

Phonetic study and text mining of
Spanish for English to Spanish
translation system

A Thesis Presented by

Jorge Gilabert Hernando

in Partial Fulfillment of the Requirements for the Degree of

Enginyer de Telecomunicacions

at the

Universitat Politècnica de Catalunya

Thesis supervisors

Prof. Shri Narayanan

Dr. Panayiotis Georgiou

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41795652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Signal Analysis and Interpretation Laboratory

Escola Tècnica Superior d’Enginyers de Telecomunicacions

de Barcelona

Thesis Title: Phonetic study and text mining of Spanish for English to Spanish

translation system.

Author: Jorge Gilabert Hernando

Supervisors: Proff. Shri Narayanan and Dr. Panayiotis Georgiou

Contents

1. Introduction ... 1

2. Automatic Speech Recognition ... 2

2.1 Tools and resources used to build the ASR .. 5

2.2 Spanish Language Models.. 9

2.3 Spanish Acoustic Models V1.. 12

2.4 Spanish Acoustic Models V2.1... 21

2.5 Spanish Acoustic Models V2.2... 25

2.6 Spanish Acoustic Models V3.. 29

2.7 Final decision of Acoustic Model ... 33

3. Statistical Machine Translator.. 34

3.1 Moses.. 35

3.2 Parallel text mining... 46

3.3 Statistical Machine Translator models ... 47

4. Text To Speech... 49

4.1 Text To Speech tools ... 51

5. Putting everything together ... 53

6. Conclusions.. 56

7. References.. 57

Appendix I: Files outline... 60

Appendix II: Script manuals ... 62

Dictionaries ... 62

Format text ... 63

Parallel text... 66

Appendix III: Sphinx tutorial.. 68

Appendix IV: Moses tutorial ... 91

Appendix V: Sclite manual.. 107

List of Figures

1.1 Two-way Speech-to-Speech translation system ..1
2.1 Automatic Speech Recognizer ..2
2.2 Estimation of a word sequence...2
2.3 Acoustic Model equations...2
2.4 Language Model Equations..4
2.5 Word Error Rate...7
2.6 Example of Language Model..10
2.7 Summary of n-grams in the Spanish LM...10
2.8 Lexicon V1..13
2.9 Acoustic Models layout...15
2.10 Most common phonemes with the V1 mapping in LDC2006S37..16
2.11 Word histogram of corpus V1...17
2.12 Phonemes histogram of corpus V1 ...18
2.13 script s3decode.pl ...19
2.14 Results summary V1 ...20
2.15 Lexicon V2.1...22
2.16 Phonemes histogram of corpus V2.1 ..23
2.17 Results summary V2.1 ..24
2.18 Lexicon V2.2...26
2.19 Word histogram of corpus V2.2..27
2.20 Results summary V2.2 ..28
2.21 Lexicon V3..30
2.22 Phonemes histogram of corpus V3 ...31
2.23 Results summary...32
2.24 Results summary...33
3.1 Process of phrase-based translation ..35
3.2 Translation probabilities (I) ...35
3.3 Translation probabilities (II)..35
3.4 Translation probabilities (III) ..35
3.5 Phrase translation tables..36
3.6 Example of phrase translation..37
3.7 Beam search ...38
3.8 Beam search pseudo-code algorithm..41
3.9 Hypothesis stacks ...41
3.10 Path cost estimation ...42
3.11 Arcs in Search Graph ...45
3.12 Layout Spanish to English SMT..47
3.13 Layout English to Spanish SMT..48

4.1 Text To Speech synthesizer layout ..49
5.1 Layout of SpeechLinks [1]..53
5.2 Speech-to-Speech system starts ..54
5.3 English and Spanish buttons ..55
5.4 Speech-to-speech translation system running ..55

1

1. Introduction
Today, building a new two-way speech-to-speech translation system is a task of

many years’ effort. In this thesis there were three main goals: Do research for

generating a robust speech recognizer, build a text-to-text machine translator and put it

together using a speech synthesizer to create the two-way speech-to-speech translation

system.

In order to achieve these goals in a short time, a baseline work has been

established:

First of all, the CMU’s (Carnegie Mellon University) Sphinx speech recognition

system is freely available and currently is one of the most robust speech recognizers in

English. Moreover, it is adaptable to Spanish without making many changes to the

system.

Secondly, the Moses statistical machine translator is also freely available, and it

gives acceptable results with any two languages as long as the parallel text is well

prepared, relevant and focused in one concrete environment.

Finally, the USC (University of Southern California), where this thesis was

developed, developed a two way speech-to-speech translation system. This project was

called SpeechLinks and it worked in Farsi and in English. In the project described in

this document, the SpeechLinks system is going to be adapted to work in Spanish and in

English.

This document explains how all the blocks described in figure 1.1 work, and

how they have been adapted to work together in creating a two-way speech-to-speech

translation system.

Text ESSpanish voice

ASRi SMTi TTSi

Text EN English voice

AM LM

SPHINX SRILM

PT LM.ini

MOSES SRILM TTS
platform

Text ENEnglish voice Text ES Spanish voice

Text ESSpanish voice

ASRi SMTi TTSi

Text EN English voice

AM LM

SPHINX SRILM

AM LM

SPHINX SRILM

PT LM.ini

MOSES SRILM

PT LM.ini

MOSES SRILM TTS
platform

Text ENEnglish voice Text ES Spanish voice

1.1 Two-way Speech-to-Speech translation system

2

Automatic Speech Recognition

ASR (Automatic Speech Recognition) is a system that converts spoken words to

written output. However, a number of well-known factors determine accuracy: those

most noticeable are variations in context, in speaker and in environment.

0.1 Automatic Speech Recognizer

The challenge of an ASR (Automatic Speech Recognition) program [2] is for a

given acoustic observation nXXXX ...21= to discover the corresponding word

sequence mWWWM ...ˆ
21= that has the Maximum posterior probability)(XMP .

)(
)()(maxarg)(maxargˆ

XP
MPMXPXMPM ww ==

0.2 Estimation of a word sequence

Since the maximization of figure 2.2 is carried out with the observation X fixed,

the above maximization is equivalent to:

)()(maxargˆ MPMXPM w=

∑
=

=
L

i
ii MPPPXPMXP

1
)()()(

0.3 Acoustic Model equations

3

The practical objective is to build accurate acoustic models,),(MXP and

language models,),(MP that allow us to recognize the spoken language. For large-

vocabulary speech recognition, since there are a large number of words, we need to

decompose a word into a subword sequence. Consequently,)(MXP is closely related

to phonetic modeling)(MPP l and to the acoustic models of the phonemes)(lPXP

(figure 2.3).)(MXP should take into account speaker variations, pronunciation

variations, environmental variations, and context-dependent phonetic coarticulation

variations. Furthermore, any acoustic or language model will not meet the needs of real

applications by itself; therefore, it is fundamental to dynamically adapt both language

and acoustic models to maximize)(XMP while using spoken language systems. The

decoding process of finding the best word sequence M to match the input speech signal

X in speech recognition systems is more than a simple pattern recognition problem,

since in continuous speech recognition there are an infinite number of word patterns to

search [2].

Acoustic Models

Acoustic models include the representation of knowledge about acoustics,

phonetics, microphone and environmental variability, gender and dialect differences

among speakers.

An acoustic model is created by taking audio recordings of speech, and their text

transcriptions, and using software to create statistical representations of the sounds that

make up each word.

The audio recordings of speech can be encoded at different sampling rates (for

example, 8kHz, 16kHz, 22.5kHz, 32kHz, 44.1kHz, 48kHz or 96kHz), and different bits

per sample (for example, 8-bits, 16-bits or 32-bits). Speech recognition engines work

best if the acoustic model they use was trained with speech audio which was recorded at

the same sampling rate/bits per sample as the speech being recognized.

The lexicon used in the language model is also important: it includes the

phonetic rules of the language for which such speech is being recognized, and it helps to

convert recognized phonemes into words.

Language Models

4

Language model refers to a system’s knowledge of what constitutes a possible

word, what words are likely to co-occur, and in what sequence.

For the language model, two things are fundamental: the grammar and the

parsing algorithm. The grammar is a formal specification of the permissible structures

for the language. The parsing technique is the method of analyzing the sentence to see if

its structure is compliant with the grammar. With the advent of bodies of text (corpora)

that have had their structures hand-annotated, it is now possible to generalize the formal

grammar to include accurate probabilities. Furthermore, the probabilistic relationship

among a sequence of words can be directly derived and modeled from the corpora with

the so-called stochastic language models such as n-gram, avoiding the need to create

broad-coverage formal grammars.

An n-gram model is based in the hypothesis that the probability of having a

word in a sentence does not depend more on all the words of the sentence than the n

previous words.

),...,,(),...,,()(2
1

112
1

1 nkk

K

k
kkk

K

k
kk WWWWPWWWWPMP −−

=
−−

=
− ∏∏ ≅=

0.4 Language Model Equations

One example with trigram could be:

P(All that glitters is not gold) = P(All|-,-)P(that|All,-)P(glitters|that,All)x xP(is|glitters,that)P(not|is,glitters)P(gold|not,is)

5

1.1 Tools and resources used to build the ASR

The SRI Language Modeling Toolkit (SRILM)

Statistical language modeling is the science (and often art) of building models

that estimate the prior probabilities of word strings [3].

The Spanish LM (Language Models) have been built with the SRI Language

Modeling Toolkit (SRILM), which is a collection of C++ libraries, executable programs

and helper scripts designed to allow both production of and experimentation with

statistical language models for speech recognition. As pointed out in [3], compared to

existing LM (Language Models) tools, SRILM offers a programming interface and an

extendible set of LM classes, several non-standard LM types, and a more

comprehensive functionality that goes beyond language modeling to include tagging, N-

best rescoring, and other applications.

Since SRILM can create a LM (Language Model) either by reading counts from

a file or by scanning text, the first thing to do is to clean some training text with useful

sentences, then generate the n-gram counts and estimate n-gram language models with

the program ngram-count.

A standard LM would be created by:

ngram-count –text TRAINDATA –order N1 –lm LM

It is important to clean the text before using ngram-count because SRILM by

itself performs no text conditioning and treats everything between white spaces as a

word.

Once the n-gram language models were generated, and in order to make them

compatibles with Sphinx3, which was the decoder that I used for the Spanish speech

recognition, two scripts included in SRILM were used: add-dummy-bows and sort-lm.

• add-dummy-bows: this script adds the ‘missing’ back-off weights (in fact, when

these weights equal to 0, ngram-count does not print them)

• sort-lm: this program sorts n-grams in lexical order

1 There are other parameters that can be changed; the default of this program creates a trigram

with Good-Turing discounting and Katz back-off for smoothing.

6

And the last step to create a LM compatible with Sphinx3 is to create the binary

with Sphinx3_lm_convert (included in the Sphinx3 package).

The CMU Sphinx Group Open Source Speech Recognition Engines

CMU Sphinx, also known as just Sphinx, is a group of speech recognition

decoders (Sphinx 2-4) and an acoustic model trainer (SphinxTrain) developed at

Carnegie Mellon University.

The speech recognition decoder

Sphinx, developed by Kai-Fu Lee [4], was the first continuous-speech, speaker-

independent recognition system to make use of Hidden Markov acoustic Models and an

n-gram statistical language model. Sphinx was significant in that it demonstrated the

feasibility of continuous-speech, speaker-independent large-vocabulary recognition.

Sphinx32

Previous versions of this speech recognition system used a semi-continuous

representation for acoustic modeling (for example, a single set of Gaussians is used for

all models, with individual models represented as a weight vector over these

Gaussians). Sphinx3 adopted the prevalent continuous HMM (Hidden Markov Models)

representation and has been used primarily for high-accuracy, non-real-time

recognition. Recent developments (in algorithms and in hardware) have made Sphinx3

“near” real-time. Sphinx3 is under active development and, in conjunction with

SphinxTrain, provides access to a number of modern modeling techniques, such as

LDA/MLLT, MLLR and VTLN, which improve recognition accuracy.

Sclite

Sclite is a tool for scoring and evaluating the output of an ASR (Automatic

Speech Recognition) system. Sclite belongs to the NIST SCTK Scoring Toolkit. The

program compares the hypothesized output of the ASR to the reference text. After

comparing reference to hypothesis, statistics are collected during the scoring process

and a variety of reports can be produced to summarize the performance of the

recognition system [5].

For this project three different kinds of reports have been done to analyze the

performance of the ASR.

2 Appendix III: Sphinx tutorial

7

The first one has a summary of the substitutions, insertions and deletions that the

ASR has done during the recognition:

• Substitution: an incorrect word was substituted for the correct word.

• Deletion: a correct word was omitted in the recognized sentence.

• Insertion: an extra word was added in the recognized sentence.

The second one has a table with the mean, variance and sum of the Word Error

Rate and the Sentence Error Rate.

%100

•
++

=
sentencecorrecttheinwordsofnumber

insertionsdeletionsonssubstitutiWER

0.5 Word Error Rate

And the last one was a report with all the hypothesis sentences and reference

sentences and with the errors highlighted.

The complete manual of how to use SCLITE performed by the University of

Berkeley is in Appendix V.

Corpus LDC2006S37 from the Linguistic Data Consortium

West Point Heroico Spanish Speech is a database of digital recordings of spoken

Spanish. It was designed and collected by staff and faculty of the Department of Foreign

Languages (DFL) and the Center for Technology Enhanced Language Learning

(CTELL) to develop acoustic models for speech recognition systems. Additionally,

parts of this corpus were designed to model question/answer dialogues for use in

domain-specific speech-to-speech translation systems. The corpus consists of two

subcorpora, one collected in September 2001 at El Herico Colegio Militar (HEROICO),

the Mexican Military Academy in Mexico City, and the other at USMA (United States

Military Academy) at different times since 1997. The USMA subcorpus includes data

from non-native speakers and data collected through a throat microphone [6].

The data from this corpus was collected using several different microphones and

a sampling rate of 22,050 Hz with a pcm format. A total of 111,515 words are recorded

in this corpus with their equivalent transcripts. The HEROICO data was recorded from

free-response answers to 143 questions and from read speech of 724 distinct sentences.

8

The USMA data was obtained from native and non-native participants who each

recorded 205 read sentences.

9

1.2 Spanish Language Models
The aim of this section is to explain how to build a Language Model in Spanish,

specifying the text sources that have been used, giving a summary of the results and

making some extractions from the final Language Model.

Since ASR (Automatic Speech Recognition) is designed to work in a medical

domain, the main source for this LM (Language Model) was the Medline encyclopedia

[7]. From this encyclopedia, 3,734 articles, for a total of 1,433,506 words, were used.

To get all this text from the online encyclopedia a Perl script was utilized3. This script

opened every article from the encyclopedia’s website, then made a copy to a text file

and cleaned it from html code so that only the text was left. Once all the articles were in

different text files in a folder, they were merged into one unified article, cleaned of the

symbols that were not necessary for this purpose (punctuation, etc.) and mapped in the

same way as the acoustic models.

Although it is a medical domain ASR (Automatic Speech Recognition), it is also

an ASR that has to work in a conversational environment, and since the Medline

encyclopedia only has descriptive articles some conversational text had to be added to

make the Language Model work fluently in the environment where it would be used. In

order to get the conversational text the same method as employed with the Medline

encyclopedia was used, but with web pages that are used to teach conversational

Spanish [8], [9] & [10] containing many common conversational sentences. The

sentences from the transcripts in the LDC2006S37 were also used; these sentences are

simulations of conversations in Spanish. The total number of words added with this

system is 114,644; with the words from Medline encyclopedia this is a total of

1,548,150 words.

The next step is to give as an input the text cleaned and unified in one file to the

SRILM that generates as an output the Language Model with all the probabilities and

decomposition in n-grams of the input words. For this Language Model, only 1-grams,

2-grams and 3-grams were needed, since it was for use in an ASR that needed to work

real-time.

3 Appendix II: Script Manuals. Parallel text

10

\1-grams:

-1.783162 A -3.991723
-4.630289 ABAJO -0.961434
-4.204341 ABASTECIDOS-0.9515075
-3.676076 ABIERTAS -1.387051

\2-grams:
-1.917061 A AFEITAR 0
-3.221762 A AFIRMAR 0
-2.963434 A ALGUIEN 0
-1.840673 A ATAHUALPA -1.271719

\3-grams:

-0.60206 A ATAHUALPA QUE
-0.60206 A ATAHUALPA SE
-0.01579427 A BUENOS AIRES
-0.49485 A CABO FRANCISCO

\1-grams:

-1.783162 A -3.991723
-4.630289 ABAJO -0.961434
-4.204341 ABASTECIDOS-0.9515075
-3.676076 ABIERTAS -1.387051

\2-grams:
-1.917061 A AFEITAR 0
-3.221762 A AFIRMAR 0
-2.963434 A ALGUIEN 0
-1.840673 A ATAHUALPA -1.271719

\3-grams:

-0.60206 A ATAHUALPA QUE
-0.60206 A ATAHUALPA SE
-0.01579427 A BUENOS AIRES
-0.49485 A CABO FRANCISCO

0.6 Example of Language Model

Figure 2.7 shows a summary of the n-grams from the definitive Spanish

Language model.

n-grams Words

1-grams 30,464

2-grams 282,878

3-grams 143,193

0.7 Summary of n-grams in the Spanish LM

11

30k 1-grams may seem large for a Language Model but as it is mentioned before, this

LM is made for a medical environment and in this kind of environment there are many

technical words; therefore, the encyclopedia used many medical terms for every disease,

and all those technical names were necessary for the objective of this work.

Furthermore, Spanish has many verb conjugations, and each tense of each person is a

new word that computes in the language model. (For example, the first person singular

of any verb run is different from the second person or the third and also different from

the plural, so there are more or less six combinations for each tense, and each verb has

18 different tenses).

12

1.3 Spanish Acoustic Models V1

Lexicon V1

The lexicon development process consists of defining a phonetic set and

generating the word pronunciations list (dictionary) for training acoustic and language

models4.

