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ABSTRACT 16 

β-glucans are polysaccharides which can be obtained from different sources, and which 17 

have been described as potential prebiotics. The beneficial effects associated with -18 

glucan intake are that they reduce energy intake, lower cholesterol levels and support 19 

the immune system. Nevertheless, the mechanism(s) of action underpinning these health 20 

effects related to β-glucans are still unclear, and the precise impact of β-glucans on the 21 

gut microbiota has been subject to debate and revision. In this review, we summarize 22 

the most recent advances involving structurally different types of β-glucans as 23 

fermentable substrates for Bacteroidetes (mainly Bacteroides) and Bifidobacterium 24 

species as glycan degraders. Bacteroides is one of the most abundant bacterial 25 

components of the human gut microbiota, while bifidobacteria are widely employed as a 26 

probiotic ingredient. Both are generalist glycan degraders capable of using a wide range 27 

of substrates: Bacteroides spp. are specialized as primary degraders in the metabolism 28 

of complex carbohydrates, whereas Bifidobacterium spp. more commonly metabolize 29 

smaller glycans, in particular oligosaccharides, sometimes through syntrophic 30 

interactions with Bacteroides spp., in which they act as secondary degraders.  31 

 32 

Keywords: β-glucans; Bacteroides; Bifidobacterium; Syntrophic interactions; 33 

metabolism; Carbohydrate active enzymes. 34 

  35 
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1. Introduction 36 

β-Glucans are complex polysaccharides composed of D-glucopyranosyl residues that 37 

are linked through β-bonds. These ubiquitous polymers are present in cells walls of 38 

yeast, fungi, seaweed, bacteria and cereals, such as wheat, oat and barley [1, 2]. The 39 

macromolecular structure of β-glucans is different according to the extraction source. 40 

For instance, cereal β-glucans have a backbone of single β(1,3)-bonds separating short 41 

sections of β(1,4)-bonds, while seaweed β-glucans typically consist of a β(1,3)-linkage 42 

backbone with single β(1,6) branching points, in which the resulting side chain contains 43 

β(1,3)-linkages (Fig. 1). Additionally, mushroom-derived β-glucans typically represent 44 

polymers composed of β(1,6)-linked branches from a β(1,3) backbone, while bacterial 45 

β-glucans simply consist of a linear β(1,3) backbone (Fig. 1) [3-6].  46 

 47 
Fig. 1. Structure of different types of alpha- (resistant starch) and β-glucans. The sources of β-48 

glucans are varied: cereals, brown algae (Laminarin), Saccharomyces cerevisiae (yeast), Fungi 49 

Lasallia pustulata (Pustulan), bacteria, e.g. Alcaligenes faecalis (Curdlan), and plants 50 

(cellulose) [5]. 51 

 52 
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β-glucans can be modified by physical, chemical and biological methods, which affect 53 

their primary structure, spatial conformations and bioactivity. In fact, modification and 54 

transformation of β-glucans may not only improve their biological functionalities in the 55 

human gut, but also their applications as a prebiotic [7-9]). Such processed β-glucans 56 

have been reported to (i) reduce glucose and cholesterol blood levels, (ii) promote 57 

production of short chain fatty acids (SCFAs), which may act as important modulators 58 

of host immune function, (iii) decrease energy intake, and (iv) lower obesity, diabetes 59 

and cardiovascular risk [10-16]. Moreover, several studies have underlined a wide range 60 

of interesting properties of β-glucans, such as anticancer effects [17-20], 61 

immunomodulatory abilities [21], anti-inflammatory activities [22], or their role as 62 

potential adjuvants for vaccine delivery and efficacy [23] or as delivery vehicles for 63 

probiotics [24]. 64 

 65 

The focus of this review is on outlining various metabolic routes described for 66 

structurally different dietary β-glucans by human gut Bacteroides and Bifidobacterium 67 

spp. in order to clarify the various effects these polysaccharides may have on the 68 

abundance and metabolic activity of mentioned gut commensals. Understanding glycan 69 

metabolism is fundamental to determine how polysaccharides shape the microbial gut 70 

communities, as well as its associated health effects. In addition, this understanding will 71 

facilitate the development of nutraceutical-based strategies to increase the content of 72 

specific beneficial bacteria. 73 

 74 

The gut and its associated Human Gut Microbiota (HGM) together form a recently 75 

considered novel organ of the human body that impacts on human health in a variety of 76 

ways [25, 26]. The HGM in Western populations represents a complex microcosm of 77 
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trillions of microorganisms, with Bacteroidetes and Firmicutes being the most dominant 78 

phyla, and Actinobacteria, Proteobacteria and Verrucomicrobia being less abundant 79 

components (Fig. 2) [27, 28]. Nonetheless, such minor components may still represent 80 

important ecological players in the complexity of HGM, especially for the metabolic 81 

interactions they offer to members of the Bacteroidetes and Firmicutes phyla. For 82 

example, Akkermansia muciniphila (which belongs to the Verrucomicrobia phylum) has 83 

recently been shown to represent a human gut commensal that supports host health [29, 84 

30]. The relative abundance of Akkermansia muciniphila has been inversely correlated 85 

with obesity, diabetes, cardiometabolic diseases and low-grade inflammation, 86 

highlighting its potential as a probiotic to support human health and well-being [29, 30]. 87 

 88 

Fig. 2. Distribution of major bacterial phyla population according to their relative abundance in 89 

the human gut [28]. 90 

 91 

Bacteroides is the main genus within the Bacteroidetes phylum, though recent 92 

metagenome studies have indicated that four distinct Prevotella clades in this phylum 93 

have been underrepresented in Western populations [31]. Most Bacteroides members 94 
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are common gut commensals, though they can act as opportunistic pathogens under 95 

certain conditions, an example of this being Bacteroides fragilis [32, 33]. Bacteroides 96 

are widespread in different natural niches and human populations and possess a wide 97 

range of mechanisms to adapt to and persist in various competitive environments [31, 98 

