

PROJECTE DE FI DE CARRERA

TÍTOL: Development of an advanced web application for managing
videoconference

AUTOR: Xavier Calvo Brugal

DIRECTOR: Antoni Oller Arcas

DATA: 9 de febrer de 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41796252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Título: Development of an advanced web application for managing
videoconference

Autor: Xavier Calvo Brugal

Director: Antoni Oller Arcas

Fecha: 9 de febrero de 2007

Resumen
Existen numerosas aplicaciones que ofrecen al usuario la posibilidad de
realizar videoconferencias en alta definición sobre Internet. Estas aplicaciones
centran sus esfuerzos en la transmisión de contenido de alta calidad sobre
Internet, pero dejan sin resolver la gestión del establecimiento, finalización de
llamadas, aceptación, rechazo de invitaciones, suscripción y recepción de
notificaciones del servicio de presencia (aparición de usuarios, cambios de
estado, etc).

El objetivo del proyecto es realizar un cliente para videoconferencias de alta
definición basado en Web. Se ha utilizado SIP como protocolo de señalización
(establecimiento, finalización) de videoconferencias, para la gestión la lista de
los contactos, la presencia, y la negociación de las capacidades multimedia

La aplicación desarrollada permite que, un usuario a partir de una web, sea
capaz de ver todos los usuarios conectados al servicio, conocer sus
características y poder establecer videoconferencias de alta calidad, utilizando
el entorno de videoconferencia negociado (por ejemplo dvts, ultragrid).

La aplicación actúa como un gateway HTTP-SIP, traduciendo las peticiones
SIP a peticiones HTTP y viceversa. Las peticiones HTTP son enviadas hacia
el cliente para que la trate y realice los cambios necesarios en la interfaz web y
en su modelo de datos. La interfaz de web del usuario se ha desarrollado con
Google Web Toolkit, un toolkit de Google para el desarrollo de aplicaciones
AJAX en lenguaje de programación Java.

El servidor se comunica con tres módulos. Con el mundo SIP para la
señalización de videoconferencia, con el agente de presencia para gestionar la
lista y con el cliente AJAX para comunicarse con los usuarios de la aplicación.

El proyecto explica las fases de definición de requerimientos, diseño y
arquitectura de la aplicación. Expone el estado del arte de las tecnologías y
comenta algunos detalles de la implementación, finalizando con una
planificación temporal y unos resultados finales del proyecto.

Title: Development of an advanced web application for managing
videoconference

Author: Xavier Calvo Brugal

Director: Antoni Oller Arcas

Date: February, 9th 2007

Overview
Several applications offer high-definition videoconference over Internet. These
applications are designed for a better performance transmitting high bit rate
multimedia data, leaving in a secondary plane other important aspects as the
manage of establishment, finalization of the sessions, acceptation or rejection
of the invitation, subscription and notification of presence service (new users
connected, change of status, …)

The aim of the project is to realize a client for high-definition videoconference
based on Web. We use SIP as videoconferences signalling protocol (establish,
finalize), for managing the contact list, presence and multimedia capabilities
negotiation.

Developed application allows that, a user from a web can see all connected
users to the service, can consult their characteristics and can be able to
establish videoconferences, using videoconference environment negotiated (as
example DVTS or Ultragrid).

The application acts as a HTTP-SIP gateway, translating SIP requests to HTTP
requests and vice versa. HTTP requests are sent to client in order that client
handles it changing view or modifying data model. The user interface has been
developed with Google Web Toolkit, a toolkit of Google for developing AJAX
applications in Java language.

Server-code must communicate with three modules. Communication with SIP
world for videoconference signalling, communication with the presence agent
to manage the contact list information and communication with AJAX client for
notifications to application users.

This report explains the phases of definition of requirements, design and
architecture. In addition, it is explained state-of-art of the technologies and
some implementation details. Finally expose planning and final results of the
project.

INDEX

CHAPTER 1. INTRODUCTION..1

1.1. Objectives...2

CHAPTER 2. SPECIFICATIONS ...3

2.1. Features ..3

2.2. Formal specifications ..4
2.2.1 Profile Edition..4
2.2.2 Videoconference ...5
2.2.3 Contact List ...6

CHAPTER 3. ARCHITECTURE ...7

3.1. Application architecture..8

3.2. Overview of scenario...9

CHAPTER 4. SYSTEM DESIGN..11

4.1. Data Model ..11

4.2. Communication Model ..12
4.2.1 AJAX Interface ..13

4.2.1.1. User to server communication ...13
4.2.1.2. Server to user communication ...13

4.2.2 SIP Interface ...14
4.2.3 Presence Interface..14

4.3. Persistent connection ...16

4.4. Application flow ...18

CHAPTER 5. IMPLEMENTATION AND TESTING..21

5.1. Scenario ..21

5.2. Technologies and tools...22
5.2.1 AJAX ...23

5.2.1.1. Ajax definition...23
5.2.1.2. Ajax toolkit research...23
5.2.1.3. Google Web Toolkit ...24
5.2.1.4. Google Web Toolkit architecture ...24

5.2.2 SIP ..25
5.2.3 DVTS...26
5.2.4 UltraGrid..27
5.2.5 Starting Videoconference program ...27

5.3. Project structure ..28

5.4. Communication interface..28
5.4.1 Asynchronous Method Call ...30
5.4.2 Serialization types...30
5.4.3 Limitations on client-side...31
5.4.4 User interface toolkit ...31

CHAPTER 6. PLANNING AND COST ESTIMATION......................................33

6.1. Planning ..33

6.2. Cost Estimation..35

CHAPTER 7. CONCLUSIONS...37

7.1. Achieved objectives ..37

7.2. Improvements and future work ..37

7.3. Environment impact ..38

7.4. Personal conclusions..38

CHAPTER 8. REFERENCES...39

CHAPTER 9. ACRONYMS ..41

ANNEX A. SCREENSHOTS ... I

ANNEX B. USER GUIDE ...V

INDEX OF FIGURES

Fig. 2.1 Use diagram ..4
Fig. 3.1 Global system architecture ..7
Fig. 3.2 Client architecture..8
Fig. 3.3 Layers and actors ..9
Fig. 4.1 Data model ..11
Fig. 4.2 AJAX Design..12
Fig. 4.3 Presence Interface Behaviour..16
Fig. 4.4 Persistent connection dialogs ..17
Fig. 4.5 Persistent connection activity...18
Fig. 4.6 Application flow diagram..19
Fig. 5.1 Scenario ..22
Fig. 5.2 GWT architecture...25
Fig. 5.3 Communication interface ...29

INDEX OF TABLES

Table 4.1 Subscribe XML ..15
Table 4.2 Notify XML ...15
Table 4.3 Client-Server role...16
Table 5.1 Synchronous Service Interface ..29
Table 5.2 Asynchronous Service Interface ..29
Table 5.3 Service Implementation ...29
Table 5.4 Asynchronous method call...30
Table 6.1 Task dedication..34
Table 6.2 Cost estimation of the project ...36

INTRODUCTION 1

CHAPTER 1. INTRODUCTION

In the last years, the videoconferencing systems have been an important area
of telecommunications research, resulting in a large number of products that
can be used to transmit and receive video in real time over IP networks. These
systems vary mainly in terms of quality and in the amount of bandwidth used to
transmit video over networks. In this sense, the telecom vendors and
manufacturers have focused on developing low to medium bandwidth
conferencing systems typically based on the H.320 and H.323 standards. In
addition to these commercial products and systems, the academic research and
university community have also looked for higher quality and higher bandwidth
video systems that operate over high speed research and educational networks.
Two important examples of this type of video system of high quality are the
following ones: Digital Video Transport System (DVTS) [1] and Ultragrid [2].

