common interest. When a peer wants to become
a stream deliverer it must create a JXTA peer
group advertisement describing the
characteristics of the P2PTV channel: name,
theme, description, bit rate, codec and any other
required parameter. When peers discover the
advertisements, they get ready to try to receive
the media stream.

Transcoder: a peer that can receive a media
stream and transcode it to a specific media
format. Some peers can collaborate in the peer
group by adapting the streams for other limited
peers present in the group, for instance: PDA
and mobile phones.

Simple Peer: this is the default profile of a
user in the application group. Each peer can
discover and join the different groups in the
application JXTA world and discover the
services it offers: media streaming, file sharing,
and so on. Also, if the peer has enough capacity,
it can become a source peer if it wants to deliver
a media stream.

IV. System Design

The design of the peer application can be

seen in Figure 3. The proposed design is done
following the Model-View-Controller design
pattern [11].

Figure 3: Generic system diagram of a peer.

Figure 3. depicts the system diagram of a
peer: (1) Graphical User Interface (GUI); (2)
JXTA Module, which maintains global view of
the logical group, establishes and maintains the
partnership with other peers, publishes its
features and discovers resources on the peer
group; (3) Streaming Module, which schedules
the transmission of a media stream to other peers
in the system according to the information
gathered from the JXTA Module and also
forwards the stream to the local player for user
playback.

The system has two key interfaces: a) JXTA
Logical Network Interface, which enables all the
signalling; b) Transmission Network Interface,
which allows the user receiving and sending
streaming packets.

A. Graphical User Interface (GUI)

The application view (Figure 4) is

constructed using the Java Swing framework
[15]. The user can view all the gathered data
from the JXTA network referenced to groups:
media channels, chat rooms, connected peers,
advertising, shared resources and any other new
service added to the platform thanks to a generic
services directory (yellow pages). The GUI
listens to the actions of the user and generates
events for its later processing.

Figure 4: Graphical User Interface.

B. JXTA Module

This module is the responsible of interacting

with the JXTA network interface. The main task
it must carry out is the signalling of the system
which will be managed by the partnership and
membership submodules. All the signalling is
based on JXTA socket messages and
publish/discovery events.

All the information gathered from peers,
groups, resources and services is stored in a
model container submodule which represents the
model layer of the application.

Membership Manager submodule: this
submodule is entrusted of managing all the
discovered data from the JXTA overlay network
thanks to a dedicated thread (Figure 5) that
listens to the generated events. These events are
linked to new advertisements of peers, groups
and other JXTA resources discovered by the

72 Development of advanced multimedia services in P2P architectures

application. When any advertisement or event of
this kind is found, the GUI is automatically
updated.

Figure 5: Discovery Listener Thread.

The main functions of the membership
manager are:

• Manage connections and departures of peers

• Manage groups: connection and disconnection

through JXTA Membership service.

• Update of the model container

This submodule can discover any resource

published in the JXTA network such as peers,
groups, resources, publishing, state of peers and
Buffer Maps.

Partnership Manager submodule: is
focused in maintaining a selection of the best
found peers with which a user will interact in a
streaming task. The selection of these peers is
based on different parameters (Table 1)
according to the kind of desired stream and to
the specific features of the requesting peer.

TABLE 1: PARAMETERS UNDER CONSIDERATION

High
bitrate
stream

maximum number of connections accepted, time
of playback, proximity to the source, and end-to-
end delay

Low
bitrate
stream

available bandwidth, end-to-end delay, all the
Buffer Maps of the known peers and the number
of peers with the desired data available

Referring to low bitrate streaming, this
module contains a list of parent peers and their
Buffer Maps. It will interact with the Publish
Manager sub module in order to publish the
Buffer Map periodically through JXTA Sockets.
When talking about high bitrate streaming it will
contain a list of the main parent, its children and
a backup parent.

Publish Manager submodule: this module
is dedicated to any process that requires a
publish operation in the JXTA network. It can
publish among others:

• Peer Advertisement: contains the basic

description of a peer (peer ID).

• Communication point: JXTA socket (Pipe)

• PeerGroup Advertisement: it is the specification

of a group of peers. It is used a specific peer

group advertisement in order to advertise media

streaming channels: basically P2PTV and P2P

Radio.