34-37]. Bacteroides species are widely known for their role as primary glycan degraders 99 

since their genomes contain a relatively high number of genes (when compared to other 100 

members of the gut microbiota) encoding carbohydrate active enzymes, such as 101 

glycoside hydrolases (GHs) and polysaccharide lyases (PLs) [38, 39]. For this reason, 102 

they are able to access a broad range of complex carbohydrate substrates [40]. Some 103 

members, such as Bacteroides thetaiotaomicron (289 GHs and 23 PLs) or Bacteroides 104 

cellulosilyticus (431 GHs and 30 PLs), dedicate around 18% of their genome content to 105 

carbohydrate metabolism, thereby reflecting their huge metabolic capacity and 106 

versatility to use this type of carbon and energy source [41, 42]. Carbohydrate active 107 

enzymes or CAZYmes are classified into different families according to protein 108 

sequence similarities, which means that they commonly elicit related activities. 109 

Therefore, enzymes belonging to the same family have a similar protein sequence, a 110 

conserved catalytic apparatus and similar quaternary structure [42-44]. 111 

 112 

Bacteroides genomes harbour polysaccharide utilization loci (PULs), which are clusters 113 

of genes involved in the detection and digestion of a specific polysaccharide. To date, 114 

all sequenced Bacteroides genomes contain PULs, which typically encode surface 115 

glycan binding proteins (SGBPs), enzymes for carbohydrate degradation (GHs and 116 

PLs), TonB-dependent transporters (TBDT) and sensors/regulators [43]. Polysaccharide 117 

breakdown usually begins at the cell surface by a GH or PL, which degrades the 118 

complex intact polysaccharide into oligosaccharides. These released oligosaccharides 119 
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are then transported by the Bacteroides species into the periplasm by SusC-like TBDT 120 

proteins [45], although they may also be utilized by other bacteria as substrates through 121 

cross-feeding, a common phenomenon observed for complex polysaccharides or 122 

cofactors [38, 39, 46-48]. In the periplasm, several exo- and endo-glycosidases are 123 

responsible for further hydrolysis of the internalized oligosaccharides, and this 124 

degradation commonly releases a signal molecule (typically a di-/tri-/tetrasaccharide), 125 

which binds to the sensor/regulator, thereby triggering transcriptional induction of the 126 

corresponding PUL. The final step of this degradative process involves the 127 

incorporation of monosaccharides into the cytoplasm where they are channelled into 128 

central carbon catabolism. This general PUL model was first described for starch 129 

metabolism by Bacteroides thetaiotaomicron [49, 50] and was the first to describe how 130 

Bacteroides species carried out starch degradation [51-53]. The corresponding PUL, 131 

designated sus, is composed of eight genes, susRABCDEFG, whose encoded proteins 132 

constitute a complex and cell envelope-associated apparatus highly specialized in starch 133 

catabolism [51-53]. The SusC/D complex is predominantly responsible for starch 134 

binding with SusE and SusF being involved in increasing the efficiency of the binding 135 

process [51-53]. SusG generates internal hydrolytic cuts in the bound starch, releasing 136 

oligosaccharides that are transported into the periplasmic compartment by SusC [51-137 

53]. Here, SusA and SusB, both glycoside hydrolases, degrade these malto-138 

oligosaccharides to glucose, which is then transported into the cytosol [51-53]. 139 

Transcriptional regulation of the whole process is accomplished by SusR in response to 140 

starch availability [51-53]. A schematic representation of this starch degradation process 141 

is shown in Fig. 3. 142 
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 143 

Fig. 3. A. Cartoon representation of starch utilization system model in Bacteroides 144 

thetaiotaomicron VPI-5482 [51, 54]. The hydrolytic degradation of complex intact 145 

polysaccharide is initiated at the outside surface of the cell by SusG (alpha-amylase), thereby 146 

generating oligosaccharides. These oligosaccharides are incorporated into the periplasm by 147 

binding and import proteins (facilitated by the SusC/SusD pair), which allows further 148 

degradation to glucose by other glycoside hydrolases (SusA and SusB) and which generates a 149 

signal molecule for the regulator (SusR), causing transcriptional activation of the entire PUL. B. 150 

Genomic content of the PUL for starch metabolism in Bacteroides thetaiotaomicron VPI-5482 151 

[51, 54]. 152 

 153 

Bifidobacterium is a genus belonging to the Actinobacteria phylum whose species 154 

occupy several ecological niches, since they may be isolated from waste water, the oral 155 

cavity and the gastrointestinal tract of humans and other mammals [55, 56]. Some 156 

species are commonly identified in adults, such as Bifidobacterium adolescentis and 157 

Bifidobacterium pseudocatenulatum, while Bifidobacterium bifidum, Bifidobacterium 158 

breve, and Bifidobacterium longum subsp. infantis, are typically isolated from faecal 159 

samples of breast-fed infants [57, 58]. Various studies have demonstrated the positive 160 
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health impact or probiotic effect of certain bifidobacterial species/strains, such as those 161 

belonging to Bifidobacterium breve, Bifidobacterium longum or Bifidobacterium 162 

bifidum [24, 59]. In the context of this review, it should be noted that certain 163 

bifidobacteria have been reported to ferment laminarin, curdlan or oat β-glucan [60]. 164 

 165 

Also bifidobacteria contain gene clusters, each of which being dedicated to the 166 

metabolism of a specific poly/oligosaccharide [61]. These clusters encode ABC 167 

transporters (most frequently observed), permeases or proton symporters to facilitate 168 

transport of mono-/oligo-saccharides, such as fucosyllactose, fucose or 169 

galactooligosaccharides, into the cytoplasm. Once internalized, intracellular glycoside 170 

hydrolases degrade these oligosaccharides into monosaccharides and/or channel these 171 

hexoses or pentoses into the central carbohydrate metabolic pathway for energy 172 

generation (Fig. 4) [62].  173 

 174 

Fig. 4. Schematic representation of the fucose and fucosyllactose utilization system in 175 

Bifidobacterium kashiwanohense [62]. Fucosyllactose is incorporated into the cytoplasm by an 176 