Label Phoneme Letters Example
Phonetic

Transcription

A /a/ A AMO A M O

B /B/ B, V, W BIEN B I E N

CH /č/ CH, X CHINO CH I N O

D /D/ D DEDO D E D O

E /e/ E PERA P E R A

F /f/ F FOCA F O K A

G /G/ G, W, H HUESO G U E S O

I /i/ I LISO L I S O

J /x/ G, J JAMÓN J A M O N

K /k/ C, K, Q QUESO K E S O

L /l/ L LAGO L A G O

M /m/ M MAMÁ M A M A

N /n/ N EN E N

NY /ñ/ Ñ NIÑO N I NY O

O /o/ O OJO O J O

P /p/ P PAVO P A B O

R /r/ R CARO K A R O

RR /R/ R RATÓN RR A T O N

4 Appendix II: Script Manuals. Dictionaries

These words

are mapped

as “NINYO”

13

S /s/ S, (C, Z)5 CASA K A S A

T /t/ T TOMA T O M A

U /u/ U, W PUNTO P U N T O

Y /ʎ/ LL, Y RAYO RR A Y O

Z /θ/ C, Z COCER C O Z E R

0.8 Lexicon V1

The approach for modeling Spanish phonetic sounds in the CMU Sphinx3

speech recognition system consisted of an adapted version from the phonetic set

introduced by Antonio Quilis in “Fonética Acústica De La Lengua Española” [11] &

[12], which resulted in the 23 phonemes listed in the figure 2.8. The adaptation

consisted of discovering which phonemes were too similar for the human ear and

merging them and adding letters in order to adapt to the Mexican sounds. (In Mexican

Spanish the main phonetic difference is that the sound /θ/ is merged with the sound /s/).

The vocabulary size is approximately 30,000 words, which is based on a word

list created from the Language Model text explained previously. The automatic

generation of pronunciations was performed using a simple list of rules. The rules

determine the mapping of clusters of letters into phonemes.

In the list of rules there are 5 kinds of rules:

• Letters that are treated differently because of their position in the word (for

example, when the combination G+E was found it was changed to J+E,

because if it was found, then G+U+E had to be changed to G+E); in this group

are almost all the exceptions found in Spanish.

• Three letter groups inside words which are transcribed by two phonemes or by

three phonemes, so that the combination of all those letters is needed to

determine them (for example, H+U+E it has to be converted to the phonemes

G+U+E or Q+U+I converted to K+I).

• Two letter combinations that have a specific phonetic transcription (for

example, C+A is transcribed by K+A).

5 Mexican Spanish

14

• One letter group: this group contains those phonemes that do not have the

same phonetic transcription as the original letter (for example, the letter V is

translated into the new phonetic language as B).

• Finally, there is a special group for the Mexican differences and foreign

language inheritance letters. In this group, there is a duplication of the word

that has the special pronunciation and two transcriptions were made of the

differences (for example, the word CENAR is Castilian Spanish and is

transcribed in phonemes as Z E N A RR and in Mexican Spanish as S E N A

RR).

15

Acoustic Models V1

For training acoustic models it is necessary to have a set of feature files

computed from the audio training data, one each for every recording in the training

corpus. Each recording is transformed into a sequence of feature vectors consisting of

the Mel-Frequency Cepstral Coefficients (MFCC). The training of acoustic models is

based on utterances without noise.

The training process (see figure 2.9) consists of the following steps: Obtain a

corpus of training data and for each utterance, convert the audio data to a stream of

feature vectors; convert the text into a sequence of linear triphones HMM (Hidden

Markov Models) using the pronunciation lexicon; and find the best state sequence or

state alignment through the sentence HMM (Hidden Markov Models) for the

corresponding feature vector sequence. For each senone, gather all the frames in the

training corpus that mapped to that senone in the above step and build a suitable

statistical model for the corresponding collection of feature vectors. The circularity in

this training process is resolved using the iterative Baum-Welch or forward-backward

training algorithm. Due to the fact that continuous density acoustic models are

computationally expensive, a model is built by sub-vector quantizing the acoustic model

densities.

Corpus of
training data

Acoustic
Features

Computation

Sentences

HMM

State
sequence

Sub-vector
quantizing

Gaussian mixture,
senone models,

HMM state transition
probability matrices

13 dimensional real
valued cepstrum

vectors

Linear sequence of
triphones HMMs

Top scroring
Gaussian densities

text data

audio data

Corpus of
training data

Acoustic
Features

Computation

Sentences

HMM

State
sequence

Sub-vector
quantizing

Gaussian mixture,
senone models,

HMM state transition
probability matrices

13 dimensional real
valued cepstrum

vectors

Linear sequence of
triphones HMMs

Top scroring
Gaussian densities

text data

audio data

Corpus of
training data

Acoustic
Features

Computation

Sentences

HMM

State
sequence

Sub-vector
quantizing

Gaussian mixture,
senone models,

HMM state transition
probability matrices

13 dimensional real
valued cepstrum

vectors

Linear sequence of
triphones HMMs

Top scroring
Gaussian densities

text data

audio data

0.9 Acoustic Models layout

16

Training corpus statistics V1

The corpus used for the training has been cleaned and mapped in the same way

as in the dictionary (for example, changing the letter “ñ” by “NY” or the accented

vowels by the same vowels but without the accent). To train the acoustic models a

sample of 111,515 words of the LDC2006S37 was used. Figure 2.11 shows

that the 20 more common words (with a representation of 34% of the

corpus) are words of less than 3 letters and cover only 13 phonemes (which

symbolize 62% of the 21 phonemes described in this version).

These 13 phonemes represent slightly more than 80% of the corpus (figure

2.10). Since these are also the most used phonemes in Spanish, it is

advisable that those phonemes are well estimated and trained. However, it

would also be desirable that some phonemes that are not as common were

well trained because if they do not have enough data to train them, the

errors might be concentrated in those phonemes.

A N

D O

E P

I RR

K S

L U

M

0.10 Most common phonemes with the V1 mapping in LDC2006S37

17

0.11 Word histogram of corpus V1

18

0.12 Phonemes histogram of corpus V1

19

Results V1

After performing the training with SphinxTrain, some test data is prepared to

make an evaluation of the system.

A sample of 6,110 words, which have not been used for the training data, is

prepared with the same mapping used in the dictionary.

 Once the test transcripts are the same format as the output of the ASR, the audio

that belongs to the test transcripts is decoded with Sphinx3 and then with Sclite, and the

word recognition performance is evaluated (figure 2.14).

Since the ASR made is phoneme based, it is also desirable to know the phoneme

accuracy. There is an option in the script s3decode.pl from the Sphinx3 decoder (figure

2.13) to give the output as a sequence of phonemes, and with the force align tool

provided by SphinxTrain (combined with the script create_phone_transcript_forced.pl6),

a phoneme transcript is made to evaluate the phoneme accuracy (figure 2.14).

0.13 script s3decode.pl

6 Appendix II: Script Manuals. Dictionaries

20

Recognition Performance Words Phonemes

Number 6,110 26,833

Substitutions 807 (13.5%) 2,920 (11.2%)

Deletions 633 (10.6%) 4,558 (17.6%)

Insertions 119 (2%) 1,610 (6%)

Accuracy 4,551 (74%) 18,483 (64.8%)

0.14 Results summary V1

21

1.4 Spanish Acoustic Models V2.1

Lexicon V2.1

Once the first version of the Spanish ASR (Automatic Speech Recognition)

system is tested, it is observed that there are many decoding errors coming from the

vowels and the phonemes S and Z. Since almost all the sentences that are recorded in

the corpus LDC2006S37 are spoken in Mexican Spanish, the phoneme Z (a Castilian

phoneme) makes no sense, so for this new version it is deleted.

Another important change in this version is that there are five new phonemes

[13] added to symbolize the Spanish accents7.

Label Phoneme Letters Example
Phonetic

Transcription

A /a/ A AMO A M O

AA /a’’/ Á MÁS M AA S

B /B/ B, V, W BIEN B I E N

CH /č/ CH, X CHINO CH I N O

D /D/ D DEDO D E D O

E /e/ E PERA P E R A

EA /e’’/ É CAFÉ K A F EA

F /f/ F FOCA F O K A

G /G/ G, W, H HUESO G U E S O

I /i/ I LISO L I S O

IA /i’’/ Í TENÍA T E N IA A

J /x/ G, J JAMÓN J A M OA N

K /k/ C, K, Q QUESO K E S O

L /l/ L LAGO L A G O

7 Appendix II: Script Manuals. Dictionaries

22

M /m/ M MAMÁ M A M AA

N /n/ N EN E N

NY /ñ/ Ñ NIÑO N I NY O

O /o/ O OJO O J O

OA /o’’/ Ó CAMIÓN K A M I OA N

P /p/ P PAVO P A B O

R /r/ R CARO K A R O

RR /R/ R RATÓN RR A T OA N

S /s/ S, (C, Z)* CASA K A S A

T /t/ T TOMA T O M A

U /u/ U, W PUNTO P U N T O

UA /u’’/ Ú CANCÚN K A N K UA N

Y /ʎ/ LL, Y RAYO RR A Y O

0.15 Lexicon V2.1

Acoustic Models V2.1

The acoustic models of this version are trained in the same way as the version

before, but now we use the new dictionary and the new phone list with the five new

phonemes and without the phoneme Z.

Corpus statistics V2.1

Figure 2.16 shows that the vowel phonemes (without accent) have less

representation (the graphic becomes more flat): the reduction of the vowels without

accent in the corpus is approximately 6%. It also shows that the representation of the

phoneme S is augmented by approximately 21%. Furthermore, the tail of the graphic

shows that the accentuated vowels are not well-represented in the corpus (two of the

less represented phonemes, AA and UA, belong to this new accentuated phonemes

group).

These words

are mapped

as “NINYO”

23

0.16 Phonemes histogram of corpus V2.1

24

Results V2.1

This version is evaluated following the same steps as for the first version:

preparing the word and phoneme transcripts, decoding with Sphinx3, and evaluating

with Sclite.

Recognition Performance Words Phonemes

Number 6,107 26,945

Substitutions 864 (14.4%) 2,874 (11.0%)

Deletions 719 (11.9%) 4,644 (17.8%)

Insertions 116 (1.9%) 872 (3.5%)

Accuracy 4,413 (71.7%) 19,362 (67.6%)

0.17 Results summary V2.1

Figure 2.17 shows that the word accuracy declines slightly but the phoneme

accuracy improves almost 3%. With this result, the next version tries to merge the

results in Word Error Rate of Version 1 and the Phoneme Error Rate of Version 2.1.

25

1.5 Spanish Acoustic Models V2.2

Lexicon V2.2

In order to improve the Word Error Rate of the previous section of the

experiment, a new mapping for the words with accents is made. The combination

“vowel + WW” is used in the dictionary and in the transcripts to let SphinxTrain

differentiate between the words with accent and the words without8.

Label Phoneme Letters Example
Phonetic

Transcription

A /a/ A AMO A M O

AA /a’’/ Á MÁS M AA S

B /B/ B, V, W BIEN B I E N

CH /č/ CH, X CHINO CH I N O

D /D/ D DEDO D E D O

E /e/ E PERA P E R A

EA /e’’/ É CAFÉ K A F EA

F /f/ F FOCA F O K A

G /G/ G, W, H HUESO G U E S O

I /i/ I LISO L I S O

IA /i’’/ Í TENÍA T E N IA A

J /x/ G, J JAMÓN J A M OA N

K /k/ C, K, Q QUESO K E S O

L /l/ L LAGO L A G O

M /m/ M MAMÁ M A M AA

N /n/ N EN E N

NY /ñ/ Ñ NIÑO N I NY O

8 Appendix II: Script Manuals. Dictionaries

These words

are mapped

as “NINYO”

These words

are mapped as

“MAWWS”

These words

are mapped as

“CAFEWW”

These words are

mapped as

“TENIWWA”

26

O /o/ O OJO O J O

OA /o’’/ Ó CAMIÓN K A M I OA N

P /p/ P PAVO P A B O

R /r/ R CARO K A R O

RR /R/ R RATÓN RR A T OA N

S /s/ S, (C, Z)* CASA K A S A

T /t/ T TOMA T O M A

U /u/ U, W PUNTO P U N T O

UA /u’’/ Ú CANCÚN K A N K U N

Y /ʎ/ LL, Y RAYO RR A Y O

0.18 Lexicon V2.2

Acoustic Models V2.2

The acoustic model V2.2 is also trained with SphinxTrain but with the new

mapping applied to the transcripts, the new dictionary and using the same phone list as

in the version V2.1.

Corpus statistics V2.2

As mentioned before, the word mapping in the version 2.2 changes and this

causes the histogram of the word transcripts of the corpus LDC2006S37 to become

more flat (figure 2.18). Moreover, in the 40 most used words of the transcripts there are

three pairs of words (EL - EWWL, SI – SIWW and QUE – QUEWW) that were

previously written in the same way and are now differentiated.

These words are

mapped as

“CAMIOWWN”

These words are

mapped as

“CANCUWWN”

27

0.19 Word histogram of corpus V2.2

28

Results V2.2

To evaluate this version, the same phone transcription as in version 2.1 is used,

but it is necessary to make a new word transcription to make it match with the mapping

of the output, or to make an unmapped output of the decoder. The solution was to

simply change the transcription.

Recognition Performance Words Phonemes

Number 6,060 26,995

Substitutions 750 (12.5%) 3,010 (11.5%)

Deletions 588 (9.8%) 4,443 (17%)

Insertions 75 (1.3%) 873 (3.5%)

Accuracy 4,653 (76.4%) 19,455 (67.8%)

0.20 Results summary V2.2

Figure 2.20 shows that this version of the ASR not only improves in Word Error

Rate but also improves slightly (0.2%) in Phoneme Error Rate. This is due to the new

mapping that has been made for the accented words.

29

1.6 Spanish Acoustic Models V3

Lexicon V3

This version was an experiment to see if using the phoneme describing an

accentuated word to also describe the vowel of the stressed syllabi [14] would be

effective, since the accents just add an extra stress on those vowels9.

Label Phoneme Letters Example
Phonetic

Transcription

A /a/ A AMO A M O

AA /a’’/, /a’/ Á, A MÁS, CASA M AA S,

K AA S A

B /B/ B, V, W BIEN B I E N

CH /č/ CH, X CHINO CH I N O

D /D/ D DEDO D E D O

E /e/ E PERA P E R A

EA /e’’/, /e’/ É, E CAFÉ,

DEDO

C A F EA,

D EA D O

F /f/ F FOCA F O K A

G /G/ G, W, H HUESO G U E S O

I /i/ I LISO L I S O

IA /i’’/, /i’/ Í, I TENÍA, IBA T E N IA A,

IA B A

J /x/ G, J JAMÓN J A M O N

K /k/ C, K, Q QUESO K E S O

L /l/ L LAGO L A G O

M /m/ M MAMÁ M A M AA

N /n/ N EN E N

9 Appendix II: Script Manuals. Dictionaries

These words

are mapped as

“MAWWS”

These words are

mapped as

“CAFEWW”

These words are

mapped as

“TENIWWA”

30

NY /ñ/ Ñ NIÑO N I NY O

O /o/ O OJO O J O

OA /o’’/, /o’/ Ó, O CAMIÓN,

ROTO

K A M I OA N,

RR OA T O

P /p/ P PAVO P A B O

R /r/ R CARO K A R O

RR /R/ R RATÓN RR A T O N

S /s/ S, (C, Z)* CASA K A S A

T /t/ T TOMA T O M A

U /u/ U, W PUNTO P U N T O

UA /u’’/, /u’/ Ú, U CANCÚN,

MUNDO

K A N K UA N,

M UA N D O

Y /ʎ/ LL, Y RAYO RR A Y O

0.21 Lexicon V3

Acoustic Models V3

To train this new model, the same corpus and phoneme lists as in the previous

models were used; the only changes were made in the dictionary, which now has new

rules to create the phoneme transcription.

Corpus statistics V3

The distribution of phonemes in the corpus with this new version of the

dictionary is much flatter (figure 2.22); the stressed vowels now have much more

relevance; and the phoneme S becomes the most used in the corpus, even more than any

vowel (in all the other versions was the fourth most used).

The phoneme histogram becoming flatter means that the phonemes used for

training are more distributed: there are more examples of each phoneme. However, if

the new distribution is not necessary or it is too difficult to differentiate between the

phonemes with stress and the ones without, the system will be less efficient.

These words are

mapped as

“CAMIOWWN”

These words are

mapped as

“CANCUWWN”

31

0.22 Phonemes histogram of corpus V3

32

Results V3

Version 3 has been evaluated in exactly the same way as version V2.2, since the

outputs of the system were in the same format. The test has been done using 6,095

words that were not used for the training data.

Recognition Performance Words Phonemes

Number 6,095 27,011

Substitutions 850 (14.2%) 4,228 (16.2%)

Deletions 740 (12.4%) 4,697 (18%)

Insertions 104 (1.7%) 987 (3.7%)

Accuracy 4,401 (71.7%) 17,099 (61.9%)

0.23 Results summary

Figure 2.23 shows that both the Word Error Rate and the Phoneme Error Rate

have been increased. These increased error rates come from the difficulty in

differentiating between the vowels without stress, with stress and accented: in creating a

state between the accented and not accented, the difference between them becomes less

and therefore harder to differentiate, and this leads to increased error rates.

33

1.7 Final decision of Acoustic Model
Three versions of Acoustic models have been detailed: the first was the simplest,

using the main phonemes of Spanish from Spain and Mexico without taking into

account the stresses that occur in the different Spanish words. The second version took

into account the stressed vowels, but only in the words with extra stress (accented), and

eliminated the phonemes that only occur in Spain’s Spanish. The third version made use

of phonemes to describe the accented vowels in all the words, giving the situation inside

the word of the stressed syllabi.

 Word Accuracy Phoneme Accuracy

V1 74% 64.8%

V2.1 71.7% 67.6%

V2.2 76.4% 67.8%

V3 71.7% 61.9%

0.24 Results summary

The accents in Spanish have information; they can change the meaning of a

word, and since this ASR (Automatic Speech Recognition) is designed to make a

speech-to-speech translator, the meaning of each word is needed in order to make a

proper translation. For example, the word “Cómo” is translated as “How” and the word

“Como” is translated as “I eat.”