• Digital resources: media files, digital documents,

and so on.

• Publishing

This module is also the responsible of

periodically propagating the state of a peer
through the presence service, its features and the
Buffer Map when being part of a low bitrate
streaming task. This module is implemented
with JXTA multicast and unicast sockets in a
specific peer group.

The JXTA network interface is based on
JXTA Sockets, JXTA multicast Sockets and the
JXTA discovery and publishing services.

C. Streaming Module
This module is the responsible of managing

the streaming operations based on the updated
information contained in the best peers list
provided by the partnership manager. It is
basically composed by different submodules:
scheduler, buffer map and the buffer.

Buffer: storages the media stream datagrams
received in local memory. The buffer is divided
in uniform data blocks. It holds the data that will
be sent to local player for the user local playback
of the desired media stream and the data that will
be made available to other peers into the system.
It must be enough big in order to temporally
accommodate a part of the media stream. There
must be a trade-off between: required memory
space, end-to-end delay requirements and peer
failure detection and correction.

Buffer Map: manifests the state of the
buffer.

• Low bitrate: indicates which blocks are available

and the corresponding deadline of each block

(timestamp).

• High bitrate: indicates the state of the buffer

(how many blocks) and the current playback

time.

Scheduler: this submodule decides which

will be the supplier peer for each block (low
bitrate) or media stream (high bitrate). Just
selects the peer who will be asked for a part of
its buffer.

V. P2P Media Streaming Mechanisms

Two strategies are adopted when a peer

wants to start media streaming reception. Both
strategies are focused on the kind of stream that
is going to be asked for: low bitrate stream or
high bitrate stream.

First, it must be clarified the conceptual
separation between low bitrate streams and high

Paper Submitted to EURO-NGI 73

bitrate streams. In this paper it is referred as low
bitrate stream those streams delivered with a
bitrate smaller than 2 Mbps, which is a common
top bitrate used in popular P2PTV applications
and offers a wide coverage for current
broadband Internet access. So, when talking
about high bitrate streams, it is assumed a bitrate
higher than 2Mbps which allows delivering any
other high bitrate format such as High Definition
(HD), Standard Definition (SD), Digital Video
(DV) and other high bitrate formats.

These two strategies are adopted because the
requirements of bandwidth and buffering of a
peer are not the same when trying to receive a
low or high bitrate stream. High bitrate streams
require a large bandwidth and buffer space
available, uncommon in current Internet
broadband domestic connections and devices.

A. Low bitrate media streaming

For low bitrate streams it is used buffer

segmentation for subsequent sharing. Each peer
periodically publishes its Buffer Map (BM)
notifying which segments it has. Then, compares
which segments lack in its buffer map and asks
for them to the known best peers. When a peer
starts, it interacts with some known peers. But
the more time it is up, the more new peers it can
discover and can calculate which the delay is and
how does it changes in time among them by
sending some probe packets. The delay can
become a fine grained property, very important
to determine which will be the supplier of a
media block. The scheduler must be intelligent
in order to optimize the task of media blocks
requesting, so it is proposed to use the
CoolStreaming/DONET scheduling algorithm.

B. High bitrate media streaming

High bitrate streaming needs high bandwidth

and buffering requirements. This is why an ALM
structure of paths is proposed (connection-
oriented) formed by the peers that receive and
forward the stream. In this paper is proposed a
mesh-first [7][17] approach which builds up a
mesh among the participating peers. The mesh is
optimized towards the application requirements
and is dynamically adjusted to accommodate the
underlying network changes: peer arrival or
departure. The distributed ALM algorithm can
be run at each node.

In this scenario (Figure 6), there is no need of
complex processing of the buffered data, just
play it on local player and forward it to children.
Peers do not only receive the requested stream,
but also contribute to the media stream delivery
by forwarding the stream to other peers.

When a high bitrate channel is joined the peer

tries to find the best parent, which is the closest

to the source and has enough number of

available connections.

Figure 6: Application Multicast Tree structure. It can be

seen the active and backup paths that conform a mesh-first
approach.

Every peer supports a maximum number of
connections (maxConnections) according to its
available bandwidth. This maxConnections
parameter determines how many children it can
have.

Moreover, all the peers that join the high
bitrate P2PTV channel have an active connection
with a fixed parent and a backup parent peer in
order to minimize network failure when a peer
fails or leaves the channel.