However, most of the existing systems, as DVTS and UltraGrid, are focused on
how to transport high bit rate multimedia data, leaving in a secondary plane the
control of them.

Powerful videoconference systems may turn out unconformable when they do
not have signalling mechanisms, for example to establish a communication with
your partner. Without signalling, your partner does not notice that are receiving
an incoming call. You must phone him notifying your intention to establish a
communication, requesting to prepare his videoconference system, and later
that he should have to pick up the phone, camera, microphone… Obviously,
this situation may be avoided with signalling mechanism.

SIP (Session Initiation Protocol) [6] is one of most popular protocols in Internet
community for creating, modifying, and terminating telephone calls, multimedia
distribution, and multimedia conferences. It is used in Commercial IP Telephony
for example.

This thesis is inside of “Machine” Project. Machine is a research project of i2Cat
Foundation [7] that corresponds to the second phase of “Projecte Integrat”,
which also carried out by the same organization last year. Work points PT2 and
PT3 describe the task to develop a SIP client to control videoconferences of
low, medium and high quality and streaming. Another objective is to get an easy
graphic user interface, which compose the maximum services.

In this sense, a first release of the SIP client has been developed and tested
successfully with DVTS and Ultragrid. This first SIP client received orders by
command line. It could establish a DVTS or Ultragrid session between two user
agents, using a SIP Server.

Now a beta graphic SIP client, based in Java Swing, shows a fixed list of users
(loaded from a XML). Its features are establish/finish sessions, incoming call
notification and accept/refuse this call.

2 Development of an advanced web application for managing videoconference

Along time of developing of this project, graphic SIP client has been improved
with some feature, as example, presence service or DVTS software integration.

1.1. Objectives

The main objective of this project is to add a signalling layer to high definition
videoconference systems and make a simple interface to manage signalling.
For this propose, we must develop a graphic user interface for the SIP client.
This interface must collect different services and as possible without new
software to install in client machine. As example of integrate environment may
be Gmail application of Google enterprise. Gmail offers by itself, without
external programs only a web browser, e-mail, search engine and instant
messenger with presence service, user information and some more features.

Web applications are the most comfortable, easiest and ubiquitous, according
opinion polls. Therefore one of the main characteristic of this design will be that
can be accessed via web. Consequently, we need to research available
technologies to approach that.

We are innovating adding signalization to high-definition conference system,
hiding complexity to user, making all process transparent. One aim of this
project is to integrate a SIP Client with our interface to a multimedia platform.
Moreover, this project can become an example of HTTP-SIP convergence, an
unexperimented field.

This project has been structured as following way. First chapter introduces the
project inside a research framework. Second chapter defines features of the
application to develop. Next two sections study system architecture and how
our project has been adapted and modelled. Fifth chapter describes all used
technologies and several details about our implementation. Sixth section
estimates overall cost of project and details how has been planed. Finally we
close balance about achieved objectives, propose future works on same
direction and relate our experience.

SPECIFICATIONS 3

CHAPTER 2. SPECIFICATIONS

Our aim is design an application capable to manage a SIP Client, accessible via
web, and with multimedia support. On this chapter have been described
principal features required for expected use.

2.1. Features

Web access

Application should be able to be accessed via web with a common web
browser. Web access ensures that may access to application from
anywhere.

Authentication

For joining to application, user must have a registered account. At the
beginning of every session, application asks for his account

Edit your profile

User can edit his public information. It is possible to modify state,
multimedia capabilities and some other information. First release only
considers two multimedia profiles, DVTS for medium quality and Ultragrid
for high quality. However, system has to be able to support new
multimedia formats in future. These systems must be added as pluggable
services and their characteristics will have to be configured.

Contact list

Application must keep updated connected user list. Thought this list we
access to user panel, which shows contact description and is possible to
interact with them. When others contacts connect or change its states,
changes will be reflected on list. Behind contact list works a presence
service, which shares contacts information.

Videoconference management

Application must be able to initiate videoconferencing with one of his
contacts, receive invitation to participate in one, accept or reject this
invitation and finalize active videoconference. Moreover may be able to
select the videoconference’s mode. That all for every multimedia system
supported by application.

Minimal installation required

Ideally, user does not need install external software to enjoy this product.
Obviously, minimal requirements may force us to demand some software
installed like a web browser.

Compatibility

System designed must to be compatibility with existing applications
(Swing client), and must integrated with rest of services.

4 Development of an advanced web application for managing videoconference

Platform Independence
Business logic may be portable to other platform without modify code
application. Only condition is that new platform must dispose a Java
Virtual Machine. Client code also must be executed over different web
browser and different platform.

2.2. Formal specifications

Fig. 2.1 shows the main functionalities that offers our web interface.

Fig. 2.1 Use diagram

Following tables describe every use case with a short descriptions, it normal
flow and what conditions may accomplish to be executed.

2.2.1 Profile Edition

Name Change capabilities

Description Modify our multimedia capabilities notifying rest of contact the news
abilities

Actors User

Preconditions User has been logged successfully and subscribed to presence
agent.

Normal flow 1. User opens configuration panel.
2. User marks his available capabilities.
3. Click on Confirm button.

Alternative flow Automatic detection (not proposed)

Input News capabilities

Output Notification to presence service.

SPECIFICATIONS 5

Name Change our status

Description User modify his current status and notifies rest of contact.

Actors User

Preconditions User has been logged successfully and subscribed to presence
agent.

Normal flow 1. User opens configuration panel.
2. Change to desired state.
3. Click on Confirm button.

Input New status

Output Notification to presence service.

Name See multimedia capabilities

Description Thought the contact panel may be possible to see all multimedia
capabilities of contact selected

Actors User

Preconditions User has been logged successfully and subscribed to presence
agent.

Normal flow 1. User opens contact panel.

Output Visual information about capabilities.

2.2.2 Videoconference

Name Invite to a conference

Description Invite a contact to establish a videoconference

Actors User

Preconditions User has been logged successfully.
Callee must be connected
User and callee may have compatibles multimedia modes

Normal flow 1. User opens contact panel.
2. Select videoconference mode.
3. Click on Invite button.

Post conditions If other extreme accept invitation, videoconference start
automatically.

Input Videoconference mode

Output Invite to selected user.

Name Hang up a conference

Description Hang up an establish videoconference

Actors User

Preconditions Must exist an active videoconference

Normal flow 1. User opens videoconference panel.
2. Click on Hang up button.

Alternative flow Videoconference may be closed by other extreme

Output It closes all the related software (dvts xdvshow, ultragrid)

6 Development of an advanced web application for managing videoconference

Name Accept or refuse an incoming call

Description When you receive a videoconference invitation, you can accept it or
discard it. If invitation is accepted videoconference start.

Actors User

Preconditions User had to have received an invitation.