It would appear that the best version to use for the Spanish to English translator

is Version 2.2, not only for its better accuracy in words and phonemes (figure 2.24) but

also because it makes a mapping of the accents and gives an output in which the words

with accents can be found.

34

2. Statistical Machine Translator
Statistical machine translation (SMT) is a machine translator model in which

translations are generated on the basis of statistical models whose parameters are

derived from the analysis of bilingual text corpora. The statistical approach contrasts

with the rule-based approaches to machine translation as well as with example-based

machine translation.

The first theory of statistical machine translation, including the idea of applying

Claude Shannon’s information theory, was introduced by Warren Weaver in 1949 [15],.

Statistical machine translation was re-introduced in the late 1980s by researchers

at IBM’s Thomas J. Watson Research Center [16] with the Candide project. IBM's

original approach maps individual words to words and allows for deletion and insertion

of words.

More recently, various researchers have demonstrated better translation quality

with the use of phrase translation. Phrase-based Machine Translators can be traced back

to Franz Josef Och's alignment template model [17], which can be re-framed as a phrase

translation system.

Daniel Marcu introduced a joint-probability model for phrase translation [18]. At

this time, however, most competitive statistical machine translation systems use phrase

translation.

Of course, there are other ways to do machine translation. Most commercial

systems use transfer rules and a rich translation lexicon. Until recently, machine

translation research has been focused on knowledge-based systems that use an

interlingua representation as an intermediate step between input and output.

There are also other ways to do statistical machine translation. There has been

some effort toward building syntax-based models that either use real syntax trees

generated by syntactic parsers or tree transfer methods motivated by syntactic

reordering patterns.

35

2.1 Moses

Model

Figure 3.1 illustrates the process of phrase-based translation. The input is

segmented into a number of sentences. Each phrase is translated into an English phrase,

and English phrases in the output may be reordered.

John por supuesto se divierte con el juego

Of course John has fun with the game

2.1 Process of phrase-based translation

The phrase translation model is based on the noisy channel model [19]. With the

Bayes rule, the translation probability for translating a foreign sentence f into

English e can be formulated as:

)()/(maxarg)/(maxarg epefpfep ee =

2.2 Translation probabilities (I)

According to the model used in Moses, the best English output sentence e given

a foreign input sentence f is:

)()()/(maxarg)/(maxarg elenght
lmeebest epefpfepe ω==

2.3 Translation probabilities (II)

Where)/(efp is split into:

),()/()/(111 iiii
I
i

II endstartdefefp ϕ=Φ=

2.4 Translation probabilities (III)

36

Word Alignment

Most recently published methods on extracting a phrase translation table which

maps foreign phrases to English phrases from a parallel corpus start with a word

alignment.

At this point, the most common tool to establish a word alignment is the toolkit

GIZA++. This toolkit is an implementation of the original IBM Models that started

statistical machine translation research. However, these models have some serious

drawbacks. Most importantly, they only allow at most one English word to be aligned

with each foreign word. To resolve this, some transformations are applied.

First, the parallel corpus is aligned bidirectionally, for example, Spanish to

English and English to Spanish. This generates two word alignments that have to be

reconciled. Intersecting the two alignments, we get a high-precision alignment of high-

confidence alignment points. And taking the union of the two alignments, we get a

high-recall alignment with additional alignment points. See figure 3.5 [19] for an

illustration.

2.5 Phrase translation tables

Jo
rg

e

sa
ca

alpa
se

ar

Jorge

a pe
rro

takes

the

for

dog

a

walk

Jo
rg

e

sa
ca

alpa
se

ar

Jorge

a pe
rro

takes

the

for

dog

a

walk

Jo
rg

e

sa
ca

alpa
se

ar

Jorge

a pe
rro

takes

the

for

dog

a

walk

37

Decoder

The decoder was originally developed for the phrase model proposed by Marcu

and Wong [18].

The decoder implements a beam search and is roughly similar to work by

Tillmann [20] and Och [21]. In fact, by reframing Och's alignment template model as a

phrase translation model, the decoder is also suitable for his model, as well as other

recently proposed phrase models.

The concepts of translation options (pruning, beam search and future

probability estimates) and n-best list generation are defined below.

Translation options

Given an input string of words, a number of phrase translations could be applied.

Such applicable phrase translation is a translation option. This is illustrated in figure 3.6

[19], where a number of phrase translations for the Spanish input sentence “María no

daba uma bofetada a la bruja verde” are given.

2.6 Example of phrase translation

These translation options are collected before any decoding takes place. This

allows a quicker lookup than consulting the whole phrase translation table during

decoding. The translation options are stored with the following information:

• first foreign word covered

• last foreign word covered

• English phrase translation

• phrase translation probability.

Note that only the translation options that can be applied to a given input text are

necessary for decoding. Since the entire phrase translation table may be too large to fit

38

into memory, the Moses decoder restricts itself to these translation options in order to

overcome such computational concerns.

Core Algorithm

Moses’ phrase-based decoder employs a beam search algorithm, similar to the

one used by Jelinek [22] for speech recognition. The English output sentence is

generated left to right in form of hypotheses.

This process is illustrated in figure 3.7 [19]. The search begins in an initial state

where no foreign input words are translated and no English output words have been

generated. New states are created by extending the English output with a phrasal

translation that covers some of the foreign input words not yet translated.

2.7 Beam search

The current probability of the new state is the probability of the original state

multiplied by the translation, distortion and language model costs of the added phrasal

translation.

Each search hypothesis is represented by:

• a back link to the best previous state

• the foreign words covered so far

• the last two English words generated

39

• the end of the last foreign phrase covered

• the last added English phrase

• the probability so far

• an estimate of the future probability

• final states in the search are hypotheses that cover all foreign words. Among

these, the hypothesis with the highest probability is selected as best translation.

This algorithm can be used for exhaustively searching through all possible

translations.

Recombining hypothesis

 Recombining hypothesis is a risk-free way to reduce the search space. Two

hypotheses can be recombined if they agree in:

• the foreign words covered so far

• the last two English words generated

• the end of the last foreign phrase covered.

40

If there are two paths that lead to two hypotheses that agree in these properties,

the decoder keeps only the hypothesis with higher probability, for example, the one with

the highest probability so far. The other hypothesis cannot be part of the path to the best

translation, and it can be safely discarded.

Beam Search

 While the recombination of hypotheses as described above reduces the size of

the search space, this is insufficient for all but the shortest sentences. Now we must

estimate how many hypotheses are generated during an exhaustive search. Considering

the possible values for the properties of unique hypotheses, an upper bound can be

estimated for the number of states by N ~ 2nf |Ve|2, where nf is the number of foreign

words, and |Ve| the size of the English vocabulary. In practice, the number of possible

English words for the last two words generated is much smaller than |Ve|2. The main

concern is the exponential explosion from the 2nf possible configurations of foreign

words covered by a hypothesis.

In the Moses beam search the hypotheses that cover the same number of foreign

words are compared and the inferior hypotheses are pruned out. If there is a three-word

foreign phrase that easily translates into a common English phrase, this may carry a

much higher probability than translating three words separately into uncommon English

words. The search will prefer to start the sentence with the easy part and discount

alternatives too early.

So the Moses measure for pruning out hypotheses in our beam search not only

includes the probability so far, but also an estimate of the future probability. This future

probability estimation should favour hypotheses that already covered difficult parts of

the sentence and have only easy parts left and discount hypotheses that covered the easy

parts first.

Given the probability so far and the future probability estimation, we can prune

out hypotheses that fall outside the beam. The beam size can be defined by threshold

and histogram pruning. A relative threshold cuts out a hypothesis with a probability less

than a factor α of the best hypotheses (for example, α = 0.001). Histogram pruning

keeps a certain number n of hypotheses (for example, n = 100).

41

The figure 3.8 [18], [19] gives pseudo-code for the algorithm used for the beam

search. For each number of foreign words covered, a hypothesis stack is created. The

initial hypothesis is placed in the stack for hypotheses with no foreign words covered.

Starting with this hypothesis, new hypotheses are generated by committing to phrasal

translations that covered previously unused foreign words. Each derived hypothesis is

placed in a stack based on the number of foreign words it covers.

 initialize hypothesisStack[0 .. nf];
 create initial hypothesis hyp_init;
 add to stack hypothesisStack[0];
 for i=0 to nf-1:
 for each hyp in hypothesisStack[i]:
 for each new_hyp that can be derived from hyp:
 nf[new_hyp] = number of foreign words covered by new_hyp;
 add new_hyp to hypothesisStack[nf[new_hyp]];
 prune hypothesisStack[nf[new_hyp]];
 find best hypothesis best_hyp in hypothesisStack[nf];
 output best path that leads to best_hyp;

2.8 Beam search pseudo-code algorithm

The Moses beam search proceeds through these hypothesis stacks, going through

each hypothesis in the stack, deriving new hypotheses for this hypothesis and placing

them into the appropriate stack (see figure 3.9 [19] for an illustration). After a new

hypothesis is placed into a stack, the stack may have to be pruned by threshold or

histogram pruning if it has become too large. In the end, the best hypothesis of the ones

that cover all foreign words is the final state of the best translation. We can read off the

English words of the translation by following the back links in each hypothesis.

2.9 Hypothesis stacks

42

Future Probability Estimation

While it is possible to calculate the cheapest possible probability cost for each

hypothesis, this is computationally so expensive that it would defeat the purpose of the

beam search.

The future probability is tied to the foreign words that are not yet translated. In

the framework of the phrase-based model, not only may single words be translated

individually, but also consecutive sequences of words as a phrase.

Each such translation operation carries a translation probability, language model

costs, and a distortion cost. For the future cost estimation, only the translation and the

language model costs are considered. The language model probability is usually

calculated by a trigram language model. However, the preceding English words for a

translation operation are not known. Therefore, the decoder approximates this

probability by computing the language model score for the generated English words

alone. That means that if only one English word is generated, it takes its unigram

probability. If two words are generated, the decoder takes the unigram probability of

the first word and the bigram probability of the second word, and so on.

For a sequence of foreign words, multiple overlapping translation options exist.

The way to translate the sequence of foreign words with the highest probability includes

the translation options with the highest probability. The cost for a path through

translation options is approximated by the product of the cost for each option.

To illustrate this concept, refer to figure 3.10 [19]. The translation options cover

different consecutive foreign words and carry an estimated cost cij. The cost of the

shaded path through the sequence of translation options is c01c12c25 = 1.9578 * 10-7.

2.10 Path cost estimation

43

The path with the highest probability for a sequence of foreign words can be

quickly computed with dynamic programming. Also note that if the foreign words not

covered so far are two (or more) disconnected sequences of foreign words, the

combined cost is simply the product of the costs for each contiguous sequence. Since

there are only
2

)1(+nn contiguous sequences for n words, the future probability

estimates for these sequences can be easily precomputed and cached for each input

sentence. Looking up the future probabilities for a hypothesis can then be done very

quickly by table lookup. This has considerable speed advantages over computing future

cost on the fly.

NBest Lists Generation

Usually, the decoder is expected to give us the best translation for a given input

according to the model. But for some applications, we might also be interested in the

second best translation, third best translation, and so on.

A common method in speech recognition, which has also emerged in machine

translation, is to first use a machine translation system such as the Moses decoder as a

base model to generate a set of candidate translations for each input sentence. Then,

additional features are used to rescore these translations.

An n-best list is one way to represent multiple candidate translations. Such a set

of possible translations can also be represented by word graphs [23] or forest structures

over parse trees [24]. These alternative data structures allow for a more compact

representation of a much larger set of candidates. However, it is much harder to detect

and score global properties over such data structures.

44

Additional Arcs in the Search Graph

Recall the process of state expansions. The generated hypotheses and the

expansions that link them form a graph. Paths branch out when there are multiple

translation options for a hypothesis, from which multiple new hypotheses can be

derived. Paths join when hypotheses are recombined.

Usually, when the decoder recombines hypotheses, it simply discards the worst

hypothesis, since it cannot possibly be part of the best path through the search graph (in

other words, part of the best translation).

But since now the second best translation is also needed, information about that

hypothesis cannot simply be discarded. If it is discarded, the search graph would only

contain one path for each hypothesis in the last hypothesis stack.

If the information on the multiple ways to reach a hypothesis is stored, the

number of possible paths also multiplies along the path when the decoder traverses

backward through the graph.

In order to keep the information about merging paths, a record of such merges is

kept, containing:

• identifier of the previous hypothesis

• identifier of the lower-cost hypothesis

• cost from the previous to higher-cost hypothesis.

Figure 3.11 [19] gives an example for the generation of such an arc: in this case,

hypotheses 2 and 4 are equivalent in respect to the heuristic search, as detailed above.

Hence, hypothesis 4 is deleted. But since we want keep the information about the path

leading from hypothesis 3 to 2, it is stored a record of this arc. The arc also contains the

cost added from hypothesis 3 to 4. Note that the probability from hypothesis 1 to

hypothesis 2 does not have to be stored, since it can be recomputed from the hypothesis

data structures.

45

2.11 Arcs in Search Graph

Mining the Search Graph for an n‐Best List

The graph of the hypothesis space can also be viewed as a probabilistic finite-

state automaton. The hypotheses are states, and the records of back-links and the

additionally stored arcs are state transitions. The added probability scores when

expanding a hypothesis are the costs of the state transitions.

Finding the n-best path in such a probabilistic finite state automaton is a well-

studied problem. In this implementation, the decoder stores the information about

hypotheses, hypothesis transitions, and additional arcs in a file that can be processed by

the finite state toolkit Carmel, which is used to mine the n-best lists. This toolkit uses

the k_ shortest paths algorithm by Eppstein [25].

46

2.2 Parallel text mining
To create a Statistical Machine Translator, it is necessary to get parallel text in

the languages in which you want to make the SMT work. The speech-to-speech

translator performed is English to Spanish and Spanish to English in a medical domain,

and the parallel text has been taken from a medical encyclopedia, a dictionary with

medical terms, the transcripts of the European Parliament (Europarl) and from some

books of conversational Spanish for English speakers.

It has been used for a total of 551,789 lines of parallel text (almost 10,000,000

words per language), including all the medical terms and the conversational sentences.

From the transcripts of the European Parliament, only a small sample has been used.

To get the text from the Medline encyclopedia [7], two scripts have been used10.

Those scripts were opening the different articles of the webpage, and copying them in a

txt file of each language. Once all the articles were copied in txt files, the articles that

were not translated sentences by sentence were deleted: to find these articles and delete

them, another script was used which counts the number of sentences in English and the

number of sentences in Spanish, and if the number of sentences is the same the script

assumes that the articles are translated sentence by sentence. Before creating this script

we found out that in the encyclopedia the articles that were not translated sentence by

sentence had a different number of sentences (to check this we made a random

confirmation that this was the case in 10% of the articles, and 100% of the random test

cases followed this pattern).

The texts from the Europarl, since it was text prepared to work with Moses to

create a SMT (Statistical Machine Translator), were already aligned.

And to get the text from Spanish learning e-books [8], [9], [10] another script

was used11: this script operated similarly to the one used in Medline, by obtaining the

text from the web pages and making a txt file with the sentences in each language.

With all this parallel text, the SMT (Statistical Machine Translator) can be made

with Moses.

10 Appendix II: Script Manuals. Parallel text

47

2.3 Statistical Machine Translator models
To perform a two-way speech-to-speech translator, two Statistical Machine

Translators are needed: one that translates from English to Spanish and another that

translates from Spanish to English.

Spanish to English

The input of the Spanish to English SMT model comes from the Spanish ASR,

and, as explained in the Spanish ASR V2.2, the output of the ASR is mapped in a

specific way. So to build the SMT, a mapped Language Model and a mapped Phrase

Table have been used.

The Language Model is a 5-gram built with SRILM, with corresponding labels:

• Accents changed for the combination of the vowel with “WW”

• And the letter “Ñ” changed to “NY.”

The Phrase Tables have been built with the Moses training script11, giving the

parallel text and the language model as an input. The Spanish part of the parallel text

has the same labels as in the Language Model, and the English part was written in plain

English since the Text to Speech system reads plain English without any special

mapping.

SMTes2en
Spanish mapped1 text English plain text

SMTes2en
Spanish mapped1 text English plain text

2.12 Layout Spanish to English SMT

11 Appendix IV: Moses manual

48

English to Spanish

The input of the English to Spanish SMT has to be English written

straightforward. However, the output (Spanish) has to be translated in a way that the

Text to Speech system understands it.

The Language Model is also a 5-gram made with SRILM, but now with plain

English words without any mapping.

Nevertheless, the Phrase Tables, which are also created with the same Moses

script as in the Spanish to English model, have different labels in the Spanish side; these

labels are defined by the Festival TTS (Text To Speech):

• The accents are configured as “vowel.” For example, the accented vowel

“Á” is mapped as an “A.”

• And the letter “Ñ” is tagged as “NY.”

Once the Phrase Tables and the Language Models are created, the Moses

decoder is used to make text to text translations. This decoder will be used in the whole

system to make the speech-to-speech translations.

SMTen2es
English plain text Spanish mapped2 text

SMTen2es
English plain text Spanish mapped2 text

2.13 Layout English to Spanish SMT

49

3. Text To Speech
Speech synthesis is the artificial production of human speech. A computer

system used for this purpose is called a speech synthesizer, and can be implemented in

software or hardware. A TTS (Text to Speech) system converts normal language text

into speech [26].

Synthesized speech can be created by concatenating pieces of recorded speech

that are stored in a database. Systems differ in the size of the stored speech units; a

system that stores phones or diphones provides the largest output range, but may lack

clarity. For specific usage domains, the storage of entire words or sentences allows for

high-quality output. Alternatively, a synthesizer can incorporate a model of the vocal

tract and other human voice characteristics to create a completely "synthetic" voice

output [27].

The quality of a speech synthesizer is judged by its similarity to the human voice

and by its ability to be understood. An intelligible text-to-speech program allows people

with visual impairments or reading disabilities to listen to written works on a home

computer. Since the early 1980s, many computer operating systems have included

speech synthesizers.

