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Abstract

Functional Magnetic Resonance Imaging (fMRI) lets us peek into the human mind

and try to identify which brain areas are associated with certain tasks without the

need for an invasive procedure. However, the data collected during fMRI sessions is

complex; this 4 dimensional sequence of 3 dimensional volumes as images of the brain

does not allow for straightforward inference. Multiple models have been developed to

analyze this data and each comes with its intricacies and problems. Two of the most

common ones are 2-step General Linear Model (GLM) and Independent Component

Analysis (ICA). We compare these approaches empirically by fitting the models to

real fMRI data using packages developed and readily available in R. The real data,

obtained from an open source database openneuro.org, is named BOLD5000.

The task of interest for this thesis is image viewing versus fixation cross (resting

state). We found that both the first-level GLM and ICA revealed significant activation

located in the occipital lobe which is consistent with the literature on visual tasks.

The second-level GLM results were consistent with the first level and found activation

located in the occipital lobe as well. The Group ICA results however found activation

located mainly in the temporal lobe.
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Chapter 1

Introduction

This chapter presents some background on functional Magnetic Resonance Imaging

(fMRI). Specifically, Section 1.1 introduces fMRI as a powerful clinical tool in the

study of the brain’s physical structure. This section also presents two categories of

the experimental designs commonly used in fMRI studies and a brief description of

the hemodynamic response function. Section 1.2 describes necessary preprocessing

steps to remove sources of noise from fMRI data. Section 1.3 summarizes some of the

statistical tools available for fMRI data analysis and the challenges in understanding

the underlying neuronal activity associated with cognitive tasks. We also provide

information about the available software for these tools. Lastly, Section 1.4 discusses

the contribution of this thesis.

1.1 Functional Magnetic Resonance Imaging (fMRI)

Since its development in the early 1990s, fMRI has become the most commonly used

method for the study of human brain function. fMRI is a class of imaging meth-

ods developed in order to demonstrate regional, time-varying changes that can be

associated to task-induced cognitive state changes or to unregulated processes in

the resting brain. It has been used in a large number of studies in the cognitive

neurosciences, clinical psychiatry/psychology, and neurosurgical planning due to its
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widespread availability, non-invasive nature (making it safe to use on human sub-

jects), relatively low cost, and good spatial resolution. For an excellent introduction

into the technique, we refer to the textbook by Huettel et al. [28].

The most common method of fMRI utilizes the fact that when neurons in the

brain activate, the amount of blood flowing through that area increases. Thus, the

activity related surplus in blood flow caused by brain activity leads to a relative in-

crease in local blood oxygen. The signal measured in fMRI depends on this change

in oxygenation and is referred to as the blood oxygenation level dependent (BOLD)

response. The BOLD signal is measured from small cubic regions of the brain called

voxels. Each voxel contains hundreds of thousands of neurons, so the BOLD signal

measured from a voxel is indicative of the group activity of the neurons located within

that voxel. As the neurons in a voxel become active due to brain function, the BOLD

signal will vary over time. Therefore, the data obtained from fMRI research is a

time series that is very large and complex. This data is a sequence of 3D volumes as

images of the brain where the 4th dimension is time. Each image usually consists of

about 100, 000 voxels. During the fMRI experiment image volumes are continuously

collected with a repetition time (TR) of 2–4 seconds, resulting in a total of 200–300

images for the whole time-series. The tasks are designed and timed in a manner

that allows the experimenters to record measurable changes in BOLD signal in or-

der to make inferences about task-related brain activity. The goal is to accurately

characterize the BOLD signal change and to relate it to brain function.

The BOLD signal does not increase instantaneously and does not return to base-

line immediately after the stimulus ends. Because these changes in blood flow are

relatively slow (evolving over several seconds, usually about 6), the BOLD signal is

a blurred and delayed representation of the original neural signal. The mathematical
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model for the local change in BOLD response after a stimulus is presented is called the

hemodynamic response function (HRF). This can be described as the ideal, noiseless

response to an infinitesimally brief stimulus. It has a number of important charac-

teristics illustrated in Figure 2.1. At the first couple seconds after the stimulus, an

initial dip is observed. After a short latency of initial dip, the blood flow comes in

with increasing blood volume. The increase continues gradually for about 5 seconds

to reach a maximum value in Magnetic Resonance (MR) signal, called peak. After

the peak, the blood flow decreases rapidly and during this period the BOLD signal

falls below the baseline for a prolonged time, called undershoot. Modeling HRF is

essential for the correct interpretation of neurological studies. A variety of fixed HRFs

have been used including the Poisson function, the Gamma function, the Gaussian

function, and double Gamma function. Standard statistical analysis of fMRI data

usually calls for a “canonical” model of HRF corresponding to the double Gamma

function. In this work, the canonical model is assumed for the HRF estimation since

this is not the focus of the thesis.

Most fMRI studies that present a stimulus to the subjects in order to make in-

ferences on the brain’s task related activity rely on two approaches of experimental

design: event-related design and block design. An event-related design presents dis-

crete, short-duration stimuli (e.g., brief light flashes, a short sound), called events,

whose timing and order may be randomized [8, 20]. Event related designs are based

on the assumption that neural activity will occur for short and discrete intervals.

This approach offers greater design-related flexibility to the experimenter, however,

the statistical power of event related designs is inherently low, because the signal

change in the BOLD fMRI signal following a single stimulus presentation is small [8].

In a block design, a condition is presented continuously for an extended time interval
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Figure 1.1: The HRF function can be described by a several characteristics including
the time from the stimulus until peak, height of response, the width of the HRF at
half the height, post-stimulus undershoot, and in some cases an initial dip.
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(block) to maintain cognitive engagement, and different task conditions are usually

alternating in time. Block designs have greater statistical power and may be more

appropriate if the experimental goal is to detect subtle differences in BOLD signal

across different test conditions [16, 24]. However, since the block design averages the

response within the block, finer details about the time-series can be lost [44].

The experimental design is a particularly important step as it has been found to

greatly influence the reliability of fMRI results [6]. Figure 1.2 presents a diagram

that compares event-related and block design in a simple fictional experiment where

a subject is either presented with an image (stimulus) or a fixation cross (resting state

that avoids distraction). In such an experiment, we could compare the brain areas that

activate when the subject is viewing an image compared to the brain areas activated

when the subject is fixating a cross (our control task). Previous literature strongly

suggests that an area in the occipital area should be associated with visual tasks

[49]. The experiment’s design complexity can of course be increased to arrive at more

interesting and less documented results. Therefore, researchers also developed some

optimal designs allowing one to search through the space of possible designs, with

the dimensionality of the space defined by the number of design parameters allowed

to vary [39]. Although optimal designs of fMRI experiments is helpful to increase the

signal-to-noise ratio, using such designs is generally more computationally challenging

compared to two formerly described designs.

fMRI is unquestionably a powerful tool to detect functional activation within the

brain, but the obtained data from fMRI experiences cannot be easily analyzed. The

signal is relatively weak and various sources of noise in the data must be carefully

controlled. These sources include thermal noise, power fluctuations, variation in

subject cognition, head motion effects, physiological noise (induced by respiration

5



Figure 1.2: Diagrams showing a representation of a simple fictional experiment where
a subject is either presented an image (visual task) or a fixation cross (resting state):
(a) Blocked design with 5 task blocks where images are presented and 4 fixation
(control) blocks, (b) Event-related design with jittered inter-stimulus-interval. The
purple lines indicate when the images are presented to the subject.
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and heart-beat) and artifact-induced problems. Furthermore, the brain is constantly

at work so it is not directly observable which zones of activation are related to a

certain experiment. Because of these factors, preprocessing steps and powerful data

analysis must be applied to find task related activations within the brain. These

concepts will be discussed further in the following subsections.

