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Abstract 

In this work, a flow of an electrically conducting fluid is driven through a rectangular duct by 

a constant pressure gradient in the presence of a transverse, externally applied magnetic field: 

the flow is studied using the method of Direct Numerical Simulation (DNS). This particular 

Magnetohydrodynamic (MHD) flow investigation is important in the development of liquid 

metal blankets design, which is the proposed cooling system within nuclear fusion reactors. 

The duct walls parallel to the magnetic field are ideally electrically insulating, while the walls 

perpendicular to the magnetic field are ideally electrically conducting. This flow is referred to 

as a Hunt’s flow. In this work the emergence of time dependent flow and its transition to a 

fully developed turbulent regime is explored. By fixing the strength of the magnetic field and 

increasing the fluid velocity, a number of time-dependent flow regimes have been observed 

in the side layers, which includes Ting-Walker vortices, elongated vortical structures, fully 

turbulent side-wall jets, as well as singular and multiple side-wall jet detachments. 

It has been found that at low velocities, the time-dependant flow takes the form of Ting-

Walker vortices, which develop in the side layers of the duct. For all but the lowest magnetic 

fields studied, the Ting-Walkers vortices completely disappear after a short initial transient 

time, being replaced by new, higher energy, complex, anisotropic vortical structures. 

Additionally, a number of new flow regimes involving jet detachment have been identified. 

This study also demonstrates that Hunt’s flow exhibits hysteresis behaviour, where different 

unsteady states are possible for the same flow parameters. 
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Nomenclature 

 

Re        Reynolds Number 

Ha        Hartman Number 

𝑅𝑅𝑚      Magnetic Reynolds Number 

𝑁          Stuarts Number 

𝛁           Nabla Symbol 

𝑥,𝑦, 𝑧    Cartesian coordinates  

𝑭𝑣𝑣𝑣       Body Forces [𝑘𝑘 ∙ 𝑚 ∙ 𝑠−2]  

u          Fluids velocity [𝑚 ∙ 𝑠−1] 

E         Electric Field 

B         Magnetic Field 

J          Electrical Charge 

𝜌𝑒         Electrical Current density 

𝑭𝐿         Lorentz Force  

𝑈0         Characteristic velocity [𝑚 ∙ 𝑠−1] 

𝜏           Shear Stresses [𝑘𝑘 ∙ 𝑚−1. 𝑠−2] 

𝛾           Dynamic Viscosity [𝑘𝑘 ∙ 𝑚−1 ∙ 𝑠−1] 

𝑣           Kinematic viscosity [𝑚2 ∙ 𝑠−1] 

𝜌           Fluid Density [𝑘𝑘 ∙ 𝑚−3] 

𝜕𝑡          Time Derivative [𝑠−1] 

p           Pressure [𝑘𝑘 ∙ 𝑠−2 ∙ 𝑚−1] 
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t          Time [s]  

∈0        Permittivity of Free Space  

𝜇0        Permeability of Free Space 

∅          Electric Potential 
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1 Chapter. 

Introduction 
There are many important applications and industrial processes where electrically conducting 

fluids are utilized. The casting of liquid metals such as aluminium and steel are excellent 

examples of such Figure 1(a). Additionally, conducting fluids occur in the propulsion systems 

of sea vessels, pumping mechanisms that produce a continuous non-pulsating flow; even our 

planet relies on conducting fluids to produce a protective shield against cosmic radiation.  

A very different but equally important topic concerning electrically conducting fluids is the 

research into thermo nuclear fusion reactors (Tokamaks) Figure 1(b). Within the scope of the 

latter application, liquid metals are being investigated to act not only as a proposed cooling 

system for thermonuclear fusion reactors, but also as a breeding ground for the rare hydrogen 

isotope, Tritium (T).  

 

(a)                                                                              (b)                                                         

FIGURE 1. An example of the continuous aluminium casting processes (a). A vertical mid-

plane cut schematic of a thermo nuclear fusion reactor (Tokamak) (b). [1] 

 

Fusion energy has been identified by many countries as a clean replacement or alternative to 

conventional fossil and nuclear fuels, studies into which have been active for many years. 

Numerous plutonium enriching countries including the United Kingdom, France, USA, 

Russia and China all began to understand the great benefits and possibilities that fusion 

Some materials have been removed due 
to 3rd party copyright. The unabridged 
version can be viewed in Lancester 
Library - Coventry University.

Some materials have been removed 
due to 3rd party copyright. The 
unabridged version can be viewed in 
Lancester Library - Coventry 
University.
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energy could possess in aiding to relieve the imminent global energy short fall crisis.  All 

countries mentioned are now in possession of a nuclear fusion reactor, which is leading to the 

development of new technologies and materials to be studied at a much more accelerated rate 

than in previous years i.e. divertor, liquid metal blankets and Eurofer. 

Within the hostile environment of a nuclear fusion reactor, liquid metal, constituting the 

proposed protection system, is typically driven through rectangular ducts by a pressure 

gradient. The orientation of the rectangular ducts varies depending upon the particular 

blanket concept. Numerous ducts, which contain the constant pressure driven liquid metal are 

situated between large D-shaped magnets and the reactor’s toroidal core (plasma chamber), 

thus fully encasing the torus. Due to the ducts encasement properties, the term liquid metal 

blanket has been coined and the ducts will now be referred to as such for the remainder of 

this work. The strength of the magnetic field employed within the rector can exceed 9 T. The 

fusion process occurring within the torus involves two hydrogen isotopes, Deutritium (D) and 

Tritium (T), which are accelerated at extremely high velocities around the plasma chamber 

until they eventually collide, thus fusing together. As the isotopes fuse, helium is formed, in 

addition to an extra neutron. The energy released from this process can reach electron levels 

of 17.6 𝑀𝑅𝑉, forcing the operating temperatures within the torus to reach in excess of one 

hundred million degrees centigrade. At these temperatures the helium turns into plasma; 

matter’s fourth state. It should be noted that the resulting plasma is one million times less 

dense than air, but also many times hotter than our Sun. 

Throughout the course of many decades, various blanket configurations have been 

investigated, including circular, oval and rectangular. Out of the three primary concepts, 

blankets involving rectangular ducts have been the most desirable; this is due to the ease and 

symmetry in which blanket modules can be constructed and possibly replaced. In addition, 

various duct wall conductance ratios have been investigated, all with differing results. 

Historically this has included research into fully electrically insulating blanket [1], [2] and 

electrically conducting blankets [3]. The latter blanket concept delivers unusual high velocity 

jets located at the side walls, parallel to the external magnetic field Figure 2. Side wall 

velocity jets are absent in a fully insulating blanket. The side-wall jets are more pronounced 

and stronger when a third blanket concept is studied, which includes the sidewalls parallel to 

the magnetic field being electrically insulating and the Hartmann walls, which are the walls 

transverse to a magnetic field, being perfectly conducting. This third, particular duct 
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configuration is known as Hunt’s Flow. In fact, Hunt’s flow and the instabilities contained 

within the side wall jets are the focus of this entire study. 

Within the context of the present investigation two main dimensionless parameters governing 

the flow have been employed: the Hartmann number (𝐻𝐻) and Reynolds number (𝑅𝑅), both 

of which are defined in more detail within Chapter 2. The Hartmann number characterizes the 

ratio of the electromagnetic to viscous forces, while the Reynolds number – that of inertial to 

viscous ones. 

FIGURE 2.  Velocity profiles of Hunt’s flow in a rectangular duct with perfectly conducting 

Hartmann walls and perfectly insulated side walls parallel to an external magnetic field at 

𝐻𝐻 = 100, and 𝑅𝑅 = 500.  

 

At the Hartmann walls, which are perpendicular to the external magnetic field, thin layers are 

formed in which a sharp drop in the fluid velocity is observed due to the no-slip condition at 

any boundary surface. These boundary layers are historically referred to as Hartmann layers 

and their thickness dependents upon the strength of the external magnetic field. The thickness 

of the Hartmann layer scales as 𝛿𝐻𝐻~𝐿𝐻𝐻−1, where L is the duct width. As well as Hartmann 

layers, boundary layers parallel to the magnetic field are also observed, which are referred to 

as Shercliff layers. The thickness of the Shercliff layers scales as 𝛿𝑆𝐻~𝐿𝐻𝐻−1/2, which 

means they are somewhat thicker than the Hartmann layers. Resolving both layers 

numerically poses severe problems which will be addressed in this study. 

Some materials have been removed due to 3rd party copyright. The unabridged version 
can be viewed in Lancester Library - Coventry University.
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Lead-Lithium (PbLi), the proposed metal alloy to flow inside the blanket, melts at 327.5°C 

and as the blanket operates in excess of 400°C, the alloy is now classified as liquid. At this 

point, the metal being characterised as such, is studied as a subsidiary of physics commonly 

referred to as fluid dynamics. Furthermore to the governing equations that govern the motion 

of a fluid, there is a further branch of physics which must be included, electromagnetism. The 

combination of classical fluid dynamics and electromagnetism results in a fairly recent field 

of physics, Magnetohydrodynamics (MHD) and it is the general area of this research. 

The mathematical equations which govern MHD flows are in general non-linear, thus can 

describe very different flow regimes. For instance, the flow may be turbulent, demonstrating 

chaotic behaviour. Analytical study into such fluid flow is extremely difficult and virtually 

impossible. It is for this reason why computer simulation has to be used to reproduce fluid 

flow. The continual advancement of computers has led to major, rather recent furtherance in 

computer-aided simulation design, commonly referred to, both in industry and academia as 

Computational Fluid Dynamics (CFD). CFD is a tributary of fluid dynamics, employing 

numerical analysis and algorithms to aid in solving fluid flow. By having the ability to model 

fluids in greater depth, scientists have gained a deeper understanding of the complexities of 

fluid flows in many different applications. It has been through the development of CFD that 

Direct Numerical Simulation (DNS) has been bought to fruition. By integrating DNS into 

large super-computing systems, it gives a much greater defined visual and statistical 

representation of complex fluid flows. 

The thesis is structured as follows. Chapter 1 starts with a review of the historical 

development of nuclear fusion science. Additionally, Chapter 1 also contains a very brief 

introduction to the particular flow which this study encompasses, i.e. Hunt’s flow. In Chapter 

2 the governing equations in which this work is based upon will be derived. Chapter 3 

contains the description of the DNS method which was employed in this study. Chapter 4 

presents the main body of work, including procedures used and results obtained. Chapter 5 

contains the results concerning high Hartmann numbers, which are values beginning to 

approach nuclear fusion environments. Within Chapter 6 the opposite limit of a low 

Hartmann number is investigated. The study then concludes with Chapter 7 where a summary 

of the work is presented and future work discussed. 
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1.1 Historical Background.  
 

MHD is a relatively young discipline within the context of mathematics and fluid dynamics, 

incorporating studies of complex interactions with electrically conducting fluids and 

magnetic fields. The various phenomena and applications have intrigued scientists since its 

inception. Naturally, this leads us to the question, When were the first MHD effects 

discovered and by whom? 

Within the context of MHD, Faraday’s famously unsuccessful experiment in 1832 

investigated the river Thames tidal motion through the use of electromagnetic induction. His 

early study may be seen by some scientists as the starting point in which MHD began, but 

Faraday’s experiment was not strictly an MHD experiment. Others may argue that it was not 

until many years later, that the catalyst for MHD began with the early investigations by 

Hartmann and Lazarus [4]. The interaction between conducting fluids and magnetic fields 

gave rise to an unexpected phenomenon, oscillations of ions residing within a conducting 

fluid as it passed through a magnetic field. Hannes Olof Gosta Alfven (1908-1995) 

discovered that if a conducting fluid passes through a constant magnetic field, an Electro 

Magnetic Force (E.M.F.) is induced, thus producing electric currents [5]. The force arising 

from the interaction of these currents with the magnetic field affects the motion of the liquid, 

thus giving rise to a combined electromagnetic-hydrodynamic wave. For the discovery of 

these waves and thus founding MHD, Alfven became the recipient of a Nobel Prize in 1970. 

Alfven aptly named these waves,” Alfven waves”.   

 
A little over seventy years ago, scientific research gained its first insights into the 

fundamental physics which allows stars to keep their luminosity over a time period of billions 

of years. Scientific research discovered that stars are essentially held together by their own 

mass, pulling inwards, compressing themselves against gravity. This process in turn 

dramatically increases the temperature and pressure at their core. The highly increased 

temperature and pressure, results in a nuclear reaction which transforms hydrogen into 

helium, thus generating huge amounts of energy. This process is now known as nuclear 

fusion [6]. Upon understanding the fusion process within the stars, scientists began to 

consider whether the process could be replicated on Earth. Therefore scientists began to 
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initiate formulations attempting to harness this enormous amount of energy. It is the 

harnessing of fusion energy which is the main motivation behind this work.  

 

1.2 TOKAMAK 1950-1960. 
 

A small team of scientists in the USSR working on thermonuclear weapons design within the 

Arzamas-16 nuclear centre, Moscow, began to formulate initial principles of magnetic 

confinement at high plasma temperatures [7]. Fundamental, initial research led the team to 

enthusiastically suggest possibilities of a future thermal nuclear reactor. This initially small 

team of Soviet scientists was led by Igor Yevgenyevich Tamm, (1895-1971) and his former 

postgraduate student Andrei Dimitrievich Sakharov, (1921-1989). Both men became highly 

influential in the early development of plasma magnetic confinement, not only in the Soviet 

Union, but throughout the thermo nuclear scientific community. In 1958 Tamm received the 

Nobel Prize in Physics for his combined work on the Cherenkov-Vavilov Effect [8]. 

Sakharov won a Nobel Peace Prize in 1975 for his work on civil liberties and reforms in the 

Soviet Union, to which a Sakharov prize is awarded each year by the European Parliament in 

his honour. 

Following on from the Soviets scientific teams ideas, research into plasma initiation and 

heating in toroidal systems began to gather momentum in 1951 at the Kurchatov institute, 

Moscow. Sakharov, having undertaken his Ph.D. studies under the direction of Tamm, begun 

to formulate provisional parameters of a toroidal reactor, with a power capacity of 900 Mega 

Watts (MW). The reactor consisted of an outer toroidal radius of R = 1.2 m, a smaller inner 

radius of A = 0.2 m, a magnetic field, 𝑩0, of 5T and an ion temperature of 100KeV. Early 

experimental toroidal chambers at this stage of development by the team were made from 

materials which included glass, porcelain and metal, all of which included insulating inserts. 

The research and developments of the different material configurations quickly lead and 

progressed to the first nuclear fusion reactor in 1958, the T-1 Tokamak (Tokamak is a 

Russian abbreviation for Toroidal Chamber with Magnetic Coils TCMC). The T-1 Tokamak 

was the first toroidal Tokamak featuring a steel vacuum vessel, in which the temporary 

stability of plasmas was demonstrated, thus satisfying the Kurskal-Shafranov stability 

condition [9]. The experiments suggested that for the stability of plasma the pitch angle of the 
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magnetic fields curvature needed to be very low. The new dimensions of the T-1 

accommodating this suggestion were R = 0.8 m, A = 0.13 m, 𝑩0 = 1.5T and I = 0.25 MA. It 

was observed within the team’s early initial experiments that the dominant role in the power 

balance of the hot plasma was played by the losses caused by ultra-violet radiation [10]. With 

this observation in mind, the T-2 was constructed a year later in 1959. The research on the re-

developed T-2 attempted to re-address the problem of radiation losses and steps were 

implemented to mitigate this, which were met with some success. In attempting to eradicate 

this problem entirely, the Russian team installed an innovative inner vacuum chamber that 

could be heated to 500 degrees centigrade. Located within the newly installed inner vacuum 

chamber sat a diaphragm, which limited the area of the discharge currents, thus resolving the 

radiation losses and eliminating the problem. 

 

1.2.1 1960 – 1970. 
 

1962 witnessed the next development stage of Tokamak design, the T-3. The T-3 had an 

increased outer toroidal radius of 1 Meter, in addition to an increased magnetic field. Due to 

the plasma being electrically conducting, a pulsed induced current could be employed to heat 

the plasma, thus allowing for full ionization of the major impurities through a process known 

as Ohmic heating. The parameters of the T-3 were R = 1 m, A = 0.12 m, 𝑩0 = 2.5T and I = 

0.06 MA. The increase in radius moved the new design of the Tokamak in the correct 

direction, as full ionization was achieved in a stable plasma regime at a record 1 KeV (10 

million degrees centigrade). In addition to the success of the increased radius, a plasma 

density limit could be achieved, thus giving rise to the Kurchatov density limit [11]. 1966 

saw studies, using the T-3, into external perturbations by visual plasma radiation, further 

leading to observations of a helical plasma structure. This feature is now common to all 

Tokamak perturbations. During the 1960’s to the early 1970’s, six different Tokamak designs 

were fabricated and investigated, the T-3, T-3a, TM-1, TM-2, TM-3 and the T-4. The results 

of the experiments in nuclear fusion were considered by many scientists outside of the small 

dedicated Russian team as evidence of thermo nuclear isolation of the plasma in a toroidal 

system, and 1968 lead to beneficial debates resulting in the first international collaboration in 

nuclear fusion [12]. With the advancing work and development on the T-3, the initial 

collaboration existed between the Kurchatov Institute, Moscow, Russia and the Culham 
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Plasma Physics Laboratory, Oxford, England. The concluding results of the collaboration 

between the two laboratories established the Tokamak as the correct direction for further 

research on magnetic plasma confinement [13]. The pioneering collaborative work increased 

its influence in 1969 as Princetown scientists in America supported the switch from purely 

toroidal experiments to Tokamak investigations. With the encouraging results determined 

from the Russian and English collaboration, new Tokamak designs were proposed and later 

fabricated, the T-3a, Figure 3 and T-4. 

The progressive experiments carried out upon the T-3a and the T-4 included the usage of 

Deuterium, observing how it changed over time for various models. Results were then 

compared against known cross sectional results of the original reactor. The comparative 

results lead to the first recorded observation of a stable toroidal plasma column [14]. Not only 

did the T-3a and T-4 demonstrate a stable plasma column, but along with the TM-2, TM-3 

and later the T-11, they gave scientists the ability to establish scaling laws for energy 

confinement. The community achieved this by deducting from the size of the magnetic field 

value, discharge and plasma densities [15] 

 

1.2.2. 1970 – 1980. 
 

1970 witnessed for the first time a Tokamak employing a fully graphite chamber, rather than 

the familiar metal chamber. Graphite was employed to investigate whether there was a lower 

charge of plasma ions. The change in chamber material was a complete success [16]. In 

addition to this, Shafranov proposed an elongated plasma cross section to improve stability to 

the external perturbations. Further studies were performed by magnetic probes upon this 

suggestion. 

Shafranov’s proposal lead to the development of the T-9, T-8 and the T-12 in 1972. 1971 saw 

further investigations conducted on the T-4 into different areas of Tokamak technologies, 

discovering features of internal MHD effects. At this point France began designing their own 

TFR Tokamak series, which resulted in large Tokamak designs, ultimately leading to the 

J.E.T (Joint European Torus) program [17]. Scientific research was developing, either as 

single studies or joint collaborations, all of which lead to the first D-shaped cross sectional 
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Tokamak in late 1971. Also in this year the T-6 was designed [18], with parameters R = 0.7 

m, A = 0.17 m, 𝑩0 = 1.5 T and I = 0.22 MA. 

 

 

 

 

                                                              

 

FIGURE 3. The T-3a Tokomak housed at the Kurchatov Institute 1964.  [2]   

                                                                                   

1975 observed the development and fruition of the largest Tokamak at that time, the T-10. 

It’s parameters were R = 1.5 m, A = 0.4 m, 𝑩0 = 4.5 and I = 0.68 MA. There were two main 

outcomes from this larger Tokamak experiment. The first concerned the investigations into 

Ohmic heating and the maximum possible plasma temperatures allowed through this type of 

heating. Secondly, the T-10 employed auxiliary plasma heating techniques. The results of 

these particular types of heating experiments were able to reach an efficiency of 70% - 80% 

[19]. Electron heating in the central areas of the T-10, at the Ohmic stage of the discharge 

increased from 0.6 to 0.9KeV and the electron temperature attained in these experiments 

reached 10KeV. The large dimensions of the T-10 and subsequent Tokamaks from this point 

on, in an historical context, were achieved on the basis of numerous plasma energy scaling’s. 

1978 saw the T-7 in operation, with parameters R = 1.22 m, A = 0.31 m, 𝑩0 = 3 T and I = 

0.39 MA. When research had been completed on the T-7, it was disassembled and relocated 

to China as a gift from Russia. The T-7 was transported to China under great economic 

difficulties and housed at Hefei [20]. The move took more than three years to complete, but 

nevertheless in 1995 the TH-7 was commissioned, thus marking China as a valued member 

nation in the possession of a Tokamak. Recently the TH-7 was re-housed after being de-

commissioned to Huainan, eighty kilometres west of Hefei, where it is still situated.  

Some materials have been removed due to 
3rd party copyright. The unabridged 
version can be viewed in Lancester Library 
- Coventry University.
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1.2.3. 1980 – Present. 
 

The first superconducting Tokamak, the T-15 was commissioned in Russia in 1983. Due to 

economic difficulties, research on the T-15, which was housed at the Kurchatov Institute, 

Moscow, was put on hold in 1995, but not before successfully demonstrating a first plasma 

burn in 1988. Quiet recently there have been plans to upgrade the T-15 by installing a new 

divertor, which is proposed to remove plasma waste, i.e. heavy ions, more efficiently. 