Phrasing

Intonation

Duration

Linguistic
Analysis

Text
Analysis

Wave form
GenerationUtterance

Composed
of Words

Utterance
Composed
of Phonemes

SpeechText

Phrasing

Intonation

Duration

Linguistic
Analysis

Text
Analysis

Wave form
GenerationUtterance

Composed
of Words

Utterance
Composed
of Phonemes

SpeechText

Phrasing

Intonation

Duration

Linguistic
Analysis

Phrasing

Intonation

Duration

Linguistic
Analysis

Text
Analysis

Wave form
GenerationUtterance

Composed
of Words

Utterance
Composed
of Phonemes

SpeechText

3.1 Text To Speech synthesizer layout

A text-to-speech system is composed of two parts, a front-end and a back-end.

The front-end has two major tasks. First, it converts raw text containing symbols like

numbers and abbreviations into the equivalent of written-out words. This process is

often called text normalization, pre-processing, or tokenization. The front-end then

50

assigns phonetic transcriptions to each word and divides and marks the text into

prosodic units, like phrases, clauses and sentences. The process of assigning phonetic

transcriptions to words is called text-to-phoneme or grapheme-to-phoneme conversion

[28]. Phonetic transcriptions and prosody information together make up the symbolic

linguistic representation that is output by the front-end. The back-end—often referred to

as the synthesizer—then converts the symbolic linguistic representation into sound.

51

3.1 Text To Speech tools

Spanish Text To Speech

Festvox lpcu, the Spanish package of Festival, was used for the Spanish Text To

Speech system.

Festival is an open source speech synthesis system for multi-purpose language.

It was originally developed by the Research Center of Language Technologies at the

University of Edinburgh, although Carnegie Mellon University and other schools have

made substantial contributions to the project.

The project, which is programmed in C++, includes the complete documentation

to develop speech synthesis and is ideal for development and research of speech

synthesis techniques.

The festival project is multilingual (currently supports English--British and

American--and Castilian), although English is the most advanced. Furthermore, some

groups have developed tools that allow other languages in the project.

The tools and documentation for the utilization of new voices in the system are

available in the FestVox project from the CMU (Carnegie Mellon University).

FestVox project

The goal of FestVox is to make the construction of new synthetic voices more

systematic and better documented, making it possible for anyone to build new voices.

Project Festvox is a toolkit for building synthetic voices for the Festival’s Text

To Speech synthesizer. This includes a step-by-step tutorial with examples.

English Text To Speech

On the other hand, for the English Text To Speech conversion, a Cepstral system

was used.

In contrast with previous technologies, which are either very large systems or

offer lower quality due to outdated technology, Cepstral’s TTS engines and voices can

be deployed on mobile devices or in multiple instances on server platforms, making it

the easiest to use and most versatile product available today.

52

Cepstral has created new techniques for general-purpose voices and "domain

voices" which allow the spoken output to be tailored to an application. This is combined

in a single software application, resulting in extremely versatile, high-quality voices.

53

4. Putting everything together
The final two-way speech-to-speech translation system is based in USC’s

(University of Southern California) SpeechLinks solution [29]. The SpeechLinks

translation system was developed in the SAIL (Signal Analysis and Interpretation

Laboratory) laboratory and translates from Farsi (the most widely spoken Persian

language) to English and vice versa.

SpeechLinks receives an input speech, then the speech is converted into text by

the ASR (Automatic Speech Recognizer), then the text is translated by the MT

(Machine Translator) and synthesized with the target’s language TTS.

The English ASR system works on a vocabulary of over 22,000 words, and it

gives high-quality results functioning in real time. This unit uses models of human

speech trained by example recordings and statistical knowledge.

The core of the SpeechLinks system is the DM (Dialog Manager), which

redirects the messages to enable the internal communication of the system. It gets the

text from the ASR system, displays it in the GUI (Graphical User Interface) and sends it

to the MT, and then it receives the translated text from the MT and sends it to the TTS

synthesizer, which gives an output.

ASR
English

ASR
Farsi

TTS
Farsi

TTS
English

GUI:
prompts,

confirmations,
ASR switch

Dialog
Manager

SMT
English to Farsi
Farsi to English

MT
English to Farsi
Farsi to English

ASR
English

ASR
English

ASR
Farsi
ASR
Farsi

TTS
Farsi
TTS
Farsi

TTS
English

TTS
English

GUI:
prompts,

confirmations,
ASR switch

Dialog
Manager

GUI:
prompts,

confirmations,
ASR switch

Dialog
Manager

GUI:
prompts,

confirmations,
ASR switch

Dialog
Manager

SMT
English to Farsi
Farsi to English

SMT
English to Farsi
Farsi to English

MT
English to Farsi
Farsi to English

MT
English to Farsi
Farsi to English

4.1 Layout of SpeechLinks [1]

54

Some changes have to be applied to the system to make it work with Spanish

instead of Farsi:

First, replace the Farsi ASR with the Spanish ASR V2.2 developed in this

project.

Second, use Spanish to English two-way Machine Translator.

Third, instead of the Farsi Text To Speech synthesizers, put the Spanish TTS

developed by Festival.

And last, make some modifications over the GUI to write the screen messages

with Latin alphabet and also make some changes in the way that the Dialog Manger tags

the messages.

If all those changes are made and the English ASR and TTS units are left in the

program, the result is a two-way speech-to-speech translator (in this case working on a

medical domain).

Once the two-way speech-to-speech translator is done, these steps must be

followed in order for it to function:

1. Run the Spanish and English ASR systems.

2. Run the English to Spanish and the Spanish to English MT.

3. Run the system.

4.2 Speech-to-Speech system starts

55

Once the system is fully loaded:

To translate from English to Spanish, click on the English (figure 5.3) button,

speak over the microphone and click again on the English button, then if the hypothesis

that the system gives in the middle of the screen is correct, click over it and the system

will automatically translate it.

To translate from Spanish to English, follow the same process, clicking on the

Spanish button rather than the English one.

4.3 English and Spanish buttons

4.4 Speech-to-speech translation system running

56

5. Conclusions
During this project a two-way speech-to-speech translator system that translated

English and Farsi was converted to one that works in Spanish and English.

To perform this adaptation some new units have been designed (Spanish

Automatic Speech Recognizer, Spanish-English and English-Spanish Machine

Translator and a Spanish Text To Speech synthesizer have been used). Even all these

units work fairly well, they cannot be considered totally robust applications.

In order to make them more robust, the ASR should be trained with a bigger

corpus, and it is recommendable to use a corpus more based in a medical domain.

Moreover, the Machine Translator also should be trained with more parallel text

provided from medical conversations. To text could be obtained from medical TV

shows’ subtitles (like House, Grey’s Anatomy, etc.).

With these two new trainings, the new system would be notably more robust.

57

6. References
[1] Ettelaie, E., Gandhe, S., Georgiou, P., Knight, K., Marcu, D., Narayanan, S. et

al. (2005). Transonics: A Practical Speech-to-Speech Translator for English-

Farsi Medical Dialogues. University of Southern California, Los Angeles, CA.

[2] Huang, X., Acreo, A. & Hon H.W. (2001). Spoken Language Processing: A

guide to theory, algorithm and system development. Prentice Hall PTR, New

Jersey.

[3] Stolcke, A. (2002). SRILM – An extensible language modeling toolkit. Speech

Technology and Research Laboratory SRI International, Menlo Park, CA.

[4] Lee, K.F., Hon, H.W. & Reddy, R. (1990). An overview of the SPHINX speech

recognition system. Morgan Kaufmann Publishers Inc. San Francisco, CA.

[5] International Computer Science Institute (n.d.). Sclite manual.

http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

[6] Linguistic Data Consortium (2006). West Point Heroico Spanish Speech.

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006S37

[7] National Library of Medicine (n.d.). MedlinePlus Health Information from the

National Library of Medicine. http://medlineplus.gov/

[8] Flash Cards Exchange (n.d.). Conversational and Medical Spanish.

http://www.flashcardexchange.com/tag/Spanish

[9] 1, 2, 3 TeachMe (n.d.). Conversational Spanish.

http://www.123teachme.com/learn_spanish/conversational_spanish

[10] Wikilearning: comunidades libres para aprender (n.d.). Libro de frases Español.

http://www.wikilearning.com/monografia/libro_de_frases_espanol_english_ingl

es/2818

[11] Navarro Tomás, T. (1918). Manual de la pronunciación española. Consejo

Superior de Investigaciones científicas. Spain.

[12] Quilis, A. (1987). Fonetica Acustica De La Lengua Española. Editorial Gredos,

S.A., Spain.

[13] Enriquez, E., Casado, C. & Santos, A. (1989). La percepción del acento en

español. Lingüística española actual. Spain.

[14] Navarro Tomás, T. (1944). Manual de la entonación española. Hispanic

Institute, NY. Guadarrama, Spain.

58

[15] Weaver, W. (1955). “Translation” (1949). In: Machine Translation of

Languages, MIT Press, Cambridge, MA.

[16] Brown, P., Della Pietra, S., Della Pietra, V., & Mercer, R. (1993). “The

mathematics of statistical machine translation: parameter

estimation.” Computational Linguistics.

[17] Och, F.J. & Ney, H. (2000). Improved Statistical Alignment Models. In

Proceedings of the 38th Annual Meeting of the Association for Computational

Linguistics

[18] Marcu, D. & Wong, W. (2002). A Phrase-Based, Joint Probability Model for

Statistical Machine Translation. In Proceedings of the 2002 Conference on

Empirical Methods in Natural Language Processing (EMNLP).

[19] Koehn, P. (n.d). Background on Statistical Machine Translator.

http://www.statmt.org/moses/?n=Moses.Background.

[20] Tillmann, C (2001). Word Re-ordering and Dynamic Programming based

Search Algorithm for statistical Machine Translation. PhD Thesis, RWTH

Aachen, Germany.

[21] Och, F.J. (2002). Statistical Machine Translation: From Single-Word Models to

Alignment Templates. Ph.D. thesis, Lehrstuhl für Informatik 6, Computer

Science Department, RWTH Aachen University, Germany.

[22] Jelinek, F. (1997). Statistical methods for speech recognition. MIT Press

Cambridge, MA, USA

[23] Ueffing, N., Och, F.J., Ney, H. (2002). Generation of Word Graphs in

Statistical Machine Translation. In Proc. of the Conf. on Empirical Methods for

Natural Language Processing (EMNLP). Philadelphia, PA.

[24] Langkilde-Geary I. (2002). An Empirical Verification of Coverage and

Correctness for a General-Purpose Sentence Generator. In Proceedings of

INLG2002, New York, NY.

[25] Eppstein, D. (1997). Finding the k Shortest Paths. University of California

Irvine, California.

[26] Allen, J., Hunnicutt, M.S. & Klatt, D. (1987). From Text to Speech: The MITalk

system. Cambridge University Press. Cambridge, MA.

[27] Rubin, P., Baer, T., & Mermelstein, P. (1981). An articulatory synthesizer for

perceptual research. Journal of the Acoustical Society of America. Melville,

NY.

59

[28] Van Santen, J.P.H., Sproat, R., Olive, J., & Hirschberg, J. (1997). Progress in

Speech Synthesis. Springer-Verlag New York, Inc., New York, NY.

[29] Signal Analysis and Interpretation Laboratory, USC (n.d.). SpeechLinks

Solution. http://sail.usc.edu/transonics/s2s.php#speechlinks_solutions.

[30] Department of Electrical & Computer Engineering, CMU (2008). Learning to

use the CMU SPHINX Automatic Speech Recognition system.

www.speech.cs.cmu.edu/sphinx/tutorial.html

[31] Statistical Machine Translation at the University of Edinburgh (n.d.) Moses

Installation and Training Run-Through. www.statmt.org/moses_steps.html

60

Appendix I: Files outline

• Perl scripts

a. Dictionaries

i. add_tonic_syllabi.pl

ii. create_spanish_dictV1.pl

iii. create_spanish_dictV2_1.pl

iv. create_spanish_dictV2_2.pl

v. create_spanish_dictV3.pl

vi. make_phoneList.pl

vii. sort_and_num_dic_entries.pl

b. Format text

i. create_phone_transcript.pl

ii. create_phone_transcript_aligned.pl

iii. make_plaintext.pl

iv. new_fileids_transcription_and_plaintext.pl

v. renaming.pl

vi. statistics_of_text.pl

vii. transcripts_and_fileids_heroico_answ.pl

viii. transcripts_and_fileids_heroico_record.pl

ix. transcripts_and_fileids_usma.pl

c. parallel text

i. compare_lines.pl

ii. get_med_dic.pl

61

iii. get_medline.pl

iv. get_teachme.pl

v. medline_parallel_eng.pl

vi. medline_parallel_spa.pl

• Acoustic Models

a. Spanish_V1

b. Spanish_V2_1

c. Spanish_V2_2

d. Spanish_V3

e. feat

f. wav

• Statistical Machine Translator

a. english2spanish

b. spanish2english

• Text to Speech

a. Spanish

• Definitive Models

a. asr

b. opt

c. tts

62

Appendix II: Script manuals

Dictionaries

create_spanish_dictV*.pl

SYNOPSIS

perl create_spanish_dictV*.pl [OPTION1] [FILE] [OPTION2] [FILE]

DESCRIPTION

Creates a phonetic dictionary from a given regular, non-formatted text

OPTION1:

-ft /home/usr/folder/ with this option the input comes from a folder with

different text files (it will read all the text files from the folder)

-t /home/usr/folder/textfile.txt the input data comes from the given text file

-help prints the help option in the standard output

OPTION2:

(default) prints the dictionary in the standard output

-ad /home/usr/folder/dictionary.dic the script actualizes the existing dictionary in

dictionary.dic, adding the new words to it.

-nd /home/usr/folder/dictionary.dic to create a new dictionary in dictionary.dic

add_tonic_syllabi.pl

SYNOPSIS

perl add_tonic_syllabi.pl [FILE]

DESCRIPTION

63

This script complements the version 3 of the dictionaries adding the tonic

phoneme in the accented words, the input file has to be an existing dictionary created

with the version 3 and the output dictionary is given through the standard output.

make_phoneList.pl

SYNOPSIS

perl make_phoneList.pl [FILE]

DESCRIPTION

From a given dictionary this script creates a phoneme list, and it is printed in the

standard output.

sort_and_num_dic_entries.pl

SYNOPSIS

perl sort_and_num_dic_entries.pl [FILE]

DESCRIPTION

This script gets a phonetic dictionary as an input and it gives as an output an

alphabetically sorted and with the repetition number (words with more than one

pronunciation).

Format text

create_phone_transcript.pl

SYNOPSIS

perl create_phone_transcripts.pl [FILE]

DESCRIPTION

This script converts a regular transcript to a phonetic transcript, it uses the

dictionary V1 and the Mexican pronunciation.

create_phone_transcript_aligned.pl

SYNOPSIS

64

 perl create_phone_transcript_aligned.pl [FILE1] [FILE2] [FILE3]

DESCRIPTION

From a given aligned transcript, and a dictionary it converts the transcript in a

phonetic transcript with the correct pronunciations. The input file1 has to be the aligned

transcript, the file2 is for the dictionary and the file 3 has to be a list of the ids from the

transcript.

make_plaintext.pl

SYNOPSIS

perl make_plaintext.pl [FILE1]

DESCRIPTION

This script gets a transcript as an input, and gives a text without the IDs (only

with the language text) as a output.

new_fileids_transcription_and_plaintext.pl

SYNOPSIS

65

perl new_fileids_transcription_and_plaintext.pl [FILE1] [DIR_OUT] [FILE2]

[DATABASE]

DESCRIPTION

This script get from all the txt files that are in a folder tree, reads them, and then

gives 3 files as an output in the given directory. The 3 output files are: a transcript with

the needed tags and IDs, a list with all the directions of the IDs, and a file with only the

language text.

File1 has to be user name

DIR_OUT is the directory where you want the outputs

FILE2 is for the root name of the outputs

Database is to put the root directory of the tree where you want to look for txt

files.

renaming.perl

SYNOPSIS

perl renaming.perl [FILE1]

DESCRIPTION

This script takes a regular transcript and changes the regular IDs for numerical

ones; it is useful to evaluate an acoustic model.

statistics_of_text.pl

SYNOPSIS

perl statistics_of_text.pl [FILE1]

DESCRIPTION

This script counts the words of a text and gives as an output (by the standard

output) the repetitions of each word.

transcripts_and_fileids_*.pl

SYNOPSIS

66

perl transcripts_and_fileids_*.pl [FILE1] [DATABASE]

DESCRIPTION

This script gets the named corpus, and transcripts and creates the transcript with

the format needed for SphinxTrain, and then an IDs list and all the transcripts with just

plain text.

Parallel text

get_medline.pl

SYNOPSIS

perl get_medline.pl [FOLDER1] [FOLDER2] [FILE]

DESCRIPTION

This script gets the text from all the articles in the medline encyclopedia, making

a file from each of them in the corresponding folder. Folder1 is for the English articles,

Folder2 for the Spanish and the file is for an error report.

Medline_parallel_*.pl

SYNOPSIS

perl Medline_parallel_*.pl [FOLDER] [FILE1] [FILE2]

DESCRIPTION

This script gets from the folder all the English or Spanish (depending on with

script are you using) articles gotten from the Medline encyclopedia and cleans them

from the html programming text, the definitive output files are found in the same folder

as file2. File1 is just an state between the clean text and the one with all the

programming text.

compare_lines.pl

SYNOPSIS

67

perl compare_lines.pl [FOLDER1] [FOLDER2] [FOLDER3]

DESCRIPTION

This script counts the number of lines on each article of the folder1 and

compares them with the number of lines of the same article of the folder2. If the number

of lines matches it creates two folders inside the folder3, one with the matching Spanish

articles and another one with the English articles. If they do not match, then it makes

two folders with the articles that did not match.

get_med_dic.pl

SYNOPSIS

perl get_med_dic.pl [FILE1] [FILE2] [FILE3]

DESCRIPTION

This script gets all the words from the medical dictionary that can be found in

http://users.ugent.be/ and writes in file2 the English word and in file3 the Spanish

translation; file1 is a report of errors. This script maintains the parallelism between both

languages.

get_teachme.pl

SYNOPSIS

perl get_teachme.pl [FILE1] [FILE2] [FILE3]

DESCRIPTION

This script gets all the conversational sentences that can be found in

www.123teachme.com and writes in file2 the English sentence and in file3 the Spanish

translation; file1 is a report of errors. This script maintains the parallelism between both

languages.

