

TITL

MAS
& M

AUT

DIRE

DAT

LE: Digital

STER DEG
anagemen

THOR: Jua

ECTOR: G

TE: June,

MA

l predistor

GREE: Ma
nt

an Murillo

Gabriel Mo

5th 2007

ASTE

rtion by us

aster in Sc

Espinar

ontoro Lóp

ER T

sing GPIB

cience in T

pez

THES

B-controlle

Telecomm

SIS

ed instrum

munication

mentation

n Engineering

Title: Digital predistortion by using GPIB-controlled instrumentation

Author: Juan Murillo Espinar

Director: Gabriel Montoro López

Date: June, 5th 2007

Overview

A digital predistortion using real equipment, holding it with new software, is
here presented.

The Vector Signal Analyzer (VSA) –by Agilent– is a new software which allows
to the user complete functionalities for the study of real signals. This software
consists basically in a Spectrum Analyzer, regarding its performance, but
increasing functionalities and commodity.

With the VSA software one can have a complete control of an overall
communication system, taking advantage of its capacity to share data with
other applications. By this way, data information of the signal received on a
Spectrum Analyzer can be obtained and studied. In this study is showed how
the VSA allows taking data in different modes. Besides, using the COM API
language, it is possible to control the VSA with other softwares. Using this
performance, and combining it with GPIB (General Purpose Interface Bus), the
complete management of the whole system is achieved from Matlab. The GPIB
allows interconnecting both Signal Generator and Spectrum Analyzer devices
with the PC.

Once this connection is reached and all the parameters are well specified, the
main goal of this Master Thesis is to turn the VSA software transparent to the
user. The final scenario is to send a signal from Matlab and taking it –when the
signal has passed across a power amplifier (PA)– again from Matlab (by
means of the VSA software, but making it invisible to the user).

In order to prove the correct performance of the system implementation, a
digital predistortion is employed. Thus, once the digital predistortion is done,
the performance of the overall system should increase. This is because the
nonlinearities due to the PA should be solved.

Herein, problems solved, VSA parameters adjustments, Matlab code program
and main results of the digital predistortion, having in mind its future
implementation in a FPGA, are presented.

ÍNDEX

INTRODUCTION .. 1

CHAPTER 1. PA NONLINEARITIES ... 3

1.1. PA identification .. 3
1.1.1. K order interception point ... 3
1.1.2. Compression point ... 4
1.1.3. Back-off .. 6

CHAPTER 2. DIFFERENT KINDS OF LINEARISER .. 7

2.1. Nonlinearities compensation techniques ... 7
2.1.1. FeedForward .. 7
2.1.2. Feedback .. 9
2.1.3. LINC (Linear Amplification with Nonlinear Components) 9
2.1.4. ACG (Automatic Control Gain) ... 10
2.1.5. Predistortion ... 10

2.2. Digital predistortion .. 11
2.2.1. Adaptive / Non-adaptive predistortion .. 11
2.2.2. Memory / Memoryless effects .. 12
2.2.2. Predistortion techniques employed .. 13

CHAPTER 3. HARDWARE .. 16

3.1. Signal Generator Device -- E4433B Agilent .. 16

3.2. Spectrum Analyzer Device -- E4407B Agilent .. 17

3.3. PA Device – ZRL-2300 Minicircuits ... 17

3.4. GPIB Bus – National Instruments .. 18
3.4.1. A brief history.. 18
3.4.2. GPIB Specifications .. 19
3.4.3. Programming GPIB (SCPI) .. 21
3.4.4. GPIB used at this work ... 23

CHAPTER 4. SOFTWARE .. 24

4.1. VSA (Vector Signal Analyzer) software ... 24

4.2. COM API Matlab to VSA .. 28

CHAPTER 5. SYSTEM IMPLEMENTATION ... 30

5.1. Overall system ... 30
5.1.1. GPIB commands specified .. 31
5.1.2. VSA fixed and identified parameters ... 34

5.2. Program flow diagram .. 38

CHAPTER 6. FINAL RESULTS ... 39

6.1. Final whole system scenario .. 39

6.2. Non-Adaptive predistortion results (without LUTs) ... 39
6.2.1. PA identification ... 39
6.2.2. Predistortion curve identification ... 40
6.2.3. Predistortion result .. 40

6.3. Non-Adaptive predistortion results (with LUTs) .. 41
6.3.1. PA identification ... 41
6.3.2. Predistortion curve identification (LUT values) ... 42
6.3.3. Gain curve. LUT size implication. ... 43

6.4. Adaptive predistortion results (LMS algorithm) ... 44
6.4.1. PA identification ... 44
6.4.2. Predistortion curve identification ... 44

CHAPTER 7. CONCLUSIONS .. 46

7.1. Future work .. 47

7.2. Environmental study ... 47

BIBLIOGRAPHY .. 49

ANNEX ... 51

Introduction 1

INTRODUCTION

This Master Thesis presents the results of a digital predistortion. Nevertheless,
it is important to say that the main effort is achieve to realize this predistortion
by using a GPIB-controlled instrumentation and a new software called VSA
(Vector Signal Analyzer) from Agilent.

The GPIB (General Purpose Interface Bus) is a short range digital data bus
which allows to connect hardware devices, as Signals Generators and/or
Spectrums Analyzers, to some PC in order to control them remotely.
Concretely, the SCPI (Standard Commands for Programmable Instruments)
commands are used to manage the hardware from the PC.

Once the connection is accomplished, the VSA software is employed to obtain
the information data that before it was able to be seen on a Spectrum Analyzer.
The VSA software provides the traditional spectrum displays and
measurements of a typical Spectrum Analyzer, but with some advantages:

- A part of the standard information, it has several new options,
measurements and displays. For instance, a lot of actual and newer
modulation formats (like EDGE, MSK, M-QAM, 4 DQPSK …), such as
spread spectrums or multicarrier modulations (OFDM), can be selected
on the VSA software. Later, this point is exposed widely.

- Maybe the most important issue and advantage of the VSA software,
although the first one is so outstanding, is the possibility to share data
with other softwares, like Microsoft Excel or Matlab. It allows to have an
absolute control of the overall communication system because the
received signal could be completely taken in. It has to be mentioned that
VSA software permits to get data in different modes (the demodulated
data, the received symbols and the IQ information once the signal
passes across the shaping filter or when it does not pass across…).

- Another significant aspect, and perhaps not so important, is the
possibility to work with the PC instead of the hardware device. With the
VSA, up to 9 different graphs could be seen at the same time on the PC
screen, allowing a better control of the signal. A part of this, to work with
the PC improves the commodity.

The VSA software has other key option. It can be managed from other
applications or softwares by means of its COM API (Component Object Model
Application Programming Interface) language. The main softwares that could
control the VSA are ADS (Agilent Design System) and Matlab. The last one is
used on this work.

2 Digital predistortion by using GPIB-controlled instrumentation

One of the main goals of this Master Thesis is to research about the new
software bought by the EPSC (Escola Politècnica Superior de Castelldefels),
the VSA software. Because of the darkness of the software help and the
enormous quantity of functions and parameters bad exposed, this process
consumed a lot of time. In fact, the presence in a one-day course of this
software, guided by Agilent workers, was required.

When the software is controlled, the goal is to reach that the VSA turns
transparent to the user. It means that it must be completely controlled from
Matlab. In order to verify the correct performance, a digital predistortion for
linearise a power amplifier (PA) is implemented.

Nowadays, when the main requirements in modern communication systems
–overcoat in mobile communications systems– are high data transfer rates and
a long time of battery life, the predistortion is continuously under test.

In order to achieve high data transfer rates, modern multilevel and multicarrier
modulations are currently used. What this implies is the presence of high PAPR
(Peak to Average Power Ratios). And, thus, if a linear amplification wants to be
achieving, the work point should be moved far of the compression point. It is
well known that as much as is moved the work point away from the
compression point, the battery life will be decreased considerably.

The main objective of this Master Thesis is achieved. A whole control of a
complete system from Matlab, making the VSA invisible and transparent to the
user, is made successfully. In order to realize the digital predistortion, a signal
was created from Matlab and sent to a Signal Generator by GPIB commands.
Then, once the signal pass across the PA, it is obtained by the VSA software
and the data is collected again to Matlab software, with which is possible to
compare the signal sent with the signal received and make the digital
predistortion.

Once the main PA characteristics and nonlinear effects are exposed, some of
principal nonlinearities compensation techniques are listed and digital
predistortion is widely studied. Afterwards, hardware devices and GPIB
connection employed in this work, such as VSA software, are here presented.
In relation to the VSA software, all the most important concepts and the
problems solved when this work was advancing, and the COM API way to
interconnect VSA to Matlab software and the GPIB/SCPI commands used, are
explained. Finally, the whole system is described and the digital predistortion
results are shown and justified for its implementation in a FPGA.

PA nonlinearities 3

CHAPTER 1. PA nonlinearities

If the PA input power is small, the PA performance is linear. In this case, the PA
is working in its linear zone and, at the output, only the frequency components
of the input appear. On the other hand, when the input power is high, the PA is
working in its nonlinear zone.

The effects that produce the PA nonlinearity over modulated signals are mainly
two. They are called “in-band effects” and “out-of-band effects”. The first one,
the “in-band effects”, produces a constellation distortion and consequently, a
worse BER (Bit Error Rate) value. The second group, the “out-of-band effects”,
produces a spectrum widening and so, a higher ACPR (Adjacent Channel
Power Ratio) value. These two impacts are, obviously, important
disadvantages.

Being the PA input signal represented in (1.1), at the PA nonlinear output will
appear spurious at other frequencies. These are grouped in harmonic zones
that should be separated by filtering. The output would be the equation
represented in (1.2).

 cos (1.1)

 Α | | cos Φ| | ∑ | | cos Ψ | | (1.2)

Where n is the harmonic zone, being the first zone the more conflictive in
communication systems. The third order harmonics are in this first zone. These
are not easy to remove due to their proximity to the signal, whereas the other
harmonics are easy to remove using of a filter. According to (1.2), the signal at
the first harmonic zone showed in (1.3).

 Α | | cos Φ| | (1.3)

1.1. PA identification

There are different representative parameters to identify a PA, like the gain, the
frequency range or the low noise figure, among others. Two of these key
parameters are the k order interception point and the compression point.

1.1.1. K order interception point

One of the main identification parameters of a PA is the k order interception
point (IPk). It is ever specified on the datasheet. Usually the third order (IP3) is
specified because, as it has been seen before, it is the more conflictive. The
input IP3 (IIP3) is the input signal level, when the fundamental tone intensity at
the input coincides with the third harmonic level. It is impossible to reach to the

4 Digital predistortion by using GPIB-controlled instrumentation

IIP3 because it will be ever a higher power value than the saturation power
level1. Thus, in order to determine the IP3, an extrapolation of the linear zone on
both curves has be done. It is showed on Fig. 1.1. The harmonics are one of the
principal reasons of the ACPR existence.

Fig. 1.1 Interception point [1]

1.1.2. Compression point

Other important parameter on the PA identification is the compression point
(usually specified the 1dB compression point). As it has been explained, the
PAs have a saturation power. This is known as gain compression effect. The
input power when the fundamental output power is 1dB besides the ideal
(linear) level is called “1dB input compression point”. The gain compression
effect is one of the principal reasons of the constellation distortion at multilevel
modulations, because different amplitudes values are amplified with different
gains.

The best way to study the gain compression effect consists in draw the AM/AM
static distortion curve. The functions | | and Φ|a | in (1.3) are known as
AM/AM (amplitude modulation/amplitude modulation) and AM/PM (amplitude
modulation/phase modulation), respectively. The first one represents the input
amplitude modulation versus the output amplitude modulation and the second
represents the input amplitude modulation versus the phase error between the
input and output modulation. As it can be seen at Fig. 1.2, if the PA is working in
its nonlinear zone, it means close to the “1dB compression point”, the signal will
be degraded. In order to specify clearly when the PA is working, the back-off
parameter is defined.

1 The saturation power level is the maximum power that can provide the PA. It means that,
although the input power level would increases, the PA could not provide higher power.

PA nonlinearities 5

Fig. 1.2 Gain compression curve, 1 dB compression point (AM/AM curve),

AM/PM curve [2]

It has to be in minding that, although the AM/AM curve is usually characterized
with just one line, in the amplitude modulation scenario it should be represented
by points. Because the signal sent is by points, the received signal has a
relation with its symbol rate. So, in order to characterize the AM/AM curve, the
input symbol module versus its output symbol module has to be located on the
graph with one point. Thus one point is represented for each symbol sent. And,
on the other hand, to characterize the AM/PM curve, the input symbol module
versus the phase error between input and output symbols is represented. An
example of this is showed at Fig. 1.3, and an AM/AM and AM/PM curves results
are at Fig. 1.4.