Scientists at the institute are aiming to initiate the device again towards the end of 2017. The 

T-15’s twenty four toroidal field coils are still the largest in the world to date. 2006 witnessed 

the signatures of seven participant members including the European Union, Japan, India, 

Russia, China, America and South Korea. All nations agreed to pledge financial support to 

the worlds’ largest thermo nuclear reactor, ITER (International Thermonuclear Experimental 

Reactor). Located opposite the Cadarache institute, southern France, I.T.E.R, once 

completed, will boast the worlds’ largest magnetic plasma confinement physics experiment. 

It is designed to produce over 500 megawatts of power while only drawing 50 megawatts of 

power to operate the reactor. Proposed plasma experiments are scheduled at I.T.E.R for 2025 

and a full tritium-deuterium plasma burn is expected in 2035. 

It is important to emphasize that during the early years of Tokamak development through the 

1960’s, 1970’s and 1980’s, parallel investigations at the Kurchatov Institute into plasma 

stability were conducted. The work done on 2-D and 3-D plasma equilibrium, linear and non-

linear stabilities, plasma heating and non-inductive driven currents, created the foundations 

for which magnetic confinement of hot plasma in thermo nuclear reactors is based on 

today[21], [22], [23]. The Tokamak has proved successful by the combined research effort 

that the Russian and English scientific thermo nuclear community developed in the 70’s. 

Within this particular time period, it was the first time that a wide range of international 

delegations and scientists had come together to develop one project. It was these pioneering, 

ground breaking collaborations which have built the basis on which the thermo nuclear 

reactor under construction at ITER is based.   

In the early nineties, hydrogen isotopes Deuterium and Tritium were being used as fuel for 

the T.F.T.R (Tokamak Fusion Test Reactor) in Princeton, USA and J.E.T (Joint European 

Torus) located at Culham in the U.K. J.E.T gave the world the opportunity of multi- national 

collaborations, and in 1991 achieved the worlds’ first controlled nuclear fusion reaction. With 
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the continual developing work on the T.F.T.R., J.E.T and Japan’s Tokamak programme, the 

JT-60, scientists are striving to achieve 500MW of output with only 50 MW input. Below is a 

historical account of the processes that has recognised nuclear fusion as the main source of 

power for the latter part of this century and into the future. 

As Tokamak construction and investigations were at arguably their height of academic 

interest across the globe, theoretical work on conducting fluids in an external magnet was 

conducted on the periphery of fusion development. It was realised very early by the scientific 

community, that in order for the nuclear fusion reactor Figure 4, to burn plasma for extended 

periods of time, some form of cooling system needed to be developed, along with a way of 

extracting heat from the plasma. It is at this point that we now turn our attention away from 

the Tokamak and take a closer look at the pioneering scientists undertaking early 

investigations into MHD, which resulted in the development of a proposed cooling system for 

the Tokamak, liquid metal blankets.  

FIGURE 4. A schematic of the nuclear fusion reactor to be built at ITER. Highlighted are 

some key components of such a fusion reactor.  [3] 

 

Some materials have been removed due to 3rd party copyright. The unabridged version 
can be viewed in Lancester Library - Coventry University.
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1.3. Harwell meeting, 1956. 
 

In 1956, the year before Arthur Shercliff was given his lectureship at Cambridge, a Russian 

scientist named Igor Kurchatov, who was not well known outside of Russia at that time, was 

invited to give a presentation at the Atomic Energy Research Establishment in Harwell, 

Oxfordshire [24]. From the outset of Kurchatovs’ presentation, it was apparent to the 

members present that the Soviet were researching thermo nuclear fusion power. Kurchatov 

demonstrated that the small team he was a member of was using hydrogen isotopes as the end 

product of a peaceful power production concept. This was quite a remarkable situation, as 

.unknowingly to Kurchatov, both England and America has been researching the same thing 

at approximately the same time. The difference albeit between these three nations was that 

the research done in America and England was highly classified. Kurchatov’s bold, initial 

statement on the issue was a revolutionary step forward in opening up fusion research in all 

three countries. This pioneering move by Russia resulted in a major exchange of scientific 

information for all three countries involved at the United Nations Conference two years later 

in Geneva, 1958 [25]. All three countries now had a common interest in developing a way to 

contain hydrogen isotopes at high temperatures to enable a fusion reaction to occur, 

ultimately releasing energy. 

 

1.3.1. Scientists.    
 

To begin this section one is required to re-visit the pioneering work conducted by Hannes 

Alfven in Stockholm, Sweden, in the 1940’s [26]. Leading from his early success, Alfven 

assembled a scientific team consisting of twenty members, half of which were completely 

dedicated to scientific research. The group’s laboratory was situated in the Royal Institute of 

Technology, Stockholm, Sweden. A main feature housed within the laboratory was a large 

magnet which produced a homogeneous magnetic field up to 1.5T. It was through the studies 

in employing the magnet that Alfvens’ group observed an interaction between the magnetic 

field and mercury. The interaction between the magnetic field and the electric currents 

induced by the flow affected the movement of the mercury, resulting in strong MHD drag 

effects. 
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Maintaining the focus within the same decade, we now divert our attention away from 

Alfvens’ research group in Sweden and onto England, or to be more precise, the Engineering 

Department at Cambridge University and L.M.Trefethen. Trefethen came to Cambridge 

having completed a master’s degree at the Massachusetts Institute of Technology (M.I.T) and 

his interest in heat transfer properties lead to an acceptance in 1946 of his research proposal, 

entitled “Gas Turbines-turbine blade cooling”. Trefethens’ investigative reputation quickly 

developed whilst he studied at Cambridge. One experiment in particular which he conducted 

in 1946 included driving mercury through a pipe and measuring its flow rate by 

electromagnetic means [27]. From Trefethens initial studies and results into this 

phenomenon, one can postulate, that MHD had arrived at Cambridge University. One year 

later W. Murgatroyd was recruited at Cambridge University to also work upon liquid metal 

heat transfer within the Engineering Department. Often collaborating with Trefethen on his 

liquid metal flow circuit, Murgatroyds’ accepted research proposal was entitled “Heat 

Transfer from Liquid Metals”. Eventually, through collaborative investigations with 

Trefethen, Murgatroyds research into turbulence, lead to his pioneering results on the 

transition to turbulence that the MHD community will always attribute his fame [28]. As 

Murgatroyd progressed through his doctorate and apparatus allowing, he employed higher 

values of Reynolds numbers into his system, which was comparable to the research 

conducted by Hartmann and Lazarus [4] nine years earlier in Denmark. Hartmann and 

Lazarus demonstrated that a conducting fluid subjected to high magnetic fields, produces thin 

layers near the walls of the channel. Within the context of MHD they are commonly referred 

to as Hartmann layers. Murgatroyds’ studies observed these layers to be much thinner than 

their distance apart in the system, thus resulting in the discovery that non dimensional 

qualities, such as the friction coefficient, depended upon Re/Ha [28].  

Before Murgatroyd completed his Ph.D., John Arthur Shercliff (1927-1983), arguably the 

most significant scientist within the MHD community began his studies into liquid metals at 

Cambridge University. It is necessary to give a slightly extended overview of Shercliff due to 

the exceptional contributions this scientist gave to not only fluid dynamics in, but also to 

MHD.  

In 1938 Shercliff won a scholarship to Manchester Grammar School. During his three years 

at the school, he acquired nine distinctions in total. This high academic achievement allowed 

his progression to a further three years study at sixth form studying mathematics. The 

excellence shown within the further three years won Shercliff a one year open scholarship at 
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Trinity College, Cambridge in 1944. He arrived at Trinity College very highly regarded by 

his former tutors and spent an additional three years studying an undergraduate degree in 

physics and mathematics. Upon completion of his undergraduate degree he gained the most 

distinguished undergraduate title at Trinity College in 1947, which allowed him to win the 

Rex Moir prize [29]. This outstanding prize paved the way for a further award, the Joseph 

Hodges Memorial Fellowship, giving Shercliff the opportunity to study a one year master’s 

degree at Harvard in 1948. Whilst at Harvard, Shercliff demonstrated his enthusiasm in 

physics and mathematics and achieved his master’s degree two years later in 1950. 1951 saw 

Shercliff being appointed as full apprentice at A.V. Roe & Co Ltd, an aircraft manufacturing 

company. Shercliff only completed one year of his apprenticeship, owing to an opportunity 

arising to study a research Ph.D. under a former tutor at Trinity College, W.R. Hawthorn. 

Being given this opportunity, Shercliff’s approved Ph.D. research was entitled “Problems in 

Magnetohydrodynamics”. Almost immediately, Shercliff began working on a conducting 

fluid as it flowed through a transverse magnetic field [30], [31], [32], [33]. This initial 

research lead to the discovery of boundary layer characteristics of fluid flows at high 

magnetic fields, an important discovery, as this demonstrated a relationship between the 

volume flux of the fluid and the pressure gradient.  Encouraged by these preliminary results, 

Shercliff continued further into his Ph.D. and began to explore deeper into fluid flow and 

electrodynamics flow-meters. He subsequently completed his Ph.D. and was bequeathed a 

lectureship at Cambridge University in 1957, a position he held until 1964. 

Combining both lecturing and research, Shercliff in 1959 produced a further two definitive 

papers on incompressible Magnetohydrodynamics [34], [35]. The first included results on the 

flow of a purely transverse fluid flow to a magnetic field, the second included coinciding 

results of the effects of a magnetic field within flow direction. Six years later in 1965 

Shercliff gained an appointment at a new university in the middle of England, Warwick 

University. There he was given the rare opportunity to develop the new engineering 

department as he saw fit. By being able to employ such autonomy, he gave the new 

undergraduate courses a great amount of flexibility, by combining different fields of 

mathematics, physics, engineering and the recently developing field of computer sciences. 

Due to the pre-occupation of developing the engineering department, scientific papers by 

Shercliff diminished throughout the late sixties and early seventies, but upon completing a 

two year sabbatical at the Culham Laboratory, Oxfordshire, Shercliff produced his second 

text book [36]. 
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Throughout Shercliffs’ scientific career he gained and served in many highly prestigious 

positions including: 1976-1979 Committee of Engineering Professors, 1975-1980 Vice 

chairman of the advisory committee to the Coventry area Health Authority on medical 

engineering, 1980 elected fellowship of the Royal Society, I.C.I   Professorship of Applied 

Thermodynamics at Cambridge, re-elected as a fellow of Trinity college, Cambridge and 

Associate editor of the Journal of Fluid Mechanics. In the latter part of his career, Shercliff 

became increasingly un-well which prevented him from continuing his research into science. 

Nevertheless, he honoured his standing commitments into the early eighties, culminating with 

his death on the 6th December 1983. 

1962 is regarded through historical events by many scientists as the “Golden Age” in MHD 

research. Not only through scientific advances, but also for the scientists themselves, the 

names of which have been and will be continually introduced as we progress through this 

continuing section. 

C.J.N Alty, J. A. Baylis and C. J. Stephenson joined Cambridge University as research 

students in the early 1960’s. All three new research students had a large interest in a paper 

written two years earlier [37]. Within this paper, Hasimotos observed fluid behaviour in a 

parallel flow, located outside an infinite cylinder, exposed to a transverse external magnetic 

field. This was the first intimation that free shear layers parallel to the magnetic field play an 

important role in external flows. Upon reading Hasimotos’ work, Shercliff observed that it 

also had implications for fluid flows in square ducts when two walls were insulating and the 

remaining two walls were conducting, again in the presence of a uniform, but tilted, 

transverse magnetic field. Alty’s proposed and accepted PhD was entitled “Fully developed 

secondary flow in Magnetohydrodynamics” and acting upon Shercliff’s advice, began 

conducting experiments based on this configuration, using mercury as the fluid and copper as 

the duct walls. Alty used ordinary sellotape as the insulating material in his experiments and 

employed  an external magnetic field with strength of approximately 1.2T. The mercury flow 

was driven along the duct via a longitudinal pressure gradient against the electromagnetic 

forces, which were induced by the short circuit path between the two copper walls. This 

particular experiment resulted in further investigations into the pressure difference down the 

duct in connection with buoyancy-driven MHD flow [38].  

Baylis, having his proposed PhD entitled simply as “Magnetohydrodynamics” accepted at 

Cambridge began, again under the advice of Shercliff, to conduct experiments on the stability 
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criterion for Couette flow between the gaps of the torus formed from concentric copper 

cylinders [39]. The magnetic field strength was reduced in comparison to Alty’s experiment, 

by approx. 0.3T. By reducing the magnetic field strength, Baylis was able to compare the 

observations to previously known results [40] earlier that same year. The stability results 

were a little higher than that of Chandrasekhar, but this was put down to the uncertain gap 

width of the copper cylinders due to an amalgam layer building up on the copper. Baylis next 

conducted an experiment on a toroidal chamber, aiming to investigate the fluid’s secondary 

flow effect. But as the experiments were progressing, Baylis discovered that it was an 

excellent opportunity for testing asymptotic channel flow theory. 

Late 1963 saw the introduction of two further research students at Cambridge under the 

guidance of Shercliff. The two new students were R.C Baker and J.C.R Hunt. Immediately, 

Shercliff suggested to Baker that he should investigate the stability of mercury in a trough set 

within a horizontal magnetic field. Shercliff further suggested that a horizontal electric 

current would interact with the magnetic field, resulting in an upward vertical force and along 

with these unsteady conditions 2-d waves would grow exponentially with time. As a result, it 

was observed that slightly before a complete breakdown of the fluids surface a crest would 

rise, albeit a very small one, thus demonstrating encouraging stability results. Upon 

completion of his stability experiment, Baker decided to re-align his focus and investigate 

electromagnetic flow meters. Baker advanced the electromagnetic flow metering by 

demonstrating that a voltage difference between the two channel walls would depend on the 

fluid’s velocity and its distribution over the distance of the channel walls. Baker’s advances 

in this experiment, culminated into a formula for the overall potential difference: he quite 

aptly called it, Baker’s formula [41]. 

Hunt in the meantime, although registered at Cambridge as a PhD student only spent one full 

year there, relocating his studies to Warwick University. This was no doubt influenced by 

Shercliff’s new appointment as Head of the Engineering Department there. During Hunt’s 

initial year at Cambridge, he observed that he could further develop his supervisor’s work of 

analysing a rectangular duct with insulating walls and conducting walls perpendicular to a 

uniform magnetic field. As a result of this investigation, Hunt produced two initial papers in 

1965 [42], [43]. The two papers just stated are the basis on which the present author’s work is 

based upon. Throughout Hunt’s highly successful scientific career he collaborated with over 

seventy different scientists, achieving in excess of three hundred and sixty scientific papers. 
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At present, Sir Hunt is a fellow of Trinity College Cambridge and an Honouree professor in 

the Department of Applied Mathematics and Theoretical Physics.  

MHD began to gather great interest at this stage and early pioneers within this new 

phenomenon began to take up the mantle and researched different effects a magnetic field 

had on a conducting fluid. Before moving deeper into MHD’s history, it is extremely 

important at this stage to disseminate different avenues of MHD research. Within the context 

of this work we will look at the history of MHD on a relativity small scale, i.e. the effects of a 

magnet on a conducting fluid passing through a duct. 

 

1.4. Evolution of Liquid Metal Blankets. 
 

The pioneering scientists of the 1950’s realized nuclear fusion power was indeed attainable. 

They also determined that in order for fusion to be initiated between the two hydrogen 

isotopes Deuterium and Tritium, temperatures needed to reach in excess of 108°C. Reaching 

such high temperatures would totally dismiss conventional solid wall confinement. Therefore 

a particular genre of plasma magnetic confinement using large D-shaped magnets was 

realized as the only option available in order to suspend the plasma within a toroidal 

chamber. In order to protect the large powerful D-shaped magnets employed for the plasma 

confinement, a radical proposal was initiated to develop a blanket concept where liquid metal 

flowed within and through the blanket, which were placed between the plasma filled torus 

and the large magnets themselves. The blankets were designed to shield the magnets against 

high neutron radiation emitted from the Deuterium-Tritium plasma burn and for heat and 

mass transfer properties. Therefore by implementing the liquid metal blankets, a protective 

cooling system would be in place, thus allowing the plasma to burn for extended periods of 

time. It is believed that when ITER comes online in 2035 that numerous physical experiments 

into blanket operations will be undertaken. Under such physical conditions, the experiments 

will attain whether a particular blanket concept can indeed be a candidate for future further 

investigation into the purpose for which it is intended. The research contained within this 

present work will address the candidacy of a very specific blanket design concept and 

determine whether this specific blanket design is sufficient enough to be taken seriously as a 

real contender for future possible realization. 
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1.4.1. Modern Experimental Liquid Metal Blankets.  
 

A liquid metal blanket has primarily three functions; it is required to absorb the fast neutrons 

which are expelled from the fusion process, converting their energy into heat. Secondly, it is 

to be employed as a breeding ground for the highly elusive element Tritium, which is the fuel 

required to initiate the fusion process and thirdly, to protect the powerful D-shaped magnets 

from both heat and neutron radiation bombardment [49]. In order for the blanket to operate 

within safe tolerable limits, the first wall (the wall closest to the plasma) which receives the 

highest amount of heat flux, must remove heat at such a rate that temperatures do not exceed 

critical limits. For this to be attained, liquid metal has been viewed by many scientists as the 

prime candidate to be used within a blanket concept. Extensive research has found a mixture 

of lead-lithium alloy (Pb-17Li) to be the ideal fluid, mainly due to the leads’ high thermal 

content and the Lithium component providing a good breeding grounds for Tritium [50]. 

Over many decades different blanket designs have been investigated, but as to date a fully 

agreed blanket design has yet to be decided upon. As we progress through this section, we 

will briefly describe different blanket concepts that have been, or are, being investigated. 

 

1.4.2. Self-cooled Liquid Metal Blankets. 
 

Self-cooled liquid metal blankets, essentially use the same fluid as a coolant and to breed 

tritium, thus greatly simplifying the design and material constraints. Although this is 

advantageous, there are certain constraint factors that must be observed within such a design. 

Two of the constraints include material compatibility between the blanket walls and the 

liquid metal coolant being used [51], additionally the liquid metal must be able to proceed 

through the blanket at a sufficiently increased velocity in order to remove the intense heat 

generated by the plasma burn [52]. A simple concept was designed to include staggered rows 

of circular pipes curving around the plasma Figure 5 
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FIGURE 5. Schematics of cylindrical poloidal channels for the use in thermo nuclear fusion 

reactors; (a) demonstrates circular pipes that remove heat away from the first wall, (b) 

poloidal channels, (c) manifolds in reactor sectors.  [5] 

 

Behind these were ducts of rectangular cross section. The fluid would enter both pipe and 

duct at the top via a manifold, flow through the blanket and exit via a collection point located 

at the bottom of the blanket. By theoretically applying this particular design to a thermo 

nuclear reactor we have a so-called poloidal blanket, primarily designed for the central part of 

the reactor. To date the most advanced blanket concept of this design is the Self Cooled Lead 

Lithium Blanket and is the product based upon advanced theoretical and experimental plasma 

physics investigation upon a coaxial flow. The vessel’s design is based upon a ceramic fibre 

composite structure and is generally thought of as a good candidate for low activation wall 

material, mainly due to its electrical insulation properties, thus leading to higher electrical 

resistance, reduced electrical currents and pressure drop. The latter point in a poloidal flow of 

the self-cooled liquid metal blanket does not seem to issue, but three dimensional effects of 

the blanket’s ends give an extra contribution to flow resistance, therefore should be 

investigated in the future. 

 

1.4.3. Toroidal Blankets. 
 

Up to the present, the main problematic historical trend is the problem of pressure drop 

within the self-cooled liquid metal blanket concepts. In 1971 a report by Hunt & Hancox [53] 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry University.
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directly mentions the use of a toroidal fluid flow within a blanket, in which circular pipes are 

used within the toroidal cooling ducts, thus allowing MHD effects to be kept to a minimum. 

The alignment of the fluid flow with the magnetic field would therefore suppress turbulent 

fluctuations within the fluid itself. The first wall is cooled by a high velocity fluid flow 

through small narrow channels being supplied through a slanted poloidal manifold, 

perpendicular to the magnetic field. An advantage to this type of design is that the mean 

velocity in these poloidal ducts can be kept low, thus reducing the pressure drop, through the 

manifold itself. Secondly, the poloidal channels are able to absorb high stress levels since 

they are not exposed to the ducts’ first wall and high radiation doses. Due to this 

configuration, the toroidal channels are perpendicular only to the poloidal field, which are 

much weaker. This results in a high fluid velocity in toroidal channels, without increasing the 

overall pressure drop within the system, making this concept very attractive as a future design 

feature.  

 

1.4.4. Separately cooled Liquid Metal Blankets. 
 

Within this concept, the Pb-17Li acts primarily as a tritium breeder unit, while the heat 

produced by the plasma is removed by fast flowing helium [54]. As the helium is non-

conducting, it does not suffer from MHD interaction, thus it can be circulated through the 

magnetic field at high velocity without affecting the MHD pressure drop, thus removing heat 

more efficiently. Concerning the main flow, the Pb-17Li can circulate through the blanket at 

a much lower velocity, resulting in a decreased pressure drop within the system, compared to 

Self-cooled liquid metal blankets. The design of this type of blanket is composed of liquid 

filled rectangular boxes arranged around the plasma. All blanket walls, including the first 

wall, are cooled by helium flowing inside the blanket walls in small channels. In addition to 

this, inserted between each liquid filled box are cooling plates, aiding in keeping 

temperatures between tolerable limits and aiding structural integrity. The MHD difficulties 

for this design are the flows in slim ducts, which are the product of the insertion of the 

cooling plates, and also the expansions and contractions of inlet and outlet areas of the 

breeder units. Another issue due to the cooling plates is the electrical coupling between the 

plates themselves, this would allow, if not sufficiently insulated, allow electrical currents to 

pass from one fluid region to another within the system. 
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Liquid metal blanket design and development over past years has had to contend with various 

difficulties, such as the pressure drop, duct flow, duct expansion-contraction, electrical flow 

coupling - to name but a few. Most, if not all differing phenomenon that occurs within three 

dimensional flows in single ducts can be modelled and in some cases understood via 

computer modelling. But the designing of fusion blankets using 3-D flow modelling is not yet 

fully sufficient enough to accurately predict MHD in the blanket in its entirety as a single 

component. All progress so far in the theme of nuclear fusion MHD research has thus been 

updated by scientific experimental work confirming theoretical based investigations. The 

scientific progression conducted within the context of liquid metal blanket design and all 

future investigations, either performed at JET or ITER, are fundamental in the realization of 

thermo nuclear fusion power. If blanket design and development is not continued in the 

future, nuclear fusion power will not become a reality. 

