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Introduction

The singularities of germs of plane curves constitute an old and nowadays very attractive
field of research which combines techniques and viewpoints from different mathematical
fields such as Geometry, Algebra, Analysis or Topology.

There is a well-established theory for analysis and classification of curve singularities
since the classical time. We emphasize the algebraic approach of Zariski, and the geometric
approach of Enriques, with the development of the theory of infinitely near points.

In this memory we follow the geometric approach of Casas’ boof [1] for studying of the
singularities of plane germs of curves, which updates Enriques’ works to modern standards
and reviews the modern development of the theorey from the point of view of infinitely
near points.

Recently, Favre and Jonsson have considered the valuation theory from a new point
of view. They give a Real-Tree structure to the some set of real valuations of the ring of
curve germs. This allows them to obtain some important results in dynamical systems
(see [3] or [2]).

This memory has a two sided goal: on one hand, we want to acquire skills with the
tools and concepts of the singularity theory and the valuative theory, both the classical
ones and the more recent ones. On the other hand, we want to study in depth the different
implicit concepts and notions involved in the Favre and Jonsson’s new approach, such as
the ultrametric space structure of the set of irreducible germs of plane curves and the tree
structure of the valuations.

The last goal allowed us to obtain new results, such as Theorem 1.3.1 or Theorem
1.5.22, which gives a new characteritzation of the equisingularity class of an irreducible
curve.

This memory is structured in the following way: the first chapter is devoted to the
study of the ultrametric space of irreducible plane germs of curves.

In Section 1.1 we introduce Casas’ theory of infinitely near points, which includes the
definition of proximity, the Noether formula and the Enriques Diagrams, which are very
strong tools used in all the memory.

In Section 1.2 we give some previous definitions for our study. This section is divided
into the classical definitions, mainly coming from Casas, Favre and Jonsson’s works, and
some other new definitions introduced in this work.

Section 1.3 contains some results on the distance between curves. Theorem 1.3.1 is a
remarkable result in the study of the ultrametric space, whereas Proposition 1.3.3 will be
very usefull in all the forthcoming sections.

Section 1.4 is devoted to give some methods for computing the distance between curves
and comparing them. In particular, the triangles of the ultrametric space of plane germs
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of curves are studied.
Section 1.5 describes the set of inverse distances of one fixed irreducible curve. This

set is a topological invariant, and it is related to most other invariants. In this section
a method for computing this invariant is given, and we also prove that this invariant
determines the equisingularity class of the curve.

Chapter 2 is devoted to the study of the valuations of the space of the plane germs of
curves.

In Section 2.1 we give some basic properties about general classical valuative theory.
Section 2.2 describe R-Trees, which is a central object in this work because of Favre

and Jonsson approach of the valuative theory.
Section 2.3 relates the valuative theory in the ring of plane germs of curves with Casas’

point of view. Concepts like blowing-up a valuation are introduced, and finally we give a
classification of the valuations in that ring.

Section 2.4 is devoted to the Valuative Tree described by Favre and Jonsson in [4].
General properties are given, and we give some other properties, using the concepts in-
troduced in the previous sections.

I gratefully acknowledge the assistance that I have received from many people during
the development of this work. In particular I would like to thank Jesús Fernández and
Charles Favre from their patience when I asked them questions. V́ıctor González helped
me on the understanding of Casas, Favre and Jonsson’s works, and he cooperated in the
development of our results. Finally, this text never would have been finished without the
constant advice, help and guide of my advisor Maria Alberich-Carramiñana.

Barcelona, June of 2008.
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Chapter 1

The ultrametric space of germs of

irreducible plane curves

This section is devoted to the study of the space of irreducible germs of plane curves, C,
seen as an ultrametric space. We will study properties of C as a metric space, such as
comparison of distances between curves, measures of how far are the curves, etc. In order
to achieve this goal, we need to understand the singularities of the germs of plane curves.
We have chosen the geometrical approach that uses infinitely near points to describe
singularities, following the book of Casas [1], which updates the classical approach of
Enriques’ theory.

1.1 Infinitely near points

The concept of infinitely near points was first introduced by M. Noether (1884) and their
theory was developed by Enriques (1915). We will follow the modern approach that
presents infinitely near points as points lying in different surfaces by means of a birational
morphism, named blowing-up.

Hence, this section is devoted to the study of the blowing-ups of points in a complex
surface and its properties. This concept is very important in the classical complex bira-
tional algebraic geometry, and in this section only the main results will be given. All the
results given in this section are proved in [1], Chapter 3. An interested reader can found
there an extensive study of the concepts introduced here.

1.1.1 Blowing-up

Let S be a complex surface, and fix a point O ∈ S. Let U ⊂ S be an open neighbourhood
of O, and let x, y local coordinates at U . Let us consider the projective (complex) line,
P1, and [z0, z1] some projective coordinates. Write

U = {(x, y, [z0, z1]) ∈ U × P1 | xz1 − yz0 = 0}.

Lemma 1.1.1. U is a complex connected surface. The projection

π : U × P1 → U
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induces an analytic morphism which will be also called π,

π : U → U.

Furthermore, the restriction

π|U\π−1(O) : U \ π−1(O) → U \ {O}

is an isomorphism.

Let S be the surface obtained by patching together U and S \{O} by the isomorphism
π|U\π−1(O). We can extend π from S to S, such that π|S\π−1(O) is an isomorphism from

S \ π−1(O) to S \{O}. Then π : S → S is called the blowing-up of O on S. The projective
line E = π−1(O) is called the exceptional divisor of π.

Proposition 1.1.2. Let π′ : S ′ → S be another blowing-up from S to O, obtained from
an open set U ′ and coordinates {x′, y′}. Then there exists an unique S-isomorphism
ϕ : S → S ′. Furthermore, ϕ induces a projectivity (lineal) between E and E ′ = π′−1(O).

This proposition justifies that the blowing-up is well defined.

1.1.2 Transforming germs of curves

Lemma 1.1.3. Let C be a curve on S, and let C = π∗(C) be its pullback. Then it holds
that C = C̃ +mO(C)E, where C̃ is a curve of S with finite intersection with E, that is,
[E, C̃] <∞.

The curve C̃ is called strict transform of C, and the curve C is called total transform
of C.

The intersection points between the strict transform of a curve C and the exceptional
divisor E depends only on the tangent cone of C.

Theorem 1.1.4. There is a linear projectivity τ between the pencil of tangent lines to
S at O and the exceptional divisor E, such that for any curve C on S, C is tangent to
the line l at O if and only if C̃ passes through τ(l). Moreover, the multiplicity of l as a
component of the tangent cone of C is equal to [E, C̃]τ(l).

Corollary 1.1.5. It holds that mO(C) =
∑

p∈E [C̃, E]p.

Corollary 1.1.6. If C is smooth at O, then C̃ is smooth at p, the (unique) point lying
on C̃ and on E. If C is reduced, then C̃ is also reduced.

Let C be a non-irreducible curve. Let Cl be the curve formed from all the branches
of C with principal tangent l. Then

Proposition 1.1.7. Let p = τ(l). Then the germ C̃p = (C̃, p) depends only on Cl.
Furthermore, the correspondence C → C̃p induces a bijection between the germs at origin
with only principal tangent l and the germs at p with no component equal to Ep.

Corollary 1.1.8. Let p be a point of the exceptional divisor E. Let (D, p) be a germ of a
curve in (S, p) which does not contain Ep. Then there is a unique germ (C,O) in (S,O)
such that C̃ = D.
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1.1.3 Infinitely near points

The exceptional divisor E is called first infinitesimal neighbourhood of O, and its points
are called points in the first infinitesimal neighbourhood of O or just points in the first
neighbourhood of O.

By induction, take i > 0 and we can define the set of points in the i-th neighbourhood
of O as all the of the points in the first neighbourhood of p for any p in the i − 1-th
neighbourhood of O. By convention, O is in the 0-th neighbourhood of O. The points
in any i-th neighbourhood of O are called points infinitely near to O, and the set of that
points are denoted by NO. On the other hand, the points of S are called ordinary points.

There is a partial order at NO: we say p 6 q if and only if q is infinitely near to q.
Notice that an infinitely near point p is an ordinary point in some surface Sp, obtained
after doing some blowing-ups.

πp : Sp = Si → Si−1 → · · · → S1 = S → S

If p 6= O is an ordinary point of S, it will be identified with π−1(p).
Let C be a germ on (S,O), and take p ∈ NO. Let us consider the successive total and

strict transformations of C, until obtaining Cp and Cp on Sp. There are called strict and
total transformation of C with origin at p. We will say that C passes through or contains
p if Cp is not the empty germ. Notice that if C passes through p, then it passes also
through any q < p. The set of all infinitely near points contained in C will be denoted by
K(C).

The multiplicity of C at p is defined as the multiplicity at p of Cp, and it will be denoted
by mp(C). In particular, mp(C) > 0 if and only if C passes through p. If mp(C) = 1, p
is called simple point of C, and if mp(C) > 1, p is called multiple point of C.

Remark 1.1.9. Notice that if C is an irreducible germ, then there is only one point in
any infinitessimal neighbourhood. Therefore, K(C) is a totally ordered set.

Theorem 1.1.10 (Noether Formula). Let C, D be two germs of curves defined in (S,O).
The intersection multiplicity [C,D]O is finite if and only if C and D share finitely many
infinitely near points. In this case it holds

[C,D]O =
∑

p∈K(C)∩K(D)

mp(C)mp(D).

Remark 1.1.11. [C,D]O <∞ if and only if C and D do not have any common branch.
In particular, two different branches of a germ share finitely many infinitely near points.

Lemma 1.1.12. Let C, D be two germs of curves defined in (S,O), and let C̃ and D̃ be
their strict transforms after blowing-up O. Then

[C,D]O = mO(C)mO(D) +
∑

p∈E

[C,D]p.

Corollary 1.1.13. Let C and D be reduced germs at O. Then C = D if and only if
K(C) = K(D).
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1.1.4 Proximity

Let p, q ∈ NO. We say that q is proximate to p if it belongs, as an ordinary point or as
an infinitely near point, to the exceptional divisor Ep origined after blowing-up p. It is
denoted by q → p.

In other words, q is proximate to p if either q ∈ Ep or q ∈ Ẽp.

Remark 1.1.14. 1. Let q be a proximate point to p. Then q is in the first neighbour-
hood of p or in the first neighbourhood of a point proximate to p.

2. Ep is a smooth curve, and therefore it is irreducible at any point. Then, in the first
neighbourhood of a point proximate to p there is exactly one point proximate to p.

3. q → p implies that p 6 q, but the converse does not hold.

Theorem 1.1.15 (Proximity equalities). Let C be a germ of a curve on (S,O), and let
p be a point of C. Then it holds

mp(C) =
∑

q→p

mq(C)

Corollary 1.1.16.

mp(C) >
∑

mq(C),

where the sum runs on the points q in the first neighbourhood of p.
In particular, if C is irreducible, then the sequence of multiplicities is a non-increasing

one.

Lemma 1.1.17. If q is an infinitely near to O, then q is proximate either exactly to one
point, or it is proximate exactly to two points.

If q is proximate to exactly one point, it is called free. Otherwise, it is called satellite.

Theorem 1.1.18. Let C be an irreducible germ, and let p, q be two points on C, q in the
first neighbourhood of p. Let n = mp(C), n′ = mq(C).

Write
n = a0n

′ + r1
n′ = a1r1 + r2
r1 = a2r2 + r3
· · ·
rn−1 = anrn

the Euclidean divisions. Then the points qj in the j-th neighbourhood of q are proximate
to p for all 1 6 j < a0, and have multiplicity mqj (C) = n′. If r1 = 0 (if and only if
n = 1), then the point in the a0-th neighbourhood of q is free. Otherwise, it is proximate
to p and has multiplicity mqj (C) = r1.

Furthermore, for any 1 6 k 6 n and 1 6 j < rk, write i = a0 +a1 + . . .+ak−1 +j. The
point qi in the i-th neighbourhood of q is proximate qi−j−1 and has multiplicity mqi(C) =
ak. Write i′ = a0 +a1 + . . .+ak. If k = n, then the point in the i′-th neighbourhood of q is
free. Otherwise, it is proximate to qj′, where j′ = a0 + . . .+ ak−1 − 1, and has multiplicity
rk.
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Proposition 1.1.19. The points in the first neighbourhood of O are free. There is exactly
one satellite point in the first neighbourhood of a free point, and there are exactly two
satellite points in the first neighbourhood of a satellite point.

Proposition 1.1.20. If q is a satellite point of C, then q is proximate to a multiple point
of C. In particular, there is no satellite point on a smooth curve.

1.1.5 Resolution of singularities, equisingularity class and En-

riques Diagrams

Theorem 1.1.21. A reduced germ contains at most finitely many multiple infinitely near
points.

Corollary 1.1.22 (Resolution of Singularities). Let C be a reduced germ of curve. There
exists a finite sequence of blowing-ups such that the strict transform of C is smooth.

Theorem 1.1.23 (Embedded Resolution of Singularities). Let C be a reduced germ of
curve. There exists a finite sequence of blowing-ups

π : Si → Si−1 → · · · → S1 → S

such that C̃, the strict transform of C, is smooth and has only normal crossings (that is,
transverse intersections) with π−1(O).

Let C be a germ of curve, and let p ∈ K(C). The point p is called singular if either p
is a multiple point of C, or p is a satellite point, or p precedes a satellite point of C. By
Theorem 1.1.23, the number of singular points in a reduced germ is finite. Take a reduced
germ C, and let C1, . . . , Cr be the branches of C. Let pi be the first non-singular point
of Ci. Then q is a singular point of Ci if and only if q < pi. Let us define the set S(C) as
follows:

S(C) = {q ∈ NO | q 6 pi for some i}.

Let C,D be two reduced germs. We say that C and D are equisingular if there exists a
bijection ϕ : S(C) → S(D) such that for any p, q ∈ S(C), p > q if and only if ϕ(p) > ϕ(q),
and p→ q if and only if ϕ(p) → ϕ(q).

Theorem 1.1.24. Let C,D be two germs of curves. Then C and D are topological
equivalents if and only if they are equisingulars.

Let us introduce a graph, in fact a tree, which will be called Enriques Diagram, and
which will be used to describe the singularity of a curve, encoding the information of the
nature of the infinitely near points. The Enriques diagram of a curve C is a tree, the
root corresponds to the point O, and the other nodes correspond to the other points of
K(C). There is an edge between the node of p and the node of q if and only if q is in the
first neighbourhood of p. The edge is curved and tangent if q is free, and it is straight
otherwise. If p and q have been represented, q is in the first neighbourhood of p, and
there are more points on C proximate to p, these points are drawn in a straight halfline
which starts at q and is orthogonal to the edge pq.

In this memory the Enriques diagrams will be represented satisfying these supplemen-
tary conventions:
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• The origin is the bottom left point.

• If there is a straight halfline after a curve arc, this line is oriented to the bottom,
that is going down.

1.1.6 Clusters and weighted clusters

A subset K ⊂ NO is called a cluster if for all q ∈ K and p < q it holds that p ∈ K. A
pair K = (K, ν), where ν : K → Z is a map and K is a cluster, is called weighted cluster.
It is usual to denote ν(p) by νp. We say that K is consistent if for any p ∈ K it is satisfied

νp >
∑

q→p, q∈K

νq.

