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Abstract

Since ages people have been wondering the inner workings of brain.
There is more and more information about processes involving particular
brain regions, yet synthesizing neural-networks in a large scale has always
been a problem. Despite the fact that the popular desktop computer
is becoming more powerful, simulating massively parallel computations
aways proved to be a challenge. Due to its genericness, in very specialized
work, such as neural networks, it is far better to design and use dedicated
array of processors.

Such approach has been used in development of the Ubichip – a device
designed specifically for such purposes. The design goal was to simplify the
execution elements to suit the needs of efficient neuron model algorithms
emulation.

As with every development cycle of a complex tool there are many tasks
that may be carried out in parallel. This, of course, effects in allowing
the development team to shorten the cycle and provide the solution faster.
This however, requires a set of tools that will allow to prototype and verify
work progress against some set of basic rules.

The Ubichip was already supported by a toolkit named SpiNDeK,
that allowed to create networks and with the use of ModelSim simulate
the code. This solution for proof-checking the algorithms however proved
to be cumbersome and due to many levels of indirection – slow. To in-
crease efficiency when working with code, the programmer should not
have to wait endlessly watching the progress bars. To remedy this, im-
prove efficiency and encourage more precise tuning and development of
new neuron-model algorithms the Ubichip Virtual Machine was born.

At first it was just meant to be a simple visualization tool, but as it
turned out there was a missing link in the chain of tools available for the
Ubichip, which had to be filled.

Thus, in this work a virtual machine for the Ubichip has been devel-
oped, as well as a visualization tool that enables a convenient display of
the evolution of spiking neurons in a network.
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Glossary
AER

Address Event Representation

ALU
Arithmetic Logic Unit

CAM
Content Addressable Memory

CIL
Common Intermediate Language

CPU
Central Processing Unit

GC
Garbage Collector

GUI
Graphical User Interface

HTML
HyperText Markup Language

JIT
Just-in-Time compiler

LSB
Least Significant Bit

MSB
Most Significant Bit

MSIL
Microsoft Intermediate Language

OS
Operating System

PC
Program Counter
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PE
Processing Element

RPN
Reverse Polish Notation

SIMD
Single Instruction Multiple Data

SYA
Shunting-yard algorithm

UI
User Interface

VM
Virtual Machine

XML
eXtensible Meta Language
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1 Introduction

Rapidly changing world around requires us to constantly adapt and solve in-
creasingly demanding tasks. Methods of labor and design have changed many
times during the last decade, only to create new challenges. In late 1980’s com-
puters began to play more important role, as Computer-aided Design software
emerged and allowed us to carry out more and more complex tasks, by managing
growing number aspects of design by itself, allowing designers to concentrate
on function and key feature optimizations. Many simulation frameworks came
along with CAD software. At first they were relatively very limited due to
hardware constrains. Yet with the development of modern CPUs the power to
simulate became very cheap. But, as stated in the beginning, with new knowl-
edge new questions arose, which required other approach – an approach that is
no longer one domain specific, is not strictly tailored towards certain problem
solving, and is flexible and self-adaptable.

The nature itself seems to be the best answer. Many patterns found in the
world surrounding us were developed over million years, taking it from simple
yet brilliant ideas into almost pure perfection. Evolution observed among all
living beings allows to optimize key aspects of life to preserve fitness and self-
adapt to changes in the surrounding world. One such brilliant idea of Mother
Nature is the brain which essentially has simple principles of operation, but put
together its size and complexity and we have the most capable problem solving
tool known to man. Its brilliance is the inherent ability to adapt, tolerate faults,
precisely interpret incoming stimulus and to match or even guess patterns.

First attempts to create a working model of a neural network were done by
Rosenblatt in 1957[11]. These was a primitive electro-mechanical device that
was meant to recognize symbols, but as it turned out it was not working for
more complex symbols and was also sensitive to position of it and the size on
the viewing field. Next successiful concept was proposed by Bernard Widrow
in 1960. It was a network built from many electro-chemical elements called
Adaline (Adaptive linear element)[1].

No wonder that with growing availability of tools the drive to simulate and
understand better neural networks was propelled. Such simulations, however,
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seemed and still are a very demanding task. The previously mentioned com-
puters, despite their increasing computation capabilities, still did not provide
sufficient processing power to simulate large scale neural networks in real time.
The key word here is “simulation” – which means that there are levels of in-
direction. This effectively means that instead of harnessing full available CPU
power, we must sacrifice some of it to do some management and translation of
hardware features. The more complex and more flexible the simulation software
is, the more levels of indirection it may have leading to inferior performance.

If the simulation of neural network is such an ineffective task on generic CPUs
why not create a tailored design suited to resolve the problem of performance?

The first effort to create a solution for building more sophisticated networks
at UPC and several other European universities, was project POETIC. It was
based around a notion of building chip containing directly mapped neurons.
However building larger networks would require enormous amounts of chips
and managing its interconnections would be a error prone and mundane task.
The concepts, experience and the conclusions helped other projects.

1.1 Objectives

The initial objective of my project was to deliver a tool for visualize some aspects
of Spiking Neural Networks simulated by the Ubichip. Yet with the ongoing
development, the focus has shifted from this visualization tool to a high level
of abstraction software implementation of Ubichip that is coupled with GUI
(Graphical User Interface) capable of presenting graphically its results. This
software implementation, referred further as Virtual Machine, became the main
concept around which this work is based.
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2 Spiking Neural Networks

For years scientists have studied human brains. First through extracting tissue
from animals and analyzing samples under a microscope, then by isolating single
fibers and applying small currents to it, finally trying to sample currents on a
living animal and also applying small currents to stimulate different brain areas.
The ongoing research on human brain allows us to deeper understand its inner
workings and how to create better models.

Use of modern computers capable of simulation of a discrete set of neuron and
synapse properties allowed to gain further understanding of their interaction.
Biological discoveries, careful study and observation led to derivation of math-
ematical models – starting from simplified versions – created to allow fast and
simple computations of larger neural networks, to more elaborate description –
used in smaller networks, but geared towards deeper understanding of processes
involved, with a whole range of models available in between those two.

Currently a handful of different neural network models exists, each focusing on
different features of their functioning. The European Perplexus project con-
centrates on the emulation of large-scale Spiking Neural Networks, which fall
into the third generation of neural network models, taking into account not
only neuronal and synaptic state but also the concept of time. This approach,
contrary to typical perceptron networks, means that the neurons do fire only
when its membrane potential1 reaches a specified threshold value. The signal
emitted by the neuron causes the change of potentials of other connected neu-
rons. This model was proposed in 1952 by Alan Lloyd Hodgkin and Andrew
Huxley[15], and has been successively refined. The spiking neuron model used
in the Perplexus project was proposed by Iglesias and Villa[6].

2.1 Classic neuron model

A neuron or nerve cell is an element from which the nervous system is built –
this includes brain, spinal cord and connections to and between other tissues

1Membrane Potential – an intrinsic quality of the neuron related to its membrane electrical
charge
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like muscles. Neuron cell is responsible for transmitting as well as for process-
ing informations. It is excitable by external electrical currents, but there are
also some neurons that are self-excitable and spike regularly. The informa-
tion between cells is transmitted through with involvements of electrochemical
methods.

Axon

Dendrite
Axon terminal

Soma

Myelin sheathNucleus

Figure 1: Overview of nerve cell

The neuron (as seen on Figure 1) may be divided into three functional parts.
First one is the cell body, also called soma, which contains the nucleus that pro-
duces the most of RNA used to produce proteins. Its membrane integrates input
stimuli from other neurons and fires (produces a spike), when the membrane
potential rises over a threshold. Second part are the dendrites through which
the neuron receives the impulses called spikes. The last part is the axon ending
with axon terminals that transmit the impulse through synapses – connections
with nearby cells. There are also cells that are wrapped around axon, and act
as a insulator as well as greatly increase the speed of information transfer, this
is called myelin sheath produced by Schwann cells.

A single neuron transmits impulses from dendrites to axons. With some careful
observations and experiments a simple mathematical model can be proposed
which acts as a base for our further study.

sj = Φ

(∑
i

wjisi

)
(1)

This is a basic equation for evaluation of simple artificial neurons output or,
more precisely, its post-synaptic spike (sj), based on inputs – pre-synaptic spikes
(si). The wji provides a synaptic weights table and Φ is an activation function.

Neural networks are made of vast numbers of interconnected neurons. There are
of course no synaptic weights and activation function which are just abstracts of
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more complex processes involved in the workings of a neuron and its interaction.
The model above was used and extended by scientists until more sophisticated
kinetic models were developed, such as Hodgkin-Huxley model, but it still is
useful for basic understanding of neuron workings.

2.2 Bioinspired spiking neuron model

The neuron model used in the Perplexus project is more complicated that the
one shown in the previous section. The basic model uses only current states
of input and has no memory effect. This effectively disables it from achieving
more accurate results and with availability of more advanced models should be
avoided unless used for a specific purpose.

The model used in the Perplexus project was proposed by Javier Iglesias and
Alessandro E.P. Villa[6] and uses more complex equations for both postsynaptic
spike and synaptic weight. All neurons are simulated using leaky-integrate-and-
fire model.

Each time step the membrane potential is calculated using following equation:

Vi(t+ 1) = Vrest[q] +Bi(t)

+ (1− Si(t))×
((
Vi(t)− Vrest[q]

)
kmem[q]

)
+
∑
j

wji(t) (2)

where Vrest[q] is the resting potential value, Bi is the background activity, Si

is the state of the unit, kmem[q] = e
−1

τmem[q] is the leakage constant, wji are
post-synaptic potentials (see equation 4).

The units state Si, as used in the Perplexus project, is a function of membrane
potential Vi and is defined as:

Si(t) = H
(
Vi(t)−Θ[q]i

)
, where H(x) =

{
0, x < 0

1, x ≥ 0
(3)
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The post-synaptic potential wji is a function defined as:

wji(t+ 1) = Sj(t)Aji(t)P[qj ,qi] (4)

where Sj is state of pre-synaptic unit, P[qj ,qi] defines type of synapse and Aji is
its activation level.