 

1.5. What is Hunt’s Flow ?. 

Fluid flow in rectangular ducts is comprised in many different blanket concepts, as just 

briefly described. In the following, we focus on a specific combination of wall conductivities, 

where the walls parallel to the magnetic field are insulating and the walls transverse to the 

magnetic field are conducting. The reason for investigating this particular configuration is 

that it gives rise to Hunt’s flow; nearly all of the characteristic features to many blanket 

concepts are present in this flow. 

Here we give a brief overview of Hunt’s flow. The complexities and governing equations will 

be described in greater detail in subsequent chapters. By assuming a duct of rectangular cross 

section has perfectly conducting Hartmann walls transverse to the magnetic field, i.e. the 

electrical conductivity of these walls being 𝜎𝐻𝐻 = ∞ (top and bottom), in addition to 

perfectly insulating side walls parallel to the field, 𝜎𝑆𝐻 = 0, it leads to a determined duct 

configuration referred to as Hunt’s flow. A conducting fluid is driven through a rectangular 

duct by a constant pressure gradient, subjected to an externally applied magnetic field. An 

important feature to such a regime is the requirement to produce sufficient turbulence within 

the fluid flow in order to promote heat and mass transfer within the system. This scenario in 

itself could be problematic, as high MHD effects produce strong braking and damping of 

turbulence within the core of the fluid, as viscous forces attempt to balance the pressure 
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gradients, scaling as 0(Ha), thus altering the fluid flow through the duct. Such braking 

produces an unusual velocity profile not observed in a purely hydrodynamic flow regime or 

in MHD flows with fully insulated wall.  

Due to the fact that we employ 𝜎𝑆𝐻 = 0, induced electrical currents produced in the core of 

the fluid must turn almost parallel to the external magnetic field. Once the currents turn at the 

side walls, MHD effects are greatly reduced in this region, allowing increased fluid 

velocities, thus producing side wall velocity jets Fig 6. The analytical complexities of such a 

flow are well known and the specific velocity profile was solved by Hunt in 1965 [42]. 

Within this particular configuration, the side wall jets are well pronounced when compared to 

a fully conducting duct regime, or a fully insulating duct regime. As Ha increases, i.e. 

𝐻𝐻 → ∞, the mass flow rate in the jets increases and the velocity in the core of the fluid tends 

to zero,  suggesting that the jets carry most, if not all of the flux.  Since Hunt’s analytical 

solutions into such a specific regime were presented in 1965, remarkably very few additional 

investigations have been conducted, except for [102,103]. Therefore, with the aid of DNS, 

this is the first time that an in-depth investigation into Hunt’s flow with varying parameter of 

Ha & Re values has been conducted. 

 

 

 

 

 

 

 

FIGURE 6. Flow geometry of Hunt’s flow in a square duct. Laminar velocity flow profile 

distribution with perfectly conducting Hartmann walls, 𝜎𝐻𝐻 = ∞, and perfectly insulating 

side walls 𝜎𝑆𝐻 = 0 at Ha = 100 (blue). Electric current lines are also shown (brown). 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry University.
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1.6. Literature Review. 

Early research into the effects that an external magnetic field had on laminar, incompressible, 

conducting fluid flow were initially focused on conducting pipes [55, 56]. The results which 

ensued observed that depending on the conductivity of the walls, boundary layers developed 

at the side walls  Subsequent research developed from these early studies [57, 58, 52, 59, 60] 

as different wall conductance ratio’s and ducts geometries were investigated in greater detail.    

Ensuing research progressed into studying rectangular ducts with conducting walls which 

were perpendicular to the magnetic field and insulating walls parallel to the magnetic field 

[42, 43]. Hunt found the exact solutions to this particular duct problem through the use of 

Fourier series. Additionally, he observed that by employing thin duct walls, the magnetic 

field had an enhancing effect on the fluid flow in the boundary layers, compared to that in the 

core. This had a dramatic effect on the velocity profile. These new and encouraging results 

spurned Hunt to develop his inquiries further [61, 62]. Over a period of three years, Hunt’s 

studies led to five separate collaborations on MHD [63, 64, 52, 65] including one with his 

former supervisor at Cambridge [66].  

Due to early pioneering work in MHD,  the conductance of the duct walls was viewed by 

those involved to be of paramount importance, encouraging further investigation by other 

scientists to either fill in the gaps which Hunts research had left, or confirming his results 

[67]. An important resultant from the continuation of Hunt’s initial studies were that 

boundary layer at the side walls of the duct were observed with thickness 0 �𝐻𝐻−
1
2�, both 

theoretically and experimentally [68]. Using the same duct material as in Ref [38], but now 

with a duct conductance ratio of 𝑐 = 18.5, thus, all walls being well conducting, Gelfgat, 

Dorofeev & Scherbinin observed that the side wall velocity jets were thicker than Hunt had 

predicted, in addition to being lower in magnitude at 𝐻𝐻 = 100, 200. A subsequent paper 

published one year later confirmed this result [69]. 

Most, if not all early studies into MHD had been conducted analytically for low to moderate 

𝐻𝐻, mainly in part to the limiting computer resources available at that time and  the magnets 

employed within the experiments yielded relatively low magnetic fields. However, studies 

into high values of 𝐻𝐻 were conducted in subsequent years to investigate the varying levels 

of suppression a stronger magnetic field could exert on a conducting fluid [70, 72, 73, 74]. 
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The preeminent consensus was that as the magnetic field was increased, it did indeed damp 

turbulence. In realizing this phenomenon, in addition to the increasing levels of computer 

resources now being available, modelling fluid flow and the investigations into the transition 

to turbulence began to gather momentum [75]. In fact, transition to turbulence has been 

extensively investigated in both pipe flow [76, 77] and rectangular ducts [78, 81]. But a 

complete encompassing theory as to the inherent instabilities and the transition to turbulence 

has yet to be determined.  

A fundamental experimental result in MHD came through utilizing thin conducting walls 

with,  𝑐 = 0.07 for 𝐻𝐻 ≤ 5800, where c is the so-called wall conductance ratio, definition of 

which can be found within Chapter 2 [82]. Within this study it was observed that fluid flow 

became turbulent in the near side wall region at 𝑅𝑅 ~ 3000. This suggested that perturbations 

in side layers, housed near the parallel walls were responsible for the thickening of the 

velocity jet. This study gave a jet thickness of order  ~ 𝑁−13 , where 𝑁 = 𝐻𝐻2/𝑅𝑅 is the 

magnetic interaction  parameter, whose again derivation can be found within Chapter 2. This 

result was later confirmed in other steady 3-D flow regimes [83, 84].  

Keeping for the moment in the vein of duct conductance, conflicting results developed 

shortly after [82] from a team of five scientists researching linear stability in a straight duct, 

again employing thin conducting walls [85]. Their investigation mirrored the conditions set 

out in [68]. Employing the assumption of an asymptotic profile as 𝐻𝐻 tended to infinity, Ting 

et al. calculated a critical Reynolds number  𝑅𝑅𝑐𝑟 = 313, which is ten times lower than the 

experimental result [82]. The contradiction came from newly observed instabilities in the side 

wall jets, not noticed in previous investigations due to the instabilities being very weak in 

both size and amplitude. A DNS investigation was later undertaken for 𝐻𝐻 = 1200 which 

resulted in confirming the presence of the new instabilities, they were later named Ting-

Walker vortices (TW) [86].  

At the turn of the millennium, increased computer power enabled more advanced modelling 

techniques, thus expanding investigations into MHD flows. Large eddy simulation (LES) 

were developed to simulate difficult MHD flow problems at high fluid velocities [87-89]. 

This was not however without difficulty, as the applicability of LES is limited by the 

underlying assumptions and approximations. There are no such issues in Direct Numerical 

Simulation (DNS). Due to the controllable accuracy of DNS, it has been the preferred method 
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of investigation in many fluid flow problems [90, 94]. Although DNS limits the range of 

accessible parameters, it can produce more accurate and reliable results when adequate 

numerical resolution is used [95, 98]. With the increased numerical resolution, instabilities 

could now be observed in the flow [99] and investigations into already known instabilities 

and boundary layers [100, 101] could be extended and confirmed. 

It has to be noted that MHD studies into the transition to turbulence are still in progress and 

new flow regimes are emerging in which high velocity side wall jets detaching themselves 

from the duct wall at, 𝐻𝐻 = 200 are observed [102]. In Ref. [102] it was observed that for a 

duct wall conductance ratio of 𝑐 = 0.5, the mean velocity profile demonstrated thicker jets of 

lower magnitude as 𝑅𝑅 was initially kept high and then reduced.  

It can be deduced from this introduction that most studies into MHD flow instabilities have 

been performed on either fully insulating or fully conducting ducts. Little attention has been 

given to the duct conductance ratios set out in [42, 43] until recently. In fact there are only 

two known studies, which include a linear stability analysis of Hunt’s flow that demonstrates 

long streaks in the flow regime, beginning in the core of the flow and spreading out towards 

the side walls [103]. At 𝐻𝐻 > 50, TW vortices are observed again at 𝑅𝑅𝑐𝑟 = 121. The 

second and most recent study investigated a toroidal duct orientation [104], at 𝐻𝐻 = 260, 

observing at high 𝑅𝑅, i.e. Re ˃ 10000 strong turbulent fluctuation near the Hartmann layer.  

These two most recent studies aside, the present study is the very first investigation, through 

the use of DNS, into the transition to turbulence in Hunt’s flow at 

𝐻𝐻 = 100, 200, 300, 800, 2,000 & 4,000 with 100 ≤ 𝑅𝑅 ≤ 20,000. 

The main aim of this study is to investigate, by means of DNS, transition to turbulence in 

MHD duct flows. It is of particular interest to determine the thickness of the side wall jets in 

terms of the Reynolds number (Re), Hartmann number (Ha) and interaction parameter (N). It 

is interesting to see whether the thickness of the side wall jets differs from earlier results 

found in [42, 82]. For the results to be comparable, the following parameter ranges 100 < Ha 

< 1000 and 500 < Re < 10000 have to be investigated 

The transition from laminar to a turbulent MHD flow regime is expected to be marked by a 

sharp increase in the perturbations of energy and this phenomenon will be further studied. It 

would also be interesting to investigate what physical processes cause jets to detach from the 

side walls, as this is yet to be determined. In order for liquid metal blankets to be seriously 



35 
 

considered as the cooling system for fusion reactors, heat and mass transfer is of vital 

importance; therefore a turbulent flow within the duct is of great importance, as it determines 

the mixing of the fluid. It would therefore be advantageous to determine within the context of 

this study if electromagnetic forces supress turbulence in the core of the duct, thus 

laminarizing the flow within this region. If laminarization within the core is determined, this 

could affect the practical application of Hunt’s flow as a liquid metal blanket.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

2. Fluid dynamics.  

2.1. Governing Equations. 

Fluid dynamics is a branch of mechanics which studies how liquids and gases flow. 

Mathematically fluid flow is governed by partial differential equations (PDE) which usually 

can only be solved numerically using Finite Difference (FD), Finite Element (FE), Finite 

Volume (FV) and other methods. The FD is based upon a Taylor series expansion, thus 

relatively straight forward, but FE and FV are more mathematically involved. In this work, 

neither the FE nor FV were employed, so will therefore not be explained in greater content. 

This said, to aid in some of the derivations of hydrodynamic flow equations, FV will be 

employed from time to time.  

Fluid flow is completely determined by the distribution of its velocity u = (𝒙, 𝑡) , pressure 

𝑃(𝒙, 𝑡) and density 𝜌(𝒙, 𝑡), which all are functions of time 𝑡, and spatial co-ordinates 

𝒙 = (𝑥1, 𝑥2, 𝑥3) = (𝑥,𝑦, 𝑧). Equations governing fluid flow are built upon certain 

mathematical and physical principles which will be discussed in the following. 

 

Conservation of Mass 

Generically, when we refer to a system, we are referring to identifiable matter and as such, 

with the system being able change from one state to another. Therefore in order to 

mathematically describe the conservation of a certain quantity in the system, we use a fixed 

control volume V. Expressing this in differential form results in: 

 

 
�

𝜕𝜌
𝜕𝑡
𝑑𝑉 =

𝜕𝜌
𝜕𝑡

 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑉

 

 

(2.1) 

 

By considering a fluid with density 𝜌, flowing out of an arbitrary volume V, the total mass of 

the fluid is ∫𝜌𝑑𝑉. The mass flux flowing through the surface 𝑺, which bounds the volume V, 

per unit time t, is  ∮𝜌𝒖 ∙ 𝑑𝑺. Here 𝑑𝑺 denotes the vector whose magnitude is equal to the 
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surface element, pointing in the outward normal direction. In order for the mass of the fluid to 

be conserved, as matter cannot be created or destroyed, we obtain: 

 

 𝜕
𝜕𝑡
� 𝜌𝑑𝑉 = −
𝑉

�𝜌𝒖 ∙ 𝑑𝑺 

 
(2.2) 

Due to the fact that this must hold for every volume V, by applying Gauss’s theorem, 

i.e.∫𝑽 ∙ 𝑑𝑠 = ∫∇ ∙ 𝑽𝑑𝑉 , after a little manipulation, in addition to neglecting the integrand 

due to the boundaries being the same, we have the more familiar conservation of mass 

equation, in compact vector form:  

 

 𝜕𝜌
𝜕𝑡

+ 𝛁 ∙ (𝜌𝒖) =  0 

 
(2.3) 

At this point, it would be useful to demonstrate incompressibility, as this property is used 

throughout the present investigation. Therefore the term incompressible fluid describes the 

negligible changes in the density of the fluid, irrelevant whether it is steady or unsteady, thus 
𝜕𝜕
𝜕𝑡

= 0.  Therefore for the conservation of mass equation, we have: 

 

 
 �

𝜕𝜌
𝜕𝑡
𝑑𝑉 = 0

𝑉
 

 
(2.4) 

Then due the constancy of density, the velocity field is solenoidal, i.e. divergence free at all 

points. This leads to the more familiar form of the incompressible condition: 

 

 ∇ ∙ 𝒖 = 0 

 
(2.5) 
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Conservation of Momentum 

In order to fully understand the derivation of this most important law, a congenial initial 

starting point would be to use Newton’s Second Law, which states that force is equal to the 

change in momentum of a system. Therefore by considering an arbitrary mass of fluid, we 

can write its change of momentum as 

 

 
𝑭 =

𝑑
𝑑𝑡
� 𝜌𝒖𝑑𝑉
𝑉

 

 

(2.6) 

If we develop the right hand side of the equation we obtain: 

 

 𝑑
𝑑𝑡
� 𝜌𝒖𝑑𝑉 = � �𝜌

𝑑
𝑑𝑡
𝒖 + 𝒖

𝑑
𝑑𝑡
𝜌 + (𝜌𝒖)𝛁 ∙ 𝒖� 𝑑𝑉

𝑉𝑉
 

 
(2.7) 

 

As the time derivative can be decomposed into expressions which only involved partial 

derivatives by using the chain rule and adopting (2.3), it can be demonstrated that the second 

and third terms on the right hand side of (2.7) cancel each other out. The total time derivative 

of the first term in (2.7) gives.   

 

 𝑑
𝑑𝑡
� 𝜌𝒖𝑑𝑉 = � �𝜌

𝜕𝒖
𝜕𝑡 + 𝜌𝒖 ∙ ∇𝒖�𝑑𝑉

𝑉𝑉
 (2.8) 

           

Subsequently, F through this observation can be decomposed between two classes of forces f, 

these are body forces, denoted as 𝒇𝒃and surface forces, denoted as 𝒇𝒔 which are applied to the 

volume of fluid. 𝒇𝒃 act directly on the volumetric mass of the fluid, examples of such being 

electric, magnetic and gravitational forces. Conversely, 𝒇𝑠 act directly on the surface of the 

fluid element, producing shear and normal stresses; both forces are dependent on the velocity 

of the medium in the 𝑥, 𝑦, & 𝑧 direction. They are also the sum of hydrostatic pressure and 

viscous stresses: it is worth writing the total surface force on the mass of fluid as the surface 
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integral of stress tensor 𝝉𝒊𝒊, by implementing the stresses into matrix form, it will result in the 

stress tensor 𝜎𝑖𝑖. 

 

 
� 𝒇𝑠𝑑𝑉 = � 𝜏𝑖𝑖 ∙ 𝑑𝑺

𝜕𝜕𝜕
 

 

(2.9) 

By applying Gauss’s theorem, similar to the way we did in (2.2), it results in 

 

 

 𝜌 �
𝜕𝒖
𝜕𝑡

+ 𝒖 ∙ ∇𝒖� = −∇ ∙ 𝜏𝑖𝑖 + 𝒇𝒃 

 
(2.10) 

The tensor 𝜏𝑖𝑖 is required to be symmetric and as a resting fluid mass the tensor is also 

diagonal and isotropic, i.e. 𝜏𝑖𝑖 = −𝑝𝛿𝑖𝑖, where p and 𝛿𝑖𝑖 are the thermodynamic pressure and 

the unit tensor respectively, this however is not the case for a fluid mass in motion. We can 

however split 𝜏𝑖𝑖 into a multiple of 𝛿𝑖𝑖 and a remainder, i.e. 𝜏𝑖𝑖 = −𝑝𝛿𝑖𝑖 + 𝜏𝑖𝑖
∗, , where p is the 

normal means stress. 

It follows then that 𝜏𝑖𝑖∗  is a tensor with zero trace. In addition, if we assume that it is an 

isotropic, linear function of the velocity gradient tensor, then 𝜏𝑖𝑖∗  is constrained further and in 

general form can be written as:    

 

 
𝜏𝑖𝑖∗ = 𝛾 �∇𝒖 + �∇𝒖)𝑇 −

2
3

(∇ ∙ 𝒖)�𝛿𝑖𝑖� 

 
(2.11) 

Here 𝛾 is the dynamic viscosity. For incompressible flows, the last term on the right hand 

side of (2.11) is zero, thus leaving; 

 𝜏𝑖𝑖∗ = 𝛾(∇𝒖 + (∇𝒖)𝑇) 

 
(2.12) 

By defining 𝑣 = 𝛾/𝜌 as the kinematic viscosity, we can eventually obtain the momentum 

equation, better known as the Navier Stokes Equation: 
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 𝜌 �
𝜕𝒖
𝜕𝑡

+ 𝒖 ∙ ∇𝒖� = −∇𝑝 + 𝜌𝑣∇2𝒖 + 𝒇𝑏 

 
(2.13) 

 

2.2. Magnetohydrodynamic Governing Equations. 

Having shown the fundamental equations governing hydrodynamic flow, we now progress 

and investigate the effects magnetic fields have when imposed onto a conducting fluid. 

Imposing a magnetic field onto a conducting fluid flow alters the fluids dynamics. According 

to Faraday’s law, electrical currents appear in the fluid, which subsequently according to 

Ampere’s law, induces a magnetic field. The induced and applied magnetic field interact with 

the electrical currents producing a Lorentz force.  

 

Electromagnetism 

Electromagnetism fundamentally describes the electromagnetic force which occurs between 

electrically charged particles. It has been observed that a certain charge 𝑞, moving with 

velocity 𝒖 , within an electric field 𝑬 or magnetic field 𝑩 will be subjected to a Lorentz force. 

A Lorentz force concerns itself with the forces generated when electrical charges are in 

motion. The resulting force is proportional to the velocity of a moving charge within the 

fluid, which additionally points perpendicular to the velocity. This scenario demonstrates that 

the generated force depends on a cross product for investigation. A magnetic field 𝑩 

generated from the electrical current, in simplistic terms wraps itself around the current in a 

circular motion. The force as it circulates can be defined as the sum of Coulomb and Lorentz 

forces: 

 

 

 𝑭𝐿 = 𝑞(𝑬 + 𝒖 × 𝑩) 

 
(2.14) 
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Where q is the electrical charge u, E and B are the velocity, electric and magnetic fields 

respectively. By summing over an arbitrary volume of fluid, ∑𝑞, we can introduce the charge 

𝑱 and electrical current density 𝜌𝑒 : 

 

 �𝜌𝑒𝑑𝑉 = �𝑞 

�𝑱𝑑𝑉 = �𝑞𝑞 

 

(2.15) 

By incorporating the summations above into (2.14), we can write the density of the Lorentz 

force as: 

 

 𝑭𝐿 = 𝜌𝑒𝑬 + 𝑱 × 𝑩 

 
(2.16) 

However, we can neglect the first term on the right hand side because when operating in a 

liquid metal environment, which we are in the context of this research, we can make the 

assumption that 𝜌𝑒is neutral, therefore this results in (2.16) to be reduced to:  

 

 𝑭𝐿 = 𝑱 × 𝑩 

 
(2.17) 

We have to note that charge is a conserved property and having introduced the quantities 

above (2.15), we are able to take the divergence of (2.22), noting that 𝛁 ∙ 𝛁 × 𝑩 = 0, divide 

through by 𝜇0and finally substitute in (2.19). This allows us to show a similar equation for a 

charge conservation equation: 

 

 𝜕
𝜕𝑡
𝜌𝑒 + 𝛁 ∙ 𝑱 = 0 

 
(2.18) 

Before progressing, it would be sagacious to define Maxwell’s equations as a separate entity. 

