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1 INTRODUCTION 

Foreground segmentation is a fundamental first processing stage for vision systems which 

monitor real-world activity being of great interest in many applications. For instance, in 

videoconferencing once the foreground and the background are separated, the background 

can be replaced by another image, which then beautifies the video and protects the user 

privacy. The extracted foreground objects can be compressed to facilitate efficient 

transmission using object-based video coding. As an advanced video editing tool, 

segmentation also allows people to combine multiple objects from different video and create 

new artistic results. In 3D multi-camera environments, robust foreground segmentation allows 

a correct 3-dimesional reconstruction without background artifacts while, in video surveillance 

tasks, foreground segmentation allows a correct object identification and tracking. 

The current Master Thesis is defined in this framework: Foreground segmentation and tracking 

based on foreground and background modeling techniques with the main objective of 

developing segmentation and tracking methods for moving and static monocular video 

sequences. In the following lines, we will be expose the project kernel with three main 

contributions to the state of the art: 

 Adaptation of the foreground segmentation and tracking technique via SCGMM (1) for 

moving monocular video sequences. 

 Foreground segmentation in monocular static sequences via SCGMM-1Gaussian 

combined models.  

 Foreground segmentation in monocular static sequences via SCGMM-1Gaussian 

combined models with Foreground model updating before decision..  

All three methods are foreground segmentation novel techniques that we propose in this 

project and have been tested successfully after their implementation in C++ for the UPC image 

processing group software ImagePlus. 

The work can be distributed in the following steps: 

 Study of the Current State of The Art literature 

 Study of previous foreground segmentation techniques of the image group 

 Implementation of the SCGMM foreground-background joint tracking algorithm  

 Developing the three novel techniques detailed above 

 

The final results of this work are three applications to segment and track foreground objects: 

one to segment and track objects in monocular moving camera sequences, and two others to 

segment objects in a foreground-background color similarity situation. 

The manuscript is organized as follows: In the next section “Project Framework”, we will  

describe the bases of the techniques explained in this project. Section two is devoted to the 

foreground segmentation and tracking “State of the Art”. In “Our Work”, section three, we will 

detail the techniques that we propose, including theoretical bases, implementation overview 
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and some results for each one of the methods. The manuscript will finish with “Conclusions” 

and “Future Work” sections where we will summarize the results obtained and we will propose 

future lines of development. 
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2 PROJECT FRAMEWORK 

 

The Project Framework is the detection and tracking of foreground objects in static and 

moving video sequences.  

The objective of a foreground segmentation and Tracking is to segment the scene in 

foreground objects and background and establish the temporal correspondence of the 

foreground objects. In this project we will focus on techniques that are based on a 

classification using a statistical model of the background and the foreground. For this reason, 

we will assume that the segmentation of the first frame is provided. Our objective will be to 

improve the models and define an appropriate updating of these models to reach a correct 

foreground-background segmentation minimizing False Negatives and False Positives. The 

tracking process makes the correspondence of the segmented objects with the objects being 

tracked from previous frames.  Depending on the technique, the tracking can be clearly 

separated from the segmentation (when previous foreground information is not used for the 

segmentation) or can be implicit in the foreground segmentation (when we are using a priori 

information of the object).  

Dickinson et al. (2) and Yu et al. (1) propose a joint segmentation and tracking system that 

works similarly to the previous workflow, based on Spatial Color Gaussian Mixture Models 

foreground and background modeling.  

 



 

 

 
 

 

 

 



Foreground segmentation and tracking based on foreground and background modeling techniques State of the Art  

 

5 
 

3 STATE OF THE ART 

In this section several foreground segmentation and tracking methods of the literature will be 

revised.  

This section consists of two subsections: 

 Foreground segmentation and tracking based only on background modeling. 

 Foreground segmentation and tracking based on background and foreground 

modeling. 
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3.1 FOREGROUND SEGMENTATION AND TRACKING BASED ONLY 

ON BACKGROUND MODELING 

These common techniques propose to use a background probabilistic model to detect 

foreground regions as a background exception. Without a foreground model, these systems 

need a two step process to achieve a detection and identification of the object along the 

sequence: 

 

 Foreground segmentation: 

Consists in segmenting all foreground pixels of the image to obtain foreground 

Connected Components for each frame. This segmentation is obtained detecting all 

pixels that don’t belong to background model. 

 

 Object Tracking: 

After the foreground segmentation step, a tracking system is used to maintain a 

temporal consistence of the foreground connected components between frames. This 

process is needed because no prior information of the objects is used to segment 

them. Hence, this tracking step is used to identify which segmented connected 

component corresponds to each object being tracked.  
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3.1.1 Foreground segmentation. Methods 

In this section we explain some main foreground segmentation techniques to detect the 

foreground objects, without any prior information of these objects. M. Piccardi (3) reviews this 

issue while Butler et al. (4) refer to other methods. 

 

3.1.1.1 Temporal Median Filter 

Proposed by Lo and Velastin (5). This system proposes to use the last N frames to calculate the 

median for each pixel (i,j) and conform a reference background model. The system uses a 

buffer for the N last pixel values, to update the median for each frame. 

At the beginning of the sequence, the system learns the first N frames, in a period of time 

called “Training Time” to find the initial reference background model, by means of ordering the 

N pixel values from minor to major and taking the pixels placed in N/2 position to conform this 

model. After the training period, for each new frame, each pixel input value will be compared 

with its corresponding pixel background model value. If the pixel in value under analysis is 

within certain allowed limits, it will be considered that the pixel matches the background 

model and its input value will be included in the pixel buffer (LIFO queue). Otherwise, if the 

pixel value is outside these limits, it will be classified as foreground, and no update will be 

done. 

In Figure 1 an example of reference background model is shown. The main disadvantages of 

this method are that it needs a buffer of size N for each pixel, and that it doesn’t present a 

rigorous statistical base. 

 

N frames

Background 

Reference Model

Median for 

each pixel

 

Figure 1 Example of Temporal Median Filter background model 
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3.1.1.2 Running Gaussian average 

Wren et al (6), propose to model the background by analyzing each pixel (i,j) of the image. The 

background model consists in the probabilistic modeling of each pixel value via Gaussian 

probability function (p.d.f.), characterized by its mean  and variance . In Figure 2 it is 

shown an image with the system idea, where each pixel appear modeled with a Gaussian 

distribution. 

Mean and variance for each frame t  are updated as follows: 

 

Equation 3-1 

 

Equation 3-2 

 

Equation 3-3 

Where  is the value of the pixel under analysis in the current frame; ,  are, respectively, 

the mean and variance of the Gaussian distribution,  is a weight that defines the updating 

velocity (commonly ) and  is the Euclidean distance between the Gaussian mean and 

the pixel value. 

This updating step allows a background model evolution, making it robust to soft illumination 

changes, a common situation in outdoor scenarios. 

For each frame, the pixel value  is classified as foreground according to Equation 3-4: 

 

Equation 3-4 

Where  is the threshold parameter (usually 2.5). 

 

When the inequality is satisfied, the pixel  is 

considered foreground. Otherwise, it is 

considered background. 

Koller et al. (7) emphasize that the updating 

process has to be done only if the pixel is 

considered background, replacing Equation 

3-4 by Equation 3-5. 

 

 

  

Figure 2 Running Gaussian Average graphic idea 
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Equation 3-5 

Where M=1 if  is considered as foreground, and M=0 otherwise. 

This method presents the main advantages of less memory and computational cost 

requirements: only two parameters per pixel are stored (mean and variance ( ) 
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3.1.1.3 Gaussian Mixture Model 

This method appears as an extension from the previous one to improve the results in dynamic 

background scenarios (moving tree leafs, flags on the wind…). The system proposes to use a 

Gaussian Mixture Model to model the p.d.f. of each pixel (i,j), using a different Gaussian 

distribution for each pixel to create the background model. 

Stauffer and Grimson (8), present this method where it is described the probability of 

observing a pixel value  in the time  as a Gaussian Mixture Model is defined as: 

 

Equation 3-6 

Where  is the number of gaussian distributions used to model each pixel,  is the weight of 

the Gaussian (how much information it represents),  is the mean of the Gaussian,  is the 

matrix variance of the Gaussian simplified as (incorrelated components  and the 

same variance for each color),  is the Gaussian function. 

The number of Gaussian distributions commonly used to model each pixel is three or five. 

These Gaussians are correctly combined thanks to the weight factor  , which is modified 

(increased or decreased), for each Gaussian, according to the number of times the input pixel 

matches the Gaussian distribution.  

The weights are normalized via Equation 3-7: 

 

Equation 3-7 

 

The background is modeled by the  Gaussian distributions with highest weight  and 

lowest variance, according to the next inequality: 

 

Equation 3-8 

Where  is the decision threshold (commonly 0.6) and  is the minimum number of Gaussian 

distributions to include in the summation (sorted by ), in order to verify the inequality. 

The background is usually more static and appears with more frequency, this is the reason why 

it is modeled by the first B Gaussian distributions, which are those that have been used more 

times and at the same time are more compact. 
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To decide if the input pixel value matches any Gaussian distribution, the following expression is 

evaluated: 

 

Equation 3-9 

Where  is the pixel value  in the frame t,  is a constant parameter threshold 

(commonly ),  is the  Gaussian mean and  is its standard deviation. 

 If the inequality is true for all Gaussian distributions, the pixel belongs to the 

foreground because it doesn’t match the probabilistic background model. A graphic 

example can be observed in Figure 3 

 

 

 

 If the inequality is not true for one or more than one Gaussian, it is decided that the 

input value matches the background probabilistic model. In the case that the pixel 

matching more than one Gaussian distribution, it will be decided that the Gaussian 

with higher weight and lower variance better represents the pixel. In Figure 4 we can 

observe a graphical example where the input pixel matches one of the three Gaussian 

distributions that model the pixel. 

  

Figure 3 Gaussian mixture model foreground pixel detection 
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If the input pixel matches one of the B first Gaussian distributions, that conform the 

background model, it implies that this value has appeared enough to be considered as 

background pixel. Otherwise, it will be considered as foreground. 

If the input pixel doesn’t match any of the K Gaussian distributions of the probabilistic model, a 

new Gaussian distribution is created. This allows the update of the background model when 

there are changes in the background (for example, when a foreground object becomes part of 

the background). In this case, the Gaussian distribution with the lowest weight is removed and 

replaced by a new Gaussian modeling the new value. This is done in order to maintain the 

initial number of Gaussians. 