In this connection-oriented scenario, the
scheduling algorithm can be a simple round
robin at delivery time. It must be said that, the
proposed system allows updating the scheduling
algorithms in both cases. It is not an open issue.
It can be easily reconfigured thanks to the
modular design of the application

Figure 7 shows a generic process when a
peer wants to start a media streaming playback
once discovered the P2PTV channel in the JXTA
network.

The peer joins the discovered group, finds
the peers in the group and discovers their
features. With the gathered data it selects the
best found potential suppliers and runs a parallel
process for constructing a backup list of partners.
When the buffer is enough filled, the peer can
start playing the stream.

The termination process of the streaming
playback is shown in Figure 8.

74 Development of advanced multimedia services in P2P architectures

Figure 7: Start a media streaming playback

Figure 8: Stop a media streaming playback

There are two ways of leaving a group: leave
a group voluntary or leave it involuntary due to a
peer failure. When a peer voluntary leaves a
group it must notify the event to the peer group
through the JXTA Membership service. When a
peer involuntary leaves, it must be detected
through presence service.

In a high bitrate scenario, the mesh must be
restructured. This paper proposes an easy
process to redistribute the connections of the
affected peers. Nevertheless, other algorithms
can be easily added as it has been said and will
be further studied in future work.

Otherwise, focusing on the realized
implementation, it has been created a ALM tree
structure rooted at source. So, when the ALM
must be reorganized due to a peer departure, it is
proposed that just a branch of the ALM tree will
suffer the effects of the disconnection. Note that
this approach implies that the source peer at
level 0 must have global information of the
connected peers, because it will determine which
peer updates its relationships into the ALM tree
or which will switch to its backup path. The cost
of having centralized global view on the source
is not a restriction due to the fact that it consists
of metadata, not the data exchanged, and it does
not suppose a heavy task of maintenance.
Moreover, when having a global view of the
ALM structure, it can be guaranteed a
logarithmic cost proportional to the number of

users, O log (n), when it is required to search a
peer.

.

 Figure 9: Peer C gets disconnected.

Figure 10 shows the tree view rooted at source

after a peer departure.

Figure 10: Peer F and its children are reorganized in a tree

source-rooted scenario.

VI. Implementation and Testbed

It has been developed a simple prototype

application based on JXTA. This application

offers the following functionalities: 1:1 chat, 1:N

chat, file sharing, videoconference and live video

streaming. However, it will focus on live video

streaming.

The application uses JXTA for

discovery and publication tasks. Blocking UDP

unicast sockets have been used in order to

receive and forward the high bitrate media

streams.

TABLE 2: DELIVERED MEDIA

High
Definition
(HD)

Standard
Definition
(SD)

Digital
Video (DV)

Video Codec MPEG 2 MPEG 2 MPEG 2

Resolution 1280 x 720 720 x 576 1024 x 576

Duration 52 min 19 min Live

Stream bitrate 18 Mbps 8 Mbps 3.5 Mbps

Paper Submitted to EURO-NGI 75

Stream
encapsulation

MPEG_TS MPEG_TS MPEG_TS

Table 2 shows the characteristics of the media

streams delivered when testing the prototype.

In all the tests, a source peer publishes a

P2PTV channel into the application group and

acts as rendezvous. This peer loads High

Definition (HD), Standard Definition (SD) video

files encoded with the features shown in Table 2.

It can also load the media stream provided by a

DV Camera for live streaming. Then, the source

waits for some requesting peers in order to start

the forwarding process. The deployed scenario

can be seen in Figure 11.

Figure 11. Development scenario

Every peer that acts as source configures the

transmission network interface to receive the

desired stream from a streaming server such as

VideoLan (VLC) [12]. The connected peers

receive the media stream from the most suitable

peer. In this testbed it is just a peer with enough

connections available, and then can start

forwarding media to other connected peers.

When a peer receives a media stream, it is

temporally accommodated into a 10 MiB buffer.

The buffer has been built using the Priority

Buffer implementation of Apache Commons

Collection [13]. The main criterion for choosing

one type of buffer is the process of the data that

is going to be done. The received media stream

is sent to the local player provided with the

prototype application and to the children of the

peer. This player is implemented using the jVlc

Project [14], which enables to embed a

VideoLan Player into the GUI developed with

the Java Swing Framework.