The activation level is defined by following expression:

Aji =



0, (Aji = 1) ∧ (Lji < Lmin)

1, (Aji = 0) ∧ (Lji < Lmax) ∨ (Aji = 2) ∧ (Lji < Lmin)

2, (Aji = 1) ∧ (Lji < Lmax) ∨ (Aji = 3) ∧ (Lji < Lmin)

4, (Aji = 2) ∧ (Lji < Lmax)

Aji, (Lji ≥ Lmax) ∧ (Lji ≤ Lmin)

(5)

where Lmax and Lmin are user-defined boundaries and Lji is real-valued variable
used to implement plasticity rule. This variable is defined as

Lji(t+ 1) = Lji(t)× kact[qj ,qi] + (Si(t)Mj(t))− (Sj(t)Mi(t)) ,

where kact[q] = e
−1

τact[q] (6)

where Mj and Mi are memories of latest spike interval expressed by following
equations:

Mj(t+ 1) = Sj(t)Mmax[qj ] + (1− Sj(t))Mj(t)ksyn[qj ] (7)

Mi(t+ 1) = Si(t)Mmax[qi] + (1− Si(t))Mi(t)ksyn[qi] (8)

The P defines the so-called type of synapse that is a potential value expressed
in mV that causes depolarization or hyperpolarization. Background activity is
simulating noise that is generated by firing of nearby neurons as well as other
phenomenon.

This complex algorithm has been already implemented (see Appendix E) and
its results are shown in Section 7. Because of the programmability of both the
hardware implementation of Ubichip and the VM the current algorithm can be
further extended or replaced by another one completely.
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3 Ubichip

An integrated circuit targeted to support the real-time emulation of large scale
spiking neural networks was developed with the Perplexus project as a EU-
funded project in collaboration with other European universities. The so-
called Ubichip supports in its current implementation the emulation of 100
neurons and 300 synapses per neuron. The architecture allows emulation of
a network consisting from at least 10,000 neurons. Each of the participat-
ing universities contribute different experience to the project. The Université
Joseph Fourier Grenoble (UJF), France, provide mathematical model of the
biologically-inspired spiking neurons. At Universitat Politècnica de Catalunya
(UPC), Spain, the Advanced Hardware Architectures Group develops the Ubichip
architecture – the custom-designed processor for parallel computations. Closely
to UPCs work, Politechnika Łódzka (TUL), Poland, verifies and synthesizes the
hardware Ubichip models from VHDL descriptions.

The main focus has been placed on building a scalable platform of wirelessly con-
nected units, to execute and observe inner workings of neural network. Unlike
computer-based projects, utilizing generic CPUs like x86 or ARM architecture,
Perplexus focuses on the use of custom built hardware tailored for execution of
vast amount of parallel operations.

3.1 Hardware

Better execution speed was achieved by deferring parallel computations to a
large yet simple array of execution units which is governed by a Sequencer
unit both dispatching instructions to Processing Elements (PE) and executing
control instructions. Such separation of tasks allowed to simplify the required
hardware for each PE while allowing certain degree of flexibility and superior
performance to more generic solutions.
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Figure 2: Detailed Ubichip architecture (multiprocessor mode)

3.1.1 PE array

The Ubichip processes data in digital domain with neuron-level parallelism.
Contrary to generic CPUs which are able to process data in series only, or given
array of CPUs or multi-core processor, computations could be carried out in par-
allel, but it would be done with high overhead cost for thread synchronization,
the Ubichip is a simple yet efficient SIMD processor tailored for such opera-
tion. Furthermore, as it is fully programmable, it may be used with different
algorithms.

On Figure 2 the Ubichip architecture is shown in detail. Each PE is made of four
macrocells, 4 bits each, making PE a 16-bit unit. Each macrocell architecture
is shown on Figure 3.

Each macrocell is capable of 4-bit computations. While it may seem to be a
low value compared to nowadays 64-bit CPUs in desktop computers or 128-bit
ones in gaming consoles or GPUs, its strength lies in the capability to group
together macrocells, creating effectively PEs of desirable bit size. What is also
important is that high precision is not required in bioinspired neural networks.
Grouping macrocells together is done by configuring border routing, so that e.g.
carry and zero bits are being propagated accordingly. It can be adapted to the
precision requirements for the algorithm to be executed.
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Figure 3: Macrocell logical overview

3.1.2 Sequencer

The governor for all PEs is the Sequencer unit which executes control and man-
agement instructions while dispatching all arithmetics to the array. This way the
whole processor works on a SIMD scheme (Single-Instruction Multiple-Data).
Such approach separates more complex control and memory access instructions
and encapsulates them in one unit. There are, of course, drawbacks of this
concept – e.g. there are no conditional instruction like the ones used in most
assembler codes or higher level programming languages – instead a notion of
FREEZE/UNFREEZE was introduced. It offers certain benefits over branching in-
structions, like e.g. a steady number of cycles per execution phase, which results
in simplification of cross-chip synchronization.

3.2 Working cycle

The code execution is divided into two stages – execution phase, referred further
as phase 1, and CAM controller mode phase, referred as phase 2. During the
first phase, as the name implies, the algorithm code is executed, until STOP
or HALT opcode is encountered. Because the second opcode effectively stalls
all further processing we will consider only STOP to be the way to enter into
phase 2.
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Second stage is meant for exchanging spikes between neurons and synapses. This
is done by a simple bus called AER (Address-Event Representation). During
this phase CAM controller scans through all PEs (neurons) for occurring spikes,
to be broadcasted by means of the AER bus. To identify incoming spikes clearly
the information encoding each spike contains unique chip id, as all Ubichips have
a unique id number assigned during setup, along with x and y positions. Then
each spike on the AER bus is compared against CAM memory of each Ubichip
and if pattern is matched, the spike is stored in the right place in the SRAM.

When all PEs have been scanned and spikes transfered, Ubichips enter phase 1
and the execution is resumed. This closes the cycle.
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4 The Virtual Machine

4.1 The main idea

4.1.1 The Real World

The notion of virtualizing is widely used nowadays. From small and sim-
ple scripting languages like Ruby[5] using specialized virtual execution units,
through more advanced enviroments like older versions of Java[13] (the newer
ones use JIT (Just-In-Time) compilation), to full fledged virtualization soft-
ware like VMWare ESX[14]. All of these are built for different purposes, but
they allow easy creation of hardware-independent feature-rich execution envi-
roments. This simplifies both development and deployment of software. Tools
like VMWare Workstation or Sun VirtualBox[12] allow to use server hardware
more efficiently, thus effectively giving opportunities for reducing costs. It is
achieved by paralellizing multiple tasks and OSes (Operating Systems) on single
hardware.

These practices are very often used in modern web infrastructures – because a
web server only responds to request sent by users, most of the time it is idle.
Using one machine solely for this purpose would incur much waste of resources.
This is where virtualization technologies start to become useful. They allow to
setup multiple “guest” OSes, so they do not interfere with each other providing
high security through separation, on a single hardware, thus utilizing it more
efficiently. More advanced solutions allow managing larger infrastructures of
hardware hosts, even with seamless switching virtual machines between hosts
to distribute the load.

4.1.2 SpiNDeK tool

With development of Ubichip hardware, a tool to automate building of binary
code and all other necessary files like contents of CAM memory were required.
A toolkit called SpiNDeK was developed as a part of Master Thesis of Michael
Hauptvogel[4]. It is created and tailored towards use with a specific simulation
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algorithm developed along with it. With a relatively simple GUI (Graphical
User Interface) it allows range of tasks to be carried out. Most important of
them are:

• setting of various neuron parameters,

• generating a neural network of user-specified size and interconnections
using models for connection-type and length distribution,

• generating data segment for RAM memory contents,

• joining generated data section with existing algorithm,

• assembling code and storing result in a VHDL array for simulation,

• invoking ModelSim to carry out simulation and parse the results into a
HTML table.

4.1.3 Research

The SpiNDeK tool has been used to create neural networks and the digital
VHDL simulation is being carried by ModelSim. The simulation however is
slow, because for every change of parameters the whole model must be recom-
piled. When this process is over, the simulation itself takes significant amount
of time, as the ModelSim simulates not only the actual code but also the FPGA
underneath. To add even more complexity the output is a simple text table
with a lot of data. This of course is not very helpful and is hard to read by
us, humans. There is too much information at any given moment. It would be
much easier to be able to graphically express these values. This is where the
idea of building a VM for the Ubichip came into being.

At first, as mentioned above, the sole effort was put into increasing of code
execution speed, thus allowing faster viewing of the results and developing the
visualization software. However as this concept expanded it became clear that
it may deliver substantial benefits for code developers allowing them to in-
stantaneously monitor all available parameters in an easy manner. Instead of
searching through one big result table the VM is able to display the variables
in one specific place, so that it may be observed separately.
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4.2 Differences from the hardware implementation of
Ubichip

To achieve performance required to execute Ubichip code the architecture could
not be just copied and implemented exactly as in hardware version. Such ap-
proach would incur too much overhead as well as cause problems with maintain-
ability. To overcome this, the chip design was divided into its logical elements
and only these were implemented. To see the differences it is best to show them
as a graphical representation.
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(b) Virtual Machine

Figure 4: Comparison of Ubichip and Virtual Machine architecture

Most visible difference is that the architecture presented on 4 is open and is
extended just by adding other elements, which are then joined by AER bus. On
the other hand the VM is self-contained and may not be extendable in a way
the Ubichip does. It may be possible to integrate with other system by either
extending VM class to act as an extension to other AER buses or subclassing
Ubichip class, when the computer should act as a master for synchronization
and controlling external units. Both methods provide different benefits, but due
to object-oriented approach they should be easily implementable with the use
of existing code. More detailed information on the extension possibilites may
be found in section 8.2.

There are also differences that are not visible in the provided picture. One of
the most significant distinction is that the Ubichip processing macrocells are
composed of four smaller parts called ubicells, which are the actual processing
elements of the array. Because the VM is aimed at (relatively to previous
simulation method) fast throughput, a different approach had to be taken. The
single instance of virtual chip contains only the actual processing elements.
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There is an ongoing architecture development to enable Ubichip to be recon-
figurable, so the macrocells can be merged into processing elements of varying
bit-sizes (though they will be multiples of four). As mentioned earlier this is
not directly possible because of different architecture. In order to achieve sim-
ilar functionality in the VM a feature had been proposed by the promoter to
allow setting configurable register size, which effectively is the bit-size of the
processing element. However due to the fact that internal processing is done on
the 32-bit variables, this value is the limiting factor while configuring VM. For
more details refer to Section 4.5 on page 16.