Normal flow 1. Appear a popup menu with incoming call description
2. Click on Accept or Refuse button.

Post conditions When a videoconference is active, you do not be able to initiate
another conference.

Input Invite message from caller.

Output Response to caller and if is necessary runs all necessary software
for videoconference

2.2.3 Contact List

Name See contact status

Description Thought the list may be possible to see status of other users.
(online, offline, …)

Actors User

Preconditions User has been logged successfully and subscribed to presence
agent.

Normal flow 1. Contact list must have a visual icon which represents current
status of this contact

Alternative flow This information is represented too in contact panel,.

Output Visual information about all contact list.

ARCHITECTURE 7

CHAPTER 3. ARCHITECTURE

The simplest scenario of our system (Fig. 3.1) is formed by two clients on PCs,
a SIP Server (SER) [8] and a Presence Agent. Black arrows (I, II, III,…)
describe dialog between a client and SIP Server. Blue arrows (1,2,3,…)
represent dialog between a client and presence agent.

Fig. 3.1 Global system architecture

In system architecture, we can distinguish two planes, signalling plane and
media plane. Media plane is composed of different available videoconference
mechanisms. In our project, this plane is less important than signalling plane
because our contribution is developing a signalling mechanism for
videoconference environment.

We use SIP for signalling proposes, and SIP Client is in charge to send and
receive SIP message, for these reason SIP Client is the main piece of signalling
plane. For controlling it, we have two graphic user interfaces, one based on
Java Swing and other based on AJAX technology [3].

A characteristic of this scenario is that follows philosophy of SIP-based
Continuous Media Integration (SIP-CMI) [4]. SIP-CMI platform is an open,
flexible, scalable testbed to support a wide and extensible set of next-
generation continuous media services. This platform follows the principle that
any continuous media service can be accessed by using the SIP protocol,

8 Development of an advanced web application for managing videoconference

regardless of the nature of the service; for example videoconference or
streaming.

On the other hand, there is a presence service. Its function consists on
informing to all clients about status of contact list. It is a simplified SIP client with
two tasks. Receiving subscribe message when a new user connects to the
system or changes his user parameters. Every subscribe message, therefore a
modification on contact list, presence agent sends a notify message with new
contact list.

In this project, we concentrate our efforts towards developing a client with
interface via Web and integrate to application all signalling plane, formed by SIP
Client, presence service and videoconference modules.

3.1. Application architecture

All web services follow client-server architecture (Fig. 3.2.) Client side is the
user machine. It only has a web browser, which shows HTML pages and
interprets Javascript code. This Javascript code is the AJAX Client, which
communicates with application server.

Server side may be an external machine, independent of the client. Here is
where we place an application server, as example Tomcat, which runs our
application code. In this case, application code can be simplified as a servlet,
which translates HTTP to SIP and vice versa. SIP messages are delivered to
SIP Client.

Fig. 3.2 Client architecture

Multimedia plane corresponds to all software and connections for transmitting,
receiving and showing videoconferences streams.

ARCHITECTURE 9

SIP client of the signalling plane must open videoconference program of the
multimedia plane. To open external programs from a browser is critical issue
due to security restrictions. As a first approach, client and server will be in the
same machine, and application server will open videoconference software. For
this reason, in Fig. 3.2 multimedia technologies are in server-side. Possible
solutions for this issue commented in section 5.2.5

Current software philosophy follows the paradigm of a unique and complex font
and the more doom clients as are possible. Therefore, interest that client
architecture become simplest as be possible, and complexity place on source.
But in HD software requires powerful machine, opposite to ideal scenario. For
this reason, we try to separate multimedia plane from signalling plane,
proposing to do “black box” optimized for videoconference purposes.

3.2. Overview of scenario

On previous sections have been motioned signalling plane, multimedia plane
and several actors as users, presence agent or SER [8]. In Fig. 3.3 we observe
all actor and his paper on every plane. Presence Agent and SIP Proxy (SER)
only work in signalling plane, they do not transmit any multimedia stream,
therefore they do not any module in multimedia plane. Otherwise, clients have
to interact in all planes.
User plane is the physic representation of every piece.

Fig. 3.3 Layers and actors

SYSTEM DESIGN 11

CHAPTER 4. SYSTEM DESIGN

There are several interesting pieces to comment their designs. In this chapter
we explain deeply communication model between sever and client, especially
from server to client.

4.1. Data Model

One task of this application is keep updated the contact list. This list is formed
by groups. In every group, we can find several users and each user may
support different multimedia types as DVTS or Ultragrid.

Fig. 4.1 Data model

Contact list is a collection of users. This data structure is the most important
information shared between client and server. User is the minimal structure with
relevant importance in our application. A user is defined by following attributes:

User-ID
 Unique identifier for each user.
Nick
 Name of user. Usually matches with userID
State
 Information about state. A user can be online, offline, busy…
Multimedia capabilities

User publishes which are his multimedia capabilities. This description
depend of every multimedia mechanism and which parameters can be
configured, by example number of frames per second, or codec
supported.

12 Development of an advanced web application for managing videoconference

4.2. Communication Model

Client and server machines must keep an active connection for exchange
messages. AJAX interface make all transaction between client and server. It
prepares information for be sent across network and in other side, it receive and
deliver information to upper module.

Fig. 4.2 AJAX Design

Client machine follows Model-View-Controller pattern [9]. In our application is
important to separate data and view, and it is done introducing an intermediate
component, the Controller.

Data model is the representation of the information on which the application
operates.
View offers to user an abstraction of data container, representing it into visual
forms, which allow interaction from user. View accepts inputs, allowing the user
to interact with the application, and output, allowing the system to notify the
effects of the users' manipulation or external events.
Controller processes and responds to events, typically user actions or AJAX
events, and may invoke changes on the model, changing sometimes current
view, but every event does not imply a change on model or view.

On server side, is a similar case that client, but without view. There is a
controller module, which changes information model. In this case, controller
interacts with several pieces. AJAX interface has the same function than on
client side. Now appears two news interfaces, SIP interface and presence
interface. Our application acts as HTTP-SIP gateway, SIP interface is our
gateway towards SIP world. In other hand, we have got a presence service,

SYSTEM DESIGN 13

also in SIP but managed in different manner, for this reason we need presence
interface.

4.2.1 AJAX Interface

AJAX interface have two working types, communication from user to server and
form server to user.

4.2.1.1. User to server communication

This type of communication happens usually when user interacts with web
interface. User can do two actions that are following described.

User profile modification

When user changes his profile, user must notify new user state, sending
changes to server. In addition, web client can request information about a
contact, or other type of information about contact list. We must to define
the interface for attending this kind of request and reply it.

Videoconference manage
All message related to videoconference managing, as accept/refuse an
incoming call or close a conference.

4.2.1.2. Server to user communication

These kinds of communications are more difficult to predict. They are generated
by SIP events or presence events. An extra difficulty is that server cannot send
asynchronous message to client; previously server needs a request message
from client. Next list shows the reasons because server may send message to
client.

SIP events

All incoming message to client about videoconference managing.

Presence events
Presence agent sends events every time list changes. This message has
to be delivered to client.

Client response
Reply to request message. This case is easier, because we have now a
request message.