ABC transporter permease with a sugar binding domain (SBD), transmembrane domain (TMD) 177 
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and an ATP-hydrolysing cytosolic domain (CBD). Once in the cytoplasm, a fucosidase (GH95 178 

or GH29) and a -galactosidase break the oligosaccharide into fucose, galactose and glucose, 179 

which are then further channelled into the central carbohydrate metabolic pathways, i.e. the 180 

bifid shunt, or in the case of fucose into a separate metabolic pathway. The monomer fucose is 181 

imported into the cytoplasm by means of a fucose permease after which it enters the fucose 182 

metabolic pathway [62]. 183 

 184 

Bifidobacterium is unique in using a specialized central metabolic carbohydrate route, 185 

called the “bifid shunt”, which employs a number of key enzymes, such as fructose-6-186 

phosphoketolase, being considered a key taxonomic marker for the Bifidobacteriaceae 187 

family [61, 63, 64]. The bifid shunt is used by Bifidobacterium for the metabolism of 188 

hexoses and pentoses, and theoretically can produce more ATP molecules per molecule 189 

of glucose than alternative carbohydrate fermentation strategies used by lactic acid 190 

bacteria or Bacteroides species [65]. This unique bifidobacterial pathway lacks the 191 

enzymes aldolase, which is characteristic of glycolysis, and glucose-6-phosphate 192 

dehydrogenase, typical of hexosemonophosphate pathways [61, 63, 64]. However, 193 

monosaccharide fermentation in bifidobacteria is characterized by fructose-6-phosphate 194 

phosphoketolase, from which the pathway obtained its name as the phosphoketolase 195 

route or “bifid shunt” [61, 63, 64]. 196 

 197 

2. Cereal β-glucans 198 

Cereals are the most common and widespread source of β-glucan in the human diet and 199 

their chemical structures are usually described as homoglucopolysaccharides with a 200 

backbone of single β(1,3)-bonds separating short sections of β(1,4)bonds [1, 2]. Due to 201 

the large variety of existing cereals, we will focus our review on β-glucans isolated from 202 

oat, barley and wheat. 203 
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 204 

One particular utilization locus was identified in Bacteroides ovatus ATCC 8483 205 

(Bovatus_02740-Bovatus_02745) when this strain metabolizes barley-derived, mixed-206 

linkage β-glucans (MLG, Fig. 5) [66, 67]. This locus encodes a GH16 endo-β-glucanase 207 

(BoGH16MLG) which hydrolyses β(1,4)-linkages that are preceded by a β(1,3)-linked 208 

glucosyl residue, and a GH3 exo-β-glucosidase that digests the oligosaccharides 209 

released by BoGH16MLG to glucose. This PUL also encodes two Surface Glycan 210 

Binding Proteins (SGBPs), a SusDMLG-like homolog and BoSGBPMLG. The SusDMLG-211 

like homolog is essential for growth of Bacteroides ovatus ATCC8483 on barley -212 

glucan because it incorporates the oligosaccharides originated by BoGH16MLG into the 213 

periplasm. In contrast, BoSGBPMLG is not essential for growth though it may assist in 214 

oligosaccharide scavenging. PULs homologous to the Bovatus_02740-Bovatus_02745 215 

PUL of Bacteroides ovatus are present in the genomes of Bacteroides xylanosolvens 216 

XB1A and Bacteroides uniformis ATCC 8492, which highlights the apparent 217 

prevalence of PULs dedicated to β-glucan metabolism among Bacteroides species [66, 218 

67].  219 
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 220 

 221 

Fig. 5. A. Example of the mixed-linkage glycan (MLG) utilization locus in Bacteroides ovatus 222 

ATCC 8483 [67]. In a similar way to starch metabolism, mixed linkage β-glucan is first 223 

degraded outside the cell by a cell surface-associated GH16 (BoGH16MLG), which generates 224 

oligosaccharides. The SusC/SusD-like pair incorporates these oligosaccharides into the 225 

periplasm, where a GH3 (β-glucosidase, BoGH3MLG) degrades these internalized 226 

oligosaccharides into glucose monomers, which are then internalized into the cytoplasm. B. 227 

Genomic content of the MLG PUL in Bacteroides ovatus ATCC 8483 [66, 67]. 228 

 229 

2.1. Oat β-glucans 230 

The effect of oat β-glucan ingestion has been shown to be associated with a modest 231 

increase in bacterial richness (yet decreasing the Bacteroides population) in both ileal 232 

effluent and faecal samples when compared with intake of cellulose or 233 

carboxymethylcellulose (Table 1) [68]. Also, the effect was viscosity-dependent, since 234 

low-viscosity oat β-glucan reduces the relative abundance of Bacteroides to a higher 235 

degree when compared to high-viscosity oat β-glucan. Moreover, the same decreasing 236 
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effect was observed in a similar study where oat β-glucan was compared with pectin, 237 

inulin and arabinoxylan (Table 1) [69]. 238 

 239 

However, in a subsequent study in BALB/c mice, oat β-glucan ingestion decreased 240 

bacterial biodiversity yet caused an increase in the relative abundance of the phylum 241 

Bacteroidetes compared with the control and with a mixture oat β-glucan-cellulose. In 242 

addition, Bacteroides was found as the dominant genus in the colon and it was 243 

associated with a higher concentration of beneficial short chain fatty acids (SCFAs), 244 

such as propionate and acetate (Table 1) [70]. The increase in Bacteroides populations 245 

was also reported by Carlson et al. using Oatwell (oat-bran containing 28% oat β-246 

glucan, Table 1) [71]. 247 

 248 

Additionally, different studies have demonstrated the effect of oat β-glucans in 249 

Bifidobacterium (Table 2). Wu et al. found that Bifidobacterium content was decreased 250 

by the dietary supplementation with oat β-glucans [72]. Nevertheless, an in vitro 251 

fermentation study by Ji-lin et al. showed Bifidobacterium longum BB536 as a good 252 

degrader of raw and hydrolysed oat β-glucans hydrolysates, with preference for the 253 

hydrolysed fractions (Table 2) [73]. Another study concluded that the addition of β-254 

glucan to yogurt increased survival of Bifidobacterium longum R0175 (Table 2) [74]. 255 

Furthermore, Bifidobacterium abundance was demonstrated to increase significantly in 256 

rats fed with oat whole meal or oat β-glucan compared with a control group, with rats 257 

exhibiting a higher growth rate when fed on pure oat β-glucan (Table 2) [75]. 258 