Another difference is that the responsibility for data exchange between chips
belongs to the main class which also governs the work of every single virtual chip,
whereas AER bus is responsible solely for data exchange. Such approach allows
to easily simulate multiple chips and track the results of their interactions.

4.3 Assembly language

Because of the unorthodox instruction set, which does not directly support
conditional branching, the most effective way to program the Ubichip is to
use the low-level assembly. This compared to most high-level programming
languages seems to be a hard and mundane task, but in the end the code
fragments generated by hand usually execute faster or at least at the same
speed as code generated by a compiler. And since the whole idea of Ubichip
is geared towards just the simulation of neurons the actual code that needs to
be written is only the algorithm, which usually is not very long. The complete
instruction set available can be found in Appendix A.

The assembler file consists of three parts:

• definitions,

• data-segment and

• code.
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The first section is used to define values of certain labels that can be later used
multiple times when providing parameter for assembly command.

Next section being with a .data label and provides a way to define data needed
for the algorithm. Separate data fields are stored in a key/value pair. The key
can be used later in the code section.

In the last section the actual code is located, hence it begins with .code label. It
may be divided into different code blocks by placing code-labels beginning with
a dot. These labels can be then used with GOTO and GOTOF commands. Each
individual opcode may only take one parameter, but both VMs and SpiNDeKs
compiler support extended syntax (see Appendix B). For examples of assembly
code see Appendix E.

4.4 Assembler

To allow the user to view the results more rapidly after each code change the VM
is reading source code from a text file, which then is assembled into bytecode.
The bytecode is then being embedded in the same way as it would be expected
to be by the Ubichip:

1. Instruction Pointer

2. Data pointers

3. Code

4. Data.

The class responsible for the assembly process also reads additional segments of
code – the defines from which the main application gets the values for size of
the array and number of synapses. Its use is pretty straightforward and comes
down to supplying the source file to the constructor of the class. The result can
be then fetched from the Bytecode property of the object instance as array of
bytes.

Besides the native assembly code defined in Appendix A, the code generator
supports all command shorthands listed in Appendix B.
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The assembly process is split into three phases. During the first phase the source
file is tokenized. The definition section is read and a dictionary based on defined
symbols is created. The data is also read and stored internally along with its
labels. Finally, each line with command is split into command name and its list
of parameters. The complex commands are then split into sub-commands.

After that, in the second phase, the memory layout is created – placeholders for
pointers are created, and code is being translated into actual opcodes. Parallel
to this process a list of label addresses is being built and every appearance
of GOTO or GOTOF command is being tracked, for later step. Then the data is
appended after the code which leads to beginning of third pass.

The last step is only used to fill the placeholders for the data pointers with
appropriate addresses and writing code label addresses for GOTO and GOTOF
instructions.

The Code class also contains a helper method for retrieving commands from the
memory, which is being used by the code execution methods in the Ubichip
class.

4.5 Memory layout file

Due to the ever-changing and evolving nature of every development cycle my
attempt was to create a VM that is as flexible as it was possible to be done in
time I was given for this project. With such capabilities and tweaking options
the configuration may prove to be much complicated – each degree of flexibility
adds complexity both to the application code and the setup, making the usage
learning curve slower for the user.

In a simple project aimed at performing simple tasks many elements may be
hard-coded. It simplifies the development, allows rapid prototyping and often
also increases application performance. Such tools however, are very limited and
every change usually requires changing the code and recompiling whole project.
This, of course, is inconvenient, slow and prone to errors. So as long as project
is tuned to handle one specific task such approach may be sufficient. As the
project grows larger and is used by multiple users with different needs a different
solution must be used.
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4.5.1 Necessity is the mother of invention

First version of the VM was aimed at using rigid memory layout defined by
previous developers of algorithm. Soon however it became clear that work on
other algorithms needed different memory layout. This is when the idea of
memory layout file was introduced. At first it was primarily aimed just at
providing the structure of RAM contents, but soon adopted a few configuration
options which allow changing of PE registers size, pointer size and its step as
well as spike routing options to allow creator to specify its parametrized source
and destination.

The layout configuration is stored as a XML file – which is both easily readable
by humans and plenty of frameworks support it, allows hierarchical structures
and navigating though it is usually simple, yet efficient. Because the VM is
written in .NET Framework, which supports XML as its native configuration
format, it made implementation of configuration code an easy task.

The basic structure of the layout file is as follows:

<MemoryLayout>
<Options>
<!-- Options go here -->

</Options>
<Layout>
<Item>
<Segment>
<Variable />

</Segment>
</Item>

</Layout>
</MemoryLayout>
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4.5.2 Layout section explained

The Layout section defining the memory structure consists of many Items, each
being representation of one or few pointers located at the beginning of RAM
contents. The sequence in which Item elements appear should match exactly
the sequence in which they occur in memory.

The Segment element describes one memory segment. Data available at each
memory pointer is distributed equally among all declared segments, i.e.: basic
memory layout (which is included in Appendix F for reference) consists two dif-
ferent declared segments for synapses, and each segment is repeated the number
of neurons times.

Let’s assume we have 4 neurons, each having only one synapse. If each synapse
requires two segments to store all the necessary data this effectively means that
we have 8 segments in total. First half of this memory is then used as a sequence
of repeated variables declared in first segment (4 SP1 for different neurons) and
the other half as repeated variables of the second segment (four SP2s, one for
each neuron).

Each segment is divided into Variables, which define the name, size and offset
of the variable in each segment.

Because this may seem to be confusing at first, and a picture may be worth
thousand words its best to look at the graphical explanation of this concept
visible in figure 5.
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Figure 5: Memory layout explained

Each Item may have additional attributes:

name
Specifies the name of the element.

size
Specifies size of one segment in bits. Must be a multiple of 8.

quantity
Number of whole item repetitions, each repetition is using one pointer.
Default: 1.

segments
Sum of number of repetitions of every segment.

The last two of these attributes are expressions evaluated during setup. Avail-
able variables are: synapses, neurons.

Variables attributes:

19



name
Specifies the name of the variable. This field to be accessible for spike rout-
ing or by plot expressions should begin with a character and be followed
by alphanumerics. This value has to be unique among other Variable
elements.

offset
Specifies the offset in bits from the LSB. Default: 0.

size
Specifies size of the variable in bits. May not be greater than 32 bits.

4.5.3 Options section explained

In the Options section one can define using elements:

RegisterSize
Width of PE’s register. Range: 1–32.

PointerSize
Bit width of pointers located at the beginning of memory. Must be a
multiple of 8, but not larger than 32 bits.

PointerStep
Bit step occurring with unitary change of the pointer. Must be a multiple
of 8.

SpikeSource
See below.

SpikeDest
See below.

The SpikeSource and SpikeDest share the same node layout and attributes.
The source attribute specifies the behaviour of each spike accessors. You
may use memory, accumulator or none as its value depending on your specific
needs. If memory option is chosen, you have to define Item, Index, Segment and
Variable elements. The value of the first and the last is treated respectively
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as Item and Variable name attributes defined in the Layout section, while the
other two define expressions that are evaluated during each access. Available
variables: synapses, neurons, synapse, neuron. Using basic memory layout the
spike should be transfered to a specific Sj (refer to section 2.1), so the SpikeDest
may look similar to example below.

<SpikeDest>
<Item>synapses</Item>
<Index>synapse</Index>
<Segment>neuron</Segment>
<Variable>Sj</Variable>

</SpikeDest>

For a spike source one may want to use the PEs Accumulators LSB, or LSB of
R0, first register. This can be easily achieved by using following code.

<SpikeSource source="accumulator" />

For the more adventurous, who want to test different aspects of their algorithms
none set as source may prove useful e.g. for generating spikes. Basic setup of
none outputs a 0 every time when read, and discards every write when set as a
destination. The first of this behaviours can be altered by entering an expression
which is evaluated for every neuron/synapse read and if the evaluation value
is non-zero it is treated as a spike. The expression should be entered into a
Expression node, like in the code below.

<SpikeSource source="none">
<Expression>1*(neuron-2)*(synapse-1)</Expression>

</SpikeSource>

This feature, however, is experimental and should be currently treated as such.

For working examples see Appendix G.
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4.6 Boosting execution speed

The virtualization techniques proved to be very promising for both efficiency
and flexibility. The two versions of execution engines were developed as a proof-
of-concept, to showcase the benefits within this technology. First and currently
used engine is a bytecode parser which can execute code on a reference computer
with an equivalent of about 1MHz. During the development a second engine
was created to achieve even better efficiency. The bytecode parser was replaced
by a translation of Ubichips native code into CIL (Common Intermediate Lan-
guage)[8, 7] code, which upon execution is JIT compiled to the native code of
executing machine. This version has outperformed the basic one four times
yielding 4MHz virtualized processing power with use of a simple chip array (4
chips, 8x8 neurons each).
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5 User interface

The UI (User Interface) plays an enormous role in most of current programs.
This is because the graphical information is easily understood by us, in compar-
ison to pure text output which is harder to interpret and draw conclusion from.
Each UI is designed towards achieving of some more specific objective, but it is
meant to provide means of control and provide feedback to the user.

5.1 Main window
Main window (Fig. 6) is the main working space of the application. This window
integrates a lot of features and provides a way to control the VM. On the top
side of the window a menu bar provides user with options to create a new VM,
by opening assembly source file and providing path for CAM files.

5.1.1 Main tab

Main tab (Fig. 6) is divided into two sections – first showing current memory
contents of first chip, and the second one representing neuron layout graphically,
their excitement state (green when firing, red when not) and their connections
with other neurons. Unfortunatley, it cannot be distinguished which of the
synapses are excitatory and which are inhibitory. Clicking on the neuron adds
it to or removes from the list of tracked neurons. When at least one neuron is
on the list a window described in Section 5.5 is shown. When user removes last
neuron from this list the additional window is closed.