1.2 Preliminary definitions

1.2.1 Classical definitions

In this section we will give some basic definitions about algebraic geometry of plane germs
of curves in C2. The reader can found more details about these definitions in [1] and [4].

Let C be the set of analytic and formal germs of irreducible curves in (C2, O). For any

C ∈ C, we define the curve valuation νC : R → R ∪ {∞} as follows: νC(ψ) = C·(ψ=0)
mO(C)

,

where R = OC2,O is the ring of holomorphic germs at the origin in C2, · means intersection
multiplicity between the two curves C and ψ = 0, and mO(C) is the multiplicity of the
curve C at the point O. If C : ψ = 0, we also write νψ = νC .

The set C is equipped with an ultrametric distance: dC(C,D) = mO(C)mO(D)
C·D

. There
are some well known properties of ultrametric spaces with the topology defined by the
ultrametric distance:

• Every open ball is an open and a closed subset.

• Every point of a ball is its center, that is, if q ∈ Bp(r), then Bp(r) = Bq(r).

• The intersection of two balls B1, B2 is either empty, or B1, or B2.

• Ultrametric inequality: If d(a, b) 6= d(a, c), then d(b, c) = max{d(a, c), d(b, c)}.

Let NO be the set of points infinitely near to O. This set is equipped with a natural
order: p < q if and only if q ∈ Np. Given a curve C ∈ C, let K(C) be the set of points
lying on C infinitely near to O. We call it cluster of the curve C. Let p ∈ K(C) be a point
infinitely near to O. The set of points on C infinitely near to p is denoted by Kp(C).

1.2.2 More definitions

In this section we will give some definitions, which will be used throughout this chapter.
Let F (C) = {O = p0(C), p1(C), p2(C), . . .} ⊂ K(C) be the (totally ordered) set of

free points on C (with p0(C) < p1(C) < p2(C) < . . .). Let 1 = n0(C) > n1(C) > . . . be
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the normalized multiplicity1 of the curve C at the points p0(C), p1(C), . . .. Let bk(C) be
the normalized multiplicity of C at the immediate predecessor (free or satellite) point of
pk(C). For convention, b0(C) = 1. We define ti(C) := C·Di

mO(C)mO(Di)
, where Di is any curve

which passes through pj(C) with normalized multiplicity nj(C) for all j with 0 6 j < i,
through pi(C) with normalized multiplicity bi(C), but does not pass through pi+1(C) and
it is an smooth curve after pi(C). We have, for example, that t0(C) = 1, t1(C) = 1+n1(C).
It is clear that pi(C), ni(C), bi(C) and ti(C) depend only on the curve C. The magnitude
ti(C) will be used for calculating the distance between two curves in a quick way. We will
show that the set of inverse distances {ti(C)} determines the equisingularity class of the
irreducible curve C (see forthcoming Section 1.5).

1
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28

49

49
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126
5

1

1

1

1

3

777

21
28

49

49
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126
3

1

O = p0(C)

O = p0(C)

p1(C)

p1(C)

p2(C)

p2(C)

p3(C)

p3(C)

p4(C)

p4(C)

p5(C)

p5(C)

C

C

D3(C)

D3(C)

Example 1

Example 2

Figure 1.1: Two examples of the Enriques diagram of some curve C. In blue, the curve
D3(C). In red, the points of F (C).

Examples:

1. Let C be a curve with Enriques diagram as in Example 1 of Figure 1.1. The set
F (C) contains the points p0(C) (the origin), p1(C), p2(C), p3(C), . . .

The normalized multiplicities are n0(C) = 126/126 = 1, n1(C) = 1, n2(C) = 7/18,
n3(C) = 1/18, n4(C) = 5/126, ni(C) = 1/126, for all i > 4.

The normalized multiplicities at the immediate predecessor are b0(C) = 1, b1(C) =
1, b2(C) = 1, b3(C) = 1/18, b4(C) = 1/18, bi(C) = 1/126, for all i > 4.

1The normalized multiplicity of a curve C at a point p is the multiplicity of C in p divided by the
multiplicity of C at the origin O.
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The inverse distances are t0(C) = 126
126·1

= 1, t1(C) = 126+126
126·1

= 2, t2(C) =
126+126+49

126·1
= 43/18, t3(C) = 126·18+126·18+49·7+···

126·18
= 5425

2268
= 775

324
.

2. If C is the curve of Example 2, the normalized multiplicities are n0(C) = 1,
n1(C) = 1, n2(C) = 7/18, n3(C) = 1/42, ni(C) = 1/126, for all i > 3, and
b0(C) = 1, b1(C) = 1, b2(C) = 1, b3(C) = 1/18, bi(C) = 1/126, for all i > 3.

In the same way, if K = (K,m) is an unibranched cluster, we define F (K) = {p1(K), . . .},
as the set (finite or not) of the free points of K. Similarly, we can define ni(K), bi(K) and
ti(K).

These following properties can be easily proved:

Lemma 1.2.1. 1. pk(C) is the immediate predecessor of pk+1(C) if and only if bk(C) =
nk(C).

2. If pk−1(C) is the immediate predecessor of pk(C) then bk(C) = nk−1(C).

3.

bk(C) =
gcd(nk−1(C)mO(C), bk−1(C)mO(C))

mO(C)
.

1.3 On the distance between curves

In this section it will be proved that there are curves at any (rational) distance of any
curve. This result will be proved in forthcoming Theorem 1.3.1. Next, let us discuss a
case where this result is easily checked to be true, which will help to point out where the
difficulty of the proof is hidden.

Keep the notation introduced in the previous section. Assume that C is an irreducible
curve and t ∈ Q, k ∈ N satisfy that tk−1(C) < t < tk(C) and nk(C) = bk(C). In this case
the successor of pk(C) in K(C) is free, that is, in the Enriques diagram of K(C) there is
not a stair beginning at the point pk(C). In order to attain the desired distance t−1, we
will take a curve D that passes through p1(C), . . . , pk−1(C) with normalized multiplicity
ni(C) and through pk(C) with a suitable multiplicity which is fixed by considering only
the multiplicities at the points preceding pk(C). Since, by hypothesis, C does not share
any point with D after pk(C), the result easily follows (see Figure 1.2).

However, in the case nk(C) > bk(C), C and any chosen D may share a number of
satellite points after pk(C), and hence the result will not be as easy as before. We need
to study carefully the distances in these cases.

Theorem 1.3.1. Let C be an irreducible curve and take t ∈ Q, t > 1. There exists D ∈ C
such that dC(C,D) = 1

t
.

Before proceeding to the proof, we need some preliminary results.

Lemma 1.3.2. Let 0 < n1 < n0 be two natural numbers. Let n0 = q1n1 + n2, n1 =
q2n2+n3, . . . , nr−1 = qrnr be the Euclidean divisions. Then n1n0 = q1n

2
1+q2n

2
2+· · ·+qrn2

r.

11



O = p0(C)

pk(C)

C

D

Figure 1.2: If pk(C) is a free point, for every multiplicity (lower than nk(C)) there are
curves that pass through this point with that multiplicity.

Proof. We will argue by induction on r. If r = 1, then n0 = q1n1, so n0n1 = q1n
2
1.

In the general case, we apply the induction hypothesis on n1 and n2: n1n2 = q2n
2
2 +

· · ·+ qrn
2
r . So n0n1 = (q1n1 + n2)n1 = q1n

2
1 + q2n

2
2 + · · · + qrn

2
r .

Proposition 1.3.3. Let C,D ∈ C be two curves for which pi(C) = pi(D) for any 0 6 i 6

N , but pN+1(C) 6= pN+1(D). Suppose that nN(C) > nN(D). Then

C ·D

mO(C)mO(D)
= tN−1(C) + bN(D)nN (D).

Proof. Since pi(C) = pi(D) at any 0 6 i 6 N , we have that ni(C) = ni(D) for all
0 6 i < N . Applying the Noether formula (theorem 3.3.1 of [1]) we have that

C ·D

mO(C)mO(D)
=

∑

q∈K(C)∩K(D)

mq(C)

mO(C)

mq(D)

mO(D)
=

∑

q∈K(C)∩K(D)
q<pN (C)

mq(C)

mO(C)

mq(D)

mO(D)
+

+
∑

q∈K(C)∩K(D)
pN (C)6q<pN+1(C)

mq(C)

mO(C)

mq(D)

mO(D)
= tN−1(C) +

∑

q∈K(C)∩K(D)
pN (C)6q<pN+1(C)

mq(C)

mO(C)

mq(D)

mO(D)
.

If the point pN+1(C) is in the first neighbourhood of the point pN(C), the result is
clearly true, since in the last sum there is only one point, pN (C), and nN(C) = bN (C) =

bN(D), so mq(C)
mO(C)

= nN (C) = bN(D) and mq(D)
mO(D)

= nN(D).

Now assume that pN+1(C) is not in the first neighbourhood of pN(C). We distinguish
two cases:

1. bN(C) < nN(C) < nN (D). Let C ′ be a curve which passes through pi(C) for any
0 6 i < N with normalized multiplicity ni(C

′) = ni(C), and through pN (C) with
normalized multiplicity nN(C ′) = bN (C). Applying the Noether formula (theorem
3.3.1 of [1]) it is obtained

dC(C
′, C) =

1

tN−1(C) + nN(C)bN (C)
< dC(C

′, D) =
1

tN−1(C) + nN(D)bN(C)
.

Now, by the ultrametric inequality this implies that dC(C,D) = 1
tN−1(C)+nN (D)bN (D)

,

as wanted.

12



2. bN(C) < nN (C) = nN(D). In this case Lemma 1.3.2 is used for computing the last
sum:

∑

q∈K(C)∩K(D)
pN (C)6q<pN+1(C)

(
mq(D)

mO(D)

)2

=
1

mO(D)2
mN (D)mp(D) = nN(D)bN (D),

where p is the point immediate predecessor of pN(C).

Remark 1.3.4. Suppose that we have two curves C and D like in the case 2 of the proof
of Proposition 1.3.3. Let C ′ be a curve that passes through pi(C) for any 0 6 i < N with
normalized multiplicity ni(C

′) = ni(C), and through pN(C) with normalized multiplicity
nN(C ′) = bN (C). In that case C ′, C,D form an equilateral triangle.

1
11

2

5

7

12

12 1
11

1

34

7

11

11

2

1
11

2

5

7

12

12

1

2

OO

DD

C
C

Case 1: nN−1(C) < nN(C) < nN (D) Case 2: nN−1(C) < nN(C) = nN (D)

Figure 1.3: Two examples that illustrate the two cases occurring in the proof of Proposi-
tion 1.3.3.

Proposition 1.3.3 enable us to calculate the distance between two curves. In particular,
it provides a very useful method when bN(C) > nN(C) > nN(D), that is, the last point
in K(C) ∩K(D) is a satellite point. In this case, it will be said that C and D split up at
a stair.

Examples:

1. Let C,D be curves that have Enriques diagram as in case 1 of Figure 1.3. We
have that N = 2, n0(C) = 1, n1(C) = 1, n2(C) = 7/11, and n0(D) = 1, n1(D) = 1,
n2(D) = 7/12. So t1(C) = 2. By the Noether formula:

C ·D

mO(C)mO(D)
=

11 · 12 + 11 · 12 + 7 · 7 + 4 · 5 + 3 · 2 + 1 · 2

12 · 11
=

341

132
=

31

12
=

= t1(C) + n1(C)n2(D).

2. Let C,D be curves that have Enriques diagram as in case 2 of Figure 1.3. We
have that N = 2, n0(C) = n0(D) = 1, n1(C) = n2(D) = 1, n2(C) = n2(D) = 7/12.

13



So t1(C) = 2. By the Noether formula:

C ·D

mO(C)mO(D)
=

12 · 12 + 12 · 12 + 7 · 7 + 5 · 5 + 2 · 2 + 2 · 2 + 1 · 1 + 1 · 1

12 · 12
=

=
372

144
=

31

12
= t1(C) + n1(C)n2(D).

As a consequence of Proposition 1.3.3 we obtain a recursive formula for ti(C):

Corollary 1.3.5. Let C be an irreducible curve. Then the following formula holds:

ti(C) = ti−1(C) + ni(C)bi(C).

In particular, if pi+1(C) is in the first neighbourhood of pi(C), then ti(C) = ti−1(C) +
ni(C)2.

Now, Theorem 1.3.1 can be proved:

Proof of Theorem 1.3.1. The succession {ti(C)}i∈N tends to infinity because dC(C,C) = 0.
So there exists N ∈ N such that tN (C) 6 t < tN+1(C). If t = tN(C), then the proof
is trivial: we take a curve D such that passes through pi(C) with relative multiplicity
ni(D) = ni(C) (0 6 i 6 N) but that does not pass through pN+1(C). From the definition
of tN(C), the distance between C and D is 1/tN(C).

Suppose now that tN (C) < t < tN+1(C). We define k ∈ Q as follows:

k =
t− tN (C)

bN+1(C)
.

Then k < nN+1(C) because tN+1(C) = tN(C) + bN (C)nN(C) < t = tN (C) + bN (C)k.
Let D be a curve that passes through pi(C) with relative multiplicity ni(D) = ni(C)

(0 6 i < N) and through pN(C) with relative multiplicity nN (D) = k < nN(C). By
Proposition 1.3.3, D satisfies what we want.

1.4 Computation of the distance between curves

In this section the previous results will be applied to compare the distance between any
two curves. We will show an intuitive method for studying the triangles in the ultrametric
space C and we will also give an easy method for computing the distance between two
curves, using the Noether formula and Proposition 1.3.3.

1.4.1 Distance between two curves

Let C,D ∈ C be two curves. Let us consider K(C) and K(D) their clusters of infinitely
near points. Let us draw the Enriques diagram of K(C) and K(D), and let us write
their normalized multiplicities (nk(C) and nk(D) respectively) at their free points, and
their normalized multiplicities at the immediate predecessors of the free points (bk(C) and
bk(D) respectively). Then the distance between C and D can be computed by using the
following formula:

14



Proposition 1.4.1. Let C,D be two irreducible curves. Then

1

dC(C,D)
=

∑
bk(C) min{nk(C), nk(D)},

where the sum runs over all points pk ∈ F (C) ∩ F (D).

Proof. This formula is derived directly from Proposition 1.3.3 and Corollary 1.3.5.

Remark 1.4.2. Notice that in all points of the set F (C) ∩ F (D) holds bk(C) = bk(D),
and all points but perhaps the last satisfy nk(C) = nk(D).

OO

DD

C
C

Example 1: 1/dC(C,D) = 1 · 1 + 1 · 1 + 7/12 · 1Example 2: 1/dC(C,D) = 1 · 1 + 1 · 1 + 7/12 · 1

b0 = 1b0 = 1
n0 = 1n0 = 1

b1 = 1b1 = 1
n1 = 1n1 = 1

b2 = 1b2 = 1
n2(C) = 7/11, n2(D) = 7/12 n2 = 7/12

Figure 1.4: Two examples of computing the distance between two curves.

1.4.2 Triangles in C

In this section the ultrametric inequality will be used to compare the relative position
of three curves. In an ultrametric space all the triangles are isosceles or equilateral.
Therefore, in our case, given three curves, either they form an equilateral triangle, or
there are two nearer curves that are equidistant from the other curve.