The prototype development has been done

following some well-known design patterns; the

main one is Model-View-Controller (MVC),

which allows separating the data plane (model)

and the user interface (GUI) by introducing an

intermediate component known as controller.
The benefits of applying this pattern is that the

application can easily grow when it is required a

modification or addition in its components.

VII. Future Work

The P2P network proposed in this paper is

unstructured, so it is under consideration to

develop a structured organization of peers in

order to offer a better and more reliable service.

This is the reason why an overlay network of

Rendezvous/Relay super peers [16] can be built

on top of the architecture. This new layer can

maintain the existence of the application logical

network and provide a powerful discovery

mechanism based on Distributed Hash

Algorithms (DHT). The use of these techniques

makes possible to improve the performance of

the searching mechanisms by reducing the delay

of a discovery query in a time proportional to the

logarithm of the number of nodes, Olog(n).

Moreover, the overhead weight can be reduced,

and the availability of a found resource can be

guaranteed. However, it supposes higher storage

and update costs.

Moreover, it will be considered to separate

the streaming tasks (Streaming Module) into a

different computer by using a Service-Oriented

Architecture (SOA) based scenario. This will

enable to separate the heavy buffering and

stream processing tasks into a powerful

computer which will offer these services in order

to construct peers with low requirements. Then,

the streaming module will interactuate with the

rest of the peer entity by using suitable SOA

interfaces, such as Web Services.

VIII. Conclusions

In this paper, it was pointed out some topics

of P2P media streaming and it was proposed

CIMS-Live as the platform that offers solutions

to them, specially focused on improving the

collaboration among peers and enabling an

interactive experience. This platform is a novel

hybrid solution based on JXTA, DONET and

ALM which allows delivering any kind of media

stream. Besides, it provides a flexible and

extensible platform according to new

requirements and future value-added services.

It was implemented a Java based prototype and

its functionalities were checked on a testbed.

REFERENCES

[1] D. Meddour, M. Mushtaq and T. Ahmed,
“Open Issues in P2P Multimedia Streaming”,
MULTICOMM’06, June 2006, Turkey.

[2] C. Yeh and L. S. Pui, “On the Frame
Forwarding in Peer-to-Peer Multimedia
streaming”, P2PMMS’05, November 2005,
Singapore.

76 Development of advanced multimedia services in P2P architectures

[3] PPLive software, Website:
http://www.pplive.com/en/index.html

[4] SopCast software, Website:
http://www.sopcast.org/

[5] Sun Microsystems, “JXTA v2.3.x Java
Programmer’s Guide”, April 2005.
http://www.jxta.org/docs/JxtaProgGuide_v2.
3.pdf

[6] X. Zhang, J. Liuy, B. Liz, and T. P. Yum,
“CoolStreaming/DONet: A Data-Driven
Overlay Network for Efficient Live Media
Streaming”. In Proc. IEEE INFOCOM, March
2005.

[7] T. Su-Wei and G. Waters, “Building Low
Delay Application Layer Multicast Trees”. In
Proc. EPSRC, Liverpool, June 2003.

[8] D. A. Tran, K. A. Hua and T. Do, “ZIGZAG:
An Efficient Peer-to-Peer Scheme for Media
Streaming”, In Proc. IEEE INFOCOM 2003.

[9] T. Tsuchiya, H. Yoshinaga, K. Koyanagi, A.
Honda and A. Minami, “STARCast:
Streaming Collaboration Platform using the
Overlay Technology”, In Proc. SAINTW’06,
IEEE Computer Society, January 2006.

[10] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng,
“AnySee: Peer-to-Peer Live Streaming”, In
Proc. IEEE INFOCOM, April 2006.

[11] B. Eckel, “Java Thinking in Patterns”, May
2003.
http://www.mindview.net/Seminars/ThinkingI
nPatterns.