5.1.2 Debug tab

Debug tab (Fig. 7) presents values of various registers showing state of Sequencer
and individual Processing Elements. The number of visible columns can be
changed via Options tab described in section 5.1.4. The register values are
fetched after instruction execution, so results of every command is in the same
line, contrary to the output of SpiNDeK, which aligns differently opcode and
register data – in SpiNDeK the register data after opcode execution is shown in
the line following current, or to put it differently, register data is aligned with
a new opcode that is about to be executed.
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Figure 6: Main window tab
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Figure 7: Debug tab
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5.1.3 Log tab

Figure 8: Log tab displaying routing of spikes

The log tab (Fig. 8) displays spike signals that are sent along the virtual AER
bus and which synapses receive these signals.

5.1.4 Options

Options tab (Fig. 9) enables to choose which column user wants to display –
allowing to focus on particular register.

5.1.5 Spike propagation

Spike propagation tab (Fig. 10) allows to juxtapose all presynaptic and postsy-
naptic spikes. The values are added at ending of each phase.
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Figure 9: Options tab
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Figure 10: Spike propagation tab
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5.1.6 Variable access

Figure 11: Variable access tab

Variable access tab (Fig. 11) enables user to view values of variables defined
in the Memory Layout file. User may specify additional numbers for reading
variable from specific segment and index.

5.2 Open VM dialog

The dialog shown in figure (Fig. 12) is used for creating a new virtual Ubichip
infrastructure. By providing the assembly file and path to folder containing
*.mif files. The number of neurons on every chip is determined from the define
section of code, while the number of Ubichips equals the number of *.mif files.
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Figure 12: Open VM dialog

Figure 13: Plot window
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5.3 Plot window

Plot window (Fig. 13) displays time plots drawn using expressions defined by
the user. Because creating complex expressions is a non trivial task, the user
may save specific configuration of plot expressions to a file, for later use with
similar project. New plots may be added by clicking on the “Add” button or
copying existing ones. The second option is achieved by right-clicking on one
plot and choosing “Copy” from the menu (Fig. 14). Existing plots can be altered
by either double-clicking or choosing “Edit” from context menu. Other options
of the menu allow simple management of plots.

Figure 14: Plot context menu

5.4 Editing plot

Plot editing window (Fig. 15) allows definition of displayed plot name (for in-
formative purposes only), its expression, as well minimum and maximum value
(but it may be changed upon to accomodate showing of new sample). The
“Digital” checkbox enables better visibility of signals that are inherently digital
or are otherwise limited to a discrete set of values, and present the value in
a stepped way. In the read-only textbox below all accessible parameters are
displayed along with possible parameter ranges. Ranges are sets closed on both
sides. The valid operations are listed in Appendix D and few examples are
provided in Section 7.
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Figure 15: Plot edit window

Figure 16: Spike window
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5.5 Spike window

Spike window (Fig. 16) is a simple and easily readable form of displaying neurons
that fired.
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6 Implementation details

The main project objective was to deliver a tool that would allow a developer to
monitor various artificial network parameters. Initially it was meant to fetch the
data from the hardware instance of Ubichip. The VMwas developed primarily as
an aid in the development of the actual tool, but soon it became a larger project
of its own. At first, the VM was meant to increase the speed of development
process of the actual tool, but soon enough, after realizing the potential it had,
it became the main objective.

Nowadays programmers can choose from magnitude of high level languages de-
signed for fast application development and easy deployment. Also the num-
ber of additional libraries and tools provided by both community and lan-
guage/framework developers is astonishing. All this is meant to increase devel-
oper productivity by providing means to allow immediate application creation
with ready made components and help or even eliminate the possibility of writ-
ing insecure or faulty code. When choosing specific language many different
aspects should be considered. Beside the language itself one should also take
into account:

• compiler, speed of its code,

• the framework,

• available libraries,

• IDE,

• debugging capabilities and

• portability.
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6.1 .NET Framework

Due to the numerous reasons I will try to explain later, I have chosen C# as
my projects development language. It is object-oriented language, which is ac-
tively developed by Microsoft and was designed as a language for their .NET
Framework. This framework consists of CLI (Common Language Infrastruc-
ture) which is a stack-based code execution environment and variety of com-
pilers. The source code is compiled into a intermediate language called CIL
(Common Intermediate Language), which upon first execution is JIT compiled
into native code. .NET Framework makes extensive use of object references and
GC (Garbage Collector).

The language is placed as a rival to Sun Java, as it shares many similarities.
There are, of course, differences both in the syntax and in functionalities. The
main differences between their respective execution environments are that the
CLI was designed from ground up to host multiple languages, while Java Virtual
Machine was initially meant for Java only and was extended recently to support
other languages.

.NET is very rapidly expanding. It is being used for server-side dynamically
create web pages, as standalone desktop applications, services or components,
with the use of Compact Framework it may be used on smart phones or other
personal devices, and recently as client-side rich web application Silverlight[9].

6.2 Decision-making process

There are many reasons that contribute to the overall decision why have I cho-
sen this particular language. To name the most important arguments (in no
particular order):

• availability of great tools – most importantly Visual Studio which is fa-
mous not only for Intellisense technology that suggest use of possible meth-
ods, properties, classes, etc., but also provides extensive debugging capa-
bilities that are very helpful and provide deep insight on the program inner
workings; VS supports also some other neat features like code refactoring;
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• extensive collection of libraries, both built in the BCL and provided by
users;

• GC – the CLI handles freeing of resources,

• easy and powerful syntax (delegates, anonymous functions, lambda ex-
pressions),

• JIT – good execution speed, which can be further improved by building
dynamic methods suited for specific purposes,

• easy deployment – should easily run in any environment supporting .NET
Framework,

• some degree of portability – with improvements being done on Mono[10]
or DotGNU[2] projects.

What played a crucial role in this decision-making process was my professional
work experience which allowed me to start writing this project faster because of
my knowledge about both the framework and the language itself. Due to this,
the learning curve of new tools and techniques was very fast and allowed me to
focus on the project and its functionality.

6.3 UbichipVM Namespace

The code layout of UI is simple and makes use of VM interfacing classes. The
general overview of classes and their respective connections are shown in Fig-
ure 17.

MainDisplay is main UI (User Interface) class. It acts as the primary user
interface window. Manages VM and plot/spike windows.

OpenVM acts as advanced “open virtual machine” dialog. Allows user to setup
code file, CAM files directory, desired memory layout and network orga-
nization.

SpikeMemory is a helper class for storing spikes. MainDisplay provides the
data, while SpikeDisplay provides graphical output.
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Figure 17: General class overview

SpikeDisplay graphically represents spikes.

Plots provides a window for drawing plots from used defined expressions.

PlotEdit handles the editing of plotting expressions.

6.4 UbichipVM.code Namespace

While UI Namespace is straightforward, the code namespace is fairly complex.
There are a lot of associations, aggregations and compositions most of which
are shown on the class diagram shown in Figure 23.

In the following sections I will try to provide an overview of this namespace
most significant classes.

6.4.1 Ubichip

The most important class is the Ubichip class – it acts as a single instance of real-
world Ubichip: handles execution of code, memory controller (for phase 1) and
signaling external “devices” for synchronization. It provides also some statistics
about code execution – number of instructions executed and virtual clock cycles
per phase.
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Figure 18: Virtual Machine code namespace class overview; for more detailed
diagram see Appendix C.
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Ubichip (VM vm, Memory mem, CAM cam, int id, int width, int height,
int synapses) the constructor requires a valid reference to VM and Memory
classes, because of that it is meant to be instantiated by the VM class. Nev-
ertheless it may be created by hand for special purposes. id is the identifi-
cation number that will be used when a spike is generated for broadcasting.
The last three arguments define basic organization information.

Ubichip (VM vm, Memory mem, CAM cam, int id, int width, int height,
int synapses, int version) extended version of constructor meant for
choosing behaviour of certain opcodes. Possible values: 0, 1

ProcessingElement Select (int x, int y)method for retreiving an instance
ProcessingElement class encapsulating state of single PE.

ProcessingElement Select (int n) same as above, but treats PEs layout as
an array instead of a matrix.

void Start () starts continuous execution. The execution takes place in a
different thread.

void Reset () disables execution and resets Sequencer registers.

void Resume () resumes previously stopped execution.

void Int_Ack () disables execution.

void Phase2 () scans the PEs array and notifies associated VM of them.

void Spike (int id, int x, int y) handles storing incoming spike.

void Abort () aborts currently executing thread. This is meant for use when
application request quitting.

6.4.2 VM

VM is a simple class that manages underlying virtual Ubichip structure, synchro-
nizes them and acts as the AER bus for spike exchange.

VM (int nchips, int nx, int ny, int synapses, Memory mem, CAM[] cams)
constructor that besides the organization information requires instance of
Memory class and same number of CAM objects for routing as specified by
nchips parameter
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void Spike (int id, int x, int y) used to broadcast spike signal across
virtual AER bus.

void Stop (Ubichip sender) used by connected Ubichips to signal that they
have reached a STOP opcode. Once all chips reach this stop, the VM initiates
phase 2.

void FullCycle () continues execution for phase 1 and then performs phase
2.

void Step () in phase 1 executes one instruction, for phase 2 performs all
necessary operations in single methods call.

void Abort () sends Abort signal to all PEs.

6.4.3 Memory

The Memory class was developed to allow modifications to memory layout. Its
structure is described in Section 4.5 on page 16. It uses an XML file as an input.
This particular format was chosen because of following reasons:

• human-readable,

• hierarchical,

• availability of parsing components,

• easy to use,

• flexible.

Memory (XmlDocument layout, byte[] contents, int nneurons, int
nsynapses) constructor that takes an XML document, SRAM contents
and basic structure organization required while parsing layout file for dy-
namic structrues evaluation.

List<string> VariablesList () returns list of available variables

Memory Clone () returns cloned Memory object. Used for instancing multiple
virtual Ubichips.

What is more, Memory class implements this[string name] property which
returns Variable object, which can be used for storing or retrieving variables
in memory of particular Ubichip instance.
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6.4.4 Memory.Variable

This class provides a simple functionality for accessing memory variables. It
supports both storing and retrieving values from any given segment and whole
block repetition (e.g. multiple occurrences of synapse parameters block defined
by default memory layout). To use it you must retrieve this object from an
instance of Memory class and use one of following functions:

uint Get (int index, int segment) as the name suggest it retreives value
of variable at specified index and segment,

void Set (int index, int segment, uint value) method for storing value
into variable located at index and segment.

6.5 Code

A class responsible for compiling code and used by Ubichip for decoding in-
struction bytecodes.