68

Appendix III: Sphinx tutorial

This tutorial has been performed at the Carnegie Mellon University [30]

LEARNING TO USE THE CMU SPHINX AUTOMATIC SPEECH

RECOGNITION SYSTEM

Introduction

In this tutorial, you will learn to handle a complete state-of-the-art HMM-based

speech recognition system. The system you will use is the SPHINX system, designed at

Carnegie Mellon University. SPHINX is one of the best and most versatile recognition

systems in the world today.

An HMM-based system, like all other speech recognition systems, functions by

first learning the characteristics (or parameters) of a set of sound units, and then using

what it has learned about the units to find the most probable sequence of sound units for

a given speech signal. The process of learning about the sound units is called training.

The process of using the knowledge acquired to deduce the most probable sequence of

units in a given signal is called decoding, or simply recognition.

Accordingly, you will need those components of the SPHINX system that you

can use for training and for recognition. In other words, you will need the SPHINX

trainer and a SPHINX decoder.

You will be given instructions on how to download, compile, and run the

components needed to build a complete speech recognition system. Namely, you will be

given instructions on how to use SphinxTrain and you will have to choose one of

PocketSphinx, SPHINX-2, SPHINX-3, SPHINX-3 Flat, or SPHINX-4. Please check a

short description for capabilities of each of these, or the CMUSphinx project page for

more details. This tutorial does not instruct you on how to build a language model, but

you can check the CMU SLM Toolkit page for an excellent manual.

At the end of this tutorial, you will be in a position to train and use this system

for your own recognition tasks. More importantly, through your exposure to this system,

you will have learned about several important issues involved in using a real HMM-

based ASR system.

69

Important note for members of the Sphinx group: This tutorial now supports the

PBS queue. The internal, csh-based Robust tutorial is still available, though its use is

discouraged.

Components provided for training

The SPHINX trainer consists of a set of programs, each responsible for a well

defined task, and a set of scripts that organizes the order in which the programs are

called. You have to compile the code in your favorite platform.

The trainer learns the parameters of the models of the sound units using a set of

sample speech signals. This is called a training database. A choice of training databases

will also be provided to you. The trainer also needs to be told which sound units you

want it to learn the parameters of, and at least the sequence in which they occur in every

speech signal in your training database. This information is provided to the trainer

through a file called the transcript file, in which the sequence of words and non-speech

sounds are written exactly as they occurred in a speech signal, followed by a tag which

can be used to associate this sequence with the corresponding speech signal. The trainer

then looks into a dictionary which maps every word to a sequence of sound units, to

derive the sequence of sound units associated with each signal. Thus, in addition to the

speech signals, you will also be given a set of transcripts for the database (in a single

file) and two dictionaries, one in which legitimate words in the language are mapped

sequences of sound units (or sub-word units), and another in which non-speech sounds

are mapped to corresponding non-speech or speech-like sound units. We will refer to

the former as the language dictionary and the latter as the filler dictionary.

In summary, the components provided to you for training will be:

1. The trainer source code

2. The acoustic signals

3. The corresponding transcript file

4. A language dictionary

5. A filler dictionary

70

Components provided for decoding

The decoder also consists of a set of programs, which have been compiled to

give a single executable that will perform the recognition task, given the right inputs.

The inputs that need to be given are: the trained acoustic models, a model index file, a

language model, a language dictionary, a filler dictionary, and the set of acoustic signals

that need to be recognized. The data to be recognized are commonly referred to as test

data.

In summary, the components provided to you for decoding will be:

1. The decoder source code

2. The language dictionary

3. The filler dictionary

4. The language model

5. The test data

71

In addition to these components, you will need the acoustic models that you

have trained for recognition. You will have to provide these to the decoder. While you

train the acoustic models, the trainer will generate appropriately named model-index

files. A model-index file simply contains numerical identifiers for each state of each

HMM, which are used by the trainer and the decoder to access the correct sets of

parameters for those HMM states. With any given set of acoustic models, the

corresponding model-index file must be used for decoding. If you would like to know

more about the structure of the model-index file, you will find a description following

the link Creating the CI model definition file.

Setting up your system

You will have to download and build several components to set up the complete

systems. Provided you have all the necessary software, you will have to download the

data package, the trainer, and one of the SPHINX decoders. The following instructions

detail the steps.

Required software before you start

You will need Perl to run the provided scripts, and a C compiler to compile the

source code. Additionally, if you choose to use SPHINX-4, you will need the Java (TM)

Runtime Environment and, if you need to compile code, the Java platform compiler.

You may also want to measure the word error rate using a word alignment program,

such as NIST's sclite.

Perl

You will need Perl to use the scripts provided. Linux usually comes with some

version of Perl. If you do not have Perl installed, please check the Perl site, where you

can download it for free.

C Compiler

72

SphinxTrain, PocketSphinx, SPHINX-2, and SPHINX-3 use GNU autoconf to

find out basic information about your system, and should compile on most Unix and

Unix-like systems, and certainly on Linux. The code compiles using GNU's make and

GNU's C compiler (gcc), available in all Linux distributions, and available for free for

most platforms.

We also provide files supporting compilation using Microsoft's Visual C++, i.e.,

the solution (.sln) and project (.vcproj) files needed to compile code in native Windows

format.

Java Platform

The Java platform is not necessary for SphinxTrain, PocketSphinx, SPHINX-2,

or SPHINX-3. However, SPHINX-4 was written in the Java Programming Language.

You can download the binaries directly, which you can use in any platform if you have

the Java Runtime Environment (JRE). If you want to compile the SPHINX-4 code, you

will also need the Java JDK. Both the JRE and the JDK are available at the Java

Technology site.

In addition to the Java compiler, you will also need ant to compile. ant is similar

to make and is available from apache.org.

Word Alignment

You will need a word alignment program if you want to measure the accuracy of

a decoder. A commonly used one, available from the National Institute of Standards and

Technology (NIST), is sclite, provided as part of their scoring packages. You will find

their scoring packages in the NIST tools page. The software is available for those in the

speech group at

~robust/archive/third_party_packages/NIST_scoring_tools/sctk/linux/bin/sclite.

Internally, at CMU, you may also want to use the align program, which does the

same job as the NIST program, but does not have some of the features. You can find it

in the robust home directory at ~robust/archive/third_party_packages/align/linux/align.

Setting up the data

The Sphinx Group makes it available two audio databases that can be used with

this tutorial. Each has its peculiarities, and are provided just as a convenience. The data

73

provided are not sufficient to build a high performance speech recognition system. They

are only provided with the goal of helping you learn how to use the system.

The databases are provided at the Databases page. Choose either AN4 or RM1.

AN4 includes the audio, but it is a very small database. You can choose it if you want to

include the creation of feature files in your experiments. RM1 is a little larger, thus

resulting in a system with slightly better performance. Audio is not provided, since it is

licensed material. We provide the feature files used directly by the trainer and decoders.

For more information about RM1, please check with the LDC.

The steps involved:

1. Create a directory for the system, and move to that directory:

mkdir tutorial
cd tutorial

2. Download the audio tarball AN4 , by clicking on the link and choosing

"Save" when the dialog window appears. Save it to the

same tutorial directory you just created. For those not familiar with the

term, a tarball in our context is a file with extension .tar.gz. Extract the

contents as follows.

3. In Windows, using the Windows Explorer, go to the tutorial directory,

right-click the audio tarball, and choose "Extract to here" in the WinZip

menu.

4. In Linux/Unix:

gunzip -c an4_sphere.tar.gz | tar xf -

By the time you finish this, you will have a tutorial directory with the

following contents

tutorial
 an4
 an4_sphere.tar.gz

74

Setting up the trainer

Code retrieval

SphinxTrain can be retrieved using subversion (svn) or by downloading

a tarball. svn makes it easier to update the code as new changes are added to the

repository, but requires you to install svn. The tarball is more readily available.

You can find more information about svn at the SVN Home.

Using svn

svn co
https://cmusphinx.svn.sourceforge.net:/svnroot/cmusphinx/trunk/Sphi
nxTrain

• Using the tarball, download the SphinxTrain tarball by clicking on the link and
choosing "Save" when the dialog window appears. Save it to the
same tutorial directory. Extract the contents as follows.

o In Windows, using the Windows Explorer, go to the tutorial directory,
right-click the SphinxTrain tarball, and choose "Extract to here" in the
WinZip menu.

o In Linux/Unix:

gunzip -c SphinxTrain.nightly.tar.gz | tar xf -

Further details about download options are available in the cmusphinx.org page,

under the header Download instructions

By the time you finish this, you will have a tutorial directory with the following

contents

tutorial
 an4
 an4_sphere.tar.gz
 SphinxTrain
 SphinxTrain.nightly.tar.gz

Compilation

In Linux/Unix:

cd SphinxTrain
configure
make

75

Tutorial Setup

After compiling the code, you will have to setup the tutorial by copying all

relevant executables and scripts to the same area as the data. Assuming your current

working directory is tutorial, you will need to do the following.

cd SphinxTrain
If you installed AN4
perl scripts_pl/setup_tutorial.pl an4
If you installed RM1
perl scripts_pl/setup_tutorial.pl rm1

Setting up the decoder

SPHINX-3

Code retrieval

SPHINX-3 can be retrieved using subversion (svn) or by downloading a tarball.

svn makes it easier to update the code as new changes are added to the repository, but

requires you to install svn. The tarball is more readily available. SPHINX-3 is also

available as a release from SourceForge.net. Since the release is a tarball, we will not

provide separate instructions for installation of the release.

You can find more information about svn at the SVN Home.

• Using svn

svn co
https://cmusphinx.svn.sourceforge.net:/svnroot/cmusphinx/trunk/sphi
nxbase
svn co
https://cmusphinx.svn.sourceforge.net:/svnroot/cmusphinx/trunk/sphi
nx3

• Using the tarball, download the sphinx3 tarball and sphinxbase by clicking on
the link and choosing "Save" when the dialog window appears. Save them to the
same tutorial directory. Extract the contents as follows.

•
o In Linux/Unix:

gunzip -c sphinxbase.nightly.tar.gz | tar xf -
gunzip -c sphinx3.nightly.tar.gz | tar xf -

76

Further details about download options are available in the cmusphinx.org page,

under the header Download instructions

By the time you finish this, you will have a tutorial directory with the

following contents

tutorial
an4
an4_sphere.tar.gz
SphinxTrain
SphinxTrain.nightly.tar.gz
sphinx3
sphinx3.nightly.tar.gz
sphinxbase
sphinxbase.nightly.tar.gz

Compilation

In Linux/Unix:

Compile sphinxbase
cd sphinxbase
If you used svn, you will need to run autogen.sh, commented out
here. If you downloaded the tarball, you do not need to run it.

./autogen.sh
./configure
make

Compile SPHINX-3
cd sphinx3
If you used svn, you will need to run autogen.sh, commented out
here. If you downloaded the tarball, you do not need to run it.

./autogen.sh
configure --prefix=`pwd`/build --with-
sphinxbase=`pwd`/../sphinxbase
make
make install

Tutorial Setup

After compiling the code, you will have to setup the tutorial by copying all

relevant executables and scripts to the same area as the data. Assuming your current

working directory is tutorial, you will need to do the following.

cd sphinx3
If you installed AN4
perl scripts/setup_tutorial.pl an4

77

How to perform a preliminary training run

Go to the directory where you installed the data. If you have been following the

instructions so far, in linux, it should be as easy as:

If you are using AN4
cd ../an4

The scripts should work "out of the box", unless you are training models for

PocketSphinx or SPHINX-2. In this case, you have to edit the file etc/sphinx_train.cfg,

uncommenting the line defining the variable $CFG_HMM_TYPE so that it looks like

the box below.

#$CFG_HMM_TYPE = '.cont.'; # Sphinx III

On Linux machines, you can set up the scripts to take advantage of multiple

CPUs. To do this, edit etc/sphinx_train.cfg, change the line defining the

variable $CFG_NPART to match the number of CPUs in your system, and edit the line

defining $CFG_QUEUE_TYPE to the following:

Queue::POSIX for multiple CPUs on a local machine
Queue::PBS to use a PBS/TORQUE queue
$CFG_QUEUE_TYPE = "Queue::POSIX";

If you have a grid of computers running the TORQUE or PBS batch system, you

can schedule training jobs to be run on the grid by defining $CFG_NPART as

noted above and editing $CFG_QUEUE_TYPE like the following:

Queue::POSIX for multiple CPUs on a local machine
Queue::PBS to use a PBS/TORQUE queue
$CFG_QUEUE_TYPE = "Queue::PBS";

The system does not directly work with acoustic signals. The signals are first

transformed into a sequence of feature vectors, which are used in place of the actual

acoustic signals. To perform this transformation (or parameterization) from within the

directory an4, type the following command on the command line. If you are using

Windows instead of linux, please replace the / character with \. Notice that if you

downloaded rm1 instead, the files are already provided in cepstra format, so you do not

need, and in fact, cannot, follow this step.

perl scripts_pl/make_feats.pl -ctl etc/an4_train.fileids

This script will compute, for each training utterance, a sequence of 13-

dimensional vectors (feature vectors) consisting of the Mel-frequency cepstral

78

coefficients (MFCCs). Note that the list of wave files contains a list with the full paths

to the audio files. Since the data are all located in the same directory as you are

working, the paths are relative, not absolute. You may have to change this, as well as

thean4_test.fileids file, if the location of data is different. This step takes approximately

10 minutes to complete on a fast machine, but time may vary. As it is running, you

might want to continuing reading. The MFCCs will be placed automatically in a

directory called ./feat. Note that the type of features vectors you compute from the

speech signals for training and recognition, outside of this tutorial, is not restricted to

MFCCs. You could use any reasonable parameterization technique instead, and

compute features other than MFCCs. SPHINX-3 and SPHINX-4 can use features of any

type or dimensionality. In this tutorial, however, you will use MFCCs for two reasons:

a) they are currently known to result in the best recognition performance in HMM-based

systems under most acoustic conditions, and b) this tutorial is not intended to cover the

signal processing aspects of speech parameterization and only aims for a standard

usable platform in this respect. Now you can begin to train the system.

In the scripts directory (./scripts_pl), there are several directories numbered

sequentially from 00* through 99*. Each directory either has a directory

named slave*.pl or it has a single file with extension .pl. Sequentially go through the

directories and execute either the the slave*.pl or the single .pl file, as below. As usual,

if you are using Windows instead of linux, you have to replace the /character with \.

perl scripts_pl/00.verify/verify_all.pl
perl scripts_pl/10.vector_quantize/slave.VQ.pl
perl scripts_pl/20.ci_hmm/slave_convg.pl
perl scripts_pl/30.cd_hmm_untied/slave_convg.pl
perl scripts_pl/40.buildtrees/slave.treebuilder.pl
perl scripts_pl/45.prunetree/slave-state-tying.pl
perl scripts_pl/50.cd_hmm_tied/slave_convg.pl
perl scripts_pl/90.deleted_interpolation/deleted_interpolation.pl
perl scripts_pl/99.make_s2_models/make_s2_models.pl

Alternatively, you can simply run the RunAll.pl script provided.

perl scripts_pl/RunAll.pl

79

From here on, we will refer to the script that you have to run in each directory as

simply slave*.pl. In directories where no such a file exists, please understand it as the

single .pl file present in that directory.

The scripts will launch jobs on your machine, and the jobs will take a few

minutes each to run through. Before you run any script, note the directory contents of

your current directory. After you run eachslave*.pl note the contents again. Several new

directories will have been created. These directories contain files which are being

generated in the course of your training. At this point you need not know about the

contents of these directories, though some of the directory names may be self

explanatory and you may explore them if you are curious.

One of the files that appears in your current directory is an .html file,

named an4.html or rm1.html, depending on which database you are using. This file

will contain a status report of jobs already executed. Verify that the job you launched

completed successfully. Only then launch the next slave*.pl in the specified sequence.

Repeat this process until you have run the slave*.pl in all directories.

Note that in the process of going through the scripts in 00* through 99*, you will

have generated several sets of acoustic models, each of which could be used for

recognition. Notice also that some of the steps are required only for the creation of

semi-continuous models, such as those used by SPHINX-2. If you execute these steps

while creating continuous models, the scripts will benignly do nothing. Once the jobs

launched from 20.ci_hmm have run to completion, you will have trained the Context-

Independent (CI) models for the sub-word units in your dictionary. When the jobs

launched from the30.cd_hmm_untied directory run to completion, you will have

trained the models for Context-Dependent sub-word units (triphones) with untied states.

These are called CD-untied models and are necessary for building decision trees in

order to tie states. The jobs in 40.buildtrees will build decision trees for each state of

each sub-word unit. The jobs in 45.prunetree will prune the decision trees and tie the

states. Following this, the jobs in 50.cd-hmm_tied will train the final models for the

triphones in your training corpus. These are called CD-tied models. The CD-tied models

are trained in many stages. We begin with 1 Gaussian per state HMMs, following which

we train 2 Gaussian per state HMMs and so on till the desired number of Gaussians per

State have been trained. The jobs in 50.cd-hmm_tied will automatically train all these

80

intermediate CD-tied models. Stages 90.deleted-

interpolation and 99.make_s2_models are meaningful only if you are training models

for SPHINX-2. Deleted interpolation smooths the HMMs, which are then converted to

the format used by SPHINX-2. At the end of any stage you may use the models for

recognition. Remember that you may decode even while the training is in progress,

provided you are certain that you have crossed the stage which generates the models

you want to decode with. Before you decode, however, read the section called How to

decode, and key decoding issues to learn a little more about decoding. This section also

provides all the commands needed for decoding with each of these models.