Fig. 1.3 AM/AM and AM/PM characterization points

Fig. 1.4 (a) AM/AM curve, (b) AM/PM curve, both represented by points

6 Digital predistortion by using GPIB-controlled instrumentation

It is interesting to observe the blurring effects on the AM/AM and AM/PM
curves. This is consequence of the memory effects of the PA under test. These
effects will be explained afterwards on chapter 2. The digital predistortion, a part
of solving the nonlinearity of that curves, it will be able also to solve these
memory effects considerably.

1.1.3. Back-off

From the AM/AM curve, the back-off value is defined in order to know where the
PA is working. The back-off is the value2 that relates the PA work point with the
PA 1dB compression point [3]. As in the IP3 and in the 1dB compression point,
the back-off can be defined at the input (input back-off, IBO) and at the output
(output back-off, OBO).

Thus, if it is said that it is working at IBO or OBO of 0dB, it means that it is
working exactly over the compression point, where the signal will be degraded
significantly. When the IBO value (or ever equivalent to OBO) is increased, the
work point is moving away the compression point and so is working at a more
linear zone and, consequently, with less distortion. The expression that related
the IBO with the input power is like in (1.4).

 (1.4)

It seems clear that is interesting to work at the linear region in order to against
the PA nonlinearity. Nevertheless, there are some important negative
consequences. Maybe the main disadvantage is that at higher IBO values,
where the PA performance is more linear, the energetic efficiency is highly poor,
involving a reduction of battery life, really important in mobile devices.

Fig. 1.5 IBO and OBO definition [4]

2 Value in dB.

Different kinds of lineariser 7

CHAPTER 2. DIFFERENT KINDS OF LINEARISER

Once the PA nonlinearities and its consequences on a signal are clarified,
different possible solutions are listed here. Finally, the kind of lineariser used at
this work is widely explained.

As it has been said before, the logic way to solve the nonlinearity is working at
its linear zone and much far as it can be possible to the compression point.
Taking into account that current personal standards use modern multilevel and
multicarrier modulation formats -which presents high peak to average power
ratio (PAPR) values-, higher values of IBO are necessary. However, this option
is obviously bad if the energetic efficiency is considered. In order to have a
good energetic efficiency and consequently, a larger battery life –aspect too
important in mobile devices-, the work point should be close to the compression
point. So, there are a trade off among the linearity and the battery life.

Having both linearity and battery life good enough, there are some ways to
solve this trade off. The best option to have an efficient PA is the use of some
technique that minimizes the PA nonlinearities. Here are listed the most
common ones and their main characteristics are mentioned, although some of
them shouldn’t be used to compensate PA nonlinearities.

2.1. Nonlinearities compensation techniques

The main nonlinearities compensation techniques are listed here. But, as it will
be explained later, some of these compensation techniques should not be used
with the objective of linearise power amplifiers. Nevertheless, they can be used
for other applications.

2.1.1. FeedForward

The FeedForward scheme can be seen at Fig. 2.1. The basic concept that the
FeedForward technique follows is the distortion cancellation by means of two
loops.

The main idea is that if the linear signal is subtracted to the signal plus the
distortion, the final signal that will appear after this subtract is only the distortion.
Then, once the distortion is identified, it will be also subtracted to the signal plus
the distortion, obtaining so the final signal amplified without distortion. Maybe
this idea seems too difficult, but if the different signals are studied at Fig. 2.1,
the concept should be clarified.

8 Digital predistortion by using GPIB-controlled instrumentation

Fig. 2.1 FeedForward scheme

The A loop is called “the signal cancellation loop”, and the B loop is called “the
distortion cancellation loop”. Other important issues are that: (1) the gain value
G is equal than the G’ value and (2) the attenuator gain is .

The signal v(t) is just the input signal amplified by the nonlinear power amplifier.
So, v(t) could be wrote as (2.1), that represents the input signal multiplied by the
gain value plus the distortion.

 (2.1)

where d(t) is the distortion.

Then, if v(t) passes across the attenuator, the r(t) signal is like in (2.2).

 (2.2)

Because as it has been said before, G is equal than L and so 1. If r(t) is
subtracted to x(t), the result should be like (2.3).

 (2.3)

At this moment the w(t) signal is just the distortion provided by the nonlinear
power amplifier and the signal is cancelled. Because of this, the loop is called
“the signal cancellation loop”.

Afterwards, the w(t) signal passes across the auxiliary power amplifier with an
equal gain than the first one, giving as a result the z(t) signal.

 (2.4)

Now z(t) is just the distortion introduced by the nonlinear PA. So, the only thing
that should be done now is to subtract v(t) in order to delete completely the
distortion.

 (2.5)

Different kinds of lineariser 9

Finally, the linear amplification without distortion is the output after the signal
passes across these two loops.

The advantages of the FeedForward are that the PA gain is not reducing and
the correction is not based in pass effects, it is based in what is happening at
the moment. The FeedForward configuration is unconditional stable.
Nevertheless, there are some disadvantages, too. The first one is the complex
system circuit, which is an open loop circuit. Thus, it does not compensate the
variations in time and temperature. Other important disadvantage is that, at this
model, the auxiliary power amplifier is linear, and this is too difficult to achieve
when the model is carried to the reality.

2.1.2. Feedback

This method is maybe the most obvious and simple in order to reduce the
amplifier distortion. It is based on the use of some kind of feedback.

Fig. 2.2 Feedback scheme

The feedback is universally used for correct every type of error. However, in the
case of radio frequency communication is not a good technique to reduce the
nonlinearities, because it sacrifices the power amplification gain to improve the
linearity. Moreover, the scheme could be unstable.

2.1.3. LINC (Linear Amplification with Nonlinear Components)

The LINC scheme is showed at Fig. 2.3. It is based in the law that it is ever
possible to find two signals v1(t) and v2(t) with constant amplitude that
accomplish the next relations.

Being v(t) any band-pass signal

 cos (2.6)

It is always possible to find:

 (2.7)

 coscos (2.8) and (2.9)

10 Digital predistortion by using GPIB-controlled instrumentation

Fig. 2.3 LINC scheme

 (2.10)

Following (2.7), (2.10) can be reduced in (2.11), where finally just the lineal
amplification is obtained.

 (2.11)

The main drawback is that the disturbance of the signal is difficult and is not
trivial. Thus it is usually implemented by DSP.

2.1.4. ACG (Automatic Control Gain)

This compensation technique is clearly inadequate to employ at this study. At
the ACG technique, the variable gain should be inverse proportional to the v(t)
power. The ACG method is typically used on radio links.

Fig. 2.4 ACG scheme

In this case, the main disadvantage is that it can not be implemented when the
information is traveling on the amplitude.

2.1.5. Predistortion

The predistortion technique is the simplest idea to linearise a PA. Basically, it
consists in create a previous distortion curve complementary to the power
amplifier distortion (look at Fig. 1.2). So, if these two curves are situated in
cascade, the final result is completely lineal. This is showed at Fig. 2.5.

Different kinds of lineariser 11

Fig. 2.5 Predistortion scheme

It has to be mentioned that it could exist analog predistortion or digital
predistortion. Herein, the digital predistortion will be implemented. Digital
predistortion can be applied at baseband or at intermediate frequency (IF),
whereas the analog predistortion is applied at RF.

2.2. Digital predistortion

Predistortion [5] is basically a method by which one first stimulates a non-linear
PA with baseband samples and, then, observe the results of that stimulus at the
PA output. Then, the AM/AM and AM/PM effects of the PA are estimated.
These estimated distortions are then removed from the PA by predistorting the
input stimulus with their inverse equivalents.

Fig. 2.6 Predistorter block scheme [5]

Therefore, the principal idea behind the concept of predistortion is the aim of
introducing inverse nonlinearities that can compensate the AM/AM and AM/PM
PA distortions.

Nowadays, the predistortion is an important issue to have into account owing to
the modern multilevel modulation formats and multicarrier or spread spectrum
techniques. For this, the digital predistortion has been object of multiple
publications in the recent past years [6] [7]. In all these publications, a clear
classification is applied in all the predistortion techniques used. The adaptive or
non-adaptive predistortion and memory or memoryless effects are specified.

2.2.1. Adaptive / Non-adaptive predistortion

The difference among these two kinds of predistortion is very simple. The non-
adaptive predistortion realizes the estimation of the predistorter function only
one time and it is assumed that this curve will be ever valid for predistort the PA

12 Digital predistortion by using GPIB-controlled instrumentation

input signal. The result of the non-adaptive predistortion is worse than if an
adaptive predistortion is used.

On the other hand, the adaptive predistortion is the most suitable option to
achieve a good estimation in all transmission time. The adaptive predistortion
consists in obtaining output samples and estimating the predistorter function
continuously. Therefore, if an adaptive predistortion is used, one can assure the
correct and actual predistorter function for each moment, achieving a better
linearization result than when a non-adaptive predistortion technique is
implemented.

Inside the adaptive predistortion, a lot of different techniques are studied at
papers. Herein, a non-adaptive predistortion and an adaptive predistortion with
LMS (Least Mean Square) algorithm will be studied and the results will be
compared.

2.2.2. Memory / Memoryless effects

Other important issues are the memory effects of the PA. Inside the different
studies and publications related to digital predistortion, a clear differentiation is
used: predistortion having into account the memory effects or without them
(memoryless).

The memory effects are a consequence of the electrical and thermal dispersion
effects [8]. However, there are other aspects related to the modulation formats
or signal bandwidth that could be also relevant. If memory effects are
presented, the PA output (amplitude and phase) not only depend on the
instantaneous PA input, it depends also on their past values.

Thus, in the memoryless case, it is assumed that the AM/AM and AM/PM static
curves will be always suitable for the same envelope value. So then, a table of
predistorter gain values can be stored for every possible input envelope value. If
this table is applied to the PA input, then it should cancel the undesired PA
nonlinear response.

If modern communication systems are present, the digital predistortion based
on memoryless models that only takes into account the AM/AM and AM/PM
static curves does not achieve good results. It will be a right option with
narrowband signals. With modern modulation schemes used nowadays as M-
QAM or with modern techniques as WCDMA or OFDM, PA memory effects can
not be ignored. When modulation bandwidth is relatively wide –more than 20
MHz– the PA starts to suffer from memory.

Against memoryless case, now for every particular value of input, there is more
than one predistortion value that is needed to linearise the gain. The outcome
that produces the memory effects are clearly seen on Fig. 1.4. As it can be seen
at this figure, it produces blurring effects on the AM/AM and AM/PM curves.

Different kinds of lineariser 13

Here is an example extracted from [9] where a 2.5 MHz bandwidth OFDM
signal is measured by an Ericsson 45 W base station PA. At Fig. 2.7 and Fig.
2.8, the results for memory, memoryless and without predistortion are showed.
It can be observed the difference between these measurements and how
improve the results when the memory effects are taken into account.

Fig. 2.7 (a) memory polynomial predistorter, (b) memoryless predistorter and (c)
without predistortion

Fig. 2.8 ACPR for memoryless polynomial model, memory polynomial mode
and without predistortion

2.2.2. Predistortion techniques employed

As it has been commented before, two kinds of predistortion will be compared.

- Non-adaptive predistortion
- Adaptive predistortion based on the LMS algorithm

The results of these two types of predistortion will be showed on chapter 6.

2.2.2.1 Non-adaptive predistortion

The non-adaptive predistortion is just the estimation of the static distortion
curves and the later implementation of the predistorter curve.

14 Digital predistortion by using GPIB-controlled instrumentation

It will be observed that, with this technique, the linearization will be achieved,
but it will be the worse algorithm for the estimation of the predistorter curve.
Then, adaptive predistortion algorithm is used in order to obtain a better result.

2.2.2.2 Adaptive predistortion – LMS algorithm

The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff at
1959 is an adaptive algorithm, which uses a gradient-based method of steepest
decent. LMS algorithm uses the estimates of the gradient vector from the
available data. LMS incorporates an iterative procedure that makes successive
corrections to the weight vector in the direction of the negative of the gradient
vector which eventually leads to the minimum mean square error. Compared to
other algorithms, the LMS is relatively simple; it does not require correlation
function calculation nor does it require matrix inversions.

How the LMS algorithm works is showed at Fig. 2.9 and at the equations (2.12)
and (2.13) [10].

Fig. 2.9 LMS system identification block diagram

The adaptive filter W is adapted implementing the LMS, which is the most
widely used adaptive filtering algorithm. First, the error signal e is computed as
(2.12).

 (2.12)

It measures the difference between the output of the adaptive filter and the
output of the unknown system. On the basis of this measure, the adaptive filter
will change its coefficients in an attempt to reduce the error. The coefficient
update relation is a function of the error signal squares and is given by (2.13)
[11].

 (2.13)

In (2.13), h is the vector of filter parameters to be adapted … , µ is a
constant that determines the rate of adaptation, and is an estimation of
the gradient of h with respect to the mean squared error, . Equation
(2.13) attempts to increment the filter parameter vector by small steps in the
direction of decreasing mean squared error. Stochastic gradient adaptation
proceeds by iterating (2.13) until the mean squared error is minimized.