Given two irreducible curves, if the last point that they share is free, we say that the
curves split up at a free point ; otherwise we say that the curves split up at a stair (cf. the
Enriques Diagrams of the curves).

First, the case where a pair of curves splits up at a free point is considered.

Proposition 1.4.3. Let C,D,E be three curves such that any pair of them splits up at
a free point. Then the nearer curves are those that share more free points. If the three
curves share the same points, then they form an equilateral triangle.

Proof. The result is obtained by applying directly the Noether formula (see Figure 1.5).

Now we will show that this fact also applies to the general case. If two curves share
more free points than the third, then these two curves are closer than the third. This
result will be proved in forthcoming Theorem 1.4.9. Let us check first an easy case:

15



C

C

D
D

E
E

Example 1 Example 2

Figure 1.5: Two examples of isosceles triangles. The curves D and E are closer than C.

Proposition 1.4.4. Let C,D,E ∈ C be curves. Suppose that F (D) ∩ F (E) ) F (C) ∩
F (D) ∩ F (E) and np(C) 6 np(D) = np(E) at the last point p in F (C) ∩ F (D) ∩ F (E).
Then dC(C,D) = dC(C,E) > dC(D,E).

Proof. According to Remark 1.4.2, nq(C) 6 nq(D) = nq(E) for all point q in F (C) ∩
F (D)∩F (E). Then the result follows applying the Noether formula (see Examples 1 and
2 in Figure 1.6).

Remark 1.4.5. It is worth to notice that if pk ∈ F (D) ∩ F (E), then {p ∈ F (D) | p <
pk} ⊂ F (E), from the definition of cluster.

Therefore, it cannot occur that F (D)∩F (E) ) F (C)∩F (D)∩F (E) and F (C)∩F (D) )
F (C)∩F (D)∩F (E) at the same time, i.e., Proposition 1.4.4 cannot be applied two times
at the same curves for concluding that dC(C,D) > dC(D,E) > dC(C,D).

Now the case of three curves sharing the same common free points is considered. Let
C1, C2, C3 ∈ C be curves such that F (C1) ∩ F (C2) = F (C1) ∩ F (C3) = F (C2) ∩ F (C3) =
{p1, . . . , pN}. Let C be a curve which passes through pN with multiplicity nN (C) = bN(C)
(i.e., such that the point q ∈ C in the first neighbourhood of pN is also a free point), and
such that F (C) ∩ F (Ci) = {p1, . . . , pN} for all i = 1, 2, 3. (see figure 1.7).

Let di be the distances between the curves Ci and C for all i = 1, 2, 3. These distances
di = dC(Ci, C) can be easily computed by virtue of Proposition 1.3.3:

1

di
= tN(C) + bN (C)nN(Ci).

Lemma 1.4.6.

dC(Ci, Cj) = max{di, dj}.

Proof. Suppose that di 6= dj. Then

dC(Ci, Cj) = max{dC(C,Ci), dC(C,Cj)} = max{di, dj}.

Suppose now that di = dj. Then C,Ci, Cj form an equilateral triangle (see Remark
1.3.4). Therefore, dC(Ci, Cj) = di = dj.

After ordering the three curves if needed, we can assume that d1 6 d2 6 d3.
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Example 1 Example 2

Example 3 Example 4

Figure 1.6: More examples of isosceles triangles. The curves D and E are closer than C.

O

C

C1

C2

C3

Figure 1.7: Three curves C1, C2 and C3 with the same common free points and the curve
C.

Proposition 1.4.7. The curves C1, C2 and C3 form an equilateral triangle if and only if
d2 = d3. Furthermore, if d2 < d3, then C1 and C2 are closer than C3.

Proof. By Lemma 1.4.6, the following formulas hold:
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dC(C1, C2) = d2 dC(C1, C3) = dC(C2, C3) = d3

We distinguish two cases:

d1 6 d2 < d3. In this case, dC(C1, C2) < dC(C1, C3) = dC(C2, C3) = d3, namely the three
curves form an isosceles triangle.

d1 6 d2 = d3. In this case the curves form an equilateral triangle.

Figure 1.8 illustrates all the cases listed in the proof of Proposition 1.4.7.

O

O

O

O

C1

C1

C1

C1

C2

C2

C2

C2

C3

C3

C3

C3

d1 < d2 < d3: An isosceles triangle d1 = d2 < d3: An isosceles triangle

d1 < d2 = d3: An equilateral triangle d1 = d2 = d3: An equilateral triangle

Figure 1.8: Different kinds of triangles formed by curves sharing the same common free
points.

Summarizing the previous results we have:

Corollary 1.4.8. Let C1, C2, C3 three curves sharing the same common free points, and
let pk be the last common free point. Suppose that nk(C1) > nk(C2) > nk(C3). Then, the
three curves form an equilateral triangle if and only if nk(C2) = nk(C3). Otherwise, C1

and C2 are closer than C3.

To conclude the study of the case of three curves sharing the same common free
points, we will give a method for comparing the distances d1, d2 and d3 at first sight
on the Enriques diagrams of the singularities of the curves. Let C1, C2 be two curves
splitting up at a satellite point q. Let pk be the last common free point of C1 and C2. Let
C be a curve such that passes through pk with multiplicity nk(C) = bk(C), and we define
di = dC(C,Ci).
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We give a is a simple rule to know whether d1 < d2, d1 > d2 or d1 = d2: “going right
is nearer to C than going free, which is nearer to C than going down”. This must be read
on the drawing of the Enriques diagrams of these curves. Assume that the drawing of
the stair at which the curves split up starts going down. At the splitting point q there
are three possibilities for the Enriques diagram of Ci to go on, depending on the nature
(satellite or free) of the point in the first neighbourhood of q which Ci passes through:
either go to a free point (and we say Ci is going free), or go to one of the two satellite
points, which, due the convention on the drawing of the Enriques diagrams, one lies on
a straight segment going to the right (and we say Ci is going right), and the other on a
straight segment going down (and we say Ci is going down).

Therefore our rule says that, when the curves C1 and C2 split up, if one of them is
going right, then it is nearer from C than the other; if there is a curve going down, it is
farer from C than the other; if the two curves have a free point just after the last common
point, then they are equidistant from C. Figure 1.9 illustrates all these cases.

OO

OO

OO

OO

C1

C1

C1

C1

C1C1

C1C1

C2C2

C2C2

C2C2

C2C2

d1 < d2d1 < d2

d1 < d2

d1 < d2d1 < d2

d1 < d2 d1 = d2d1 = d2

Figure 1.9: All the different ways of splitting up at a satellite point.

The proof of this rule is based in basic properties of continued fraction.s It is known
that the structure of the stair of a Enriques diagram of a curve C that starts at a free point
pi is given by the continued fraction of the rational number ni(C)/bi(C) (see Theorem
1.1.18), so this result is obtained by applying Proposition 1.5.11 and Noether Formula.

Let us reconsider the case of three curves C,D,E which F (D) ∩ F (E) ) F (C) ∩
F (D) ∩ F (E). A generalization of Proposition 1.4.4 will be given:

Theorem 1.4.9. Let C,D,E ∈ C be curves. Suppose that F (D)∩F (E) ) F (C)∩F (D)∩
F (E). Then dC(C,D) = dC(C,E) > dC(D,E).

Proof. The case where np(C) 6 np(D) = np(E) for all p ∈ F (C)∩F (D)∩F (E) is proved
in Proposition 1.4.4. Let us prove the other case.

Suppose now that nN (D) = nN (E) < nN(C), where pN is the last common free
point of C,D and E (see Example 3 or Example 4 of Figure 1.6). Let us consider two
auxiliary curves F and G (see Figure 1.10): take F a curve which passes through pN with
normalized multiplicity nN (F ) = nN(D) = nN(E) and sharing no other free point with D
or E after pN , and take G a curve which passes through pN with normalized multiplicity
nN(F ) = bN (D) = bN (E) = bN (C) and sharing no other free point with C after pN .
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Figure 1.10: Examples of the auxiliary curves F and G.

Now C, F and D share the same common free points and we are under the hypothesis
of Lemma 1.4.6 and Proposition 1.4.7. Let us define dC = dC(C,G), dF = dC(F,G), dD =
dC(D,G). By Lemma 1.4.6, it holds that dC < dF = dD. Notice that G is play the role of
the curve C of Lemma 1.4.6. By Proposition 1.4.7, C, F,D form an equilateral triangle.

Now let us compare the distance dC(E,C) with the distances dC(E,D) and dC(D,C).
We know that dC(D,C) = dC(D,F ), but, owing to Proposition 1.4.7, dC(D,F ) > dC(D,E).
Therefore

dC(D,C) > dC(D,E) ⇒ dC(E,C) = max{dC(D,C), dC(D,E)} = dC(D,C) > dC(D,E).

Hence C,D,E form an isosceles triangle, and DE is the shortest side, as we wanted
to show.

1.5 The inverse distances ti(C)

This section 1.5 is devoted to describe the set of inverse distances of one fixed irreducible
curve, which will be denoted by T (C). This set is a topological invariant, and it is related
to most other invariants. We will give some methods for computing this set and we also
prove that this set determines the equisingularity class of the curve C.

1.5.1 Continued fractions

In this section we recall some basic results about continued fractions. The reader is
referred to [6], Chapter I or in [5], Chapter X for their proof. Continued fractions will be
a key tool to work in the space C, c.f. Theorem 1.1.18.

Let α = α0 be a real number. Let a0 be the integral part of α0 (i.e., the highest integer
less or equal than α0). If α is an integer, then α = a. Otherwise, there exists another real
number α1 > 1 such that α0 = a0 + 1

α1
. Inductively, we let

αn = an +
1

αn+1

,
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where an is the integral part of αn, and αn+1 > 1 is a real number (if an 6= αn).
It will be written as

[a0, a1, . . . , an] := a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

an

.

It is clear that the process will finish if and only if α = α0 is rational. In this case, it
holds α = [a0, a1, . . . , an].

Let a0, . . . , an, . . . be integers such that ai > 0 for all i > 0. We define

pn(a0, . . . , an) :=





0 if n = −2,

1 if n = −1,

anpn−1(a0, . . . , an−1) + pn−2(a0, . . . , an−2) if n > 0.

Similarly we define

qn(a0, . . . , an) :=





1 if n = −2,

0 if n = −1,

anqn−1(a0, . . . , an−1) + qn−2(a0, . . . , an−2) if n > 0.

It will be written pn(α) and qn(α) or just pn and qn instead of pn(a0, . . . , an) and
qn(a0, . . . , an) when no confusion is possible.

Proposition 1.5.1. For any n > 0, pn and qn are integers, relatively primes, and it holds

pn
qn

= [a0, . . . , an].

Corollary 1.5.2. Let x be any real number. Then

[a0, a1, . . . , an−1, x] =
xpn−1 + pn−2

xqn−1 + qn−2
.

Let α be a real number. We construct the finite or infinite sequence {a0, a1, . . .}. Then
the sequence of fractions {pn/qn} is called the continued fraction of α.

Proposition 1.5.3. For any n > 1 we have

qnpn−1 − pnqn−1 = (−1)n.

Corollary 1.5.4.

[a0, . . . , an−1] − [a0, . . . , an] =
(−1)n

qnqn−1

.

Corollary 1.5.5. {q1, q2, . . .} is a strictly increasing sequence of positive integers, i.e.,
0 < q1 < q2 < · · ·
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Proposition 1.5.6. For any n > 2 we have

qnpn− − pnqn− = (−1)n−1an.

Corollary 1.5.7.

[a0, . . . , an−2] − [a0, . . . , an] =
(−1)n−1an
qnqn−2

.

Proposition 1.5.8. For any n > 1 we have

qn
qn−1

= [an, . . . , a1].

Proposition 1.5.9. The sequence {p2n/q2n} is strictly increasing and converge to α, and
the sequence {p2n−1/q2n−1} is strictly decreasing and also converge to α. Furthermore, we
have

1

2qn+1
<

1

qn + qn+1
< |qnα− pn| <

1

qn+1
.

Proposition 1.5.10. Let [a0, . . . , an] = [b0, . . . , bm] be two continued fractions with an,
bm > 1. Then n = m and ai = bi for all i.

Proposition 1.5.11. Let [a0, . . . , ar−1, br, . . . , bn], [a0, . . . , ar−1, cr, . . . , cm] two continued
fractions with bn > 1, cm > 1, and suppose that br > cr. Then

{
[a0, . . . , ar−1, br, . . . , bn] > [a0, . . . , ar−1, cr, . . . , cm] if r is even,

[a0, . . . , ar−1, br, . . . , bn] < [a0, . . . , ar−1, cr, . . . , cm] if r is odd.

1.5.2 The inverse distances at satellite points. The set T (C)

Let C be a germ of an irreducible curve at O. Given p ∈ K(C) (free or satellite), we
define tp(C) as

tp(C) =
1

dC(C,Dp)
,

where Dp is a curve which passes through pand satisfying that the point in the first
neighbourhood of p lying on Dp is free and that Dp share no points with C after p. We can
also define np(C), bp(C) in all (free and satellite) points of K(C): np(C) is the normalized
multiplicity of the curve C at the point p, and bp(C) is the normalized multiplicity of
C at the immediate predecessor of p. In this section we will write tp, bp, np instead of
tp(C), bp(C), np(C), since no confusion may arise.

It is clear that these definitions extend the previous ones for free points on C. It was
seen in Corollary 1.3.5 a recursive formula for computing the inverse distances at free
points:

tp = tp′ + npbp,

where p is a free point and p′ is the last free point which precedes p.
If C is a smooth germ, then np = bp = 1 for all p ∈ K(C). Therefore, {tp | p ∈

K(C)} = N.
Suppose now that C is not a smooth germ. Let p be the first point such that np < bp.

Then bp = 1, np < 1. So np = [0, a1, . . . , ak] for some a1, . . . , ak ∈ N.
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Proposition 1.5.12. Let C be a smooth germ and keep the notations of this section.
Take r, i ∈ N such that 0 < r 6 k and 0 6 i < ar. Let q be the point in K(C) in the
a1 + a2 + · · · + ar−1 + i + 1-th neighbourhood of p, and p′ be the immediate predecessor
point of p (which is free as we have taken p). Then

tq =

{
tp = tp′ + [0, a1, . . . , ak] = [a0, a1, . . . , ak] if r is odd,

tp′ + [0, a1, . . . , ar−1, i+ 1] = [a0, a1, . . . , ar−1, i+ 1] if r is even,

where a0 is the number of free points preceding p.

Proof. Let D be an irreducible curve which passes through q such that the point on D in
the first neighbourhood of q is free and D and C has not more common points after q. It
is clear (see Theorem 1.1.18) that np(D) = [0, a1, . . . , ar, i + 1], and bp(D) = bp(C) = 1.
By Proposition 1.3.3,

tq = dC(C,D)−1 = tp + min{np(C), np(D)},

now the result follows in virtue of Proposition 1.5.11.

Proposition 1.5.13. Let C be a non-smooth germ. Let p be the first point on C such
that np < bp, and write np = [0, a1, . . . , ak] for some a1, . . . , ak ∈ N. Suppose Õ is the first
free point in K(C) after p. Then

{tq | q ∈ K(C), q < Õ} = {tq | q ∈ K(C), tq 6 tp} =

= {[a0, a1, . . . , ar−1, i+ 1] | 0 6 r 6 k, r even , 0 6 i < ar},

where a0 is the number of free points preceding p.