1.2 Preprocessing

fMRI is a commonly used technique for mapping human brain activity. However,

the BOLD response induced by neuronal activity only represents a relatively small

percentage of the variance of the signal. In general, the measured BOLD signal is very

small compared to the total intensity of the actual signal, and compared to the total

spatial and temporal variability across scans. Therefore, there is a need to remove the

noise sources via preprocessing before the statistical analysis [55] in order to reduce

effect of noise on the data, and to retrieve the rather small BOLD signal component.

Preprocessing affects the data and how it can be analyzed, there is, however, no

consensus on how it does so and what is the best series of steps [12, 13, 61]. Most

pipelines include slice-time correction, head-motion correction, co-registration and

normalization, as well as spatial smoothing.

Slice timing correction accounts for the fact that slices, composing the total vol-

ume of the brain, are obtained at different times, and as a result, are temporally

misaligned from each other. Slice timing correction (STC) is the preprocessing step

applied to correct for these slice-dependent delays, achieved by shifting the time se-

ries of each slice to temporally align all slices to a reference time-point. Slice timing

correction is particularly important when the times to repetition (TRs) are long and
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the expected hemodynamic response may vary significantly between slices. Although

the effectiveness of STC can interact with other preprocessing steps in the pipeline

and scanning parameters, it remains a necessary step to correct temporal misalign-

ment [47]. Another important step is the correction of head motion. Even at the

shortest TRs and when scanning the most cooperative participants, the position of

the head with respect to the scanner will change to some degree. Motion causes a

spatial misalignment in the source of the BOLD signal measured in all voxels at a

certain TR and its neighbors in the time series. This preprocessing step is performed

to make sure that each voxel represents a unique part of the brain.

Other common steps in data preprocessing include co-registration, normalization

and smoothing of obtained images. Co-registration aims to have better resolution

yielding the identification of the activations in the subject’s individual brain by align-

ing the functional images with anatomical images that have greater spatial resolu-

tion. Normalization is the process of mapping the obtained image into a normalized

anatomical space. It allows one to generalize the results to a larger population and

to make comparisons between other studies and subjects while increasing statistical

power. Finally, smoothing the data helps to improve signal-to-noise ratio and to make

data close to normal so that statistical analysis requiring normality assumption can

safely be applied on the smoothed data. There are some controversial opinions on the

use of smoothing due to arbitrary choice of smoothing filter. As discussed in Lazar

[34], one common approach is to compare the results with and without smoothing in

order to understand its influence on the fMRI analysis results.
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1.3 Analyzing fMRI Data

The data obtained from fMRI studies are of a highly complex nature, displaying both

spatial and temporal correlation, as well as high levels of noise from varying sources,

and consequently, the statistical analysis of fMRI data poses many challenges. The

magnitude and complexity of the data make it difficult to create a full statistical

model for describing its behavior in terms of computational feasibility and efficiency

[34, 38]. The detailed discussion of the problems including but not limited to design

issues, size and collection of data, potentially high correlation among observations,

large amount of noise relative to signal and preprocessing can be found in Lazar et

al. [35].

Statisticians have been playing an important role in fMRI studies by helping to

design experiments, by improving image reconstruction techniques, by finding more

efficient ways of dealing with the noise in the images, either via models or through im-

proved computational methods and of course, by coming up with more sophisticated

tools for data analysis. Since the rise in popularity of fMRI studies many statistical

techniques have been developed to study brain activation. The analysis of fMRI data

through the application of suitable statistical methods aims to localize regions of the

brain activated by a task, to identify networks that correspond to brain function

(connectivity) and to make predictions/classifications about psychological or disease

states.

Activation studies focus on characterizing the neural responses to experimental

tasks, which may be visualized as maps of distributed patterns of brain activity. Other

common objectives in activation studies are to detect differences in patterns of brain

activity among various experimental stimuli, among different subgroups of subjects,
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and between two or more sessions. While the main focus of activation studies is

localizing brain activation, functional connectivity studies are also popular and seek

to determine multiple brain networks that show similar temporal task-related activity

profiles.

The statistical approaches for activation studies can be divided into two classes:

model based approaches like the general linear model (GLM) [22, 38, 53], and model

free approaches like blind source separation such as Independent Component Anal-

ysis (ICA) [29]. These two approaches will be described thoroughly in Section 2.

Functional connectivity, defined as the temporal dependency of neuronal activation

patterns for anatomically separated brain regions, reflects statistical dependencies

between distinct and distant regions of information processing neuronal populations.

Therefore, it is simply a statistical concept which relies on statistical measures such

as correlation, covariance, or spectral coherence. For functional brain connectivity

studies, two broad classes may be identified, namely knowledge-based (or supervised)

and data-driven (or unsupervised) methods which can be subdivided further into de-

composition methods and clustering techniques [37]. Since investigating differences

in fMRI data between cases and controls for disorders such as autism may provide

new insights into disease mechanisms, several approaches commonly encountered in

the machine learning literature have been proposed for brain fMRI data, such as k-

nearest neighbors [57], Fisher linear discriminant [17], linear support vector machines

[14], Gaussian support vector machines [23], Adaboost [40], random forests [1], and

neural networks [2].

There are variety of software packages that are able to perform all aspects of anal-

ysis of an fMRI study [50]. SPM (Statistical Parametric Mapping) is an open source

Matlab script software for fMRI analysis developed by Karl Friston and colleagues
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[25]. FSL (FMRIB Software Library) has gained popularity in recent years due to

its implementation of a number of cutting-edge methods, visualization tools and its

ability of integration with grid computing yielding computational speed [54] . AFNI

(Analysis of Functional NeuroImages) is another popular software that has very pow-

erful and flexible visualization abilities while its statistical modeling and inference

tools have historically been less sophisticated than those available in SPM and FSL

[15]. In addition to these softwares, R and Matlab are two other cross-platform, high

level scripting languages that have been used for fMRI data analysis. In this thesis,

our main focus will be activation studies and their implementations available in R

[56] that is an open source and a free platform.