Different kinds of lineariser 15

Relating to this work, the LMS allows a better linearization. The predistorter
function does not depend only to the actual values; it depends also on the past
values. If µ parameter is a high value, the result depends in a greater way from
the actual values. And on the other hand, if µ parameter is a low value, the
results depends in a greater way from the past values.

2.2.2.3 Look-up-tables (LUTs)

In computer science, a Look-up-table (LUT) is a data structure, usually an array
or associative array, used to replace a runtime computation with a simpler
lookup operation [12]. The speed gain can be significant, since retrieving a
value from memory is often faster than undergoing an expensive computation.

A classic example is a trigonometry table. Calculating the sine of a value every
time such a sine is needed can be prohibitively slow in some applications. To
avoid this, the application can take a few seconds when it first starts to pre-
calculate the sine of a number of values, for example for each whole number of
degrees. Later, when the program wants the sine of a value, it uses the lookup
table to retrieve the sine of a nearby value from a memory address instead of
calculating it using a mathematical formula.

There are two fundamental limitations on when it is possible to construct a
lookup table for a problem. One is the amount of memory that is available; it is
not possible to construct a lookup table larger than the space available for the
table, although it is possible to construct disk-based lookup tables at the
expense of lookup time. And the second restriction is the time required to
initially compute the table values - although this does not need to be done often.
If it requires prohibitive time, it may make the table inappropriate to be used.

Fig. 2.10 Basic performance of a LUT system

16 Digital predistortion by using GPIB-controlled instrumentation

CHAPTER 3. HARDWARE

3.1. Signal Generator Device -- E4433B Agilent

The Agilent E4433B RF signal generator [13] offers a wide range of digital
modulation capabilities for research and development, manufacturing or
troubleshooting applications. Providing a comprehensive feature set, it
generates standard and custom digital modulation formats, filtering and burst
shapes, as well as versatile analog modulation, with superior quality, reliability
and worldwide support. It has the possibility to charge arbitrary signals from
Matlab software –technique implemented here–.

Main features:

• 250 KHz to 4 GHz frequency range, with a resolution of 0.01 Hz
• RF modulation bandwidth up to 35 MHz
• -136 dBm to 7dBm power range, with a resolution of 0.02 dB
• Optional dual arbitrary waveform generator and/or real-time I/Q

baseband generator
• 40 MHz sample rate and 14-bit I/Q resolution
• 1 Msample (4MB) memory for waveform playback
• 1 Msample (4MB) memory for waveform storage
• Custom digital modulation (>15 variations of FSK, MSK, PSK and QAM)
• AM, FM, phase modulation, pulse modulation and step/list sweep

(frequency and power)
• Programming language: SCPI

Fig. 3.1 E4433B Agilent

This device is useful in this study because it is possible to download a
waveform by using the GPIB bus and Matlab software. So, it can be controlled
every time the signal. Finally, with the help of the VSA software (explained on
chapter 4), it is possible to obtain the final data and send it to Matlab software in
order to compare the signal sent versus the signal received, after this one has
passed across the PA, for example.

Hardware 17

3.2. Spectrum Analyzer Device -- E4407B Agilent

The HP Agilent E4407B ESA-E Series [14] is Agilent’s mid-performance
spectrum analyzer. The series sets the performance standards in measurement
speed, dynamic range, accuracy, and resolving power for similarly priced
products. Selection of one button measurement solutions combined with its
easily navigable user interface and performance in speed allows the user to
spend less time testing and more time designing, building, and troubleshooting
components and products.

Main features:

• 9 KHz to 26.5 GHz frequency range
• Resolution bandwidth: 1 kHz to 5 MHz in a 1, 3, 10 sequence, and 5

MHz
• Phase noise: -90 dBc/Hz (10 kHz offset). 99dB third order dynamic range
• Overall amplitude accuracy: + or -(0.6dB + absolute frequency response)
• Absolute amplitude accuracy + or -1.1dB
• Measurement range: 50 ohms -120 dBm to +30 dBm
• Maximum safe input continuous power: +30dBm(1W)

Fig. 3.2 E4407B Agilent

3.3. PA Device – ZRL-2300 Minicircuits

The PA used in this work is the ZRL-2300 from Minicircuits. Here are listed its
main characteristics3.

• High IP3, +46dBm typ.
• Low noise figure, 2.5dB typ.
• Gain, ≈24dBm typ.
• Frequency range, 1.4 – 2.3GHz
• Applications: defense and satellite communications, PCS, UMTS, GSM,

cellular, wireless data.

3 The complete datasheet information is placed on the annex.

18 Digital predistortion by using GPIB-controlled instrumentation

Fig. 3.3 ZRL-2300 Minicircuits PA

However, there is a problem using this PA for this study. Against the usual
requirement of the commercial PAs, a high nonlinearity is here necessary in
order to appreciate the improvements of the lineariser. It means that another
worse PA should be used. Nevertheless, it is not possible because there is any
else PA on the laboratory used for the development of this Master Thesis. But,
actually, as it will be seen on chapter 6, the results are good enough and the
predistortion effects can be appreciated correctly.

3.4. GPIB Bus – National Instruments

3.4.1. A brief history

The GPIB bus is a short range digital data bus implemented at 1965 by Hewlett-
Packard (HP). Nevertheless, this first bus was called HP-IB (Hewlett-Packard
Interface Bus). The goal to design the HP-IB was to connect the HP test and
measures devices to some equipment in order to be able to program it, as for
instance, a computer.

This standard was very useful and was quickly standardized by the IEEE
(Institute of Electrical and Electronics Engineers) at 1975 and it was called
IEEE-488 or GPIB (General Purpose Interface Bus). This last one is more
widely used than HP-IB. Some of the principal reasons because this standard
was quickly gained popularity are the high transfer rates -on the original
standard was 1Mbps (later extended to 8Mbps)- and the number of devices that
can be connected at same time -a maximum number of 15-.

Finally, it must be mentioned is that at 1990, the original standard was revised
and, specifically, how the controllers and instruments communicate between
them. The SCPI (Standard Commands for Programmable Instruments)
commands were chosen, allowing a single and simple programming language
that is used with any SCPI instrument.

In addition to the IEEE, others committees standardized the initial HP-IB. The
ANSI (American National Standards Institute) standardized the HP-IB as ANSI
Standard MC 1.1 and the IEC (International Electrotechnical Commission) has
its IEC Publication 625-1.

Others GPIB revisions and improvements has been done. A complete time-line
of the HP-IB/GPIB bus is showed at Fig. 3.4.

Hardw

3.4.2

The
the
devi
resu
calle
addr

A pa
mes
devi
com

As it
lines
into

•

•

ware

2. GPI

GPIB dev
Device-dep
ce-specific

ults, data f
ed comma
ressing dev

art of this c
sages to o
ce, that
mands to a

DATA LIN
DIO1

DIO2

DIO3

DIO4

DIO5

DIO6

DIO7

DIO8

t can be s
s and 8 gro
8 data line

 The 8 D
messag
set, in w

 The 3 H
devices

F

B Specifi

ices comm
pendent m
c informati
files, etc. A
and messa
vices, etc…

classificatio
one or mo
manages
all devices

NES Pin No.
1

2

3

4

13

14

15

16

seen at Fig
ound-retur
es, 3 hands

Data lines,
ges. All com
which case

Handshake
s. It guaran

ig. 3.4 HP

ications

municate am
messages,
ion, such
And, on th
ages, that
…

on, the GP
re Listener
the flow

s.

Fig. 3.5

g 3.5, the
n or shield
shake lines

, called DI
mmands a
e the DIO8

e lines con
tees that t

-IB/GPIB b

mong them
often call
as progra

he other h
t contain

PIB device
rs, which r
of inform

5 GPIB co

GPIB inter
d-drain line
s and 5 inte

IO1 to DIO
nd most da
is used fo

ntrol the tr
he messag

bus time-lin

m by mean
ed data m

amming ins
and, the I
message

es can be T
receive de

mation on

MANAG
IFC

REN

ATN

SRQ

EOI

HAND
DAV

NRFD

NDAC

nnector

rface syste
es. The 16
erface man

O8, carry b
ata use the
r parity.

ransfer of
ge sent is r

ne

s of two ba
messages.
structions,
Interface m

as initial

Talkers, w
e data, and

the GPI

GEMENT LINE

DSHAKE LINES

D

C

em consist
 signal line
nagement

both data
e 7-bit ASC

message
received w

asic messa
These co
 measure

messages,
izing the

which send
d the Cont
B by sen

S Pin No.
9

17

11

10

5

S Pin No.
6

7

8

ts on 16 s
es are gro
lines.

and comm
CII or ISO

bytes betw
without erro

19

ages,
ntain
ment
also
bus,

data
troller
nding

signal
uped

mand
code

ween
ors.

20 Digital predistortion by using GPIB-controlled instrumentation

o NRFD – Not ready for data. It indicates when a device is ready or
not to receive a message byte.

o NDAC – Not data accepted. It indicates when a device has or has
not accepted a message byte.

o DAV – Data valid. It indicates that the signals on the data lines are
valid and are accepted by devices

• The 5 management lines manage the flow of information across the
interface.

o ATN – Attention. ATN=true implies that the data lines are sending
commands, ATN=false implies that a Talker can send data
messages.

o IFC – Interface Clear. It initializes the bus.
o REN – Remote Enabled. It places devices in remote or local

program mode.
o SRQ – Service Request. To request service from the Controller.
o EOI – End or Identify. To mark the end of a message string or to

identify their response in a parallel poll.

Other important specifications are that, nowadays, the GPIB bandwidth is
8Mbps, the maximum number of devices are 15 at the same time and the
maximum cable length is 20 meters. A final history and specifications summary
are shown on Table 3.1.

Table 3.1 GPIB history and specifications summary

Type General Purpose Data Bus
Production history

Designer Hewlett-Packard
Designed Late 1960s standardized in 1975

Manufacturer Hewlett-Packard
Produced 1960s to present

Superseded by VXI (in ATE) [15] (1990s)
Specifications

External Yes
Data signal Parallel data bus with handshaking

Width 8 bits
Bandwidth 8 Mbps

Max devices 15
Protocol Parallel

Cable 20 m

Pins 24 (8 data, 5 bus management,
3 handshake, 8 ground)

Connector 24-pin Amphenol-designed micro ribbon [16] [17]

Hardw

Fina
the
com

With
been
Fig.

3.4.3

The
and
struc

It wa
com
instr
instr
insta
prog

The
struc
impl
subs

ware

ally, three c
GPIB de

bination of

F

h the objec
n installed.
3.7).

F

3. Pro

SCPI def
measurem

cture and s

as created
mands an

rument ma
ruments. S
ance, it de
grams and

SCPI dev
cture to t
ementation
system SE

connection
evices: the
f both.

Fig. 3.6 a)

ctive of con
. The mod

Fig. 3.7 a)

grammin

ines a sta
ment devic
syntax for p

d at 1990;
nd function
nufacturer
SCPI offe
ecreases d
the ability

ices uses a
the comm
n and docu
NSe comm

 configura
e linear c

Linear con

nnect the d
del card us

GPIB card

g GPIB (S

andard set
ces in instr
programm

 anyway t
nality to t
r developed
rs numero

developme
to intercha

a compose
mands. Th
umentation
mand tree

tions can b
configurati

nfiguration

different de
sed is a Na

d for PC by

SCPI)

of comma
rumentation
able instru

the SCPI
the SCPI
d its own c
ous advan
nt time an
ange instru

e head sys
he comma
n of the joi
is showed

be implem
on, the s

, b) Star co

evices to t
ational Inst

y National

ands to co
n systems

uments con

Consortiu
standard.

command s
ntages to
nd increas
uments.

stem in ord
and tree
nt SCPI co
.

ented in o
star confi

onfiguratio

the PC, a
truments G

Instrument

ontrol prog
. It specifie

ntrol; for ex

m [18] co
Before th

sets for its
the test

es the rea

der to prov
is a quite
ommands.

rder to con
guration o

n

GPIB card
GPIB card

ts

grammable
es a comm
xample, GP

ntinues ad
his date,
programm
engineer.

adability of

vide a hiera
e way to
 At Fig. 3.8

21

nnect
or a

d has
(see

e test
mand
PIB.

dding
each

mable
 For
f test

archy
o the
8 the

22 Digital predistortion by using GPIB-controlled instrumentation

Fig. 3.8 SCPI command tree of the subsystem SENSe.

Each device and instrument has its own programming guide where the SCPI
commands are specified. It is showed besides an example of SCPI command
for the Agilent case. In order to select the center frequency, the programming
guide gives details about the commands that must be used:

:FREQuency:CENTer
Supported All with Option 007
[:SOURce]:FREQuency:CENTer <num>[<freq suffix>]
[:SOURce]:FREQuency:CENTer?
This command sets the center frequency for a ramp sweep. The center frequency
symmetrically divides the selected frequency span and is coupled to the start and stop
frequency settings.