Proof. Let p0, p1, . . . , pa0−1 be the points on C before p (p0 = O, pi in the i-th neighbour-
hood of O). It is clear that tpi = i + 1. The set {q ∈ K(C), q < Õ} is the (disjoint)
union of the set {p0, p1, . . . , pa0−1}, the point p, and the set S = {q ∈ K(C) | p < q < Õ}.
Notice that any point of S satisfies the conditions of Proposition 1.5.12.

Hence, the set {tq | q ∈ K(C), q < Õ} is the union of {tp0, . . . , tpa0−1} = {1, 2, . . . , a0},
tp = [a0, a1, . . . , ak] and {tq | q ∈ S}. Applying Proposition 1.5.12, the last set is

{[a0, a1, . . . , ar−1, i+ 1] | 0 < r 6 k, r even , 0 6 i < ar}.

Therefore

{tq | q ∈ K(C), q < Õ} = {[a0, a1, . . . , ar−1, i+ 1] | 0 6 r 6 k, r even , 0 6 i < ar}.

In order to conclude the proof we have to see that {tq | q ∈ K(C), q < Õ} = {tq | q ∈
K(C), tq 6 tp}. It is enough to prove that at any q ∈ K(C), q > Õ it holds tq >
tp. Let Dp, Dq be curves such that Dp passes through p, the point of Dp in the first
neighbourhood of p is free and does not belong to K(C) (the same with Dq). By definition,
tp = 1/dC(C,Dp) and tq = 1/dC(C,Dq). The proof ends by applying Theorem 1.4.9.
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These results allow to describe the set {tq | q ∈ K(C), q < Õ} (where Õ is the first free
point on C which has an satellite point as a predecessor) in terms of np (where p is the
first free point such that np < bp). The goal is to generalize these results and to describe
the set {tq | q ∈ K(C)} in terms of the set {np | p is a free point such that np < bp}.

Applying Noether Formula (theorem 3.3.1, of [1]) the computation of {tq | q ∈
K(C), q > Õ} can be done in the following way:

1. Compute tp (see Proposition 1.5.12), where p is the first free point on C such that
np < bp.

2. Let Õ be the first free point on C after p. In KÕ(C), let ñq = nq/bÕ, b̃q = bq/bÕ,
and compute {t̃q}, the values of a curve with Enriques Diagram as KÕ(C) and
normalized multiplicities nq. The computation of these values can be done applying
Proposition 1.5.12 and Proposition 1.5.13.

3. By the Noether formula, tq = tp + b2pt̃q.

Remark 1.5.14. The value bÕ is determined from np. Namely, bÕ is the inverse of the
denominator of np.

Proof. Notice that bp = 1. Therefore, as consequence of Lemma 1.2.1, 3,

bÕ =
gcd(npmO(C), bpmO(C))

mO(C)
=

gcd(npmO(C), mO(C))

mO(C)
.

This algorithm and the previous results prove the following:

Theorem 1.5.15. Let C be a non-smooth curve and let {p1, . . . , pN} be the free points
on C for which npi < bpi. Define

tn =





0 if n = 0,

tp1 if n = 1,

d2
n−1(tpn − tpn−1) if 2 6 n 6 N,

∞ if n = N + 1.

Write tn = [an0 , . . . , a
n
kn] (take tN+1 = ∞ = [∞]). Define

dn =

{
1 if n = 0,

dn−1qrn(a
n
0 , . . . , a

n
kn) if 1 6 n 6 N.

Compute

Tn = {[an0 , a
n
1 , . . . , a

n
r−1, i+ 1] | 0 6 r 6 kn, r even , 0 6 i < ar} for 1 6 n 6 N + 1.

Then

T (C) = {tp(C) | p ∈ K(C)} =

N+1⋃

n=1

{tpn−1 +
x

d2
n−1

| x ∈ Tn}.
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Figure 1.11: Enriques Diagram of a curve C of Example 1.5.16. Normalized multiplicities
are indicated.

Example 1.5.16. Take C a curve with Enriques diagram as in Figure 1.11. A simple
computation shows that t0 = 0, tp1 = 11/4, tp2 = 799/288, tp3 = 11987/4320 and t4 = ∞,
and d0 = 1. Therefore,

t1 = tp1 = 11/4 = [2, 1, 3] ⇒ d1 = 1 · q2(2, 1, 3) = 4,
t2 = d2

1(tp2 − tp1) = 7/18 = [0, 2, 1, 1, 3] ⇒ d2 = 4 · q2(0, 2, 1, 1, 3) = 4 · 18 = 72,
t3 = d2

2(tp3 − tp2) = 12/5 = [2, 2, 2] ⇒ d3 = 172 · q2(2, 2, 2) = 72 · 5 = 360.

Then

T1 = {[1], [2], [2, 1, 1], [2, 1, 2], [2, 1, 3]} = {1, 2, 5/2, 8/3, 11/4},
T2 = {[0, 2, 1], [0, 2, 1, 1, 1], [0, 2, 1, 1, 2], [0, 2, 1, 1, 3]} = {1/3, 3/8, 5/13, 7/18},
T3 = {[1], [2], [2, 2, 1], [2, 2, 2]} = {1, 2, 7/3, 12/5},
T4 = {[1], [2], . . .} = N.

Therefore

T (C) = {1, 2, 5/2, 8/3, 11/4}∪

{11/4 + 1/42 · 1/3, 11/4 + 1/42 · 3/8, 11/4 + 1/42 · 5/13, 11/4 + 1/42 · 7/18}

∪ {799/288 + 1/722 · 1, 799/288+ 1/722 · 2, 799/288+ 1/722 · 7/3, 799/288+ 1/722 · 12/5}

∪ {11987/4320 + 1/3602 · x | x ∈ N}.

1.5.3 The set T (C) and the equisingularity class of C

In this section we will prove the next that for an irreducible curve C, T (C) determines
the equisingularity class of C.

Notice that the value tp(C) depends in general on the curve C. If q is a satellite
point, the value of tq depends on the nature (free or satellite) of the point in the first
neighbourhood of q in C:

Proposition 1.5.17. Let C1 be an irreducible curve, and let q be a satellite point of
K(C1). Suppose that q1, the point on C1 in the first neighbourhood of q, is a free point.

Let q2, q3 be the two different satellite points in the first neighbourhood of q, and let
C2, C3 be irreducible curves passing through q2 and q3 respectively. Suppose that C1 and
C2 are closer than C1 and C3 (see Figure 1.12).

Then tp(C1) = tp(C2) < tp(C3).

25



O

p

q1

q2

q3

C1

C2

C3

q

Figure 1.12: An example illustrating the Enriques diagrams of some curves C1, C2 and C3

satisfying the hypothesis of Proposition 1.5.17.

Proof. Let p be the first point on C1 such that np(C1) < bp(C1) = 1. By Theorem
1.5.15, we can suppose that all the points between p and q are satellite points. Let
np(C1) = [0, a1, . . . , an]. We can suppose that n is even, because if n is odd, we can
take np(C1) = [0, a1, . . . , an] = [0, a1, . . . , an − 1, 1]. Then (see Theorem 1.1.18) np(Ci) =
[0, a1, . . . , an−1, bn, . . .] for some bn > an, and np(Cj) = [0, . . . , an, . . .] with either i =
2, j = 3 or i = 3, j = 2.

By Proposition 1.5.9 np(Cj) > np(C1), because np(C1) is, for an even n, equal to
pn(0, . . . , an, . . .)/qn(0, . . . , an, . . .). And, in virtue of Proposition 1.5.11, np(Ci) < np(C1).
So by applying Proposition 1.3.3,

dC(Ci, C1) =
1

t+ np(C1)
>

1

t+ np(Cj)
= dC(Cj, C1)

Therefore, i = 2, j = 3. By Proposition 1.5.12, tq(C1) = tq(C2) = t + [0, a1, . . . , an],
but tq(C3) = t+ [0, . . . , an, . . .], and this ends the proof.

Remark 1.5.18. In virtue of Proposition 1.5.17, all the curves C such that passes through
q and such that the curve goes right or goes free in q (see the definition of going right,
going free and going down in Section 1.4.2) have the same value tq(C). In particular,
this value does not depends on the form of the stair.

On the other hand, in the proof of that proposition, it has been seen that if C goes
down on q, then tq(C) = tp(C), where p is the first free point on C such that np(C) < 1.
In particular, tp(C) depends on np(C) and, thence, on the form of the stair.

The value tp(C1) (which depends only on the point p, not on the curve C1) will be
denoted by τp. Furthermore, if q is a point (free or satellite) infinitely near to O, we define
τq as the value tq(D), where D is an irreducible curve which passes through q and the
point in the first neighbourhood of q on D is a free point.

Given p ∈ N , we denote by sp the value mO(Dp), where Dp is an irreducible curve
which does not have any satellite point following p.

With the same notations of the proof of Proposition 1.5.17, τp = a0 + pk(a1,...,ak−1,i)

qk(a1,...,ak−1,i)

for some k, i (where a0 is the number of points preceding p′). It is easy to observe that
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sp = qk(a1, . . . , ak−1, i). But this fact is not true in general: if p has two or more free
preceding points for which np′ < bp′ , it is false.

Lemma 1.5.19. Let C be a curve, and let p, q be two points of K(C), such that tp(C) <
tq(C) and (tp(C), tq(C)) ∩ T (C) = ∅ (i.e., there is not a point p′ ∈ K(C) such that
tp(C) < tp′(C) < tq(C)). Suppose that p is a satellite point, and suppose that p′, the last
free point of K(C) preceding p, is the first free point for which np′ < 1. Then

tq(C) − tp(C) =
1

sq

1

sp
.

Proof. Let e = [a0, . . . , ak] be the value tp′(C). Two different cases are considered:

• tp(C) = e: In this case we can suppose that the point on C in the first neighbourhood
of p is free. So q is the last point on C proximate to p. Furthermore, np(C) = sp by
definition of sp.

Let x be the number of points proximate to p in C. Therefore, sq = spx. By
Theorem 1.5.15, tq(C) = e+ 1

s2p

1
x
, and the result is proved in this case.

• tp(C) < e: Then it is clear that tp(C) = [a0, . . . , ar−1, i], and tq(C) = [a0, . . . , ar−1, i, x]
with x > 1 (see Proposition 1.5.13).

Using the results of Section 1.5.1, we have:

tq(C) =
xpr(a0, . . . , ar−1, i) + pr−1(a0, . . . , ar−1)

xqr(a0, . . . , ar−1, i) + qr−1(a0, . . . , ar−1)
,

tp(C) =
pr(a0, . . . , ar−1, i)

qr(a0, . . . , ar−1, i)
.

It will be written pr, pr−1, qr and qr−1, for short, and we obtain

tq(C) − tp(C) =
pr−1qr − prqr−1

qr(xqr + qr−1)
=

(−1)r

spsq
.

But r must be even by hypothesis, therefore the proof is completed. The reader can
observe that sq = xspy, with 0 < y < sp (in fact, y = sp′′ for some p′′ < p).

Remark 1.5.20. In both cases of the proof of Lemma 1.5.19, tp(C) = e and tp(C) < e,
the value x is exactly the number of points on C proximate to p, i.e., x− 1 is the number
of points p̃ such that p < p̃ < q.

Furthermore, sp divides sq if and only if the point on C in the first neighbourhood of
the point of p is a free point.

Proposition 1.5.21. Let C1 be an irreducible curve, and let p be a satellite point of
K(C1). Suppose that q1, the point on C1 in the first neighbourhood of p, is a free point.

Let C2 be an irreducible curve which passes through p and satisfies tp(C2) = τp, and
such that q2, the point on C2 in the first neighbourhood of p, is a satellite point. Then

min{tq(C1) | q′ ∈ K(C1), q > p} 6= min{tq(C2) | q ∈ K(C2), q > p}.
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Proof. Let p′ be the first point on C1 such that np′(C1) < bp′(C1) = 1. By Theorem 1.5.15,
we can suppose that all the points between p and p′ are satellite points.

Let p1 be the point on C2 such that tp1(C1) = min{tq′(C1) | q′ ∈ K(C1), q
′ > p}. By

Proposition 1.5.12 and Theorem 1.5.15, p1 is the last point on C1 proximate to p (p1 = q1
if and only if the point on C1 in the neighbourhood of q1 is free).

Let p2 be the point on C2 such that tp2(C2) = min{tq′(C2) | q′ ∈ K(C2), q
′ > p}.

By Proposition 1.5.12, p2 is the last point on C2 proximate to p (p2 = q2 if and only if
tq2(C2) = τq2).

It is enough to prove that tp1(C1) 6= tp2(C2). By Lemma 1.5.19, it is enough to prove
that sp1 6= sp2. By Remark 1.5.20, sp divides sp1 but sp does not divide sp2 . Therefore, it
is clear that sp1 6= sp2, and the proof ends.

Theorem 1.5.22. The set T (C) determines the equisingularity class of the curve C, that
is, given C1, C2 two irreducible curves such that T (C1) = T (C2) then C1 and C2 have the
same equisingularity class.

Proof. Let C be an irreducible curve. It will be seen that the set T (C) determines the
proximity relations in K(C), which proves this theorem.

We will give an algorithm such that in every step we will compute all the points
proximate to the last point which we have determined. The algorithm will work until we
find a point which is a free point preceding a satellite point (notice we can apply Lemma
1.5.19 only in these cases). Let us see the algorithm

Of course, the first point in K(C) is O, and tO(C) = 1. We call p0 = O, t0 = 1, s0 = 1
(Step 0) (where ti = tpi and si = spi).

Step i: Take ti = min{t ∈ T (C) | t > ti−1}. By Lemma 1.5.19, ti − ti−1 = s−1
i−1s

−1
i .

So we proceed to compute si. Let x, y be two natural numbers such that si = si−1x+ y.
By Remark 1.5.20, x is equal to the number of points proximate to pi−1 and y > 0 if and
only if the point in the first neighbourhood of pi−1 is free.

If there is not a free point preceding a satellite point on C (this is, is there is no
satellites points on C), this algorithm will compute the equisingularity class of C.

On the other hand, suppose that Õ is the first free point on C in the first neighbourhood
of a satellite point, and suppose that Õ′ is the immediate predecessor of Õ. This algorithm
determines the proximity relations of the points {p ∈ K(C) | p 6 Õ. We define

T1 = {
t− tÕ′

sÕ
| t > tÕ′}.

Let C1 be a curve such that T (C1) = T1. By Theorem 1.5.15, this curve exists and the
points of K(C1) has the same proximity relations than the points of KÕ. Therefore, we
can apply another time this algorithm at C1, and we will obtain a set T2 and a curve C2.
And this will end because there are a finite number of singular points in K(C).

Example 1.5.23. Take

T (C) = {1, 2,
7

3
,
19

8
,
31

13
,
43

18
,
1549

648
,
1162

486
,
3486 + n

1458
| n ∈ N}.

Let us determine the equisingularity type of C.
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Step 0. p0 = O, t0 = 1, s0 = 1.

Step 1. t1 = min{t ∈ T (C) | t > 1} = 2. Then t1 − t0 = 1 = s0s1 so s1 = 1. Therefore,
x = 1, y = 0, and there is only one point on C proximate to O, which is p1.