14 Development of an advanced web application for managing videoconference

4.2.2 SIP Interface

SIP Client is a legacy piece of project therefore, we do not explain on detail
every feature of it. Moreover, SIP Interface is a fixed interface, which we do not
modify anything, even though some new features have been added, for
example, negotiation sessions into invite’s messages. This new features has
been designed in collaboration with other members.

Basic dialogs on SIP are establish dialog and disconnect dialog

SIP interface allows send and receive basic message to initiate/close sessions,
accept/refuse invitation.

We have to implement SIP interface. Our objective is to achieve a behaviour
similar than Fig. 4.2, where SIP interface acts as a SIP Gateway.

Fig. 4.2 SIP Interface behaviour

4.2.3 Presence Interface

Presence interface is our connector with presence service. This service keeps
contacts status and publishes complete list to all clients. Presence interface
must be able to subscribe to presence service and receive notify message.

Fig. 4.1 Establish dialog (a) and disconnect dialog (b)

(a) (b)

SYSTEM DESIGN 15

SUBSCRIBE<XML user descr>

OK

NOTIFY
<XML list>NOTIFY

<XML list>

OK

NOTIFY

<XML list> SUBSCR
IBE

<XML user de
scr>

User 1 User 2
Presence

Agent

Fig. 4.3 Presence Dialog

A user subscribes to agent presence every time it connects to the application or
modifies his characteristics.
On subscribe message is attached an XML like Table 4.1. XML message
contains all information about user. User id, multimedia capabilities,…

Table 4.1 Subscribe XML

<user>
 <id>user1</id>
 <dvts tx=“true" rx=“true“ ip="192.168.48.164"/>
 <ug tx=“false" rx="false“ ip="192.168.48.164"/>
</user>

Our application will receive notify messages every time contact list change,
every subscribe sent by any contact. Notify message attaches an XML like
Table 4.2 that represent complete list.

Table 4.2 Notify XML

<contacts>
 <group>
 <name>connected group</name>
 <users>
 <user>
 <id>user1</id>
 <dvts tx=“true" rx=“true“
 ip="192.168.48.164"/>
 <ug tx=“false" rx="false“
 ip="192.168.48.164"/>
 </user>

16 Development of an advanced web application for managing videoconference

 <user>
 …
 </user>
 </users>
 </group>
</contacts>

We have to implement Presence interface to achieve a behaviour similar than
Fig. 4.3. In this case, we have to manage XML code and parse to Java class.

Fig. 4.3 Presence Interface Behaviour

Design of Presence service, presence communication system, and XML format
has been done in collaboration with other members.

4.3. Persistent connection

All services based on HTTP follows Client-Server architecture. This architecture
defines client as active part who initiate connection sending request and waiting
for server reply. (Table 4.3)

Table 4.3 Client-Server role

Server Client
Passive (slave) Active (master)
Waits for requests Sends requests
Upon receipt of requests,
processes them and then
serves replies

Waits for and receives
server replies

AJAX improves client functions sending asynchronous request and getting
better network performance, but server still is a passive actor.

We need an active server, which should be able to notify to client with event
message. Ideally, we want have a persistent channel where transmit all
communications. This demand differs from client-user architecture, where
server cannot initiate any connection.

SYSTEM DESIGN 17

For achieving that client would receive notifications from server there are two
possible scenarios

1. Polling. Client polls server every X seconds about changes.
2. Push emulation. Server cannot send anything without previous request

from client. We can hold up client’s request a short time until we have
anything to reply.

First possibility is easier to implement than second but its efficiency is lower.
Therefore, we choose second one. Push concept is based on sending when it
has anything to serve, asynchronous and without waiting time. Fig. 4.4 show
how emulate “push behaviour”.

Fig. 4.4 Persistent connection dialogs

This solution has two weak points:

1. Persistent connection can break if client message is lost.
2. Compromise between connection timeout and amount time to hold up

request.

Fig. 4.5 represents logic algorithm of persistent connection. In this diagram, we
emphasize two points. First, there is a container for events, this box is going to
fill by different reasons, and this mechanism empties sending every event in
order. Second detail is limit time control. If this timeout expires connexion is
returned without response.

18 Development of an advanced web application for managing videoconference

Fig. 4.5 Persistent connection activity

4.4. Application flow

Fig. 4.6 (next page) shows main interactions between client-side and server-
side. Moreover, in diagram we can observe that server-side acts mainly as SIP
gateway, translating SIP messages to applications messages and vice versa
but sometimes it has to take some decisions.

However, client-side is not a dummy-client, on the contrary it have great amount
of logical code.

Diagram shows:

- User joins to application and authenticates
- His contact list is updated
- Call to a contact
- Receive an incoming call
- Start/Finish a videoconference

SYSTEM DESIGN 19

Fig. 4.6 Application flow diagram

IMPLEMENTATION 21

CHAPTER 5. IMPLEMENTATION AND TESTING

This chapter describes our develop scenario, technologies and tool used, some
details about implementation phase, and finally testing and integration
sequence.

5.1. Scenario

Our scenario is formed by two clients PC, one proxy/register server and another
machine, which runs Presence Agent. (Fig. 5.1)

Two clients PC characteristics are

- AMD Athlon™ 64 3800+
- 1 GB RAM memory DDRII 400Mhz
- Video card NVIDIA® GeForce™ 7300LE Turbocache
- Motherboard Chipset Nvidia GeForce 6150LE
- Hard disk IDE 250 GB
- Ubuntu Linux 6.06 LTS

SIP Sever and Presence Agent machine characteristics are:

- Intel Celeron 2400
- 500 MB RAM memory DDRII
- Hard disk IDE 40 GB
- Windows XP Professional SP2 or Ubuntu Linux 6.06 LTS

All of them are connected to an 8-ports Gigabit switch of LongShine
manufacturer [10].

Client PC may be equipped with DV camera. We use two cameras, one for
each client, connected by Firewire port.

Cameras used are:

- Canon MiniDV Optura10. NTSC Camera.
- Panasonic PAL DV Camera.

22 Development of an advanced web application for managing videoconference

Fig. 5.1 Scenario

5.2. Technologies and tools

This section enumerates and describes the different technologies and tools
used by this project.

JDK 5.0: Java Virtual Machine and Development Kit used. It is used the
different libraries that it provides in order to develop the Java-based application
[11] .

Eclipse SDK 3.1: Open development and compilation platform for Java
comprised of extensible frameworks, tools and runtimes for building, deploying
and managing software across the lifecycle. A large and vibrant ecosystem of
major technology vendors, innovative start-ups, universities, research
institutions and individuals extend, complement and support the Eclipse
platform. Its basic features can be extended through plug-ins. The whole
application has been developed using this development platform [12]

Log4j: Java-based logging utility. The main criterion for introducing a logging
system to the application is that it helps with debugging tasks. Furthermore, it is
especially useful for distributed application such as the one proposed in this
project.

With log4j it is possible to enable logging at runtime without modifying the
application binary. The log4j package is designed so that these statements can
remain in shipped code without incurring a heavy performance cost. Logging
behaviour can be controlled by editing a configuration file, without touching the
application binary. [13]

IMPLEMENTATION 23

SAX (Simple API for XML): Serial access parser API for XML. SAX provides a
mechanism for reading data from an XML document. It is a popular alternative
to the Document Object Model (DOM). [14]

Apache Ant 1.6: Java-based build tool. It is like a Makefile when talking about a
C environment. It allows a lot of tasks such as compile, execute, copy files,
create directories, create JAR/WAR files, run unitary tests, and so on. It uses
XML syntax and it is platform independent. [15]

CVS (Concurrent Version System): Implements a version control system: it
keeps track of all work and all changes in a set of files, typically the
implementation of a software project, and allows several (potentially widely
separated) developers to collaborate. CVS has become popular in the free
software and open-source worlds.