Code (string code) constructor that takes source code as a string. After that
the memory contents that are produced can be retreived through Bytecode
property, along with define values accessible with Defines property.

Code.Instruction Decode (byte [] code, uint addr) decodes instruction
at a specified address in memory. The Code.Instruction is a simple self-
explanatory structure that contains opcode value, its parameteres and size
of instruction that is used for advancing PC. This is a static method.
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6.6 Challenges

During the development cycle a few essential decisions had to be made. During
this project they were motivated by a desire to extend flexibility, prolonging the
life of VM. Flexibility however, introduces many implementation challenges.

The primary example would be the implementation of easily accessible memory
layout file. It was driven by the need to modify memory structure. Its shape
was proposed entirely by me as a result of searching for best way to encapsulate
current working model, as well as research of possible memory construct acces-
sible from the Ubichip code. Also its implementation proved to be a challenge,
but the outcome surpassed the expectations providing an easy way of accessing
specific memory regions of a running VM and thus enabling easy construction
of plots to visualize how the algorithm works.

Other important code fragments include the compiler, whose implementation
was very helpful for understanding of the opcodes and basic memory structure.
Although it was not a trivial task it enabled me to easily and almost instantly
code the code execution section.

Designing the class layout and interaction required understanding of Ubichip
interface and the way it communicates with other devices. I was able to break
down the Ubidule into logical section that later were implemented as VM’s
classes.
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7 Simulation results

Because the initial idea was to create a visualization-only tool, the plots play a
vital role by visualizing the changes occurring in the neural network. Due to this
I have performed a simulation to present the capabilities of this module. For
this section all simulations were carried out on a network made of 9 Ubichips,
each simulating an 8x8 array of neurons, each having 30 synapses.

One of basic plot is showing membrane potential (Vi) for two neurons. One
in the center of the network, and another one just next to it. From the plot
one can read that that in 2/3 of the time it shows there is a slight increase in
maximum oscillation value for first neuron potential.

Vi(center) = V i(4, 0, 32) (9)

Vi(center+ 1) = V i(4, 0, 33) (10)

To better understand what happens at this moment we should add more plots
to our window. At the top of Figure 20 plot of potential value is shown with
17 more plots showing Aji – activation level value for 17 synapses connected to
this particular neuron. It is clearly visible that activation level of few synapses
drops rapidly at the beginning reaching level 0. Shortly after the half of time
shown on the plot, activation level of few more synapses rise. This increase has
an effect on potential value which begins oscillating reaching higher levels. Such
behaviour is expected and is showing adaptability of this network.

Vi(center) = V i(4, 0, 32) (11)

A0 = Aji(4, 0, 32) (12)

A1 = Aji(4, 1, 32) (13)

. . . (14)

In the last figure (21) a more advanced use of plot window is employed. The first
plot shows sum of all incoming spike signals, next 6 plots present activation level,
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Figure 19: Visualization of potential value oscillations in a relatively large net-
work (576 neurons, 30 synapses each)
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Figure 20: Potential oscillation and activation levels of few synapses
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Figure 21: Plots showing number of incoming spikes, separate synaptic weights
for 6 synapses,

∑
wji and membrane potential.
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last but one shows sum of post-synaptic potentials, and membrane potential is
drawn as the last plot.

Incoming spikes =
29∑
k=0

Sj(4, k, 32), written explicitly as (15)

= Sj(4, 0, 32) + Sj(4, 1, 32) + . . .+ Sj(4, 29, 32) (16)

Aji[0] = Aji(4, 0, 32) (17)

Aji[0] = Aji(4, 1, 32) (18)

. . . (19)

Aji[5] = Aji(4, 5, 32) (20)

Σwji = wji(4, 0, 32) (21)

Potential = V i(4, 0, 32)/10∧5 (22)
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8 Conclusions and future work

8.1 Conclusions

The initial concept of a visualization-only tool has been reevaluated and led to
changing the main objective of the project to creating a fast and flexible Virtual
Machine, on top of which the visualization was built using VMs exposed func-
tionality. At first the aim of VM was to provide rapid prototyping environment
for the visualization tool, but soon turned into a project of its own. Understand-
ing the potential benefits of this technology helped gain focus on writing easily
extendable VM that may work with user-provided memory layout, making it
easily extensible and algorithm implementation-agnostic. The plotting facilities
allow user to write arithmetic expressions for evaluation of algorithm code and
assessment of neural network inner-workings.

The main objective was achieved with creation of the expandable code-base.
The program can be used both by developers working on new algorithm types
or adjusting existing ones and scientists, who are more interested in the results
of simulation that can be seen on plots, rather internals of the algorithm. Ad-
dressing issues and providing functionality for such a wide array of people that
has different needs and motivations is a demanding task. With careful planning,
however, the difficulties can be overcome.

For the algorithm developers the benefits of using VM are mainly the easier
readable debug output which aligns commands with their actual results, rather
than displaying results along with following opcode, ability to select which reg-
isters should be displayed in debug output, improving readability while focusing
on certain aspects.

The speed of execution is substantially improved in comparison with ModelSim
simulation. This has been achieved by implementing higher level of abstraction,
e.g. arithmetical operations are executed directly using CPU instead of emulat-
ing the logic gates that form Ubichips ALU. The performance is not up to par
with pure-hardware implementation, yet still it provides enough throughput for
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simulation purposes. However, as explained in following section, it may be im-
proved by directly interfacing hardware and using current tool to control the
process.
To sum up, I believe that this project provides a useful tool for scientist and
developers alike. The ability to easily view algorithm variables, all hardware
simulated registers and adapt memory layout along with PEs precision to the
changing needs makes it a fairly generic and flexible tool which can be easily
used for current and future advancements of neuronal simulation algorithms.

8.2 Possible future extensions
The difference between entities responsible for cross-chip data exchange create
a challenge when one would like to integrate VM with external system – either
another virtual machine or some external hardware like a real Ubichip or some
sensory inputs.
Currently the main class VM is a self-contained AER bus and manager for all
virtual Ubichips. Both possible solutions to allow such flexibility involve mod-
ifying the VM class, but both require different code changes.
First approach would be to allow the VM to connect seamlessly with another
AER bus either a real one connected to Ubichips, or another virtual one. These
modifications would possibly force the VM to act as a slave to existing AER
bus. It may not be the case but some of the control possibilities may be lost,
on the other side allowing to connect easily with a larger system and enabling
e.g. to track changes occurring in single chip, while dispatching major part of
calculations into actual Ubichip infrastructure.
Second solution requires some code refactoring – extracting the interface from
Ubichip class and making VM use this new interface. This would allow one
to implement its own class that could connect to external chip and controlling
it remoteley, then fetching the results and sending appropriate data through
methods available on the VM class. This approach could be easily used for
supplying various classes for specific needs – sensory input, external chips or
output devices. However, each “device” would have to be added separately, so
this solution is feasible only for some smaller, but precise experiments.
These are two basic possibilities of extending current VM to operate with exter-
nal processing units. However due to the complexity such solution would intro-
duce it was not considered as a milestone for implementation in this projects.
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A Supported opcodes

Instructions used by Ubichip fall into two categories:

• data processing, executed by each PE and

• flow control, executed only by the Sequencer.

The encoding of instruction depends on its type. Most instruction that deal with
registers and extended instructions are single-byte, but the SETMP, GOTO,
GOTOF, LOOP and READMPR need two bytes for encoding additional pa-
rameters. Detailed encoding scheme may be seen in figure 22.

opcodereg

addr_h

addr_l

idx

data_h

data_l(a)

(b)

(c)

(d)

(e)

Default

Extended

SETMP

GOTO

GOTOF

LOOP

READMPR

opcode

opcode

opcode

opcode

0457

2 07

07

07

07

45

45

Figure 22: Instruction formats

The table below (1) shows a list of supported opcodes along with binary repre-
sentation, additional notes and affected flags.

Table 1: Supported opcodes

Mnemonic Opcode Group Function Flags
EXTI 00000 – Extended instructions –
NOP 00000000 NOP No operation –
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Mnemonic Opcode Group Function Flags
HALT 00100000 HALT execution halted until Start or Step

method invoked
–

RET 01000000 RET PC ⇐ PC_BUFFER –
SETZ 01100000 FLAG Sets the zero flags Z ⇐ 1 Z
SETC 10000000 FLAG Sets the carry flags C ⇐ 1 C
CLRZ 10100000 FLAG Clears the zero flags Z ⇐ 0 Z
CLRC 11000000 FLAG Clears the carry flag C ⇐ 0 C
TRANSFER 11100000 TRANSFER D_BUFFER ⇐ Rx(PEa) –

Ry(PEb) ⇐ D_BUFFER
STC reg 00001 STOREC SRAM ⇐ reg if C=1 –
STNC reg 00010 STOREC SRAM ⇐ reg if C=0 –
STZ reg 00011 STOREC SRAM ⇐ reg if Z=1 –
RST reg 00100 ALUOP reg ⇐ 0; Z ⇐ 0 Z
STNZ reg 00101 STOREC SRAM ⇐ reg if Z = 0 Z
SETMP data 00110 SETMP DMEMP ⇐ data

if data=0, DMEMP ⇐ LOOP_index –
READMP n 00111 READMP if n = 0 –

DMEMP ⇐ SRAM[DMEMP]
if n >0
DMEMP ⇐ SRAM[DMEMP+
2n−1 ∗ LOOP_index)]

ADD reg 01000 ALUOP ACC ⇐ ACC+ reg Z, C
SUB reg 01001 ALUOP ACC ⇐ ACC− reg Z, C
EXTI2 01010 – Extended instructions 2 –
SHL 00001010 ALUOP ACC ⇐ ACC << 1, Z, C

carry ⇐ ACC[msb]
ENDL 00101010 ENDL if LOOP_LIFO[0] =

LOOP_LIFO2[0] {
–
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Mnemonic Opcode Group Function Flags
pop PC_LIFO, LOOP_LIFO,
LOOP_LIFO2
} else {
restore(PC);
LOOP_LIFO[0] ⇐
LOOP_LIFO[0]+1
}

RANDINI 01001010 RANDINI LFSR[63:32] ⇐ SRAM[DMEMP] –
LFSR[31:0] ⇐ SRAM[DMEMP+1]