1.4 Organization of the Thesis

The rest of the thesis is structured in three chapters. In Chapter 2, two commonly

used statistical methods in fMRI activation studies, GLM and ICA, are described and

a comparison based on existent literature is provided. In the next part represented

by Chapter 3, BOLD 5000 data, results of GLM and ICA applied on BOLD 5000,

and empirical comparison of these results are given. Finally, in Chapter 4 we provide

a conclusion.
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Chapter 2

Statistical Analysis

The statistical analysis of fMRI data involves several challenges since it is huge, noisy

data displaying a complicated spatial and temporal structure. Therefore, statistics

plays a significant role in functional neuroimaging research and in its interplay with

other fields, such as neuroscience and imaging physics. Developing statistical meth-

ods based on the fMRI process modeling opens the door to more accurate analysis

methods, and consequently attributing accurate scientific interpretations to results

ensuring the reliability of fMRI studies.

In general, there are two common functional neuroimaging research goals: de-

tecting brain regions that reveal task-related alterations in measured brain activity

(localizing brain activation) and identifying highly correlated brain regions that ex-

hibit similar patterns of activity over time (brain connectivity) [38]. In this chapter,

we underline two popular statistical procedures for analyzing fMRI data to detect

localized brain activations.

Since the development of fMRI, a variety of univariate (separated for each voxel)

and multivariate methods for analyzing fMRI data have been developed to localize

regions of the brain activated by specific tasks. Some of the most popular methods

are the univariate, model based approaches that rely on the General Linear Model

(GLM) [22, 38, 53] and the multivariate, model-free approach based on Independent

Component Analysis (ICA) [29]. For the rest of this chapter, GLM and ICA methods

12



for detecting activated voxels in fMRI studies are described in detail. We provide a

literature review on the comparison of these two approaches.

2.1 General Linear Model (GLM)

The General Linear Model (GLM) is the most widely used parametric approach to

separate noise from stimulus induced signal in fMRI studies. This approach was first

introduced by Friston et al. in 1994 [22]. The name “general” suggests, this model can

be used for many different types of analyses, such as one-sample t -tests, two-sample

t -tests, and analysis of variance (ANOVA). More formally, the GLM is a hierarchical

parametrical model. When using this model for fMRI data analysis we usually fit two

models: Within-Subject (Single-Subject) and Between-Subject models. This is often

done in stages where the Within-Subject model is considered to be the 1st level of

the analysis and the Between-Subjects model is the 2nd level. The hierarchical model

then combines both stages into a single model in order to do inference and localize

regions activated by a task of interest. The details of both stages are given in the

subsections below. The GLM method for analyzing fMRI data is readily available in

popular toolboxes such as FSL and SPM [3, 32, 48] allowing experimental scientists to

analyze the data with relative ease. In this work, “fmri.lm” function in the “fmri” [51]

package in R are used. The description of the GLM is given based on the algorithm

implementation in the fmri package.

2.1.1 The Model

Typically, fMRI data can be modeled as a sum of responses, drift and noise. In this

study, we follow the notation introduced in Lindquist (2008) [38]. Here the response
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(i.e., BOLD response) is a linear combination of responses from K different stimuli.

That is, the response for voxel i, i = 1, 2, . . . , V , at time t, t = 1, 2, . . . , T , for the

subject j, j = 1, 2, . . . ,M , can be written as

yij(t) =
G∑
g=1

zijg(t)γijg +
K∑
k=1

xijk(t)βijk + εij(t). (2.1)

In equation 2.1, the first term corresponds to the drift component that accounts for

drifts over time due to systematic effects. The drift can be linear or nonlinear, hence a

flexible polynomial model is often employed to allow for nonlinear effects in the drift.

It is very common to consider zijg(t) = γijgt
g−1, i.e. pth order polynomial function

where G = p in the model 2.1. The sum of response component of the model in 2.1

is the second term of the model which can be rewritten as

K∑
k=1

xijk(t)βijk =
K∑
k=1

βijk

∫
hij(u)vk(t− u)du (2.2)

where hij is the HRF and vk(t) is the stimulus function depending on the experimental

stimulus that is described by a task indicator function. We assume that the HRF

function is known and defined as the difference of two gamma functions (canonical)

given as

h(t) = (
t

d1
)a1exp(−t− d1

b1
)− c( t

d2
)a2exp(−t− d2

b2
) (2.3)

where a1 = 6, a2 = 12, b1 = 0.9, b2 = 0.9, and di = aibi (i = 1, 2), and c = 0.35. εij is

assumed to follow an AR(1), a linear model that predicts the present value of a time

series using the immediately prior value in time. Specifically, εij(t) = ρijεij(t−1)+ψij

where |ρij| < 1 and ψij are independent and identically distributed errors.
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2.1.2 First level: Within-Subject Model

Assuming that the drift component is accounted for, we can drop the term from the

model in 2.1 and it can be rewritten in a matrix form for subject j at a given voxel

as:

yj = Xjβj + εj (2.4)

where yj is the T ×1 vector containing the BOLD time series, Xj is the T ×K design

matrix columns corresponding to the predicted BOLD response for each condition,

βj is a K × 1 vector of parameters, and εj ∼ N(0, σ2
jVj) where the covariance matrix

Vj = (vj(mn)) = ρ
|m−n|
j for |ρj| < 1 corresponding to an AR(1) process which is

considered as sufficient for fMRI experiments [60] for j=1,2,. . . ,M, m ≤ T and n ≤ T .

The model for an imagined voxel is illustrated in Figure 2.1.

The autocorrelation coefficients (ρj’s) are estimated from the residual vector rj =

(rj1, . . . , rjT ) of the fitted model 2.4 as

ρ̂j =

∑T
t=2 rjtrj(t−1)∑T

t=1 rjt
2

. (2.5)

After applying a bias-correction procedure described in [58], prewhitening is used to

transform model 2.4 into a linear model with approximately uncorrelated errors. The

prewhitened linear model is obtained by multiplying the terms in model 2.4 with Ṽj

using bias corrected estimate of ρj and, finally, least squares estimates of the βj’s are

obtained from the prewhitened model as:

β̂j = (X̃j
′
X̃j)

−1X̃j
′
ỹj (2.6)
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Figure 2.1: Illustration of a GLM model for one imagined voxel.
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where X̃j = Ṽj
−1/2

Xj and ỹj = Ṽj
−1/2

yj for j = 1, 2, . . . ,M . For considering more

than one stimulus and to estimate a linear combination of coefficients (contrast)

γj = c′βj, one can use γ̂jc
′β̂j where c is a K×1 vector of contrasts for j = 1, 2, . . . , K.

In summary, subject-specific regression models are fit at each voxel separately in

the first level. Coefficients or contrasts are then estimated from the fit. For each

subject, as there is one contrast per voxel (one coefficient per voxel), the resulting

collection of voxel-specific contrast values is referred to as the subject specific contrast

image, and is usually stored as a 3D image.

2.1.3 Second level: Between-Subject

After single-subject data has been analyzed for a set of participants, individual results

for a given voxel are aggregated to assess commonality and stability of effects within

or across groups of interest [58]. Ideally, one would regress the parameter of interest

γ on a group model:

γ = X∗β∗ + ε∗ (2.7)

where X∗ is M × q group-level design matrix, β∗ is the group level parameter vector

and ε∗ is the group error vector with Var(ε∗) = σ∗
2IM , where σ∗

2 is the between-

subject variance and IM is the M ×M identity matrix. While X∗ is often just a

column of ones (for a one-sample t-test) it can take any form in general as can be

seen in Figure 2.2 which is borrowed from [50].