5.2.1 AJAX

5.2.1.1. Ajax definition

Ajax, shorthand for Asynchronous JavaScript and XML, is a web development
technique for creating interactive web applications. The intent is to make web
pages feel more responsive by exchanging small amounts of data with the
server behind the scenes, so that the entire web page does not have to be
reloaded each time the user requests a change. This is meant to increase the
web page's interactivity, speed, and usability.

The Ajax technique uses a combination of:

- XHTML (or HTML) and CSS, for marking up and styling information.
- JavaScript to dynamically display and interact with the information

presented.
- XML is used as the format for transferring data between the server and

client, although any format will work.

5.2.1.2. Ajax toolkit research

Some AJAX frameworks are appearing in market. At beginning of this project,
we research and evaluate Dojo [16], Mochikit [17], Google Web Toolkit (GWT)
[18].

A few years ago, for developing an AJAX application was needed to program in
JavaScript language. This language does not have comfortable developing
environments’, neither was possible to debug code. In short, programming in
JavaScript language was a tedious task.

Dojo and Mochikit are JavaScripts libraries or toolkits that provide several
implemented JavaScript functions.

24 Development of an advanced web application for managing videoconference

GWT, shorthand for Google Web Toolkit, is an open-source toolkit by Google to
develop AJAX applications in the Java programming language. GWT supports
rapid client/server development and debugging in any Java IDE.

5.2.1.3. Google Web Toolkit

Google Web Toolkit (GWT) is an open source Java development framework
that lets us escape the matrix of technologies that make writing AJAX
applications so difficult and error prone. With GWT, we can develop and debug
AJAX applications in the Java language using the Java development tools of
our choice. When we deploy our application to production, the GWT compiler
translates Java application to browser-compliant JavaScript and HTML.

Here is the GWT development cycle:

 1. We write and debug our application in the Java language using our
favourite Java IDE, using as GWT libraries.
 2. Use GWT’s Java-to-JavaScript compiler to distill application into a set of
JavaScript and HTML files that we can serve with any web server.
 3. Confirm that application works in each browser that we want to support,
which usually takes no additional work.

We have decided to use GWT by following reasons:

- Java technologies offer a productive development platform more
powerful than JavaScript.

- GWT asserts us compatibility with principal web browsers
- Many workgroups are developing applications over GWT and a great

community discuss daily about GWT.
- GWT has some widgets to design user interface.
- Two killer applications as Google Maps [19] and Gmail [20] have been

developed with GWT.

5.2.1.4. Google Web Toolkit architecture

GWT has four major components: a Java-to-JavaScript compiler, a "hosted"
web browser, and two Java class libraries:

IMPLEMENTATION 25

Fig. 5.2 GWT architecture

The components, from bottom to top, are:

GWT Java-to-JavaScript Compiler

The GWT Java-to-JavaScript compiler translates the Java programming
language to the JavaScript programming language. GWT compiler is
used to run GWT applications in web mode.

GWT Hosted Web Browser
The GWT Hosted Web Browser lets us run and execute GWT
applications in hosted mode, where code runs as Java in the Java Virtual
Machine without compiling to JavaScript. To accomplish this, the GWT
browser embeds a special browser control (an Internet Explorer control
on Windows or a Gecko/Mozilla control on Linux) with hooks into the
JVM. This mode make easy develop phase and testing process.

JRE emulation library
GWT contains JavaScript implementations of the most widely used
classes in the Java standard class library, including most of the java.lang
package classes and a subset of the java.util package classes. The rest
of the Java standard library is not supported natively within GWT. For
example, packages like java.io do not apply to web applications since
they access the network and local file system.

GWT Web UI class library
The GWT web UI class library is a set of custom interfaces and classes
that let us create web browser "widgets," like buttons, text boxes,
images, and text. This is the core user interface library used to create
GWT applications.

5.2.2 SIP

The Session Initiation Protocol (SIP) is an Internet Engineering Task Force
(IETF) [21] standard protocol for initiating an interactive user session that

26 Development of an advanced web application for managing videoconference

involves multimedia elements such as video, voice, chat, gaming, and virtual
reality. SIP is a request-response protocol, dealing with requests from clients
and responses from servers. [5], [6]

5.2.3 DVTS

DVTS (Digital Video Transport System) is a software that allows to encapsulate
DV (Digital Video) video format from an IEEE Standard 1394 (IEEE1394)
interface for transmission over IP networks, resulting in a high quality DV video
stream that consumes roughly 30 Mbps of bandwidth.

DVTS works on varying operating systems and connection between PC and
DVTS system can be using Firewire standard interface (IEEE1394) [22], [23].
Also DVTS was standardized by the IETF and is Open Source.

At implementation level we can mention some problems detected in the
platforms.

Windows version use DirectX to reproduce received video without have any
FireWire output device connected to PC. The code has been created with
DirectX version 8.1. At present, this version is obsolete and is not available to
download from Microsoft home page [24], [25]. The new version (9.0c) has
changed libraries used in DVTS code. This issue forces us to use DirectX SDK
8.1 to compile the code.

There is not much documentation of the DVTS Windows version and the
existent documents are in Japanese. There is not documentation of other
working groups that are working with this version. For the compilation of the
code is needed to follow some steps, compiling different libraries. The
document that contains these steps also is in Japanese. However, it can do it
intuitively.

After compilation process we get multiple errors caused by lack some
references in the code. For solving this problem should be studied one to one
the different errors (these errors appear in intermediate step, therefore is
possible that afterwards we get more errors)

The code is structured in classes, although all comments are in Japanese,
which difficult analysis.

Windows version must be modified because it does not accept parameters. This
supposes that SIP client cannot configure parameters and establish the
videoconference automatically. Therefore, user may do this task losing
transparency effect

However DVTS Linux version does not need adaptation and FireWire works
correctly to reproduce received video but with some errors in the image and low
performance.

IMPLEMENTATION 27

At present DVTS integration in Linux version works correctly, is possible to
receive as well as to send the video. They are the requirements that the user
has to attain:

For video transition, we need dvsend application (included in the DVTS).
Dvsend needs that your computer accomplishes with IEEE1394 environments
rules. Newest Linux kernels are ready. If not, we must compile DVTS. To
compile it is necessary that FireWire libraries (1394) were installed, moreover
we need sources code file of the kernel. Finally, it is necessary to mount the
device every time it is connected.

For video reproduction in receiving machine, it is necessary to compile an
application, which is distributed by the creators of DVTS in a separate pack. For
compiling it, we need install DV libraries, as well as the sources code files of the
X11.

5.2.4 UltraGrid

UltraGrid is a high definition (HD) video conferencing and distribution system. It
is also considered the first system capable of supporting uncompressed gigabit
rate high definition video over IP. In fact, an Ultragrid node convert SMTPE
292M high-definition video signals into RTP/UDP/IP packets, which can be
distributed across an IP network reaching transmission rates until 1.2Gbps.