Step 2. t2 = min{t ∈ T (C) | t > 2} = 7
3
. Then t2 − t1 = 1

3
= s1s2 so s2 = 3. Therefore,

x = 3, y = 0, and there are three points on C proximate to p1, which are q1
2, q

2
2 and

p2.

Step 3. t3 = min{t ∈ T (C) | t > 7
3
} = 19

8
. Then t3−t2 = 1

24
= s2s3 so s3 = 8. Therefore,

x = 2, y = 2. This means that q1
3, the point on C in the first neighbourhood of p2,

is proximate to q1
2 (because y > 0), and there are two points on C proximate to p2,

which are q1
3 and p3.

Step 4. t4 = min{t ∈ T (C) | t > 19
8
} = 31

13
. Then t4 − t3 = 1

104
= s3s4 so s4 =

13. Therefore, x = 1, y = 5. This means that p4, the point on C in the first
neighbourhood of p3, is proximate to q1

3 (because of y > 0), and to p3, and it is the
only point on C proximate p3.

Step 5. t5 = min{t ∈ T (C) | t > 31
13
} = 43

18
. Then t5 − t4 = 1

234
= s4s5 so s5 =

18. Therefore, x = 1, y = 5. This means that p5, the point on C in the first
neighbourhood of p4, is proximate to q1

3 (because y > 0), and to p4, and is the only
point on C proximate p4.

Step 6. t6 = min{t ∈ T (C) | t > 43
18
} = 1549

648
. Then t6 − t5 = 1

648
= s5s6 so s6 =

36. Therefore, x = 2, y = 0. This means that q1
6, the point on C in the first

neighbourhood of p5, is free (because y = 0), and there are two points on C proximate
to p5, which are q1

6 and p6.

Now q1
6 is a free point which precedes p5, a satellite point. We apply Theorem 1.5.15:

T̃ = {s2
5(t− t5) | t > t5} = {

1

2
,
2

3
,
6 + n

9
| n ∈ N}

and we go on applying the algorithm, but now t̃6 = s2
5(t6 − t5) = 1

2
, s̃6 = s6/s5 = 2.

Step 7. t̃7 = min{t ∈ T̃ | t > 1
2
} = 2

3
. Then t̃7 − t̃6 = 1

6
= s̃6s̃7 so s̃7 = 3. Therefore,

x = 1, y = 1. This means that p7, the point on C in the first neighbourhood of p6,
is proximate to q1

6 (because y > 0), and to p6, and is the only point on C proximate
p6.

Step 8. t̃8 = min{t ∈ T̃ | t > 2
3
} = 7

9
. Then t̃8 − t̃7 = 1

9
= s̃7s̃8 so s̃8 = 3. Therefore,

x = 1, y = 0. This means that p8, the point on C in the first neighbourhood of p7,
is free (because y = 0), and it is the only point on C proximate to p7.

We apply Theorem 1.5.15 another time. But this time the set obtained will be N:
this means that the curve is smooth after p7.

In Figure 1.13 the construction of the Enriques diagram of C is done step by step.
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Figure 1.13: The construction of the Enriques Diagram of a curve given T (C).

1.5.4 Connection of inverse distances to other singularity invari-

ants

In this section we will show some relations between the inverse distance tp(C), the invariant
introduced in Section 1.5.2, and some other singularity invariants.

Another invariant considered in this memory is the skewness, introduced by Favre and
Jonsson in [4]. It will be defined in Section 2.4.3.

Proposition 1.5.24. Let C be an irreducible germ an p be a point on C. Suppose that
the point in the first neighbourhood of p on C is a free point. Then tp(C) = α(νp), where
νp is the divisorial valuation such that its cluster K has p as a maximal point, i.e., such
that K(νp) = {q ∈ NO | q 6 p}.

Proof. By definition, α(νp) = sup{ν(D)/mO(D) | D ∈ R}. By Noether formula on
valuations, this supremum is obviously satisfied by an irreducible curve D passing through
all the points on the cluster of νp and being free in the point that follows p.

On the other hand, by definition, tp(C) = dC(C,D)−1, where D is an irreducible curve
passing through p, the point on the first neighbourhood of p on D is free and without
sharing other points with C after p.

Therefore, we can take the same curve D in both definitions.

tp(C) = dC(C,D)−1 =
mO(C)mO(D)

C ·D
=

νp(D)

mO(D)
= α(νp)
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Corollary 1.5.25. Let p be a point infinitely near to O. Then τp = α(νp), where νp is
the divisorial valuation such that its cluster K has p as a maximal point.

Let C be an irreducible curve, and let p be a point infinitely near to the origin O on
C. Consider the following rational number, which is a multiple of the inverse distance:

mO(C)tp(C) =
mO(C)

dC(C,Dp)
=

C ·Dp

mO(Dp)
,

where Dp is an irreducible curve passing through p such that the point on the first neigh-
bourhood of p on D is free and without sharing other points with C after p.

The set {mO(C)tp(C)}p∈I for a distingish subset I of the singular points of a reduced
singular germ of a curve C (see [1] 6.11) is known as the polar invariants or polar quotients
of C (see also [7]).

The extension of this notion at each singular point of C appears in [1] 7.6, where some
properties about the growing of these quotients are established in [1] 7.6.5 and 7.6.8.
However, the treatment of the whole sequence for C ∈ C, as it has been carried in this
memory, and specially Result 1.5.22 are novel.
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Chapter 2

The valuative tree

In this section we deal with the valuations and their properties. We will also present
the set V of all centered real normalized valuations on the ring of the germs at O of
the holomorphic functions in O, R, and its structure: the valuative tree. We will study
the valuations from two different points of view: from the Favre and Jonsson’s point of
view, using the ultrametric space C, and from the Casas’ point of view, using clusters and
Enriques diagrams.

2.1 Valuation theory

In this section we will give the most important classical results of the valuation theory.
More results can be found in [9] and [8].

Let K be a field and let K∗ be its multiplicative group. Let Γ be an additive abelian
totally ordered group. A valuation is a map ν of K∗ into Γ such that

• ν(xy) = ν(x) + ν(y).

• ν(x+ y) > min{ν(x), ν(y)}.

Given x ∈ K∗, ν(x) is called the value of x. The subgroup ν(K∗) of Γ is called the value
group. It will be supposed to be Γ in the sequel. A valuation ν is called non-trivial if its
value group is non-trivial, that is, has cardinal greater than one.

Let us state some basic properties about the valuations. All these results can be found
in [9].

Proposition 2.1.1. Let ν : K∗ → Γ be a valuation. Then:

1. If x ∈ K is a n-th root of the unit, then ν(x) = 0. In particular, ν(1) = ν(−1) = 0.

2. ν(x− y) > min{ν(x), ν(y)}.

3. ν(1/x) = −ν(x), where x 6= 0.

4. ν(y/x) = ν(y) − ν(x), where x 6= 0.

5. If ν(x) < ν(y), then ν(x+ y) = ν(x).
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Two valuations ν : K∗ → Γ and ν ′ : K∗ → Γ′ are said equivalent or isomorphic if and
only if there exists an order preserving isomorphism ϕ of Γ to Γ′ such that ϕ ◦ ν = ν ′. We
are interested in the study of non-equivalent valuations, so two equivalent valuations will
be considered as the same valuation.

If ν is a valuation, for convention ν(0) = ∞.
The set of all elements of K such that ν(x) > 0 is called the valuation ring of ν, and

it is denoted by Rν .
The following results can also be found in [9].

Proposition 2.1.2. Let ν be a valuation. The valuation ring is in fact a ring, and for
every x ∈ K∗, either x or x−1 belong to Rν. Furthermore, the set of all the units of this
ring is {x ∈ K | ν(x) = 0}.

Proposition 2.1.3. Let ν be a valuation non-trivial. Then Rν is a local ring, and its
maximal ideal is the set {x ∈ K | ν(x) > 0}. Furthermore, for all x ∈ K∗, x belongs to
the maximal ideal if and only if 1/x does not belong to Rν .

This maximal ideal is called the prime ideal of ν, and is denoted by mν . The field
Rν/mν is called the residue field of ν and is denoted by Dν

1.

Theorem 2.1.4. Two valuations are equivalent if and only if they have the same valuation
ring.

Theorem 2.1.5. Let R be an integral domain and let K be its quotient field. Let ν0 be a
map of R r {0} into an additive abelian totally orderer group Γ such that

• ν0(xy) = ν0(x) + ν0(y)

• ν0(x+ y) > min{ν0(x), ν0(y)}

Then there is a unique valuation ν in K that extends ν0.

Proof. The uniqueness of ν is proved using property 4 of Proposition 2.1.1:

ν

(
x

y

)
= ν(x) − ν(y).

It is clear that ν is defined with this property. For the existence, it is sufficient to check
that a map defined in this way is a well-defined valuation which extends ν0, and it can be
proved easily.

Theorem 2.1.6. Let ν be a valuation. The valuation ring Rν is Noetherian if and only
if the value group Γ is isomorphic to Z.

The valuations with value ring Z are called discrete valuations.
Valuations have the following numerical invariants:

• The rank, which is the Krull dimension of the ring Rν .

• The rational rank, defined as dimQ(ν(K∗) ⊗Z Q).

• The transcendence degree, which is the transcendence degree of the field extension
K ⊂ Dν .

These invariants are usefull for classify the valuations of some field K.

1Sometimes the residue field of a valuation is denoted by kν . See for example [4].
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2.2 R-Trees

In this section we will introduce the concept of R-tree. The study of R-trees are important
in the study of plane curves because the set of centered real normalized valuations is an
R-tree (see Section 2.4 for their definition). A more extensive study of R-trees can be
found in Section 3.1 of [4].

Let (T ,6) be a partially ordered set. T is called rooted nonmetric R-tree or simply
rooted nonmetric tree if and only if it satisfies:

1. T has a unique minimal element τ0, called the root of T .

2. For any τ ∈ T , the set {σ ∈ T | σ 6 τ} is isomorphic to a real interval.

3. Every maximal totally ordered subset of T is isomorphic to a real interval,

where isomorphic means that there is an order-preserving bijection.
In the definition, R can be changed by any totally ordered set. For example, rooted

nonmetric N-trees can be defined similarly.
Let T be a rooted nonmetric tree, and S ⊂ T any subset of it. By the completeness

of R, S admits a unique maximal element less than every element in S. This element is
called infimum, and it is denoted by ∧τ∈Sτ .

Let T be a rooted nonmetric tree, and let τ1, τ2 be two elements of T . The set
{τ ∈ T | τ1 ∧ τ2 6 τ 6 τ1} ∪ {τ ∈ T | τ1 ∧ τ2 6 τ 6 τ2} is called segment and is denoted
by [τ1, τ2].

Let (T , τ0), (S, σ0) be rooted nonmetric trees, and let Φ : T → S be a map. Φ is called
morphism of rooted nonmetric trees if

Φ|[τ0,τ ] : [τ0, τ ] → [σ0,Φ(τ)]

is an order-preserving bijection.
A rooted nonmetric tree T is complete if every increasing sequence has an upper bound

in T . Any rooted nonmetric tree has a completion, denoted by T̄ , obtained by adding
maximal upper bounds for any unbounded increasing sequence.

Let T be a rooted nonmetric tree. A subset S ⊂ T is called a subtree if for every
σ ∈ S it holds {τ ∈ T | τ < σ} ⊂ S. Any subtree of a roted nonmetric tree is a rooted
nonmetric tree with the same root.

Let τ ∈ T be a point of a rooted nonmetric tree. An equivalence relation can be
defined in T \ τ as follows: σ1 ∼τ σ2 if and only if (τ, σ1] ∩ (τ, σ2] 6= ∅.

Lemma 2.2.1. Let T be a rooted nonmetric tree, and let τ ∈ T . Then:

σ1 ∼τ σ2 ⇔ or

{
σ1 ≯ τ and σ2 ≯ τ,

σ1 ∧ σ2 > τ.

Proof. Observe that if σ > τ , then

[σ, τ) = {τ ′ ∈ T | τ < τ ′ 6 σ}.

In particular, every τ ′ ∈ [σ, τ) is greater than τ .
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On the other hand, if σ ≯ τ , there are no τ ′ ∈ [σ, τ) greater than τ .
So it is obvious that if σ1 ∼τ σ2 and σ1 ≯ τ , then σ2 ≯ τ .
Let us suppose that σ1 ∼τ σ2 and σ1, σ2 > τ . Notice that the condition σ1 ∧ σ2 > τ is

satisfied if and only if there exists τ ′ such that τ < τ ′ < σ1 and τ < τ ′ < σ2.
Let τ ′ be a point in [σ1, τ) ∩ [σ2, τ). Then τ < τ ′ 6 σ1 and τ < τ ′ 6 σ2.
Reciprocally, if τ < τ ′ 6 σ1 and τ < τ ′ 6 σ2, then τ ′ belongs to (τ, σ1] and to (τ, σ2].
Finally, we must prove that if σ1 and σ2 are not greater than τ , then σ1 ∼τ σ2.
Let us observe that if σ is not greater than τ , then σ ∼τ τ0 because σ ∧ τ belongs to

(τ, σ] and to (τ, τ0].
Therefore if both σ1 and σ2 are not greater than τ , σ1 ∼τ σ2, because ∼τ is an

equivalence relation.

An equivalence class is called tangent vector at τ , and the quotient set is called tangent
space at τ , and it is denoted by TτT

2. Notice that TτT is not a usual tangent space, since
it is not a vectorial space; TτT is in fact a projectivized tangent space.

A point τ of T is an end if and only if TτT has only one element. If TτT has exactly
two elements, τ is called regular point, and if it has more than two elements, τ is called
branch point.

Let T be a rooted nonmetric tree. A parameterization of T is an increasing (or
decreasing) function α : T → [−∞,∞] such that its restriction to any maximal totally
ordered subtree of T is a bijection onto an interval.

A rooted nonmetric tree T that admits a parameterization α is called parameterizable,
and (T , α) is called parameterized tree. A morphism of parameterized trees is a morphism
of rooted nonmetric trees that commutes with the parameterizations.

A parameterized tree induces a distance: we can suppose that α : T → [0, 1], com-
posing alpha with a suitable homeomorphism from [−∞,∞] to [0, 1]. Then d(σ, τ) =
α(σ) + α(τ) − 2α(σ ∧ τ) is a distance.

A rooted nonmetric tree with a distance that, restricted to any segment, gives an
isometry to a real interval, is called metric trees. A parameterized tree with the distance
induced from a parameterization is a metric tree of finite diameter. The diameter of any
metric space is the supremum of the distances of the points of that space. Therefore, a
metric tree of finite diameter is a metric tree such that the distances of their elements are
bounded.

Reciprocally, if T is a metric tree (with diameter not necessarily finite), then α : T →
[0,∞) defined as α(τ) = d(τ, τ0) gives a parameterization.

The following result can be found in [4].

Proposition 2.2.2. Let T be a metric tree. If T is complete as a rooted nonmetric tree,
then it is complete as a metric space. Reciprocally, if T has finite diameter and it is
complete as a metric space, then it is complete as a rooted nonmetric tree.

Furthermore, if T is a metric space with finite diameter, then its completion as a
metric space agrees with its completion as a rooted nonmetric tree.

2This is not standard notation but it will be used in this memory because of its clarity. In particular,
it is not the notation used in [4].
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Let ~vτ ∈ TτT be a tangent vector in τ . The weak topology of T is defined as the
topology with semibasis

{~vτ | ~vτ ∈ TτT , τ ∈ T } =
⋃

τ∈T

TτT .