However, since γ is unknown, we replace it with γ̂ = (γ̂1, γ̂2, . . . , γ̂M). Therefore

the model becomes:

γ̂ = X∗β∗ + (γ̂ − γ) + ε∗ = X∗β∗ + εγ, (2.8)

17



Figure 2.2: Examples of GLM models for particular study designs including: One-
sample t-test, two-sample t-test, and paired t-test [50].
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where εγ is the mixed-effects error, containing variation from both imperfect intra-

subject fit, i.e. (γ̂ − γ), and the distribution of true responses in the population, i.e.

ε∗ with V ar(εγ) = V ar(γ̂) + σ∗
2IM . After using this mixed-effect model, one can

estimate group parameter β∗ and test statistically whether it is null or not. A voxel

is assigned the label “active” for a contrast of stimuli, if the estimated parameter β∗

significantly deviates from zero.

One challenge present in the analysis of functional neuroimaging data is that

tests of hypotheses are conducted at the voxel level, often resulting in hundreds of

thousands of tests. Consequently, additional measures must be taken to maintain a

reasonable type-I error rate, since it may become inflated due to the large number of

tests performed. For instance, if there are 25,000 voxels to test (i.e., V=25,000), at

a significance level of α = 0.05 for the voxelwise test means that the expected value

of active voxels is 1,250, even if the null hypothesis is true everywhere. This problem

is known as the multiple comparison problem, and there are several strategies to

tackle this problem [36]. Bonferroni correction is a multiple-comparison correction

used when several independent statistical tests are being performed simultaneously

[27]. Since it is not realistic to assume tests are independent given spatial location of

the voxels, there are spatially dependent tests based on spatial smoothing methods

[59]. The fmri package in R has a function called “fmri.pvalue” that implements both

approaches.

2.2 Independent Component Analysis (ICA)

An alternative approach for an fMRI analysis is based on the independent component

analysis (ICA) [29], a statistical method that aims to decompose a complex multi-
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variate signal into simpler and independent subcomponents. Popular approaches for

performing ICA such as maximization of information (i.e., maximum likelihood esti-

mation), maximization of non-Gaussianity, and minimization of mutual information,

are all optimization based. The most commonly used ICA algorithms are Infomax [5],

FastICA [30], and joint approximate diagonalization of eigenmatrices (JADE) [10].

Since these algorithms typically work well for symmetric distributions and are less

accurate for skewed distributions, some nonparametric and kernel alternatives of ICA

have been developed as well [4, 7]. All these developments in ICA have resulted in

a number of practical applications in biomedical problems, text document analysis,

sensor signal processing, and image processing.

In the fMRI setting, ICA is used to understand the spatio-temporal structure of

the signal, and it can be used to discover either spatially or temporally independent

components. To identify a number of unknown sources of signal, ICA assumes that

these sources are mutually and statistically independent in space or time. Therefore,

ICA can be applied to fMRI data in two different ways: spatial ICA (sPCA) or

temporal ICA (tICA). The first application of ICA to fMRI data used sICA [42, 43]

which searches for components that are maximally independent in space. For fMRI

data set analyses, sICA is generally preferred because the number of time points is

small compared to the number of voxels (spatial points) making tICA typically much

more computationally demanding than sICA for fMRI applications.

As in GLM analysis, ICA is available in packages such as FSL and SPM [32]. In

this work, the “fmri.sICA” function in the “fmri” [51] package in R is used. The

description of the ICA is given based on the algorithm implementation in the fmri

package.

20



2.2.1 The Model

Let Yj be an T × V matrix containing the centered BOLD values with rows of zero

mean for the individual j for j = 1, 2, . . . ,M . The purpose of the analysis is to

factor the data matrix, Yj, into a product of a set of time courses and a set of spatial

patterns. Therefore, for the observed Yj, we want to estimate a T × R matrix A

(mixing matrix) and R× V matrix S (spatially independent components) so that

Yj = AjSj.

Thus, the ICA decomposition of Yj can be defined as an invertible transformation

Sj = WjYj

where Wj is pseudo inverse of Aj and is called “unmixing” matrix.

In typical ICA analysis, it is generally assumed that the number of sources is equal

to number of mixtures which is T in case of sICA [31]. To remedy this problem, a

PCA based data pre-processing is generally used where the unmixing matrix becomes

a square matrix of size T×T and this process is called “prewhitening” the data. In real

world applications, it is typical to apply ICA after a preliminary dimension reduction

of the input data-matrix.

In this study, we use FastICA algorithm [30] that searches for (maximally) non

Gaussian sources, where non-gaussianity of the extracted sources is maximized. To

measure non-Gaussianity, FastICA relies on nonlinear functions such as f(u) =

logcosh(u) or f(u) = e
−u2

2 .
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2.2.2 Group ICA

The analysis described in the previous section gives results for one subject. Several

ICA multi-subject analysis approaches have been proposed in the literature. In this

thesis, we use the method proposed by Esposito et al. (2005)[21]. This approach

performs single-subject ICA for each subject (or run) and then combines the output

into a group using self-organized clustering.

Specifically, the ICA estimates from each subject were organized in one single set

of components (i.e., S and W) with an additional label preserving the link from the

components to the original subject; those components were then clustered according

to their mutual similarities. A natural measure of similarity between the estimated

independent components is the absolute value of their mutual correlation coefficients

that can be defined by a weighted sum of the the spatial and temporal correlations

of the components. Here, spatial correlations are calculated using the columns of

the components (Sj) whereas temporal correlations are calculated using the columns

of the mixing matrix (Aj). The weight parameter is bounded between 0 and 1 and

allows a user defined weighting of temporal or spatial similarity of the components.

After calculating similarity matrices for each subject, these matrices are transformed

into dissimilarity matrices of size T × T . Then a supervised hierarchical clustering

algorithm, linking the components to each other only when differently labeled (i.e.,

belonging to different subjects), is implemented.

Once the estimates belonging to a cluster have been retrieved, the average com-

ponent of this cluster is computed and, henceforth, assumed as the group compo-

nent representative of the cluster. Then the group components can be combined

using the group proportions as weights. The described group ICA is implemented in
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“fmri.sgroupICA” function in the fmri package in which only spatial similarity of the

components is used.

A method for performing comparisons of group ICA data is proposed in [9]. After

constructing ICA components, one might select a “component of interest” by choosing

the component that correlates the highest with a task waveform. Next, a test is

performed to determine which voxels are significantly “contained” in this component

and these are identified to be “activated”. In this study, the “ICAfingerprint” function

in the fmri package is used to select a component which is then used to identify

activated components. This function implements a method proposed by Martino et

al. [19].