The rules used for the command sentence structure are the next ones:

‐ The brackets ([]) are optional parameters.
‐ The keys ({ }) specify a group of parameters that must be selected

one of them.
‐ The vertical line (|) divide the different choices that could be chosen.
‐ A parameter between the symbols <> means that it must be provide

its value or name.
‐ It has to be mentioned that in order to program the SCPI commands,

two ways can be implemented. The long way; it means to copy all the
line (the capital and the small letters), or the short way; it means to
copy only the capital letters.

‐ Some instructions allow a question mark at the end of the line.

 The GPIB/SCPI commands used in this work will be completely listed on the
program code in the annexes.

Hardware 23

3.4.4. GPIB used at this work

The GPIB controller has been used here, and which allows the devices
connection, is the NI GPIB-USB-HS (National Instruments GPIB Controller for
USB 2.0 High-Speed) [19]. Some of its principal characteristics are showed
here, but the full datasheet of this GPIB controller also can be found at the
annexes.

Main features:

• USB port: High Speed USB signaling, 480 Mbps
• IEEE 488 Compatibility: IEEE 488.1 and IEEE 488.2
• Maximum IEEE 488 Bus Transfer Rates:

o IEEE 488 interlocked handshake: 1.8 Mbps
o IEEE 488 non-interlocked handshake (HS 488): 7.2Mbps

Fig. 3.9 GPIB cables to interconnect the PC to devices and the devices
between them

24 Digital predistortion by using GPIB-controlled instrumentation

CHAPTER 4. SOFTWARE

4.1. VSA (Vector Signal Analyzer) software

One of the main objectives of that study is to know how this software works. It is
a new software bought by the EPSC (Escola Politècnica Superior de
Castelldefels). It is was necessary a lot of time because the documentation and
help files of the VSA software are quite dark. With the realization of this work it
is hoped that other future VSA user will be able to understand the main aspects
of it and he could advance quickly on his work.

The VSA software is capable to offer a time-, frequency- and modulation-
domain analysis providing measurements and displays as if a Spectrum
Analyzer would be used. However, the 89600 Series VSA Software is more
than a simple spectrum analyzer.

This software provides traditional spectrum displays and measurements, but
today, spectrum analysis is not enough. New digital formats require new
measurements. Familiar tools such as spectrum analyzers with demodulation
may indicate that a problem exists, but they can not detect the cause of it. The
VSA software provides the tools to identify the root cause of the problem and to
analyze continually aspects as changing phase, magnitude and frequency.

The VSA also relies on a PC for its processing. So, in order to know the
functionality of a complete system, the PC can help to the user. Data can come
from several sources, including multiple supported hardware platforms,
recorded files or, as in the case of this work, from the Matlab software by means
of the GPIB bus and a signal generator. So, for this last case, the VSA software
must be configured in order to communicate it with the signal generator, as it
will be explained afterwards. Once the signal data is sent or played, in this work
is used Matlab with the goal to take the final data to compare it with the data
sent. All this Matlab connection is possible by the COM API, explained at
section 4.2.

As a summary, it provides a Windows-based graphical user interface (GUI) for
performing vector-signal analysis on data from Agilent Vector Signal Analyzers,
from other hardware front ends such as the Agilent E4406, or from software
products such as MATLAB, Advanced Design System, or Excel.

For instance, in relation to the modulation-domain analysis, in the 89600 Series
VSA Software, some of the supported modulation formats which can be studied
are the next ones4:

• BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, Pi/4 DQPDK, EDGE,
CDMA, MSK…

4 All the supported modulation formats are listed at the annex. Here is just presented some of
the most important ones.

Software 25

The display can be specified in different ways. Some of the information data
that can be showed are the presents on Fig. 4.15. The data could be showed by
only one graph, two graphs, 2x2 grid… since a maximum of 9 graphs presented
by 3x3 grid. At Fig. 4.1, it is illustrated an example of 2x2 grid.

Fig. 4.1 VSA display example. QPSK modulation.

• IQ Meas Time.- For all demodulation formats except FSK, the analyzer's
digital demodulator produces two signals: I/Q Measured and
I/Q Reference. The IQ measured signal is the result of resampling the
data to an integer number of points per symbol and applying
carrier/symbol locking, IQ origin offset and amplitude droop
compensation, system gain normalization, and filtering to the input
signal. The filtering is user-selectable.

• Spectrum.- The Spectrum trace is the averaged or instantaneous of the

spectrum display. If averaging is OFF, the averaged spectrum and the
instantaneous spectrum displays are identical.

The Spectrum trace has the following characteristics: (1) It is derived
from pre-demodulated time data, which is 20% larger than the result
length. (2) It is averaged if the averaging option is ON and the average
type is RMS(Video), RMS(Video) Exponential, Time, Time Exponential or
Continuous Peak Hold averaging.

• IQ Mag Error.- The IQ Mag Error and IQ Phase Error traces show the

error between the I/Q measured and the I/Q reference signals. IQ Mag
Error displays the magnitude error and IQ Phase Error displays the
phase error. At previous Fig. 1.3, a graphical clarification is showed.

If IQ Mag Error is selected, the analyzer compares the magnitude at the
sampled symbol times of the I/Q measured signal with the magnitude of

5 All the supported data formats are explained at the annex. Here is just presented the four
showed at Figure 4.1.

26 Digital predistortion by using GPIB-controlled instrumentation

the I/Q reference signal. Then, the analyzer displays the difference, in
magnitude, between these two signals. If the normalization option is
selected to OFF, the analyzer displays the instantaneous magnitude
error –at this work this option is used in order to have the correct
instantaneous value-, and if normalization is set to ON, the analyzer
displays the magnitude error as a percentage.

• Syms/Errs.- Selecting the Syms/Errs, the trace data displays the symbol

table. The symbol table shows the information error and the binary bits
for each symbol. The first bit in the table corresponds to the first bit of the
first symbol.

A part of the data information, a Y axis could be chosen between these ones:

• Log Mag (dB); Linear Mag; Real (I); Imag (Q); Wrap Phase; Unwrap
Phase; I-Q; Constellation; Q-Eye; I-Eye; Trellis-Eye; Group Delay and
Log Mag (lin).

As it is showed at Fig. 4.1, a lot of information could be represented
simultaneously and at the same screen of a signal. As it has been said before,
here is displayed 4 graphs, but it is possible to represent until 9 graphs at same
time. Even it is able to select a concrete symbol at the syms/errs graph by a
marker and connect it with the other graphs in order to know how or where is it.

There are a lot of options and possibilities to do with the VSA software but
explain all of them is not a goal of this project. Nevertheless, some of the main
and most practical utilities are listed here:

• Player signal.- The 89600-series VSA provides various recorded signals,
analyzer setup files, and Signal Studio setup files. It is a suitable option if
it is wanted to study some of these signals. For instance there are QPSK,
O-QPSK, CDMA, 3GPP Down/Up, WiMAX 5MHz/7MHz, Zigbee, etc6.

• Record signal.- The Vector Signal Analyzer application lets to record time
data from the measurement hardware directly to the PC's disk drive. The
data can be played back at a later time or import it into other
applications. It could also create and play the user recordings. It is
possible to specify the record length in time or in samples.

• Marker.- VSA includes several marker types and marker functions. The

analyzer supports general trace marker functions and several specialized
markers including; Band Power markers, Occupied Bandwidth (OBW)
markers, Adjacent Channel Power (ACPR) markers, and Spectrogram
markers. It is a good tool in order to know the relation between symbols
or values of the signal from different graphs, for example.

6 All the pre-recorded signals are listed at the annex with a little explanation. Here is just
presented some ones.

Software 27

• Macro.- It is a very useful option. Macros let to automate a series of
manual operations into a single command. 89600-series products use
VBScript7 for their macro programming language. Macros can be used
for:

o One-button applications.
o Automation of repetitive tasks.
o Computation of measurement results that are beyond the scope of

the basic 89600.

As a summary, the VSA software provides to the user a complete vision of all
the main aspects in a complete communication system with the advantage to
see different aspects of the same signal at same time.

Although the possibility to see until nine graphs of the same signal
simultaneously, there is another advantage more relevant. Furthermore, the
values of the signal that would receive the receptor can be taken to software. It
means that the numerical values of all the graphs, that could represent the VSA,
can be studied in software like Microsoft Excel or Matlab. For instance, the
symbols demodulated, the values in quadrature and phase (I and Q), the
magnitude or phase errors, the spectrum values, etc… can be taken to Matlab
and be evaluated, modified and/or studied how the user wants. There are
several ways to share data between the 89600 analyzer and other applications
or programs.

This functionality is used in order to study the complete system. Without the
VSA software, only the spectrum, the IQ draw and aspects as the EVM could be
seen in a Spectrum Analyzer. Now, with the VSA software, the complete signal
values can be studied. Actually, as it has been commented before, this is the
way followed by this work to analyze the overall complete system.

The VSA can be controlled using menus and dialog boxes in the window, or
controlling the application via the COM API application. Herein, the COM API is
used and is explained at section 4.2.

7 VBScript is a scripting language that is a subset of the Visual Basic programming language.
VBScript programs are easy to create. With 89600-series products, it can be created a VBScript
program by recording mouse and keyboard operations or it can be written (or edited) VBScript
programs with the macro editor that comes with 89600-series software.

28 Digital predistortion by using GPIB-controlled instrumentation

Fig. 4.2 VSA performance and relation scheme

4.2. COM API Matlab to VSA

The VSA software provides an Application Programming Interface to its
Component Object Model, or COM API.

This COM API provides software engineers with pre-built objects, methods,
properties, and constants to create applications that can use both the Vector
Signal Analyzer and the Spectrum Analyzer applications. Together, these APIs
expose all of the measurement, computational, and display features of the
instrument, making them accessible to C++ or Visual Basic programs8.

COM is an architecture and supporting infrastructure for building, using, and
evolving software robustly. The model goes beyond ordinary object oriented
programming in that it describes standard ways to define and create new
interfaces. The COM standard is a programming model that describes how to
connect objects and construct new interfaces.

Herein the COM API will be used to program and control the VSA software from
Matlab. Thus, taking advantage of that, the vector signal generator can be also
controlled from Matlab –by GPIB commands (SCPI language)-. A complete
management of the overall system is finally achieved.

As example of the COM API language some instructions are showed below9.
Firstly, the VSA 89600 object must be created from Matlab in order to have the
total control of the VSA software with the next instruction.

hVSA = actxserver ('AgtVsaVector.Application');

8 The provided APIs are officially supported from the following programming environments:

· Microsoft Visual Basic Version 5.0 or later, Enterprise and Professional editions.
· Microsoft Visual C++ 5.0 or later in container applications that support Component

Object Model automation.
9 The complete VSA object tree instructions are listed on the annexes.

Software 29

Once this object is generated, it is possible to control the VSA options from
Matlab. For instance, in order to select the option Digital Demodulation on the
VSA, showed at Fig. 4.3, the next instructions must be specified on Matlab.

Furthermore, on Fig. 4.4, the object results in Matlab are represented.

hVSA = actxserver ('AgtVsaVector.Application');
hMeasurement = get(hVSA,'Measurement');
set(hMeasurement,'DemodConfig',2);
hDemod = get(hMeasurement,'DigDemod');

Fig. 4.3 Unfolded measurement and demodulation menu

Fig. 4.4 (a) VSA, (b) Measurements and (c) DigDemod objects

30 Digital predistortion by using GPIB-controlled instrumentation

CHAPTER 5. SYSTEM IMPLEMENTATION

5.1. Overall system

Then, the goal is to linearise a previous identified PA. It has to be mentioned
that until nowadays, only the AM/AM curve has been linearised because of the
impossibility to identify the phase values. Now, with the VSA software the phase
can be also linearised. As it has been said before, this software can share data
with other applications. So, if the phase information is taken from VSA, a
predistorted phase signal could be implemented joint the typical predistorted
amplitude signal.

The overall system scheme is showed at Fig. 5.1. The PC or workstation –with
Matlab and VSA software previously installed– is connected to the signal
generator by means of a GPIB bus. And then, it is connected also to the
spectrum analyzer. Thus, three devices are used (workstation, signal generator
and spectrum analyzer) among the 15 possible GPIB devices connected.

Then, the signal generator RF output is connected to the PA under test in port,
and the PA under test output port is connected to the Spectrum analyzer RF in.
Now, the total control of the complete system is achieved from the workstation.

Matlab is used to discover, identify, modify and control all the equipment of the
overall system and to control the VSA software by means of the COM API.

Fig. 5.1 Overall system scheme

The 10 MHz reference of the Signal Generator is used to adjust the clocks of all
the systems jointly (VSA reference synchronized to Spectrum Analyzer
reference, and also synchronized to the Signal Generator reference). The
scheme followed for this purpose is showed at Fig. 5.2.

Final results 31

Fig. 5.2 Reference synchronization of hardware device and VSA software

5.1.1. GPIB commands specified

Although the complete programming code is placed on the annexes, the main
GPIB commands required are here specified.

Each hardware device has an option to specify a GPIB address by a number.
Once it is specified, when some instruction affect to these devices, it has to be
referenced them by these addresses. At this work, the spectrum analyzer GPIB
address is 18 and the signal generator GPIB address is 19.