RANDON 01101010 RANDOM LFSR becomes source for LOAD and
LDALL instructions

–

RANDOFF 10001010 RANDOM LOAD and LDALL normal function is
restored

–

STOP 10101010 STOP stops code execution, invokes a VM
method to start spike transfer, enter-
ing phase 2

–

TRANSFERX 11001010 TRANSFERX D_BUFFER ⇐ Rx(PEa) –
Ry(MASK(PE)) ⇐ D_BUFFER

READMPR idx 11101010 READMPR DMEMP ⇐ SRAM[DMEMP] –
INDEX_REG ⇐ PE[idx]
LOAD_STOREC_EXTENDED ⇐ 1

EXTI3 01011 – Extended instructions 3 –
SHR 00001011 ALUOP ACC ⇐ ACC >> 1 Z, C

carry ⇐ ACC[lsb]
RANDON1 00101011 RANDOM LFSR becomes source for LOAD and

LDALL instructions
–

LFSR_STEP ⇐ 1
FZ_STC_ON 01001011 FZ_STC FZ_STC ⇐ 1 –

disables storing contents from frozen
PEs to SRAM
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Mnemonic Opcode Group Function Flags
FZ_STC_OFF 01101011 FZ_STC FZ_STC ⇐ 0 –

restores default operation
RST_SEQ 10001011 RST_SEQ resets sequencer –
D2IMP 10101011 D2IMP IMEMP ⇐ DMEMP –

PC ⇐ 0
MOVA reg 01100 ALUREG ACC ⇐ reg Z
AND reg 01101 ALUOP ACC ⇐ ACC AND reg Z
OR reg 01110 ALUOP ACC ⇐ ACC OR reg Z
INV reg 01111 ALUOP ACC ⇐ NOT reg Z
LOOP data 10000 LOOP Push PC_LIFO, LOOP_LIFO,

LOOP_LIFO2
Z

LOOP_LIFO[0] ⇐ 1
LOOP_LIFO2[0] ⇐ data

SET reg 10001 ALUOP reg ⇐ reg.MaxVal Z
SWAP reg 10010 ALUREG reg ⇔ shadow_reg –
LDALL reg 10011 LOAD_ALL PE[*].reg ⇐ data_in_ALU (broad-

cast)
–

LOAD reg 10100 LOAD PE[*].reg⇐ data_in_ALU (iterative) –
MOVTS reg 10101 ALUREG shadow_reg ⇐ reg –
MOVFS reg 10110 ALUREG reg ⇐ shadow_reg –
FREEZEC 10111 ALUREG Increase frozen level if C=1 F
FREEZENC 11000 ALUREG Increase frozen level if C=0 F
FREEZEZ 11001 ALUREG Increase frozen level if Z=1 F
FREEZENZ 11010 ALUREG Increase frozen level if Z=0 F
UNFREEZE 11011 ALUREG Decrease frozen level F
MOVR reg 11100 ALUREG reg ⇐ ACC –
GOTOF addr 11101 GOTOF if all_frozen = 1, –

PC ⇐ addr; PC_BUFFER ⇐ PC
XOR reg 11110 ALUOP ACC ⇐ ACC XOR reg Z
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Mnemonic Opcode Group Function Flags
GOTO addr 11111 GOTO PC ⇐ addr; PC_BUFFER ⇐ PC –

The SET instruction is dependent from the register length set in layout file.
For given width of register all of its bits are set. E.g. for 16-bit organization
this would result if setting the value of register to 0xFFFF, thus it is marked as
registers maximal value.

The frozen level is a value that holds how many successive ‘freezing’ instructions
with their condition met were executed, this allows multiple levels of nesting.
On current implementation maximum level is set to 256.

ACC, the accumulator is just an other name for R0.

EXTI, EXTI2 and EXTI3 are just classes of commands that use full byte for
opcode encoding. These have been included to show how the opcode-space has
been partitioned and are followed by commands from its range.
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B Compiler supported constructs

In order to simplify coding or its automatic generation a simple translation
(shown in 2) table was intruduced to split more complex instruction sytnaxes
into few actual instructions.

Table 2: Compiler code translation table

Instruction sytnax Generated code
TRANSFER TRANSFER
TRANSFER label SETMP label

READMP
TRANSFER

TRANSFER label,c SETMP label
READMP
SETC
TRANSFER

TRANSFERX TRANSFERX
TRANSFERX label SETMP label

READMP
TRANSFERX

TRANSFERX label,c SETMP label
READMP
SETC
TRANSFERX

STC rx STC rx
STC rx, label SETMP label

READMP
STC rx
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Instruction sytnax Generated code
STC rx, label, ry SETMP label

READMPR ry
STC rx

STC rx, label, ry, z SETMP label
READMPR ry
SETZ
STC rx

STNC rx STNC rx
STNC rx, label SETMP label

READMP
STNC rx

STNC rx, label, ry SETMP label
READMPR ry
STNC rx

STNC rx, label, ry, z SETMP label
READMPR ry
SETZ
STNC rx

STZ rx STZ rx
STZ rx, label SETMP label

READMP
STZ rx

STZ rx, label, ry SETMP label
READMPR ry
STZ rx

STZ rx, label, ry, z SETMP label
READMPR ry
SETZ
STZ rx
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Instruction sytnax Generated code
STNZ rx STNZ rx
STNZ rx, label SETMP label

READMP
STNZ rx

STNZ rx, label, ry SETMP label
READMPR ry
STNZ rx

STNZ rx, label, ry, z SETMP label
READMPR ry
SETZ
STNZ rx

LOAD rx LOAD rx
LOAD rx, label SETMP label

READMP
LOAD rx

LOAD rx, label, ry SETMP label
READMPR ry
LOAD rx

LOAD rx, label, ry, z SETMP label
READMPR ry
SETZ
LOAD rx

LDALL rx LDALL rx
LDALL rx, label SETMP label

READMP
LDALL rx

RANDINI RANDINI
RANDINI label SETMP label

READMP
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Instruction sytnax Generated code
RANDINI
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C Detailed VM namespace class diagram
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Figure 23: Virtual Machince code namespace class diagram
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D The Expression Parser

Along with the development of the VM a several other projects smaller were
made, which ultimately were merged into the main code. One such example was
the Expression Parser, which at the beginning was meant only to implement
basic arithmetics to allow for some flexibility in the layout file, so that it may
be generic for any number of synapses or neurons per chip.

This simple parser however emerged into a more sophisticated one, as more
functionalities were added. At first it was enabled to allow function calling.
Of course these had to be specifically written to do so, but even though it
can handle “function classes” which means one method may be responsible
for handling different functions, a feature used while dealing with evaluating
variables from the memory.

Another modification was a generalization of type on which the class operates,
so it may natively use double or int types for it’s computations. Due to the
current parser/tokenizer however, it’s not directly possible to use string types
as values for calculations, even if one would implement Calculator class to
handle the basic operations.

The Expression Parsers code is able to handle following:

• addition

• subtraction

• multiplication

• division

• raising to power

• prioritize by bracketing

• unary minus

• using variables

• calling functions.
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These are parsed accordingly to the infix notation with the consideration of
operation associativity and priority. Current implementation uses Shunting-
yard algorithm to convert infix notation to Reverse Polish Notation which is
used to create a parse tree for easy evaluation of the expression.

As an example we may consider following expression:

5x×2 × (sin(x− 1) + 2)

which can be translated into the RPN as:

5 x 2 × ∧ x 1 − sin 2 + ×

and then graphically represented by the tree it is parsed to:

SumPower

5 Multiply

x 2

Multiply

sin 2

Subtract

x 1

Figure 24: Example of a parse tree

The nodes in the tree are divided into following types:

• ValueNode – constant value leaf,

• VariableNode – variable valued leaf,

• FunctionNode – variable node, containing its arguments as separate sub-
trees,

• OpNode – operation-type nodes.
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All of these nodes are subclasses of basic Node providing only basic value-output
functionality; the first two are leaves only, the last is always a node, as it requires
two operands, while the FunctionNode may contain other sub-nodes, but it is
not necessary – e.g. a random function is parameterless.
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E Assembly Example

The following pages present leaky integrate and fire algorithm initially developed
by Michael Hauptvogel[4] and extended by Marc Hortas[3].
;4 Neurons, 2 Synapses
define size_x 4
define size_y 4
define synapses 2
.DATA
SYN-0="0ccc0ccc,0cce0ccc,7FFE7FFE,7FFE7FFE"
SYN-1="0cce0ccc,0ccc0ccc,7FFE7FFE,7FFE7FFE"
NEU-1="0ccc0ccc,0ccc0cce"
NEU-2="E188E188,E188E188"
NEU-3="00000000,00000000"
NEU-4="1FFF1FFF,1FFF1FFF"
AMAX="00000003"
DACT1="0000FFFA"
DACT2="0000012C"
DBACK="0000FEB9"
DMEM1="0000EF7D"
DMEM2="0000EF7D"
DSYN1="0000F9AE"
DSYN2="0000F9AE"
LMAX="00003FFF"
MASK1="0000E000"
MASK2="0000C000"
MMAX="00000666"
POT1="00000054"
POT2="0000FFB0"
PROB="00001FFF"
SEED="A553A75A,A554A75A"
THETA1="0000F060"
THETA2="0000F060"
UNO="00000001"
VREST1="0000E188"
VREST2="0000E188"

.CODE
;-----------------INIT SOME VARIABLES--------------------------------------
LDALL R4,PROB
MOVA R4
SETMP SEED
RANDINI
RANDON
LOAD R1
RANDOFF
AND R1
MOVR R1
SWAP R1
;--------------------------------------------------------------------------------------
GOTO MAIN
;--------------------------------------------------------------------------------------
; **************************** PROCEDURES BEGIN **************************
; ------------------------ 00 Exponential Decay --------------------------
.DECAY
RST R1
MOVA R2
MOVR R4
SHL
FREEZENC
RST R0
SUB R2
MOVR R2

UNFREEZE
LOOP 16
MOVA R2
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SHL
MOVR R2
FREEZENC
MOVA R1
ADD R3
MOVR R1