The Lorentz force (2.16) alone is not sufficient to determine the motion of the flow. Knowing 
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that the electrical current depends on the magnetic field, which in turn depends on the 

velocity, we are going to employ Maxwell equations to a close system of equation. 

 

2.3. Maxwell’s Equations.  

Maxwell’s four equations describe how the electric 𝑬 and magnetic field 𝑩 interact for any 

given specified matter. Underneath each of Maxwell’s equation will be a more detailed 

explanation, describing each separate law and its inherent parts. The equations are: 

 
𝐺𝐻𝑞𝑠𝑠′𝑠 𝐿𝐻𝐿                                                                           𝛁 ∙ 𝑬 = 𝜖0−1𝜌𝑒, 

 
(2.19) 

 𝐺𝐻𝑞𝑠𝑠′𝑠 𝐿𝐻𝐿 𝑜𝑜 𝑀𝐻𝑘𝑀𝑅𝑡𝑀𝑠𝑚                                                       𝛁 ∙ 𝑩 = 0 , 
 (2.20) 

 𝐹𝐻𝐹𝐻𝑑𝐻𝑦′𝑠 𝐿𝐻𝐿                                                                   𝛁 × 𝑬 + 𝜕
𝜕𝑡
𝑩 = 0 , 

 
(2.21) 

 𝐴𝑚𝑝𝑅𝐹𝑅′𝑠  𝐿𝐻𝐿                                                   𝛁 × 𝑩 = 𝜇0 � 𝑱 + 𝜖0
𝜕
𝜕𝑡
𝑬�  , (2.22) 

 

where 𝜖0, 𝜇0 represent the permittivity and permeability of free space respectively. If we were 

to take the divergence of Ampere’s law (2.22) and employ Gauss’s law (2.19), we would 

return to (2.18). Separately, by taking the divergence of Faraday’s law (2.21), we eventually 

arrive, through simple manipulation, at Gauss’s law of magnetism (2,20). Due to the 

unknowns and constraints in Maxwell’s equations, to which there are eight and ten 

respectively, we need an additional relationship linking the current and electric field. This 

relationship is given by Ohm’s law. This law states that reason for isotropic stationary fluid, 

current density is proportional to electric fields, which can be expressed as:  

 

 𝑱 = 𝜎𝑬 (2.23) 

By also making the assumption that the motion of the moving medium is much slower than 

the speed of light, which was discussed earlier in this section, the approximation of Lorentz 

transformation reduces to → 𝑬 + 𝒖 × 𝑩 , which results in: 
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 𝑱 = 𝜎(𝑬 + 𝒖 × 𝑩) (2.24) 

 

By re-arranging (2.18) and substituting it back into the divergence of (2.24) we can substitute 

in (2.19) and re-arrange to give us: 

 

 𝜕
𝜕𝑡
𝜌𝑒 +

𝜎
𝜖0
𝜌𝑒 = −𝜎𝛁 ∙ (𝒖 × 𝑩) (2.25) 

Also previous considerations within this explanation can also be used to demonstrate that the 

right hand side of (2.22) can be neglected, as it only becomes important when the medium is 

moving at a velocity approaching the speed of light. Therefore for much lower velocities we 

can approximate (2.22) as: 

 

 𝛁 × 𝑩 = 𝜇0𝑱 

 
(2.26) 

By taking the divergence of (2.26) results in the reduced and modified charge conservation 

equation: 

 

 𝛁 ∙ 𝑱 = 0 

 
(2.27) 

 

Induction Equation 

The induction equation is a linear partial differential equation for B, describing the evolution 

of the magnetic field with respects to time, in the domain occupied by the conducting 

medium. For 𝑅𝑅𝑚 ≪ 1, the induction field will be dominated by magnetic diffusion. With the 

help of Maxwell’s equations and Ohm’s law, the induction equation can be simply derived.    

By taking the curl of (2.24) and re-arranging (2.21) we can now substitute (2.21) into (2.24). 

We can now take the curl of (2.26) and divide by 𝜇0. Taking this result we substitute this 

back into our new (2.24). By noting that 𝛁 × 𝛁 × 𝑩 = −𝛁𝟐𝑩 we eventually arrive after 

dividing through by 𝜎 and a little manipulation at: 
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 𝜕
𝜕𝑡
𝑩 = 𝛁 × (𝒖 × 𝑩) + (𝜎𝜇)−1𝛁𝟐𝑩 

 
(2.28) 

By using the fact that both 𝒖 and 𝑩 are solenoidal, we can finally write the more familiar 

form of the induction equation with incompressibility condition as: 

 

 𝜕
𝜕𝑡
𝑩 + (𝒖 ∙ ∇)𝑩 =

1
𝜇𝜎

∇2𝑩 + (𝑩 ∙ ∇)𝒖 (2.29) 

 

Dimensionless Form 

Dimensionless numbers are found in various fields including mathematics, engineering and 

physics. They define expressions which are unit-less. When dimensionless numbers are used 

within physics, they aid in the simplification of a problem which involves multiple physical 

characteristics.  

 
𝒖 = 𝑈𝒖                                    (a) 

𝛁 = 𝐿−1𝛁                                 (b) 

𝑡 = 𝐿𝑈−1𝑡                                (c) 

𝒇 = 𝑈2𝐿−1𝒇                             (d) 

𝑩 = 𝐵0𝑩                                   (e) 

𝑱 = 𝜎𝑈𝐵0 𝑱                               (f) 

𝑝 = 𝜎𝐿𝐵02𝑈𝑝                            (g) 

 

Note that in this thesis the dimensionless quantities are denoted with the same letters as the 
dimensional ones. 
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Coupling Maxwell’s and Navier-Stokes Equations 

Now we have all the equations that are needed to describe an incompressible conducting fluid 

in a magnetic field. The governing equations which describe this are (2.5), (2.13) and (2.29). 

Additionally, (2.20) is also required as the induction equation (2.29), only guarantees the 

divergence free characteristic of B, if it is initially solenoidal; therefore giving; 

 

 𝜕𝒖
𝜕𝑡

+ 𝐮 ∙ ∇𝐮 = −𝜌−1∇𝑝 + 𝑣∇2𝐮 + 𝜌−1𝐉 × 𝐁 + 𝜌−1𝐟  

 

 𝜕𝑩
𝜕𝑡

+ 𝐮 ∙ ∇𝐁 = 𝐁 ∙ ∇𝐮 +
1
𝜇𝜎

∇2𝐁  

      

 ∇ ∙ 𝒖 = 0  
  

  

 ∇ ∙ 𝑩 = 0 

 

 
 

If we non-dimensionalize the above equations via the parameters set out in the dimensionless 

form we finally arrive at; 

 

 𝜕𝒖
𝜕𝑡

+ 𝐮 ∙ ∇𝐮 = −∇𝑝 + 𝑅𝑅−1∇2𝐮+ 𝑁𝐉 × 𝐁 (2.30) 

  

 𝜕𝑩
𝜕𝑡

+ 𝐮 ∙ ∇𝐁 = B ∙ ∇𝐮 + 𝑅𝑚−1∇2𝐁 (2.31) 

 
 
 
 
 

∇ ∙ 𝒖 = 0 (2.32) 
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 ∇ ∙ 𝑩 = 0 (2.33) 

  

The dimensionless parameters in the equations above are, Reynolds Number 𝑅𝑅, the 

Magnetic Reynolds Number 𝑅𝑚 and the interaction parameter N. Below are definitions of  

these three parameters including, the Hartmann number Ha. 

 

Reynolds Number 

The Reynolds number is defined as 

 𝑅𝑅 =
𝑈𝐿
𝑣

, 

 
(2.34) 

where 𝑈, 𝐿 and v  represent the fluid velocity, typical length scale and kinematic viscosity 

respectively. It is a dimensionless parameter which generally characterizes the fluid flow. It 

can be understood as the ratio of inertial forces to viscous forces. Reynolds number largely 

determines the character of fluid flow. 

Laminar flow occurs at a relatively low Reynolds number, 𝑅𝑅 ≪ 1000, where viscous forces 

dominate the fluid dynamics, leading to a smooth and steady fluid flow regime. 

Turbulent flow occurs at a relatively high Reynolds number, 𝑅𝑅 ≫ 1000, where fluid flow is 

dominated by inertial forces. In turbulent flows the transfer of energy from larger scale 

vortices down to smaller scale vortices occurs. In many practical applications Re values can 

reach in excess of 104 − 106, but within the scope of this investigation we will not be 

considering fluid flow regimes of this Re magnitude. In this study we consider fluid flow with 

Re between 104 − 105.   
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Magnetic Reynolds Number 

Magnetic Reynolds number characterizes the strength of magnetic advection relative to that 

of magnetic diffusion within (2.29), thus being defined as: 

                                                 𝑅𝑅𝑚 = 𝑈𝐿
(𝜇𝜇)−1

                                                (2.35)                     

The main difference between 𝑅𝑅 𝐻𝑀𝑑 𝑅𝑅𝑚 is that 𝑅𝑅 relates to the fluid velocity itself, while 

𝑅𝑅𝑚 relates to the magnetic field induced within a MHD fluid flow. When 𝑅𝑅𝑚 ≪ 1,  the 

induced magnetic field is usually unimportant and the field inside the fluid is the same as that 

generated by the external magnets. When 𝑅𝑅𝑚 ≫ 1, inductive effects dominate and the 

magnetic field lines are transported along with the flow, almost frozen within the fluid,  

 

Hartmann Number 

The Hartmann number 𝐻𝐻 is a dimensionless parameter associated with the ratio of 

electromagnetic forces to viscous forces:  

 

𝐻𝐻2 =
𝐸𝐸𝑅𝑐𝑡𝐹𝑜𝑚𝐻𝑘𝑀𝑅𝑡𝑀𝑐 𝑜𝑜𝐹𝑐𝑅𝑠

𝑉𝑀𝑠𝑐𝑜𝑞𝑠 𝑜𝑜𝐹𝑐𝑅𝑠
≈
𝑱 × 𝑩
𝑣𝛁𝟐𝒖

 

 

This can also be expressed in a more familiar form  

 
𝐻𝐻 = 𝑩𝐿�

𝜎
𝜌𝑣

 = √𝑁 𝑅𝑅, (2.36) 

 

 

where 𝜎 represents electrical conductivity 

At high values of 𝐻𝐻, the electromagnetic forces dominate the flow. In thermo nuclear fusion 

liquid metal blankets, 𝐻𝐻 can reach levels in excess of 𝐻𝐻 = 104. In subsequent chapters, we 

will demonstrate the effects that different 𝐻𝐻 parameters have on a flow within a duct. 
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Interaction Parameter   

The magnetic interaction parameter, also referred to as Stuarts number, is defined as the ratio 

of the electromagnetic forces to inertial forces. 

 

 𝑁 =
𝐸𝐸𝑅𝑐𝐹𝑜𝑚𝐻𝑘𝑀𝑅𝑡𝑀𝑐 𝑜𝑜𝐹𝑐𝑅𝑠

𝐼𝑀𝑅𝐹𝑡𝑀𝐻𝐸 𝐹𝑜𝐹𝑐𝑅𝑠
 ≈  

𝑱 × 𝑩/𝜌
(𝒖 ∙ ∇)𝐮

  

 

=
𝐻𝐻2

𝑅𝑅
≈
𝜎𝐿𝑩𝟏

𝟐

𝜌𝜇
 

(2.37) 

 

When 𝑁 ≪ 1, the magnetic field has a weak effect on the flow due to the non-linear inertial 

force dominating over the Lorentz force. Conversely, when 𝑁 ≫ 1, the Lorentz force is much 

greater in magnitude than the inertial forces, making the effect of the magnetic field much 

more significant on the behaviour of the flow. 

 

Summary 

We have now derived all the equations and parameters necessary to describe an 

incompressible, viscous fluid subjected to a magnetic field. The equations which govern 

MHD are a combination of (2.30)-(2.33). As is apparent from this section, there are mainly 

only three non-dimensional parameters which characterises MHD flow 𝐻𝐻,𝑁 𝐻𝑀𝑑 𝑅𝑅𝑚. Re 

characterizes the ratio of the non-linear inertial and viscous forces. Therefore, if this 

parameter is small, the fluctuations within the fluid are damped by the viscous forces, 

resulting in a laminar flow regime. Conversely the opposite occurs if Re is high, as large 

range spatial and temporal scales develop, this is known as turbulence and the transition to 

which is the main topic this thesis. 

 

2.4. Quasi static approximation. 

In this section we derive what is known as the quasi static approximation, which is commonly 

applicable for liquid metal flows and will be used in this study. In previous subsections we 
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demonstrated that the induction equation contains only one dimensionless quantity, the 

magnetic Reynolds number 𝑅𝑅𝑚. When 𝑅𝑅𝑚 is small, as it is in most cases for industrial 

applications, the equations which govern the flow can be simplified. Therefore, in order for 

us to enable this simplification we must first separate the externally applied magnetic field B, 

from the induced magnetic field b, the induction equation is shown below: 

 

 𝜕
𝜕𝑡
𝒃 = −(𝒖 ∙ 𝛁)𝒃 + �(𝑩 + 𝒃) ∙ 𝛁�𝒖 +

1
𝜇𝜎

∇2𝒃 

 
(2.38) 

When dealing with small 𝑅𝑅𝑚, we can justify the neglecting the magnetic field with respect 

to the diffusive terms via the following order of magnitude estimates: 

 

 
(𝒖 ∙ 𝛁)𝒃~

𝑈𝑈
𝐿

,   (𝒃 ∙ 𝛁)𝒖~
𝑈𝑈
𝐿

,     
1
𝜇𝜎

∇2𝒃~
(𝜇𝜎)−1𝑈

𝐿2
  (2.39) 

 (𝒖 ∙ ∇)𝒃
(𝜇𝜎)−1𝛁𝟐𝒃

=
(𝒃 ∙ ∇)𝒖

(𝜇𝜎)−1𝛁𝟐𝒃
~𝑅𝑚 ≪ 1     

 
(2.40) 

This enables us to reduce the induction equation to:  

 

 𝜕𝒃
𝜕𝑡

= (𝑩 ∙ 𝛁)𝒖 +
1
𝜇𝜎

𝛁𝟐𝒃 (2.41) 

 

Assuming that the magnetic fields very quickly adapt to the velocity field, we can neglect the 

time derivative term and thus obtain Poisson equation: 

 

 1
𝜇𝜎

𝛁𝟐𝒃 + (𝑩 ∙ 𝛁)𝒖 = 0 

 
(2.42) 

Alternatively, we can now employ Ohm’s law to formulate the quasi static approximations. 

First we separate the inherent electromagnetic quantities E, J and B into the mean part 𝑬𝟏, 𝑱𝟏 
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and B, and perturbations 𝑬′, 𝑱′ and b respectively. The mean and perturbation quantities are 

governed by; 

 

 
 

𝛁 × 𝑬𝟏 = 𝟏          𝑱𝟏 = 𝜎𝑬0 

𝛁 × 𝑬′ = −
𝜕𝒃
𝜕𝑡

               𝑱′ = 𝜎(𝑬′ + 𝒖 × 𝑩) 

 

(2.43) 

If we neglect the electric field perturbations due to Faraday’s equation, 𝐸′~𝑈𝑈, and thus 

Ohm’s law becomes: 

 

 𝑱 = 𝑱𝟏 + 𝑱′ = 𝜎(𝑬0 + 𝒖 × 𝑩) 

 
(2.44) 

Since 𝑬𝟏 is irrotational, (2.44) can be written as the gradient of the electric potential 𝜙: 

 

 𝑱 = 𝜎(−𝛁𝜙 + 𝒖 × 𝑩) 

 
(2.45) 

At this point we have all the necessary information to evaluate 𝑭 = 𝒊 × 𝑩 within the 

momentum balance, since (2.27), providing the Poisson equation, linking 𝜙 to 𝒖 𝐻𝑀𝑑 𝑩. By 

taking the divergence of (2.45), and using (2.27) we obtain: 

 

 𝛁2𝜙 = 𝛁 ∙ (𝒖 × 𝑩) 

 (2.46) 

We can now write the full system of non-dimensional quasi static MHD equations: 

 

 𝛁 ∙ 𝒖 = 0 

 (2.47) 

 𝜕
𝜕𝑡
𝒖 + (𝒖 ∙ 𝛁)𝒖 = −𝛁𝑝 +

1
𝑅𝑅

𝛁2𝒖 + 𝑁(−𝛁𝜙 + 𝒖 × 𝑩) × 𝑩 

 
(2.48) 
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 𝛁2𝜙 = 𝛁 ∙ (𝒖 × 𝑩) 

 (2.49) 

 

If quasi-static approximation is applied to a finite domain, the above equation will be 

beneficial as it only requires one Poisson equation to be solved instead of three in other quasi 

static formulations. Additionally the quasi static approximation assumes that the induction is 

dominated by the diffusion. By assuming this, it allows the magnetic field to behave as it 

would in a motionless fluid, thus the fluctuations in B are negligible.  Moreover, as the 

diffusion of the magnetic field is small with respect to the time scale of the fluid motion, the 

magnetic field adapts itself to the configuration of the fluid. We can therefore assume that 

concerning the time scale of the fluids motion, that the fluctuations of the magnetic field are 

time dependent. The most advantageous issue concerning the quasi-static approximation is 

that it relieves the use of the induction equation. 

 

2.5. Boundary conditions.  

The Boundary conditions (BC) ensure that the mathematical problems at hand are well-posed 

and have uniquely defined solutions. The BC which were integrated into the Fortran code 

used within the context of this work were Dirichlet boundary conditions along the conducting 

walls 𝜙𝑤𝑤𝑣𝑣 = 𝑐𝑜𝑀𝑠𝑡, which specify the values a solution needs along the boundary of the 

domain. In addition to this, Neumann boundary conditions were also employed along the 

insulating walls  𝜕𝜕
𝜕𝜕

= 0, this particular BC specifies the value of the derivative a solution is 

to take on the boundary of the domain,  defining the electric potential at the fluid/wall 

interface. In effect, allowing the quasi static equation derived in the previous section to be 

fully determined. As this investigation dealt with the effects of fluid flow within a stationary 

duct, no derivations will proceed for boundary walls which are transient. Therefore at a 

stationary wall with an outward normal unit vector n, we state that BC are satisfied by the no 

slip conditions: 

 

 𝒖 = 0     𝐻𝑡 𝛤, 
 (2.50) 
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where Γ is a solid boundary. Due to the fact that we are dealing with an electrically 

conducting fluid passing through an external magnetic field, electromagnetic boundary 

conditions are dominated by current and electrical conductivity of the duct wall material 𝜎𝑤.  