When the input pixel has matched one of the K Gaussian distributions that form the pixel 

probabilistic model, a model updating is carried on in the following way: 

The Gaussian distribution that has matched the pixel is updated: 

 

Mean updating: 

 

Equation 3-10 

Variance updating: 

 

Equation 3-11 

  

Figure 4 Gaussian mixture model background pixel detection 
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For all the Gaussian distributions of the pixel probabilistic model: 

Weight updating: 

 

Equation 3-12 

Where: 

: mean and variance updating rate. Commonly.   

T: denotes transposed. 

: weight updating rate. Commonly    

: is 1 for the Gaussian distribution that has matched the pixel value and 0 otherwise. 

 

 

The main advantage of this algorithm is that the probabilistic model of the pixel represents 

several pixel values . This technique allows foreground segmentation in dynamic 

background scenarios. 
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3.1.1.4 Eigenbackgrounds 

Oliver et al (9) propose this foreground segmentation technique based on the 

eigenbackground decomposition of the overall image. The work flow is as follows: 

 

 Learning step  

 

o The average image b is obtained by means of analyzing n training frames of 

the sequence. Then, the difference between each frame and b is calculated  

 

o The covariance matrix is calculated and the M eigenvectors  corresponding to 

the largest eigenvalues are kept in a eigenvector matrix Mb with MxP 

dimension. 

 

 

 Classification step 

 

o Each new frame I is projected to the eigenspace as: I’ = Mb (I - b) 

o Then P is projected back to the image space as I’’ =  T
Mb I’ + b. The eigenspace 

is a good model for static regions of the image, but not for moving objects. 

Then, I’’will not contain any of these objects. 

o Those pixels where |I - I’’| > T is satisfied, will be considered as foreground. 

This method has higher computational cost than the methods showed before, due to the 

matrices operations needed to obtain image eigenvectors and eigenvalues.  
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3.1.3 Tracking. Methods 

Over the twenty last years, there has been a considerable activity in the area of foreground 

objects tracking. This interest arises from the necessity of different applications for video 

surveillance, video conferencing, video coding etc. 

In this section we explain some tracking algorithms that are currently used to track foreground 

objects previously detected via foreground segmentation algorithms. P. F. Gabriel et al. (10) 

extends the state of the art of foreground objects tracking detailing different techniques. 

 

3.1.3.1 Tracking Based on Connected Components  

A Connected Components in an image is a region (group of pixels) where any two pixels 

belonging to that region are connected with a path of pixels inside the same region  

L-Qu et al. (11), propose a connected components based tracking system where, for each 

frame, every tracked object is associated to any foreground connected component from the 

previous foreground segmentation step. In this method, a feature vector is saved for each 

object containing the following information: 

 Width  

 Height  

 Area  

 Centroid  

 Histogram 

For each input frame, the distance between the connected components features and the 

features of each object is analyzed. The objects’ features whose connected component 

minimizes this distance, will be update. 

The connected components not associated to any object for several consecutive frames will be 

detected as new object to track. 

The objects not associated to any connected component for several consecutive frames, will 

be removed. 

The main disadvantages of this technique appear in the occlusion situation between two or 

more objects, where the system can’t guarantee correct tracking due to the merging of two 

objects in one connected component. 

Another source of errors appears when there are problems with the foreground segmentation, 

like false object detections due to a background dynamic scene or the presence of shadows, or 

false negative detections due to the similarity between the foreground object and the 

background.    
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3.1.3.2 Mean Shift Based Tracking 

Mean Shift (12) (13) (14) is a non-parametric technique for the analysis of a complex 

multimodal feature space. The basic computational module of the technique is an old pattern 

recognition procedure for feature space analysis, the mean shift. For discrete data the 

convergence of a recursive mean shift procedure to the nearest stationary point of the 

underlying density function is proved, thus, it is suited for detecting the modes of the density. 

This technique is used in: 

 Image filtering preserving discontinuities 

 Segmentation 

 Real time objects tracking 

 

Mean-shift tracking algorithm is an iterative scheme based on comparing the histogram of the 

original object to track in the current image frame and the histogram of candidate regions in 

the next image frame. The aim is to maximize the correlation between two histograms. 

 

The algorithm computes for each object the Equation 3-13: 

 

 

 

Equation 3-13 

Where:  

: object centroid in next frame t+1 

xi: object pixels  

nh: number of object pixels for kernel h  

g(): profile kernel K derivative  

h:  kernel radius  

: object centroid in frame t  

wi: bin weight of the pixel 
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Equation 3-14 

 Where: 

b(xi): histogram bin of the pixel  

u: histogram bin  

m: number of histogram bins  

[x-y]: Kronecker delta (1 if x=y; 0 otherwise) 

: color u value in the t+1 histogram calculated with  position and the object area in t  

: color u value in the objet histogram in t 

 

The algorithm work flow is the following: 

1. Find object histogram  

 

2. Find histogram of frame t+1   

 

3. Obtain wi weights for each histogram bin according to Equation 3-14 

 

4. Obtain new object centroid based on Mean Shift vector. Equation 3-13 

 

5. Calculate  and to evaluate the distance between histograms: Bhattacharyya 

distance: 

 

Equation 3-15 

 

6. While    <   

 

Do    

 

Evaluate     

 

 

7. If      <          STOP 

 

Otherwise:  Establish   go to step 2 

  



Foreground segmentation and tracking based on foreground and background modeling techniques State of the Art  

 

18 
 

This technique has been used for tracking connected components after foreground 

segmentation in (15). In the work we presented in (16), we developed a tracking system using 

foreground segmentation that avoided erroneous objects detection due to a wrong object 

segmentation in more than one Connected Component.  
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3.1.3.3 Particle Filter  

Particle filters (17) (18) (19) (20) were proposed in 1993 by N. Gordon, D. Salmond and A. 

Smith to implement Bayesian recursive filters.  

Particle filters are sequential Monte Carlo methods based upon point mass (or “particle”) 

representations of probability densities, which can be applied to any state space model, and 

which generalize the traditional Kalman filtering methods.  

The key idea is to represent the required posterior density function by a set of random 

samples with associated weights and to compute estimates based on these samples and 

weights. As the number of samples becomes very large, this Monte Carlo characterization 

becomes an equivalent representation to the usual functional description of the posterior pdf. 

In order to develop the details of the algorithm for objects tracking, let X = {x(n), w(n))|n = 1 .. 

N}, be a Random Mearure where x(n),is a set of support points with associated weights w(n) 

where  . Then, the posterior density at k can be approximated as: 

 

Equation 3-16 

Therefore a discrete weighted approximation to the true posterior  is obtained. 

The weights are chosen using the principle of Importance Sampling (21). 

Hence, it’s possible to convert difficult integrals into summations easily computable.  

 

Algorithm Work Flow  

The particles are possible states of the process, and can be represented as points in the space 

state. It has four main stages: 

o Initialization. 

o Updating. 

o Estimation. 

o Prediction. 

To track a foreground object along a frame sequence, the particle filter “throws” randomly 

over the image a set of points (initialization stage, a particle set in a random state is created), 

after some calculations, a value to each point of the set is assigned(updating stage). Starting 

from these values a new set of points that will replace the previous one is created. The values 

given to each point make more probable to choose those points that remains over the region 

occupied by the object under analysis (estimation stage). Once a new set of points is created, a 

light modification stage (position) of each point of the set is performed, so as to estimate the 

object’s state in next instant (prediction stage).   

 

http://es.wikipedia.org/w/index.php?title=N._Gordon&action=edit
http://es.wikipedia.org/w/index.php?title=D._Salmond&action=edit
http://es.wikipedia.org/w/index.php?title=A._Smith&action=edit
http://es.wikipedia.org/w/index.php?title=A._Smith&action=edit
http://es.wikipedia.org/w/index.php?title=A._Smith&action=edit
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3.2 FOREGROUND SEGMENTATION AND TRACKING BASED ON 

FOREGROUND AND BACKGROUND MODELING 

This kind of techniques propose to combine both foreground and background probabilistic 

models to segment foreground regions from background. In this way, foreground 

segmentations won’t be performed as an exception to the background model, improving the 

foreground segmentation results. The main advantage of this approach is that using prior 

information of foreground objects, we are segmenting foreground regions that we know 

belong to each object. Hence, the tracking step is not needed because this process is implicitly 

included in the object segmentation. Moreover, the segmentation will be more robust in 

situations where the foreground colors are similar to the background 

In this way, foreground regions will be detected when the foreground model provides a better 

representation of the object than the background model. 

However, we need to take into account that an initialization of the foreground objects needs 

to be done. For this aim, a generic model for the foreground needs to be defined, or otherwise 

we can use an “exception to the background” model to find new appearing objects.  

 

 

3.2.1 Pixel wise based foreground segmentation by means of 

Foreground uniform model and Background Gaussian model 

This is a pixel-wise foreground segmentation approach for monocular static sequences that 

combines background and foreground color probabilistic modeling. As Landabaso and Pardas 

(22) propose, in order to obtain an accurate 2D-segmentations using a Bayesian framework, a 

single-class statistical model is adopted for modeling the background color of a pixel 

 as in (6), and a uniform statistical model is used for modeling the foreground.  

We include the description of this system here because it is a first step towards foreground 

and background modeling, and it can be used for the aforementioned initialization.  

Hence, given observations of pixel color value  across time, a Gaussian probability density 

function is used to model the background color as can be read in section 3.1.1.2: 

 

Equation 3-17 

Where , and  denotes the pixel spatial index. Often it is assumed that  is diagonal 

with  sharing the same variances: . 

The adaptation of the background model is the same proposed in (6) and also can be read in 

section 3.1.1.2.  
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The foreground model proposed is a uniform p.d.f. to model the foreground process in each 

pixel, which is in fact the probabilistic extension of classifying a foreground pixel as an 

exception to the model. Since a pixel admits  colors in the RGB color space, its p.d.f. is 

modelled as:  

 

Equation 3-18 

Once the foreground and background likelihoods of a pixel are introduced, and assuming that 

we have some knowledge of foreground and background prior probabilities,  and  

respectively (approximate values can be obtained by manually segmenting the foreground in 

some images, and averaging the number of segmented points over the total), the classification 

of a pixel as foreground can be done when the following inequality is verified: 

 

Equation 3-19 

Where ,  are the posterior probability obtained by a Bayes development in 

 

Equation 3-20 

Where . 