2.3 GLM versus ICA

Most GLM models fit to fMRI data make several assumptions that are often viewed

as unrealistic in practice but must be met for inferences to be valid. First, the voxels

are assumed to independent. It is, however, reasonable to assume that there is some

degree of spatial correlation, in other words that voxels in close neighborhoods are

more likely to be activated at the same time. It is important to note that there are

more voxels than time points and fitting a truly multivariate model leads to issues with

parameter estimation. When using whitening, or decorrelation, it is assumed that the

true error correlation is known, whereas in practice it is usually estimated from the

data. This estimate can be biased and highly variable. Finally, the same model is

fit to every voxel. The parameters that are estimated will differ since the models

are fit independently at every voxel. It can be argued that different locations would

necessitate distinct models to better capture the complexity of the brain. In section
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11.3, Nicole Lazar describes approaches for model selection in order to fit the most

appropriate model at different locations [34]. There are also assumptions about the

model such as knowing HRF function, assuming AR(1) (or another) process for the

residuals, linearity, etc. Despite these limitations, GLM approach to fMRI time-series

remains a relatively intuitive and highly flexible tool, especially in light of the many

sophisticated methods that have been introduced to resolve assumption violations.

Unlike GLM, ICA relies on the intrinsic structure of the data, no assumptions

about the form of the HRF or the possible causes of responses are introduced. There-

fore, ICA would be more sensitive in detecting task-related changes in fMRI signal

than the traditional GLM based analysis, because ICA uses a data-driven approach,

and can reduce noise in the final solution by separating artifacts from real fMRI sig-

nal. However ICA has its own challenges. Firstly, ICA decomposition is obtained by

means of iterative optimization. This stochastic nature of the process induces a degree

of run-to-run variability, so results obtained from such an analysis can differ between

analysis runs on even the same data [26]. Secondly, the processes of dimensional-

ity reduction and model order selection are somewhat arbitrary. While approaches

exist to optimally select the number of independent components for a given dataset

according to statistical criteria, it is important to note that there can be no single,

“best” dimension or model order for the underlying neurophysiology [62].

There have been some studies comparing performances of GLM and ICA on em-

pirical data. For example, Robinson et al. [52] used an fMRI data based on clinical

study involving chin and hand motion tasks. Their study showed that ICA was ca-

pable of cleanly separating activation from motion artifacts in ultra-high field fMRI

data which contained stimulus-correlated motion. Some activated regions were evi-

dent in ICA results but not in GLM results, indicating not only higher true positive
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rate detecting activation but also lower false positive rate in the analysis of motion-

contaminated data. In general, studies have shown that ICA can be a valuable tool

to detect hidden activity in the brain that cannot be found using a model-based anal-

ysis like the GLM [33]. While clearly ICA cannot be used to validate a model, it can

give useful hints to understand the brain and help to develop new models and study

designs which then can be validated using a classic regression analysis. Thus, it is

recommended that investigators use both GLM and sICA in future fMRI studies for

a more complete understanding of the brain’s functional organization.
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Chapter 3

Numerical Analysis

3.1 BOLD Data

The real data used in our analysis comes from an open source data platform and

is available at openneuro.org. The dataset, called BOLD5000, is a large-scale, slow

event-related fMRI dataset. In the experiment almost 5,000 unique images were used.

The images where from one of the following three categories: Scenes, images from

the COCO dataset [41], and images from the ImageNet dataset [18]. Images were

presented for 1 second, with 9 seconds of fixation cross between trials. Participants

were asked to judge whether they liked, disliked, or were neutral about the image.

There were four participants in the study. The data available for each participant was

obtained through 15 task-related sessions and one session to obtain high resolution

anatomical images. The functional images in the dataset were collected using a T2*-

weighted gradient. Further details about the scanning parameters are available in

the BOLD5000, a public fMRI dataset while viewing 5000 visual images paper [11].

We only investigated one participant to remain in the native space. The focus of our

analysis is the contrast between two tasks: fixation versus image viewing (all types of

images mixed, unless stated otherwise). We analyzed the data from the first scanning

session that contained ten runs for the first subject.
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The BOLD5000 dataset used the pipeline developed by the Poldrack lab at Stan-

ford University [11].

3.2 GLM Analysis

3.2.1 Determining HRF

The expected BOLD response can be created using a task indicator function as a con-

volution with the hemodynamic response function of our choice. The fmri.stimulus()

function allows us to choose between the canonical, simple, boxcar, and a user defined

functions [51]. Here, we provide an empirical comparison of the estimated BOLD re-

sponse in Figure 3.1. We can observe that the expected BOLD response created using

the canonical versus gamma HRF are similar in shape although they differ in the ini-

tial values and amplitudes. The BOLD signal measured for the particular voxel has a

much greater values than the expected BOLD plots, however, the latter present the

expected percent signal change rather than the raw values themselves. The boxcar

function is usually used for block design experiments. As the BOLD5000 experiment

is a slow event-related experiment, this is not the best choice for modeling purposes.

For the analysis in this thesis, we chose to set the function as canonical as it is the

default setting and the study of HRF is not the focus of the thesis.

3.2.2 First Level: One Run

Our analysis first focused on the first run of data. We defined image viewing (all image

types) versus fixation cross as a task contrast. Images were presented a total of 37

times during this test, which should give the analysis sufficient statistical power to find
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Figure 3.1: Comparison of the BOLD signal for a voxel (top left) and the expected
BOLD responses using a Canonical HRF (top right), Gamma HRF (bottom left), and
a Boxcar HRF (bottom right).
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activated voxels. The fmri.pvalue() function allows us to choose the kind of p-value

calculation we prefer by changing the mode parameter. It allows for a Bonferroni,

False Discovery Rate (FDR), and voxelwise p-value calculation method. Bonferroni

adjusts the significance level for multiple testing and is the most conservative option of

the three. A fourth option for this parameter is “basic”, which uses the estimated resel

counts achieved by adaptive smoothing to calculate the p-values. Another parameter

of interest is the parameter alpha, which allows one to set an α level for tests. We set

α to be the default, which is 0.05 [51].

The activation map for the contrast, image viewing versus fixation cross, obtained

using the Bonferroni method is showed in Figures 3.2 (a) and 3.3 (a). Like for the

FDR map, we observe activation mainly, and almost exclusively in this case, in the

occipital lobe, which is consistent with the literature. We can observe that there are

fewer voxels that are active using this method. This makes sense as the Bonferroni

method is more conservative.

The activation map for the contrast obtained using the FDR method is showed

in Figures 3.2 (b) and 3.3 (b). We can observe active voxels mainly located in the

occipital lobe, which is consistent with the extensive literature that studied visual

tasks. The detailed and commented code is available in the Appendix.

The activation map for the contrast obtained using the voxelwise method is showed

in Figures 3.2 (c) and 3.3 (c). We can see activated voxels all over the brain, and even

some located outside the subjects’ brain. This is evidence that the activated areas

obtained are mostly noise. The activation map obtained using the method denoted as

“basic” (Figures 3.2 (d) and 3.3 (d)) yielded us a map very similar to the Bonferroni

one.