Firstly, the devices joined by the GPIB cable should be identified. When the
SCPI command idn (identify) is used, Matlab prompts the next identification.

% for the spectrum analyzer

g18=gpib('ni',0,18);
g18.InputBufferSize=50000;
fopen(g18)
fprintf(g18, '*IDN?');
idn = fscanf(g18)

% for the signal generator

g19=gpib('ni',0,19);
g19.InputBufferSize=50000;
fopen(g19)
fprintf(g19, '*IDN?');
idn = fscanf(g19)

idn =
Agilent technologies, E4448A, US43360350, A.08.09
(for the signal generator)

idn =
Agilent technologies, ESG-D4000B, GB40051154, B.03.86
(for the spectrum analyzer)

32 Digital predistortion by using GPIB-controlled instrumentation

With the goal to linearise the PA, a signal should be sent from the signal
generator. In order to have a whole control of the system, the signal is designed
into Matlab.

Any type of signal that supports the VSA software –specified completely at the
annexes– could be implemented on Matlab and sent it to the signal generator.
Specifically, a 4-QAM signal is considered in this study. It is important to know
all the characteristics of the signal to specify correctly the VSA parameters for
the subsequent demodulation. The main characteristics of the 4QAM signal
implemented to predistort the PA are showed at Table 5.1.

Table 5.1 4-QAM signal parameters

Symbols number 1000
Roll-off factor (α) 0.35

VSA Clock 6.144 MHz
Number points per symbol 4

Symbol rate
(Clock VSA/points per symbol) 1.536 MHz

Carrier frequency 2.010 GHz
Power level 2 dBm
Filter order 80

These parameters have to be in mind because they will be used later to identify
the VSA and the spectrum analyzer parameters as a receivers.

For instance, the frequency and power level SCPI commands for the spectrum
analyzer are specified here. In this case, the center frequency is fixed to
2.01GHz and the span of the spectrum analyzer is fixed to 40MHz. It is
important to observe that the specifications are sent as a string. It is possible to
send the commands as bits, but it must be previously selected. This allows a
highly speed at communication.

freq_cent=2.010;
cadena=[':FREQ:CENT ',num2str(freq_cent),' GHZ'];
fprintf(g18,cadena);

freq_span=40;
cadena=[':FREQ:SPAN ',num2str(freq_span),' MHZ'];
fprintf(g18,cadena)

Once the signal is made on Matlab, it is sent to the signal generator by means
of GPIB commands. In order to send the signal, the load SCPI command is
used, but it must be adapted to the dynamic range of the signal generator. At
Fig. 5.3, a complete flow diagram of the GPIB-SCPI commands used to load the
signal to the Agilent device is presented.

Final results 33

Fig. 5.3 Flow diagram of the GPIB-SCPI commands to send the signal

The first aspect that must be done, as it has been commented before, is the
GPIB hardware devices identification in order to create an object in Matlab and
so, to have the possibility to communicate with them. Later, the signal generator
and spectrum analyzer adjustments must be done. At the first one, aspects as
the carrier power and frequency of the signal are firstly adjusted. Then, the
signal can be sent from Matlab by the esg_darb GPIB command. But before
this, the signal created in Matlab should be adapted to the dynamic range of the
signal generator in order to achieve a correct implementation.

The ARB (arbitrary waveform) is then activated. It allows to select the signal
sent by the user. And finally, the RF output is changed to ON with the objective
to allow to the Signal Generator launch the signal to the PA.

An important issue is the ALC (Automatic Level Control). When ALC is set to
ON, the internal level detector watches the output level. So, it may not shift
greatly from the set amplitude value. If the output level is greater than the
specified level, the output amplifier's gain will be reduced, and if the output level
is smaller, the output amplifier's gain will be increased. However, in some cases
when the ALC is unable to maintain the output level, the unlevel message
appears to notify the unleveled condition to the user. Thus, in order to allow the
user change the amplitude from Matlab, the ALC should be OFF because if not,
it will be never seen the correct amplitude value.

If the signal wants to be seen on the spectrum analyzer, it must be adjusted, at
least, the center frequency and the span. On the contrary, if it will be seen on
the PC by the VSA software, the VSA 89600 object must be created by means
of the COM API commands –described before on section 4.2–.

The whole system is showed at Fig. 5.4. The Predistortion block is used just
when the PA identification is finished10. On the VSA software, the signal
parameters sent from Matlab should be specified for the correct demodulation.

10 For more information, go to the section X.

34 Digital predistortion by using GPIB-controlled instrumentation

Once the signal pass across the spectrum analyzer and the VSA object is
created, all the “star” points at Fig. 5.4 could be studied from VSA software and,
therefore, form Matlab. As it has been mentioned before, different information
can be taken form the VSA software.

Fig. 5.4 Whole system (Matlab, hardware devices and VSA)

Although Fig. 5.4 shows a complete transmitter and receiver system –suitable if
a correct demodulation of the signal sent wants to be realized–, this flow
diagram is not correct in order to predistort the signal.

Here, a root raised cosine shaping filter is used in order to adapt the signal. As
it has been widely explained on chapter 2.2, the PA input and PA output are
compared to predistort the signal. Thus, the demodulated shaping filter must be
deleted with the goal to obtain the data once it has passed across the PA.

How it must be done and all the defined VSA parameters values are clarified on
next section.

5.1.2. VSA fixed and identified parameters

Once the main VSA characteristics are known –described on chapter 4–, the
specific options and identified parameters used are here explained. It is widely
specified the most important aspects considered and the mainly problems
solved when the work was advancing.

5.1.2.1 Issues on parameters of the signal sent

The main parameters that must be selected on the VSA software to achieve a
good demodulation data and to achieve the correct graphs are the parameters
related to the signal information.

In concrete, firstly it has to be selected the modulation format –in this case a
4QAM modulation format is selected among the all possible formats allowed to

Final results 35

use with the VSA11-. Then, aspects as the number of samples per symbol and α
parameter of the filter are chosen.

Finally, regarding to the signal information, another important issue is the
symbol rate. Because the signal is made from Matlab and then taken out by the
Agilent signal generator, the symbol rate is directly proportional to the
reconstruction clock on the Agilent hardware device. On this device, the clock
can be changed between a minimum value of 1 Hz and a maximum value of
40MHz. The clock selected is the defect value when the Agilent signal
generator starts: 6.144MHz. Thus, in order to know the symbol rate of the signal
sent to the PA, (5.1) should be followed.

 (5.1)

5.1.2.2 Issues related to the measurement options

Different issues had to be into account. These ones are here listed.

• Range.- When the VSA is working, the range is quite important to
obtained the correct values. If the input range is setting too low (more
sensitive than necessary), the analyzer's ADC circuitry introduces
distortion into the measurement. But if the input range is setting too high
(less sensitive than necessary), there may be a loss of dynamic range
due to additional noise. In some cases, the increase in the noise floor
may obscure low-level frequency components.

The right way to choose the correct range value is the “proof and error”
method. When the range value is not the correct, a message will appear
on the screen.

• Measurement filter and reference filter.- The Fig. 5.5 is used to try to

clarify these parameters,.

Fig. 5.5 Flow signal diagram

11 All the modulation formats supported by the VSA software are showed on the annexes.

36 Digital predistortion by using GPIB-controlled instrumentation

On Fig 5.4, the first RRC (Root Raised Cosine) filter is used by Matlab
before the signal is sent, and the last one is used to demodulate the
information.

The Measurement Filter is this last one. As it is mentioned on chapter
5.1.1, these two filters must be selected if the goal is to demodulate
correctly the signal and close the whole loop. However, if the goal is to
realize a predistortion, the last filter should not exist. So, in the case of
the predistortion would be the objective, on the VSA software it has to be
selected the option: None on the Measurement Filter.

And finally, for a suitable implementation, the Reference Filter has into
account both shaping filters (the modulated and the demodulated RRC
filters). It is the whole filter of the overall system. It means that, for
instance, if both filters are RRC types, the overall filter will be a RC
(Raised Cosine) filter. Or, if just the modulated shaping filter is RRC and
the Measurement Filter is selected to None –as in the case of the digital
predistortion implementation–, the Reference Filter must be a RRC filter.

• Normalize.- An important aspect that has to be into account to have a

suitable result is to disconnect the Normalize option. As it has been said
before on chapter 5.1.1, when the ALC issue was treated, if the
Normalize option is switched on, aspects as the constellation points or
the spectrum, will be normalized. It means that if the amplitude of the
signal sent changes, this will not be appreciated by the VSA because it
will normalize the signal values to standard values.

• Length capture.- This is a fundamental issue for synchronize the signal

(explained afterwards). This user specification determines how many
symbols should be demodulated for analysis.

The length capture is the number of demodulated symbols –or
equivalently any VSA data (IQ, EVM, and spectrum data …)– that will be
captured and then, shared to others applications or software.

• Search length.- This is a fundamental issue for synchronize the signal

(analyzed later). This user entry indicates to the demodulator how many
symbols to search to find the user specified synchronization word.

It is important to have into account that, with the goal to find the
synchronization word, the search length should be at least the double of
the length capture. If it is not in this way, maybe the word is outside the
demodulated symbols fixed by the Length capture parameter.

• Synchronism.- Synchronism is used in order to achieve a compete
coordination among the signal sent and the signal taken into Matlab. It is

Final results 37

reached with the Length capture and Search length parameters joint to a
synchronization word. This synchronization word is defined by the user
and is sent as a pilot message on the signal. Then, the VSA try to found
this pilot message into the signal and, by this way, the signals sent and
received are completely synchronized.

For instance, a 20 symbols pilot message (or synchronization word) is
used. The symbols chosen to use in this study are:

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

Their translation into bit information of a 4QAM signal is:

[0001101100011011000110110001101100011011]

• Measurement interrupted.- Finally, the measurement should opt for an

interrupted measurement, instead of continuous one.

If it is selected the interrupted mode, the VSA makes just one
actualization of the measurement and then it will hold this, although the
Signal Generator continues sending the signal. Thus, when data will be
taken into Matlab (with the COM API commands), all data types should
be synchronized.

38

5.2.

. Proogram floow diagr

Digital

ram

predistortion byy using GPIB-coontrolled instrummentation

Final r

6.1.

At F
del S

6.2.

6.2.

F

First
Fig.

esults

. Fin

ig. 6.1 the
Senyal i Co

. No

1. PA

Fig. 6.2 (a)

tly, the PA
6.2. As it

CHA

nal whole

final meas
omunicacio

Fig

n-Adapti

A identific

AM/AM an

must be id
has been

APTER 6

e system

surement s
ons) is sho

g. 6.1 Final

ive predi

cation

nd AM/PM

dentified w
mentioned

6. FINA

m scenari

scenario a
owed.

l whole sys

istortion

M curves, (b

with its stat
d before o

L RESU

o

t laborator

stem scena

 results

b) AM/AM a

ic distortio
n chapter

ULTS

ry 225 of th

ario

(without

and ideal (

n curves, r
3.3, this P

he TSC (T

t LUTs)

(linear) cas

represente
PA is extre

39

eoria

se

ed on
emely

40 Digital predistortion by using GPIB-controlled instrumentation

good and so, the non-linearity and blurring effects could be scorned. In order to
achieve a better result on this study, other worse PA should be used, but in fact,
the results are good enough with the ZRL-2300 Minicircuits.

In this case, a ten times bucle is used, downing the amplitude of the signal sent
with the objective of that all points between minimum and maximum values of
the static curve would be excited. By this way the curve is continuous, as it can
be seen on Fig. 6.2.

6.2.2. Predistortion curve identification

Then, using the program flow diagram showed before, the predistorter function
is estimated.

Fig. 6.3 Estimated predistorter function

6.2.3. Predistortion result

Once the estimated predistorter function is applied to the original signal, the
final result is showed on Fig. 6.4. As it can be appreciated here, the result is
linear and is following the ideal red line illustrated on previous Fig. 6.2 (b). It is
clearly showed on Fig. 6.5, where all the curves are represented in just one
graph.

Fig. 6.4 Predistortion result

Final results 41

Fig. 6.5 All curves at one graph12.

6.3. Non-Adaptive predistortion results (with LUTs)

With the goal to observe how the LUT works, a predistortion is realized also
with this way. In this case just one iteration is done. The results are showed
continuously.

6.3.1. PA identification

Fig. 6.6 (a) AM/AM and AM/PM curves, (b) AM/AM and ideal curve (LUT case)

12 Notice how the predistortion result –dark curve– follow the same way that the ideal case –red
curve–.

42 Digital predistortion by using GPIB-controlled instrumentation

6.3.2. Predistortion curve identification (LUT values)

Fig. 6.7 Estimated predistorter function (LUT case)

Here, the upper blue line is due to the LUT initialization. Because of LUT is
initialized by ones, the points of this LUT that are not excited by the PA will
continue with this value. So, the blue points (estimated predistorter function) are
all these LUT points that change its value. In Fig. 6.7 a LUT size equal to signal
points are used (4000 points). Nevertheless, it is a high value. Usually, FPGA
works with 512 or 1024 points. Working with less points, and comparing the
LUT values when one iteration or 30 iterations are used (changing the
amplitude of the signal sent), is represented on Fig. 6.9.