Then, in the case of the models described above, Equation 3-19 can be expressed as: 

 

 

Equation 3-21 

In practice this is very similar to the approach defined in (6) consisting in determining 

background when a pixel value falls within 2.5 standard deviations of the mean of the 

Gaussian. 
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3.2.2 Regiond based foreground segmentation based on spatial-color 

Gaussians Mixture Models (SCGMM) 

In this kind of modeling both the foreground and background are modeled using spatial-color 

Gaussian mixture models (SCGMM). Each pixel of the image is defined with five dimensional 

feature vector, i.e., , representing 

the pixel’s spatial information,  coordinates, 

and color information, color values. Then, 

the likelihood of a pixel belonging to the foreground 

or background can be written as: 

 

Equation 3-22 

Where  represents foreground or 

background;  is the prior weight of the  

Gaussian component in the mixture model, and 

 is the  Gaussian component: 

 

 

Equation 3-23 

Where  is the dimension of the SCGMM models. 

It is commonly assumed that the spatial and color components of the SCGMM models are 

decoupled, i.e., the covariance matrix of each Gaussian component takes the block diagonal 

form,  

, where s and c stand for the spatial and color features respectively. 

With such decomposition, each GMM Gaussian component has the following factorized form:  

 

 
Equation 3-24 

 

The parameter estimation can be reached in the initialization period via Bayes’ development, 

with the EM algorithm (23).  

As in the previous section, the posterior distribution of a class given the pixel under analysis  

can be written as: 

  

Figure 5 Spatial representation of the SCGMM 
models. Foreground SCGMM in red, background 
SCGMM in green. 
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Equation 3-25 

Where  is the likelihood defined in Equation 3-22,  is the prior probability of the 

pixel and  is the prior probability of the class obtained according to: 

 

Equation 3-26 

Where  is the area covered by each class divided by the total area, and can be obtained 

from the previous frame. They satisfy . 

 

The foreground segmentation using this model is obtained finding the evolution of the 

foreground-background five dimensional SCGMM models for each video frame, and deciding 

for each pixel, the one that maximizes the class posterior Equation 3-25 

Greenspan et al. (24) propose an statistical video representation and modeling squeme where 

unsupervised clustering via Gaussian mixture modeling extracts coherent space-time regions in 

feature space, and corresponding coherent segments (video-regions) in the video content, 

while the system proposed by Yu et al. (1) in “Monocular Video Foreground/Background 

Segmentation by Tracking Spatial-Color Gaussian Mixture Models”, is a good example of the 

SCGMM application in foreground segmentation task. Next it will be explained in detail 

because it is the basis of our proposals. 
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3.2.2.1 Tracking Spatial Color Gaussian Mixture Models (SCGMM) 

This technique proposed by Yu, et al. (1) presents an approach to segment monocular videos 

captured by static or hand-held cameras filming large moving non-rigid foreground objects. 

The foreground and background are modeled using spatial-color Gaussian Mixture Models 

(SCGMM), and segmented using the graph cut algorithm, which minimizes an Energy function 

based on: a first order Markov Random Field. With this technique, the authors propose to 

combine the two SCGMMs into a generative model of the whole image, and maximize the joint 

data likelihood using a constrained Expectation-Maximization (EM) algorithm. 

Using spatial and color information to model the scene, SCGMM has better discriminative 

power than color-only GMM widely used in pixel wise analysis. 

The segmentation problem is solved by means of iterating the tracking-segmentation-updating 

process showed in Figure 6. 

 

 

 

The first frame of the sequence is used to initialize the foreground and background models by 

means of the EM algorithm (23) in both models. Hence, an initial classification into foreground 

and background pixels is needed. 

For each frame after the first one, first the SCGMM of the foreground and the background are 

combined and updated with the EM, thus performing a joint tracking of the foreground regions 

and the background. Afterwards the image SCGMM model is split back into two models, one 

describing the foreground, the other describing the background. Components belonging to the 

foreground before tracking are placed in the foreground SCGMM, and components belonging 

to the background before tracking are placed in the background SCGMM. The two SCGMM 

models are then used to perform graph cut segmentation, as it is described in Annex I.  

  

Energy 
minimization 
via Graph Cut

Fg/Bg GMM 
Parameter 

Updating in the  
Spatial Domain

Jointly Tracking Fg/Bg 
GMM Components in 
Spatial Domain by EM

t 

t 
t-> t+1 

Figure 6 The Iterative Circle of Foreground/Background Segmentation for 
One Frame 
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The segmentation results can be used for a post-updating of the SCGMM models, where the 

foreground and background SCGMMs are trained separately with the segmented pixels, which 

often provides better discriminative power for segmenting future frames.  

Considering that the foreground and background colors stay the same across the sequence, a 

constrained update on the two models is performed. That is, apply Expectation Maximization 

algorithm on the foreground or background region to update the SCGMM models, forcing the 

color means and variances to be constant. In this way, propagation errors due to color updates 

are avoided. 

The joint tracking, energy minimization and updating steps will be explained next. 

 

SCGMM Joint Tracking 

Suppose two SCGMM models defined by a set of parameters  are learned during the system 

initialization period, in the first frame, using the popular EM algorithm which maximizes the 

data likelihood (ML) of each segment: 

 

Equation 3-27 

Where ;  are the features of the pixels having label ;  denotes the initialization 

frame,  is the weight of the Gaussian k with label ,  the mean and  the covariance 

matrix. 

An Expectation Maximization algorithm can be formulated to find the maximizer of the 

likelihood function. 

The aim of this part of the process is to propagate these SCGMM models over the rest of the 

sequence, since both the foreground and background objects can be constantly moving. For 

this purpose, the algorithm looks for ways to obtain an approximate SCGMM model for the 

current frame before the graph cut segmentation.  

It is assumed that from time t − 1 to t, the colors of the foreground and background objects do 

not change. Hence, the color parts of the SCGMM models remain identical: 

 

Equation 3-28 

where c denotes the color dimension,   the Gaussian distribution number and  

the color pixel information.  
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Next we explain how to formulate an updating scheme for the spatial parts  

given the new input image It, where s denotes the spatial features. 

Since we do not have a foreground/background segmentation on , first a global SCGMM 

model of the whole image is formed by combining the foreground and background SCGMM 

models of the previous frame: , where superscript 0 indicates that the parameter set is 

serving as the initialization value for the later update. 

The probability of a pixel of the image  given the global model  can be 

expressed as the combination of both foreground and background models: 

 

 

 

Equation 3-29 

 

Denote as the number of Gaussian components in the combined image level 

SCGMM model, where we assume the first  Gaussian components are from the foreground 

SCGMM, and the last  Gaussian components are from the background SCGMM.  

The Gaussian term over the color dimension is defined in Equation 3-28 and remains fixed at 

this moment. The Gaussian component weights ,  are different from their 

original values in their individual foreground or background SCGMMs due to  and : 

 

 

Equation 3-30 

 

Given the pixels in the current frame , the objective is to obtain an updated parameter set 

 over the spatial domain, which maximizes the joint data likelihood of the 

whole image, for all  , i.e., 

 

Equation 3-31 

The EM algorithm is adopted here to iteratively update the model parameters from their initial 

values . However, as it can be seen in Equation 3-31, unlike the traditional EM algorithm, 
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where all model parameters are simultaneously updated, only the spatial parameters of the 

SCGMM models are updated in this phase, and the color parameters are kept unchanged. This 

can be implemented by constraining the color mean and variance to be fixed to their 

corresponding values in the previous frame (see Equation 3-28).  

Such a restricted EM algorithm is shown below in Figure 7. In the E-step, the posteriori of the 

pixels belonging to each Gaussian component is calculated, and in the M-step, the mean and 

variance of each Gaussian component in spatial domain are refined based on the updated 

posteriori probability of pixel assignment from E-step. In the literature this EM algorithm is 

called Expectation Conditional Maximization (25). 

 

After the EM process, the global SCGMM model of the image  is split again into the 

foreground and background model  as shown in Equation 3-32, maintaining the 

weights resulted from the EM step: 

First Gaussians of  

Last Gaussians of  

Equation 3-32 

 

Then, the weights of each model are normalized for model updating according to 

Equation 3-33: 

 

 

Equation 3-33 

Where . 

These resultant models will be used in the Energy minimization step. 
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Energy minimization  

After the joint foreground/background model have been combined into a generative model of 

the image, the model has been updated using EM, and split back into foreground and 

background models, the segmentation problem is solved using energy minimization. At any 

time instant t, let the feature vectors extracted from the video pixels be , 

where  is the number of pixels in each frame. Denote the unknown label of each pixel as 

, where  is a binary variable, with  representing pixel  labeled as 

foreground, and as background. In the following discussions, we may ignore subscript t 

when it causes no confusion. 

The energy–based function is formulated over the unknown labeling variables of every 

pixel,  , in the form of a first-order Markov Random Field (MRF) energy 

function: 

 

Equation 3-34 

  

 

 

 

 

Expectation Conditional Maximization 

1.st E-step, calculate the Gaussian component assignment probability for 

each pixel z: 

2.nd M-step, update the spatial mean and variance, and the weight of each 

Gaussian component as: 

Figure 7 Expectation Conditional Maximization algorithm for foreground/background joint 
tracking 
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Where  denotes the set of 8-connected pair-wise neighboring pixels, P is the set of pixels in 

each image. The role of  is to balance the data  and smooth cost . The 

above energy function can be efficiently minimized by a two-way graph cut algorithm (Annex I. 

), where the two terminal nodes represent foreground and background labels.  

The pair-wise smoothness energy term  is modeled as: 

 

Equation 3-35 

where  denote the intensity of pixel  and  respectively,  is the average intensity 

difference between neighboring pixels in the image, and  is the distance between two 

pixels  and . This smoothness constraint penalizes the labeling discontinuities of neighboring 

pixels if they have similar pixel intensities.  

It favors the segmentation boundary along regions where strong edges are detected. 

The data energy term  evaluates the posterior probability of each pixel belonging to 

the foreground or background. The posterior can be calculated according to Equation 3-25. 