Ultragrid is a software OpenSource developed by the ISI EAST [26] with the
main goal to stress network launching a flow of video of high quality (HD)
without compressing, in order to provoke congestion. This software has double
function capture / display and transmitter / receiver, correspondingly. Therefore,
it takes video on real-time and packs it in IP datagrams to be sent over network.
In reception, it made opposite work, receiving, unpacking and retrieving HD-SDI
signal for any device that can understand it.

Some problems detected on testing process are loss of frames for second,
caused by low processed capacity or card (it points are pending to
demonstrate). For a high definition transmission, we notice how video have
some small cuts, which cause a sensation of instability. Theoretical models say
that it should send around 900 Mbps, but in practice, throughput is never over
800 Mbps.

5.2.5 Starting Videoconference program

In section 3.1 was commented that open programs from a web browser is
complicated by security restrictions. To open programs from web browser is
possible with one of the following options:

- Using plugins
- Using Java Web Start [27]
- Modifying windows registry, associating a protocol with a program. [28]

28 Development of an advanced web application for managing videoconference

In this moment, there are not any DVTS or Ultragid plugin for web browser,
therefore, we should have to implement it.
Java Web Start has some security problems, and is not trivial pack a big
application as DVTS o UG in a Java Web Start package.
Last option is only available in Windows, but UG is not available in this platform,
and Windows version of DVTS, how is comment on section 5.2.3, does not
accept parameters, therefore is impossible to configure it.

To solve this problem, we decide to join client and server machine in only one
until we find a solution and application server opens videoconference software.
Nevertheless, this problem may repeat for every videoconference system that
appears.

5.3. Project structure

GWT projects are overlaid into Java packages. This structure is fixed by GWT
as following manner:

<packageName>.ServiceName

The project root package. It contains module GWT configuration files
<packageName>.ServiceName public

Static resources with public access and placed in server.
<packageName>.ServiceName.client

Client-side source files and subpackages
<packageName>.ServiceName.server

Server-side code and subpackages

packageName is: net.i2cat.machine
Service name is: thinclient

Client-side code will be translated to JavaScript code by GWT compiled. It
implies that in this package we only can use supported classes by GWT. For
example, we cannot use threads, hashtables or functionalities of java 5.0. It is a
serious limitation and a factor key in implementation phase. This limitations are
explained in section 5.4.3.

However, on server we can use all features of java and external libraries. It is
an important characteristic because allows us to use SIP in our project. Server-
side code is similar than traditional servlet. External libraries used are JainSIP
for SIP communication or SAX for XML proposes.

5.4. Communication interface

To communicate from web application to web server, GWT provides a Remote
Procedure Call (RPC) mechanism. We define serializable Java classes for
requests and responses and GWT automatically serializes the request and
deserializes the response from the server.

IMPLEMENTATION 29

The server-side code invoked from client is often referred as “service”, so the
act of making a remote procedure call is sometimes referred to as “invoking a
service”.

To design interface communication between client and service we must to
define two java interfaces and one java class, in green in Fig. 5.3. They must
have related as shows Fig. 5.3. Orange components are GWT’s class.

GWT defines a naming agreement for this Java files. The synchronous interface
must finish in “Service”. Asynchronous interface must named as synchronous
attaching at the end “Asynch“ suffix. Finally, implementation of our Service must
name as synchronous interface adding at the end “Impl” suffix.

Fig. 5.3 Communication interface

We can see part of code for every class in following tables.

Table 5.1 Synchronous Service Interface

public interface ListaUsuariosService extends RemoteService {
 public Usuario getUser(String name);

Table 5.2 Asynchronous Service Interface

public interface ListaUsuariosServiceAsync {
 public void getUser(String name, AsyncCallback callback);

Table 5.3 Service Implementation

public class ListaUsuariosServiceImpl extends RemoteServiceServlet
implements ListaUsuariosService{

 public Usuario getUser(String name){
 return ListaServer.getInstance().getUserByName(name);
 }

30 Development of an advanced web application for managing videoconference

5.4.1 Asynchronous Method Call

The nature of asynchronous method calls requires the caller to pass in a
callback object that can be notified when an asynchronous call completes, since
by definition the caller cannot be blocked until the call completes. For the same
reason, asynchronous methods do not have return types; they must always
return void. After an asynchronous call is made, all communication back to the
caller is via the passed-in callback object.

An analogy of these types of calls can be explained by the following example.
When we request something on a supermarket and we must attach a box. The
response is delivered packed inside our “intelligent” box to home. This box has
some instructions for what to do with content. In addition, we are not waiting to
receive the response and handle it; we can attend to other things.

This box is the AsyncCallback shows on Table 5.4

Table 5.4 Asynchronous method call

listaUsuariosService.getUser(name, new AsyncCallback(){
 public void onFailure(Throwable caught) {
 // Failure code
 }

 public void onSuccess(Object result) {
 // On Success code. Result may cast. For example:
 // Usuario us = (Usuario) result;
});

5.4.2 Serialization types

At the beginning of section 5.4 was explained that is possible to use Java class
for requests and responses and GWT serializes them to send across network.

Not all Java class can be serialized; these classes must conform to certain
restrictions.

A type is serializable and can be used in a service interface if it

• is primitive, such as char, byte, short, int, long, boolean, float, or double;

• is String, Date, or a primitive wrapper such as Character, Byte, Short,
Integer, Long, Boolean, Float, or Double;

• is an array of serializable types (including other serializable arrays);

• is a serializable user-defined class; or

• has at least one serializable subclass

IMPLEMENTATION 31

And user-defined class is serializable if it is assignable to IsSerializable
interface. This interface is a “GWT test“, which certifies if a class can be
serialized or do not. Only detail explained by GWT creators is that a class is
serializable if all non-transient fields are themselves serializable. On
implementing phase some restrictions have been founded, as example, all
classes must contain default constructor (without parameters).

5.4.3 Limitations on client-side

GWT supports only a small subset of the classes available in the Java 2
Standard and Enterprise Edition libraries, as these libraries are quite large and
rely on functionality that is unavailable within web browsers.

Main limitations in this sense can be noticed at the beginning because no habit
or type of data not supported, and common methods not implemented in GWT.

Note that these libraries have been improved during project developing.
Unsupported functionalities, which have been solved with personal
implementations, on following releases were resolved, supposing that delivered
hours in lost time

In this sense, mention that since September until February has appeared three
releases.

5.4.4 User interface toolkit

GWT user interface classes are similar those in existing UI frameworks such as
Swing and SWT except that the widgets are rendered using dynamically-
created HTML rather than pixel-oriented graphics.

GWT provides several classes to develop “widgets” as buttons, tables, text box
and layouts to allocate this widgets, also provides mechanism to manage
browser events.

PLANNING AND COST ESTIMATION 33

CHAPTER 6. PLANNING AND COST ESTIMATION

This chapter describes how has been planned this project, how many time has
been spent in every task and a cost estimation.

6.1. Planning

Project is divided in 5 phases

• Previous research

• Design

• Implementation

• Integration and Testing

• Documentation

Previous research

In this phase has been done a research of current state-of-the-art of
technology in order to identify which technologies are useful for our
proposes. It supposes to do a study and evaluation for each candidate to
determine the suitable solution. Once has been chosen which tool to use,
it is needed a learning curve.