You have now completed your training. The final models and location will

depend on the database and the model type that you are using. If you are using RM1 to

train continuous models, you will find the parameters of the final 8 Gaussian/state 3-

state CD-tied acoustic models (HMMs) with 1000 tied states in a directory

called ./model_parameters/rm1.cd_cont_1000_8/. You will also find a model-index

file for these models called rm1.1000.mdef in ./model_architecture/ . This file, as

mentioned before, is used by the system to associate the appropriate set of HMM

parameters with the HMM for each sound unit you are modeling. The training process

will be explained in greater detail later in this document. If, however, you trained semi-

continuous models with AN4, the final models will be located

at ./model_parameters/an4.1000.s2models, where you will find all files need to

decode with SPHINX-2.

How to perform a preliminary decode

Decoding is relatively simple to perform. First, compute MFCC features for all

of the test utterances in the test set. If you downloaded rm1, the files are already

provided in cepstra format, so you do not need, and in fact, cannot, follow this step. To

compute MFCCs from the wave files, from the top level directory, namely an4, type the

following from the command line:

perl scripts_pl/make_feats.pl -ctl etc/an4_test.fileids

This will take approximately 10 minutes to run.

You are now ready to decode. Type the command below.

perl scripts_pl/decode/slave.pl

81

This uses all of the components provided to you for decoding, including the

acoustic models and model-index file that you have generated in your preliminary

training run, to perform recognition on your test data. When the recognition job is

complete, the script computes the recognition Word Error Rate (WER) or Sentence

Error Rate (SER). Notice that the script comes with a very simple built-in function that

computes the SER. Unless you are using CMU machines, if you want to compute the

WER you will have to download and compile code to do so. A popular one, used as a

standard in the research community, is available from NIST. Check the section on Word

Alignment.

If you provide a program that does alignment, you can change the

file etc/sphinx_decode.cfg to use it. You have to change the following line:

$DEC_CFG_ALIGN = "builtin";

If you are running the scripts at CMU, the line above will default to:

$DEC_CFG_ALIGN = \\
"/afs/cs.cmu.edu/user/robust/archive/third_party_packages/NIST_scor
ing_tools/sctk/linux/bin/sclite";

When you run the decode script, it will print information about the accuracy in

the top level .html page for your experiment. It will also create two sets of files. One of

these sets, with extension .match, contains the hypothesis as output by the decoder. The

other set, with extension .align, contains the alignment generated by your alignment

program, or by the built-in script, with the result of the comparison between the decoder

hypothesis and the provided transcriptions. If you used the NIST tool, the .html file will

contain a line such as the following if you used an4:

SENTENCE ERROR: 56.154% (73/130) WORD ERROR RATE: 16.429%
(127/773)

Miscellaneous tools

Three tools are provided that can help you find problems with your setup. You

will find two of these executables in the directory bin. You can download and install the

third as indicated below.

1. mk_mdef_gen: Phone and triphone frequency analysis tool. You can use this to
count the relative frequencies of occurrence of your basic sound units (phones
and triphones) in the training database. Since HMMs are statistical models, what

82

you are aiming for is to design your basic units such that they occur frequently
enough for their models to be well estimated, while maintaining enough
information to minimize confusions between words. This issue is explained in
greater detail in Appendix 1.

2. printp: Tool for viewing the model parameters being estimated.
3. cepview: Tool for viewing the MFCC files. Available as a tarball

How to train, and key training issues

You are now ready to begin your own exercises. For every training and decoding

run, you will need to first give it a name. We will refer to the experiment name of your

choice by $taskname. For example, the names given to the experiments using the two

available databases are an4, and rm1. Your choice of $taskname will be used

automatically in all the files for that training and recognition run for easy identification.

All directories and files needed for this experiment will be copied to a directory

named $taskname. Some of these files, such as data, will be provided by you (maybe

copied from eithertutorial/an4 or tutorial/rm1). Other files will be automatically

copied from the trainer or decoder installations.

A new task is created from an existing one in a directory named $taskname in

parallel to the existing one. Assuming that you are copying a setup from the existing

setup named tutorial/an4, the new task will be located at tutorial/$taskname.

Remember to replace $taskname with the name of your choice.

In the following example, we do just that: we copy a setup from the an4 setup.

Notice that your current working directory is the existing setup. The new one will be

created by the script.

cd an4
perl scripts_pl/copy_setup.pl -task $taskname

83

This will create a new setup by rerunning the SphinxTrain setup, then rerunning

the decoder setup using the same decoder as used by the originating setup (in this

case, an4), and then copying the configuration files, located under etc, to the new setup,

with the file names matching the new task's.

Be warned that the copy_setup.pl script also copies the data, located

under feat and wav, to the new location. If your dataset is large, this duplication may be

wasting disk space. A great option would be to just link the data directories. The script,

as is, does not support this because not all operating systems can create symbolic links.

After this you will work entirely within this $taskname directory.

Your tutorial exercise begins with training the system using the MFCC feature

files that you have already computed during your preliminary run. However, when you

train this time, you will be required to take certain decisions based on what you know

and the information that is provided to you in this document. The decisions that you

take will affect the quality of the models that you train, and thereby the recognition

performance of the system.

You must now go through the following steps in sequence.

1. Parameterize the training database, if you used the an4 database or are using
your own data. If you used an4, you have already done this for every training
utterance during your preliminary run. If you used rm1, the data were provided
already parameterized. At this point you do not have to do anything further
except to note that in the speech recognition field it is common practice to call
each file in a database an "utterance". The signal in an "utterance" may not
necessarily be a full sentence. You can view the cepstra in any file by using the
tool cepview.

2. Decide what sound units you are going to ask the system to train. To do this,
look at the language dictionary $taskname/etc/$taskname.dic and the filler
dictionary$taskname/etc/$taskname.filler, and note the sound units in these. A
list of all sound units in these dictionaries is also written in the
file $taskname/etc/$taskname.phone. Study the dictionaries and decide if the
sound units are adequate for recognition. In order to be able to perform good
recognition, sound units must not be confusable, and must be consistently used
in the dictionary. Look at Appendix 1 for an explanation.

Also check whether these units, and the triphones they can form (for which you
will be building models ultimately), are well represented in the training data. It
is important that the sound units being modeled be well represented in the
training data in order to estimate the statistical parameters of their HMMs
reliably. To study their occurrence frequencies in the data, you may use the

84

toolmk_mdef_gen. Based on your study, see if you can come up with a better
set of sound units to train.

You can restructure the set of sound units given in the dictionaries by merging
or splitting existing sound units in them. By merging of sound units we mean the
clustering of two or more different sound units into a single entity. For example,
you may want to model the sounds "Z" and "S" as a single unit (instead of
maintaining them as separate units). To merge these units, which are represented
by the symbols Z and S in the language dictionary given, simply replace all
instances of Z and S in the dictionary by a common symbol (which could be
Z_S, or an entirely new symbol). By splitting of sound units we mean the
introduction of multiple new sound units in place of a single sound unit. This is
the inverse process of merging. For example, if you found a language dictionary
where all instances of the sounds Z and S were represented by the same symbol,
you might want to replace this symbol by Z for some words and S for others.
Sound units can also be restructured by grouping specific sequences of sound
into a single sound. For example, you could change all instances of the sequence
"IX D" into a single sound IX_D. This would introduce a new symbol in the
dictionary while maintaining all previously existing ones. The number of sound
units is effectively increased by one in this case. There are other techniques used
for redefining sound units for a given task. If you can think of any other way of
redefining dictionaries or sound units that you can properly justify, we
encourage you to try it.

Once you re-design your units, alter the
file $taskname/etc/$taskname.phone accordingly. Make sure you do not have
spurious empty spaces or lines in this file.

Alternatively, you may bypass this design procedure and use the phone list and
dictionaries as they have been provided to you. You will have occasion to
change other things in the training later.

3. Once you have fixed your dictionaries and the phone list file, edit the
file etc/sphinx_train.cfg in tutorial/$taskname/ to change the following
training parameters.

• $CFG_DICTIONARY = your training dictionary with full path (do not

change if you have decided not to change the dictionary)

• $CFG_FILLERDICT = your filler dictionary with full path (do not

change if you have decided not to change the dictionary)

• $CFG_RAWPHONEFILE = your phone list with full path (do not

change if you have decided not to change the dictionary)

• $CFG_HMM_TYPE = this variable could have the

values .semi. or .cont.. Notice the dots "." surrounding the string.

85

Use .semi. if you are training semi-continuous HMMs (required for

SPHINX-2), or .cont. if you are training continuous HMMs (required for

SPHINX-4, and the most common choice for SPHINX-3 and SPHINX-3

Flat decoder)

• $CFG_STATESPERHMM = if you are using SPHINX-2, this variable

has to be 5. If you are using any other decoder, it could be any integer,

but we recommend 3 or 5. The number of states in an HMMs is related to

the time-varying characteristics of the sound units. Sound units which are

highly time-varying need more states to represent them. The time-

varying nature of the sounds is also partly captured by

the $CFG_SKIPSTATE variable that is described below.

• $CFG_SKIPSTATE =set this to no or yes. This variable controls the

topology of your HMMs. When set to yes, it allows the HMMs to skip

states. However, note that the HMM topology used in this system is a

strict left-to-right Bakis topology. If you set this variable to no, any given

state can only transition to the next state. In all cases, self transitions are

allowed. See the figures inAppendix 2 for further reference. You will

find the HMM topology file, conveniently named $taskname.topology,

in the directory called model_architecture/ in your current base

directory ($taskname).

• $CFG_FINAL_NUM_DENSITIES = if you are using sphinx-2, set this

number, as well as $CFG_INITIAL_NUM_DENSITIES, to 256. If you

are using other decoders, set$CFG_INITIAL_NUM_DENSITIES to 1

and $CFG_FINAL_NUM_DENSITIES to any number from 1 to 8.

Going beyond 8 is not advised because of the small training data set you

have been provided with. The distribution of each state of each HMM is

modeled by a mixture of Gaussians. This variable determines the number

of Gaussians in this mixture. The number of HMM parameters to be

estimated increases as the number of Gaussians in the mixture increases.

Therefore, increasing the value of this variable may result in less data

being available to estimate the parameters of every Gaussian. However,

increasing its value also results in finer models, which can lead to better

86

recognition. Therefore, it is necessary at this point to think judiciously

about the value of this variable, keeping both these issues in mind.

Remember that it is possible to overcome data insufficiency problems by

sharing the Gaussian mixtures amongst many HMM states. When

multiple HMM states share the same Gaussian mixture, they are said to

be shared or tied. These shared states are called tied states (also referred

to as senones). The number of mixtures you train will ultimately be

exactly equal to the number of tied states you specify, which in turn can

be controlled by the $CFG_N_TIED_STATES parameter described

below. SPHINX-2 internally requires you to set the variables to 256,

since it uses semi-continuous HMMs.

• $CFG_N_TIED_STATES = set this number to any value between 500

and 2500. This variable allows you to specify the total number of shared

state distributions in your final set of trained HMMs (your acoustic

models). States are shared to overcome problems of data insufficiency

for any state of any HMM. The sharing is done in such a way as to

preserve the "individuality" of each HMM, in that only the states with the

most similar distributions are tied.

The $CFG_N_TIED_STATES parameter controls the degree of tying.

If it is small, a larger number of possibly dissimilar states may be tied,

causing reduction in recognition performance. On the other hand, if this

parameter is too large, there may be insufficient data to learn the

parameters of the Gaussian mixtures for all tied states. (An explanation

of state tying is provided in Appendix 3). If you are curious, you can see

which states the system has tied for you by looking at the ASCII

file$taskname/model_architecture/$taskname.$CFG_N_TIED_STA

TES.mdef and comparing it with the

file $taskname/model_architecture/$taskname.untied.mdef. These

files list the phones and triphones for which you are training models, and

assign numerical identifiers to each state of their HMMs.

• $CFG_CONVERGENCE_RATIO = set this to a number between 0.1

to 0.001. This number is the ratio of the difference in likelihood between

the current and the previous iteration of Baum-Welch to the total

87

likelihood in the previous iteration. Note here that the rate of

convergence is dependent on several factors such as initialization, the

total number of parameters being estimated, the total amount of training

data, and the inherent variability in the characteristics of the training

data. The more iterations of Baum-Welch you run, the better you will

learn the distributions of your data. However, the minor changes that are

obtained at higher iterations of the Baum-Welch algorithm may not

affect the performance of the system. Keeping this in mind, decide on

how many iterations you want your Baum-Welch training to run in each

stage. This is a subjective decision which has to be made based on the

first convergence ratio which you will find written at the end of the log

file for the second iteration of your Baum-Welch training

($taskname/logdir/0*/$taskname.*.2.norm.log. Usually, 5-15 iterations

are enough, depending on the amount of data you have. Do not train

beyond 15 iterations. Since the amount of training data is not large you

will over-train the models to the training data.

• $CFG_NITER = set this to an integer number between 5 to 15. This

limits the number of iterations of Baum-Welch to the value

of $CFG_NITER.

Once you have made all the changes desired, you must train a new set of models.

You can accomplish this by re-running all the slave*.pl scripts from the

directories $taskname/scripts_pl/00*through $taskname/scripts_pl/09*, or simply by

running perl scripts_pl/RunAll.pl.

How to decode, and key decoding issues

1. The first step in decoding is to compute the MFCC features for your test
utterances. Since you have already done this in the preliminary run, you do not
have to repeat the process here.

2. You may change decoder parameters, affecting the recognition results, by
editing the file etc/sphinx_decode.cfg in tutorial/$taskname/. Some of the
interesting parameters follow.

• $DEC_CFG_DICTIONARY = the dictionary used by the decoder. It

may or may not be the same as the one used for training. The set of

phones has be be contained in the set of phones from the trainer

88

dictionary. The set of words can be larger. Normally, though, the decoder

dictionary is the same as the trainer one, especially for small databases.

• $DEC_CFG_FILLERDICT = the filler dictionary.

• $DEC_CFG_GAUSSIANS = the number of densities in the model used

by the decoder. If you trained continuous models, the process of training

creates intermediate models where the number of Gaussians is 1, 2, 4, 8,

etc, up to the total number you chose. You can use any of those in the

decoder. In fact, you are encouraged to do so, so you get a sense of how

this affects the recognition accuracy. You are encouraged to find the best

number of densities for databases with different complexities.

• $DEC_CFG_MODEL_NAME = the model name. Unless you are using

SPHINX-2, it defaults to using the context dependent (CD) tied state

models with the number of senones and number of densities specified in

the training step. You are encouraged to also use the CD untied and also

the context independent (CI) models to get a sense to how accuracy

changes.

• $DEC_CFG_LANGUAGEWEIGHT the language weight. A value

between 6 and 13 is recommended. The default depends on the database

that you downloaded. The language model and the language weight are

described in Appendix 4. Remember that the language weight decides

how much relative importance you will give to the actual acoustic

probabilities of the words in the hypothesis. A low language weight gives

more leeway for words with high acoustic probabilities to be

hypothesized, at the risk of hypothesizing spurious words.

• $DEC_CFG_ALIGN = the path to the program that performs word

alignment, or builtin, if you do not have one.

You may decode several times with changing the variables above without re-

training the acoustic models, to decide what is best for you.

89

3. The script scripts_pl/decode/slave.pl already computes the word or sentence

accuracy when it finishes decoding. It will add a line to the top level .html page

that looks like the following if you are using NIST's sclite.

4. SENTENCE ERROR: 38.833% (233/600) WORD ERROR RATE: 7.640%
(434/5681)

In this line the first percentage indicates the percentage of words in the test set

that were correctly recognized. However, this is not a sufficient metric - it is

possible to correctly hypothesize all the words in the test utterances merely by

hypothesizing a large number of words for each word in the test set. The

spurious words, called insertions, must also be penalized when measuring the

performance of the system. The second percentage indicates the number of

hypothesized words that were erroneous as a percentage of the actual number of

words in the test set. This includes both words that were wrongly hypothesized

(or deleted) and words that were spuriously inserted. Since the recognizer can, in

principle, hypothesize many more spurious words than there are words in the

test set, the percentage of errors can actually be greater than 100.

In the example above, using rm1, of the 5681 words in the reference test

transcripts 5247 words (92.36%) were correctly hypothesized. In the process the

recognizer hypothesized 434 spurious words (these include insertions, deletions

and substitutions). You will find your recognition hypotheses in files

called *.match in the directory $taskname/result/.

In the same directory, you will also generate files

named $taskname/result/*.align in which your hypotheses are aligned against

the reference sentences. You can study this file to examine the errors that were

made. The list of confusions at the end of this file allows you to subjectively

determine why particular errors were made by the recognizer. For example, if

the word "FOR" has been hypothesized as the word "FOUR" almost all the time,

perhaps you need to correct the pronunciation for the word FOR in your

decoding dictionary and include a pronunciation that maps the word FOR to the

units used in the mapping of the word FOUR. Once you make these corrections,

you must re-decode.

90

If you are using the built-in method, the line reporting accuracy will look like

the following if you used an4.

SENTENCE ERROR: 56.154% (73/130)

The meaning of numbers is parallel to the description above, but in this case, the

numbers refer to sentences, not to words.

91

Appendix IV: Moses tutorial

This manual has been performed at the University of Edinburgh [31].

Moses Installation and Training RunThrough

The purpose of this guide is to offer a step-by-step example of downloading,

compiling, and runing the Moses decoder and related support tools. We make no claims

that all of the steps here will work perfectly on every machine you try it on, or that

things will stay the same as the software changes. Please remember that Moses is

research software under active development.

PART I Download and Configure Tools and Data

Support Tools Background

Moses has a number of scripts designed to aid training, and they rely

on GIZA++ and mkcls to function. More information on the origins of these tools is

available at:

• http://www.fjoch.com/GIZA++.html
• http://www.fjoch.com/mkcls.html

A Google Code project has been set up, and the code is being maintained:

• http://giza-pp.googlecode.com/

Moses uses SRILM-style language models. SRILM is available from:

• http://www.speech.sri.com/projects/srilm/download.html

(Optional) The IRSTLM tools provide the ability to use quantized and disk

memory-mapped language models. It's optional, but we'll be using it in this tutorial:

• http://sourceforge.net/projects/irstlm

92

Support Tools Installation

Before we start building and using the Moses codebase, we have to download

and compile all of these tools. See the list of versions to double-check that you are using

the same code.