 259 

2.2. Barley β-glucans 260 
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Supplementation with barley β-glucan in rats with low or high-fat diet increased the 261 

production of SCFAs, reduced inflammation and cholesterol levels, and lowered the 262 

abundance of Bacteroides fragilis NCTC 9343 in the caecum (Table 1) [76]. 263 

Additionally, in a study with polypectomyced patients (patients having colorectal 264 

polyps), no significance difference was observed during a 90-day feeding intervention 265 

using 3 g/day of barley β-glucan. Nevertheless, two weeks after cessation of the 266 

treatment, the abundance of the genus Bacteroides was found to be significantly 267 

decreased (Table 1) [77]. A similar negative correlation was observed in 268 

hypercholesterolemic rats fed with a medium molecular weight (530 kDa) barley β-269 

glucan diet (Table 1) [78]. However, the application of 3 g/day of this medium 270 

molecular weight barley β-glucan in hypercholesterolemic human patients increased the 271 

relative abundance of Bacteroidetes, while that of Firmicutes was decreased. 272 

Interestingly, no significant differences were observed when patients received 3 g/d or 5 273 

g/d of low molecular weight barley β-glucan. These findings therefore suggest that the 274 

promoting effect of Bacteroidetes abundance by barley β-glucan is molecular weight-275 

dependent (Table 1) [79]. In addition, Bacteroides ovatus ATCC 8483 prioritizes the 276 

use of barley β-glucan in a mixture with pectin, xyloglucan and arabinoxylan, being 277 

able to use this substrate when it was the only carbon source in the medium, with higher 278 

growth rates than Bifidobacterium longum subsp. longum, Megasphaera elsdenii, and 279 

Ruminococcus gnavus, but lower than Veillonella parvula (Table 1) [80]. 280 

 281 

In Bifidobacterium, the bifidogenic effect of barley β-glucan supplementation in 282 

food/feed has been described in various publications. For instance, Arora et al. 283 

discovered that C57BL/6 mice, when maintained on a high fat diet containing 10 % 284 

barley β-glucan during 8 weeks, showed a lower body weight gain and also an increase 285 
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in relative abundance of Bifidobacterium in both faecal and caecal samples (Table 2) 286 

[81]. Similar results were found in rats fed on a low fat diet supplemented with barley β-287 

glucan for 25 days [76] and, in a similar way, in other murine trials (Table 2) [82]. 288 

 289 

2.3. Wheat β-glucans 290 

In obese subjects with an unhealthy dietary behaviour, wheat β-glucan was correlated 291 

with a relative abundance increase in members belonging to the Bacteroidetes phylum 292 

and Bacteroides genus. It was also suggested that Bacteroides reduces the levels of 293 

inflammatory markers TNF-α and IL-6, and that it plays a role in reducing pathologies 294 

associated with inflammation (Table 1) [83]. In a similar study, Bacteroides 295 

cellulosilyticus, Bacteroides ovatus and Bacteroides stercoris were described as 296 

predominantly wheat-bran β-glucan degraders, while Bacteroides uniformis, 297 

Bacteroides dorei and Bacteroides eggertii were enriched in β-glucans derived from 298 

wheat-lumen, so apparently not all Bacteroides species exhibit the same glycan 299 

utilization behaviour (Table 1) [84]. The authors showed differences in the structure and 300 

composition of wheat bran and lumen, suggesting that these differences explain the 301 

different metabolic capabilities [84]. Nevertheless, the use of whole grains instead of 302 

extracted β-glucan requires further studies for wheat.  303 

 304 

2.4. Mix of different cereals 305 

A dietary intervention using 3 g/d of durum wheat flour and whole-grain barley pasta 306 

for 2 months did not reveal any significant differences in the microbiota composition of 307 

the subjects (Table 1) [85]. However, in another trial with wheat bran and barley in 308 

Japanese adults, a positive interaction was observed when both cereals were combined, 309 

causing an increase in relative abundance of the genus Bacteroides and other butyrate-310 
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producing species (Table 1) [86]. Differences in the microbiota composition of distinct 311 

human populations as a result of varying diets and life styles may explain these 312 

apparently conflicting findings [87-89].  313 

 314 

Regarding Bifidobacterium, Shen et al. carried out a comparative study of the prebiotic 315 

efficacy of oat and barley β-glucan in rats. The study resulted in an increase in 316 

Bifidobacterium abundance using either of these cereals, with a more pronounced effect 317 

for oat β-glucan [90]. 318 

 319 

3. Seaweed β-glucans 320 

Seaweeds are potential prebiotics rich in three polysaccharides depending on the 321 

seaweed source, being either brown, green or red algae. In brown algae, fucoidan, 322 

alginate and laminarin have been shown to act as antioxidant, cognitive protective, anti-323 

inflammatory, anti-angiogenic, anti-cancer, anti-viral, and anti-hyperglycemic agents, 324 

thus having very promising potential as a food additive and prebiotic [91, 92]. 325 

Laminarin (Fig. 1) is a glucose-based homopolysaccharide with a β(1,3) backbone and 326 

β(1,6) branches at a 3:1 ratio, being isolated from the brown algae species Laminaria 327 

and Alaria, representing almost a 50 % of algal dry matter. Laminarin is a type of β-328 

glucan with special interest because of its proposed anticancer, antioxidant and 329 

immunomodulatory activities [93-95]. For instance, in a recent study, both native 330 

laminarin and its enzymatic digestion products inhibited cell transformation on SK-331 

MEL-28 human melanoma and DLD-1 human colon cancer cells, where the maximum 332 

anticancer effect was shown to be correlated with a high level of branching [95].   333 

 334 
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Recently, a paper on β(1,3)-glucan metabolism by Bacteroides species, showed that 335 

Bacteroides uniformis ATCC 8492, Bacteroides thetaiotaomicron NLAE-zl-H207 and 336 

Bacteroides fluxus YIT 12057 have the ability to metabolize laminarin as a carbon 337 

source because of the defined PUL architecture where a GH158 is key in the release of 338 

oligosaccharides [96]. These authors described a putative β(1,3)-glucan utilization locus 339 

in Bacteroides uniformis ATCC 8492 (Fig. 6A and 6B, BACUNI_01484-340 

BACUNI_01490) that encodes a TonB-dependent transporter (TBDT, SusC-like), two 341 

cell surface glycan-binding proteins (SusD-like and BuSGBP), three glycoside 342 

hydrolases (BuGH16, BuGH158 and BuGH3) and a hybrid two-component regulatory 343 

system (BuHTCS) (Fig. 6B). BuGH158 was described as a specific laminarinase, while 344 

BuGH16 was shown to be a broad-specificity endo-β(1,3)-glucanase with activity 345 

towards yeast β-glucan and mixed-linkage glucan from cereals. For its part, BuGH3 was 346 

described as a specific β(1,3) glucosidase which handles the hydrolysis products of 347 

BuGH158 and BuGH16. However, only BuSGBP was able to bind β-(1,3)-glucans (Fig. 348 