Design
In this phase has been closed down all features. Application architecture,
and how design every piece have discussed in this stage.

Implementation
Implementation consist of developing designed application. First step is
centred to get a prototype with basic functionalities. Second stage tries to
complete the prototype implementing all features, delivering the first
release. Next steps consist in improve failure tolerance, application look.
Many steps need a testing process to approve the prototype.

Integration and Testing
Testing task was done in many intermediate stages, therefore is a
discontinuous task. Implant our releases on current environment and
ensure that its behaviour is correct is located in this phase too.

Documentation
Writing all documents necessary to close project. User manual,
installation manual and project report.

34 Development of an advanced web application for managing videoconference

Table 6.1 shows hours took by each task. Total dedication is around 500 hours.

Table 6.1 Task dedication

Phase Task Description Hours

Previous research First contact Posing the problem and analysis
possible solutions in a couple of
meeting with project tutor. These
meetings conclude with the propose of
a possible solution

8

Previous research Toolkit research Research of different AJAX toolkits and
test them

15

Previous research GWT learning Getting experience with GWT toolkit,
investing all features.

35

Design Features
required

Defining all functionalities that our
project need to implement

25

Design SIP and
Presence Agent
Interface design

Meeting with SIP developer to arrange
a communication interface.

8

Design Architecture
definition

Have been defined main characteristics
of application architecture

12

Design SIP features Design news features of SIP Client. 8

Design Presence Agent Design Presence Agent interface,
communication protocol.

15

Implementation/Previous
Research

First AJAX
application

First service on AJAX which share data
between server and client

20

Implementation First prototype First prototype which include and static
list. This list is loaded from server and
can be modified by client.

60

Implementation / Testing Persistent
connection

Implement mechanism to keep an
active connection to communication
from server to client

15

Implementation / Testing SIP Client Equip our prototype with a SIP Stack. 14

Implementation / Testing Presence
Service

Interact with Presence Agent. Get a
dynamic list, notify our changes and
integration with persistent connection

10

Implementation Look of
application

CSS design and several proofs 8

Implementation/Testing Add multimedia
layer

DVTS installation, and integration in
application

17

Implementation Graphic pannels Test all panels available and design all
"web pages"

50

Testing Global test Test all possibilities, solving several
errors

40

Integration Migration to
other platform

Several issues to migrate from
Windows system to Linux

8

Integration Migration to
stable scenario

Migration to an stable scenario for
demo propose.

4

Documentation Report and
presentation

Report project, presentation. 110

PLANNING AND COST ESTIMATION 35

6.2. Cost Estimation

In order to make a cost estimation of the project, some aspects must be
considered.

Time devoted

Planning in section 6.1 details all task and how many time has been
spend every tasks. This project must be realized in 5 months
approximately, which supposes time for research, design,
implementation and testing of the application.

Achieved objectives
The cost estimated can depend on final results. A project can suppose a
knowledge base or small prototypes that allow in future to work in
ambitious project. The worst extreme should be when all time spent has
produced zero results.

Risks

Initial requirement of the project was research some toolkits to achieve
manage a SIP client. We decide for a newbie product, which has
appeared 4 month before to start this project. This kind of products may
death in few months and become abandoned projects without
documentation or support
Other risk was to choose a toolkit, which limits our purposes; in this case,
we get right.

Staff

A single student of Telecommunications Engineering realizing the final
thesis of the M.S. degree in Telematic Engineering. The student does not
receive any salary during the project duration.

Tools and equipment

Developing and testing phase requires two client machines on Linux
distribution and another machine for SIP server proposes. Additionally
we need a Fast Ethernet switch, replaced by a Gigabit Switch on
November to connect all PCs of our scenario.
All used tools are free licence, for example develop environment tool
used was Eclipse Project.
The University has assumed all cost related with project, therefore in our
cost estimation will be a difficult data to predict. Comments that software
and hardware are shared with other projects.

Economical Result
Know all costs associated to project is an impossible task. We have to
keep satisfied with a relevant parameter. A representative aspect may be
staff cost, which has been calculated on Table 6.2. The University
determines minimum cost per hour in 7 €/hr

36 Development of an advanced web application for managing videoconference

Table 6.2 Cost estimation of the project

Hours per day (hr) 5

Total amount of days 100

Cost per hour (€/hr) 7

TOTAL 3500€

CONCLUSIONS 37

CHAPTER 7. CONCLUSIONS

This chapter explains the archived objectives, tasks that are able to do in future
in this project, environment impact and finally personal conclusions.

7.1. Achieved objectives

We get a web interface that is according to requirements.

� Web access
� Authentication
� Edit your profile
� Contact list
� Videoconference management

We get an application capable to manage a SIP stack with functionalities

� Establish / Finish a conference
� Invite to a conference
� Receive invitation and manage it
� Communication with Presence agent, managing contact list information

We get an application capable to

� Run a videoconference software
� Configure a videoconference software
� Close a videoconference software

Therefore, we can announce that we have obtained a web interface, which
manages a SIP stack and can interact with other standards SIP clients and is
capable to initiate videoconferences and manage it.

On other hand, a first release of presence agent has been developed
successfully, which allows basic functions and it is easily improved.

Finally, we get a tool for carrying out high-definition videoconference point to
point. This operation is done abstracting user of signalling task and becoming a
transparently process.

All integrated in the same application and compatible with other modules of
i2Cat Foundation.

7.2. Improvements and future work

Web interface can be improved as following:

• To be able to start videoconference software in client machine.
Research lines are:

o Without previous software installed:
� Java Web Start
� Embedding a plugin as Flash, Videolan or develop a DVTS

plugin

38 Development of an advanced web application for managing videoconference

o Software preinstalled
� Proprietary protocols defined on system register that allow

run an application with parameters.

• Improve look&feel and design application.

• To become most reliable and robust on communication failures,
especially from server to client communication.

Application can be improved

• Allowing multiconference

• Supporting pay-per-use accounts

7.3. Environment impact

Nowadays, in a globalized world, working groups are distributed around the
world. Several firms have some local office around a country or continent and
every month high-level managers travel for meeting on headquarters. It is only
an example where videoconference can be useful to save time, money and can
reduce pollution.

Easy videoconference systems with high quality can suppose useful for working
or studying long distance. Two actual cases are following. Every Friday, Ed
Seidel, director of the Center for Computation & Technology (CCT) at Louisiana
State University, gives a lesson to PhD Czechs students. This lesson is
transmitted in real-time across network. Another example; two professors from
Technical University of Catalonia in Barcelona give PhD lessons to student of
University Carlos III in Madrid, transmitted also across network.

Negative impact may be needs of high amount of bandwidth that are solved
with constructing news emplacement for optical fiber, satellite communications,
aerial constructions which break skyline.

7.4. Personal conclusions

This project has involved me to know i2Cat Foundation, giving an opportunity to
work in their installations and know research areas unexplored in my studies. I
began this project with poor knowledge about SIP, videoconference, high-
definition and rich internet applications and at the end, I am able to manage all
them with acceptable agility.
In other hand, this project has been a great opportunity for integrating to a
workgroup and develop a project with several blocks. I think that working on
group is an important experience.