Notice how the compression gain effect is less here. The reason is that it is
applied less carrier power level to the signal.

Fig. 6.8 AM/AM curve with just one iteration

Final results 43

Fig. 6.9 (a) Estimated predistorter function, LUT values for one iteration
(b) Estimated predistorter function, LUT values for 30 iterations

It is clearly appreciated how LUT change the values of the points that are
excited by the PA signal. After 30 iterations (changing the signal amplitude),
there are more points that changes its value than when just one iteration is
applied.

6.3.3. Gain curve. LUT size implication.

By means of Fig. 6.10, where the PA gain curve is represented, the LUT size
implication is studied.

Having a LUT size longer, obviously, more points are represented. However, if
the LUT size is shorter, the effect that produces in the curve is like a mean
would be done.

Fig. 6.10 (a) Gain function, LUT size = 512 (b) Gain function, LUT size = 2048

44 Digital predistortion by using GPIB-controlled instrumentation

6.4. Adaptive predistortion results (LMS algorithm)

Now, an adaptive predistortion is implemented. The LMS algorithm is used with
a µ parameter of 0.01.

6.4.1. PA identification

Fig. 6.11 AM/AM curve with just one iteration

6.4.2. Predistortion curve identification

Using the LMS algorithm, the LUT result is this one. It is clearly appreciated
how with one iteration, the LUT is nearly all ones. It is due to the µ parameter,
which is too small (0.01). So, the convergence of the LUT values is slower than
the others algorithm. But using an adaptive predistortion implies a better
approximation to the real function. The reason, as it has been commented
before, is that this algorithm have into account the past values.

If the Fig. 6.12 (b) is observed, it can be seen how the LUT values are taking
the correct predistortion function form with 100 iterations. Once the LUT have
the correct values after several iterations, the convergence is better than the
other algorithms used in this study.

Final results 45

Fig. 6.12 (a) Estimated predistorter function, LUT values, one iteration. µ=0.01
(b) Estimated predistorter function, LUT values, 100 iterations. µ=0.01

46 Digital predistortion by using GPIB-controlled instrumentation

CHAPTER 7. CONCLUSIONS

The goal is finally achieved. The complete system is absolutely controlled by
Matlab. The signal is created from Matlab, sent to the PA and finally obtained
again from Matlab, making the GPIB commands and the VSA software
transparent to the user.

Regarding the VSA software, it has been proved that it is a very useful utility
when a signal wants to be studied. All the information data of the signal could
be shared with Matlab. Thus, it makes possible to study the overall system.
Until now, it was only achievable to see the received signal in a Spectrum
Analyzer and, as much, to see parameters as the constellation points, the EVM
or the ACPR. Now, with the VSA, the complete information data of all points of
the signal could be saved and manipulated with Microsoft Excel, ADS or Matlab.

Maybe at begin of using this software the user could be a little bit lost. But once
all the VSA parameters and aspects are controlled it is easy to use. Moreover,
the GPIB command, combined with this software, allows a complete control of a
communication system. It is very practical for any kind of study. The platform
and scenario achieved here can be used for a lot of works. For example, for
prove PAs, for compare different linearization types or for any study in which ths
signal wants to be considered.

On the other hand, no more PA software models are needed in order to
simulate the predistortion algorithm. The measurements can be done with a real
PA and, besides, the phase information could be also linearised. Working with
the real components and devices under test is always better than if a software
model is used.

About the digital predistortion, different conclusions are observed.

Firstly, it has to be mentioned that the digital predistortion is achieved. It is
proved how it improves the nonlinearities due to the PA. Different ways to do
this predistortion are used and compared here: non-adaptive without LUTs,
non-adaptive with LUTs and adaptive with LUTs.

As it can be noticed at the figures showed on chapter 6, the predistortion
without any type of LUT is quite “chaotic”. The outcome is resulting with blurring
effects or with the points scattered. This is because the signal has 4000 points
and an eight times bucle is done (changing the signal amplitude). Thus, 32000
points are finally presented.

When no LUT is used, all these 32000 points are predistortioned and any type
of mean of the predistortion curve is done. However, it is clear observed how
the digital predistortion correctly works. The consequence of using predistortion
is that the result is linear but losing PA gain. It is important to say that applying a
digital predistortion before the PA the system total gain can be selected. Notice

Conclusions 47

on Fig. 6.5 how the result (black curve) follows just right the ideal curve (red
line).
On the other hand, a non-adaptive digital predistortion is done, but now with
LUTs. The main advantage of using a LUT is the computational speed. Other
advantage is that make a LUT is similar to make the mean of all the 32000
values in a less points (LUT size). It could be seen clearly comparing the graphs
on chapter 6.2 with the graphs on chapter 6.3.

It has to be mentioned that if a FPGA implementation wants to be developed,
the LUT size should be power of two (512, 1024…) and the mean of all points
can be done.

With the LUT case, the result is more linear than if any LUT is used.

Finally, an adaptive predistortion holding in a LMS algorithm is performed. In
this case the LUT not depends exclusively on the actual value and it also
depends on the past values of the LUT. It can be seen how the actualization of
the LUT depends on the µ value. When the µ parameter is small, the
progression is slower than if the µ value is big. In this study, a µ parameter of
0.01 is used. It will improve the performance of the overall system.

7.1. Future work

Some works that could be done in a future with the platform Matlab – GPIB –
VSA created are the followers:

• Once the VSA is completely adaptive and transparent to a Matlab user,
any signal test can be done.

• For example, another algorithm to do the digital predistortion can be
prove and compared with any else. For instance, the NARMA model [20].

• The comparison of several modulation signal types (4QAM, 16QAM…) or
different standards (IEEE 802.16a, b, g…, UWB…) with a same PA.

• The comparison of several PA models.
• …

7.2. Environmental study

It is important to have into account the environmental study in all projects done
nowadays. The future must be sustainable and it depends exclusively in what is
done today.

This work talks about three main issues: software, hardware and predistortion.
All these issues have some relation, in some way, with the environmental study.

48 Digital predistortion by using GPIB-controlled instrumentation

• Software: Software is the less participant in environmental aspects of this

work, although it has some particular topic that must be in mind. The time
that the code is running is directly proportional to the energy consumed
by the PC. So, the code should be efficiently created for having a less
time running.

• Hardware: The hardware equipment is composed by a lot of electric
pieces. All these parts must be places on the correct container when the
device is broken or is obsolete.

• Predistortion: As it is said before on this work, when the predistortion is
working correctly, one can work close to the compression point,
achieving a longer battery life. So, if the battery life is extended implies
that finally, the total energy used will be less.

Bibliography 49

BIBLIOGRAPHY

[1] http://www.rf-amplifiers.com/index.php?topic=intercept

[2] R.L. Brooker, “Spectral-Null Pulse Waveform for Characterizing Gain and
Phase Distortion in Devices with Uncorrelated Frequency Translation or Limited
CW Power Capability”

[3] K.Fazel and S. Kaiser, “Analysis of Non-Linear Distortions on MC-CDMA”

[4] B. Elbert and M. Schiff, “Simulating the performance of Communication Links
with Satellite Transponders”

[5] M. K. Nezami, “Fundamentals of Power Amplifier Linearization Using Digital
Pre-Distortion”, High Frequency Electronics, September 2004

[6] P.L. Gilabert, G. Montoro and A. Cesari, “A Recursive Digital Predistorter for
Linearizing RF Power Amplifiers with Memory Effects”, Proceedings of Asia-
Pacific Microwave Conference, 2006.

[7] W.J. Kim, S.P. Stapleton, J.H. Kim and C. Edelman, “Digital Predistortion
Linearizes Wireless Power Amplifiers”, IEEE Microwave Magazine, pp. 54-61,
September 2005.

[8] J. Vuolevi, “Distortion in RF Power Amplifiers”, Artech House INC, 2003

[9] H. Qian, L. Ding, G.T. Zhou and J.S. Kenney, “Predistortion Linearization
Measurement Results for Power Amplifiers with Memory Effects”, School of
Electrical and Computer Engineering Georgia Institute of Technology Atlanta,
GA 30332-0250, USA.

[10] http://cnx.org/content/m10481/latest/

[11] A.C. Carusone and D.A. Johns, “Digital LMS Adaptation of Analog Filters
Without Gradient Information”, University of Toronto.

[12] http://en.wikipedia.org/wiki/Lookup_table

[13] http://cp.literature.agilent.com/litweb/pdf/5989-4074EN.pdf

[14] http://cp.literature.agilent.com/litweb/pdf/5968-3386E.pdf

[15] http://en.wikipedia.org/wiki/VXI

[16] http://en.wikipedia.org/wiki/Amphenol

[17] http://en.wikipedia.org/wiki/Micro_ribbon

50 Digital predistortion by using GPIB-controlled instrumentation

[18] http://www.scpiconsortium.org/scpiinfo2.htm

[19] http://sine.ni.com/nips/cds/view/p/lang/en/nid/201586

[20] G. Montoro, P.L. Gilabert, E. Bertran, A. Cesari, D.D. Silveira, “A New
Digital Predictive Predistorter for Behavioral Power Amplifier Linearization”.

Annex 51

ANNEX

I. Supported modulation formats on the VSA

II. Supported data formats on the VSA

• Frequency response
• Correction
• Impulse response
• Inst/average Error Vector Spectrum/Time
• IQ Mag Error
• Inst/average IQ Meas Spec
• IQ Meas Time
• IQ Phase error
• Inst/average IQ Ref Spec
• IQ Ref Time
• Inst/average Spectrum
• Raw Main Time
• Search Time
• Syms/Errs
• Time

52 Digital predistortion by using GPIB-controlled instrumentation

III. How the VSA makes the measurements

The following block diagram shows how the analyzer performs scalar
measurements

Annex 53

The following block diagram shows how the analyzer performs vector
measurements

54 Digital predistortion by using GPIB-controlled instrumentation

IV. Pre-recorded signals on the VSA

Table 1
Signal file name Description
128QAM.sdf 128QAM digital modulated signal; Fc @ 2 GHz, Span @ 36 MHz, 31.25 MHz SymbolRate,

RRC filter with alpha = 0.22.

1xEVDOFwd.sdf Standard 3GPP2 1xEV-DO forward link signal; Fc = 2.2GHz, Span = 1.5 MHz.

1xEVDORev.sdf Standard 3GPP2 1xEV-DO reverse link signal; Fc = 2.2GHz, Span = 1.5 MHz.

1xEVDV.sdf Standard 3GPP2 1xEV-DV forward link signal; Fc = 1.85625 GHz, Span = 1.5 MHz. This
 signal can be analyzed using cdma2000 demod mode with "Enable 1xEV-DV" selected.
You can view the 16QAM modulation format used on some of the W32 code channels in
the Channel traces data results.

2Ch-RF.sdf RF signal captured through two parallel paths, Fc @ 5.805GHz, Span @ 36MHz, -5dBm
and -45dBm. Use cross channel measurements and averaging to see RF channel
characteristics.

2Ch-RF-Noisy.sdf Same as the 2Ch-RF.sdf recording above, with lower SNR. Use cross channel
measurements and averaging to see RF channel characteristics.

3GPPDown.sdf Standard 3GPP W-CDMA downlink signal; Fc = 1GHz, Span = 5 MHz.

3GPPTM5H8D30.sdf Standard 3GPP2 HSDPA downlink signal, Test Model 5, with 8 HS-PDSCH and 30 DPCH
, Fc = 1.85625GHz, Span = 5MHz. This signal be analyzed in W-CDMA demod mode with
"Enable HSDPA" selected. You can view the 16QAM modulation format used on some of
the S16 code channels in the Channel traces data results.

3GPPUp.sdf Standard 3GPP2 W-CDMA uplink signal; Fc = 1GHz, Span = 5 MHz

50PCAM.DAT AM signal; 50% amplitude modulated by a 25 kHz sine wave with a 5 MHz RF carrier.

80211a_64QAM.sdf IEEE std 802.11a/g OFDM signal with 64 QAM format; Fc = 5.805 MHz, Span 31.25 MHz.

80211b-Barker1.sdf IEEE std 802.11b signal with Barker1 burst type and DBPSK modulation for 1 Mbps;
 Fc = 2.412 MHz, Span 34.375 MHz.

80211b-CCK11-short.sdf IEEE std 802.11b signal with CCK and short PLCP header burst type and QPSK
modulation for 11 Mbps; Fc = 2.412 MHz, Span 34.375 MHz.

80211g-PBCC22-short.sdf IEEE std 802.11b signal with PBCC22 and short PLCP header burst type and 8PSK
 modulation for 22 Mbps; Fc = 2.412 MHz, Span 34.375 MHz.

80211n-MCS15-20MHz-MM.sdf 20 MHz Mixed Mode 802.11n signal, using MCS 15 (which means 2 data streams,
each using 64-QAM data subcarrier modulation format).