6A). Despite the fact that homologous PULs active on β(1,3)-glucans have been 349 

detected in some species of Bacteroides thetaiotaomicron NLAE-zl-H207 and 350 

Bacteroides fluxus YIT 12057, the one described in Bacteroides uniformis ATCC 8492 351 

was shown to be highly prevalent in the microbiome of humans, and unique with an 352 

ability to utilize three different types of β(1,3)-glucan, i.e. that from laminarin, curdlan 353 

and yeast.  354 



 

 18 

 355 

Fig. 6. A. Schematic representation of β(1,3)-glucan degradation by Bacteroides uniformis 356 

ATCC 8492 based in analogy with the starch utilization system [96]. B. Genomic content of the 357 

β(1,3)-glucan PUL in Bacteroides uniformis ATCC 8492 [96]. 358 

 359 

Although the main purpose of this review is the effect of β-glucans on selected elements 360 

of the HGM, laminarin has also been widely studied as a growth substrate for various 361 

marine Bacteroides species. An analysis of Bacteroidetes-fosmids from ocean regions 362 

showed that 4 out of 14 identified PULs were laminarin-specific, and were co-located 363 

with predicted -glucosidase-encoding genes, thereby underscoring the role of 364 

laminarin as a common metabolic substrate for ocean-derived Bacteroidetes species 365 

[97].  366 

 367 

At species level, the degradation of laminarin in the marine bacterium Zobellia 368 

galactanivorans has been described in different studies. Thomas et al. studied gene 369 

transcription in Zobellia galactanivorans DsijT when it grows on laminarin as its sole 370 

carbon source (Fig. 7) [98]. The authors determined that this marine polysaccharide 371 

induced the expression of the cluster ZOBELLIA_209 to ZOBELLIA_214, which is 372 
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predicted to encode two TonB-dependent receptors (ZOBELLIA_212 and ZOBELLIA 373 

_214) and their associated surface glycan-binding proteins (ZOBELLIA_211 and 374 

ZOBELLIA_213), respectively. These gene pairs are characteristic features of PUL 375 

clusters present in Bacteroidetes genomes [43]. In addition, this cluster encodes a 376 

predicted carbohydrate binding module family 4 (CBM4, ZOBELLIA_209), whose 377 

family has been characterized to bind to β(1,3)-glucan, β(1,3-1,4)-glucan, β(1,6)-glucan, 378 

xylan, and amorphous cellulose (CAZY database, http://www.cazy.org/; [99-102]). 379 

Therefore, this cluster is involved in the recognition, binding and incorporation of 380 

laminarin at the cellular surface of Zobellia galactanivorans, which has been used as a 381 

bacterial model to understand the algal carbon metabolism showing several adaptive 382 

treats to algal-associated life [103], representing a clear example for a genomic cluster 383 

dedicated to laminarin, Fig. 7. 384 

 385 

Fig. 7. Genomic composition of the laminarin PUL in Zobellia galactinovorans DsijT [103]. 386 

 387 

Another study showed that the incorporation of 2% of brown algae laminarin in feed for 388 

a rat trial decreased the relative abundance of the Bacteroidetes phylum in caecal 389 

http://www.cazy.org/
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microbiota populations. Specifically, the ratio of identified clones, based on 16S rRNA 390 

gene sequencing, of Bacteroides capillosus fell around 27 % compared to the control 391 

(Table 1) [104]. By contrast, in a study with mice fed with a high fat diet as control and 392 

comparing with a high fat + laminarin diet, the authors found that the diet without 393 

laminarin led to an increase in Actinobacteria, whereas dietary supplementation with 394 

laminarin witnessed an increase in the relative abundance of Bacteroidetes, especially 395 

the genus Bacteroides, and a decrease in Firmicutes. Laminarin ingestion shifted the 396 

microbiota at species level towards a higher energy metabolism, increasing the 397 

Bacteroides species, and therefore increasing the number of carbohydrate active 398 

enzymes. Laminarin also slowed weight gain in mice and decreased the bacterial 399 

species diversity (Table 1) [105]. The same increase in Bacteroidetes/Firmicutes ratio 400 

was observed in a recent study with albino mice (Table 1) [106] in which laminarin was 401 

shown to be metabolized by Bacteroides intestinalis and Bacteroides acidifaciens, 402 

producing succinate and acetate as end-products, which are precursors of the beneficial 403 

short chain fatty acids (SCFAs) propionate and butyrate, respectively [107-109].  404 

 405 

In contrast, several feeding studies have concluded that laminarin from Laminaria 406 

digitata and Laminaria hyperborea does not affect the relative abundance of 407 

Bifidobacterium in the gut microbiota [110, 111]. Nevertheless, Lynch et al. reported a 408 

linear decrease in caecal Bifidobacterium in boars as a result of the addition of laminarin 409 

from Laminaria hyperborea [112]. The above reports do highlight the need for further 410 

in depth studies to thoroughly analyse the effect of laminarin on the HGM. 411 

 412 

4. Fungal β-glucans 413 
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Fungal β-glucans are polymers composed of a β(1,6) or β(1,3) backbone, with a variable 414 

branching degree (Fig. 1). Bacteroides species have been reported as degraders of 415 

different types of fungal β-glucan. For example, when β-glucan from Saccharomyces 416 

cerevisiae (β-1,3-glucan with β-1,6-linked side chains) was administered to C57BL/6 417 

mice, it was shown to cause a reduction in bacterial diversity, yet an increase in relative 418 

abundance of the phylum Bacteroidetes. This effect was accompanied with higher levels 419 

of SCFAs such as acetic, propionic and butyric acids [113]. Also, the positive 420 

correlation between an increase in Bacteroidetes and SCFA production was observed 421 

when mice with colorectal polyps were fed with a complex β-glucan-chitin complex 422 

(KytoZyme SA) [114].  423 

 424 

As we stated in the seaweed β-glucan section, Dejean et al. showed the ability of certain 425 

Bacteroides species to metabolize β(1,3)-glucan from laminarin, yet also from yeast 426 

[96]. They showed that the same PUL was involved in the degradation of both of these 427 

-glucan substrates (Fig. 6). In another study, β(1,3)-glucan from Candida albicans was 428 

shown to increase the relative abundance of the Bacteroides genus when mice were 429 

administered live or heat killed-Candida [115]. In addition, one particular PUL 430 