Rooted nonmetric trees are Hausdorff spaces with the weak topology. Any subtree
S of T is a closed set of T , and the inclusion S →֒ T is an embedding. In particular,
the segments [τ, τ ′] are closed sets of T , and any segment is homeomorphic (with the
induced topology) to a real closed segment. Any complete rooted metric tree is compact.
Furthermore, if T is a metric tree, the completion T̄ is a compactification of T .

Remark 2.2.3. Let T be a metric tree. Then the topology of T induced by the metric
does not agrees with the weak topology of T in general.

2.3 Classification of valuations in the ring of plane

germs of curves

In this section we will study the valuations on the ring R = C{x, y} of plane germs of
curves. Namely a cluster will be assigned to any valuation such that two valuations are
isomorphic if and only if they have the same cluster. Finally, we will give a classification of
the valuations according to the structure of their clusters. This study has been developed
following [1] (see also [8]).

Let ν be a valuation defined in the local ring (R,m). Then the ideal {ψ ∈ R | ν(ψ) =
0} is called the center of ν. Obviously, the center of ν is a prime ideal of R. Since
SpecR = {(ψ) | ψ irreducible } ∪ {m}, if the center of ν is the maximal ideal m, ν is
called 0-dimensional valuation; otherwise, it is called 1-dimensional valuation.

Proposition 2.3.1. For any ψ ∈ R irreducible, there exists a unique valuation ν (up to
isomorphism) with center (ψ).

Proof. Take φ ∈ R, and write φ = ψnφ′, with φ′ 6∈ (ψ). By definition of center, ν(φ′) = 0.
Therefore, ν(φ) = nν(ψ).

Let us study the 0-dimensional valuations. An example of 0-dimensional valuation is
the multiplicity valuation or m-adic valuation, which will be denoted by νm. It is defined
by νm(φ) = mO(φ).

The value
min{ν(φ) | φ ∈ m}

is denoted by mO(ν) and it is called multiplicity of the valuation ν at the point O. Notice
that this minimum is achieved since the ring R is a Noetherian one. Therefore, mO(ν) > 0
for any 0-dimensional valuation.

Proposition 2.3.2. Let ν be a 0-dimensional valuation, not isomorphic to the m-adic
valuation. Then there is a tangent line l at O such that for any element φ ∈ m

n \ m
n+1,

it is satisfied that ν(φ) > nmO(ν) if and only if the germ of curve φ = 0 is tangent to l.
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Proof. Write e = mO(ν). If ν is not the m-adic valuation, there exists an homogeneous
form φ of some degree n such that ν(φ) > ne. But since φ is homogeneous, φ =

∏
li,

where li are forms of degree 1. Therefore, ν(φ) =
∑
ν(li) > ne. It is clear that ν(li) > e

for any i and that there exists li such that ν(li) > e.
If li and lj are two independent forms of degree 1 such that ν(li), ν(lj) > e, then for all

l of degree one it is satisfied ν(l) > e; but it is a contradiction with the definition of the
multiplicity. Let l be the unique form of degree 1 such that satisfies ν(l) > e, and take
φ ∈ m

n \ m
n+1. φ can be decomposed as φ = φn + φ′, such that φn is an homogeneous

form of degree n and φ′ ∈ m
n+1. It is clear that ν(φ) > ne if and only if ν(φn) > ne,

because ν(φ′) > (n + 1)e > ne. And ν(φn) > ne if and only if it is multiple of l. Then,
the proof is completed.

The line l is called the tangent line of ν. For any point p in the exceptional divisor E
of blowing-up O, let Rp be the local ring induced by the blowing-up.

Theorem 2.3.3 (Theorem 8.1.3 of [1]). Let ν be a 0-dimensional valuation not isomorphic
to the multiplicity valuation. Let l be the tangent line of ν. Then, we can extend ν to a
valuation of the ring Rp if and only if p = τ(l). Furthermore, in that case the extension
is unique, has the same value group than ν, and will be denoted also by ν.

In this case, p is called the center of ν in the first neighbourhood of O. The multiplicity
of ν in the ring Rp will be denoted by mp(ν).

Let us suppose that ν is a 0-dimensional valuation of R. If ν is not the m-adic
valuation, there exist a point p in the first neighbourhood of O which is a center of ν,
and ν is extended at the ring Rp. If ν is not the mp-adic valuation, then we can iterate
this process, and we will obtain a sequence of points O = p0, p1, . . ., with pi at the i-th
neighbourhood of O. pi is called the center of ν in the i-th neighbourhood of O, and we
can define mpi(ν) as the multiplicity of ν in the ring Rpi . The sequence of centers is called
the cluster of ν, and it is denoted by K(ν).

Lemma 2.3.4. Let K be a totally ordered cluster. Then

• If there is a curve which contains infinitely many points of K, then K = K(C) for
some irreducible curve C and a curve D contains infinitely many points of K if and
only if D has C as a branch.

• If there is a point p ∈ K that has infinitely many points proximate to it, this point
is the unique with this property. Furthermore, all the points greater than p of K are
proximate to p.

Proof. • If there is a curve with infinitely many points on K, there is a branch C of
that curve with infinitely many points on K. Then, for all point p ∈ C, there is a
point q > p which belongs to K(C) ∩K. This implies that K = K(C), because K
and K(C) are unramified clusters.

Let D be a curve. It is clear that if D has C as a branch, then K(D) contain all
points of K. Suppose now that D contains infinitely many points of K = K(C).
By the Noether Formula, it implies that C is a branch of D.
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• Notice that, in virtue of Remark 1.1.14 (1) for any two points p1, p2 of K, if p2 → p1

then q → p1 for all p1 < q < p2. Therefore, if p is a point on K with infinitely many
points on K proximate to it, then all the points greater than p are proximate to p.
But since any point can only be proximate to two points, and it is always proximate
to its immediate predecessor, p is the unique point of K with that property.

Theorem 2.3.5 (Theorem 8.1.6 of [1]). Let K(ν) be the cluster of some valuation ν.
Then for any φ ∈ R such that φ not share infinitely many points with K(ν) it is satisfied

ν(ξ) =
∑

p∈K(ν)

mp(φ)mp(ν).

This formula is called the Noether Formula by valuations.

Theorem 2.3.6 (Theorem 8.1.7 of [1]). Let K(ν) be the cluster of some valuation ν. Let
p be a point of K(ν), and let q1, q2, . . . , qr be points of K(ν) in the first, the second, etc.
neighbourhood of p respectively. Suppose that every qi is proximate to p. Then

mp(ν) >

r∑

i=1

mqi(ν),

and the inequality is not strict if and only if there exists a point in the r+1-th neighbour-
hood of p on K(ν) and it is proximate to p.

There are some immediate consequences of that theorem:

Corollary 2.3.7. If p and q belong to K(ν) and q is in the first neighbourhood of p,
then mp(ν) > mq(ν), with equality if and only if the point in the first neighbourhood of q
proximate to p does not belong to K(ν).

Corollary 2.3.8. With the same hypothesis as in Theorem 2.3.6. Thenmq1(ν) = mq2(ν) =
. . . = mqr−1(ν) > mqr(ν).

Corollary 2.3.9. Let us suppose that p and q1 belong to K(ν) and q1 is in the first
neighbourhood of p.

• If there exists an integer h such that hmq1(ν) < mp(ν) 6 (h+ 1)mq1(ν), then there
are points q2, . . . qh+1 points in K(ν), qi in the i-th neighbourhood of p, such that
mq1(ν) = mq2(ν) = . . . = mqh(ν) > mqh+1

(ν), mp(ν) = hmq1(ν) + mqh+1
(ν) and

q1, . . . qh+1 are the unique points in K(ν) proximate to p.

• Otherwise, there are infinitely many points proximate to p, and for any h, mq1(ν) =
mqh(ν), where qh is the point in the h-th neighbourhood of p in K(ν) (which is
proximate to p). In particular, the valuation is non-Archimedean.

Division algorithm: Let us suppose that p and q belong to K(ν) and q is in the first
neighbourhood of p. Write e0 = mp(ν), and e1 = mq(ν).

If he1 < e0 for all h ∈ N, then we say that the algorithm is obstructed at q. Oth-
erwise, let h1 ∈ N be the value such that h1e1 6 e0 < (h1 + 1)e1, and write
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e2 = e0 − e1h1. If e2 = 0, then there are in K(ν) exactly h1 points proximate to p
with multiplicity e1. Otherwise, there are in K(ν) h1 + 1 points proximate to p, all
with multiplicity e1 but the lust, with multiplicity e2. In this case, we can repeat
the algorithm with the two last points.

There are three possibilities with the division algorithm:

• The algorithm is obstructed at any point q. In this case, it is know that there are
infinitely many point proximate to the immediate predecessor of q, and the valuation
is non-Archimedean.

• The algorithm ends. Notice that this implies that e0 and e1 are Q-dependent. In
this case, if q′ is the last point obtained the division algorithm, either q′ is the last
point of K(ν) or the point on the first neighbourhood of q′ is a free point.

It is easy to prove that the points found by the algorithm in this case are satellite
points, and the proximity relations are defined by the finite continued fraction of
e0/e1.

• The algorithm is not obstructed but does not end. Notice that this implies that e0
and e1 are not Q-dependent. In this case, the algorithm find all the points greater
than p of K(ν).

It is easy to prove that the points found by the algorithm in this case are satellite
points, and the proximity relations are defined by the infinite continued fraction of
e0/e1.

In short, given a valuation ν, we can assign at ν a cluster K(ν) satisfying Theorem
2.3.5. Notice that, by Theorem 2.3.5, the map ν → K(ν) is injective.

Theorem 2.3.10 (Theorem 8.2.6 of [1]). If K is a totally ordered cluster, there is a
unique valuation (up to isomorphism) ν such that K(ν) = K.

The next result is explain with more detail in the section 8.2 of [1].

Theorem 2.3.11 (Classification of valuations). The valuations can be classified as fol-
lows:

1. Divisorial valuations. It correspond to the valuations ν with a finitely many centers.
Let p be the last center of ν. Then ν is the mp-adic valuation in the ring Rp.
Equivalently, let E be the exceptional divisor of blowing-up p. Then for any germ
φ, ν(φ) corresponds to the multiplicity of E in the total transform of φ.

2. Analytic curve valuations. It correspond to the valuations ν with infinitely many
centers in a germ of a curve. Let ψ = 0 be an irreducible curve such that K(ν) =
K(ψ). The value group is Z ⊕ Z with the lexicographically order, which is non-
Archimedean. For any φ ∈ R, write φ = ψnφ′, with φ′ 6∈ (ψ). Then, ν(φ) =
(n, [ψ, φ′]).
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3. Formal curve valuations. It correspond to the valuations ν with infinitely many
centers, but with a finitely many of them are satellites and finitely many of them
lies in the same germ of curve. This valuations can be computed using the Noether
Formula. On the other hand, the value group is Z. Furthermore, there exists a non-
analytic curve D ∈ C such that K(D) = K(ν), and for any φ ∈ R, ν(φ) = [D, φ].

4. Infinitely singular valuations. It correspond to the valuations ν with infinitely many
satellite centers, but not infinitely many of them consecutive. The valuation can be
computed using the Noether Formula. It is an Archimedean valuation, but it is not a
discrete one: the value group is a subgroup of Q not isomorphic to Z. In some way,
infinitely singular valuations can be thought as curve valuations for some “curve”
of infinite multiplicity.

5. Irrational valuations. It correspond to the valuations ν with infinitely many consec-
utive satellite points, but not infinitely many of them proximate to the same point.
This valuations are obtained when the division algorithm does not obstructed but
does not end. The value group is isomorphic to Z ⊕ Ze ⊂ R for some e ∈ R \ Q.
They are Archimedean non-discrete valuations.

6. Exceptional curve valuations. It correspond to the valuations ν with infinitely many
centers proximate to the same point. The value group is isomorphic to Z⊕Z with the
lexicographically order, which is non-Archimedean, and it is genered by ν(p), ν(q),
where p is the point with infinitely many centers proximate to it, and q is the center
of ν in the first neighbourhood of p.

The next result can be found in [4].

Type of valuation Rank Rational rank Transcendence degree

1 1 1 1
2 2 2 0
3 2 2 0
4 1 1 0
5 1 2 0
6 2 2 0

2.4 The valuative tree

In this section we will construct a structure of R-tree to a set of some valuations in the
ring R = C{x, y} of plane germs of curves. The study of this tree has allowed to prove
some important results, such as an Eigenvaluation Theorem (see [3]).

In this section, the concept of valuation will be slightly different from that defined in
Section 2.1. A real valuation is a map ν : R → R>0 ∪ {∞}, such that

• ν(fg) = ν(f) + ν(g),

• ν(f + g) > min{ν(f), ν(g)}.
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The valuation is called centered if and only if the set {x ∈ R | ν(x) 6= 0} is m = (x, y).
The valuation is called normalized if and only if min{ν(ψ) | ν(ψ) > 0} = 1.

Let V be the set of centered real normalized valuations on R, i.e., the valuations
ν : R → [0,∞] such that ν(m) := min{ν(ψ) | ψ ∈ m} = 1. V is called the valuative
tree. Notice that these valuations can take the value ∞, unlike the valuations defined in
Section 2.1.

We define in V a partial ordering: ν 6 µ if and only if ν(ψ) 6 µ(ψ) for all ψ ∈ R. Let
νm be the multiplicity valuation, defined as νm(ψ) = max{k | ψ ∈ m

k} = mO(ψ). Notice
that νm is the unique minimal valuation in V.

Proposition 2.4.1 (Theorem 3.14 of [4]). (V,>) is a complete rooted nonmetric tree.

Let us study the elements of V.
For any C ∈ C, recall the curve valuation νC defined in Section 1.2.1, νC(ψ) = C·(ψ=0)

mO(C)
.

This maps are in fact valuations of V.
If C is a formal curve, νC is called formal curve valuation. Formal curve valuations

can be identified to valuations of Type 3 (see 2.3.11). Otherwise νC is called analytic
curve valuation. Analytic curve valuations are isomorphic to valuations of Type 2 (see
2.3.11).

Given C ∈ C and t ∈ R, t > 1, we define the quasimonomial valuation νC,t as

νC,t(ψ) = min{νD(ψ) | dC(C,D) 6 t−1}.

It is easy to see that νC,t 6 νC′,t′ if and only if dC(C,C
′) 6 t−1 and t 6 t′, with the equality

if and only if dC(C,C
′) 6 t−1 and t = t′.

Quasimonomial valuations are valuations which, after a finite number of blowing-ups
(see 2.3), are monomial valuations. In the forthcoming Section 2.4.5, monomial valuations
will be defined and characterized. In Proposition 2.4.28 we will prove that result.

Lemma 2.4.2. The set of quasimonomial valuations, called Vqm, is a rooted nonmetric
tree non-complete. Furthermore, V is the completion of Vqm.

Proof. Vqm has νm as a root, because νm is a quasimonomial valuation. In fact, νm = νC,1
for any irreducible curve C.

Given ν, ν ′ ∈ Vqm with ν < ν′, we can write ν = νC,t and ν ′ = νC,t′ , with t < t′. So
[ν, ν ′] = {µ ∈ Vqm | ν 6 µ 6 ν ′} = {νC,r | t 6 r 6 t′} ≃ {r ∈ R | t 6 r 6 t′} = [t, t′].