80211n-MCS15-40MHz-GF.sdf 40 MHz Green Field 802.11n signal, using MCS 15 (which means 2 data streams,
each using 64-QAM data subcarrier modulation format).

AMPMSQR.DAT Carrier signal Amplitude Modulated by a square wave

Ampmtri.dat Triangle wave, Fc = 5MHz, Span = 156.25kHz

APSK_32_9_10.sdf 32 APSK example recording with 9/10 coding rate (no Header or Pilot slots). This signal
works with "Digital Video > DVB 32APSK > Code Rate 9/10" standard preset in AYA
Digital Demod Analysis.

BSTIMING.DAT RF Burst signal; Fc = 5 MHz, QPSK signal, 50 kHz SymbolRate, RRC filter with
alpha = 0.35.

BSTQPSK.DAT RF Burst, QPSK modulated signal; Fc = 5 MHz, Pi/4 DQPSK signal, 50 kHz SymbolRate,
RRC filter with alpha = 0.35.

cdma2000Fwd.sdf Standard 3GPP2 cdma2000 Forward link signal; Fc = 1 GHz, Span 2.6 MHz.

cdma2000Rev-LongCodeMask0.sdf Standard 3GPP2 cdma2000 Reverse link signal; Fc = 1 GHz, Span 1.5 MHz. The Long
 Code Mask parameter needs to be set to 0.

Edge_5Mhz.dat Standard EDGE(3p/8 8PSK) "Enhanced Data for Global Evolution" digital modulated signal;
 Fc = 5 MHz, Span 625 kHz.

Annex 55

GATE2BUR.DAT This signal has two TDMA (time division multiple access) bursts. Both bursts are QPSK
modulated at 50 kilo-symbols per second. The first burst is modulated with a random bit
stream with an equalization sequence in the middle. The second burst is 10 dB lower
that the first and modulated with a bit pattern of 8 ones and 8 zeros.

HiperLAN2_16QAM.sdf Standard 3GPP2 HIPERLAN/2 OFDM signal with 16 QAM format; Fc = 1 GHz,
Span 31.25 MHz.

i80216e_DL10MHz.sdf,
i80216e_10MHz.set

IEEE 802.16e downlink subframe signal using a 10MHz profile. Contains PUSC zone
(12 symbols) followed by a FUSC zone (10 symbols). The i80216e_10MHz.set file
may be used directly to setup the analyzer for analysis of this recording.
This signal was generated using the i802.16e_10MHz.xml file with Signal Studio
OFDMA (N7615A version 1.2.1.0), see the i802.16e_10MHz.xml table entry for more
information.

i802.16e_10MHz.xml This is the Signal Studio setup file for the i80216e_DL10MHz.sdf (downlink)
and i80216e_UL10MHz.sdf (uplink) recorded signals created using Signal Studio
OFDMA (N7615A version 1.2.1.0). For signal characteristics see the table entry
for each respective signal.
Setup Instructions:
1) Downlink setup using the i80216e_DL10MHz.sdf: For the Downlink signal, the
signal studio and analyzer setup is already fully configured, and may be
generated/loaded directly from the N7615A UI.
2) Uplink setup using the i80216e_UL10MHz.sdf: For the Uplink signal, the signal
studio N7615A UI setup will need the "Output Mode" parameter changed to
"Uplink Only(TDD)" before being generated/loaded. The analyzer setup needs the
Format Subframe type set to Uplink and the Time Manual Sync Search selected
and the Sync Search Offset parameter specified to 15 symbols.

i80216e_DL10MHz_StcA_01_Impaired.sdf The i80216e_DL10MHz_StcA_01_Impaired.sdf is an 802.16 OFDMA signal that
demonstrates STC zone impairments due to antenna feedthrough.
IEEE802.16e downlink subframe consisting of 3 zones. Zone 2 has STC enabled
with Matrix A (This recording is Antenna 0, with feedthrough from Antenna 1, and
some added noise). The demodulation auto configuration capability should correctly
configure measurements for any of the three zones.
In demodulation mode the "STC Info" trace shows information about the Antenna0
and Antenna1 pilots present in the signal (power, relative power, and pilot RCE).
Because of the feedthrough from Antenna 1, regular RCE and data burst metrics
will include the feedthrough. In a real receiver, the STC nature of the signal would
be exploited to provide improved signal quality. Because the data subcarriers are
unreliable when STC analysis is enabled, the channel estimation algorithm of the
VSA avoids using the data subcarriers. If the "Preamble, Data, & Pilots" equalizer
training is selected (the default setting), the analyzer behaves as if "Preamble &
Pilots Only" is selected instead.

i80216e_DLPuscQ16.sdf,
i80216e_DLPuscQ16.set

This is a Downlink subframe using the 10MHz profile defined in IEEE 802.16e.
A single 16QAM data burst is defined within a single 22 symbol PUSC zone.
This signal was created mathematically and contains no real noise or impairments.

i80216e_DLPuscUniformQ64.sdf,
i80216e_DLPuscUniformQ64.set

This is a Downlink subframe using the 10MHz profile defined in IEEE 802.16e.
A single 64QAM data burst is defined to occupy an entire 22 symbol PUSC zone.
 This signal was recorded and contains real noise.

i80216e_DlSeq.sdf This is an DL (downlink) 802.16e OFDMA signal used to demonstrate the DL Auto
configuration capabilities of 802.16 OFDMA Modulation Analysis. This signal contains
a repeating sequence of 3 frames, each with a different zone configuration. You can
use the Auto (auto-configuration) feature on the Zone Definition tab to demodulate
and analyze the signal. Auto-configuration decodes the FCH and DLMAP to determine
 the data region geometry defined in the rest of the subframe. The “Data Burst Info”,
“DL-MAP Info” and “UL-MAP Info” traces show frame information relevant to the
auto-configured measurement. Also, the auto-detected geometry is shown on the
zone definition tab after each measurement. The zone definition may be saved to
a MapFile for later analysis by pausing the measurement and pressing the “Save
To MapFile” button on the zone definition tab.

i80216e_UL10MHz.sdf,
i80216e_10MHz.set

IEEE 802.16e uplink subframe signal using a 10MHz profile. Contains PUSC zone
(15 symbols) followed by an OPUSC zone (6 symbols).The i80216e_10MHz.set
file may be used directly to setup the analyzer to analyze this recording after
changing the subframe type to Uplink.
This signal was generated using the i802.16e_10MHz.xml file with Signal
Studio OFDMA (N7615A version 1.2.1.0), see the i802.16e_10MHz.xml table
entry for more information

i80216e_ULPuscQ16.sdf,
i80216e_ULPuscQ16.set

This is an Uplink subframe using the 10MHz profile defined in IEEE 802.16e.
A single 16QAM data burst is defined within a single 24 symbol PUSC zone.
This signal was created mathematically and contains no real noise or impairments.

i80216e_ULPuscUniformQ64.sdf, i80216e_ULPuscUniformQ64.sdf signal is an Uplink subframe using the 10MHz

56 Digital predistortion by using GPIB-controlled instrumentation

i80216e_ULPuscUniformQ64.set profile defined in IEEE 802.16e. A single 64QAM data burst is defined to occupy
the entire 24 symbol PUSC zone. This signal was created mathematically and
contains no real noise or impairments. The i80216e_ULPuscUniformQ64.set
setup file will configure the analyzer.

i80216e_UlSeq.sdf This is an UL (uplink) 802.16e OFDMA signal used to demonstrate the UL
Auto configuration capabilities of 802.16 OFDMA Modulation Analysis. This signal
contains a different combinations of RNG, FFB, and data-burst transmissions.
Because there is no MAP information in the UL subframe, UL "Auto" auto-configuration
uses statistical methods to determine burst geometry and permutation parameters
for the UL subframe. The “Data Burst Info” trace shows frame information relevant
 to the auto-configured measurement, including detected CDMA code information.
Also, the auto-detected geometry is shown on the zone definition tab after each
measurement.

MBOFDM_TFC6_480Mbps.sdf (recording)
MBOFDM_TFC6_480Mbps.set (setup)

The MBOFDM_TFC6_480Mbps.sdf recorded signal was generated with an Agilent
Arb generator and measured with an Agilent Infiniium scope at 20 Gsa/s. The
signal is nonhopped and uses TFC 6. The MBOFDM_TFC6_480Mbps.set
setup file demonstrates the new Spectral Mask limit lines and ACPR features.

MBOFDM_TFC1_53.3Mbs_NoHop.sdf ,
MBOFDM_TFC1_53.3Mbs_NoHop.set

The MBOFDM_TFC1_53.3Mbs_NoHop.sdf signal was generated with an
Agilent ADS simulation. The signal is nonhopped and uses TFC 1. The
MBOFDM_TFC1_53.3Mbs_NoHop.set file turns off hopping, allowing the

signal to be analyzed correctly.

P80216e_DLPusc.sdf,
P80216e_DLPusc.set

This signal was generated for the 6.10 release using P802.16-2004/Cor1/D2. It is
now obsolete, but may be useful with pre-existing tutorial literature. This file may be
removed in later versions of the 89601. Downlink subframe containing one PUSC
zone, with an FCH and 3 bursts within that zone. The FCH and Burst01 are QPSK,
Burst02 is 16 QAM and Burst03 is 64QAM. A setup file has been provided to
configure the VSA so that each burst may be separately analyzed.

P80216e_DLPuscUniform16Q.sdf This signal was generated for the 6.10 release using P802.16-2004/Cor1/D2. It is
now obsolete, but may be useful with pre-existing tutorial literature. This file may
be removed in later versions of the 89601. Downlink subframe containing a single
PUSC zone and a single 16QAM burst within that zone. The subframe is 20 symbols
 long and contains no FCH. The burst covers 100% of the slots within the zone,
meaning that all OFDM subcarriers are occupied for the entire burst. (Select
Downlink on the Format tab, click Preset to Standard and make sure Data
Burst Analysis is cleared.)

P80216e_ULPuscQ16.sdf,
P80216e_ULPuscQ16.set

This signal was generated for the 6.10 release using P802.16-2004/Cor1/D2.
It is now obsolete, but may be useful with pre-existing tutorial literature. This
file may be removed in later versions of the 89601. Uplink subframe containing
a single PUSC zone and a single 16QAM burst within that zone. The subframe
begins at symbol #26 of the frame and is 12 symbols long. The burst is in
wrapped format and covers 1/4 of the available slots (35 slots). A setup file has
been provided to configure the VSA for analyzing this signal.

P80216e_ULPuscUniformQ64.sdf,
P80216e_ULPuscUniformQ64.sdf

This signal was generated for the 6.10 release using P802.16-2004/Cor1/D2.
It is now obsolete, but may be useful with pre-existing tutorial literature. This file
may be removed in later versions of the 89601. Uplink subframe containing a single
PUSC zone and a single 64QAM burst within that zone. The subframe begins at
symbol #26 of the frame and is 12 symbols long. The burst covers 100% of the
slots within the zone, meaning that all OFDM subcarriers are occupied for the entire
burst. When downloaded to supported Agilent signal generator (ESG, PSG, or MXG),
this signal is useful for stimulus response testing of RF components. A setup file has
been provided to configure the VSA for analyzing this signal. The setup file leaves the
89601A in single sweep mode so it only will take one record. For free run mode,
click Control > Sweep > Continuous and then restart the measurement.

Qpsk.dat QPSK modulated signal at 50 ksymbols/sec, root raised cosine filtered with an alpha of 0.35.

QPSKALFA.DAT QPSK modulated signal at 50 ksymbols/sec, root raised cosine filtered with a filter alpha
0.2 instead of 0.35.

QPSKCOMP.DAT QPSK modulated signal at 50 ksymbols/sec, root raised cosine filtered with an alpha of
0.35 with compression errors.

QPSKIBAL.DAT QPSK modulated signal at 50 ksymbols/sec, root raised cosine filtered with an alpha of
0.35 with a 1 dB gain difference between the I and Q channels.

QPSKIOFF.DAT QPSK modulated signal at 50 ksymbols/sec, root raised cosine filtered with an alpha of
0.35 with -22 dB Offset error.

QPSKNQST.DAT QPSK modulated signal at 50 ksymbols/sec, Nyquist (or raised cosine) instead of a

Annex 57

root-raised cosine filtering with an alpha of 0.35.

QPSKQUAD.DAT QPSK modulated signal at 50 ksymbols/sec, root raised cosine filtered with an alpha of
0.35 and a 5 degree quadrature error.

QPSKSMRT.DAT QPSK modulated signal at 50 ksymbols/sec, root raised cosine filtered with an alpha of
0.35 and a 1 % symbol rate error.

QPSKSPUR.DAT QPSK modulated signal at 50 ksymbols/sec, root raised cosine filtered with an alpha of
0.35 with a spurious signal added 36 dB below the carrier and about 11 kHz below the center
frequency.

SINEWPN.DAT This is a 5 MHz sine wave with phase noise used in the "Phase Noise Measurement
Example" tutorial.