(BT3309-BT3314) from Bacteroides thetaiotaomicron VPI-5182 has been associated 431 

with the degradation of fungal β(1,6)-glucan (pustulan, Fig. 8A and 8B), a common 432 

component of fungal cell walls of mushrooms and yeast [116]. BT3312 (GH30_3) 433 

represents an endo-β(1,6)-glucanase located at the cell surface accompanied by a SGBP 434 

(BT3313), a SusC-like (BT3310), a SusD-like (BT3311) and a β-glucosidase (GH3, 435 

BT3314). Bacteroides thetaiotaomicron employs a very efficient mechanism to fully 436 

metabolize pustulan as a carbon and energy source (Fig. 8A). The SGBP BT3313 437 

binding protein starts the degradation process by recognising and binding the intact 438 
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polysaccharide at the cell surface of Bacteroides thetaiotaomicron. Following this, the 439 

BT3312 (GH30_3) enzyme cleaves the intact glycan into smaller glucooligosaccharides, 440 

which will then be internalized into the periplasm by the permease pair 441 

BT3310/BT3311 (SusC-like/SusD-like). In the periplasm, a GH3 enzyme (BT3314) 442 

will continue metabolism by degrading the internalized 1,6-glucooligosaccharides (Fig. 443 

8A). BT3314 has been shown to exhibit a 30-fold higher activity for 1,6-glucobiose 444 

than for 1,3- or 1,4-glucobiose, and probably possesses two subsites into the active site, 445 

because of its similar activity on 1,6-glucobiose and 1,6-glucotriose [116]. The latter 446 

report postulated that the observed slow metabolism of 1,6-glucooligosaccharides in the 447 

periplasm of Bacteroides thetaiotaomicron may allow the persistence of a higher 448 

concentration of the “induced ligand” for BT3309 (HTCS or regulator of the PUL), 449 

enabling the locus to be up-regulated for an extended period of time for the use of 450 

pustulan as a carbon source by Bacteroides thetaiotaomicron. Comparative genome 451 

analysis with other species revealed that homologous PULs are located in the genomes 452 

of Bacteroides uniformis ATCC 8492, Bacteroides ovatus ATCC 8483 and Bacteroides 453 

xylanosolvens XB1A [116]. 454 

 455 
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Fig. 8. A. Schematic of β-(1,6)-glucan (pustulan) degradation by Bacteroides thetaiotaomicron 456 

VPI-5482 [116]. This linear β-glucan is degraded by a GH30_3 in the surface of Bacteroides 457 

thetaiotaomicron and the resulted oligosaccharides are incorporated into the periplasm, where 458 

another GH3 (β-glucosidase) hydrolyses the smaller oligosaccharides into single glucose 459 

monomers. B. Genomic content of the pustulan PUL in Bacteroides thetaiotaomicron VPI-5482 460 

[116]. 461 

 462 

Recent studies have addressed the role of fungal β-glucans in Bifidobacterium. For 463 

instance, Wang et al. studied the correlation between sulphated β-glucan from 464 

Saccharomyces cerevisiae and immune response [117]. Using immuno-suppressed 465 

chickens as a result of cyclophosphamide treatment, the addition of 0.4 g of yeast β-466 

glucans per kilogram of chicken was shown to alleviate the immuno-suppression, 467 

affecting the concentration of cytokines and promoting the proliferation of 468 

Bifidobacterium [117]. Furthermore, supplementation with yeast β-glucans in 469 

Alzheimer-induced mice has been shown to cause an increase in the relative abundance 470 

of the genus Bifidobacterium, which was similar to that found in control mice [118]. 471 

Recently, in a macro study by Alessandri et al., the authors evaluated the growth ability 472 

of hundred bifidobacterial strains using glucan-chitin complex from Aspergillus niger as 473 

the only carbon source. All strains were shown to exhibit some, though mostly modest 474 

growth with Bifidobacterium breve and Bifidobacterium bifidum strains eliciting the 475 

highest levels of growth [119]. 476 

 477 

Zhao and Cheung showed that mushroom β-glucans elicit a prebiotic effect by 478 

enhancing growth of Bifidobacterium longum subsp. infantis [59]. These authors 479 

studied the proteomic profile of this catabolic process, showing that this bifidobacterial 480 

species expresses 17 proteins that may be linked to mushroom β-glucan degradation. 481 
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These proteins include ABC transporters of sugars, enolase and a phosphoenol 482 

phosphotransferase system. Among the 17 proteins, a predicted intracellular glucanase 483 

is highly expressed. The authors proposed a metabolic model for this degradation where 484 

(some parts of) the autoclaved polysaccharide (which is likely to cause hydrolysis of 485 

this glycan) is incorporated into the cytoplasm by ABC transport system and PTS 486 

(phosphotransferase system) proteins. After this incorporation, the intracellular 487 

glucanase breaks down the polysaccharide into glucose monomers, which are 488 

subsequently incorporated into the central fermentative pathway or “bifid shunt” [59]. 489 

 490 

Several papers have addressed the impact and metabolism of dietary plant glucosides, 491 

such as flavonoids and gingenosides, on bifidobacterial and Bacteroides metabolism 492 

[120-123]. However, very few studies have identified bifidobacterial -glucosidases 493 

active on -glucan. Pokusaeva et al. identified the cldC gene in Bifidobacterium breve 494 

UCC2003 to be involved in the metabolism of cellodextrins, which are (1,4)-glucose 495 

hydrolysis products from cellulose (Fig. 1) [124]. The authors showed the ability of this 496 

bacterium to use cellobiose, cellotriose, cellotetraose and cellopentaose through the 497 

cldEFGC gene cluster with a higher preference for cellobiose. Disruption of the cldC 498 

gene resulted in the inability of Bifidobacterium breve UCC2003 to use these 499 

cellodextrins as a carbon source, confirming that this gene cluster is uniquely required 500 

for cellodextrin metabolism by this bacterium. It is reasonable to assume that these 501 

enzymes would be able to degrade MLG oligosaccharides in a similar way to 502 

cellodextrin oligosaccharides, though this hypothesis awaits experimental validation. 503 

Indeed, more studies are required to fully understand the impact of β-glucan 504 

oligosaccharide metabolism on proliferation of bifidobacterial species in the gut. 505 

 506 
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5. Conclusions 507 

In this review we discussed recent publications that have studied the effect of β-glucans 508 

from different sources on microbiota changes pertaining to Bacteroidetes (mainly 509 