Similarly, it can be seen that every maximal totally ordered subset of Vqm is isomorphic
to [0,∞].

It is clear that Vqm is not a complete tree, because the sequence (νC,n)n∈N
has not a

limit in Vqm for any irreducible curve C. The last statement, V is the completion of Vqm,
will be proved next.

Quasimonomial valuations are either divisorial if t ∈ Q, or irrational if t is irrational.
Divisorial valuations are isomorphic to valuations Type 1 (see 2.3.11), and Irrational
valuations are isomorphic to valuations Type 5 (see 2.3.11).

The space V is the tree completion of Vqm: the maximal elements in V, V \Vqm, are the
curve valuations and some others, called infinitely singular valuations. These valuations
are isomorphic to valuations Type 4 (see 2.3.11).
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In short, the valuative tree contains all of the valuations except valuations of Type 6
(see 2.3.11). By Noether formula, it is clear that a curve valuation νC has as cluster the
cluster of infinitely near points of the curve C, K(C), i.e., νC = ν(K(C)). An infinitely
singular valuation ν has a cluster with infinitely many singular points, no infinitely many
of them consecutive. This cluster K(ν) can be thought as the “limit of clusters” of
irreducible curves Cn such that (ν(Cn))n∈N is an increasing (no necessarily divergent)
sequence. To the cluster of quasimonomial valuations is devoted the following section.

2.4.1 Quasimonomial valuations

In this section we will study the quasimonomial valuation, and we will assign a cluster to
each valuation, such that νC,t = ν(K(νC,t)). This will allow to make a correspondence to
these valuations with the valuations studied in Section 2.3.11.

Let C be an irreducible curve and let t > 1 be a real number. We define the set

DC,t = {D ∈ C |
1

dC(C,D)
> t} = {D ∈ C |

C ·D

m(D)
> tm(C)} = {D | νD(C) > tm(C)}.

Then
νC,t(ψ) = inf{νD(ψ) | D ∈ DC,t}.

We also define the subset D̃C,t ⊂ C

D̃C,t = {D ∈ C |
1

dC(C,D)
= t} = {D ∈ C |

C ·D

m(D)
= tm(C)} = {D | νD(C) = tm(C)},

By Theorem 1.3.1, this set is nonempty if and only if t ∈ Q. In this case,

νC,t(ψ) = inf{νD(ψ) | D ∈ D̃C,t}.

Before the study of the general case, let us discuss the easiest case, which will help
us to understand the quasimonomial valuations. Let νC,t be a quasiomonomial valuation,
such that t ∈ N, C ∈ C smooth. In this case DC,t is the set of the curves which pass
through the first t points with normalized multiplicity 1. For any ψ ∈ R irreducible, we
can compute, at least, νC,t(ψ) as follows:

1. If (ψ = 0) does not belong to DC,t then, by the ultrametric inequality, νC,t(ψ) =

νD(ψ) for all D ∈ DC,t. In particular, νC,t(ψ) = νC(ψ) = C·(ψ=0)
mO(C)

.

2. Otherwise, if (ψ = 0) belongs to DC,t, then let D ∈ DC,t be an irreducible curve
such that K(D) ∩K(ψ) has only the first t points of K(D). Therefore, by Noether
formula, νC,t(ψ) = tmO(ψ).

Therefore, by Noether formula on valuations, K(νC,t) is the cluster which consists of
the first t points of K(C).

Let us discuss now the case t ∈ Q and C ∈ C (no necessarily irreducible). Let n be
a natural number such that tn(C) < t 6 tn+1(C), and write p = pn(C) (in this case,
tn(C) = tp(C)), and q = pn+1(C).
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Lemma 2.4.3. Let D ∈ C be an irreducible curve. Then D belongs to D̃C,t if and only if
D passes through every point less or equal than p with the same normalized multiplicity
as C and through q with multiplicity nq(D) = t−tp(C)

bq(C)
, and does not pass through pn+2(C).

This lemma is a corollary of Proposition 1.3.3. As a corollary, the cluster of νC,t can
be computed as follows:

Corollary 2.4.4. K(νC,t) contain every point less or equal than q, and the satellite points

defined by the continued fraction of t−tp(C)
bp(C)2

.

As before, we can compute νC,t(ψ) for any irreducible ψ ∈ R as follows:

1. If (ψ = 0) does not belong to DC,t, then, by the ultrametric inequality, νC,t(ψ) =

νD(ψ) for all D ∈ DC,t. In particular, νC,t(ψ) = νC(ψ) = C·(ψ=0)
mO(C)

.

2. If (ψ = 0) belongs to DC,t \ D̃C,t, then, by Proposition 1.3.3, νC,t(ψ) = νD(ψ) for all

D ∈ D̃C,t. Therefore, νC,t(ψ) = tmO(ψ = 0).

3. Otherwise, if (ψ = 0) belongs to D̃C,t, then let D ∈ D̃C,t be an irreducible curve such
that dC(D,ψ) = 1/t (it exists, see Remark 1.3.4). Therefore, by Noether formula,
νC,t(ψ) = νD(ψ) = tmO(ψ = 0).

Remark 2.4.5. It is easy to describe the set DC,t. In virtue of Proposition 1.3.3: A curve

D ∈ C belongs to DC,t if and only if q ∈ K(D) and nq(D) >
t−tp(C)

bq(C)
.

Example 2.4.6. Let C be a curve with Enriques Diagram as in Figure 2.1, and let
ψ = ψ1 · ψ2 · ψ3 ∈ R, where any ψi is irreducible and ψi = 0 has the Enriques Diagram as
in Figure 2.1, and t = 455

162
.

The next values can be computed easily: tp(C) = 25
9
, tq(C) = 26

9
, bp(C) = np(C) = 1

3

and bq(C) = nq(C) = 1
3
.

Every curve of D̃C,t passes through p with normalized multiplicity 1
3

and through q with

normalized multiplicity t−tp(C)
bq(C)

= 3 5
162

= 5
54

. For example, D is a curve of D̃C,t (see Figure

2.1). Therefore, the cluster of νC,t is formed from the common points of all the curves of

D̃C,t.
Now let us compute νC,t(ψ). We should compute νC,t(ψi) for all i = 1, 2, 3.

(ψ1 = 0) does not belongs to DC,t, so νC,t(ψ1) = C·(ψ1=0)
mO(C)

= 8
3
.

(ψ2 = 0 belongs to DC,t \ D̃C,t, because nq(ψ2) = 2
15

. Therefore νC,t(ψ2) = tm0(ψ2 =
0) = 455

162
15 = 2275

54
.

Finally, (ψ3 = 0) belongs to D̃C,t, because nq(ψ3) = 5
18

. Notice that dC(D,ψ3) = 1/t,
so νC,t(ψ3) = tm0(ψ3 = 0) = 455

162
54 = 244

3
.

Therefore:

νC,t(ψ) =
8

3
+

2275

54
+

244

3
=

6811

54

Let us consider the case t 6∈ Q. In this case the set D̃C,t is empty. Let n be the natural
number such that tn(C) < t < tn+1(C), and put p = pn(C), q = pn+1(C). Suppose that
t−tp(C)
bq(C)2

= [0, a1, a2, . . .]. Then
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Figure 2.1: An example of computing K(νC,t) and νC,t(ψ), where ψ = ψ1ψ2ψ3.

Proposition 2.4.7. Keep the above notations. The set K(νC,t) contains every point less
or equal than q and a stair of satellite points defined by the infinite continued fraction
[0, a1, a2, . . .], namely, a1 points proximate to the immediate predecessor of q, a2 points
proximate to the point in the (a1 − 1)-th neighbourhood of q, etc.

Proof. Let us consider the sequence of rational numbers nk = bq(C)[0, a1, a2, . . . , a2k]. By
Proposition 1.5.9, it is clear that this is an increasing sequence with limit

bq(C)[0, a1, a2, . . .] =
tp(C) − t

bq(C)
.

Any irreducible curve Dk that passes through q with normalized multiplicity nq(Dk) =
nk (by hypothesis nk < [0, a1, a2, . . .] < nq(C), so there are curves which passes through q
with that multiplicity), by Proposition 1.3.3, satisfies that

dC(C,Dk)
−1 = tp(C) + bq(C) min{nk, nq(C)} = tp(C) + bq(C)nk =: tk.

Therefore, (dC(C,Dk)
−1 = tk)k∈N is clearly an increasing sequence which tends to t.

Furthermore, for any ψ ∈ R,

(min{νD(ψ) | nq(D) = nk})k∈N = (νC,tk(ψ))k∈N

is an increasing sequence. Hence

νC,t(ψ) = lim
k
{min{νD(ψ) | nq(D) = nk}} = lim

k
{νC,tk(ψ)}.

The values νC,tk(ψ) can be computed by Noether formula. Notice that K(νC,tk) is an
increasing sequence of sets, because K(νC,tk+1

) contains all points of K(νC,tk) and a2k+1 +
a2k+2 satellite points. Therefore the limit is a valuation with cluster the union of all these
clusters, and the proof is completed.
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Example 2.4.8. Let C be an smooth curve an take t = [3, 2, 1, 2, 3, 2, 3, 5, 1, 3, 2, 5, 2, . . .] 6∈
Q. Some elements of the sequence of clusters K(νC,tk) are represented in Figure 2.2.

O OOO

C K1 K2 K3

Figure 2.2: The case t 6∈ Q. The curve C and first three elements of the sequence
{Kk = K(νC,tk)}.

The computation of νC,t(ψ) for any irreducible ψ ∈ R can carried out as before:

1. If (ψ = 0) does not belong to DC,t, then, by the ultrametric inequality, νC,t(ψ) =

νD(ψ) ∀D ∈ DC,t. In particular, νC,t(ψ) = νC(ψ) = C·(ψ=0)
mO(C)

.

2. Otherwise, if (ψ = 0) belongs to DC,t, then take {Dk} a sequence of curves such that
dC(Dk, C) = 1/tk and such that all Dk share the same free points with ψ. Therefore,
νC,tk(ψ) = νDk(ψ) = tkmO(ψ = 0). When k tends to infinity, νC,t(ψ) = tmO(ψ = 0).

2.4.2 Comparison of valuations

In this section we will see alternative ways to decide whether two valuations are compa-
rable. Let ν be a valuation. We have seen that every valuation has an associated cluster
K(ν). We consider F (ν) = F (K(ν)), in other words, the set of free points of K(ν), and
we write pi(ν), ni(ν), bi(ν) and ti(ν) for mean pi(K(ν)), ni(K(ν)), bi(K(ν)) and ti(K(ν))
respectively.

Comparing valuations and comparing distances between curves are very close prob-
lems. For example, let νC,t1 , νC,t2 ∈ Vqm be two divisorial valuations, and let Di ∈ C be a
curve such that dC(C,Di) = t−1

i . Then νC,t1 > νC,t2 if and only if dC(C,D1) < dC(C,D2).

Notice that for any t ∈ Q and D ∈ C, D belongs to D̃C,t if and only if K(D) ⊃ K(νC,t)
and the minimal point of K(D) \K(νC,t) is a free point.

We look for a way for comparing two valuations using their clusters K(ν). The first
result allow us to compare valuations by comparing the free points of their clusters and
the normalized valuation of the last free common point.

Proposition 2.4.9. Let ν1, ν2 be two valuations and let pi(ν1) = pi(ν2) be the last free
common point. Then

ν1 6 ν2 ⇐⇒ F (ν1) ⊂ F (ν2) and ni(ν1) 6 ni(ν2)
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Proof. ⇒ By reductio ad absurdum: let r ∈ N be the smallest number satisfying pr ∈
F (ν1) \ F (ν2) or nr(ν1) > nr(ν2). Let C be a curve that passes through pi(ν1) =
pi(ν2) with multiplicity equal to ni(ν1) = ni(ν2) for 0 6 i < r and that passes
through pr(ν1) with multiplicity nr(ν1). By the Noether formula, we have that
ν1(C) > ν2(C) (so ν1 
 ν2).

⇐ It is an immediate consequence of the Noether formula on valuations.

Proposition 2.4.10. Let ν1, ν2 ∈ Vqm be two different quasimonomial valuations such that
F (ν1) = F (ν2) = {p1, . . . , pN}. Let q be the maximal point in K(ν1) ∩K(ν2). Therefore,
one of this cases holds, after renaming the valuations if needed:

• There exist q1 and q2 in the first neighbourhood of q and in K(ν1) and K(ν2) re-
spectively. In this case, ν1 > ν2 if and only if K(ν1) goes right in q and K(ν2) goes
down in q (see the definition of going right, going free and going down in Section
1.4.2).

• There exists q1 in the first neighbourhood of q and in K(ν1) and the maximal point
of K(ν2) is q. In this case, ν1 > ν2 if and only if K(ν1) goes right in q.

Proof. Let C be a curve such that F (C) = {p1, . . . , pN , pN+1(C), . . .}, with pN+1(C) in
the first neighbourhood of pN . Then νi = νC,ti , where ti = dC(C,Di)

−1, where Di is a
curve which passes through all the points on K(νi) and is free after these points.

By previous Proposition 1.3.3, ν1 > ν2 if and only if nN(ν1) > nN(ν2). Then the result
follows in virtue of Theorem 1.5.11.

These two propositions allow us to compare quasimonomial valuations from the En-
riques Diagram of their clusters. Next result will let us to identify a quasimonomial
valuation by only computing one value:

Proposition 2.4.11. Let ν be a quasimonomial valuation. Then:

1. Suppose that νC > ν. Then ν = νC,t, where t = ν(C)
mO(C)

.

2. Reciprocally, if ν = νC,t and D is an irreducible curve such that ν(D) = tmO(D),
then νD > ν.

Proof. 1. By definition, νC,t′(C) = min{νD(C) | dC(C,D) 6 t′−1}. But dC(C,D) =
νD(C)mO(C). By Theorem 1.3.1, νC,t′(C) = t′mO(C). Therefore, νC,t′(C) =
tmO(C) implies that t′ = t.

2. If ν = νC,t, then νD > ν if and only if D ∈ DC,t. Suppose that D does not belong to

DC,t. Then dC(C,D) > t−1. But in this case, νC,t(D) = νC(D) = mO(D)
dC(C,D)

< tmO(D).
By reductio ad absurdum, νD > ν.

46



2.4.3 Two remarkable parameterization of the valuative tree

In this section we will give two parameterizations of the valuative tree: skewness and
thinness. We will define them, we will give some methods for their computation and we
will give some relations between these parameterizations and other invariants.

Let ν be a valuation of the valuative tree. The value

sup{ν(D)/mO(D) | D ∈ R} ∈ [1,∞]

is called the skewness of ν, and it is denoted by α(ν).

Lemma 2.4.12. Let νC,t be a quasimonomial valuation. Then α(νC,t) = t.

Proof. In virtue of Proposition 2.4.11, νC,t(C) = tmO(C). Then, α(νC,t) > t. But by
Proposition 2.4.11 again, νC,t(D) 6 tmO(D) for all irreducible curve D. Therefore, the
equality holds.

Theorem 2.4.13. α is a parameterization of the Valuative Tree V.