 

Given the SCGMM models, the data cost  is defined as: 

 

 

Equation 3-36 

Where  is computed using Equation 3-25. 
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Fg/Bg GMM Parameter Updating in the spatial domain 

Given foreground and background pixels , obtained from the Energy Minimization 

step, the objective is to obtain an updated parameter sets  and 

 over the spatial domain, which maximizes data likelihood of each 

 image region: 

 

Equation 3-37 

Where . 

The spatial domain mean and variances are updated applying Expectation Conditional 

Maximization algorithm (Figure 7) for each foreground and background models separately, 

forcing the color means and variances to be constant and using for each model  

respectively instead of all  pixels. 

 

After the updating process, the workflow shown in Figure 6 is executed again for each frame, 

obtaining as a result the foreground segmentation of each frame of the sequence. 
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4 OUR APPROACHES 

4.1 INTRODUCTION 

In this Section we will detail the investigation and development work that it has been done in 

the foreground segmentation and tracking area to develop this project. We will detail three 

new different approaches to improve the foreground segmentation and tracking state of art.  

 Foreground segmentation and tracking via SCGMM for static and moving 

monocular video sequences. 

 Foreground segmentation in monocular static sequences via SCGMM-1Gauss 

combined models.  

 Foreground segmentation in monocular static sequences via SCGMM-1Gauss joint 

tracking combined models. 

 

The first system is an improvement based in the SCGMM solution proposed by Yu et al. (1) 

explained in section 3.2.2.1. 

The second and third systems propose to combine a region based probabilistic model 

(SCGMM) with a pixel-wise probabilistic model (1Gaussian) to achieve correct modeling of the 

foreground and background. 
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4.2 FOREGROUND SEGMENTATION AND TRACKING VIA SCGMM 

IN STATIC AND MOVING CAMERA SCENARIOS 

We propose this method for Foreground Segmentation and Tracking via SCGMM for Static and 

Moving Monocular Video Sequences to segment and track foreground objects in all possible 

video sequence environments: static or moving camera, with all kind of object speed, 

orientation, scale, and rotation.  

In the following lines, we expose the basis of this technique. 

 

4.2.1 Characteristics 

 

It makes objects foreground segmentation and tracking possible in moving 
and static camera sequences. 

Robustness towards object scale, orientation and rotation changes.  

Foreground and background modeled with SCGMM. 

It doesn’t allow real time analysis 
 
Table  1 Foreground Segmentation and Tracking Via SCGMM Characteristics 
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4.2.2 Basis 

After studying and testing the Joint tracking SCGMM method (1) (explained in section 3.2.2.1), 

we detected and analyzed its limitations with the objective of improving the system to adapt 

the algorithm for analyzing different kind of sequences other with moving camera. The main 

weaknesses are: 

 Updating only spatial components 

 High number of Gaussians to model the background 

 High computational cost  

 

Updating only spatial components 

As can be read in the state of the art, Yu et al. (1) proposes to update both the foreground and 

background SCGMM models at each frame, but only with respect to the spatial domain of the 

model, assuming that the color components remain constant. In our case, with the aim of 

segmenting foreground objects in moving camera sequences, this assumption is not valid 

because these sequences present background changes every frame.  

 

High number of gaussians to model the background 

In a standard video sequence it is normal to observe a background with several regions 

according to the scene. The joint tracking SCGMM algorithm (1), analyzes all the background 

with a fixed number of Gaussian distributions, then, to achieve a correct probabilistic model, a 

high number of Gaussians are needed (theoretically one for each different region). This factor 

increases the computational cost to maximize the data likelihood via EM algorithm. Faster 

computations can be reached by reducing the number of gaussians, but this produces an 

incomplete background modeling and as consequence, an incorrect foreground segmentation 

with false positives. In Figure 8 this phenomenon can be observed. Two segmentations are 

shown: one defining ten gaussians to model the foreground and twenty gaussians to model 

the background, and another one using twenty and forty to model foregroundd/background 

respectively. As it can be appreciate, we need to use more Gaussian distributions for modeling 

better foregroundd and background regions avoiding false detections.  

 

High computational cost 

The SCGMM method proposes to analyze all pixels of the image, even in situations where the 

foreground objects take up only a small region. This increases, like the previous point, the 

computational cost used to maximize the data likelihood via EM algorithm. 
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Original Image 
Joint Tracking SCGMM fg 

segmentation. 10 Gaussians fg and 
20 Gaussians bg 

Joint Tracking SCGMM fg 
segmentation. 20 Gaussians fg, 40 

Gaussians bg 

 

 

In this way, the Foreground Segmentation and Tracking via SCGMM for Static and Moving 

Monocular Video Sequences that we propose, adds two main modifications to solve the 

problems in (1) and detailed above. These modifications allow us to segment and track objects 

in moving camera sequences by minimizing the computational cost: 

 Updating the background model with spatial and color information:  

This modification allows us to adapt background SCGMM model with new background 

regions that appear in scene due to the camera motion. 

 

 Analyze only the nearest background region to the foreground object 

With this strategy, the SCGMM background model works over small regions that 

appear near the object, without using a high number of gaussians and hence, 

minimizing the computational cost due to reduced amount of background pixels to 

analyze, and the low number of gaussians needed to model correctly the background.  

  

Figure 8 Joint Tracking Fg segmentation analysis according to the number of gaussian distributions. 
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4.2.2.1 Work Flow 

In Figure 9 the workflow of our approach is shown, where it can be appreciated that the 

algorithm works only over the analysis region near the object to segment, it also maintains two 

different updates for foreground and background SCGMM. 

 

 

 

 

 

Formally, segmentation and tracking via SCGMM can be described as follows: 

SCGMM Joint Tracking 

Given the pixel analysis region  defined by the pixels of  inside the rectangular area with the 

following limits:  

 Top foreground pixel + d’ 

 Bottom foreground pixel + d’ 

 Left foreground pixel + d’ 

 Right foreground pixel + d’ 

 

Where d’ is a predefined size proportional to the object area that allows all possible 

movements of the object, so as to achieve a correct segmentation. A graphic example can be 

observed in Figure 10 where the foreground pixels are shown in white, , and the 

background pixels in black (The background pixels inside the analysis rectangle area performs 

). 

  

Energy 
minimization via 

Graph Cut

Fg GMM Updating in 
the Spatial Domain.

Bg GMM Updating in 
the Joint spacial-color 

domain

Jointly Tracking Fg/Bg GMM 
Components in Spatial 

Domain by EM

t, analysis region  

t->t+1 

analysis region 

t,analysis 

region  

Figure 9 The Iterative Circle of Foreground/Background Segmentation for One 
Frame 
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Figure 10 Example of  region 

 

Then, the algorithm runs as Section 3.2.2.1-SCGMM Joint Tracking shows, with some 

modifications: 

Given a first classification into foreground and background pixels, two SCGMM models  are 

learned during the system initialization period, in the first frame, by means of the EM 

algorithm according to Equation 3-27.  

In this way, considering the same assumption as Equation 3-28, the formulation and updating 

scheme for the spatial parts  (where s denotes the spatial features) given 

the new input region  is the same as proposed in Equation 3-29, Equation 3-31 and Equation 

3-32 but computed using the pixels of  region instead of all the pixels of the image . Also, 

the Expectation Conditional Maximization algorithm exposed in the state of the art (Figure 7, 

page 28) is adopted here to iteratively update the model parameters from their initial values. 

 

Fg GMM Updating in the Spatial Domain. Bg GMM Updating in the Joint spacial-

color domain 

As it has been said before, we propose to update only the spatial components of the SCGMM 

foreground model, maintaining the same updating as is proposed in (1). However, for 

Background updating, we propose to update both spatial and color domain of the model as 

follows:  

After the Graph cut minimization, the global SCGMM model of the image  is split again into 

the foreground and background model  according to Equation 3-32 The weights of 

each model are normalized according to Equation 3-33  

Now we assume the following hypothesis for the background:  
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Equation 4-1 

The background updating process consists in executing the standard Expectation Maximization 

algorithm for background SCGMM model without forcing the color means and variances to be 

constant using the.background pixels,  as input data. 

This algorithm can be observed in Figure 11: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy Minimization 

The Energy minimization step for the  region will be the same as proposed by Yu et al in (1), 

and explained in the State of the art section 3.2.2.1 

  

 

 

 

 

Expectation Maximization for background update 

1.st E-step, calculate the Gaussian component assignment probability for 

each pixel z: 

2.nd M-step, update the spatial and color means and variances, and the 

weight of each Gaussian component as: 

Where denoted all the background pixels inside the  region. 

Figure 11 EM algorithm for background spatial and color domains update 
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4.2.3 Implementation overview 

The algorithm needs one frame (the first one of the sequence) with the correct foreground 

segmentation mask of the object we want to segment, to initialize both foreground and 

background SCGMM models. The implementation steps are shown next: 

1. Define the number of Gaussian distributions for foreground and background models and 
specify the d’ distance. 

Common values are: ten or twenty gaussians for each model depending on the number of 
color regions that the object and the background have. And  . 

 

2. Initialize both foreground and background models with the first frame and its 
foreground object mask: 

 Execute EM algorithm for each model ( ) with its corresponding pixels 

(  to initialize color  and spatial mean and variance of each 

Gaussian distribution. 

 

3. For the next frames t>1: 

 Combine both foreground, background SCGMM models ( ) into one   model 

( ): 

 

Where the  foreground gaussians are placed in first position and the  

background gaussians are placed in the last positions, and: 

 

Where , # denotes the cardinality operator and can be understood as the 
region area.  

Then, these coverage percentages are used to update the gaussians weights: 

 

 Execute Expectation Conditional Maximization [Figure 7] algorithm for  model 

with its corresponding pixels  to update spatial mean and variance of each Gaussian 

distribution. 

The weights of the Gaussian distributions of each model are normalized as follows: 

 

Where . 

 

 Apply Energy Minimization Graph cut algorithm [section 3.2.2.1] 

A common value for  parameter is 200. 

Thus, we obtain the foreground segmentation mask for frame t, that is and   
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 Separate  SCGMM model ) into both SCGMM models  : 

First Gaussians of . 

Last Gaussians of . 

 

 Foreground-Background update: 

 Update foreground model  applying Expectation Conditional 

Maximization algorithm (Figure 7) for  model with its corresponding pixels 

 to update the spatial mean and variance of each foreground Gaussian 

distribution. 