Bacteroides species) and Bifidobacterium. As previously reported, Bacteroides species 510 

possess an extensive ability for glycan degradation, due to the presence of PULs in their 511 

genomes [38, 39], allowing them to use different types of substrates and to occupy 512 

different niches and environments [31, 35, 36]. We have focussed our review on the 513 

most predominant types of β-glucans, clarifying the role of these polysaccharides as 514 

potential substrates for Bacteroidetes and Bifidobacterium, as important bacterial 515 

representatives of the adult gut microbiota [34]. Of a total of 16 studies involving 516 

fungal, seaweed and cereal β-glucans, 8 concluded that dietary inclusion of β-glucans 517 

causes an increase in the relative abundance of members of the Bacteroidetes phylum or 518 

Bacteroides genus, where some studies also highlight beneficial effects elicited by 519 

specific species (Table 1) [84, 106]. Nevertheless, 7 studies (6 with β-glucans from 520 

cereals and 1 from seaweed) revealed the opposite results, a negative effect on the 521 

relative abundance of Bacteroidetes or Bacteroides, and only one reported a ‘no effect’ 522 

conclusion (Table 1). The most significant disparity was found for cereal β-glucans 523 

[86]. In oat β-glucans, we found a similar number of studies with positive or negative 524 

correlations on the Bacteroidetes increase. In addition, for barley β-glucans, the number 525 

of studies published showing negative conclusions was higher than the published with 526 

positive correlations. 527 

 528 

One would imagine that the same substrate should have equal consequences for a 529 

specific bacterial genus, so the variation in the results may be due to the utilization of 530 

different models, substrates and/or methodologies (Table 1) [79]. The results may differ 531 
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in a molecular weight-dependent manner even when using the same substrate. 532 

Furthermore, the utilization of different model systems (pigs, rats, mice or humans) is 533 

likely to play an important role in this variation, because of the distinct microbiota 534 

composition in each of these mammalian species (Table 1) [77-79, 82]. While it seems 535 

that the positive effects are very clear for fungal and seaweed β-glucans [88, 101, 102], 536 

the differences observed between the three types of β-glucans must be tested in more 537 

detail and further studies should be done for the three sources in order to clarify if the 538 

observed disparity in the experimental results is caused by the application of non-unique 539 

procedures, or, by contrast, if these correlations between the substrates and the 540 

degraders remain stable [77-79, 99-102]. Due to the increasing interest in β-glucans as 541 

potential prebiotics and their effect on human health, this work provides further avenues 542 

to understand the behaviour of β-glucan-fed HGM. 543 

 544 

Very little is currently known about the molecular mechanism how Bifidobacterium 545 

degrade different β-glucan types. Only a small number of papers have established the 546 

prebiotic effect of cereal and fungal β-glucans, both through in vitro fermentations and 547 

by means of human trials. Strains from Bifidobacterium breve, Bifidobacterium bifidum 548 

and Bifidobacterium longum have been shown to be able to at least partially degrade 549 

fungal β-glucan-chitin complex [119]. These authors showed the transcriptional profile 550 

of Bifidobacterium breve 2L when using this complex substrate as a unique carbon 551 

source. Due to the complexity of β-glucan-chitin, the authors expect that other bacterial 552 

members of the gut microbiota community are involved in the complete metabolism of 553 

β-glucan-chitin through syntrophic interactions [119].  554 

 555 
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More mechanistic studies are needed to understand the size of oligosaccharides 556 

incorporated by bifidobacterial transporters. In addition, detailed structural mechanistic 557 

insights and substrate specificity studies of glucosidases and glucanases in 558 

Bifidobacterium species, when they act on several types of β-glucan, are required to 559 

expand our knowledge on the direct or indirect (through cross-feeding) use of these 560 

glycans as prebiotics. Finally, there is a clear knowledge gap regarding the cross-561 

feeding process between different members of Bacteroides and Bifidobacterium and 562 

further studies are needed to shed light on the molecular details of such syntrophic 563 

interactions, a good example of this being the cross-feeding interactions involving 564 

dietary arabinogalactan [46]. Such studies will allow the rational design of nutraceutical 565 

strategies with the help of particular β-glucans as functional food ingredients, perhaps in 566 

combination with certain bifidobacterial species in so-called synbiotic formulations. 567 
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TABLE 1. Carbohydrate intake and intervention parameters for the intervention trials with Bacteroides genus influences. 
 

Reference 
Type of β-

glucan 
Duration Organism Analized parameters Main Outcomes 

[68] Oat β-glucan 17 days 8 cross-bred Duroc-

Landrace pigs 

Bacterial populations, SCFAs levels Oat β-glucan ingestion was 

associated with a reduction in 

Bacteroides 

[69] Oat β-glucan 12 hours of 

incubation 

15 healthy humans Bacterial populations, BCFAs and 

SCFAs fermentation 

Oat β-glucan ingestion was 

associated with a reduction in 

Bacteroides and Bifidobacterium 

[70] Oat β-glucan 8 weeks 28 health male 

BALB/c mice, 

Bacterial populations, SCFAs 

production, feed intake, body weight 

gain 

Oat β-glucan decreased the bacterial 

biodiversity yet increased the relative 

abundance of the phylum 

Bacteroidetes. Bacteroides was found 

as the predominant genus in the 

colon and it was associated with a 

higher concentration of beneficial 

short chain fatty acids (SCFAs), such 

as propionate and acetate 

[71] Oatwell (28% oat 

β-glucan) 

24 hours of 

incubation 

3 healthy humans Bacterial populations, SCFAs 

production 

Oatwell was related to higher 

Bacteroides abundance and 

propionate concentration 

[76] Barley β-glucan 25 days 8 groups of 7 male 

Wistar rats 

Bacterial populations, SCFAs 

production, 

feed intake, body gain, amino acid 

production, cholesterol levels 

Barley β-glucan increased the 

production of SCFAs, reduced 

inflammation and cholesterol levels, 

and lowered the abundance of 

Bacteroides fragilis in the caecum 

[77] Barley β-glucan 

(125 g/day of 

bread with 3 g of 

barley β-glucan) 

3 months 20 polictemized 

human patients 

Bacterial populations, SCFAs 

concentration 

No significance difference during the 

intervention. Nevertheless, two 

weeks after cessation of the 

treatment, Bacteroides genus was 

found significantly decreased 

[78] Low and medium 

molecular weight 

barley β-glucan 

39 days 48 male Wistar rats Bacterial populations, SCFAs 

concentration, 

Feed intake, body gain, plasma lipid 

The ratio Bacteroides/Prevotella was 

reduced by low and medium 

molecular weight barley β-glucan 
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levels 

[79] Low and high 

molecular weight 

barley β-glucan 

35 days 30 human subjects Bacterial populations, 

CVD risk factors 

High molecular weight barley β-

glucan can significantly increase 

Bacteroides and reduce CVD risk 

[80] Barley β-glucan 

extracted from 

GlucagelTM and 

arabinoxylan, 

xyloglucan, 

glucan, and 

pectin. 