I'll be working under /home/jschroe1/demo in these examples. I assume you've

set up some appropriately named directory in your own system. I'm installing these

tools under an FC6 distro.

mkdir tools
cd tools

• Download and compile GIZA++ and mkcls
• wget http://giza-pp.googlecode.com/files/giza-pp-v1.0.2.tar.gz
• tar -xzvf giza-pp-v1.0.2.tar.gz
• cd giza-pp

make

• Copy compiled executables to bin/ folder
• cd ../
• mkdir bin
• cp giza-pp/GIZA++-v2/GIZA++ bin/
• cp giza-pp/mkcls-v2/mkcls bin/
• cp giza-pp/GIZA++-v2/snt2cooc.out bin/

• Download and compile SRILM

SRILM has a lot of dependencies. These instructions work on bash.

mkdir srilm
cd srilm

(get srilm download 1.5.7, requires web registration, you'll end up with a .tgz file

to copy to this directory)

tar -xzvf srilm.tgz

(SRILM expands in the current directory, not in a sub-directory).

READ THE INSTALL FILE - there are a lot of tips in there.

chmod +w Makefile

93

edit Makefile to point to your directory. Here's my diff:

7c7
< # SRILM = /home/speech/stolcke/project/srilm/devel

> SRILM = /home/jschroe1/demo/tools/srilm

make World

If you want to test that this worked, you'll need to add SRILM to your path and

run their test suite. You don't need these in your path for normal training and decoding

with Moses.

export
PATH=/home/jschroe1/demo/tools/srilm/bin/i686:/home/jschroe1/dem
o/tools/srilm/bin:$PATH
make all

Check output, look for IDENTICAL and DIFFERS. I still see the occasional

difference, but it's pretty easy to tell when the tools are working and when they're dying

instantly.

• Download and compile IRSTLM

You can either download a release or check out the latest files from svn.

cd /home/jschroe1/demo/tools
wget http://downloads.sourceforge.net/irstlm/irstlm-5.20.00.tgz
tar -xzvf irstlm-5.20.00.tgz

Or get it from sourceforge:

mkdir irstlm
svn co https://irstlm.svn.sourceforge.net/svnroot/irstlm irstlm

cd irstlm
./install

On my system, Moses looks in irstlm/bin/i686, and IRST compiles

to irstlm/bin/i686-redhat-linux-gnu. Symlink to fix.

cd bin
ln -s i686-redhat-linux-gnu i686
cd ../../

94

Get The Latest Moses Version

Moses is available via Subversion from Sourceforge. See the list of versions to

double-check that you are using the same code as this example. From

the tools/ directory:

mkdir moses
svn co
https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk
moses

This will copy all of the Moses source code to your local machine.

Compile Moses

Within the Moses folder structure are projects for Eclipse, Xcode, and Visual

Studio -- though these are not well maintained and may not be up to date. I'll focus on

the linux command-line method, which is the preferred way to compile.

cd moses
./regenerate-makefiles.sh
./configure --with-srilm=/home/jschroe1/demo/tools/srilm --with-
irstlm=/home/jschroe1/demo/tools/irstlm
make -j 2

(The -j 2 is optional. make -j X where X is number of simultaneous tasks is a

speedier option for machines with multiple processors)

This creates several files we will be using:

• misc/processPhraseTable - Used to binarize phrase tables
• misc/processLexicalTable - Used to binarize reordering tables
• moses-cmd/src/moses - The actual decoder

Confirm Setup Success

A sample model capable of translating one sentence is available on the Moses

website. Download it and translate the sample input file.

cd /home/jschroe1/demo/
mkdir data
cd data
wget http://www.statmt.org/moses/download/sample-models.tgz
tar -xzvf sample-models.tgz
cd sample-models/phrase-model/
../../../tools/moses/moses-cmd/src/moses -f moses.ini < in > out

95

The input has "das ist ein kleines haus" listed twice, so the output file (out)

should contain "this is a small house" twice.

At this point, it might be wise for you to experiment with the command line

options of the Moses decoder. A tutoral using this example model is available

at http://www.statmt.org/moses/?n=Moses.Tutorial.

Compile Moses Support Scripts

Moses uses a set of scripts to support training, tuning, and other tasks. The

support scripts used by Moses are "released" by a Makefile which edits their paths to

match your local environment. First, make a place for the scripts to live:

cd ../../../tools/
mkdir moses-scripts
cd moses/scripts

edit Makefile as needed. Here's my diff:

13,14c13,14
< TARGETDIR?=/home/s0565741/terabyte/bin
< BINDIR?=/home/s0565741/terabyte/bin

> TARGETDIR?=/home/jschroe1/demo/tools/moses-scripts
> BINDIR?=/home/jschroe1/demo/tools/bin

make release

This will create a time-stamped folder named /home/jschroe1/demo/moses-

scripts/scripts-YYYYMMDD-HHMM with released versions of all the scripts. You will

call these versions when training and tuning Moses. Some Moses training scripts also

require a SCRIPTS_ROOTDIR environment variable to be set. The output of make

release should indicate this. Most scripts allow you to override this by setting a -

scripts-root-dir flag or something similar.

export SCRIPTS_ROOTDIR=/home/username/lab4/moses-scripts/scripts-
YYYYMMDD-HHMM

Additional Scripts

There are few scripts not included with moses which are useful for preparing

data. These were originally made available as part of the WMT08 Shared

Task and Europarl v3 releases, I've consolidated some of them into one set.

cd ../../

96

wget http://homepages.inf.ed.ac.uk/jschroe1/how-to/scripts.tgz
tar -xzvf scripts.tgz

We'll also get a NIST scoring tool.

wget ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
chmod +x mteval-v11b.pl

PART II Build a Model

We'll used the WMT08 News Commentary data set, about 55k sentences. This

should be good enough for moderate quality but still be doable in a reasonable amount

of time on most machines. For this example we'll use FR-EN.

cd ../data
wget http://www.statmt.org/wmt08/training-parallel.tar
tar -xvf training-parallel.tar --wildcards training/news-
commentary08.fr-en.*

If you're low on disk space, remove the full tar.

rm training-parallel.tar

cd ../

Prepare Data

First we'll set up a working directory where we'll store all the data we prepare.

mkdir work

• Tokenize training data

We'll keep the initial versions in zipped format. Note that Mac

uses gzcat instead of zcat, so we'll just use gzip -cd for both.

mkdir work/corpus
gzip -cd data/training/news-commentary08.fr-en.fr.gz |
tools/scripts/tokenizer.perl -l fr > work/corpus/news-
commentary.tok.fr
gzip -cd data/training/news-commentary08.fr-en.en.gz |
tools/scripts/tokenizer.perl -l en > work/corpus/news-
commentary.tok.en

• Filter out long sentences

97

• tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/clean-
corpus-n.perl work/corpus/news-commentary.tok fr en
work/corpus/news-commentary.clean 1 40

This ensures that only sentences of length 1-40 are selected for training. In this

case, we lose almost 11,000 sentences:

Input sentences: 55030 Output sentences: 44219

We do this because GIZA++ takes a very long time to train on long sentences.

This isn't much of an issue with a 55,000-sentence corpus, but it can be a limitation

when dealing with corpora of millions of sentences. Of course, the more data you throw

out to improve training times, the less examples Moses can choose from when building

translations.

• Lowercase training data
• tools/scripts/lowercase.perl < work/corpus/news-

commentary.clean.fr > work/corpus/news-commentary.lowercased.fr
• tools/scripts/lowercase.perl < work/corpus/news-

commentary.clean.en > work/corpus/news-commentary.lowercased.en

Build Language Model

Language models are concerned only with n-grams in the data, so sentence

length doesn't impact training times as it does in GIZA++. So, we'll lowercase the full

55,030 tokenized sentences to use for language modeling. Many people incorporate

extra target language monolingual data into their language models.

mkdir work/lm
tools/scripts/lowercase.perl < work/corpus/news-commentary.tok.en >
work/lm/news-commentary.lowercased.en

We will use SRILM to build a tri-gram language model.

tools/srilm/bin/i686/ngram-count -order 3 -interpolate -kndiscount -
unk -text work/lm/news-commentary.lowercased.en -lm work/lm/news-
commentary.lm

We can see how many n-grams were created

head -n 5 work/lm/news-commentary.lm

\data\
ngram 1=36035
ngram 2=411595
ngram 3=118368

98

Train Phrase Model

Moses' toolkit does a great job of wrapping up calls to mkcls and GIZA++ inside

a training script, and outputting the phrase and reordering tables needed for decoding.

The script that does this is called train-factored-phrase-model.perl

We'll run this in the background and nice it since it'll peg the CPU while it runs.

It may take up to an hour, so this might be a good time to run through the tutorial page

mentioned earlier using the sample-models data.

nohup nice tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/train-
factored-phrase-model.perl -scripts-root-dir tools/moses-
scripts/scripts-YYYYMMDD-HHMM/ -root-dir work -corpus
work/corpus/news-commentary.lowercased -f fr -e en -alignment grow-
diag-final-and -reordering msd-bidirectional-fe -lm
0:3:/home/jschroe1/demo/work/lm/news-commentary.lm >&
work/training.out &

You can tail -f work/training.out file to watch the progress of the tuning

script. The last step will say something like:

(9) create moses.ini @ Tue Jan 27 19:40:46 CET 2009

Now would be a good time to look at what we've done.

cd work
ls
corpus giza.en-fr giza.fr-en lm model

We'll look in the model directory. The three files we really care about are in

bold.

cd model
ls -l
total 192554
-rw-r--r-- 1 jschroe1 people 5021309 Jan 27 19:23 aligned.grow-diag-
final-and
-rw-r--r-- 1 jschroe1 people 27310991 Jan 27 19:24 extract.gz
-rw-r--r-- 1 jschroe1 people 27043024 Jan 27 19:25 extract.inv.gz
-rw-r--r-- 1 jschroe1 people 21069284 Jan 27 19:25 extract.o.gz
-rw-r--r-- 1 jschroe1 people 6061767 Jan 27 19:23 lex.e2f
-rw-r--r-- 1 jschroe1 people 6061767 Jan 27 19:23 lex.f2e
-rw-r--r-- 1 jschroe1 people 1032 Jan 27 19:40 moses.ini
-rw-r--r-- 1 jschroe1 people 67333222 Jan 27 19:40 phrase-table.gz
-rw-r--r-- 1 jschroe1 people 26144298 Jan 27 19:40 reordering-table.gz

99

MemoryMap LM and Phrase Table (Recommended for large data sets or

computers with minimal RAM)

The language model and phrase table can be memory-mapped on disk to

minimize the amount of RAM they consume. This isn't really necessary for this size of

model, but we'll do it just for the experience.

If Moses segfaults when you try using a larger model than the one in this

example, then you should try this step for sure.

More information is available on the Moses' web site

at: http://www.statmt.org/moses/?n=Moses.AdvancedFeatures and http://www.

statmt.org/moses/?n=FactoredTraining.BuildingLanguageModel.

Performing these steps can lead to heavy disk use during decoding - you're

basically using your hard drive as RAM. Proceed at your own risk, especially if you're

using a (slow) networked drive.

• IRSTLM Binary Language Model

Produces a compact file on disk

cd ../../
tools/irstlm/bin/i686/compile-lm work/lm/news-commentary.lm
work/lm/news-commentary.blm

• IRSTLM Memory Mapping

Changing the suffix of this file to .mm forces the decoder to leave the file on disk

instead of loading it into memory. We'll just make a symlink.

cd work/lm
ln -s news-commentary.blm news-commentary.blm.mm
cd ../../

A note on memory mapping: IRSTLM makes use of a temp directory during

decoding. Version 5.20.00 has this hard-coded to /tmp, but the trunk on svn has been

updated to allow you to set it using the TMP environment variable. If this is important to

your setup, be sure to set this variable, or check that it is already set appropriately.

• Binary Phrase Table

100

As with the LM, the phrase table can be processed and read from disk on-

demand instead of being loaded in its entirety into memory.

Note that if your phrase table was not sorted, you would need to pipe the zcat

through a sort, and use the LC_ALL=C flag. Depending on the size of your temp

directory, you may have to have sort use a different directory using the -T flag. man

sort for more info.

gzip -cd work/model/phrase-table.gz | LC_ALL=C sort |
tools/moses/misc/processPhraseTable -ttable 0 0 - -nscores 5 -
out work/model/phrase-table

• Binary Reordering Table

Similar to the phrase table, including optional sorting.

gzip -cd work/model/reordering-table.gz | LC_ALL=C sort |
tools/moses/misc/processLexicalTable -out work/model/reordering-
table

• Edit Config File

We'll make a copy of work/model/moses.ini and set it to use these files.

Moses will automatically use binary phrase and reordering tables if they are present

with the correct naming stem, and since we used the same stem for output as for our

input tables, we just need to remove the .gz suffix. For LM information, we need to set

the type to be IRSTLM (1) instead of SRILM (0) and change the LM file.

cp work/model/moses.ini work/model/moses-bin.ini

Here's my diff:

15c15
< 0 0 5 /home/jschroe1/demo/work/model/phrase-table.gz

> 0 0 5 /home/jschroe1/demo/work/model/phrase-table
21c21
< 0 0 3 /home/jschroe1/demo/work/lm/news-commentary.lm

> 1 0 3 /home/jschroe1/demo/work/lm/news-commentary.blm.mm
31c31
< 0-0 msd-bidirectional-fe 6
/home/jschroe1/demo/work/model/reordering-table.gz

> 0-0 msd-bidirectional-fe 6
/home/jschroe1/demo/work/model/reordering-table

101

Sanity Check Trained Model

We haven't tuned yet, but let's just check that the decoder works, and output a lot

of logging data with -v 2.

Here's an excerpt of moses initializing with binary files in place (note bold lines,

and recall the IRSTLM TMP issue):

echo "c' est une petite maison ." | TMP=/tmp tools/moses/moses-
cmd/src/moses -f work/model/moses-bin.ini
Loading lexical distortion models...
have 1 models
Creating lexical reordering...
weights: 0.300 0.300 0.300 0.300 0.300 0.300
binary file loaded, default OFF_T: -1
Created lexical orientation reordering
Start loading LanguageModel /home/jschroe1/demo/work/lm/news-
commentary.blm.mm : [0.000] seconds
In LanguageModelIRST::Load: nGramOrder = 3
Loading LM file (no MAP)
blmt
loadbin()
mapping 36035 1-grams
mapping 411595 2-grams
mapping 118368 3-grams
done
OOV code is 1468
IRST: m_unknownId=1468
Finished loading LanguageModels : [0.000] seconds
Start loading PhraseTable
/amd/nethome/jschroe1/demo/work/model/phrase-table.0-0 : [0.000]
seconds
using binary phrase tables for idx 0
reading bin ttable
size of OFF_T 8
binary phrasefile loaded, default OFF_T: -1
Finished loading phrase tables : [1.000] seconds
IO from STDOUT/STDIN

And here's one if you skipped the memory mapping steps:

echo "c' est une petite maison ." | tools/moses/moses-cmd/src/moses -f
work/model/moses.ini
Loading lexical distortion models...
have 1 models
Creating lexical reordering...
weights: 0.300 0.300 0.300 0.300 0.300 0.300
Loading table into memory...done.
Created lexical orientation reordering
Start loading LanguageModel /home/jschroe1/demo/work/lm/news-
commentary.lm : [47.000] seconds
/home/jschroe1/demo/work/lm/news-commentary.lm: line 1476: warning:
non-zero probability for <unk> in closed-vocabulary LM
Finished loading LanguageModels : [49.000] seconds
Start loading PhraseTable
/amd/nethome/jschroe1/demo/work/model/phrase-table.0-0.gz : [49.000]
seconds

102

Finished loading phrase tables : [259.000] seconds
IO from STDOUT/STDIN

Again, while these short load times and small memory footprint are nice,

decoding times will be slower with memory-mapped models due to disk access.

PART III Prepare Tuning and Test Sets

Prepare Data
We'll use some of the dev and devtest data from WMT08. We'll stick with news-

commentary data and use dev2007 and test2007. We only need to look at the input (FR)

side of our testing data.

• Download tuning and test sets
• cd data/
• wget http://www.statmt.org/wmt08/devsets.tgz
• tar -xzvf devsets.tgz
• cd ../

• Tokenize sets
• mkdir work/tuning
• tools/scripts/tokenizer.perl -l fr < data/dev/nc-dev2007.fr >

work/tuning/nc-dev2007.tok.fr
• tools/scripts/tokenizer.perl -l en < data/dev/nc-dev2007.en >

work/tuning/nc-dev2007.tok.en
• mkdir work/evaluation
• tools/scripts/tokenizer.perl -l fr < data/devtest/nc-

test2007.fr > work/evaluation/nc-test2007.tok.fr

• Lowercase sets
• tools/scripts/lowercase.perl < work/tuning/nc-dev2007.tok.fr >

work/tuning/nc-dev2007.lowercased.fr
• tools/scripts/lowercase.perl < work/tuning/nc-dev2007.tok.en >

work/tuning/nc-dev2007.lowercased.en
• tools/scripts/lowercase.perl < work/evaluation/nc-

test2007.tok.fr > work/evaluation/nc-test2007.lowercased.fr

PART IV Tuning

Note that this step can take many hours, even days, to run on large phrase tables

and tuning sets. We'll use the non-memory-mapped versions for decoding speed. The

training script controls for large phrase and reordering tables by filtering them to

103

include only data relevant to the tuning set (we'll do this ourselves for the test data

later).

nohup nice tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/mert-
moses.pl work/tuning/nc-dev2007.lowercased.fr work/tuning/nc-
dev2007.lowercased.en tools/moses/moses-cmd/src/moses
work/model/moses.ini --working-dir work/tuning/mert --rootdir
/home/jschroe1/demo/tools/moses-scripts/scripts-YYYYMMDD-HHMM/ --
decoder-flags "-v 0" >& work/tuning/mert.out &

Since this can take so long, we can instead make a small, 100 sentence tuning set

just to see if the tuning process works. This won't generate very good weights, but it

will let us confirm that our tools work.

head -n 100 work/tuning/nc-dev2007.lowercased.fr > work/tuning/nc-
dev2007.lowercased.100.fr
head -n 100 work/tuning/nc-dev2007.lowercased.en > work/tuning/nc-
dev2007.lowercased.100.en
nohup nice tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/mert-
moses.pl work/tuning/nc-dev2007.lowercased.100.fr work/tuning/nc-
dev2007.lowercased.100.en tools/moses/moses-cmd/src/moses
work/model/moses.ini --working-dir work/tuning/mert --rootdir
/home/jschroe1/demo/tools/moses-scripts/scripts-YYYYMMDD-HHMM/ --
decoder-flags "-v 0" >& work/tuning/mert.out &

(Note that the scripts rootdir path needs to be absolute).