TD-SCDMA_TS0-1.sdf TD-SCDMA waveform with both uplink and downlink pilots, as well as active channels
 in timeslots 0 and 1.

TD-SCDMA_TS0-6.sdf TD-SCDMA waveform with all timeslots active. A number of active channels and
spreading factors are present in the different traffic timeslots.

TD-SCDMA_TS123_Mid23_NoPilots.sdf,
TD-SCDMA_TS123_Mid23_NoPilots.set

TD-SCDMA signal with no pilots that uses timeslots 1, 2, and 3 and Basic Midamble 23.
The TD-SCDMA no-pilot signal is demodulated by synchronizing to the midamble in
the timeslots.

TEDS_CB_100k_64Q.sdf TEDS signal for a Control Uplink slot format, 100 kHz channel bandwidth, and 64QAM
modulation type.

TEDS_NBD_150k_64Q.sdf TEDS signal for a Normal Downlink slot format, 150 kHz channel bandwidth, and 64QAM
 modulation type.

TEDS_NUB_25k_16Q.sdf TEDS signal for a Normal Uplink slot format, 25 kHz channel bandwidth, and 16QAM
modulation type.

TEDS_NUB_50k_16Q.sdf TEDS signal for a Normal Uplink slot format, 50 kHz channel bandwidth, and 16QAM
modulation type.

TEDS_RAB_25k_4Q.sdf TEDS signal for a Random Access Uplink slot format, 25 kHz channel bandwidth, and 4QAM
modulation type.

WiMAX_5MHz_Impaired.sdf 802.16-2004 Downlink subframes, with a nominal bandwidth of 5 MHz and guard interval 1/4.
Each subframe has a Long Preamble, followed by a BPSK FCH symbol, then three data
bursts. The first burst is 22 symbols of QPSK, the second is 11 symbols of 16QAM, and the
last is 8 symbols of 64QAM. The FCH symbol contains only (encoded) zeros, and the
64QAM burst has incorrect amplitude for the data subcarriers. In addition, there's a little
amplitude drift during the entire subframe.

WiMAX_7MHz.sdf 802.16-2004 Downlink and Uplink subframes, with a nominal bandwidth of 7 MHz and
guard interval 1/4. The downlink subframe has a Long Preamble, followed by a BPSK
FCH symbol, and three data bursts. The first DL burst is 10 symbols of QPSK, the second
 is 20 symbols of 16QAM, and the third is 50 symbols of 64QAM. The FCH symbol
correctly describes these bursts. There are two separate uplink bursts in the uplink subframe,
each with a Short Preamble. The first UL burst has 15 symbols of QPSK. The second has
15 symbols of 64QAM.

XMITTER.DAT This is a recording of a FM transmitter turning on. The recording was allowed to play
and then paused when the carrier appeared. This signal is used in the FM Modulated
Signal Example tutorial.

ZigBee-2450.sdf This is a burst ZigBee signal in the 2450 MHz band.

 Table 2
Signal File Name Description
dect.sdf This is a pulsed, standard DECT format signal. To measure this signal, select the digital demod DECT preset

format and set Pulse Search to OFF
gsm.sdf This is a pulsed, standard GSM format signal. To measure this signal, select the digital demod GSM preset

format.
nadc.sdf This is a pulsed, standard NADC format signal. To measure this signal, select the digital demod NADC preset

format.
pdc.sdf This is a pulsed, standard PDC format signal. To measure this signal, select the digital demod PDC preset

format.
phs.sdf This is a non-pulsed, standard PHS(PHP) format signal. To measure this signal, turn off Pulse Search after

selecting the digital demod PHS(PHP) preset format.

58 Digital predistortion by using GPIB-controlled instrumentation

V. Program code

Creating GPIB objects

% ANALIZADOR
g18=gpib('ni',0,18);
g18.InputBufferSize=50000;
fopen(g18)
fprintf(g18, '*IDN?');
idn = fscanf(g18)

% GENERADOR
g19=gpib('ni',0,19);
g19.InputBufferSize=50000;
fopen(g19)
fprintf(g19, '*IDN?');
idn = fscanf(g19)

Creating VSA object

hVSA = actxserver('AgtVsaVector.Application');

Configuring VSG

carrier_level=-10;
cadena=[':POW:AMPL ',num2str(carrier_level),' dBm'];
fprintf(g19,cadena);
pause(2)

carrier_freq=2.010;
cadena=[':FREQ:FIX ',num2str(carrier_freq),' GHZ'];
fprintf(g19,cadena)
pause(2)

x_gpib=100*(1+i)*ones(100,1);
fprintf(g19,':SOUR:RAD:ARB:STAT OFF')
pause(2)
esg_darb(x_gpib, 'IQSIGNAL');
pause(2)
fprintf(g19,':SOUR:RAD:ARB:WAV "ARBI:IQSIGNAL"')
pause(5)
fprintf(g19,':SOUR:RAD:ARB:STAT ON')
pause(5)

fprintf(g19,':POW:ALC:STAT OFF');

x_vsg=(1+i)*ones(200,1);
loadVSG

Configuring Spectrum Analyzer

midelay=1e8;

freq_cent=2.010;
cadena=[':FREQ:CENT ',num2str(freq_cent),' GHZ'];
fprintf(g18,cadena);

for buffer1 = 1:midelay,

Annex 59

buffer2=2+2;
end

freq_span=40;
cadena=[':FREQ:SPAN ',num2str(freq_span),' MHZ'];
fprintf(g18,cadena)

for buffer1 = 1:midelay,
buffer2=2+2;
end

Configuring VSA parameters

hMeasurement = get(hVSA,'Measurement');

hFrequency = get(hMeasurement,'Frequency');
set(hFrequency,'Center',2.01e9);
set(hFrequency,'Span',10e6);

nsamp=4;
ResultL=100;
set(hMeasurement,'DemodConfig',2);
hDemod = get(hMeasurement,'DigDemod');
set(hDemod,'FilterAlpha',0.22); %Alpha cosine
set(hDemod,'Format',4); %QPSK
set(hDemod,'MeasFilter',2); %Root Raised Cosine
set(hDemod,'RefFilter',1); %Raised Cosine
set(hDemod,'ResultLen',ResultL); %Result length
set(hDemod,'PointsPerSymbol',nsamp); %Points per symbol
set(hDemod,'SyncSearch',1); %SyncSearch
set(hDemod,'SyncPattern','0001101100011011000110110001101100011011');
%SyncPattern or pilot message
clock=6.144e6; %VSG Clock
SymRate=clock/nsamp;
set(hDemod,'SymbolRate',SymRate); %Symbol Rate

hDisplay = get(hVSA,'Display');
hTraces = get(hDisplay,'Traces');
hTrace1=get(hTraces,'Item',1);
hTrace2=get(hTraces,'Item',2);
hTrace3=get(hTraces,'Item',3);
hTrace4=get(hTraces,'Item',4);
hTrace5=get(hTraces,'Item',5);
hTrace6=get(hTraces,'Item',6);
set(hTrace1,'Format','vsaTrcFmtVectorIQ');
set(hTrace1,'DataName','IQ Meas Time1');
set(hTrace1,'Active',1);
set(hMeasurement,'Continuous',1);
invoke(hMeasurement,'Start');

Create waves

clc

len_sym=1000;
nsamp=4;
len=len_sym*nsamp;
clock=6.144e6; %VSG Clock
SymRate=clock/nsamp;
M=4;
rolloff = 0.35; % Rolloff factor of filter

60 Digital predistortion by using GPIB-controlled instrumentation

sincro=[0; 1; 2; 3; 0; 1; 2; 3; 0; 1; 2; 3; 0; 1; 2; 3; 0; 1; 2; 3];
%Pilot message in order to synchronize the VSA
signal=randint(len_sym-length(sincro),1,M);
signal=[sincro; signal]; %Signal to modulate
signal=[signal; signal];

constellation=[1+j*1 -1+j*1 1-j*1 -1-j*1];
modsignal=genqammod(signal,constellation);
filtorder = 80; % Filter order
delay = filtorder/(nsamp*2); % Group delay (# of input samples)
rrcfilter = rcosine(1,nsamp,'fir/sqrt',rolloff,delay);
wave_4qam=rcosflt(modsignal,1,nsamp,'filter',rrcfilter);
wave_4qam=wave_4qam(1+40:1:len+40);
wave_4qam=wave_4qam/max(abs(wave_4qam));

disp('** creadas las ondas');

Load Matlab signal to VSG
xi=real(x_vsg);
xq=imag(x_vsg);
%%%
% GPIB AND DAC SIGNAL FORMAT
%%%
AMPLITUD=8190;
CENTRO=8192;
xi_escalada=round(xi*AMPLITUD+CENTRO);
xq_escalada=round(xq*AMPLITUD+CENTRO);

clear buffer1;
clear buffer2;
buffer1=dec2hex(xi_escalada,4);
buffer2(:,1)=buffer1(:,3);
buffer2(:,2)=buffer1(:,4);
buffer2(:,3)=buffer1(:,1);
buffer2(:,4)=buffer1(:,2);
xi_gpib=hex2dec(buffer2);

clear buffer1;
clear buffer2;
buffer1=dec2hex(xq_escalada,4);
buffer2(:,1)=buffer1(:,3);
buffer2(:,2)=buffer1(:,4);
buffer2(:,3)=buffer1(:,1);
buffer2(:,4)=buffer1(:,2);
xq_gpib=hex2dec(buffer2);

x_gpib=xi_gpib+i*xq_gpib;

fprintf(g19,':SOUR:RAD:ARB:STAT OFF')

midelay1000;

esg_darb(x_gpib, 'IQSIGNAL');

midelay1000;
midelay1000;
midelay1000;

Annex 61

fprintf(g19,':SOUR:RAD:ARB:STAT ON')

midelay1000;
midelay1000;
midelay1000;
Initialize LUTs

f0_in=[0.1:0.001:1]';
f0_gain=ones(length(f0_in),1);
f0_contador=zeros(length(f0_in),1);

f1_in=[0.1:0.001:1]';
f1_gain=ones(length(f1_in),1);
f1_tau=0;

g1_in=[0.1:0.001:1]';
g1_gain=ones(length(g1_in),1);
g1_tau=0;

disp('** inicializadas las LUTs');

Predistortion

x_dpd=x_gen*amplitude_wave;
disp('** INICIO predistortion');

switch PD_type

case 1
disp('** haciendo la DPD tipo 1 (promedio de luts)');
for n=1:length(x_dpd)
[valor_f0,indice_f0]=min(abs((f0_in-abs(x_dpd(n)))));
y_dpd(n,1)=f0_gain(indice_f0)*x_dpd(n);
end
%%%%%%%%%%%%%%%%%%%%%%%%%
case 2
disp('** haciendo la DPD tipo 2 (lut-LMS)');
for n=1:length(x_dpd)
[valor_f0,indice_f0]=min(abs((f0_in-abs(x_dpd(n)))));
y_dpd(n,1)=f0_gain(indice_f0)*x_dpd(n);
end
%%%%%%%%%%%%%%%%%%%%%%%%%

otherwise
disp('Unknown method.')
end
%%
disp('** FINAL de la predistortion');

Update LUTs

disp('** INICIO update');

AM_in=abs(x_ampli);
PM_in=angle(x_ampli);
AM_out=abs(y_ampli);
PM_out=angle(y_ampli);
deltaPM_out=PM_out-PM_in;
%

62 Digital predistortion by using GPIB-controlled instrumentation

% amplificacion deseada
ampli_desired_gain=0.6;
%
switch PD_type

case 1
disp('** haciendo la DPD tipo 1 (promedio de luts)');
for n=1:length(x_dpd)
[valor1,indice1]=min(abs(f0_in-abs(x_dpd(n))));
[valor2,indice2]=min(abs(y_ampli-ampli_desired_gain*x_dpd(n)));
if abs(x_dpd(n))>=0.1
 f0_contador(indice1)=f0_contador(indice1)+1;

f0_gain(indice1)=0.5*f0_gain(indice1)+0.5*(x_ampli(indice2)/x_dpd(n));
end
end

case 2
disp('** haciendo update de la DPD tipo 2 (lut-LMS)');
mu_f0=0.01;
for n=1:length(x_dpd)
[valor_f0,indice_f0]=min(abs(f0_in-abs(x_dpd(n))));
buffer_ampli_gain=y_ampli(indice_f0)/y_dpd(indice_f0);
error=ampli_desired_gain*x_dpd(indice_f0)-y_ampli(indice_f0);
f0_gain(indice_f0)=f0_gain(indice_f0)+mu_f0*error*(buffer_ampli_gain*x
_dpd(indice_f0))';
end

otherwise
disp('Unknown method.')
end
%%
%
disp('** FINAL del update');
%%
%

Annex 63

VI. GPBI cable datasheet

64 Digital predistortion by using GPIB-controlled instrumentation

Annex 65

VII. PA datasheet

66 Digital predistortion by using GPIB-controlled instrumentation

VIII. VSA object programming tree

Annex 67

68 Digital predistortion by using GPIB-controlled instrumentation