 Update background model  applying Expectation Maximization algorithm 

(Figure 11) for  model with its corresponding pixels  to update the 

spatial and color (r,g,b) mean and variance of each background Gaussian 
distribution. 

 

 Analysis region  update: 

Detect the largest foreground connected component (object to segment) from the 
foreground segmentation mask. 

Apply the d’ distance to the top, bottom, left and right foreground pixel to create the 
analysis area. 
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4.2.4 Results 

In this section we show some segmentation results obtained with the foreground 

segmentation and tracking proposed method via SCGMM in static and moving camera 

scenarios. For this purpose, several video sequences with different difficulty degree will be 

analyzed. 

 

 

Figure 12 Soccer player foreground segmentation. 

Figure 12 shows the segmentation of a soccer player. A correct segmentation is obtained 

thanks to the correct foreground/background modeling due to the color difference between 

foreground and background regions.  

 

In Figure 13 the foreground segmentation of an skier can be observed. The segmentation 

results shows a correct definition of the foreground object under light background changes 

that are correctly modeled by the background model. 

  



Foreground segmentation and tracking based on foreground and background modeling techniques Our Approaches 

 

41 
 

 

 

Figure 13 Foreground segmentation results. Skier sequence. 
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Figure 14 F1 car foreground segmentation 10 Gaussians model the foreground and 10 Gaussians model the 
background. This is a sequence with camera motion, object movement and scale change 

Figure 14 shows some results in a sequence that presents special difficulty due to camera 

motion, object movement and 3D object rotation (resulting in a change in point of view), and 

camera zoom. It can be observed how thanks to background model color updating, new 

background regions that appear in each frame, are incorporated into the background model 

allowing a good enough object segmentation.  
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The object scale and point of view changes make difficult the adaptation of the foreground 

SCGMM model to the new situation (both in color and spatial domain) and may produce false 

negatives that will be propagated in the following frames. The same problem appears in the 

background model when region  increases its size, generating false positives detections.  

This kind of problems are common in several sequences because we are fixing the color 

foreground model to be constant. Propagation of these segmentation problems along the 

sequence will force us to improve the foreground color model updating as a future work. An 

example of this problem can be observed in Figure 15: 

 

 

Figure 15 F1 car foreground segmentation. False positives and negatives due to bad model adaptation. 

As it can be observed, when the object scale increases, 10 gaussians are not enough to model 

all foreground regions, neither, to model the background regions, forcing false positives and 

false negatives detections. 

 

Another result with a F1 sequence is presented in Figure 16, where the segmented object 

occludes another object in some of the frames. In this sequence, the color similarity between 

the object to segment and the background regions is the main challenge 
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Figure 16 F1 car sequence 2. Camera motion, object rotation, occlusion and position, scale changes. 

As it can be observed, we obtain a good segmentation, but some false negatives in the 

foreground region appear because of the similarity between some regions of the objects (in 

this case, the wheels). Foreground and background models rival each other to model these 

regions and eventually produce false positives  and false negatives detections. 
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Figure 17 Soccer player foreground segmentation 1. Multi-region background and camera movement 

Figure 17 shows a difficult scene due to the similarity between foreground and background 

regions which cause some false positives and false negatives in the boundaries of both regions. 

The swift background changes between frames, and the amount number of regions origins 

that the background model is not been able to model all regions correctly. 

 

 

4.2.4.1 Conclusions 

The foreground segmentation and tracking via SCGMM algorithm presents a correct object 

segmentation in static and moving camera sequences when there are clear differences 

between the object to segment and background regions. When there are object rotations or 

scale changes, our assumption of foreground object color invariance is not true, and same 

false positives and false negatives segmentation problems appear that could propagate it over 

the next frames. Also, in these cases, the models initialized in the first frame may not be 

enough to model all color-space regions, generating more false positives and false negatives.  

This approach that we propose, can be an interesting research line for the future because of 

the possibilities for segmenting objects that it offers. 
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4.3 FOREGROUND SEGMENTATION IN MONOCULAR STATIC 

SEQUENCES VIA SCGMM-1GAUSS COMBINED MODELS.  

In this approach we propose to improve the State of the Art in foreground segmentation for 

monocular static sequences by combining a color–spatial probabilistic model (SCGMM) to 

model the foreground object to segment, with a pixel-wise color model for background 

probabilistic modeling (1 Gauss/pixel modeling).  

The so popular pixel-wise segmentation methods like (6) (8) try to create a probabilistic 

background model by means of modeling each pixel individually with a color Gaussian 

distribution. In these methods, no foreground prior modeling is used. Then, a pixel will be 

considered as foreground if the input value doesn’t match the background model. The main 

characteristics of these methods are: 

 Good definition in foreground objects detection (due to pixel model and pixel decision) 

 False negative detections in foreground- background color similarity situations. 

In this way, it is important to highlight that pixel-wise methods provide a good foreground 

segmentation when the objects to segment have different color than the background pixels 

they are occupying. Otherwise, false negatives will appear in the foreground segmentation of 

these regions, which is common in a non controlled environment. 

The Joint Tracking SCGMM algorithm (1), proposes to model both the foreground and 

background with a Spatial-Color Gaussian Mixture Model. Both SCGMM models rival each 

other to model the pixels of the image. The main characteristics of this system are: 

 Correct foreground segmentation when foreground object and background regions 

that the foreground occludes have different colors. 

 In regions with foreground-background color similarity: 

o It improves the foreground segmentation obtained with common pixel-wise 

methods, reducing false negatives due to the object prior probability. 

o Less definition of foreground segmentation because both foreground and 

background SCGMM models try to model regions of the image (instead of 

individual pixels). This modeling may produce detection errors at small regions 

when there are few gaussians in the background or foreground model. For 

example, a black door handle in a white door may be detected as foreground if a 

person dressed in black is close to the door and the amount of background 

gaussians is not sufficient to place a Gaussian on the door handle.  

A comparison between both methods can be observed in Figure 18, this is a difficult scene for 

foreground segmentation due to color similarity between foreground and background regions. 

In this scene, there is one foreground object to segment (the person). 

In the SCGMM method some false negatives appear but also false detections because we are 

using both foreground and background model, and some parts of the background are not 

accurately modeled by the background model. Notice also how sensible it is to error 

propagation when the models are updated in each frame.  
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In 1Gauss pixel-wise foreground segmentation some false negatives appear because we are 

not using a probabilistic model for the object, and the color similarity between foreground and 

background makes that these pixels were associated to the background model. Also some false 

positives appear around the legs due to the shadows that the person projects in the ground 

regions. These false positives, originated by the shadows, can be removed with some 

techniques as Landabaso et al. propose in (26). We decide to examine the results without 

shadow removal to evaluate also our proposals in front of this common foreground 

segmentation problem. 

Original Image 
SCGMM Foreground 

Segmentation 

1 Gauss pixel-wise 

Foreground Segmentation 
Ground truth 

 

Figure 18 Foreground Segmentation comparison beween SCGMM region based system (in green background 
SCGMM, in red foreground SCGMM) and 1Gauss pixel-wise based system. 
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Thus, to achieve a correct foreground segmentation, (also in difficult scenes as we have seen in 

Figure 18), we propose two foreground segmentation methods that combine a pixel-wise and 

SCGMM models, taking the main advantages of each method. These methods are: 

 Foreground segmentation in monocular static sequences via SCGMM-1Gauss 

combined models.  

 Foreground segmentation in monocular static sequences via SCGMM-1Gauss joint 

tracking combined models.  
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4.3.1 Foreground segmentation in monocular static sequences via 

SCGMM-1Gaussian combined models 

 

In this section we explain the bases of this approach to improve the foreground segmentation 

in static sequences. The characteristics, work flow, implementation and results will be 

explained in the following lines. 

 

4.3.1.1 Characteristics 

 

Foreground objects segmentation for static monocular camera configuration. 

Use SCGMM to model the foreground.  

Use 1 Gaussian per pixel to model the background color. 

It doesn’t allow real time analysis 
 
Table 2 Foreground Segmentation in Monocular Static Sequences VIa SCGMM-1Gauss Combined 
Models 
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4.3.1.2 Bases 

We propose this system to improve the segmentation results for static sequences, obtained by 

combining pixel-wise methods (6) (8) and region based methods (1) (24). In this way we 

propose the following system that combines both models (Region Based model for foreground 

and pixel-wise for background). The reason for this choice is that the background is more 

stationary and it usually can be learned from frames with no foreground. Thus, it is possible to 

build an accurate model (pixel-wise) for it. However, the foreground is constantly changing and 

then a region model is more appropriate and robust to its changes. 

 

4.3.1.3 Work Flow 

The work Flow is showed in Figure 19: 

 

 

 

 

In this system, we are using two different probabilistic models, hence the initialization for each 

one will be different: 

 Foreground SCGMM: The First frame of the sequence is used to initialize the 

foreground model (color-space) by means of the EM algorithm (23). The input 

observations will be all the foreground object pixels . Hence, a initial foreground 

segmentation is needed. 

 Background 1Gauss/pixel: To initialize this probabilistic model, a training sequence is 

needed (a few number of frames without foreground objects) that allows the 

Gaussian’s color means and variances initialization for all pixels of the image . 

After the initialization is done, the algorithm operates as can be observed in Figure 19:   

Fg SCGMM 
Updating in the 
Spatial Domain.

Bg 1Gaussian 
Updating Color  

Domain

Energy minimization 
via Graph Cut

(Combine foreground 
model and background 

model)

t 

t->t+1 

Figure 19 Foreground segmentation in monocular static sequences via SCGMM-
1Gauss combined models Work Flow 
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In the first step Energy Minimization with Graph Cuts using foreground and background 

models is used to decide if each pixel of the image is foreground or background. Here it is 

assumed that from time  to , the object maintain its spatial position since the object 

movement is small between frames, which is common in a standard frame rate sequence. 

Thus, we will use the model from the previous frame to detect foreground regions in the 

current one ( ). 

The second step consists in updating both foreground and background models, the first one in 

spatial domain and the second one in color domain, taking advantage of the previous step 

segmentation using only the pixels of each class to update each model. 