 

Insulating walls 

If the duct walls are insulating (𝜎𝑤 = 0), no electrical current can penetrate them. Therefore, 

the normal component of the current density in the fluid at such walls disappears: 

 
     𝑱 ∙ 𝒏 = 𝐽𝜕 = 0,      𝐻𝑡 𝛤   (2.51) 

 

which can be rendered in a condition on 𝜙 in expressing Ohm’s law at the solid boundary 

walls, taking into account (2.50); 

 
     𝑱𝒏 = −σ 𝜕𝜕

𝜕𝜕
= 0 → 𝜕𝜕

𝜕𝜕
= 0   at  𝛤. (2.52) 

 

Perfectly conducting walls 

The electrical potential of a perfectly conducting wall 𝜎𝑤 = ∞ has to be uniform in order to 

keep the electrical current to a conditioned value. The potential at the wall can be set to zero: 

 

 
𝜙 = 0     𝐻𝑡 𝛤. (2.53) 

Conducting Walls 

If the walls have a finite conductivity, the electrical current flowing into the duct wall has to 

be coupled to that in the outer bounded domain. This is determined by the continuity 

condition at Γ. Allowing also for thin conducting walls, the thickness of which we will denote 

as 𝑡𝑤 , a simpler boundary condition can be drawn in a quasi-two-dimensional way. In order 



53 
 

to fully comprehend this discharge, we can draw upon the charge conservation equation in 

the form: 

 
𝜕𝒊𝑛
𝜕𝜕

= −∇𝜏 ∙ 𝒊𝝉, (2.54) 

 

where 𝜏 represents the tangential co-ordinate to the thin duct wall, giving 𝒊 = 𝒊𝝉 + 𝑗𝜕𝒏 or 

∇= ∇𝜏 + 𝒏 𝜕
𝜕𝜕

. By applying Ohm’s Law and taking into account that the electric potential 

does vary across the thin wall of the domain and integrating, we have the relationship: 

 

   −𝑱 ∙ 𝒏 = 𝜎 𝜕𝜕
𝜕𝜕

= 𝛁𝜏 ∙ (𝜎𝑤𝑡𝑤𝛁𝜏𝜙𝑤)      on   𝛤, (2.55) 

 

where 𝒏,𝜙 and 𝑡𝑤 represent outward normal to the wall, electric/ fluid interface and wall 

thickness respectively. If there is no contact resistance we can write: 

 

      −𝜕𝜕
𝜕𝜕

= 𝛁𝜏 ∙ (𝑐𝛁𝜏𝜙)            on Γ , (2.56) 

 

where 𝑐 is the wall conductance ration and is expressed as: 

 

 𝑐 = 𝜇𝑤𝑡𝑤
𝜇𝐿

. (2.57) 

 

Kinetic energy 

The density for kinetic energy of a flow enclosed within a domain V without a magnetic field 

can be defined as; 
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 𝑅 =
1
𝑉
�
𝑞𝑖𝑞𝑖

2
𝑑𝑉 

(2.58) 

 

The kinetic energy development over time can be calculated by multiplying (2.58) by 𝒖𝒊, but 

in order to achieve this it is advantageous to convert (2.58) into tensor notation: 

𝜌
𝜕
𝜕𝑡
𝑞𝑖𝑞𝑖

2
+ 𝜌𝑞𝑖𝑞𝑖∇𝑖𝑞𝑖 = 𝑞𝑖𝜕𝑀𝜌 + 𝜇𝑞𝑖𝜕𝑖𝜕𝑖𝑞𝑖 + 𝜌𝑞𝑖𝑘𝑖 

 

By integrating over the volume V and applying Gauss Law, we can remove the 1st, 2nd and 3rd 

term on the right as they equate to zero due to stationary boundaries, which leaves: 

 

𝜌
𝜕
𝜕𝑡
�
𝑞𝑖𝑞𝑖

2
𝜕𝑉
𝑉

= −2𝜇�𝑆𝑖𝑖𝑆𝑖𝑖
𝜕𝑉
𝑉

+ 𝜌�𝑞𝑖𝑘𝑖
𝜕𝑉
𝑉

 

Finally, dividing through by 𝜌 gives the kinetic energy in tensor notation omitting any 

magnetic field 

 

𝜕
𝜕𝑡
�
𝑞𝑖𝑞𝑖

2
= −2𝜔�𝑆𝑖𝑖𝑆𝑖𝑖

𝜕𝑉
𝑉

+ �𝑞𝑖𝑘𝑖
𝜕𝑉
𝑉

 

 

Boundary Layers 

We will now discuss the effect an externally applied magnetic field has on the boundary 

layers in a laminar channel flow. Once this particular case has been studied, we progress 

further to a flow where an additional pair of walls are added, thus changing the channel to a 

duct. The reason for explaining the two different flow regimes in this manner is to provide a 

more comprehensive, rounded view in which to compare the magnetic effects in different 

media. 
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We begin by considering a channel with walls 𝑧 = ±1, which are perpendicular to the 

externally applied magnetic field, here defined as 𝑩 = 𝑈𝟏𝑧 and taking the flow direction as x, 

we can omit all derivatives with respect to x, except for the pressure gradient. Moreover, we 

cannot leave aside the span-wise induced electric field as the flow is homogeneous in the y-

direction, therefore this gives u = 𝑞(𝑧)𝟏𝑥, where 𝑞 and 𝜙 submit to: 

 
−
𝜕𝑝
𝜕𝑥

+ 𝜌𝑣
𝜕2𝑞
𝜕𝑧2

+ 𝜎𝑈 �
𝜕𝜙
𝜕𝑦

− 𝑈𝑞� = 0 
(2.59) 

 𝜕2𝜙
𝜕𝑧2

= 0 
(2.60) 

At 𝑧 = ±1 the boundary condition for the velocity of the fluid is 𝑞 = 0, we can also further 

state that the electric potential is continuous along the fluid-wall interface, which leads us to: 

 
𝑞 =

1
𝜌𝑣

�−
𝜕𝑝
𝜕𝑥

𝐻𝐻−2 + 𝜎𝑈𝐴��1 −
cosh(𝐻𝐻𝑧)
cosh(𝐻𝐻) � 

(2.61) 

 

 𝜙 = 𝐴𝑧 + 𝐵 (2.62) 

Within (2.62) A and B are constants of integration. The constant A is determined by the total 

current which is in the wall-fluid domain which integrates to zero. B on the other hand is 

arbitrary, which all leads to a velocity profile of: 

 
𝑞 =

1
𝐻𝐻

1 + 𝑐
𝑐𝐻𝐻 + tanh(𝐻𝐻)

1
𝜌𝑣

𝜕𝑝
𝜕𝑥

�1 −
cosh(𝐻𝐻𝑧)
cosh(𝐻𝐻) � 

(2.63) 

As Ha is increased, the thin exponential boundary layers, known as Hartmann Layers, 

decrease in thickness and scaled as 𝐻𝐻−1. The scaling of the Hartmann Number with the 

fluids velocity can be understood in the following manner. With a channel of conducting 

walls, i.e. 𝜙 = 0, the magnitude of the Lorentz force density is 𝜎𝑞𝑈2. Within a high 

Hartmann regime, the force dominates the core of the fluid flow, the core velocity therefore 
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will scale to 𝑞 ∝ −𝜕𝑥𝑝(𝜎𝑈2)−1   ∝ −𝜕𝑥𝑝𝐻𝐻−2
1
𝜕𝑣

. If however the channel walls are 

electrically insulating. A span-wise electric potential gradient is induced, counteracting the 

effects of 𝒖 × 𝑩. The Lorentz force retards the flow within the core and accelerates the fluid 

within the boundary layers, thus the integral between 𝑧 = 1 and 𝑧 = −1 is therefore zero. In 

order to determine the scaling we are required to integrate the remaining terms in the 

momentum balance, again between 𝑧 = 1 and 𝑧 = −1 : 

 
�

𝜕𝑝
𝑑𝑥

𝑑𝑧 = 𝜌𝑣�
𝜕2𝑞
𝜕𝑧2

𝑑𝑧 = 𝜌𝑣(
𝜕𝑞
𝜕𝑧
� 𝑧=1 −

𝜕𝑞
𝜕𝑧
� 𝑧=−1

1

−1
)   

1

−1
 

(2.64) 

It is evident from (2.64) that the pressure gradient compensates for the viscous losses at the 

boundaries. This is due to the fact of large viscous losses, a consequence of the steep profile 

of the boundary layers, making the magnitude of the velocity an order Ha smaller than in a 

Poiseuille flow for the same pressure gradient. 

The geometry which depicts the present study involves a duct and therefore requires an 

additional pair of walls, compared to channel flow. The additional pair of boundary walls are 

positioned at 𝑦 = ±1 and are known as side walls. Within a duct where walls are all 

insulating, the interaction between the fluid flow and the magnetic field drives a current in the 

z – direction, retarding the flow. A solution to this is given in [105]. In this particular regime 

the current lines bend at the walls and close through the Hartmann layer, due to the walls 

insulating properties. At the side layers, the currents are almost parallel to the magnetic field, 

making the Lorenz force in this region weaker. The side layers being of thickness 𝑂 �𝐻𝐻−
1
2�, 

similar to the channel regime with insulating walls. The magnitude of velocity is of order Ha 

smaller than in a hydrodynamic case, driven by the same pressure gradient. The ratio between 

the amplitudes of velocity in the side layers and that in the core scales to 𝑂(𝐻𝐻0), with the 

core velocity itself scaling as 1
𝐻𝑤2

𝜕𝑥𝑝. 

The third and final is a duct with perfectly conducting Hartmann walls and perfectly 

insulating side walls. By making a direct comparison to the fully insulating regime, the 

strength of the electrical currents can be large, forming closed loops by entering the 

Hartmann layers. At the side layers, the current flows parallel to the externally applied 

magnetic field, thus the Lorentz force is greatly reduced within this region resulting in a 
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much high fluids velocity compared to that within the core. The comparative amplitude 

between the core flow and the higher velocity fluid at the side walls scales to 𝑂(𝐻𝐻). As 

mentioned previously, as the thickness of the side layers scales to 𝑂(𝐻𝐻
1
2) and as such we 

observe that at high Ha values the mass flow rate carried within the core is small in respect to 

the mass flow rate in the side layers. It has also been witnessed within this study that there is 

a reversed fluid flow close to the inner velocity jet region at 𝐻𝐻 > 100. The reversed fluid 

flow has been deemed as a non-trivial phenomenon within this investigation and the 

influential effects that this occurrence has on the transition to turbulence will be discussed in 

detail with in Chapter 4. 
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3 Direct Numerical Simulation.  

3.1. Numerical Simulation.  

The fluid flow with or without magnetic field is governed by a system of Partial Differential 

Equations (PDE). Analytical solutions to fluid flow can only be obtained for the most basic of 

laminar flows. For turbulent flows, as in most cases, analytical solutions are inadequate. A 

complete description of a turbulent regime, where flow variables are known as a function of 

space and time, can only be obtained through computer modelling of the Navier-Stokes 

equations.  

Depending on the purpose of the investigation, two widely known simulation methods can be 

employed for general fluid flow, Large Eddy Simulations (LES) and Reynolds Averaged 

Navier-Stokes (RANS). Both methods can allow fluid flow investigations at very high Re, 

but in order to achieve this, numerical resolution, in most cases needs to be decreased as a 

consequence, thus resulting in approximations to the classic flow. In this study we are 

attempting to look deeper into an MHD flow regimes to determine the physical process which 

occur as the flow transitions from laminar to turbulent. Direct Numerical Simulation (DNS), 

in general gives a greater degree of numerical resolution, albeit simulation times are greatly 

increased as flow parameters are increased. However, due to the specific physical processes 

under investigation, DNS was exclusively employed in this present study. 

 

3.2. Finite difference methods. 

Finite difference methods (FDM) are the dominant approach in numerical modelling. In order 

to approximate the derivatives of 𝑞, the 𝑥-axis is divided into intervals of  ℎ of constant or 

variable length. The division (grid) points along the x-axis will be denoted as 𝑥𝑖−1 

(preceding), 𝑥𝑖 (central), and 𝑥𝑖+1 (subsequent). If 𝑞 (𝑥) is smooth, it is possible to quantify 

the error of approximation of 𝑞′(𝑥)  through the use of Taylor’s theorem  

 

 
𝑜(𝑥) = 𝑜(𝐻) + 𝑜′(𝑥 − 𝐻) +

𝑜′′(𝐻)
2!

(𝑥 − 𝐻)2 + ⋯+ 𝑜𝜕
(𝑥0)
𝑀!

ℎ𝜕 + 𝑅𝜕(𝑥) (3.1) 
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We can employ the Taylor’s theorem to estimate the finite difference approximation for the 

first derivative of a forward and backward scheme respectively: 

 

 
𝑜′(𝑥𝑖) ≈

𝑜(𝑥𝑖) − 𝑜(𝑥𝑖−1)
ℎ

+ 𝑂(ℎ) 

 
(3.2) 

 
𝑜′(𝑥𝑖) ≈

𝑜(𝑥𝑖+1) − 𝑜(𝑥𝑖)
ℎ

+ 𝑂(ℎ) 

 
(3.3) 

 More accurate is the central difference approximation whose error according to Taylor series 

expansion is proportional to ℎ2: 

 

 
𝑜′(𝑥𝑖) ≈

𝑜(𝑥𝑖+1) − 𝑜(𝑥𝑖−1)
2ℎ

+ 𝑂(ℎ2) (3.4) 

 

By divide through by ℎ2 and making 𝑜′′(𝑥𝑖) the subject in Eq. 3.1, we arrive at the 

approximation of the second derivative: 

 

 
𝑜′′(𝑥𝑖) ≈

𝑜(𝑥𝑖+1) − 2𝑜(𝑥𝑖) + 𝑜(𝑥𝑖−1)
ℎ2

 

 
(3.5) 

Assuming that f is now a function of two variables 𝑥 & 𝑡, we divide the domain into a 

uniform grid with sides 𝛿𝑥 = ℎ and 𝛿𝑡 = 𝑘. The co-ordinates 𝑥, 𝑡 of the point 𝑃 are 𝑥 =

𝑀ℎ and 𝑡 = 𝑗𝑘, where 𝑀 & 𝑗 are integers. Then the value of 𝑜 at 𝑃 are 𝑜(𝑀ℎ, 𝑗𝑘) = 𝑜𝑖,𝑖. By using 

the forward, backward and central difference approximations respectively, we arrive at the 

first derivative with respects to 𝑥: 

 

 𝑜𝑖+1,𝑖 − 𝑜𝑖,𝑖
ℎ

+ 𝑂(ℎ) 

 
(3.6) 
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 𝑜𝑖,𝑖 − 𝑜𝑖−1,𝑖

ℎ
+ 𝑂(ℎ) 

 
(3.7) 

 𝑜𝑖+1,𝑖 − 𝑜𝑖−1,𝑖

2ℎ
+ 𝑂(ℎ2) 

 
(3.8) 

 

In addition, we can derive the first derivatives with respects to 𝑡 of the forward, backward 

and central difference respectively: 

 

 

 
�
𝜕𝑜
𝜕𝑡
� |𝑀, 𝑗 =

𝑜𝑖,𝑖+1 − 𝑜𝑖,𝑖
𝑘

+ 𝑂(𝑘) 

 
(3.9) 

 
=
𝑜𝑖,𝑖 − 𝑜𝑖,𝑖−1

𝑘
+ 𝑂(𝑘) 

 
(3.10) 

 
       =

𝑜𝑖,𝑖+1 − 𝑜𝑖,𝑖−1
2𝑘

+ 𝑂(𝑘2) 

 
(3.11) 

 

The higher, second order derivatives are thus: 

 

 

 
�
𝜕2𝑜
𝜕𝑥2

� |𝑀, 𝑗 =
𝑜𝑖+1,𝑖 − 2𝑜𝑖,𝑖 + 𝑜𝑖−1,𝑖

ℎ2
+ 𝑂(ℎ2) 

 
(3.12) 

 
�
𝜕2𝑜
𝜕𝑡2

� |𝑀, 𝑗 =
𝑜𝑖,𝑖+1 − 2𝑜𝑖,𝑖 + 𝑜𝑖,𝑖−1

𝑘2
+ 𝑂(𝑘2) (3.13) 
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FIGURE 7. A arbitrary grid in the (𝑥, 𝑡) plane.  

 

3.3. Explicit and Implicit time discretization schemes. 

The purpose of time discretization schemes is to solve the unsteady equations by marching in 

time. There is a maximum allowable time step (𝑀𝑚𝑤𝑥) within a numerical scheme beyond 

which this the scheme becomes unstable and diverges. Therefore if 𝑀 > 𝑀𝑚𝑤𝑥, the errors in 

the numerical scheme exponentially grow, causing divergence. The value of 𝑀𝑚𝑤𝑥 will 

obviously depend upon the particular numerical discretization scheme used and these 

particular schemes are commonly referred to as either implicit or explicit schemes. The 

explicit scheme involves an updating procedure which is dependent on the previous time step 

explicitly. The implicit scheme however does not require the time advancement to be 

explicitly defined from the previous time step. This advantage makes the implicit scheme 

more attractive when dealing with fluid motion, allowing improved stability properties. An 

explicit method is easy to implement for parallelisation purposes and has a lower time step 

cost, therefore making it a good starting point for the development of numerical schemes, but 

conversely an explicit method requires time steps to be small in order to achieve a greater 

degree of stability, this is especially when the mesh size of the domain is varying strongly. 

An implicit method on the other hand is much more stable over a wider range of 𝑀 and 

constitutes excellent iterative solvers for a steady-state problem. It is for this reason why the 

implicit method has mainly been employed in this work. However, implicit methods are 

t 

x 

i,j+1 

i-1,j i+1,j 

I,j-1 

P(ih,jk) 

k 

h 
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difficult to implement when dealing with parallelization and quite often incur high time step 

costs. In order for the implicit method to reach a steady state, if must first go through a 

convergence period of the iterative solver and it is here where the accuracy and stability of 

the implicit method wane. This is especially so at high 𝑀 as the convergence of the linear 

solvers deteriorates as the time step increases, mainly due to the unsteady viscous terms 

within the Navier-Stokes equations. 

There are various finite difference methods which are used to approximate time derivatives of 

ordinary and partial differential equations including, the Crank Nicolson, Adam-Moulton, 

Runge-Kutta and Adam-Bashforth methods. All methods vary in approaches and all differ in 

advantages and disadvantages to the problem. Crank-Nicolson, for example, adopts an 

implicit method, thus making it robust over a larger number of time steps, but a tri-diagonal 

matrix is required to solved at every time step, which incurring large computational costs. 

The method which is used to approximate the time derivatives concerning this work has 

employed the fully explicit Adam-Bashforth / backwards multi step method of second order; 

 

 1
𝑀
�𝐻𝑖𝑞𝜕+1−𝑖
𝑘

𝑖=0

= �𝑈𝑖𝐻(𝑞𝜕−𝑖)
𝑘−1

𝑖=0

 

 

(3.14) 

 

The terms 𝐻𝑖 and 𝑈𝑖 can be determined by setting the first term in the truncation error to zero, 

calculated via a Taylor expansion around (𝑀 + 1)𝑀 and their values are for second order;  

 

   

𝐻0 =
2 + 𝐹𝜕
1 + 𝐹𝜕

,    𝐻1 = −1 −
1
𝐹𝜕

,    𝐻2 =
1

1 + 𝐹𝜕
 

 
 

𝑈0 = 1 +
1
𝐹𝜕

,    𝑈1 = −
1
𝐹𝜕

, 

(3.15) 

where 𝐹𝜕 = (𝑡𝜕 − 𝑡𝜕−1)/𝑀. For a full derivation the author guides the reader to [106]. By 

implementing this particular numerical approach, it gives a good degree of the 
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approximations, as they are based on historical points within the domain, thus re-solving the 

derivatives as the time progresses. 

 

3.4. Hunt’s Flow Finite Difference Solver.  

The Hunt’s Flow DNS solver used within this work was developed by Dr Krasnov [107, 

108]. A flow of a conducting fluid with the velocity 𝒖 = (𝒙, 𝑡) passing through a fixed 

external magnetic field 𝑩𝟏, induces the electromotive force (emf) 𝒖 × 𝑩𝟏 and drives drives 

the electrical current 𝑱, which is governed by Ohm’s law. 

The interaction of the induced electrical current and the total magnetic field 𝑩 = 𝑩0 + 𝒃, 

where b denotes the induced magnetic field,  produces a Lorentz force affecting the fluid 

flow. The interaction between the fluid flow and the induced electromagnetic fields can be 

written in the form of a quasi-static approximation (2.47) – (2.49) The Lorentz force can then 

be represented as 𝒊 × 𝑩. 

The DNS solver has been developed to numerically simulate MHD flows in a rectangular 

duct with ideally conducting Hartmann walls and ideally insulating side walls (see Fig 2). It 

is based on a FDM with a collocated grid arrangement, uniform at the core and non-uniform 

at the side walls. The boundary conditions are periodic in the stream-wise (𝑥) direction and 

standard no-slip conditions are applied at the solid y & z boundaries (2.50). 

At the walls MHD boundary layers develop, their structure being dependent upon the balance 

between viscous, inertial and the Lorentz forces as described in Chapter 2. In regimes where 

𝐻𝐻 is high, as is in the case of a nuclear fusion reactor, i.e. 𝐻𝐻 = 4000 − 8000, very strong 

shearing and wall friction characterizes the instabilities found within these developed layers. 

In addition to the Hartmann layers, boundary layers parallel to the external magnetic field are 

observed; these are commonly referred to as Shercliff layers. The thickness of the Hartmann 

and Shercliff layers were described in section 2.5. An imposing challenge for the DNS of this 

particular flow regime was satisfactory resolution of these thin boundary layers via grid 

refinement at the walls. Mainly this is because insufficient numerical resolution leads to 

errors within the charge conservation and an inadequate balance of the kinetic energy. 

Nevertheless, tight clustering at the side walls was deemed to be an expense that was worth 

incorporating, as most if not all instabilities were found to reside there. The balance which 
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was optimized between the computational cost against the tight clustering is describe further 

on within this chapter. 

The finite difference scheme used within this work was used to approximate equations (2.47) 

– (2.49). The DNS utilizes a time discretization method based on (3.16). The 

incompressibility condition is satisfied by applying the standard projection method [109], 

which requires that any vector field 𝒖 can be decomposed onto two components, a divergence 

free solenoidal vector field 𝒖∗ and the gradient of a scalar, which would be the pressure in the 

system. This decomposition method is both unique and orthogonal. As the solver advances 

from time step 𝑀 to 𝑀 + 1 the following procedure is carried out: 

 

 Solve the electric potential equation                     ∇2𝜙𝜕 = ∇ ∙ (𝒖𝜕 × 𝑩) 

 

(3.16) 

 Compute electrical current                                                    𝑱𝒏 = −∇𝜙𝜕 + (𝒖𝜕 × 𝑩)   (3.17) 

  Compute                                                               𝑭𝒏 = −(𝒖𝜕 ∙ ∇)𝒖𝜕 + 1
𝑅𝑒
∇2𝒖𝜕 + 𝑁(𝒊𝜕 × 𝑩)       (3.18) 

 
Compute intermediate velocity field                              2𝑭𝜕 − 𝑭𝜕−1 = 3𝒖∗−4𝒖𝒏+𝒖𝒏−𝟏

2𝑀
 

(3.19) 

 Solve pressure equation                                ∇2𝑝𝜕+1 = 3
2𝑀
∇ ∙ 𝒖∗ (3.20) 

 Add pressure correction                                                   𝒖𝒏+𝟏 = 𝒖∗ − 2
3

M∇𝑝𝜕+1 (3.21) 

The boundary conditions for the pressure at the solid walls are gained via direct projection of 

(3.21) on the wall normal: 

 

 𝜕𝑝𝜕+1

𝜕𝑀
=

3
2M

𝒖𝜕∗  

 

(3.22) 
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Moreover, the computational grid is orthogonal, uniform in the core and non-uniform at the 

boundary of the domain, thus allowing for clustering at the walls in the 𝑦 & 𝑧 directions. The 

clustering and non-uniformity is to aid in fully resolving the flow in the MHD boundary 

layers, especially at high 𝐻𝐻. The non-uniform grid is generated by applying a coordinate 

transformation, i.e. hyperbolic tangents or sine. There are currently two forms of grid 

stretching that can be applied in the code, either a hyperbolic tangent, or a modified Gauss-

Lobatto distribution: 

 

 
𝑧 = 𝐿

tanh(𝐴𝐴)
tanh(𝐴)    𝑜𝐹       𝑧 = 𝐿 �𝐴𝑠𝑀𝑀 �𝐴

𝜋
2
� + (1 − 𝐴)𝐴�, 

 

(3.23) 

In (3.23) 𝐿 is the duct half-width, −1 < 𝐴 < 1 is the uniformly distributed co-ordinate and 𝐴 

is the parameter which accounts for the strength of clustering and z represents the wall 

normal coordinate. For the y-coordinate stretching is similar. 