Proof. In virtue of Lemma 2.4.12, α is a strictly increasing function. The restriction of
α in any maximal totally ordered subtree is a bijection: is injective because is strictly
increasing and is exhaustive because if νC,t and νC′,t′ belong to a maximal totally ordered
subtree, with t < t′, then νC,t < νC′,t′ and νC′,r belongs to that subtree for any r in
(t, t′).

Proposition 2.4.14. The skewness satisfies the following statements:

• For any ν ∈ V and φ ∈ R irreducible, ν(φ) = α(ν ∧ νφ)mO(φ).

• For any irreducible curves C,D ∈ C, α(νC ∧ νD) = 1
dC(C,D)

.

Proof. • It is clear that for any irreducible curve φ, ν(φ) = (ν ∧ νφ)(φ). But (ν ∧
νφ) < νφ for definition of infimum. In virtue of Proposition 2.4.11, it implies that

(ν ∧ νφ) = νφ,t for some t. And by Lemma 2.4.12, t = α(ν ∧ νφ) =
(ν∧νφ)(φ)

mO(φ)
.

• In virtue of the previous part of that Proposition, α(νC ∧ νD) = νD(C)
mO(D)

. And by

definition of curve valuation νD(C) = C·D
mO(C)

.

It is easy to compute the skewness of any quasimonomial valuation if we have its
Enriques Diagram. In virtue of Corollary 1.5.25, the skewness and the inverse distances
can be computed in the same way. Therefore, we can use the results of Section 1.3 for
computing the skewness. In particular, Proposition 1.4.1 is very usefull.

Example 2.4.15. Let ν be a quasimonomial valuation with Enriques Diagram as in
Figure 2.3. Let C be a curve such that K(ν) ⊂ K(C) and without any satellite point in
K(C) \ K(ν). Let p be the maximal point in K(ν). Let D be a smooth curve such that
F (ν) ⊂ F (D).

Therefore

α(ν) = τp = tp(C) =
C ·D

mO(C)mO(D)
=

55

12
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p
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Figure 2.3: Enriques Diagram of a valuation ν of Example 2.4.15.

Let ν be an element of the Valuative Tree. We define the multiplicity of ν, denoted
by mO(ν), by mO(ν) = min{mO(C) | νC > ν}. By convention, min ∅ = ∞. Therefore

• mO(ν) = ∞ if and only if ν is infinitely singular.

• mO(νC) = mO(C).

Remark 2.4.16. mO is an increasing function of V to N ∪ {∞}.

Let τ be a valuation, and let ~vτ ∈ TτT be a tangent vector. If νµ ∈ ~vτ , we define
mO(~vτ ) = mO(τ). Otherwise, we define mO(~vτ ) = min{mO(ν) | ν ∈ ~vτ}.

Let τ be a divisorial valuation, and let p the maximal point of K(τ). The value sp is
called generic multiplicity of τ , and is denoted by b(τ).

Proposition 2.4.17. Let τ be a quasimonomial valuation. Let q be last free point of
K(τ). Then mO(τ) = sq.

Proof. It is clear that mO(τ) = mO(C), where C is a curve which passes through q and it
is smooth in q. Therefore, it is sufficient to prove that mO(C) = sq. But sq was defined
as mO(C).

Proposition 2.4.18. Let τ be a quasimonomial valuation. Let p be the last point of K(τ)
and let q be the last free point of K(τ). Then:

• If p = q, for any tangent vector ~vτ ∈ TτT it holds that mO(~vτ ) = mO(τ) = b(τ).

• If p > q, for any tangent vector ~vτ ∈ TτT but exactly two it holds that mO(~vτ ) = b(τ).
For the other two vectors, mO(~vτ ) = mO(τ).

Furthermore, if ν 6= τ is a valuation such that p belongs to K(ν), then mO(~vτ ) = b(τ)
if and only if the point of K(ν) in the first neighbourhood of p is a free point.

Proof. Suppose that p = q and ~vτ ∈ TτT . The result is clear if νµ ∈ ~vτ , so let us suppose
that the elements of ~vτ are greater than τ (see Lemma 2.2.1). Let ν ∈ ~vτ . ν > τ , but
nq(τ) = bq(τ) because q is the last point of the cluster of τ . It implies that nq(ν) = bq(ν),
because nq(ν) > nq(τ) (see Proposition 2.4.9). Therefore, the point of K(ν) in the first
neighbourhood of q, say q′, is free.

Let C be a curve such that passes through q′ and it is free in q′. Then it is obvious
that mO(C) = mO(τ). Hence, mO(~vτ ) = mO(νC) = mO(τ).
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Let us suppose now that p > q. Let p1, p2 be the two satellite points in the first
neighbourhood of p, and let ν1, ν2 be the valuations such that pi is the maximal point of
their cluster. It is clear that ν1 and ν2 belong to two different tangent vectors, because
one of them is greater than τ and the other is less. Suppose that ν1 is greater than
τ . [ν2]τ , the vector represented by ν2, satisfies that mO([ν2]τ ) = mO(τ) by definition of
multiplicity, because νm belongs to [ν2]τ in virtue of Lemma 2.2.1.

Let C be a curve such that passes through q and it is free in q. Then νC > ν1, and,
hence, νC belongs to [ν2]τ . But mO(νC) = mO(C) = mO(τ).

On the other hand, take a valuation such that p belongs to K(ν), and that the point
on K(ν) in the first neighbourhood of p, say p′, is a free point. Take C a curve such
that passes through p′ and that it is free in p′. Therefore, νC and ν belongs to the same
tangent vector, and mO([νC ]τ ) = mO(C) = b(τ) by definition of b.

Remark 2.4.19. Let τ be a quasimonomial valuation. Let p be last point of K(τ) and
let q be the last free point of K(K). Then, mO(τ) = sq and b(τ) = sp. Therefore, b(τ) is
a multiple of mO(τ).

Lemma 2.4.20. Let τ be a quasimonomial valuation. Let p be last point of K(τ). Then
b(τ) is the value at p of the weight cluster with points K(τ) and value 1 at the origin and
0 at the other points.

Proof. It is a consequence of the proximity equalities (Theorem 3.5.3 of [1]).

Let ν ∈ V be an element of the Valuative Tree. We define the thinness of ν as

A(ν) = 2 +

∫ ν

νm

mO(µ)dα(µ).

Proposition 2.4.21 (Proposition 3.46 of [4]). The thinness is a parameterization of the
Valuative Tree. Furthermore, A(ν) is rational for the divisorial valuations, it is irrational
for the irrational valuations, and it is equal to infinity for the curve valuations.

Proposition 2.4.22. Let ν be a divisorial valuation, and let p be the maximal point of
K(ν). Then A(ν) = ap

b(ν)
, where ap is the value at p of a weighted cluster with maximal

point p and value 1 at every point.

A proof of this fact can be found in [3].

2.4.4 On the weak topology in the valuative tree

In Section 2.2 we defined a topology on any rooted nonmetric tree. In this Section we
will show some properties of this topology in the case of the Valuative Tree.

Let C be the set of functions from a set D to a metric space M . The weak convergence
topology of C is the topology defined as follows: for any sequence (fn)n∈N of C and f ∈ C,
fn → f if and only if fn(d) → f(d) for all d ∈ D.

Proposition 2.4.23. The weak tree topology of V coincides with the induced weak con-
vergence topology of V as a set of functions from R to R.
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Proof. It is sufficient to prove that if (νn)n∈N is a sequence of elements of V and ν belongs
to the Valuative Tree, then νn → ν in the weak tree topology if and only if νn(ψ) → ν(ψ)
for all ψ ∈ R.

⇒ By reductio ad absurdum. Suppose that νn → ν in the weak tree topology but there
exists an irreducible curve ψ such that νn(ψ) 6→ ν(ψ). Write M = ν(ψ). There are
two possibilities:

• M = ∞: Notice that it implies that ν = νψ, and νn(ψ) 6→ ν(ψ) = ∞ implies
that there is a bounded subsequence of the sequence (νn). Let νnk be that
subsequence, and take K > 0 such that νnk(ψ) < K. Write N = K/mo(ψ).
By Proposition 2.4.11, νψ,N (ψ) = NmO(ψ) = K. Therefore, νnk(ψ) < νψ,N(ψ)
which implies that νnk ≯ νψ,N for all k. Take U the vector of Tνψ,NV that
contains ν. On the other hand, ν = νψ > νψ,N . In virtue of Lemma 2.2.1, any
element of the subsequence νnk belongs to U . But this fact contradicts that
νn → ν.

• M <∞: Then, by definition of limit in R, there exists ε > 0 and a subsequence
of the sequence (νn) such that any element of that subsequence belongs to
(M − ε,M + ε). Therefore, there are two possibilities:

– There is a subsequence of the sequence (νn), namely νnk , such that νnk(ψ) <
M − ε for all k. In this case, write N = (M − ε/2)/mO(ψ). By Proposi-
tion 2.4.11, νψ,N(ψ) = NmO(ψ) = M − ε/2. Therefore, νnk(ψ) < νψ,N(ψ)
which implies that νnk ≯ νψ,N for all k. Take U the vector of Tνψ,NV that
contains ν. ν(ψ) = M . By Proposition 2.4.11, ν > νψ,N . In virtue of
Lemma 2.2.1, any element of the subsequence νnk belongs to U . But this
fact contradicts that νn → ν.

– There is a subsequence of the sequence (νn), namely νnk , such that νnk(ψ) >
M+ε for all k. In this case, write N = (M+ε/2)/mO(ψ). By Proposition
2.4.11, νψ,N (ψ) = NmO(ψ) = M+ε/2. Therefore, νnk(ψ) > νψ,N(ψ) which
implies, in virtue of Proposition 2.4.11, that νnk > νψ,N for all k. Take U
the vector of Tνψ,NV that contains ν. On the other hand, ν(ψ) = M implies
that ν ≯ νψ,N . In virtue of Lemma 2.2.1, any element of the subsequence
νnk belongs to U . But this fact contradicts that νn → ν.

⇐ Let τ 6= ν be a valuation, and let U be the tangent vector at τ that contains ν. It is
sufficient to prove that there exists N > 0 such that νn belongs to U for all n > N .
If τ is maximal in V, then U = V \ {τ}, and the result is trivially true. Let us
suppose that τ is not maximal. Therefore, τ = νψ,t for some irreducible ψ ∈ R and
t > 1. Two different cases are considered:

• ν(ψ) < tmO(ψ). Hence, ν ≯ τ . But there exists N such that νn(ψ) < tmO(ψ)
for all n > N , so νn ≯ τ . By Lemma 2.2.1, νn and ν belong to the same
tangent vector at τ for all n > N .

• ν(ψ) > tmO(ψ). Then, by Proposition 2.4.11, ν > τ . By definition of tree,
(τ, ν) is isomorphic to a real segment. Take τ ′ ∈ (τ, ν). We can write τ ′ = νψ′,t′

and τ = νψ′,t with t < t′. And in virtue of Proposition 2.4.11, ν(ψ′) > t′mO(ψ′).
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Take ε > 0 such that t′−ε > t. There exists N such that νn(ψ
′) > t′−ε for any

n > N . By Proposition 2.4.11, it implies that all νn are in the same tangent
vector at τ that τ ′. But ν is in that vector.

Notice that V is a metric space with the distance induced by the skewness:

dα(ν, µ) =

(
1

α(µ ∧ ν)
−

1

α(µ)

)
+

(
1

α(µ ∧ ν)
−

1

α(ν)

)
.

The topology defined with this metric is called strong tree topology on V.
But we can define another distance in V.

dstr
V (ν1, ν2) = sup

φ∈m irreducible

∣∣∣∣
mO(φ)

ν1(φ)
−
mO(φ)

ν2(φ)

∣∣∣∣ .

The strong topology of V is the topology defined by this distance.

Proposition 2.4.24 (Theorem 5.7 of [4]). The strong topology of V coincides with the
strong tree topology. Furthermore, the two distances are equivalents:

dstr
V (ν1, ν2) 6 dα(ν1, ν2) 6 2dstr

V (ν1, ν2).

Remark 2.4.25. We will write simply weak topology and strong topology instead of
weak tree topology and strong tree topology. Notice that in virtue of Proposition 2.4.23
and Proposition 2.4.24 no confusion is possible.

Proposition 2.4.26 (Proposition 5.8 of [4]). The strong topology on V is strictly stronger
than the weak topology. Furthemore, V is not locally compact with the strong topology.

2.4.5 Monomial valuations

This section is devoted to Monomial valuations. These valuations are some quasimonomial
valuations, and they are important because the computations with them are very easy.
In this section we will define the concept of monomial valuation and we will give some
characterizations and properties of them.

A valuation ν ∈ V is called monomial valuation if there exists some coordinates (x, y)
and some α > 1, α ∈ R, such that for every φ of R, it holds

ν(φ) = min{i+ αj | αij 6= 0},

where
φ =

∑

i,j

αijx
iyj.

As we can notice, the computation of values with a monomial valuation is easy: it is
reduced to the computation of a minimum.

Proposition 2.4.27. Let ν ∈ V be a quasimonomial valuation. Then, the following are
equivalent:
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1. ν is monomial.

2. There are not any free point preceding a satellite point in K(ν).

3. mO(ν) = 1.

Proof. 1 ⇒ 2. Take x, y the coordinates which make ν a monomial valuation. It is clear
that ν(y = 0) = α. It is sufficient to prove that νy > ν, because then ν = νy,α
(the cluster of νy,α has a0 free points and then a1 + a2 + . . . satellite points, where
α = [a0, a1, . . .]).

Let φ be an element of R. If y divides φ, then νy(φ) = ∞, and νy(ψ) > ν(ψ). Let us
suppose that y does not divide φ. Write φ =

∑
φiy

i, where φi ∈ C{x}, and φ0 6= 0.
Let ci be the minimum degree of φi. Therefore, νy(φ) = c0, and ν(φ) = min{αi+ci}.
It is clear that νy(φ) > ν(φ), quod erat demonstrandum.

2 ⇒ 1. Let p be the last free point of K(ν). Let C be a smooth curve such that passes
through p. This curve exists because p does not precede any satellite point by
hypothesis. Let D be a smooth curve at distance 1 to C, that is, such that K(C)∩
K(D) = {O}. Take a coordinates defined by C and D, this is, a coordinates in
which C is defined by y = 0 and D is the curve x = 0. Then ν is monomial with
this coordinates. The prove of this fact is analogous at the proof of νy > ν of the
previous point of this proof.

2 ⇒ 3. Let p be the last free point of K(ν). Therefore, sp = 1 by hypothesis. And
mO(ν) = 1 in virtue of Proposition 2.4.17.

2 ⇒ 3. Let p be the last free point of K(ν). Therefore, p precedes a satellite point if and
only if sp > 1. But mO(ν) = 1 = sp in virtue of Proposition 2.4.17.

Proposition 2.4.28. Let ν be a valuation of V. Then ν is quasimonomial if and only if
there exists a modification π : S → (C2, O) such that π∗ν is a monomial valuation.

Proof. This result is a consequence of Proposition 2.4.27. For any quasimonomial valua-
tion ν, let p be the last free point of K(ν). The modification π in such that p is a proper
point turns ν onto a monomial valuation, because there are not any free point preceding a
satellite point in K(π∗ν) = Kp(ν). The converse is trivial in virtue that ν is quasimonimal
if and only if K(ν) has a finite number of free points (see Proposition 2.4.9).
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