 

Formally, the algorithm can be described as follows: 

Given one SCGMM foreground model defined by a set of parameter  learned during the 

system initialization period, in the first frame, we use the EM algorithm to maximize the data 

Likelihood of the foreground: 

 

Equation 4-2 

 are the five dimensional features of foreground pixels ;  denotes the 

initialization frame,  is the weight of the foreground Gaussian ,  its mean and  

its covariance matrix. 

Thus, we define: 

 

Equation 4-3 

 

where is the weight of the  Gaussian component in the mixture model,  is the input 

pixel  that can be split into  and  and  is 

the  Gaussian component: 

 

Equation 4-4 

Where  is the dimension of the SCGMM models.  
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Assuming that the spatial and color components of the SCGMM models are decoupled, i.e., the 

covariance matrix of each Gaussian component takes the block diagonal form,  

, with such decomposition, each GMM Gaussian component has the 

following factorized form:  

 

 
Equation 4-5 

 

Regarding the background 1Gauss/pixel background model  where the model defines 

one Gaussian per pixel (  gaussians), it is learned during the system initialization 

using the training sequence, to maximize the data Likelihood of the background as it is 

explained in section 3.1.1.2. That is, the mean and variance of each pixel computed indepently. 

We formulate the 3-dimensional pixel-wise model of the background proposed in (6) 

as a 5-dimensional background model for the overall image, to make the 

formulation consistent for comparing both foreground and background models in a 5-

dimensional Bayesian probabilistic framework. Thus, we define  

 

 

Equation 4-6 

Where  denotes the three dimensional color features .  are the color features 

of pixel .  is the weight of the  Gaussian of the background model,  denotes 

cardinality and  is understood as the image area (total amount of pixels in the image). 

 is the Gaussian distribution that models the  pixel as: 

 

Equation 4-7 

Where  is the dimension of the SCGMM models.  

Notice that the delta function in spatial domain in Equation 4-6 is like having a spatial Gaussian 

with zero variance. 

The energy minimization and updating steps of the work flow will be formulated in next 

subsections. 

  



Foreground segmentation and tracking based on foreground and background modeling techniques Our Approaches 

 

53 
 

Energy minimization  

The foreground/background segmentation problem is solved, like the system proposed in (1) 

and explained in Section 3.2.2.1-Energy minimization, using energy minimization via Graph 

Cuts. 

In this way, the energy–based function is formulated over the unknown labeling variables of 

every pixel,  , in the form of a first-order Markov random field (MRF) energy 

function: 

 

Equation 4-8 

The pair-wise smoothness energy term  is modeled as: 

 

Equation 4-9 

The data energy term  evaluates the posterior of each pixel belonging to the 

foreground or background.  

 

- The foreground posterior distribution is found via Bayes development. The posterior 

distribution of a class given the pixel in analysis  can be written as  

 

Equation 4-10 

Where the prior 

 

Equation 4-11 

is the coverage area of foreground from the previous frame. Notice that . 

 
- The background posterior is: 

 

Equation 4-12 
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where 

 

Equation 4-13 

is the prior probability (the background coverage area in the previous frame),  are the 

features of the  pixel.  

 

Given the SCGMM foreground model , and the 1Gaussian/pixel background model , 

our aim is to comparable both models for pixel classification via Energy minimization.  

 

Finally, both fg/bg models can be used in the energy minimization data cost  defined 

as: 

 

 

Equation 4-14 

Where  is computing using Equation 4-2 and Equation 4-12 for foreground and 

background analysis respectively. 
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Fg SCGMM Updating in the Spatial Domain  

We assume that from time t − 1 to t, the colors of the foreground objects do not change. 

Hence, the color parts of the SCGMM models remain identical: 

 

Equation 4-15 

where c denotes the color dimension,   the Gaussian distribution number and  

the color pixel information.  

Then, the updating process will update only the gaussians spatial dimension of the SCGMM 

model. For this purpose, Expectation Conditional Maximization (25) is used taking as data 

input, all foreground pixels detected in previous Energy minimization via Graph cuts step: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Expectation Conditional Maximization 

1.st E-step, calculate the Gaussian component assignment probability for 

each pixel z: 

2.nd M-step, update the spatial mean and variance, and the weight of each 

Gaussian component as: 

Where  denotes all pixels detected as foreground 

Figure 20 Expectation Conditional Maximization for foreground updating 
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Background 1Gaussian Pixel Model Updating Color Domain 

As it can be observed in pixel-wise foreground segmentation methods (6) (8) (State of the Art 

Section 3), the Background model has a color update of these Gaussians where the input value 

matches the background model. This update is important in outdoor scenes where progressive 

illumination changes occur, but also, it could be a problem in scenes where the foreground 

segmentation presents false negatives, generating an evolution of the model towards the 

foreground input value. To make our system robust, in our approach we maintain this 

background update, but taking as reference the foreground mask obtained from the previous 

step (Energy minimization via Graph cuts). Hence, the background updating process will be 

consistent with the foreground segmentation we are obtaining with the previous step.  

Then, our algorithm will update the background model, updating only the Gaussians that 

model pixels detected as background. Background updating equations for the Gaussian that 

models these pixels ( ) are: 

 

 

 

 

 

Equation 4-16 

Where  denotes the frame time,  is the color value of the  pixel detected as 

background,  is the mean of the Gaussian that models the  pixel,  is the variance,  

is a weight that defines the update speed (commonly =0.01) and  is the Euclidean distance 

between the mean and the input value of the pixel. 

Notice also, that the variance has a minimum threshold to avoid very small values that can 

produce some spurious foreground detections when the background color is very stable. 

Common value for  in  8 bit/channel domain is 20. 
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4.3.1.4 Implementation Overview 

The algorithm needs one frame (the first one of the sequence) with the correct foreground 

segmentation mask of the object we want to segment, to initialize foreground SCGMM model. 

Also, it needs a training sequence (about 50 frames) without foreground objects to initialize 

the background model. The implementation steps are shown next, continuing along: 

 

1- Define the number of Gaussian distributions for foreground model 

Common values are: ten or twenty gaussians for each model depending on the number of 
color regions that the object and the background have.  

 

2- Initialize both foreground and background models.  

 Foreground: using the first frame  foreground pixels  executing the EM 

algorithm for the SCGMM model  to initialize color  and position  of 

each Gaussian distribution. 

 Background: using the training sequence: 

o For , center all Gaussians means to the input value  

 

o For , update mean and variance with the updating 

equations: Equation 4-16 

 

3- For next frames  : 

 Apply Energy Minimization Graph cut algorithm for each pixel (Section 4.3.1-Energy 
minimization page 53). 

Common value for  is 200. 

Result: Foreground segmentation mask, obtaining and  

 

 Foreground SCGMM spatial domain updating: Execute the Expectation Conditional 
Maximization (Figure 20) algorithm for  model with its corresponding pixels  to 

update position  of each Gaussian distribution. 

 

 Background 1 Gaussian/pixel color domain updating: Use the updating equations 
Equation 4-16 to update all Gaussians  that model the pixels grouped in . 
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4.3.1.5 Results 

Now we show some segmentation results obtained with Foreground segmentation in 

monocular static sequences via SCGMM-1Gauss combined models in smart room static camera 

scenarios. For this purpose, several video sequences will be analyzed. 
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Figure 21 SCGMM-1Gauss combined models in smart room static camera scenario. In red the foreground 
Gaussian distributions in the spatial domain   

 

Figure 21 presents a smart room sequence with special difficulty because of the color similarity 

between the foreground subject and the background regions it is occupying. It can be 

observed how our approach maintain the object detection with some False detections. In 

Figure 22 we show a comparison between 1Gaussian pixel-wise analysis (6), SCGMM analysis 

(1) and our approach. 
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Original Image 
SCGMM Foreground 

Segmentation 

1 Gauss pixel-wise 

Foreground 

Segmentation 

SCGMM-1Gauss 

combined models  
Ground truth 

 

 

As we can observe in Figure 22 and Figure 23, the SCGMM-1Gauss combined models that we 

propose, offers better foreground segmentation than separated SCGMM and 1 Gauss 

methods. It can be observed how the object’s silhouette is maintained and the false negatives 

are minimized, thanks to the correct modeling of the object with SCGMM. False positives are 

also reduced due to the accuracy in the background modeling that pixel-wise techniques 

present. Regarding to the shadows, our method avoids a high percentage of falses positives 

originated by this effect. Our approach combines the optimal features of pixel-wise 

background segmentation and region based SCGMM foreground segmentation achieving a 

more robust segmentation in foreground-background similar regions. 

  

Figure 22 Foreground segmentation comparison between SCGMM joint tracking method, 1Gauss pixel-wise 
method and the SCGMM-1Gauss method 
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Original Image 
SCGMM Foreground 

Segmentation 
1 Gauss pixel-wise 

Foreground Segmentation 
SCGMM-1Gauss 

combined models  

 

 
Figure 23 Up: Foreground segmentation comparison in smart room between SCGMM joint tracking method, 
1Gauss pixel-wise method and the SCGMM-1Gauss method. Down: Results of SCGMM-1Gauss combined models 
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4.3.1.6 Conclusions 

 

In spite of the appearance of some false positive detections, the proposed system improves 

the foreground segmentation obtained by other systems commonly used today. Using region 

based foreground probabilistic modeling combined with a pixel-wise probabilistic modeling, 

we are taking advantage of the strength of each method:  

 Precision thanks to pixel wise background modeling  

 Prior information of the object thanks to SCGMM foreground modeling.  

 

The technique proposed has lead us to the next proposal (point 4.3.2), to improve the results. 
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4.3.2 Foreground segmentation in monocular static sequences via 

SCGMM-1Gauss joint tracking  

 

In this section we explain the bases of this approach to improve the foreground segmentation 

in static sequences. The characteristics, work flow, implementation and results will be 

explained in the following lines. 

 

4.3.2.1 Characteristics 

 

Foreground objects segmentation for static monocular camera configuration. 

Use SCGMM to model the foreground.  

Use 1 color Gaussian per pixel to model the background. 

Foreground model updating before decision 

It doesn’t allow real time analysis 
 
Table 4-1 Foreground Segmentation in Monocular Static Sequences Via SCGMM-1Gauss Joint 
tracking Characteristics 
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4.3.2.2 Bases 

After studying the results of the previous approach (Section 4.3.1), we developed this new 

approach: foreground segmentation in monocular static sequences via SCGMM-1Gauss joint 

tracking to improve the segmentation results for static sequences. With this method we 

propose the a system that combines both models (Region Based model for foreground and 

pixel-wise for background) for Energy minimization and also for the Expectation Maximization 

joint tracking step. In this way, the GMM of the foreground updates its spatial components 

taking into account the background model information, before the classification is performed 

by the graph cuts algorithm. 