For the contrasts Coco-ImageNet, Coco-Scenes, and Scenes-Imagenet, we found
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no significant voxels using the FDR and Bonferroni methods. When we used the

voxelwise method, we found active voxels located throughout the brain, and even

some outside of it, indicating that mostly noise was found.

3.2.3 Second Level: Multiple Runs

In order to increase the statistical power of the experiment, we can perform the second

level of the GLM model by combining 10 runs of data. We only performed group

GLM for the task, all images versus fixation cross, as other contrasts did not show

significant results for any of the runs separately. We used the function fmri.metaPar()

to estimate a group map for the ten runs combined. This function performs a voxel-

by-voxel analysis and fits a configured linear mixed-effects meta-analytic model [51].

To calculate the p-values and determine the activated voxels we used the same

function as for the individual runs. The method “basic” returned no active voxels

meanwhile the method ”FDR” combined with the default alpha-level of 0.05, returned

very large active areas, which seemed inconsistent with the results found from the

individual runs. As shown in Figures 3.4 and 3.5, setting the alpha-level to 0.0001

when using the“FDR” mode provided us with maps very similar to the “Bonferroni”

mode with a default set alpha-level of 0.05. We can observe that the active voxels

still live mainly in the occipital lobe as for the results shown in the first level of the

analysis which is consistent with the literature of visual tasks. There also appears

some activation, to a lesser extent, in the cerebellum. The cerebellum is mostly known

for its role in motor functions but might have been found to be activated because the

participants were asked to convey how much they liked the image they viewed by

pressing on a button [41].
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Figure 3.2: Axial view of the map of activated voxels for the first run for the image
viewing versus fixation cross task contrast using p-value calculations (a) Bonferroni,
(b) FDR, (c) voxelwise, (d) and basic.
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Figure 3.3: Sagittal view of the map of activated voxels for the first run for the image
viewing versus fixation cross task contrast using p-value calculations (a) Bonferroni,
(b) FDR, (c) voxelwise, (d) and basic.
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Figure 3.4: Axial view of the map of activated voxels for the first 10 runs combined
for the image viewing versus fixation cross task contrast using p-value calculations
(a) FDR with alpha set to 0.0001, (b) Bonferroni with default alpha of 0.05.

Figure 3.5: Sagittal view of the map of activated voxels for the first 10 runs combined
for the image viewing versus fixation cross task contrast using p-value calculations
(a) FDR with alpha set to 0.0001, (b) Bonferroni with default alpha of 0.05.
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3.3 IC Analysis

3.3.1 One Run

In order to fit ICA to our data, we used the function fmri.sICA(), which is a spatial

ICA as described in the second chapter. We use “logcosh” and “parallel” with fastICA

in order to accelerate the time elapsed. We also set the parameter smooth to “TRUE”,

so that the resulting residual series are spatially smoothed using a Gaussian kernel

with a specified bandwidth, which was set to 4. Here the unit of bandwidth is “Full

Width Half Maximum (FWHM)”. We set the number of components to estimate to

be 20.

In order to distinguish between components of interest that may have a neuro-

logical interpretation and nuisance components that describe artifacts from motion,

physiological effects or scanner inhomogeneities, etc., IC fingerprints have been in-

troduced and used for automatic IC classification in Martino et al. [19]. Here, in-

dependent components are characterized by numerical features of spatial IC and its

corresponding time course from the mixing matrix. The characteristics used are kur-

tosis, skewness, entropy and a clustering index obtained from the spatial part and

entropy, first-order autocorrelation, and proportions of five frequency bands in the

spectrum of the time component. The characteristics are then normalized, over all

components, to be within the unit interval [0, 1].

The star-plot displayed in Figure 3.6 compares the first three components us-

ing fmri.ICAfingerprint(). This function executes ICA fingerprinting as described by

de Martino, with some modifications, such as normalization of values [19, 51]. We

can see that the first independent component has the highest spatial entropy (sen-
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tropy), degree of clustering in the anatomical space (dclust), and power in the band

2 (power2). The second component has slightly higher temporal entropy (tentropy)

than the first one, but both scores remain quite high. These features are specially

helpful when doing exploratory data analysis of fMRI data. The degree of clustering

score is of particular interest meaningful processes usually have a spatial structure

that is well-defined [19]. We thus believe that the first component is the most likely

to be associated with image viewing and to have found a higher signal to noise ratio.

The assessment of the different independent components that were estimated indi-

cated that the first component is more likely to be associated with the image viewing

task meanwhile other components are more likely to have captured noise.

Figure 3.6 displays a map of the activated voxels in the brain for the first run of

data and the first component. We can see that most of the activated voxels live in

the occipital lobe. There is some minor activation in the cerebellum and frontal lobe

which could be either noise or linked to the subjects having to press a button while

viewing an image and making a judgement. There also appears to be some significant

activation in the temporal lobe, which was not found using the GLM model. This

might be noise. The estimated time series appears to be consistent with the times

the events were showed (Figure 3.1 shows the BOLD response and HRF functions for

comparison).

3.3.2 Multiple Runs

In order to estimate the independent components for all 10 runs of data combined

we used the function fmri.sgroupICA(). This function employs a hierarchical cluster-

ing algorithm on the combined set of spatial independent components obtained from
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the individual time series for each of the 10 runs. The correlations of the indepen-

dent components are used to calculate a distance matrix [51]. We set the parameter

“thresh”, the threshold for cluster aggregation, to be 0.75. The parameter “minsize”,

minimal size of cluster to considered in IC aggregation, to be 3.

The estimated maps is summarized in Figure 3.8 which shows coronal, saggital,

and axial views. We can see that no activation was found in the occipital lobe. Most

of the active voxels lived in the temporal lobe and the cerebellum. This is not great

evidence that the first independent component found for the group ICA is associated

with image viewing. Unfortunately the fingerprint function does not run for group

ICA data so we do not have supplementary scores for this component. After exploring

the components 2 through 20, we believe that those capture mostly noise.

3.3.3 GLM versus ICA

Our results for the first run of data using GLM (contrast all images versus fixation

cross) is consistent with the results displayed for the first IC estimated using ICA.

We observe activation mostly in the occipital lobe, with some minor activation in the

cerebellum. Additionally the first IC also found activation in the temporal lobe along

with some minor activation in the frontal lobe.

On the other hand, the results for the 10 runs of data combined differ more

significantly when we compare both methods. The GLM model found activation that

was consistent with the results from the first run. ICA, however, found activation

located mostly in the cerebellum and temporal lobes and no activation in the occipital

lobe, which is what we expected.
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Thus, we believe that overall the GLM method results are more consistent with

our task of interest (image viewing) than the group ICA for this data application.
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Figure 3.7: Starplot of the ICA fingerprint for run 1 task all images versus fixation
cross for components 1 through 3.
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Figure 3.8: Map of activated voxels of the ICA analysis combining 10 runs.
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Chapter 4

Conclusion

Functional magnetic resonance imaging is one of the most widely used tools to study

the neural underpinnings of human cognition. Applications of statistical methods

on fMRI data have provided us with a better understanding of the neural basis of

cognitions, emotions, behaviors, and neurologic disorders.