UNFREEZE
MOVA R3
SHR
MOVR R3

ENDL
MOVA R1
SHR
MOVR R1
MOVA R4
SHL
FREEZENC
RST R0
SUB R1
MOVR R1

UNFREEZE
MOVA R1
MOVR R2
RST R1
RET
; ------------------------ 01 Membrane Value -------------------------------
.01MembraneValue
SWAP R5 ;SWAP TYP+SI
LDALL R3,DMEM1 ;R3=DECAY DONATOR
LDALL R4,VREST1 ;NEURON=TYPE1 (STANDARD LOAD)
MOVA R5
SHR
SHR
FREEZENC ;IF NEURON=TYPE2 (CONDITIONAL LOAD)
LDALL R3,DMEM2 ;R3=DECAY DONATOR
LDALL R4,VREST2

UNFREEZE
RST R2 ;R2=0
MOVA R5
SHR ;--> NEURON SPIKE
FREEZEC ;IF (SI == 0) {
SWAP R6 ;APPEND=((VI - VREST) * KMEM);
MOVA R6 ;ACC=VI
SUB R4 ;-VREST
MOVR R2 ;R2=OPERAND
GOTO DECAY ;PROCESS DECAY: ;R2=OPERAND, R3=DECAY DONATOR --> R2=RESULT DECAY GEHT NICHT, REST JA

UNFREEZE
;VI = VREST+SUMWEIGHTS+APPEND;

LDALL R4,VREST1 ;LOAD R4 START (AGAIN)
MOVA R5
SHR
SHR
FREEZENC ;IF NEURON=TYPE2 (CONDITIONAL LOAD)
LDALL R4,VREST2

UNFREEZE ;LOAD R4 END
MOVA R4 ;ACC=VREST (OLD VALUE OF R4!!)
SWAP R0
MOVR R1
SWAP R0
ADD R1 ;+SUMWEIGHTS
ADD R2 ;+APPEND

MOVR R6 ;ACC -> VI
SWAP R6 ;SWAP BACK VI
SWAP R5 ;SWAP BACK TYPE+SI

RST R0 ;SUMWEIGHTS=0 --> NEEDED FOR LATER!
SWAP R0 ;SWAP BACK SUMWEIGHTS
RET
; ------------------------ 02 Synaptic Weight ------------------------------
.02SynapticWeight
RST R1 ;WJI = 0 --> ALSO USED FOR ELSE
MOVA R6
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SHR
FREEZENC ;IF(SJ[S]==1)
LDALL R4,POT1 ;TYPE=0 ;ELSE
MOVA R6
SHR
SHR
FREEZENC
LDALL R4,POT2

UNFREEZE
MOVFS R3;WJI[S]=(DOUBLE)A[AJI[S]]*P[S];
MOVA R3 ;AJI SHR>> 1
SHR
MOVR R3
FREEZENC
MOVA R1 ;AJI=X1
ADD R4 ;+ 1XPOT
MOVR R1

UNFREEZE
MOVA R3
SHR
MOVR R3
FREEZENC
MOVA R1 ;AJI=1X
ADD R4 ;+2XPOT
ADD R4
MOVR R1

UNFREEZE
MOVFS R3
MOVA R3
SHR
FREEZENC
SHR
FREEZENC
MOVA R1 ;AJI=11
ADD R4 ;+1XPOT
MOVR R1

UNFREEZE
UNFREEZE

UNFREEZE
SWAP R0 ;SUM --> ACC
ADD R1 ;ACC=SUM+WJI
SWAP R0 ;SR0=SUM
RET
; ------------------------ 03 Real Valued Variable -------------------------
.03RealValuedVariable
LDALL R3,DACT1
MOVA R6
SHR
SHR
FREEZENC
LDALL R3,DACT2

UNFREEZE
;TYPE DATA LOAD - END
MOVFS R2; LJI->R2
GOTO DECAY ;PROCESS DECAY: ;R2=OPERAND, R3=DECAY DONATOR --> R2=RESULT DECAY
SWAP R5
MOVA R5
SWAP R5
SHR ;SI
FREEZENC
MOVA R2
ADD R5 ;+MJ
MOVR R2

UNFREEZE
MOVA R6
SHR ;SJ
FREEZENC
MOVA R2
SWAP R4
SUB R4 ;-MI
SWAP R4
MOVR R2

UNFREEZE
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MOVTS R2;RES -> LJI
RET
; ------------------------ 04 Activation Variable --------------------------
.04ActivationVariable
LDALL R1,UNO
SWAP R3
MOVA R3
FREEZEZ ; FREEZE WHEN AJI=0
;IF CONNECTION IS ACTIVE
LDALL R0,LMAX ; (LMAX-LJI) < 0 ?
SWAP R2
SUB R2
SHL
FREEZENC ; -->YES
MOVA R3
ADD R1 ; AJI+1
MOVR R3 ; AJI -> SR3
LDALL R0,AMAX ;
SUB R3 ; ACC=AMAX-AJI
SHL ; NEGATIVE?
FREEZENC ; AJI-R1=0
LDALL R3,AMAX

UNFREEZE
LDALL R0,LMAX ; LJI=LMAX/2
SHR
MOVR R2

UNFREEZE
;ELSE IF (LJI[J] < LMIN) {

MOVA R2 ; LJI-->ACC, LMIN=0
SHL ; (LJI-LMIN(=0)) < 0 ?
FREEZENC ; (LJI-LMIN) < 0 ? YES
MOVA R3
SUB R1 ; AJI-1, SR3 ACT.
MOVR R3 ; AJI -> R3
LDALL R0,LMAX ; LJI=LMAX/2
SHR
MOVR R2

UNFREEZE
UNFREEZE
MOVA R3
FREEZENZ ;IF CONNECTION IS INACTIVE
RST R2

UNFREEZE
SWAP R3
SWAP R2
RET
; ------------------------ 05 Memory of last presynaptic Spike -------------
.05MemoryOfLastPresynapticSpike
LDALL R3,DSYN1 ;TYPE=1
MOVA R6
SHR
SHR
FREEZENC
LDALL R3,DSYN2 ;TYPE=2

UNFREEZE
MOVA R5
MOVR R2
GOTO DECAY ;R2=OPERAND, R3=DECAY DONATOR --> R2=RESULT DECAY
MOVA R6
SHR
FREEZENC
LDALL R0,MMAX
MOVR R2

UNFREEZE
MOVA R2
MOVR R5; RES IN R5
RET
; ------------------------ 06 Memory of last postsynaptic Spike -------------
.06MemoryOfLastPostsynapticSpike
LDALL R3,DSYN1 ;TYPE=1
SWAP R5
MOVA R5
SHR
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SHR ;-->TYPE
FREEZENC
LDALL R3,DSYN2 ;TYPE=2

UNFREEZE
SWAP R4 ;R2=MI
MOVA R4
SWAP R4
MOVR R2
GOTO DECAY ;R2=OPERAND, R3=DECAY DONATOR --> R2=RESULT DECAY
MOVA R5
SWAP R5
SHR ;-->SI
FREEZENC
LDALL R0,MMAX
MOVR R2 ;OVERWRITE DECAY RESULT

UNFREEZE
MOVA R2
SWAP R4
MOVR R4; RES IN SR4
SWAP R4
RET
; ------------------------ 07 Spike Update ---------------------------------
.07SpikeUpdate
; TYPE DATA LOAD BEGIN
LDALL R3,THETA1 ;TYPE=0 ;ELSE
SWAP R5
MOVA R5 ;TYPE+SI
SHR
SHR
FREEZENC
LDALL R3,THETA2

UNFREEZE
; TYPE DATA LOAD END

MOVA R5 ;SET OUTPUTSPIKE=0
SHR
SHL
MOVR R5 ;INFO OF SI GETS LOST!
MOVA R3 ;ACC=THETA
SWAP R6
SUB R6 ;-VI
SWAP R6
SHL
FREEZENC
MOVA R7 ; ACC <== refractary period
SHL
FREEZEC ; Freezeif C==1 (refractary period)
MOVA R5
LDALL R3,UNO
ADD R3
MOVR R5
SET R7 ; activate refractary period

UNFREEZE
UNFREEZE
SWAP R5 ;RESULT STORED IN SR5
RET
;------------------------- 08BackgroundActivity-------------------------------
.08BackgroundActivity
SWAP R7
MOVA R7
SWAP R7
MOVR R2 ; R2 <== Decay term
LDALL R3,DBACK
GOTO DECAY
SWAP R1 ; R1 <== Activation probability
LDALL R4,PROB
MOVA R4 ; ACC <== Probability
SUB R2
RANDON
CLRC
SUB R1 ; Probability - Activation probability
FREEZENC ; Probability > Activation probability
LOAD R1 ; R1 <== new activation probability
RANDOFF
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MOVA R4
AND R1
MOVR R1
MOVA R4 ; init decay term (Probability=0)
MOVR R2
MOVA R7 ; ACC <== refractary period
SHL
FREEZEC ; C==1 ( refractary period)
SWAP R5 ; spike
MOVA R5
SHR
SHL
LDALL R3,UNO
ADD R3
MOVR R5
SWAP R5
SET R7 ; activate refractary period

UNFREEZE
UNFREEZE
SWAP R1 ; SR1 <== Activation probability
MOVA R2 ; SR7 <== Decay term
SWAP R7
MOVR R7
SWAP R7
RET
;-----------------------------------------------------------------------
.09REFRACTORYP
MOVA R7
SHL ; -1ms
MOVR R7
RET
; ------------------------ 00 Neuron Load ---------------------------------
.00NeuronLoad
SWAP R6
LOAD R6,NEU-2 ;SR6<--VI
SWAP R6
SWAP R0
LOAD R0,NEU-3 ;SR0<--SUMWEIGHTS
SWAP R0
;*** ONLY SI+TYPE
LOAD R2,NEU-1 ;MI+Type+SI
MOVA R2
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SWAP R5
MOVR R5 ;TYPE+SI-->SR5
SWAP R5
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;*** ONLY MI
MOVA R2
SHR
SHR
SWAP R4
MOVR R4 ;MI-->SR4
SWAP R4
LDALL R3,MASK1 ;load mask1/mask2
SWAP R5
MOVA R5
SWAP R5
SHR
SHR
FREEZENC
LDALL R3,MASK2