 

4.3.2.3 Work Flow 

This foreground segmentation system is based, like in the previous approach (Section 4.3.1), in 

a combination between a pixel-wise model, to model the background pixels, with a region 

based model (SCGMM) to model the foreground. In contrast to our previous approach, we 

propose to include a first step to track the foreground model only in the spatial domain, and 

using the background pixel-wise model information for this aim.  

The work Flow is showed in Figure 24: 

 

 

 

 

 

As in Section 4.3.1, since we are using two different models for foreground/background 

probabilistic modeling, we need different kind of initializations for each one: 

  

Energy 
minimization 
via Graph Cut

Fg GMM Updating 
in Spatial Domain.

Bg 1 Gaussian  
Updating in color 

domain

Tracking Fg GMM 
Components in Spatial 

Domain by EM 
combining Fg/Bg models

t  

t->t+1 
t 

Figure 24 Foreground Segmentation in Monocular Static Sequences via SCGMM-
1Gauss Joint Tracking. Work Flow. 
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 Foreground SCGMM: First frame of the sequence is used to initialize the foreground 

model (color-space) by means of the EM algorithm (23). The input observations will be 

all the foreground object pixels . Hence, initial foreground segmentation is 

needed. 

 Background 1Gauss/pixel: To initialize this probabilistic model, a training sequence is 

needed (a few number of frames without foreground object) that allows the 

Gaussian’s color means and variances initialization for all pixels of the image . 

As can be observed in Figure 24, after the initialization, our algorithm proposes:  

1. Tracking Foreground GMM Components in Spatial Domain by EM combining 

Foreground/Background models adapts the foreground model from the previous 

image t-1 to the current frame t. This tracking is obtained via Expectation Conditional 

Maximization algorithm for spatial domain, and using the background model 

information performs an accurate modeling over all the pixels of the image. 

 

2. Energy minimization via Graph Cuts decides if each pixel of the image is foreground or 

background via Energy Minimization with Graph Cuts using foreground and 

background models.  

 

3. Foreground/Background updating consists in updating both foreground and 

background models, the first one in spatial domain and the second one in color 

domain, taking advantage of the previous step using only the pixels of each class to 

update each model. 

 

Formally, foreground segmentation in monocular static sequences via SCGMM-1Gauss joint 

tracking can be described as follows: 

We define two probabilistic models for foreground and background modeling, as it is explained 

in Section 4.3.1-Work Flow, where: 

The foreground is modeled via one SCGMM model defined by a set of parameters , 

learned during the system initialization period in the first frame. We use the EM algorithm to 

maximize the data Likelihood of the foreground: 

 

Equation 4-17 

 are the five dimensional features of foreground pixels ;  denotes the 

initialization frame,  is the weight of the foreground Gaussian ,  its mean and  

its covariance matrix. 
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Thus, we define: 

 

Equation 4-18 

 

where is the weight of the  Gaussian component in the mixture model,  is the input 

pixel  that can be split into  and  and  is 

the  Gaussian component, assuming that the spatial and color components of the SCGMM 

models are decoupled. 

 

The background is modeled via 1Gauss/pixel background model  where the model 

defines one Gaussian per pixel (  gaussians), it is learned during the system 

initialization using the training sequence, to maximize the data Likelihood of the background as 

it is explained in section 3.1.1.2. That is, the mean and variance of each pixel computed 

independently. 

We formulate the 3-dimensional pixel-wise model of the background proposed in (6) 

as a 5-dimensional background model for the overall image. Thus, we define  

 

 

Equation 4-19 

Where  denotes the three dimensional color features .  are the color features 

of pixel .  is the weight of the  Gaussian of the background model,  denotes 

cardinality and  is understood as the image area (total amount of pixels in the image). 

 is the Gaussian distribution that models the  pixel as: 

The joint tracking, energy minimization and updating steps of the work flow will be formulated 

in next subsections. 

SCGMM Joint Tracking 

The aim of this step of the process is to propagate foreground SCGMM model over the rest of 

the sequence, since both the foreground and background objects can be constantly moving. 

For this purpose, our algorithm obtains an approximate foreground SCGMM model for the 

current frame before the graph cut segmentation.  
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It is assumed that from time t − 1 to t, the colors of the foreground objects do not change. 

Hence, the color parts of the SCGMM models remain identical: 

 

Equation 4-20 

where c denotes the color dimension,   the Gaussian distribution number and  

the color foreground pixel information.  

The updating scheme for the foreground spatial parts  given the new 

input image , and the pixel-wise background model where s denotes the spatial features, is 

as follows : 

First it is formed a global SCGMM model of the whole image by combining the foreground 

SCGMM and background 1Gauss pixel-wise models of the previous frame: , where 

superscript 0 indicates that the parameter set is serving as the initialization value for the later 

update. 

The probability of a pixel of the image  given the global model  can be 

expressed as the combination of both foreground and background models: 

 

 

 

Equation 4-21 

Where  denotes the index of pixel . Denote as the number of Gaussian 

components in the combined image level SCGMM model, where we assume the first  

Gaussian components are from the foreground SCGMM, and the last  Gaussian 

components are from the background 1Gaussian/pixel model. 

The Gaussian term over the color dimension is defined in Equation 4-20 for foreground, and 

remains fixed at this moment for background and foreground. The Gaussian component 

weights ,  are different from their original values in their individual 

foreground or background  due to  and : 

 

 

Equation 4-22  
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Thus, given the pixels in the current frame , the objective is to obtain an updated parameter 

set  for foreground model over the spatial domain, which maximizes the joint 

data likelihood of the whole image, for all  , i.e., 

 

Equation 4-23 

The Expectation Conditional Maximization algorithm shown in Figure 25 is adopted here to 

iteratively update the spatial foreground model parameters from their initial values  

keeping the color parameters unchanged from the previous frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that we consider the weights constant, assuming that the background model is present 

in all the image, as an independent model and should not lose weight, and the foreground will 

change only the spatial features, maintaining the weights constant to be consequent with 

background weights assumption.  

 

 

 

 

 

 

Where    ;   

 

Expectation Conditional Maximization 

1.st E-step, calculate the foreground Gaussian component assignment probability for each 

pixel : 

2.nd M-step, update the spatial mean and variance of the foreground gaussians, 

considering a constant weight for each Gaussian of the model: 

Figure 25 Expectation Conditional Maximization algorithm for foreground/background joint tracking 
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Energy minimization  

The foreground/background segmentation problem is solved, like our previous system shows 

in section 4.3.1.3-Energy minimization, using energy minimization, evaluating the posterior 

probability of each class (Equation 4-10 and Equation 4-12) as Data function  in the 

energy minimization function shown in Equation 4-8. 

 
 

Foreground-Background updating  

After we have obtain the foreground segmentation result from the previous step Energy 

Minimization, we propose to update the foreground model only in color domain, and 

background model in spatial domain, both in the same way as section 4.3.1.3 shows in the 

subsections Fg SCGMM Updating in the Spatial Domain and Background 1Gaussian Pixel Model 

Updating Color Domain respectively. 
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4.3.2.4 Implementation Overview 

As previous system, the algorithm needs one frame (the first one of the sequence) with the 

correct foreground segmentation mask of the object we want to segment, to initialize 

foreground SCGMM model. Also, it needs a training sequence without foreground objects to 

initialize the background model. The implementation steps are shown next, continuing along: 

1- Define the number of Gaussian distributions for foreground model 

Common values are: ten or twenty gaussians for each model depending on the number of 
color regions that the object and the background have.  

 

2- Initialize both foreground and background models.  

 Foreground: using the first frame  foreground pixels  executing the EM 

algorithm for the SCGMM model  to initialize color  and position  of 

each Gaussian distribution. 

 Background: using the training sequence: 

o For , center all Gaussians means to the input value  

 

o For , update mean and variance with the updating 

equations: Equation 4-16 

 

3- For next frames  : 

 Combine foreground SCGMM and background 1 Gaussian pixel wised models 
( ) into one   model ( ): 

 

Where the  foreground gaussians are placed in first position and the  

background gaussians are placed in the last positions, and: 

 

Where , # denotes the cardinality operator and  can be understood as 
the region area.  

Then, these coverage percentages are used to update the gaussians weights: 

 

 Apply Energy Minimization Graph cut algorithm for each pixel (Section 4.3.1-Energy 
minimization page 53). 

Common value for  is 200. 

Result: Foreground segmentation mask, obtaining and  
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 Foreground SCGMM spatial domain updating: Execute the Expectation Conditional 
Maximization (Figure 20) algorithm for  model with its corresponding pixels  to 

update position  of each Gaussian distribution. 

 

 Background 1 Gaussian/pixel color domain updating: Use the updating equations 
Equation 4-16 to update all Gaussians  that model the pixels grouped in . 
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4.3.2.5 Results 

In this section, we show some segmentation results obtained with foreground segmentation in 

monocular static sequences via SCGMM-1Gauss joint tracking technique in smart room static 

camera scenarios. For this purpose, several video sequences will be analyzed. 

Original image 
SCGMM-1Gauss 

combined models 
SCGMM-1Gauss joint 

tracking 
SCGMM-1Gauss joint 

tracking (in color) 

 

Figure 26 Foreground segmentation comparison between the SCGMM-1Gaussian combined models and SCGMM-
1Gaussian joint tracking methods. 

 

Figure 26 shows a comparison between SCGMM-1Gaussian combined models and SCGMM-

1Gaussian combined models with joint tracking. As it can be observed, the previous approach 

detects less false negatives detections than the joint tracking approximation, but in opposite, 

this previous approach presents more false positives detections that, in some cases, may not 

be removed with an area filter because they belong to the same connected component as the 

correct one. Also, it can be observed how the previous approach presents more robustness to 
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the shadow effect. In spite of this, Figure 27 shows how the current foreground segmentation 

offers better results than 1 Gaussian pixel wise method in terms of false negatives and shadow 

errors and SCGMM joint tracking method in terms of false positives.  