A highly conservative, second-order spatial discretization scheme for incompressible fluids in 

the low-𝑅𝑚 approximation [110, 111, 112] has been adopted. The discretization is performed 

directly on to a non-uniform grid with a partially collocated arrangement. The equations 

within this domain are approximated via the standard formula of derivatives, i.e. co-ordinate 

transform 𝑧 = 𝑧(𝐴) the partial derivatives 𝜕2𝑓
𝜕𝑧2

  and 𝜕𝑓
𝜕𝑧

 are 𝜕𝑓
𝜕𝑧

= 1
𝑐1

𝜕𝑓
𝜕𝜕

 and 𝜕2𝑓
𝜕𝑧2

= 1
𝑐3

=

�𝑐1
𝜕2𝑓
𝜕𝜕2

− 𝑐2
𝜕𝑓
𝜕𝜕
�, where 𝑐1 and 𝑐2 are defined as 𝑐1 = 𝜕𝑧

𝜕𝜕
, 𝑐2 = 𝜕2𝑧

𝜕𝜕2
. There are two methods 

which are used to solve (3.16) and (3.20) for both electric potential and pressure. One method 

can be applied if periodic boundary conditions are used in the stream-wise (x) direction. This 

method employs the Fast Fourier Transform (FFT) in the periodic co-ordinate. Additionally, 

the 2D Poisson equation is written as a general separable elliptic partial differential equation 

of second order in terms of the transformed co-ordinates, by central difference, part of the 

Fishpack library [113]. The second method is applicable in an arbitrary three dimensional 

domain with arbitrary boundary conditions, i.e. no periodic boundary conditions in the 

stream-wise direction It is again based on a central difference of second order which is 

applied to all three transformed co-ordinates as implemented in the Mudpack library [114 the 

non-linear term in the momentum equation is skewed, i.e. 1
2
𝜕�𝑢𝑖𝑢𝑗�
𝜕𝑥𝑖

+ 1
2
𝑞𝑖

𝜕�𝑢𝑗�
𝜕𝑥𝑖

. The first term 
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is discretized via a fourth order central difference scheme, i.e. �𝛿𝜕𝑜)𝑖 = 𝑓𝑖−2−8𝑓𝑖−1+8𝑓𝑖+1−𝑓𝑖+2
12ℎ

 

and by the third order upwind formula for the second term [114], where h is the grid step 

along 𝐴. 

Staying with the momentum equation, the Laplace operator within the viscous term is 

discretized by using central difference of fourth order and applied to ∇𝜙𝜕,  ∇𝑝𝜕+1  in addition 

to the divergence operators within (3.17), (3.19), (3.21), (3.16) and (3.20) respectively. A 

central second-order scheme is applied to the Laplace operator in the right hand side of (3.14) 

(3.16) and (3.20). 

The discretization of the non-linear term, divergence and gradient operators are modified at 

interior grid points close to the walls and as a four point central stencils are not available 

within this case, asymmetric solutions are required to give approximate solutions to the 

normal derivatives of the mean velocity at the wall; which are used to evaluate the mean wall 

shear stresses, thus determining the overhaul mean pressure gradient. Therefore to evaluate 

related derivatives, we employ a third-order finite difference scheme based on the boundary 

point and the three nearest internal points as suggested in [114]. 

 

 (𝛿𝜕𝑜)0 =
−11𝑜0 + 18𝑜1 − 9𝑜2 + 2𝑜3

6𝑀
 

 

(3.24) 

 

 (𝛿𝜕𝑜)1 =
−2𝑜0 − 3𝑜1 + 6𝑜2 − 𝑜3

6𝑀
, 

 

(3.25) 

where 𝐴 and M are the uniform coordinate and step size respectively, the indices 0 represent 

the wall and 1 represents the first interior points. However there is a drawback to the 

discretization in the transformed coordinates as it limits the choice of grid clustering at the 

walls by omitting the singularity 𝑐1 = 𝜕𝑧
𝜕𝜕

= 0. However, this gives rise to an issue to the 
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solution for the pressure Poisson equation. In order to overcome this, the boundary condition 

(3.20) in the transformed coordinates is replaced by 𝜕𝜕
𝜕𝜕

= 𝑐1
𝜕𝜕
𝜕𝑧

= 𝑐1
3
2𝑀
𝑞𝜕∗ = 0.  

The non-uniform grid is a highly conservative for incompressible fluid flows of low 𝑅𝑚 

MHD, directly discretized in the physical coordinates. The solution variables 𝒖,𝑝, 𝒊 𝐻𝑀𝑑 𝜙 

are all stored at the same grid point, as well as (3.16) – (3.20). As the grid is collocated, half 

integer points located midway between the regular points are employed, in a staggered 

formation aiding in the computations of the spatial velocity and current fluxes. The half 

integer points give an approximation to the divergence operator located within (3.16) and 

(3.20) and discretize the non-linear term in the momentum equation. 

The derivatives of the first order are approximated by the following discretization formulas 

 

 𝛿2𝑜
𝛿2𝑥

� 𝑥𝑖 ≡
1
2
𝑜𝑖 − 𝑜𝑖−1
𝑥𝑖 − 𝑥𝑖−1

+
1
2
𝑜𝑖+1 − 𝑜𝑖
𝑥𝑖+1 − 𝑥𝑖

 

 

(3.26) 

 

 𝛿1𝑜
𝛿1𝑥

� 𝑥𝑖 ≡
𝑜𝑖+1/2 − 𝑜𝑖−1/2

𝑥𝑖+1/2 − 𝑥𝑖−1/2
 

 

(3.27) 

 

 𝛿1𝑜
𝛿1𝑥

� 𝑥𝑖+1/2 ≡
𝑜𝑖+1 − 𝑜𝑖
𝑥𝑖+1 − 𝑥𝑖

 

 

(3.28) 

The above formulas (3.26) and (3.27) are based upon regular grid points, staggered grid 

points and (3.28) for staggered grid points. In addition to these formulas we also require 

linear interpolation between the regular and staggered grid points Fig 8; 
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 𝑜𝑖+1/2 ≈ 𝑜𝑥|� 𝑥𝑖+1/2 ≡
𝑜𝑖 + 𝑜𝑖+1

2
 

 

(3.29) 

 
𝑜𝑖 ≈ 𝑜𝑥|𝑥𝑖 ≡ 𝑜

𝑖+12
− �𝑜

𝑖+12
− 𝑜

𝑖−12
�
𝑥
𝑖+12

− 𝑥𝑖

𝑥
𝑖+12

− 𝑥
𝑖−12

, 

 

(3.30) 

where tilde represents interpolated values at the staggered grid points and the bar symbolises 

interpolated values at the regular grid points, while the upper index x denotes in which way 

the interpolation is performed. At the velocity correction sub-step (3.21) the velocity fluxes at 

the half integer points are calculated using;  

 

 
𝐹𝑖𝜕+1 = 𝑞𝚤

∗𝑥𝚤 −
2𝑀
3
𝛿𝚤𝑝𝜕+1

𝛿1𝑥𝚤

�
 

 

(3.31) 

 

  

 

 

 

 

 

FIGURE 8. A collocated grid arrangement in 2-D. The red dots represent integer points 

where 𝑞,𝑝, 𝑗 and 𝐴 are approximated. Blue and green arrows denote the half integer points 

for the velocity and electrical current flux quantities in the 𝑥𝑖 and 𝑥𝑖 directions. 

 

(𝑀, 𝑗 + 1) 

(𝑀, 𝑗 − 1) 

�𝑀, 𝑗 +
1
2
� 

�𝑀, 𝑗 −
1
2
� 

�𝑀 +
1
2

, 𝑗� �𝑀 −
1
2

, 𝑗� 

(𝑀 + 1, 𝑗) (𝑀 − 1, 𝑗) (𝑀, 𝑗) 
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By substituting (3.31) into the incompressibility, which is enforced using the velocity fluxes, 

i.e. 𝛿1𝐹𝑖
𝛿1𝑥𝑖

= 0, we achieve the consistent form of (3.20): 

   

 𝛿1
𝛿1𝑥𝑖

�
𝛿1𝑃𝜕−1

𝛿1𝑥𝑖
� =

1
𝑀
𝛿1𝑞𝑖

∗𝑥𝑖

𝛿1𝑥𝑖
 

 

(3.32) 

 

Within (3.32) the left hand side is the central difference discretization of the Laplace 

operator. The advantage of its now compact form ensures the absence of numerical pressure 

oscillations. By employing the discretized fluxes and velocity interpolations at the 

neighbouring half-integer points, the non-linear term can be rendered in divergent form. An 

example of this in the i-th momentum equation is 

 

 
𝛿1(𝐹𝑖𝑞𝚤

𝑥𝚥)�

𝛿1𝑥𝑖
 

 

(3.33) 

If the incompressibility condition is observed, then (3.33) is deemed to be conservative for 

the transport of kinetic energy. The viscous terms within the momentum equations are 

discretized using the central difference scheme of second order, based on the velocities 

integer grid points. The pressure gradient however, of the momentum equation which appears 

in (3.21) is approximated by using grid point values of pressure as; 

 
𝛿2𝑝𝜕+1

𝛿2𝑥𝑖
 

 

(3.34) 

But as is noticed, it is inconsistent with (3.30) in the kinetic energy equation and the use of 

(3.34) leads to errors of ~0[𝑀(∆𝑥)2] within the kinetic energy balance. However the error 

can be tolerated as it is of third order and dissipative, thus not affecting the stability 
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properties of the scheme. The method of discretization for the electromagnetic terms takes 

advantage of the electric current fluxes at the half integer points; 

 

𝐺𝑖𝜕 = −
𝛿1𝜙𝜕

𝛿1𝑥𝑖
+ (𝒖𝒏 × 𝑩)𝑖

𝑥𝑖 , 

 

(3.35) 

where the approximation of the divergence operator which expresses the current conservation 

is 

  

 
𝛿1𝐺𝑖𝜕

𝛿1𝑥𝑖
= 0. 

 

(3.36) 

The Poisson equation for the electric potential is obtained by the substitution of (3.35) into 

(3.36), resulting in; 

 
𝛿1
𝛿1𝑥𝑖

�
𝛿1𝜙𝜕

𝛿1𝑥𝑖
� =

𝛿1
𝛿1𝑥𝑖

��𝒖𝒏 × 𝑩)𝑖
𝑥𝑖�  

 

(3.37) 

By implementing (3.14) – (3.16) it includes the solution to (3.37), calculations to (3.35), the 

interpolation of current fluxes to integer grid points 𝑗𝑖𝜕 = 𝐺𝚤
𝜕𝑥𝚤������ and the calculations of the 

Loretz force 𝑁(𝒊𝒏 × 𝑩).  

There are other issues which need to be highlighted within this scheme, namely boundary 

conditions. As to not lose conservation properties, the collocated grid is extended across the 

boundaries by one step. By extending the boundaries in this manner, it allows the application 

of the central difference and central interpolation to the boundary points. The position 

therefore of the ghost points is defined as  
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𝑧−1 = 𝑧0 − (𝑧1 − 𝑧0) 

 
(3.38) 

A third-order extrapolation based upon the cubic Lagrangian polynomial fit to four points of 

the non-uniform grid is used to calculate the solution variables at the ghost points. The third 

order extrapolation ensures the second order approximation of the viscous term at the walls. 

An additional issue that requires addressing is the solution to the Poisson equation for 

pressure and potential on a non-uniform grid and this additional issue is resolved with the 

help of high level libraries, provided by either [113] or [114] libraries, which solve a 

separable elliptic PDE. In a 2-D the equation therefore is 

 

𝐻2(𝛾)
𝜕2𝑜
𝜕𝛾2

+ 𝐻1(𝛾)
𝜕𝑜
𝜕𝛾

+ 𝐻0(𝛾)𝑜 + 𝑈2(𝐴)
𝜕2𝑜
𝜕𝐴2 + 𝑈1(𝐴)

𝜕𝑜
𝜕𝐴

+ 𝑈0(𝐴)𝑜 = 𝐹(𝛾,𝐴) 

 

(3.38) 

 

The coefficients of (3.39) are determined by the coefficients of the coordinate transformation, 

i.e. 𝑐1 and 𝑐2 which were denoted in previous calculations. There are evidently some 

coordinate transformations within (3.39), i.e. grid stretching, and (3.26 leads to the Poisson 

problem in this form. The derivatives of the unknown function f within [113] and [114] are 

approximated on a uniform grid with second order central stencils; 

 

 

(𝜕𝜕𝑜)𝑖 =
𝑜𝑖+1 − 𝑜𝑖+1

2ℎ
,         (𝜕𝜕𝜕𝑜)𝑖 =

𝑜𝑖+1 − 2𝑜𝑖 + 𝑜𝑖−1
ℎ2

 

 

(3.40) 

As we need to retain the conservation properties of the scheme, there has to be an 

equivalence between the approximation of the Laplace operator on the non-uniform grid and 

the discretization of the uniform grid of the transformed (3.39). Therefore at this point  the 

methodologies used in resolving (3.16) and (3.20) will be described in more detail in order to 

show the scheme retains both conservation properties and periodic boundary conditions in at 

least one direction of the flow.  
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The derivative of a function f is derived via a coordinate transformation of the second 

derivative operator with second-order accuracy on a non-uniform z-grid as demonstrated 

below 

 

(𝛿𝑧𝑧𝑜)𝑖 =
(𝑜𝑖+1 − 𝑜𝑖+1)(𝑧𝑖 − 𝑧𝑖−1) − (𝑜𝑖 − 𝑜𝑖−1)(𝑧𝑖+1 − 𝑧𝑖)

�1
2� (𝑧𝑖+1 − 𝑧𝑖−1)(𝑧𝑖+1 − 𝑧𝑖)(𝑧𝑖 − 𝑧𝑖−1)

 

 

(3.41) 

Here, in (3.41) the Poisson equations (3.16) and (3.20) are obtained as a direct result of 

subsequent applications of (3.27) and (3.28), applied to the gradient and divergence operators 

respectively. Therefore (3.41) is the only guaranteed assumed formula which results in u and 

j being divergence free and maintains the schemes conservation properties.  The transform 

coefficients are written with three coefficients as a different approximation of 𝜕𝑧/𝜕𝐴 on a 

different stencil 

 
𝜕2𝑜
𝜕𝑧2

=
1
𝑐33
�𝑐1

𝜕2𝑜
𝜕𝐴2 − 𝑐2

𝜕𝑜
𝜕𝐴

� 

 

(3.42) 

If we re group (3.41), we can substitute in (3.42) into its left hand side. The right hand side 

however we substitute (3.42) of the partial derivatives 𝜕𝑜/𝜕𝐴 and 𝜕2𝑜/𝜕𝐴2 on a uniform 

grid. After some final regrouping and manipulation we finally arrive at; 

 

(𝛿𝑧𝑧𝑜)𝑖 =
𝑜𝑖+1 �𝑐1ℎ −

𝑐2ℎ2
2 � − 2𝑐1ℎ𝑜𝑖 + 𝑜𝑖−1 �𝑐1ℎ + 𝑐2ℎ2

2 �

𝑐33ℎ3
, 

 

(3.43) 

where 𝑐1, 𝑐2 and 𝑐3 are found as demonstrated in (3.40) the grid is always arranged so that 

𝑧𝑖+1 ≠ 𝑧𝑖 ≠ 𝑧𝑖−1. Thus the coefficient 𝑐33 will never be zero: 

 

𝑐1 =
𝑧𝑖+1 − 𝑧𝑖−1

2ℎ
,   𝑐2 =

𝑧𝑖+1 − 2𝑧𝑖 + 𝑧𝑖−1
ℎ2

 ,   𝑐33 =
𝑧𝑖+1 − 𝑧𝑖−1

2ℎ
𝑧𝑖+1 − 𝑧𝑖

ℎ
𝑧𝑖 − 𝑧𝑖−1

ℎ
. 

 

(3.44) 
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We now progress to the issue of the flow with periodic boundary conditions. The Fast Fourier 

Transform is applied to one direction and the 2D problem of the Fourier expansion is solved 

via the libraries described in [113] and [114]. The issue initially produces a problem for the 

correct evaluation of the wave number 𝛼, in the periodic x-direction. If the x-direction is 

periodic, the Poisson problem in the kth Fourier mode can be thus written as; 

 

�
𝜕2 𝑜⏞𝑘 (𝑦, 𝑧)

𝜕𝑧2
+
𝜕2 𝑜⏞𝑘 (𝑦, 𝑧)

𝜕𝑦2
− 𝛼𝑘2 𝑜⏞𝑘 (𝑦, 𝑧)� = 𝐹⏞𝑘 (𝑦, 𝑧) 

 

(3.45) 

The stream wise wave number is defined as 𝛼𝑘 = 𝑘2𝜋/𝐿𝑥 for 𝑘 = 0 … . ,𝑁𝑥 2 − 1⁄  and 

𝑜⏞ (𝑦, 𝑧) and 𝐹⏞ (𝑦, 𝑧) are the Fourier coefficients for the unknown function. The Fourier 

Transform is applied in discrete forms of (3.32) and (3.37). As the derivative in Fourier space 

is not equivalent to the finite difference of the derivative used in (3.27) and (3.28), it 

therefore introduces an error into the divergence free constraint of the velocity and electrical 

current. So to ensure that the solenoidal character of the mentioned fields, 𝛼 is replaced with 

𝛼𝑒𝑓𝑓 in the following manner and provides an exact match between (3.45) and the 3-D finite 

difference discretization of the Poisson equation. 

  

 

𝛼𝑒𝑓𝑓 =
sin �𝛼 1

2 𝛿𝑥�
2𝛿𝑥

 

 

(3.46) 

 

 

3.5. Modifications.  

Throughout the course of the extensive number of simulations performed, modifications have 

been implemented by the author of the code to optimize simulation run times. The first 

modification to the solver concerns the diffusive terms 1
𝑅𝑒
∇2𝒖. The main advantage to this 

initial modification was that the diffusive term could now be treated explicitly as in (3.18) or 

implicitly, via again through the Adams-Bashforth multistep method of second order, thus 
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involving a linear L(u) and non-linear part N(u), which could be dealt with more efficiently at 

low 𝑅𝑅 & high 𝐻𝐻 flow regimes. The truncation error of (3.47) is of order 𝑂(𝑀𝑘) [107]. 

 

 1
𝑀
�𝐻𝑖𝑞𝜕+1−𝑖 = �𝑈𝑖𝑁�𝑞𝜕−𝑖� + 𝐿(𝑞𝜕+1)

𝑘−1

𝑖=0

𝑘

𝑖=0

 (3.47) 

 

In both regimes, the viscous term proved to be the cause of numerical instability, mainly 

owing to strong clustering at the wall or low 𝑅𝑅 values where viscous term would dominate. 

Strong clustering at the walls posed severe limitations on the implemented values of 𝑀, as the 

three elliptic problems for all three components of velocity needed to be solved. A 

disadvantage to the implicit modification though, resulted in the simulations to be resolved on 

average two to three times slower than the explicit scheme alone. But for 𝑅𝑅 < 2,000 or 

𝐻𝐻 > 200 the  𝑀 parameter could be up to 102 higher. This results in, for certain parameter 

combinations, associated with strong clustering at the walls, an increased computer efficiency 

up to a factor of 20. 

In addition to the implicit modification, a second modification was included which consisted 

of imposing different types of boundary conditions for the solution of the Poisson problem 

for electric potential 𝜙. For the case of ideally conducting walls, a Dirchlet boundary 

condition 𝜙 = 0 was implemented, as the wall normal component 𝒊𝒏 of the electric current is 

non-zero, thus currents flow into the walls. Finite wall conductivity is treated following the 

thin wall approximation [112] meaning that the MHD equations have to be solved only 

within the fluid domain. The current flow within the wall therefore is taken into account by 

employing a particular boundary condition for 𝜙: 

 

 𝜕𝜙
𝜕𝑀

= 𝐶𝑤∆𝜏𝜙, (3.48) 
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where 𝑀, 𝜏 and ∆𝜏 are the wall-normal, wall parallel directions and Laplacian in the plane of 

the wall respectively. Here 𝐶𝑤 represents the ratio between the fluids conductivity and the 

thickness of the walls. 

The elliptic solver, in part, from the Fishpack library [113] only has the ability to solve 

simple forms of boundary conditions, i.e. Dirichlet and Neumann non-homogeneous or a 

mixed conditions 𝜕∅/𝜕𝑀 +  𝛼∅ = 𝐹, where 𝛼 is a constant. Therefore to satisfy (3.48) 

additional iterations were required. Details are extensively provided in [106]. This resulted in 

the increased computational time for each 𝑀. In order to accommodate for this, the method 

employed in [114] was implemented, but here we solve the Poisson problem with the 

Neumann boundary conditions, opposite to the method adopted in [114]; by updating the 

normal derivative at every iteration. The advantage to this modification improves the 

iterations as they can now be part treated semi-implicitly, thus the wall normal derivative and 

the Laplacian operator in (3.48) can be jointly employed, resulting in a mixed boundary 

condition for the Fishpack solver. This greatly improves the convergence of the regime and 

after preliminary simulations convergence is achieved after only 5 -8 iterations. 