We have found that both the GLM and ICA for the first run of data found sig-

nificant activation located in the occipital lobe which is consistent with the literature

on visual tasks. Both analyses also found activation in the cerebellum which might

be related to the experimental design, and more precisely to the motion that partic-

ipants made while pressing the button. Meanwhile the GLM results for the ten runs

of data combined were consistent with the results for the individual runs, the group

ICA results were not. The first method found significant activation in the occipital

lobe meanwhile the second approach did not, finding activation located mainly in the

temporal lobe. It is important to note that it is hard to assess whether the first inde-

pendent component estimated by the fmri.sgroupICA() function is related to the task

or not as there is not an implementation of the ICAfingerprint() function available

for that output.

Given that the interesting statistical questions deepen the more we learn, there

are still numerous computational and conceptual challenges that have yet to be fully

explored for building more realistic models. Therefore, methodology for statistical
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prediction based on fMRI data represents an important area for future research, and

preliminary work in this area provides a promising outlook for the potential utility of

fMRI data for understanding brain function and its relationship to behavior.
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[52] Robinson, S. D., Schöpf, V., Cardoso, P., Geissler, A., Fischmeister, F. P. S.,

Wurnig, M., ... & Beisteiner, R. (2013). Applying independent component anal-

ysis to clinical FMRI at 7 T. Frontiers in human neuroscience, 7, 496.

[53] Sarty, G. E. (2007). Computing brain activity maps from fMRI time-series im-

ages.

[54] Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T.

E., Johansen-Berg, H., ... & Matthews, P. M. (2004). Advances in functional

and structural MR image analysis and implementation as FSL. Neuroimage, 23,

S208-S219.

[55] Strother, S. C., & Churchill, N. (2017). Neuroimage preprocessing. Handbook of

neuroimaging data analysis, 264-308.

49



[56] Team, R. C. (2017). R Foundation for Statistical Computing; Vienna, Austria:

2016. R: A language and environment for statistical computing.

[57] Wang, X., Hutchinson, R., & Mitchell, T. M. (2003). Training fMRI classifiers

to detect cognitive states across multiple human subjects. NIPS03, 16.

[58] Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F., &

Evans, A. C. (2002). A general statistical analysis for fMRI data. Neuroimage,

15(1), 1-15.

[59] Worsley, K. J. (2005). Spatial smoothing of autocorrelations to control the de-

grees of freedom in fMRI analysis. NeuroImage, 26(2), 635-641.

[60] Zhang, H., Luo, W. L., & Nichols, T. E. (2006). Diagnosis of single-subject and

group fMRI data with SPMd. Human brain mapping, 27(5), 442-451.

[61] Zhang, J., Anderson, J. R., Liang, L., Pulapura, S. K., Gatewood, L., Rotten-

berg, D. A., & Strother, S. C. (2009). Evaluation and optimization of fMRI

single-subject processing pipelines with NPAIRS and second-level CVA. Mag-

netic resonance imaging, 27(2), 264-278.

[62] Zuo, X. N., Kelly, C., Adelstein, J. S., Klein, D. F., Castellanos, F. X., & Milham,

M. P. (2010). Reliable intrinsic connectivity networks: test–retest evaluation

using ICA and dual regression approach. Neuroimage, 49(3), 2163-2177.

50



Appendix A

R Code

#Load in necessary libraries

#If you use MacOS make sure you download R from

#https://cran.r-project.org/bin/macosx/ directly

#so tcltk is included in the installation

rm(list=ls())

library(fastICA)

library(fmri)

library(oro.nifti)

library(Rcmdr)

library(tkrplot)

#base package no need to install

library(tcltk)

#download the data from
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#https://openneuro.org/datasets/ds001499/versions/1.3.0

#We recommend having a file structure as follows:

#Sub-CSI1/ folder for CSI1 data

#/anat/ where your anatomical image is located

#/func/ where your functional data is located

#/runi i = 1,...,10

###Load the Anatomic data

#set your working directory to where your Sub-CSI1

data is located

setwd("<PATH_TO_DATA>/Sub-CSI1/")

ana= readNIfTI("anat/derivatives_fmriprep_sub-CSI1_anat_sub-CSI1_T1w_

↪→ dtissue.nii")

Vbold=Cbold <- array(0, dim = c(71, 89, 72, 10))
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#set working directory to your func folder

setwd("<PATH_TO_DATA>/Sub-CSI1/func")

runs=c("s1r1","s1r2","s1r3","s1r4","s1r5","s1r6","s1r7","s1r8","s1r9",

↪→ "s1r10")

##Task 1: all images versus fixation cross

setwd("<PATH_TO_DATA>/Sub-CSI1/func/")

fm<-"/derivatives_fmriprep_sub-CSI1_ses-01_func_sub-CSI1_ses-01_task

↪→ -5000scenes_run-01_bold_space-T1w_brainmask.nii.gz"

mask1 <-readNIfTI(fm)>0

i=10

rn=runs[i]

setwd(rn)

getwd()

###need to modify following file reading for runs where i!=1

fr <-"derivatives_fmriprep_sub-CSI1_ses-01_func_sub-CSI1_ses-01_task

↪→ -5000scenes_run-10_bold_space-T1w_preproc.nii.gz"
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sub1_s1_ri <- readNIfTI(fr, reorient = FALSE)

s1r1_events = read.table("sub-CSI1_ses-01_func_sub-CSI1_ses-01_task

↪→ -5000scenes_run-10_events.tsv", sep = ’\t’, header = TRUE)

onsets_s1r1 = s1r1_events$onset

onsets_s1r1_scans =round(onsets_s1r1/2, digits = 0)

all_images = fmri.stimulus(scans = 194,onsets = onsets_s1r1_scans,

↪→ durations=c(rep(0.5,37)), TR=2, type="canonical")

x_all = fmri.design(all_images)

ds <- oro2fmri(sub1_s1_ri)

ds$mask <- mask1

spm_all = fmri.lm(ds,mask=ds$mask,x_all,actype = "smooth")

Cbold[,,,i] <- spm_all$cbeta

Vbold[,,,i] <- spm_all$var

###In fmri.lm, If actype

#%in% c("ac","accalc","smooth") an AR(1) model is fitted, in each

↪→ voxel, to the time series

#of residuals. The estimated AR-coefficients are corrected for bias.

↪→ If actype=="smooth" the estimated
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#AR-coefficients are spatially smoothed. If actype %in% c("ac","

↪→ smooth") the linear model

#is pre-withened using the estimated (and possibly smoothed) AR-

↪→ coefficients. Parameter and variance

#estimates are then obtained from the pre-whitened data.

pvalue <- fmri.pvalue(spm_all, mode="FDR")

#The parameter mode allows for different kinds of p-value

↪→ calculation. mode="voxelwise" refers to

#voxelwise tests while mode="Bonferroni" adjusts the significance

↪→ level for multiple testing.