 

Original image SCGMM  
1 Gauss pixel-

wise  

SCGMM-1Gauss 
combined 

models 

SCGMM-1Gauss 
joint tracking Ground truth 

 

Figure 27 Smart room 1. Foreground segmentation comparison between the SCGMM joint tracking method, 1 
Gaussian pixel-wise method, SCGMM-1Gaussian combined models method and SCGMM-1Gaussian joint tracking 
method. Smart Room1. 

 

In Figure 28 we can observe the results in another sequence of a smart room, where the 

foreground segmentation of this system contains more false negatives than the previous one 

without the tracking step, but it maintains a better foreground segmentation than the other 

methods avoiding false positives compared with SCGMM method, and improving the false 

negatives compared to 1 Gaussian pixel wise foreground detection. 
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Original Image 
SCGMM Foreground 

Segmentation 

1 Gauss pixel-wise 

Foreground 

Segmentation 

SCGMM-1Gauss 

combined models  
SCGMM-1Gauss 

joint tracking 

 

 

Figure 28 Smart room 2. Up: Foreground segmentation comparison between the SCGMM joint tracking method, 1 
Gaussian pixel-wise method, SCGMM-1Gaussian combined models method and SCGMM-1Gaussian joint tracking 
method. Down: Results of SCGMM-1Gauss joint tracking.  
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4.3.2.6 Conclusions 

 

In the results we have observed how the proposed system improves the foreground 

segmentation obtained with other systems of the state of the art. Also, this system reduces 

the false positives detections that the previous method (explained in 4.3.1) presents, but 

increasing false negatives detections. This can occur because we are maintaining the weights 

of the gaussian distributions fixed for the joint tracking step, and this can cause that some 

foreground gaussians increase their spatial variance without the corresponding weight 

modification. As a consequence, the probability of this foreground Gaussian distributions 

decreases. We tried to modify the weights of foreground and background distributions in the 

Expectation Conditional Maximization algorithm in the joint tracking step, but this cause that 

background distributions with similar color to the foreground or with some color modifications 

due to the presence of shadows reduce their weight when the foreground model has a close 

spatial position. As a consequence, in each EM iteration the background gaussians of these 

regions reduce their weight and finally the foreground model occludes these regions. This 

results in false positive detections in the foreground segmentation of the image. We are 

working in this issue to improve the foreground segmentation. 

This system allows precise foreground segmentation with consistent foreground region 

detection thanks to combine the pixel-wise background model with the region-based 

foreground model. How to improve the foreground segmentation reducing the false negatives 

detections will be a future research line. 
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5 CONCLUSIONS 

In the development of this project entitled Monocular Video Foreground Segmentation via 

regularized Spatial Color Gaussian Mixture Models, region-based and pixel-wise foreground 

segmentation techniques and tracking systems have been studied. After the study of some 

systems of the state of the art exposed in Section 3(Running Gaussian average, Stauffer and 

Grimson GMM, SCGMM joint tracking, Connected Components based tracking, Mean Shift 

based tracking), the main problems of these methods have been detected, and three main 

contributions to the state of the art have been developed on this project: 

 Adaptation of the foreground segmentation and tracking technique via SCGMM 

for static and moving monocular video sequences in order to speed up 

computations and allow the foreground segmentation and tracking in highly 

dynamic backgrounds scenarios. 

 Foreground segmentation in monocular static sequences via SCGMM-1Gauss 

combined models.  

 Foreground segmentation in monocular static sequences via SCGMM-1Gauss joint 

tracking 

In the first system we propose to segment and track foreground objects in monocular 

moving camera sequences via SCGMM (Spatial Color Gaussian Mixture Model) 

foreground/background modeling techniques. We modify the technique proposed in (1) 

in such a way that the background and foreground are modeled in a small window 

containing the foreground object and which moves along with it while we track the 

object. This allows to speed up computations and also, with the proposed color updating 

of the background, to adapt the algorithm for moving camera sequences analysis. The 

results obtained with this method, denote that this system is a good solution to segment 

and track objects in monocular moving sequences. 

In the second and third systems, we have proposed a foreground segmentation for 

monocular static sequences by means of a novel technique combining SCGMM region 

based modeling to model the foreground and 1Gauss Running average pixel-wised to 

model the background. These systems are explained in sections 4.3.1 and 4.3.2 

respectively. We experimentally show how they improve the foreground segmentation 

obtained with other systems in difficult environments where the foreground/background 

similarity makes difficult the foreground segmentation from background. In these cases, 

the proposed methods reduce the false positive and false negative detections. 
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6 FUTURE WORK 

 

To continue our work in foreground segmentation and tracking areas, there are several 

research lines that can be carried on: 

Future work in this area should continue improving the foreground segmentation systems 

developed. For moving camera objects segmentation and tracking it should be developed an 

appropriate updating for foreground and background models, to improve the adaptation in 

cases of scaling, rotation and color changes of the objects. Also, occlusion between objects has 

to be analyzed to develop techniques for solving these situations. For static camera sequences, 

also the models updating should be improved, to reduce false positive and false negatives 

detections when foreground and background regions present similar colors. Furthermore, to 

improve the system for several objects detections is needed to implement a complete 

foreground segmentation and tracking system, may be combining pixel-wise foreground 

segmentation methods to initialize the object, continuing the foreground segmentation for 

next frames, with the methods we propose in this thesis.  
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Annex 
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I ANNEX 

I.I ENERGY MINIMIZATION VIA GRAPH CUTS 

 

Many vision problems, especially in early vision, can naturally be formulated in terms of energy 

minimization. The classical use of energy minimization is to solve the pixel-labeling problem, 

which is a generalization of such problems as stereo, motion, and image restoration . The input 

is a set of pixels  and a set of labels . The goal is to find a labeling  (i.e., a 

mapping from  to ) which minimizes some energy function (27). 

In this way, for a video sequence taken by a fixed camera, the foreground segmentation can be 

formulated as follows (28) (29):  

Each frame image contains N pixels. Let S be the set of indices referring to each of the N pixels. 

Given a set of pixels ,  S  of current frame at time-step t , the task of object detection is to 

assign a label  to each pixel  S , and obtain 

. 

In most of the work in the literature, object detection was attempted by first modeling the 

conditional distribution  of feature value  at each pixel i independently. The model 

used can be either parametric (6) (8) or non-parametric (30) (31) based on a past window of 

observed feature values at the given pixel. The background and foreground model will be 

detailed presently. Assume the observed feature value of image pixels are conditionally 

independent given l, thus: 

 

Equation 6-1 

However, it is clear that neighboring labels are strongly dependent on each other. The 

neighborhood consistency can be modeled with a Markov Random Field prior on the labels: 

 

Equation 6-2 

 

Equation 6-3 

where  determines the pair-wise interaction strength among neighbors and is the four-

neighborhood of pixel i . 
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Given the Markov Random Fields prior and the likelihood model above, moving object 

detection in a given frame reduces to maximum a posterior  solution. According to the 

Bayes rule, the posterior is equivalent to 

 

Equation 6-4 

 is the density of  which is a constant when  is given.  

Finally, the MAP estimate is the binary image that maximizes Equation 6-4: 

 

 

Equation 6-5 

The discrete cost function (Equation 6-5) leads to an standard form of the energy function that 

can be solved for global optimum using standard graph-cut algorithms (32): 

 

Equation 6-6 

where  is a neighborhood system on pixels.  is a function derived from the 

observed data that measures the cost of assigning the label  to the pixel p (How appropriate 

a label is for the pixel).  measures the cost of assigning the labels  to the 

adjacent pixels p,q and is used to impose spatial smoothness. The role of  is to balance the 

data  and smooth cost . 

At the borders of objects, adjacent pixels should often have very different labels and it is 

important that E not overpenalize such labelings. This requires that V be a nonconvex function 

of . Such an energy function is called discontinuity-preserving.  

Energy functions like E are extremely difficult to minimize, however, as they are nonconvex 

functions in a space with many thousands of dimensions. They have traditionally been 

minimized with general-purpose optimization techniques (such as simulated annealing) that 

can minimize an arbitrary energy function. As a consequence of their generality, however, such 

techniques require exponential time and are extremely slow in practice. In the last few years, 

however, efficient algorithms have been developed for these problems based on graph cuts. 
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I.I.I GRAPH CUTS 

Suppose  is a directed graph with non negative edge weights that has two special 

vertices (terminals), namely, the source s and the sink t. An s-t-cut (which we will refer to 

informally as a cut) C = S; T is a partition of the vertices in  into two disjoint sets S and T such 

that and . The cost of the cut is the sum of costs of all edges that go from S to T: 

 

Equation 6-7 

The minimum s-t-cut problem is to find a cut C with the smallest cost. Due to the theorem of 

Ford and Fulkerson [14], this is equivalent to computing the maximum flow from the 

source to sink. There are many algorithms that solve this problem in polynomial time with 

small constants. 

It is convenient to note a cut C = S,T by a labeling f mapping from the set of the vertices 

 to {0, 1}, where f( )=0 means that  and f( )=1 means that .  

Note that a cut is a binary partition of a graph viewed as a labeling; it is a binary-valued 

labeling. While there are generalizations of the minimum s-t-cut problem that involve more 

than two terminals (such as the multi-way cut problem), such generalizations are NP-hard. 

 
 

I.I.II ENERGY MINIMIZATION VIA GRAPH CUTS 

In order to minimize E using graph cuts, a specialized graph is created such that the minimum 

cut on the graph also minimizes E (either globally or locally). The form of the graph depends on 

the exact form of V and on the number of labels.  

In certain restricted situations, it is possible to efficiently compute the global minimum. This is 

also possible for an arbitrary number of labels as long as the labels are consecutive integers 

and V is the L1 distance.  

However, a convex V is not discontinuity preserving and optimizing an energy function with 

such a V leads to over-smoothing at the borders of objects. The ability to find the global 

minimum efficiently, while theoretically of great value, does not overcome this drawback.  

Moreover, efficient global energy minimization algorithms for even the simplest class of 

discontinuity-preserving energy functions almost certainly do not exist. Consider 

, where the indicator function  is 1 if its argument is true and otherwise 0. This 

smoothness term, sometimes called the Potts model, is clearly discontinuity-preserving.  

However, graph cut algorithms have been developed that compute a local minimum in a 

strong sense. These methods minimize an energy function with nonbinary variables by 

repeatedly minimizing an energy function with binary variables.  
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