 

 

 

3.6. Preliminary results of simulations.  

Since the Hunt’s flow is a new application for this solver, certain verifications were needed in 

order to be able to have full confidence in the results. . Therefore numerous test simulations 

we conducted on varying grid resolutions and grid clustering at the walls before engaging 

into full simulation runs. The laminar duct flow simulations, described in more details in 

Chapter 4, were fixed at values Re = 1000, Ha = 100. Re was fixed in this manner since 

laminar solutions do not depend upon Re.  Grid resolution and grid clustering at the walls was 

varied including  643, 1283, 2563and 5123 in the x, y & z directions. The parameters of grid 

clustering at the ducts walls ranged from 𝐴𝑦 = 1.5 − 3.0 & 𝐴𝑧 = 1.5 − 3.0.  As can be seen 

from Fig. 9 the side wall jets become gradually thinner and the maximum velocity increases 

with Ha. Therefore with these apparent numerical difficulties, testing the simulations at 

varying grid resolutions and stretching coefficients becomes non-trivial. All simulations were 

conducted upon Coventry Universities in-house cluster computer. 
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𝑈𝑥  

 

 

FIGURE 9. Comparative results of numerical (red circles) verses analyitical solutions blue 

line for laminar Hunt’s flow. Grid resolution of 128 × 128 points in the (x – y) – plane and 

grid clustering is set by the hyperbolic tangent with stretching coefficients 𝐴𝑦 = 2.5 and 

𝐴𝑧 = 3.0 in the y and z directions correspondingly. (a) 𝑅𝑅 = 500,𝐻𝐻 = 10 (𝑀𝑚𝑝𝐸𝑀𝑐𝑀𝑡), 

(b) 𝑅𝑅 = 1,000, 𝐻𝐻 = 100 (𝑀𝑚𝑝𝐸𝑀𝑐𝑀𝑡), (c) 𝑅𝑅 = 4,000, 𝐻𝐻 = 4,000 (𝑅𝑥𝑝𝐸𝑀𝑐𝑀𝑡). (d) 

𝑅𝑅 = 6,000, 𝐻𝐻 = 5,500 (𝑅𝑥𝑝𝐸𝑀𝑐𝑀𝑡). 

Fig 9 demonstrates a good agreement between analytical and numerical solutions, albeit at a 

fixed grid resolutions and stretching coefficient. Therefore to further determine whether the 

Hunt’s flow code was as robust for varying grid resolutions and stretching coefficients, 

further laminar Hunt’s flow tests were computed and comparisons made. Within this further 

test, we had fixed values of Re = 1000, Ha = 100. Grid resolutions were altered, between 

each separate simulation run at 643, 1283, 2563 and 5123, accompanied by varying 

stretching coefficients on each simulation between 1.5 ≤ 𝐴𝑦 ≤ 3.0 and 1.5 ≤ 𝐴𝑧 ≤ 3.0. 

a b 

d c 

 𝑈𝑥  𝑈𝑥  

𝑈𝑥  

y y 
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Contained within Fig. 10 we can conclusively provide substantial evidence that altering the 

grid resolution and stretching coefficients provided no noticeable alteration to the laminar 

base flow and in all accounts provides good agreements to the analytical solution.   

 

 

 

 

 

 

 

Figure 10: Example comparative results of varying grid resolutions and stretching 

coefficients. Both figures (a) and (b) demonstrate a fixed Re = 1000, Ha = 100. (a) 

demonstrates a comparative in grid resolution, including 643, 1283and 2563 with stretching 

coefficient 𝐴𝑦 = 2.5,𝐴𝑧 = 2.5. (b) displays a fixed Re = 1000, Ha = 100, grid resolution 

1283 with stretching coefficients 𝐴𝑦 = 1.5 & 3.0, 𝐴𝑧 = 1.5 & 3.0.  

It is also worth noting that additional tests were also undertaken to benchmark versions of the 

code with explicit and implicit treatments of the viscous term 1
𝑅𝑒
∇2𝑣. Preliminary runs were 

conducted on a lower grid resolution, 256 × 1282 in the 𝑥. 𝑦, 𝑧 direction respectively, and the 

grid stretching coefficients were set by a hyperbolic tangent were fixed at 𝐴𝑦 = 3.5 and 

𝐴𝑧 = 4.0. The base line simulations at Ha = 1000 For example demonstrated that the implicit 

treatment of the viscous term was beneficial for the overhaul performance of the code. 

Moreover, ∆𝑀 (integration time step), could be increased by a factor of 100 without the loss 

of numerical stability. But this situation changed as we increased further to Ha = 4,000. At 

this point the explicit treatment of the viscous term becomes computationally faster. The 

main reason for this development is that at high 𝐻𝐻, or more precisely, at large interaction 

parameter 𝑁 = 𝐻𝐻2/𝑅𝑅, the stability of the scheme and correspondingly ∆𝑀, is governed by 

𝑄𝑥 𝑄𝑥 

y y 
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the MHD term [115]. The MHD terms are fully explicit, thus making the specific treatment 

of the viscous term irrelevant at larger N values.  

The implemented boundary conditions for the electric potential, corresponding to finite wall 

conductivity also required verification. This has been done by reproducing some test cases 

from previous work stated in [114], conducted on a grid of 96 × 96 in the y and z directions 

respectively, employing the implicit solver with a conductance ration of 𝐶𝑤 = 0.1. The grid 

stretching, set by the hyperbolic tangent was 𝐴𝑦 = 3 & 𝐴𝑧 = 3. The comparative results of 

the finite and ideally conducting Hartmann walls are shown in Fig 11. The numerical results 

obtained through this investigation demonstrate maximum velocities and mid-cut 

distributions in perfect agreement to those results obtained through [114]. The solver has also 

been successfully applied and tested on MHD flows in ducts with insulating walls although 

results demonstrating this will not be provided in this work. 

 

 

 

 

 

FIGURE 11: A comparative of laminar Hunt’s flow through the use of DNS. Ha = 100 (left) 

and Ha = 1000 (right). Two cases are shown for each Ha number, these are ideally 

conducting Hartmann walls, in addition to the case of walls having finite conductivity. Wall 

conductance ratio is 𝐶𝑤 = 0.1. 

𝐻𝐻 = 100 𝐻𝐻 = 1000 
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Once this in-depth study baseline laminar flow regime on the Hunt’s flow code had 

concluded, it was found to be found robust over a wide range of grid resolutions and 

stretching coefficients. However a compromise had to be determined between grid resolution 

and computation time. As can be expected an increase in grid resolution greatly increased the 

computational time of each simulation. Therefore an average value was determined for both 

grid resolution and stretching coefficients, set by a hyperbolic tangent, in order to enable the 

most efficient way of completing future simulations in order to produce best results The 

values therefore to be determined on all subsequent simulation runs were 2653 grid points in 

the x, y, z respectively  and stretching coefficients 𝐴𝑦 & 𝐴𝑧 = 2.5. Fully accredited simulation 

runs could now commence, with each proceeding simulation running for approximately 200 

CTU, i.e. 𝑀 = 2,000,000 * ∆𝑀 = 0.0001 to complete.  

 

 

3.7.Time dependence of the fluid flow simulation.  

Flow being subjected to an externally applied constant magnetic field, as in the present 

investigation, adequate numerical approximation of the viscous and non-linear term as well 

as of the Lorentz force in the non-dimensional Navier-Stokes equation becomes a pressing 

issue. An example of this would be a fully turbulent flow at high 𝑅𝑅 and low 𝐻𝐻. Such a 

regime would be dominated by the convective transport of momentum. The numerical 

instabilities of such a regime are thus produced by the non-linear term, which in turn has a 

significant influence on the admissible time steps ∆𝑀. In contrast, at low Re, or laminar flow, 

the cause for numerical instability would be the domination of the viscous term, again if 

treated fully explicit, thus ∆𝑀 must be kept as small as possible. Flows of high 𝐻𝐻 & 𝑅𝑅, are 

likely to approach the limit of instability produced by the Lorentz force. Therefore to detect 

these major causes of numerical instabilities early on in the flow regime, the value of M was 

kept low. If there were instabilities in the flow regime, only a small amount of real time was 

indulged to reach a diverged regime. The governing parameters could then be altered and a 

new flow regime initiated with a reduced ∆𝑀 to compensate for the sensitivity of the regime. 

As the flow is periodic in the stream-wise (𝑥) direction, continual simulations at a low value 

of M were undertaken for each targeted 𝐻𝐻 & 𝑅𝑅 parameter set.  Once each low M value 

simulation had completed, an analysis was taken via the use of the total full scale kinetic 
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energy variable, i.e. 𝑄𝑡𝑣𝑡 = 𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2. If the targeted simulation had been deemed to 

converge, 𝑀 could then be increased, i.e. 100000 ≤ 𝑀 ≤ 200000  for each subsequent 

simulation. This process was repeated until a steady state had been reached. The next stage to 

verify the simulations steady state could then be undertook and determined through the 

implementation of the Simpsons Rule 

 

 ∫ 𝑜(𝑥)𝑑𝑥𝑏
𝑤 ≈ ∆𝑥

3
(𝑦0 + 4𝑦1 + 2𝑦2 + ⋯+ 4𝑦𝜕−1 + 𝑦𝜕), where     ∆𝑥 = 𝑏−𝑤

𝜕
    

                                                 n is always even. 
(3.49) 

 

Once the peaks and troughs of the 𝑞𝑥2 component of 𝑄𝑡𝑣𝑡 had seemed to have abated, two 

Simpsons rule comparisons tests were taken. If the result of the comparatives were equal, the 

simulation was deemed to have reached its steady state and a full investigation could then be 

undertaken. The process of the Simpson rule comparative is demonstrated in Fig 12. The 

domain dimensions of early simulations were 4𝜋 × 2 × 2, but this was later altered to 

8𝜋 × 2 × 2, the reasons for which will be explained in more detail further on in this study. As 

a rule of thumb, assuming 100% parallel implementation efficiency for each arbitrary 

𝑀 = 20000, it took on average 40 hrs to complete, employing 4 nodes, equating to 32 

CPU’s. To calculate the real time taken for one value of 𝑀 requires the following procedure: 

40hrs / 200000 = 0.0002 hours or 0.72 seconds of real time per M. As these calculations are 

based on 32 CPU’s, for 1 CPU it would of course be 32 times longer. Therefore, 0.0002 * 32 

= 0.0064 hrs or 23.04 seconds per M, thus giving, on average the required CPU-hours per 

value of 𝑀. We can correspond this information to virtual flow time. Therefore, if we choose 

∆𝑀 = 0.0006, we multiply by 𝑀, giving 120 Convective Time Units (CTU), .i.e. 0.0006 * 

200000. This means that we spend 40 hrs on 32 CPU’s, i.e. 40*32 = 1280 CPU hrs to 

calculate 120 CTU. To calculate each CTU required, we need to divide the CPU hrs by 120 

CTU, i.e. 1280/120 = 10.6 CPU hrs for each CTU, on average. Therefore in real, actual time 

at 𝑀 = 200000, ∆𝑀 = 0.0006 we need 120*10.6 = 1272 CPU hrs and 1272/32 = 39.75hrs 

or 1.65 days. So, for a simulation to reach a steady state where an analysis could be done, it 

takes on average 2 million time steps which equates to 16.5 days to complete. Some 

simulations took longer, i.e. 5 million time steps. It must be re-iterated that the above 
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calculations are only a guide and differing times of completion were obviously heavily 

dependent on 𝐻𝐻, 𝑅𝑅, ∆𝑀 and 𝑀.   

 

 

 

 

 

 

 

 

 

 

FIGURE 12. The Implementation of Simpson’s rule to the 𝑞𝑥2 component of the full scale 

kinetic energy graph, i.e. 𝑄𝑡𝑣𝑡 = 𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2, here we demonstrate Ha = 100, Re = 5000. If 

the integration results from the green line and the red line matched, the simulation was 

deemed to have reached converged statistics. 
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4. Variation of the Reynolds number. 

Within this chapter we initially, as a benchmark investigation, describe laminar duct flow and 

then progressively continue the study further into time dependent turbulent flow. 

Additionally, one also demonstrates the effects of the Lorentz force (2.16), and its influence 

on a conducting fluid flow, altering the velocity profile in such a way not inherent with 

hydrodynamic flow Fig 13. 

FIGURE 13. Cartoon of the effects of MHD duct flow (left). The effects the Lorentz force 

has on the viscous velocity profile within the duct in comparison to a hydrodynamic flow 

regime (right). 

 

Muller and Buhler reviewed various aspects of MHD flow in channels of varying shapes 

[125]. Within the context of this investigation, we only consider ducts of rectangular cross 

section. By considering a steady, laminar flow within a duct of cross section 2𝛿 × 2𝛿, we 

drive an electrically conducting fluid through a duct with constant pressure gradient. The 

fluid flow is un-directional, 𝒖 = (𝑥1, 0,0). The applied external magnetic field 𝑩 = (0,0,𝑩) 

is perpendicular to the flow in the z-direction. Walls perpendicular to the magnetic field are 

referred to as Hartmann Walls (𝜎𝐻𝐻𝑦 = ±𝛿) and the walls parallel to the magnetic field are 

known as the side walls (𝜎𝑆𝐻𝑧 = ±𝛿). In the centre of the duct, commonly referred to as the 

core region, the magnetic field interacts with the conducting fluid, through the fluids motion, 

thus inducing an electrical field 𝒖 × 𝑩, with electrical current 𝑱. As a priory to the 

interaction, a voltage is produced between the walls parallel to the magnetic field. The 

[6] 
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induced currents depend on the conductivity of the duct walls. Figure 14, for example, where 

all duct walls are perfectly insulating 𝜎𝑤 → 0, no electrical currents may leave the domain of 

the fluid [113] and must close their path within the fluid. Alternatively, if all duct walls are 

electrically conducting 𝜎𝑤 → ∞, the currents close through the duct walls and the boundary 

side layers which reside there. The current experiences no resistance in a fully conducting 

duct and consequently the pressure drop in the core is much greater than in an insulating duct. 

Finally, assuming that the side walls are perfectly insulating and the walls perpendicular to 

the magnetic field are perfectly conducting 𝜎𝐻𝐻 = 𝜎𝑆𝐻 = ∞, the electrical currents are thus 

compelled to turn almost parallel at the side walls, closing their path within the Hartmann 

layer. We will be studying this latter duct electrical composition in greater depth as it is the 

only focus in the context of this study. 

 

 

 

 

 

 

FIGURE 14. Electrical current paths in a duct of rectangular cross section with walls of 

various electrical conductivities: (a) all walls electrically insulating, (b) all walls electrically 

conducting and (c) Hartmann Walls (top and bottom) electrically conducting, side walls 

electrically insulating.  

 

In all MHD flows, the fluid within the core of the duct experiences a force which opposes the 

flow and is referred to as the Lorentz force. This force homogenizes the fluid flow profile and 

determines the momentum balance within the core. Consequently, the force has a tendency to 

damp instabilities and supress turbulence, and as such, it is a major contributor to the pressure 

drop within a MHD system. In environments where magnetic fields are strong, the 

electromagnetic contribution brought by the Lorentz force dominates over the viscous 

contribution. To this end, it can therefore be suggested that the greater the external magnetic 

field, the greater the Lorentz force, which in turn increases the pressure drop within the duct. 

 

a 

 

b c 

[7] 
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4.1. Instabilities in MHD duct flow and a word on the transition 

to turbulence.  

Included in this section we will be investigating the development of instabilities within 

Hunt’s flow, particularly those close to and within the jet region of the flow. It is important to 

focus on the origins and development of the side wall jet instabilities as their inherent 

structures have been regarded as the first stage in the transition to turbulence in a time 

dependent flow not only in MHD fluid flow, but also in purely hydrodynamic environments 

[85, 117]. Turbulence alters the properties of a flow regime and understanding, or more 

importantly, the predictions of such flows are crucial in the realization of proposed cooling 

systems for thermo-nuclear fusion reactors. It is important to state that turbulence within such 

a specific concept as liquid metal blankets design is not a phenomena which should be 

avoided.  Turbulence enhances in the mixing process of the fluid, thus improving heat and 

mass transfer. This helps to keep the blanket modules first wall, operating within acceptable 

temperature limits and promotes optimum heat extraction. 

by the Kolmogorov theory [93]. According to this theory, the fluctuating part can be viewed 

as a broad random collection of different size vortices with the energy passing down from 

larger to smaller vortices in a cascade like manner. The larger vortices, decompose under 

inertia and evolve into. The transition to turbulence has been very briefly introduced in 

Section 1.6, but the importance of this phenomenon is in many different applications, not just 

liquid metal blankets. Laminar fluid flow is, in principle, is a solution to Eq. (2.30). But in 

order for the laminar flow to be physical, it must be stable, meaning that perturbations in the 

flow should vanish over time, reverting the flow back to its laminar state. Generally speaking, 

there is usually a critical Re parameter, i.e. 𝑅𝑅𝑐𝑟, where a laminar fluid state can no longer 

exist.  Turbulence however, develops when inertia forces are predominant over viscous 

forces, or when Re is sufficiently large. The nature of turbulence makes predicting the flow 

very difficult, if not impossible. This is a consequence of the governing Navier-Stokes 

equations, which result in a small change to initial conditions, producing large changes to the 

motion of the fluid. As problematic as this maybe, statistical quantities within the flow such 

as mean velocity can be determined. This suggests that it is possible to separate a velocity 

field into a mean part and a fluctuating part. 
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A deeper understanding of turbulence is provided smaller vortices, so passing energy down to 

ever smaller vortices and thus giving rise to a cascade of kinetic energy. However, towards 

the latter part of the energy cascade, as the smallest vortices approach a Re value of unity, the 

effects of viscous dissipation becomes important. Kolmogorov theory assumes that 

turbulence is isotropic, which may not always be the case especially at the larger scales, 

velocity jets and boundary layers, etc.  

MHD turbulence is different to hydrodynamic turbulence, as Ohmic losses, which are a result 

of the circulation of electric currents through the flow, lead to additional dissipation of kinetic 

energy.  A laminar flow is basically a solution to the Navier-Stokes equations, irrelevant of 

the value of Re, but to determine that this solution is physical, it must be checked that it is in 

fact stable with respects to either imposed, or inherent perturbations. If this is not the case, a 

more complex laminar or turbulent flow sets in. Critical value of Re or Ha  can be found by 

studying the condition under which linearized equations result in perturbations with a positive 

growth rate: a method more commonly referred to as a linear stability analysis. 

Sterl [116] found that for an inviscid flow the inflexion point in the velocity profile was a 

condition for instability. The transition to turbulence according to this approach occurs as the 

linearly unstable mode grows until a point where the non-linear effects produce a secondary 

instability, and so on until the flow becomes completely turbulent. In the case of a circular 

pipe, linear stability predicts the flow remains stable even as 𝑅𝑅 → ∞. But contradictory 

experiments demonstrate turbulence at a Re value of 𝑅𝑅 ≈ 3000. Large perturbations could 

find their origins as a combination of two decaying linear modes and cases are available 

where the combination of these modes result in large amplitude, transient growth before 

decaying at 𝑡 → ∞. If for example these amplitudes become large enough, a non-linear 

transition occurs, thus generating turbulence [119]. This goes some way as to explaining why 

in the scenario of a Hartmann flow, the critical values are much lower than linear stability 

predicts, a phenomenon known as a subcritical bifurcation. 

Furthermore, Joule dissipation has a tendency to damp out turbulence and an applied 

magnetic field, as in the case of this investigation, has the ability to alter the fluids velocity 

profile: resulting in the development of steep gradients, sheer, obstacles, inflexion points and 

most importantly, jets. Therefore the magnetic field can itself become a large source of 

instability to a flow which would otherwise be classed as stable; this was first demonstrated 

by Lenhert [120, 121] and later by Buhler. Due to the M-shaped velocity profile caused by 
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the magnetic field, Hunt [42] anticipated that the instabilities within the flow regime would 

be at large Re values, at several inflexion points, which lead to non-decaying, inviscid 

instability modes. Note that the M-shaped velocity profile is not limited to the square duct. 

The same type of profile is also observed at the inlet and outlet regions of the magnetic field 

and also in bends of ducts [72, 83, 84]. 

The evidence of jet instabilities in MHD duct flow have been experimentally reported in 

numerous studies [68, 69, 82, 99]. Reed and Picologlou [82] used probes to measure the 

velocity fluctuations in a square duct and found strong periodic fluctuations in the vicinity of 

the side walls. Determining that the onset of instabilities were explicitly dependent on the 

value of Re, with a critical Re in the range of 1300 < 𝑅𝑅𝑐𝑟 < 2500 at 𝐻𝐻 = 5 × 103. 

Subsequently, Ting et al. [85] employed asymptotic side layer solutions developed by Walker 

[123] as a base flow. They concluded that the transition to turbulence is expected at 𝑅𝑅𝑐𝑟 ≈

313, which is an order of magnitude smaller than what was previously observed. 

Buhler however stated that on the basis of this experiments, the transition to turbulence in the 

region of the velocity jet occurred via two successive bifurcations [99]. The first of which is 

that at low Re, where the flow is laminar and when Re is increased beyond this first 𝑅𝑅𝑐𝑟, 

small perturbations are observed. Pushing Re further, he also saw that beyond a second 𝑅𝑅𝑐𝑟 

an additional transition occurs which is characterized by perturbations of a much lower 

amplitude. Throughout the experimental results so far [82, 99, 122] a direct comparison 

between them is a touch ambiguous, as wall conductivities and aspect ratios differed. But 

nevertheless, all experiments predicted a stable Hartmann layer as the criterion of instability 

was 𝑅𝑅/𝐻𝐻 ≈ 350 [124, 101]. Recently, Priede et al. [103] studied a linear stability of Hunts 

flow, resulting in a myriad of velocity patterns as Ha was increased from zero. Curiously 

their results demonstrated that for low values of Ha, flow instabilities occur in the form of 

streaks across the entire duct cross section. At 𝐻𝐻 > 46 they observed the same type of 

unstable modes as Ting et al. [85]. 