48 hours of 

incubation 

Bacteroides ovatus 

ATCC 8483T310 , 

Bifidobacterium 

longum 

subspecies longum 

ATCC 15707T, 

Megasphaera elsdenii 

DSM 20460T311 , 

Ruminococcus gnavus 

ATCC 29149T, and 

Veillonella parvula 

DSM 2008T 

Bacterial growth 

 

Bacteroides ovatus ATCC 8483T310 

prioritizes the use of barley β-glucan 

before the other substrates, with 

higher growth rates than the other 

studies species except Veillonella 

parvula. 

[83] Whole wheat 

grains 

8 weeks 68 human subjects Bacterial populations, phenolic 

compounds levels glycaemia, plasma 

lipids, inflammatory markers and  

Wheat β-glucan was correlated with 

an increase in Bacteroidetes phylum 

and Bacteroides genus. Bacteroides 

could reduce inflammatory markers 

TNF-α and IL-6 and plays a role in 

reducing pathologies associated with 

inflammation 

[84] Whole wheat 

grains 

48 hours of 

incubation 

10 health humans Bacterial populations, Bacteroides cellulosilyticus, 

Bacteroides ovatus and Bacteroides 

stercoris were described as 

predominantly wheat-bran β-glucan 

degraders, while Bacteroides 

uniformis, Bacteroides dorei and 

Bacteroides eggertii were enriched in 

the β-glucans from wheat-lumen, so 

not all Bacteroides present the same 

feed-responsive behaviour 

[85] durum wheat 

flour and whole-

grain barley pasta  

2 months 26 healthy humans Bacterial populations, blood 

cholesterol, amino acid 

concentration, SCFAs levels 

No clear change in the microbiota 

composition. Increase in 2-methyl-

propanoic acid, acetic acid, butanoic 
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 (butyric) acid, and propanoic 

(propionic) acid 

[86] wheat bran and 

BarleyMax  

 

4 weeks 60 healthy humans Dietary Intake, 

Biochemical Analysis, 

Microbiota Composition, SCFA 

levels 

Increase in Bacteroides genus, 

Higher SCFAs concentrations, 

especially butyric acid  

[104] Laminaran  2 weeks 18 male Wistar rats Microbiota composition, body 

weight, carbohydrate levels, organic 

acids levels 

Reduction in Bacteroidetes 

abundance. Laminaran also can 

reduce the levels of cecal 

putrefaction substances levels 

[105] Laminaran  6 weeks 18 female BALB/c 

mice 

Bacterial population, carbohydrate 

active enzymes activity, body weight 

Increase in relative abundance of 

Bacteroidetes phylum, especially the 

genus Bacteroides, and a decrease in 

the Firmicutes phylum. Laminarin 

ingestion shifted the microbiota at the 

species level towards a higher energy 

metabolism, and therefore increasing 

the number of carbohydrate active 

enzymes. Laminarin also slowed 

weight gain in mice and decreased 

the bacterial species diversity. 

[106] Laminaran 11-13 days 18 male ICR mice Bacterial populations Bacteroides intestinalis and 

Bacteroides acidifaciens, producing 

succinate and acetate, which are 

precursors of beneficial propionate 

and butyrate 
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TABLE 2. Carbohydrate intake and intervention parameters for the intervention trials with Bifidobacterium genus influences. 

 
Reference Type of β-glucan Duration Organism Analized parameters Main Outcomes 

[72] Oat β-glucan 25 days 32 weaned pigs Bacterial populations, body 

weight, serum parameters 

Oat β-glucan supplementation decreased 

Bifidobacterium 

[73] Oat β-glucan and its 

hydrolysates 

1 week  

 

3 male Sprague-

Dawley rats 

SCFA production, bacterial 

growth of different faecal 

microbiota 

No significant differences with intact oat β-glucan 

However, the oat β-glucan hydrolysates 

OGH treatment evidently promoted the growth of 

Bifidobacterium longum BB536. The hydrolysates 

of oat β-glucan produced greater amounts of SCFA 

(mainly acetate, propionate and butyrate) with no 

significant difference in SCFA pattern when 

compared with oat β-glucan. 

[74] Oat β-glucan 35 days Pure strains of 

Bifidobacterium 

breve R0070, 

Bifidobacterium 

longum 

R0175 

Bacterial growth These data indicate that the addition of beta-glucan 

to yogurt increased survival of Bifidobacterium 

longum R0175 

[75] Oat β-glucan 4 weeks 30 male SD rats Food Intake, body Weight, 

ATPase activity, bacterial 

population 

Oat β-glucan decreased glycaemia and insulin 

response while it increased ATPase activity and 

Bifidobacterium relative abundance  

[81] GlucagelTM (80% 

barley 

derived β-glucan) 

8 weeks 36 C57BL/6 

male mice 

Body weight, food intake, tissue 

weights and adiposity 

Data, Gut microflora 

composition and SCFAs 

Barley β-glucan attenuate weight gain and increase 

relative abundance of Bifidobacterium both in 

faeces and caecal contents over the 8 weeks of 

dietary intervention 

[76] Barley β-glucan 25 days 56 male Wistar 

rats 

Cecal microbiota, SCFAs levels, 

cholesterol, TAG and 

inflammatory levels, feed intake, 

weight gain, caecal content, pH, 

tissue weight 

Barley β-glucan was related with an increase in the 

abundance of Bifidobacterium and SCFA levels 

and a reduction in cholesterol levels and 

inflammatory markers 

[82] Barley β-glucan 8-12 

weeks 

male C57BL/6J 

mice (amount not 

given) 

Bacterial populations, SCFAs 

production 

Barley β-glucan suppressed appetite and improved 

insulin sensitivity. Furthermore, barley β-glucan 

increased the relative abundance of the genus 

Bifidobacterium and SCFA production 

 