While this runs, check out the contents of work/tuning/mert. You'll see a set

of runs, n-best lists for each, and run*.moses.ini files showing the weights used for

each file. You can see the score each run is getting by looking at the last line of

each run*.cmert.log file

cd work/tuning/mert
tail -n 1 run*.cmert.log

==> run1.cmert.log <==
Best point: 0.028996 0.035146 -0.661477 -0.051250 0.001667 0.056762
0.009458 0.005504 -0.006458 0.029992 0.009502 0.012555 0.000000 -
0.091232 => 0.282865

==> run2.cmert.log <==
Best point: 0.056874 0.039994 0.046105 -0.075984 0.032895 0.020815 -
0.412496 0.018823 -0.019820 0.038267 0.046375 0.011876 -0.012047 -
0.167628 => 0.281207

==> run3.cmert.log <==
Best point: 0.041904 0.030602 -0.252096 -0.071206 0.012997 0.516962
0.001084 0.010466 0.001683 0.008451 0.001386 0.007512 -0.014841 -
0.028811 => 0.280953

==> run4.cmert.log <==

104

Best point: 0.088423 0.118561 0.073049 0.060186 0.043942 0.293692 -
0.147511 0.037605 0.008851 0.019371 0.015986 0.018539 0.001918 -
0.072367 => 0.280063

==> run5.cmert.log <==
Best point: 0.059100 0.049655 0.187688 0.010163 0.054140 0.077241
0.000584 0.101203 0.014712 0.144193 0.219264 -0.005517 -0.047385 -
0.029156 => 0.280930

This gives you an idea if the system is improving or not. You can see that in this

case it isn't, because we don't have enough data in our system and we haven't let tuning

run for enough iterations. Kill mert-moses.pl after a few iterations just to get some

weights to use.

If mert were to finish successfully, it would create a file

named work/tuning/mert/moses.ini containing all the weights we needed. Since we

killed mert, copy the best moses.ini config to be the one we'll use. Note that the weights

calculated in run1.cmert.log were used to make the config file for run2, so we

want run2.moses.ini

cp run2.moses.ini moses.ini

Insert weights into configuration file

cd ../../../
tools/scripts/reuse-weights.perl work/tuning/mert/moses.ini <
work/model/moses.ini > work/tuning/moses-tuned.ini
tools/scripts/reuse-weights.perl work/tuning/mert/moses.ini <
work/model/moses-bin.ini > work/tuning/moses-tuned-bin.ini

PART V Filtering Test Data

Filtering is another way, like binarizing, to help reduce memory requirements. It

makes smaller phrase and reordering tables that contain only entries that will be used for

a particular test set. Binarized models don't need to be filtered since they don't take up

RAM when used. Moses has a script that does this for us, which we'll apply to the

evaluation test set we prepared earlier:

tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/filter-model-given-
input.pl work/evaluation/filtered.nc-test2007 work/tuning/moses-
tuned.ini work/evaluation/nc-test2007.lowercased.fr

105

There is also a filter-and-binarize-model-given-input.pl script if your

filtered table would still be too large to load into memory.

PART VI Run Tuned Decoder on Development Test Set

We'll try this a few ways.

• First, reusing the weights from tuning, without filtering:
• nohup nice tools/moses/moses-cmd/src/moses -config

work/tuning/moses-tuned.ini -input-file work/evaluation/nc-
test2007.lowercased.fr 1> work/evaluation/nc-
test2007.tuned.output 2> work/evaluation/tuned.decode.out &

• Next, with the filtered phrase table from the output of the filtering step:
• nohup nice tools/moses/moses-cmd/src/moses -config

work/evaluation/filtered.nc-test2007/moses.ini -input-file
work/evaluation/nc-test2007.lowercased.fr 1> work/evaluation/nc-
test2007.tuned-filtered.output 2> work/evaluation/tuned-
filtered.decode.out &

• Finally, if you performed binarizing, you can try that too:
• TMP=/tmp nohup nice tools/moses/moses-cmd/src/moses -config

work/tuning/moses-tuned-bin.ini -input-file work/evaluation/nc-
test2007.lowercased.fr 1> work/evaluation/nc-test2007.tuned-
bin.output 2> work/evaluation/tuned-bin.decode.out &

All three of these outputs should be identical, but they will take different

amounts of time and memory to compute.

PART VII Evaluation

Train Recaser

Now we'll train a recaser. It uses a statistical model to "translate" between

lowercased and cased data.

mkdir work/recaser
tools/moses-scripts/scripts-YYYYMMDD-HHMM/recaser/train-recaser.perl -
train-script tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/train-
factored-phrase-model.perl -ngram-count tools/srilm/bin/i686/ngram-
count -corpus work/corpus/news-commentary.tok.en -dir
/home/jschroe1/demo/work/recaser -scripts-root-dir tools/moses-
scripts/scripts-YYYYMMDD-HHMM/

106

This goes through a whole GIZA and LM training run to go from lowercase

sentences to cased sentences. Note that the -dir flag needs to be absolute.

Recase the output

tools/moses-scripts/scripts-YYYYMMDD-HHMM/recaser/recase.perl -model
work/recaser/moses.ini -in work/evaluation/nc-test2007.tuned-
filtered.output -moses tools/moses/moses-cmd/src/moses >
work/evaluation/nc-test2007.tuned-filtered.output.recased

Detokenize the output

tools/scripts/detokenizer.perl -l en < work/evaluation/nc-
test2007.tuned-filtered.output.recased > work/evaluation/nc-
test2007.tuned-filtered.output.detokenized

107

Appendix V: Sclite manual

This manual has been performed at the International Computer Science

Institute[5]

NAME

sclite - score speech recognition system output

SYNOPSIS

sclite -r reffile [fmt] -h hypfile [fmt [title]] OPTIONS

DESCRIPTION

The program sclite is a tool for scoring and evaluating the output of speech

recognition systems. Sclite is part of the NIST SCTK Scoring Tookit. The program

compares the hypothesized text (HYP) output by the speech recognizer to the correct, or

reference (REF) text. After comparing REF to HYP, (a process called alignment),

statistics are gathered during the scoring process and a variety of reports can be

produced to summarize the performance of the recognition system.

THE ALIGNMENT PROCESS

The Alignment process consists of two steps: 1) selecting matching REF and

HYP texts, and 2) performing an alignment of the reference and hypothesis texts.

Step 1: Selection of matching REF and HYP texts

Sclite accepts as input a wide variety of file formats. The type of input formats

define the algorithm for selecting matching REF and HYP texts. Currently sclite uses

four algorithms:

Utterance ID Matching:

Input reference and hypothesis files in "trn" transcript format can be aligned by

either dynamic programming (DP) or GNU's "diff".

When alignments are performed via DP, corresponding REF and HYP records

with the same utterance id's are located in the REF and HYP files. DP Alignment and

108

scoring are then performed on each pair of records. Only the utterance ID's present in

the HYP file are aligned and scored. This means the REF file may contain more

utterance records than the HYP.

When "diff" is used for alignment, corresponding REF and HYP records with

the same utterance id's are located in the REF and HYP files. Rather than execute "diff"

for each pair of records, all matching REF and HYP pairs are re-formatted to be newline

separated words and written to a temporary files. Using the two temporary files, "diff" is

then called to perform a global alignment. The output of "diff" is re-chunking into

REF/HYP records by applying the rule: include all words in the output stream up to and

including the last word in the reference record.

The reference file can contain extra transcripts, only needed transcripts are

loaded.

Word Time Mark Matching:

When both the REF and HYP files are in the "ctm" format, The first step in the

alignment process is to segment both the reference and hypothesis word lists by locating

common areas of silence, (i.e. the absence of a word time mark). Once completed, the

resulting "segments" are aligned via dynamic programming and scored as usual.

By default, the DP alignment is performed using word-to-word distances

measures of: 0, 3, 3, 4 for correct, insertions, deletions and substitutions respectively.

Optionally, the command line flag '-T' forces the alignments to be performed

using time-mediated alignments.

Reference Segment Time Mark to Hypothesis Word Time Mark

When the reference file format is "stm" and the hypothesis file format is "ctm",

sclite chops up the hypothesis file into regions matching the reference segments.

Currently, there a two methods of chopping the hypothesis file. The method is

dependent on the text alignment algorithm.

When DP alignments are performed, the hypothesis file is segmented to match

the reference segments by selecting the string of hypothesized words whose times occur

before the end of each reference segment. The midpoint time of a word is used to

109

determine if the word falls within a segment. DP alignments are then performed on the

selected hypothesis words and the reference segment.

If the alignments are performed via "diff", pre-process the input reference and

hypothesis texts, creating temporary reference and hypothesis files with one word per

line. Then use GNU's "diff" program to perform a global alignment on the word lists.

The output of "diff" is re-chunked into segments for scoring. Alternate reference

transcripts can not be used with "diff" alignments.

Reference Segment Time Mark to Hypothesis Text file

When the reference file format "stm" and the hypothesis file format "txt" are

used as inputs, the same alignment and scoring algorithm is used as describe above

under the label "Reference Segment Time Mark to Hypothesis Word Time Mark" by

GNU diff alignments.

Step 2: Text Alignments

Sclite can use either of two algorithms for finding alignments between reference

and hypothesis word strings. The first, and most widely accepted, uses dynamic

programming (DP) and the second uses GNU's "diff", a FSF (Free Software

Foundation) program for comparing text files.

Dynamic Programming string alignment:

The DP string alignment algorithm performs a global minimization of a

Levenshtein distance function which weights the cost of correct words, insertions,

deletions and substitutions as 0, 3, 3 and 4 respectively. The computational complexity

of DP is 0(NN).

When evaluating the output of speech recognition systems, the precision of

generated statistics is directly correlated to the reference text accuracy. But uttered

words can be coarticulated or mumbled to where they have ambiguous transcriptions,

(e.i., "what are" or "what're"). In order to more accurately represent ambiguous

transcriptions, and not penalize recognition systems, the ARPA community agreed upon

a format for specifying alternative reference transcriptions. The convention, when used

on the case above, allows the recognition system to output either transcripts, "what are"

or "what're", and still be correct.

110

The case above handles ambiguously spoken words which are loud enough for

the transcriber to think something should be recognized. For mumbled or quietly spoken

words, the ARPA community agreed to neither penalize systems which correctly

recognized the word, nor penalize systems which did not. To accommodate this, a

NULL word, "@", can be added to an alternative reference transcript. For example,

"the" is often spoken quickly with little acoustic evidence. If "the" and "@" are

alternates, the recognition system will be given credit for outputting "the" but not

penalized if it does not.

The presence of alternate transcriptions represents added computational

complexity to the DP algorithm. Rather than align all alternate reference texts to the

hypothesis text, then choose the lowest error rate alignment, this implementation of DP

aligns two word networks, thus reducing the computational complexity from 2^(ref_alts

+ hyp_alts) * O(N_ref * N_hyp) to O((N_ref+ref_alts) * (N_hyp+hyp_alts)).

For a detailed explanation of DP alignment, see TIME WARPS, STRING

EDITS, AND MACROMOLECULES: THE THEORY AND PRACTICE OF

SEQUENCE COMPARISON, by Sankoff and Kruskal, ISBN 0-201-07809-0.

As noted above, DP alignment minimizes a distance function that is applied to

word pairs. In addition to the "word" alignments which uses a distance function defined

by static weights, the sclite DP alignment module can use two other distance functions.

The first, called Time-Mediated alignment and the second called Word-Weight-

Mediated alignment.

Time-Mediated Alignment

Time-Mediated alignment is a variation of DP alignment where word-to-word

distances are based on the time of occurence for individual words. Time-mediated

alignments are performed when the '-T' option is exercised and the input formats for

both the reference and hypothesis files are in "ctm" format.

Time-mediated alignments are computed by replacing the standard word-to-

word distance weights of 0, 3, 3, and 4 with measures based on beginning and ending

word times. The formulas for time-mediated word-to-word distances are:

D(correct) = | T1(ref) - T1(hyp) | + | T2(ref) - T2(hyp) |
D(insertion) = T2(hyp) - T1(hyp)

111

D(deletion) = T2(ref) - T1(ref)
D(substitution) = | T1(ref) - T1(hyp) | + | T2(ref) - T2(hyp) | + 0.001

Distance for an Insertion or Deletion of the NULL Token '@' = 0.001

Where,

T1(x) is the beginning time mark of word x

T2(x) is the ending time mark of word x

Word-Weight-Mediated Alignment

Word-weight-mediated alignment is a variation of DP alignments where word-

to-word distances are based on pre-defined word-weights. Each word has a unique

weight assigned to it, via either a word-weight-list file, using the -w option, or through a

language model file, using the -L option. The formulas for word-weight-mediated word-

to-word distances are:

D(correct) = 0.0
D(insertion) = W(hyp)
D(deletion) = W(ref)
D(substitution) = W(hyp) + W(ref)
Distance for and Insertion or Deletion of the NULL Token
'@' = 0.001

Where W(x) is the weight assigned to word 'x'.
String alignments via GNU's "diff":

While the DP algorithm has the advantage of flexibility, it is slow for aligning

large chunks of text. To address the speed concerns, an alternative string alignment

module, which utilizes GNU's "diff", has been added to sclite. The sclite program pre-

processes the input reference and hypothesis texts, creating temporary reference and

hypothesis files with one word per line. Then GNU's "diff" program is used to perform

a global alignment on the word lists and the output is re-chunked into utterances or text

segments for scoring.

Alignments can be performed with "diff" in about half the time taken for DP

alignments on the standard 300 Utterance ARPA CSRNAB test set. However, in the

opinion of the author, "diff" has the following bad effects:

1. it can not accommodate transcription alternations,
2. "diff" does not produce the same alignments as the DP alignments,

112

3. there is an increase measured error rates.

THE SCORING PROCESS

After reference and hypothesis texts have been aligned, scores are tallied for

each speaker and each ref/hyp pair. After the tallies are made, a variety if output reports

are generated by using the '-o' option. Here is a set of examples.

The categories tallied are:

Percent of correct words = # Correct words
Reference words * 100

Percent of substituted words = # Substituted words
Reference words * 100

Percent of inserted words = # Inserted words
Reference words * 100

Percent of deleted words = # Deleted words
Reference words * 100

Percent of sentence errors = # incorrect ref and hyp pairs
ref and hyp pairs * 100

A variation in scoring called Weighted-Word Scoring can also be implemented

by sclite. After Word-Weight-Mediated Alignment, the word weights can be tallied to

produce weighted-word scores. The formulas for weighted-word scoring are very

simliar to word scoring described above. The difference is rather than assume each word

has the same weight, 1 in the case of word scoring, each individual word has a different

weight. The word scoring formulas become:

Weighted Percent of correct words = Sum of W(hyp) if correct
Sum of W(ref) * 100

Weighted Percent of substituted words = Sum of W(hyp) + W(ref) if substituted
Sum of W(ref) * 100

Weighted Percent of inserted words = Sum of W(hyp) if inserted
Sum of W(ref) * 100

Weighted Percent of deleted words = Sum of W(ref) if deleted
Sum of W(ref) * 100

113

W(hyp) is the weight assigned to a hypothesis word, and W(ref) is the weight

assigned to a reference word. Optionally deletable words have the default weight of 0.0.

WORD CONFIDENCE MEASURE EVALUATION

Confidence scores for each hypothesized word were requested of the LVCSR

(Large Vocabulary Speech Recognition) participants beginning with the April 1996

evaluation. Each site was asked to do its analysis of these scores which were not

processed by NIST. A review meeting was held at NIST in August 1996 which resulted

in a decision to apply an agreed upon standard metric.

Confidence scores as they have been implemented are associated with each

hypothesized word. (The issue has been raised whether for languages such as Mandarin,

where character error rate is considered the primary measure of performance, the

confidence ought to be associated with characters.) The confidence score pc, associated

with a word must be in the closed interval [0,1] and presumably, given the entropy

related metric defined below, in the open interval (0,1). It should represent the system's

best estimate of the a posterior probability that the hypothesized word is correct.

(Correct here necessarily is with respect to an alignment procedure of the reference and

hypothesis word strings.)

A single metric to use in the evaluation of confidence scores was adopted at the

August meeting. This is a normalized version of the cross entropy or mutual

information. Specifically, the metric os defined as:

Sclite will automatically detect the presence of confidence measures when

reading in a hypothesis "ctm" file. When sclite detects the confidence scores, the report

114

genererated by the options "-o sum" has an additional column containing the

Normalized Cross Entropy (NCE).

Output graphs concerning confidence estimates are generated by using the '-C'

option. A variety of graphs can be created:

DET Curve Example
Binned Histogram Example
Word Confidence Score Histogram Example

REVISION HISTORY

See revision.txt in the main directory of the sclite source code directory package.

EXAMPLE USES OF SCLITE

The sclite scoring utility was written to be used as a standard scoring tool for the

ARPA speech recognition benchmark tests. Since evaluation paradigms have changed

over the past several years, file formats and scoring proceedures have changed as well.

This utility supports the following speech recognition benchmark tests:

Utterance based evaluations:

Resource Management
ATIS (Airline Travel Information Systems):

Found speech evaluations:

Hub 4 - Marketplace and Broadcast News
Hub 5 - LVCSR Switchboard