#alternative is mode="FDR" specifying signal detection by False

↪→ Discovery Rate (FDR) with proportion of false positives level

↪→ specified by alpha. The other choices apply results on

↪→ excursion

#sets of random fields (Worsley 1994, Adler 2003) for smoothed SPM?s

↪→ . "basic" corresponds to a

#global definition of the resel counts based on the amount of

↪→ smoothness achieved by an equivalent

#Gaussian filter.
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plot.new()

plot(pvalue,view="orthographic",template=ana,mask=mask1) #all images

↪→ ###RUN1

save(spm_all,file=paste(rn,"Rdata",sep="."))

save("Cbold","Vbold",file="VC_all.Rdata")

###separate images

setwd("<PATH_TO_DATA>/Sub-CSI1/func")

ttt <- s1r1_events

ntrials <- dim(ttt)[1]

indImagenet <- (1:ntrials)[(ttt$ImgType=="imagenet") | (ttt$ImgType=="

↪→ rep_imagenet")]

indCoco <- (1:ntrials)[(ttt$ImgType=="coco")| (ttt$ImgType=="rep_coco"

↪→ ) ]

indScenes <- (1:ntrials)[(ttt$ImgType=="scenes")]

onsets <- ttt$onset

duration <- ttt$duration
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HRFImagenet <- fmri.stimulus(scans=194, onsets=onsets[indImagenet],

↪→ durations=duration[indImagenet],TR =2, times=TRUE)

HRFCoco <- fmri.stimulus(scans=194,

onsets[indCoco],duration[indCoco],TR =2, times=TRUE)

HRFScenes <- fmri.stimulus(scans=194,

onsets[indScenes],duration[indScenes],TR =2, times=TRUE)

HRF <- cbind(HRFImagenet,HRFCoco,HRFScenes)

###Imagenet versus Coco

x_sep = fmri.design(HRF)

spm_sep = fmri.lm(ds,mask=ds$mask,x_sep,contrast=c(1,-1,0,0,0,0),

↪→ actype = "smooth")

pvalue_sep <- fmri.pvalue(spm_sep, mode="FDR") ###change mode and see

↪→ if any voxel is defined

plot(pvalue_sep)

save(spm_sep,file=paste(paste(rn,"sepImCo",sep=""),"Rdata",sep="."))

plot.new()
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plot(pvalue,view="orthographic",template=ana,mask=mask1) #all images

↪→ ###RUN1

####Combining all runs for the all_events ---later!!!

#dim(spm_all$cbeta) :71,89,72

#dim(spm_all_r2$cbeta) :71,89,72

setwd("<PATH_TO_DATA>/Sub-CSI1/func")

runs=c("s1r1","s1r2","s1r3","s1r4","s1r5","s1r6","s1r7","s1r8","s1r9",

↪→ "s1r10")

for (i in 1:10){

print(i)

setwd("<PATH_TO_DATA>0/Sub-CSI1/func")

rn=runs[i]

setwd(rn)

getwd()

load(list.files(pattern="RData")[1])

Cbold[,,,i] <- spm_all$cbeta

Vbold[,,,i] <- spm_all$var
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rm("spm_all")}

Vbold[Vbold==0]=1e-04

setwd("<PATH_TO_DATA>")

save(Cbold,Vbold,file="GLM_sub1_allruns.RData")

####2nd stage with metaPar

rm(list=ls())

library(fmri)

load("<PATH_TO_DATA>/GLM_sub1_allruns.RData")

out=fmri.metaPar(Cbold,Vbold,method = "FE", cluster = 1,knha = FALSE)

pval= fmri.pvalue(out,na.rm=TRUE,mode="FDR")

plot.fmripvalue(pval)

######## ICA
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rm(list=ls())

###Anatomic data

runs=c("s1r1","s1r2","s1r3","s1r4","s1r5","s1r6","s1r7","s1r8","s1r9",

↪→ "s1r10")

###set working directory

setwd("<PATH_TO_DATA>/Sub-CSI1/func")

fm<-"derivatives_fmriprep_sub-CSI1_ses-01_func_sub-CSI1_ses-01_task

↪→ -5000scenes_run-01_bold_space-T1w_brainmask.nii.gz"

mask1 <-readNIfTI(fm)>0

i=1

rn=runs[i]

setwd(rn)

getwd()

#load in preprocessed data for run1

sub1_s1_ri= read.NIFTI("sub-CSI1_ses-01_task-5000scenes_run-01_bold_

↪→ space-T1w_preproc") #run

ICA_sub1r1= fmri.sICA(sub1_s1_ri,mask1, ncomp= 20, degree = 3,bws = 8,

↪→ bwt = 4, unit = "FWHM") #r1
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ICA_sub1_f1= ICAfingerprint(ICA_sub1r1,plot=TRUE) #f1 and r1

plot.new()

#make sure your plot window is large enough

plot(ICA_sub1_f1,thresh=3)

#save(ICA_sub1r1,file="s1r1ica_new.RData") #r1 f1 and r1

####Plotting IC-fingerprints:

# Library

library(fmsb)

# Create data:

data <- as.data.frame(ICA_sub1_f1$fingerprint)

data<-data[1:3,c(3,6,4,8,9)]

data <- rbind(rep(max(data),5) , rep(min(data),5) , data)

rownames(data)=c("r1","r2",paste("IC" , c(1:(nrow(data)-2)) , sep=""))

# Color vector

colors_border=c( rgb(0.2,0.5,0.5,0.9), rgb(0.8,0.2,0.5,0.9) , rgb

↪→ (0.7,0.5,0.1,0.9) )

colors_in=c( rgb(0.2,0.5,0.5,0.4), rgb(0.8,0.2,0.5,0.4) , rgb

↪→ (0.7,0.5,0.1,0.4) )
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par(mar=c(1,1,1,1))

# plot with default options:

radarchart( data , axistype=1 ,

#custom polygon

pcol=colors_border , pfcol=colors_in , plwd=4 , plty=1,

#custom the grid

cglcol="grey", cglty=1, axislabcol="grey", caxislabels=seq

↪→ (0,20,5), cglwd=0.8,

#custom labels

vlcex=0.8

)

# Add a legend

legend(x=1, y=1.2, legend = rownames(data[-c(1,2),]), bty = "n", pch

↪→ =20 , col=colors_in , text.col = "grey", cex=1.2, pt.cex=3)

####Group ICA: combining the results

rm(list=ls())

library(fmri)
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#Load in your data for all 10 runs

setwd("<PATH_TO_DATA>/Sub-CSI1/func")

icaobjlist=list(ICA_sub1r1,ICA_sub1r2,ICA_sub1r3,

ICA_sub1r4,ICA_sub1r5,ICA_sub1r6,ICA_sub1r7,ICA_sub1r8,ICA_sub1r9,

ICA_sub1r10)

ICA_all=fmri.sgroupICA(icaobjlist, thresh =0.75, minsize=3)

#generate a plot of the first component

plot(ICA_all,comp=1,thresh=3)
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