I want to denote too that this project has given me the chance to practice my
forgotten English. I notice that my level is insufficient and that I need to take
classes.

REFERENCES 39

CHAPTER 8. REFERENCES

[1] DVTS, DV Stream on IEEE1394 Encapsulated into IP.

URL: http://www.sfc.wide.ad.jp/DVTS/

[2] C. S. Perkins and L. Gharai. UltraGrid: a high definition collaboratory, Nov.

2002. URL: http://ultragrid.east.isi.edu/.

[3] AJAX Introduction URL: http://www.w3schools.com/ajax/

[4] M. Hurtado, A. Oller, and J. Alcober, "The SIP-CMI Platform- An Open

Testbed for Advanced Integrated Continuous Media Services," TridentCom
2006.

[5] M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg “SIP: Session
Initiation Protocol” IETF RFC 2543, March 1999. Obsolete and updated by
[6]

[6] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.

Sparks, M. Handley, and E. Schooler, "SIP: Session Initiation Protocol,"
IETF RFC 3261, June 2002.

[7] I2Cat Foundation Homepage URL: http://www.i2cat.net/

[8] SER, SIP express router. URL: http://www.openser.org/

[9] Eckel, B., “Thinking in Patterns with Java”. Chapter 12 “System

decoupling“ Electronic Book in development.
URL: http://mindview.net/Books/TIPatterns/

[10] Manufacture of hardware components. LongShine Iberia

URL: http://www.longshine.es/

[11] Java Technology Homepage. URL: http://java.sun.com/

[12] Eclipse - an open development platform URL: http://www.eclipse.org/

[13] Log4J Project URL: http://logging.apache.org/log4j/

[14] SAX Project URL: http://www.saxproject.org/

[15] Apache Ant Project URL: http://ant.apache.org/

[16] Dojo, the Javascript Toolkit URL: http://dojotoolkit.org/

[17] MochiKit - A lightweight Javascript library URL: http://mochikit.com/

[18] Google Web Toolkit - Build AJAX apps in the Java language

URL: http://code.google.com/webtoolkit/

40 Development of an advanced web application for managing videoconference

[19] Google Maps URL: http://maps.google.es/

[20] GMail URL: http://www.google.com

[21] IETF Home Page URL: http://www.ietf.org/

[22] The world's leading professional association for the advancement of

technology. IEEE Homepage. URL: http://www.ieee.org/

[23] IEEE Standards URL: http://www.ieee.org/web/standards/home/index.html

[24] Microsoft Corporation URL: http://www.microsoft.com/

[25] Microsoft DirectX: Home Page URL: http://www.microsoft.com/directx/

[26] Information Sciences Institute East URL: http://www.east.isi.edu/

[27] Java Web Start Technology

URL: http://java.sun.com/products/javawebstart/

[28] Registering an Application to a URL Protocol.

http://msdn.microsoft.com/library/default.asp?url=/workshop/networking/plug
gable/overview/appendix_a.asp

ACRONYMS 41

CHAPTER 9. ACRONYMS

AJAX Asynchronous JavaScript and XML

AMD Advanced Micro Devices

CSS Cascading Style Sheets

CVS Concurrent Versioning System

DV Digital Video

DVTS Digital Video Transport System

GUI Graphical User Interface

GWT Google Web Toolkit

HD high definition

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

i2Cat Internet 2 a Catalunya

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

JDK Java Development Kit

JRE Java Runtime Environment

PC Personal Computer

RAM Random-Access Memory

RFC Request for Comments

RPC Remote Procedure Call

RTP Real-time transport protocol

SAX Simple API for XML

SDK Software Development Kit

SER SIP Express Router

SIP Session Initiation Protocol

SIP-CMI SIP-based Continuous Media Integration

SMTPE Society of Motion Picture and Television Engineers

UDP User Datagram Protocol

UG Ultragrid

UI User Interface

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

SCREENSHOTS I

ANNEX A. SCREENSHOTS

The user must identify at startup. Fig. A.1 shows form that must be fulfilled.

Login Screen

Fig. A.1 Login Screen (Web Interface)

Fig. A.2 Login Screen (Swing Interface)

Once time user has been logged, he may modify profile, changing Multimedia
Capabilities (Fig. A.3). Left panel shows menu list and Contact List.

II Development of an advanced web application for managing videoconference

Contact List

Multimedia Capabilities

Fig. A.3 Local user profile modification (Web Interface)

Fig. A.4 Local user profile modification (Web Interface)

Clicking over a contact appears contact profile (Fig A.5). This panel contains a
graphic representation of his multimedia capacities and his state.
For calling to a contact, are enabled all modes compatibles between contact
and application user. In Fig A.5 are enabled all DVTS modes and UG are
disabled because we don not support it.

SCREENSHOTS III

Fig. A.5 Contact profile (Web Interface)

When we receive an incoming call appears a popup which allows us Accept or
Reject this videoconference invitation. (Fig. A.6)

Fig. A.6 Incoming call (Web Interface)

Fig. A.6 Incoming call (Swing Interface)

USER GUIDE V

ANNEX B. USER GUIDE

This guide explains how to execute developed application. This is not an
installation manual.

Minimum requirement

- Pentium IV 2,4 Ghz
- 512Mb RAM
- Fast Ethernet network interface card
- 40 GB hardisk
- Ubuntu Linux 6.06 LTS
- DV Camera

Previous task in Ubuntu Linux SO:

- Installation of JSDK 1.4 or upper of SUN
- Installation of Apache Ant 1.6 or upper
- Installation de Eclipse IDE
- Installation of UG and/or DVTS (www.sfc.wide.ad.jp/DVTS)

1st Download CVS module

CVS Client configuration (Fig. B.1):

Host: broadband6.upc.es
Repository path: /home/cvs/
Connection type: extssh

Project is located in “/machine/ajax”

Fig. B.1 CVS Configuration

VI Development of an advanced web application for managing videoconference

2nd ClienteSIP file

“ClienteSIP.propieties” must be configured with as following:

ip=192.168.48.164
port=5060
proto=tcp
domain=192.168.48.83

proxy-registrar=192.168.48.83:5060

UGRXpath=./uv
UGRXmod1=-d
UGRXmod2=xena
UGRXmod3=-c
UGRXmod4=1
UGRXmod5=-b
UGRXmod6=8
UGRXIP=127.0.0.1

UGTXpath=./uv
UGTXmod1=-t
UGTXmod2=hdtv
UGTXmod3=-c
UGTXmod4=1
UGTXmod5=-b
UGTXmod6=8

DVTSRXpath=xdvshow

DVTSTXpath=dvsend
DVTSTXmod1=-h
#DVTSTXIP=192.168.48.137

* IP of local machine
* Application port to use

* SER IP.

* SER IP and PORT

* Ultragrid Path

* Machine where reproduce UG video
received.
* Ultragrid Path

* Xdvshow path

* Dvsend path

* IP remote to send video. (Obsolete)

3rd .properties files

Copy all.properties files to “bin” folder.

4th Execute program

- Click on Run>> Run… (Fig. B.2)
- Select ListaUsuarios on left menu.
- Click on Run button

USER GUIDE VII

Fig. B.2 Eclipse configuration

5th Application Working

Two windows open, a control windows and graphic interface. Enjoy it!