UNFREEZE
LOAD R1,NEU-4 ; R1 <== refractary period::exponential
INV R3 ; ACC <== inv(mask)
AND R1 ; ACC <== exponential
MOVR R7
SWAP R7
MOVA R1 ; ACC<== refractary period::exponential
AND R3 ;ACC <== refractary period
MOVR R7
RET
; ------------------------ Neuron Save ---------------------------------
.99NeuronSave
SWAP R4
SWAP R5 ;Type+SI
SWAP R1
SWAP R6
RST R3 ;R3 will HOLD MI-SI+TYPE
MOVA R4 ;14 least sign. bits
SHL
SHL
ADD R5
MOVR R3
;individual data store
RST R0
SHR
STNC R3,NEU-1 ;Mi+SI+Type
RST R0
SHR
STNC R6,NEU-2 ;VI
SWAP R0
CLRC
STNC R0,NEU-3 ;SUMWEIGHTS
SWAP R0
LDALL R3,MASK1 ; R3 <== mask1/mask2
MOVA R5
SWAP R5
SHR
SHR
FREEZENC
LDALL R3,MASK2

UNFREEZE
MOVA R7 ; ACC <== refractary period
AND R3
SWAP R7 ;R7 <== exponential
OR R7 ;ACC <== refractary period or exponential
CLRC
STNC R0,NEU-4 ; MEM <== refractary period::exponential
RET
; ------------------------ Synapse Load ---------------------------------
.00SynapseLoad
;***** 1. MJ+SI+TYPE *****
SETMP 0 ;LOAD LOOP INDEX!
READMP 1; READMPX
LOAD R2; <--MJ+SJ+TYPE
;*** ONLY SJ+TYPE
MOVA R2
SHL
SHL
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SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
MOVR R6 ;TYPE+SJ-->R6
;*** ONLY MJ
MOVA R2
SHR
SHR
MOVR R5 ;MJ-->R5
;***** 2. LJI+AJI *****
LOAD R2; <--LJI+AJI
;*** ONLY AJI
SWAP R3
MOVA R2
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
MOVR R3 ;AJI-->SR3
SWAP R3
;*** ONLY LJI
MOVA R2
SWAP R2
SHR
SHR
MOVR R2 ;LJI-->SR2
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SWAP R2
RET
; ------------------------ Synapse Save ---------------------------------
.99SynapseSave
SETMP 0 ;LOAD LOOP INDEX!
READMP 1;READMPX
;***** 1. MJ+SI+TYPE *****
MOVA R5; <--MJ
SHL
SHL
ADD R6; +TYPE+SJ
MOVR R3 ;composed DATA
RST R0
SHR
STNC R3 ;SAVE DATA
;***** 2. LJI+AJI *****
SWAP R2
MOVA R2; <--LJI
SWAP R2
SHL
SHL
SWAP R3
ADD R3; +AJI
SWAP R3
MOVR R3 ;composed DATA
RST R0
SHR
STNC R3 ;SAVE DATA
RET
;--------------------------------------Enable spikes propagation------------------------
.SpikesEnable
SWAP R5 ; ACC <== Spikes
MOVA R5
SWAP R5
SETMP SYN-0 ; Point to Sj
READMP
SETC ; C=1
RET
; **************************** PROCEDURES END ******************************

; **************************** MAIN PROGRAMME BEGIN ************************
.MAIN
GOTO 00NEURONLOAD
GOTO 01MEMBRANEVALUE
LOOP synapses
GOTO 00SYNAPSELOAD
GOTO 02SYNAPTICWEIGHT
GOTO 03REALVALUEDVARIABLE
GOTO 04ACTIVATIONVARIABLE
GOTO 05MEMORYOFLASTPRESYNAPTICSPIKE
GOTO 99SYNAPSESAVE

ENDL
GOTO 06MEMORYOFLASTPOSTSYNAPTICSPIKE
GOTO 07SPIKEUPDATE
GOTO 08BACKGROUNDACTIVITY
GOTO 09REFRACTORYP
GOTO 99NEURONSAVE
GOTO SPIKESENABLE
STOP ; AER/CAM UPDATE OF SPIKES
GOTO MAIN
; **************************** MAIN PROGRAMME END **************************
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F Basic algorithm memory layout
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…
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…
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S2 SP1 N1S2 SP1 N2
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Figure 25: Memory layout for default algorithm

73



G Layout File Examples

The first proposed memory layout for leaky integrate and fire algorithm should
be used with the following configuration file.

<MemoryLayout>
<Options>
<RegisterSize>16</RegisterSize>
<Padding>16</Padding>
<PointerSize>32</PointerSize>
<PointerStep>32</PointerStep>
<!-- spike transfer options -->
<!--

-index is used when field contains multiple items (ex.
synapses), to access an item you specify an index

-segment number
-index and segments variables are evaluated (simple

expression parser supporting basic operations and
brackets)

-available variables:
-synapses
-neurons
-neuron
-synapse

-->
<!-- spike source -->
<!-- neuron_parameter_1/0/neuron/Si -->
<!-- <SpikeSource source="memory">
<Item>neuron_parameter_1</Item>
<Segment>neuron</Segment>
<Variable>Si</Variable>

</SpikeSource> -->
<SpikeSource source="accumulator" />
<SpikeDest> <!-- synapses/synapse/neuron/Sj -->
<Item>synapses</Item>
<Index>synapse</Index>
<Segment>neuron</Segment>
<Variable>Sj</Variable>

</SpikeDest>
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</Options>
<Layout>
<!-- instruction memory pointer -->
<Item id="0" name="imemp" size="0" />
<!-- data memory pointers -->

<!-- size is defined in bits, how long one SP1/2 is -->
<Item id="1" name="synapses" size="16" quantity="synapses"

segments="2*neurons">
<Segment>
<Variable name="Sj" offset="0" size="1" />
<Variable name="St" offset="1" size="1" />
<Variable name="Mj" offset="2" size="14" />

</Segment>
<Segment>
<Variable name="Aji" offset="0" size="2" />
<Variable name="Lji" offset="2" size="14" />

</Segment>
</Item>

<Item id="synapses+1" name="neuron_parameter_1" size="16"
segments="neurons">

<Segment>
<Variable name="Si" offset="0" size="1" />
<Variable name="Nt" offset="1" size="1" />
<Variable name="Mi" offset="2" size="14" />

</Segment>
</Item>

<Item id="synapses+2" name="neuron_parameter_2" size="16"
segments="neurons">

<Segment>
<Variable name="Vi" offset="0" size="16" />

</Segment>
</Item>

<Item id="synapses+3" name="neuron_parameter_3" size="16"
segments="neurons">

<Segment>
<Variable name="Σwji" offset="0" size="16" />
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</Segment>
</Item>

<Item id="synapses+4" name="neuron_parameter_4" size="16"
segments="neurons">

<Segment>
<Variable name="�Exp" offset="0" size="13" />
<Variable name="Tref" offset="13" size="3" />

</Segment>
</Item>

<Item name="amax" size="32">
<Variable name="Amax" size="3" />

</Item>

<Item name="Lmax" size="32">
<Variable name="Lmax" size="14" />

</Item>

<Item name="Mmax" size="32" />
<Item name="Theta1" size="32" />
<Item name="Theta2" size="32" />
<Item name="Pot1" size="32" />
<Item name="Pot2" size="32" />
<Item name="Vrest1" size="32" />
<Item name="Vrest2" size="32" />
<Item name="Dact1" size="32" />
<Item name="Dact2" size="32" />
<Item name="Dsyn1" size="32" />
<Item name="Dsyn2" size="32" />
<Item name="Dmem1" size="32" />
<Item name="Dmem2" size="32" />
<Item name="Uno" size="32" />
<Item name="Dback" size="32" />
<Item name="Prob" size="32" />
<Item name="Mask1" size="32" />
<Item name="Mask2" size="32" />
<Item name="Seed" size="64">
<Variable name="SeedLo" size="32" offset="0" />
<Variable name="SeedHi" size="32" offset="32" />
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</Item>
</Layout>

</MemoryLayout>

Another example is a algorithm developed by Giovanny Sánchez Rivera which
requires a different memory model. This model is described by the following
memory layout file.

<MemoryLayout>
<Options>
<RegisterSize>16</RegisterSize>
<Padding>16</Padding>
<PointerSize>32</PointerSize>
<PointerStep>32</PointerStep>

<SpikeSource source="accumulator" />
<SpikeDest source="none" />

</Options>
<Layout>
<!-- instruction memory pointer -->
<Item id="0" name="imemp" size="0" />

<!-- data memory pointers -->
<Item name="NP1" size="16" segments="neurons">
<Segment>
<Variable name="v" offset="0" size="16" />

</Segment>
</Item>

<Item name="NP2" size="16" segments="neurons">
<Segment>
<Variable name="u" offset="0" size="16" />

</Segment>
</Item>

<Item name="NP3" size="16" segments="neurons">
<Segment>
<Variable name="I" offset="0" size="16" />

</Segment>
</Item>
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<Item name="NP4" size="16" segments="neurons">
<Segment>
<Variable name="s" offset="0" size="16" />

</Segment>
</Item>

<Item name="NP5" size="16" segments="neurons">
<Segment>
<Variable name="sd" offset="0" size="16" />

</Segment>
</Item>

<Item name="NP6" size="16" segments="neurons">
<Segment>
<Variable name="STDP" offset="0" size="16" />

</Segment>
</Item>

<Item name="NP7" size="16" segments="neurons">
<Segment>
<Variable name="NeuronType" offset="1" size="15" />
<Variable name="Si" offset="0" size="1" />

</Segment>
</Item>

<Item name="Seed" size="64">
<Variable name="SeedLo" size="32" offset="0" />
<Variable name="SeedHi" size="32" offset="32" />

</Item>

<Item name="Prob" size="32">
<Variable name="Prob" size="16" offset="0" />

</Item>

<Item name="CTEAE" size="32">
<Variable name="CTEAE" size="16" />

</Item>

<Item name="CTEAI" size="32">
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<Variable name="CTEAI" size="16" />
</Item>

<Item name="CSTDP" size="32" />
<Item name="CTEB" size="32" />
<Item name="CTECE" size="32" />
<Item name="CTECI" size="32" />
<Item name="CTEDE" size="32" />
<Item name="CTEDI" size="32" />
<Item name="CTESE" size="32" />
<Item name="CTESI" size="32" />
<Item name="CTEIN" size="32" />
<Item name="CTEZE" size="32" />
<Item name="CTE30" size="32" />
<Item name="CUNO" size="32" />

</Layout>
</MemoryLayout>

79