[12] VideoLan Home Site, WebSite:
http://www.videolan.org/

[13] Apache Commons Collections of Buffers,
Website:
http://jakarta.apache.org/commons/collection
s/apidocs/org/apache/commons/collections/
buffer/package-summary.html

[14] jVlc Project, Website:
https://trac.videolan.org/jvlc

[15] Java Swing Framework. Website:
http://www.newt.com/java/swing.html

[16] B. Traversat, A. Arora, M. Abdelaziz, M.
Duigou, C. Haywood, J-C. Hugly, E. Pouyoul
and B. Yeager, “Project JXTA 2.0 Super-
Peer Virtual Network”, May 2003.
http://www.jxta.org/project/www/docs/JXTA2
.0protocols1.pdf.

[17] N. Magharei and R. Rejaie, “Understanding
Meshbased Peer-to-Peer Streaming”, in
Proc. International Workshop on Network
and Operating Systems Support for Digital
Audio and Video, Newport, Rhode Island,
May 2006.

Gantt Diagram 77

ANNEX D. GANTT DIAGRAM

Fig. D.1 Gantt Diagram

78 Development of advanced multimedia services in P2P architectures

ANNEX E. CIMS-Live QUICK GUIDE

This quick guide is a little assistance for CIMS-Live installation and use.

E.1. Installation

There are two ways of installing CIMS-Live.

1. From the provided ANT file.
2. Installing the application using the provided Installer (Windows only).

E.1.1. ANT File

It is provided a build.xml ANT file which allows the following tasks.

• init: creates the binaries output folder

• clean: deletes the content of the binaries output folder

• build: compiles the CIMS-Live source code

• delete: deletes the JXTA cache folder

• StartUP: runs CIMS-Live. This task also makes delete and build

In order to install and run CIMS-Live just type the following command in CIMS-
Live home folder that contains the build.xml file (Fig. E.1).

ant StartUP

Fig. E.1 Actions with users

E.1.2. Windows Installer

It is provided a Windows installer [37] called Cimslive.msi (Fig. E.2). It consists
of an executable file that creates a directory tree in “\Archivos de
programa\ArGoN\CIMS-Live”.

CIMS-Live Quick Guide 79

Fig. E.2 Installer icon

In order to install CIMS-Live, just make double-click on the installer icon and an
Installation Wizard will appear in order to guide the setup process (Fig. E.3).
Follow the steps indicated by the wizard to complete the installation.

Fig. E.3 Installation Wizard

The installer creates a shortcut in the Start menu (Fig. E.4) and another one in
the Desktop.

Fig. E.4 Start menu shortcut

This installer also edits the registry of Windows. If the user wants to remove
CIMS-Live from the system (uninstall), it must be done through Control Panel.
CIMS-Live can be also removed from the installer (Fig. E.5).

80 Development of advanced multimedia services in P2P architectures

Fig. E.5 Remove

E.2. Requirements

For the correct operation of the application it is necessary to install the following
software:

• Java JDK 5.0

• Apache ANT 1.6 or upper

• VLC (VideoLAN Client)

• JMF (Java Media Framework)

It is also necessary to own a WebCam, correctly configured according to JM
Studio in order to enable the videoconference functionality.

• Supported Operating Systems: Windows and Linux.

E.3. Use guide

E.3.1. Start-up

In order to run the application it can be used the shortcut created in the start
menu. Otherwise, in the root of the directory it is also included a “build.xml” file
for its use with ANT. Thus it is possible to run the application in any platform.

When the application starts running, it shows a window of authentication (Fig.
E.6). In order to access to the application it is required to introduce the login and
password of the current user. Next it is listed the default access data.

• login: Alberto

• Password: Gonzalez

Fig. E.6 Authentication window

CIMS-Live Quick Guide 81

Note that both fields are case sensitive, be careful with capital letters.

E.3.2. Stop the application

To correctly stop the application it is necessary to use the menu: “Application”
� “Exit” (Fig. E.7).

When stopping the application this way, the statistics generated by the
application at run time can be saved in “\Archivos de programa\ArGoN\CIMS-
Live\var\monitor”. This is a CSV file that can be opened with an editor of
spreadsheets (like MS Excel).

Fig. E.7 Exit

E.3.3. User registration

To start the CIMS-Live application it is necessary to be authenticated.

In the current prototype this authentication is made local. In the root of the
directory tree, it can be found a file called “users.xml”. This file stores the name
and password of the user.

To add a new user it has to be added a new entry in the xml file with the
following format.

<user>

<login>[UserName]</login>

<pass>[Password]/pass>
</user>