Throughout MHD flows, the applied magnetic field has the ability to damp turbulence within 

a conducting fluid. Also the interaction of the magnetic field with the  electrical currents 

alters the velocity profile, producing a relatively flat, essentially laminar core flow; being 

more pronounced in duct regimes where we see fully conducting and semi-conducting 

(Hunt’s flow) duct wall environments. Viscous effects in MHD flows are confined at the 

walls, which is a consequence of the electromagnetic interaction. This in turn produces strong 
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shearing effects at the walls as the fluid adheres to them. The electromagnetic interaction 

leads to the formation of boundary layers parallel to the magnetic field, the thickness of 

which has scales as 𝛿𝑠ℎ~𝐻𝐻−
1
2𝛿. The side layers have received little attention over the years, 

with only one other investigation being conducted into their relative thickness [82]. However, 

in section 4.8 we take a closer look into previous results and demonstrate that in turbulent 

Hunts flow regime, the thickness of the side layers may differ from that determined in [82] 

Furthermore to the walls parallel to the magnetic field, walls which are perpendicular to the 

magnetic field also produce boundary layers, which were first predicted by Hartmann [37, 

38]. Hartmann established that the thickness of these boundary layers is inversely 

proportional to the magnetic field, or to be more specific (2.54), 𝛿𝐻 = �𝜌𝑣/𝜎𝐵2 = 𝐻𝐻−1𝛿. 

The effect that the Hartmann layers has on the development of turbulence was studied much 

later in 1982 [98] and it was observed that the circulating electrical currents within the 

Hartmann layers closed their paths in the core of flow, which in turn lead to the damping of 

turbulence within this region of the flow.  

In many studies into the transition to turbulence the most common approach is to perturb an 

initial laminar flow either by random noise or a combination of specially constructed modes 

[118]. In either case, the transient evolution and inherent thresholds are governed by 

perturbation amplitude and shape. This study computes unsteady solutions for chosen 

𝐻𝐻 & 𝑅𝑅 parameters starting from a zero-velocity initial state which is then allowed to 

naturally evolve and result in a plethora of new flow regimes. The subsequent analysis is 

based on the fluctuating KE of the transverse velocity components described in section 3.7. 

The flow regimes have been simulated for many CTU as described in Chapter 3 and the 

extended period of time in all simulation cases involved in this investigation has been a 

necessary requirement in order for the flow regime to reach converged statistics.  

All simulations in this study have been conducted on a domain of 8𝜋 × 2 × 2 to aid in fully 

resolving the instabilities which develop within the flow. Early simulations, were conducted 

on a domain of 4𝜋 × 2 × 2, but as can be seen from Figure 15, this preliminary domain 

length  shows only one detachment from the side wall, thus not giving a full representation of 

the flow regime. By increasing the domain length to 8𝜋 in the x – stream wise direction also 

confirmed that the periodicity of the side wall instabilities remained intact as Figure 15 

demonstrates. 
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Figure 15. The side-wall instabilities for Re = 1000, Ha = 100 obtained with (a) 1283 and (b) 

2563 resolutions, in addition to stretching coefficients 𝐴𝑦 = 2.5 and 𝐴𝑧 = 2.5 

 

The smaller domain resulted in a premature appearance of jet detachment from the side walls. 

This is typical for certain combinations of flow and geometry parameters. For example, short 

domain essentially cuts off large wave length perturbations, which is clearly demonstrated in 

Fig. 16. As a result, the KE of perturbation will be different for long or short domains, as the 

longer domains can accommodate longer-wave perturbations. Additionally, the KE within the 

longer domain may stagnate for longer periods of time before it begins to propagate down the 

scale and populate smaller eddies.  
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FIGURE 16. The full stream-wise velocity 𝑞𝑥 in the (x, y)-mid-plane at z = 0 with the jet 

detachments at Re = 1700 and Ha = 100 for computational domains of length 𝐿𝑥 = 4𝜋 (a) 

and 𝐿𝑥 = 8𝜋 (b). Magnetic field is perpendicular to the (x,  y) plane and the flow direction is 

from left to right. 

 

4.2. Variation of 𝑹𝑹 at 𝑯𝑯 = 𝟏𝟏𝟏.  
 

With each moderate 𝐻𝐻 value, i.e. 𝐻𝐻 = 100, 200, 300 the target value for each Re value 

was pre-determined as a single shot regime, as explained in section 4.1. By adopting this 

approach, initial parameters were immediately determined and the flow regime developed 

with the magnetic field applied from the outset. To determine at what point flow had reached 

a steady state, the procedure set out in chapter 3 was applied. Over time, the results of each 

KE investigation, described in section 3.7 and Fig 12 deemed the simulation to have reached 

a steady state. Table 1 demonstrates a small sample of CTU and real time values for 

converged statistics to be attained in Ha = 100 and varying Re simulations.  
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Table 1 
Hartmann No Reynolds No M CTU CPU Hours Days 

100 500 5 Mil 8,960 85,106 57 
 1000 4.7 Mil 8,521 82,843 52 
 1500 4.1 Mil 3,482 31,126 27 
 2000 4.4 Mil 3764 34,128 29 
 3000 6.7 Mil 5,361 51,120 44 
 4000 7.1 Mil 5,696 31,520 41 
 5000 5.6 Mil 4,520 38,976 42 
 10000 5.3 Mil 3,216 16,368 28 

   

TABLE 1. The time taken for each individual simulation, as well as time steps, CPU hours 

and the real time taken for the flow regimes to reach a steady state at 𝐻𝐻 = 100.  

 

The flow regimes which will now be discussed further until section 4.8 is reached, will 

demonstrate new forms of instabilities located near the side walls parallel to the external 

magnetic field. The initial parameters for each separate simulation were set with a fixed Ha 

and Re value from the outset. As in other MHD studies, the presence of any time dependant 

fluctuation can be confirmed by measuring the KE of all three components of velocity. In Fig 

17 the first increase or transitional phase in all three components of KE is associated with the 

first linearly unstable modes which were predicted by Ting et al. [85]. The second, more 

distinctive transitional phase can be further associated with the instability, involving partial 

jet detachment from the side wall. The pronounced spikes in all three components suggest the 

transition from one regime to the next, albeit the greatest transition can be undoubtedly seen 

in the 𝑞𝑥2 component at t = 500 and 4500. 

 

 

  

 

FIGURE 17. The temporal evolution of all three transverse velocity components, 𝑞𝑥2, 𝑞𝑦2 and 

𝑞𝑧2, for Ha = 100, Re = 3000. Transitional phases from initial unstable modes through to 

multiple side wall jet detachment are clearly highlighted with corresponding ellipsis. 
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The small scale instabilities near the side walls at the first transitional phase, which were 

predicted by Ting et al [85] and are viewed to exhibit anisotropy in the vertical z – direction, 

especially pronounced near the Hartmann walls. This can be viewed by the region negative 

𝜆2, the second largest eigenvalue of the symmetric tensor 𝐶𝑖,𝑖 = 𝑆𝑖,𝑖2 + 𝛺𝑖,𝑖2 . Where 𝑆𝑖,𝑖 and 

𝛺𝑖,𝑖 are the symmetric and anti-symmetric parts of the velocity gradient tensor 𝜕𝑖𝑞𝑖 [119]. 

The geometry of the developed anisotropic instabilities resembles a columnar structure, 

arranged in an almost parallel, periodic formation, comprising of clockwise (CW) and 

counter clockwise (CCW) rotating vortices travelling downstream in the x - direction. The 

CCW vortices can be observed slightly closer to the core of the flow, while the CW vortices 

tend to say closer to the side walls. These structures are now commonly referred to as Ting 

and Walker vortices (TW) [85]. An example of these side wall instabilities can be seen in 

Figure 18 for a low Re value, i.e.  𝑅𝑅 = 500. 

 

 

 

 

 

 

FIGURE 18. Appearance of Ting-Walker vortices in the MHD side wall jet region for Hunts 

flow using DNS for Ha = 100, Re = 500. Streamlines are shown in the (x, y) mid-plane on the 

left and the iso-surfaces of the second eigenvalue of tensor 𝜆2  𝐶𝑖,𝑖 = 𝑆𝑖,𝑖2 + 𝛺𝑖,𝑖2  on the right 

 

Since their discovery, these small columnar structures have been consistently observed at 

low-Re regimes and are viewed as the first stage of an unstable MHD flow. Even though TW 

vortices are present within a MHD flow, their inherent KE is so low, i.e. KE ~ 0.033%  in 

comparison to the total KE within the entire flow regime, that they do not have any 

significant impact on integral flow patterns, i.e. walls stresses 𝜏𝑤 and total friction coefficient 

𝐶𝑓. In the context of this investigation, TW vortices have been present in all differing Ha and 

Re flow regimes, i.e. 𝐻𝐻 = 100, 200, 300, 800 & 2,000, 500 ≤ 𝑅𝑅 ≤ 20,000, thus we can 



92 
 

conclusively state that TW vortices are a common feature within a Hunt’s flows study at 

these parameters. A particularly new feature should be noted at this present time in that as 𝐻𝐻 

is increased, the appearance and structure of the TW vortices alters. The structures appear to 

become elongated in the x – stream-wise direction, close to the side walls of the duct. This 

can clearly be seen within Fig 19 and this phenomenon will be re-visited in Chapter 5. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

FIGURE 19. Instantaneous snap shots of Ting Walker vortices at different Ha values, i.e. Ha 

= 100, 300 and 2000 in the (x- y) mid-plane z = 0, flow from left to right. The same iso-

surfaces are displayed here as in Fig 18 although here we shown them in 2-D . The Re value 

is fixed at Re = 2,000. Flow is from left to right. 
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The presence of TW vortices for a range of different 𝐻𝐻 & 𝑅𝑅 parameters at the beginning of 

each simulation further confirmed the results from previous studies. Although in prior 

investigations, the stretching of the TW vortices in the 𝑈𝑥 direction had not been noticed. 

Before progressing, it has to be noted that the TW vortices were only observed at the 

beginning of each simulation. Now, re-visiting 𝐻𝐻 = 100, we increase velocity from 

𝑅𝑅 = 500 to 𝑅𝑅 = 1000. In doing so, an interesting and rather unusual flow regime is 

produced. We observe the initial TW vortices beginning to dissipate and eventually disappear 

completely after only 100 CTU, exhibiting a relatively un-perturbed laminar flow regime. 

This can be seen in Figure. 20 as a sharp drop in all three components of KE. 

 

 

 

 

 

 

 

 

 

Figure 20. Time evolution of three components of the full scale kinetic energy, 𝑄𝑡𝑣𝑡 = 𝑞𝑥2 +

𝑞𝑦2 + 𝑞𝑧2. Re = 1300, Ha =100. 

 

However, this situation alters through additional temporal development and new instabilities 

develop at the side walls, replacing the earlier TW vortices. The new instabilities are initially 

very similar in structure to TW vortices, but as they develop, they become much larger, both 

in size and KE. In fact, concerning inherent KE, the new structures contribute approximately 

0.1% of the total KE within the flow, which in direct comparison to the KE exhibited by the 
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TW is almost three times as large and associated with the stream-wise velocity component, 

𝑞𝑥. The newly developed structures are elongated in the stream-wise direction and once fully 

developed occupy 60 – 80% of the total flow domain (see Fig. 21). They are seen to follow 

the same pattern for increasing values of 𝐻𝐻, although as 𝐻𝐻 is increased to greater levels, 

the new structures develop at a much faster rate. Evidence of the appearance of these larger 

structures have also been observed in purely hydrodynamic flows [118, 126]. Once these 

larger structures have developed, they remain for the full duration of the simulation. 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

FIGURE 21. Temporal distribution of the full scale KE, 𝑄𝑡𝑣𝑡 = 𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2 . Here we see 

the development of new instabilities located near the side walls in the (x, y) mid-plane z = 0 

for Ha = 100, Re = 1,300.  
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4.3. Pike Teeth. 
 Progressing through to Re = 1400, there is again a further unusual development near the side 

walls. Additional new structures develop in the form of small-scale CW & CCW rotating 

vortices, located within the new larger vortices found at 1000 ≤ 𝑅𝑅 ≤ 1,300. Upon initial 

inspection of the new smaller structures, there are a few remarkable insights. As can be seen 

in Figure. 22, they are very small structures, elongated in the vertical direction, travelling 

along the x - stream-wise direction, Their structure closely resembles that of “pike teeth”, 

staggered in a periodic arrangement along each side wall in respect to the mid-plane 

symmetry z = 0. In order to verify that the pike teeth are not numerical artefacts, an additional 

investigation was undertaken at a greater grid resolution of 2048 × 3842. Even at this 

resolution, the pike teeth structures remained. 

 

 

 

 

 

 

 

 

FIGURE 22. 3-Dimensional representation of iso-surfaces of the second eigenvalue 𝜆2 at Ha 

= 100, Re = 1,300. The new larger instabilities demonstrate a CCW (dark grey) & CW (light 

grey) formation close to the side walls. “pike teeth”, elongated in the z-direction can be seen 

housed within the new unstable structures. 

 

Since these in bedded small structures arose when the simulation was initiated from a 

turbulent flow state, they are not numerical artefacts. Therefore upon analysing the structures 

on a more deeper level, it was uncovered that the KE contained within them is approximately 

two times smaller than that found in the new temporally evolved larger instabilities observed 

Pike teeth 
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at 𝑅𝑅 ≤ 1300, contributing 0.05% of the total KE within the flow, slightly greater than the 

contribution given by TW vortices as demonstrated in Table 2. However, the specific 

distribution of KE over the velocity component changes. The stream-wise 𝑞𝑥 component is 

still dominating, but the energy associated with the vertical 𝑞𝑧 component increases by a 

factor of two, producing strong anisotropy in the vertical direction, demonstrated via the 

transvers velocity component of KE 𝑞𝑡 = 𝑞𝑧/𝑞𝑦, again in Table 2.  

 

Table 2 

Re 𝒒/𝑸𝒕𝒕𝒕 𝒒𝒕/𝑸𝒕𝒕𝒕 𝒒𝒚/𝒒 𝒒𝒛/𝒒 𝒒/𝑸𝒕𝒕𝒕 𝒒𝒕/𝑸𝒕𝒕𝒕 𝒒𝒚/𝒒 𝒒𝒛/𝒒 
Incremental Simulations                                      Decremental Simulations 

300 Laminar 2.8% 0.45% 13.7% 2.4% 
500 0.033% 0.0081% 11.0% 13.5% 6.3% 1.2% 16.1% 2.9% 
1000 0.10% 0.0125% 4.0% 18.0% 9.5% 2.1% 18.0% 4.0% 
1400 0.05% 0.0110% 4.0% 18.0% Not Performed 
2000 10.0% 2.7% 19.0% 8.0% Same as Incremental Run 
5000 3.5% 1.5% 17.0% 26.0% Same as Incremental Run 

 

Table 2. TKE of velocity perturbations relative to the total kinetic energy of the flow 𝑄𝑡𝑣𝑡 for 

different velocity components. Listed are the TKE 𝑞 = 〈 𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2 〉 and transverse part 

𝑞𝑡 = 𝑞𝑦 + 𝑞𝑧, where 𝑞𝑦 = 〈 𝑞𝑦2 〉 and 𝑞𝑧 =  〈 𝑞𝑧2 〉  which taken from the hysteresis results. 

The brackets 〈〉  represent volume averaging and 𝑞𝑥 is without mean flow. 

 

In other words, the “pike teeth” can be viewed as being quiet strong in amplitude, but short in 

physical size in the z - direction. The first appearance of the “pike teeth”, is seen at Ha = 100, 

Re = 1400 and CTU~240. Once the pike teeth set into the flow regime, they persist until the 

simulation has completed (see Figure 23). At 𝑅𝑅 = 1,500, the “pike teeth” do not disappear, 

but develop at an accelerated rate, stretching even further in the 𝑧-direction, demonstrating 

the same alternating behaviour as described at Re = 1,400. At 𝑅𝑅 ≥ 1,550  there is no data to 

support the observation of “pike teeth” further, therefore concluding that they only appearing 

in a finite Re range, i.e. 1400 ≤ 𝑅𝑅 ≤ 1550. Beyond Re = 1550 a different type of instability 

is observed. It can be viewed then that given their appearance, within such a small Re range, 

in addition to their gradual increase in their KE, that “pike teeth” maybe viewed as a catalyst 
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or nuclei for a new subsequent flow regime, namely partial jet detachment from the side 

walls. 

 

 

 

 

 

 

FIGURE 23. A close instantaneous 2-D snap shot of 𝑄𝑡𝑣𝑡 = 𝑞𝑦 + 𝑞𝑧 only, demonstrating 

“pike teeth” at the outer region of the domain (small red circles) moving in the x-direction at 

𝐻𝐻 = 100,𝑅𝑅 = 1,540 in the (x, y) mid plane at 𝑧 = 0 plane. Flow is from left to right. 

 

Summary 

An MHD transition to turbulence study was undertaken for, 500 ≤ 𝑅𝑅 ≤ 1000 at 𝐻𝐻 =

100, 200, 300, 400, 800, 2000 & 4000. The results have confirmed that TW vortices are 

present at the beginning of all flow regimes in this parameter range. Secondly, at 𝐻𝐻 = 100, 

three separate flow regimes with 𝑅𝑅 = 500, 1000 & 1300 were studied. It was observed that 

between 1,000 ≤ 𝑅𝑅 ≤ 1,300, TW vortices were replaced by larger time dependent flow 

structures near the side walls. These new structures occupying between 60 – 80% of the 

entire fluid domain once fully developed are much larger in both amplitude and physical 

appearance than the TW vortices. Again, for 𝐻𝐻 = 100, Re was further increased in an 

additional five separate simulations, i.e. 1,300 ≤ 𝑅𝑅 ≤ 1,550. In doing so, yet another new 

type of flow structures developed at 𝑅𝑅 = 1430, housed within the proceeding new 

structures found at 1,000 ≤ 𝑅𝑅 ≤ 1,300. These new structures were found to be small in  
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size but not in amplitude. The structure of these in bedded vortices closely resemble  “pike 

teeth” contributing 0.055% of the total KE within the entire targeted system, demonstrating 

increased anisotropy in the vertical z - direction. For 𝑅𝑅 ≥ 1,550 there was no further 

evidence of “pike teeth” persisting within the flow.  

 

4.4. Partial Jet Detachment. 
 

Next, we shall try to establish if the existing and new instabilities described in section 4.2 & 

4.3 have any significant effect on the flow regime, and if so, at what Re value it occurs. With 

this new focus, single investigations were carried out at fixed 𝐻𝐻 = 100 and varying Re 

values, as in previous simulations. As there was no visual evidence of a further development 

occurring prior to 𝑅𝑅 = 1,550, the study was continued from this point. Four separate 

simulations were simultaneously initiated at  𝑅𝑅 = 1600, 1700, 1800 & 1900, each allowed 

to develop for a total of 𝑀 = 505 time steps. In the previous work [122], it has been 

discovered that a new forms of instabilities occurred within a fully conducting duct MHD 

flow at 𝑅𝑅 > 3500, namely jet detachment from the side walls.  The conductivity of duct 

walls in this present study was different but, nevertheless, jet detachment was expected at 

approximately around the same Re. Moreover, as we were attempting to attain at which point, 

if any, jet detachment could occur from the side walls, the range of 𝑅𝑅 stated above where 

initial detachment could possibly occur was reduced considerably, along with computational 

costs.  

After initial results it was determined that at Re = 1700, 1800 and 1900, there was a second 

sharp increase in KE within all three velocity components, especially 𝑞𝑥2, which was not 

observed at Re = 1600, as Figure 24 demonstrates. Upon visually studying the flow, it was 

concluded that jet detachment had indeed occurred at 𝑅𝑅 = 1,700, 1,800 & 1,900, but not at 

𝑅𝑅 = 1,600. Based on this result, ten subsequent simulations were carried out focusing on 

1,600 ≤ 𝑅𝑅 ≤ 1,700 in incremental steps of 𝑅𝑅 = 10. In these additional simulations jet 

detachment was observed in Hunt’s flow for the first time at 𝑅𝑅 ≈ 1,630 (see Figure. 24.) 
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FIGURE 24. Distribution of 𝑞𝑥2 + 𝑞𝑦2𝐻𝑀𝑑 𝑞𝑧2 along the flow with spikes coinciding with 

partial je detachment (top). Full stream-wise velocity 𝑞𝑥 in domain 𝐿𝑥 = 8𝜋 of the first 

appearance of jet detachment in the (x, y)-mid-plane at z = 0 for Ha =100, Re = 1630. Flow is 

from left to right and the magnetic field is perpendicular to the (x, y) plane  

 

As can be clearly seen in Fig. 24, the almost periodic jet detachment itself is dominated by a 

centre turbulent CCW rotation located behind the detachment, towards the core. 

Subsequently, the CCW rotations behind the detachments will prove to be non-trivial. 

However, having now determined the 𝑅𝑅 value at which jet detachment appears for the first 

time, the next step is to investigate why jet detachment occurs at these Ha and Re parameters. 

As mentioned previously, prior studies have observed jet detachment both within an MHD 

environment and a purely hydrodynamic environment [102, 117] but these investigations 

have been unable to produce a definitive description as to why this phenomenon occurs. 

Therefore the investigation into the cause of such a phenomenon is imperative for the 

following reason. The duct flow studied in this work is related to a blanket design in a 

proposed cooling system within a nuclear fusion reactor. An important aim of the blanket is 

to promote fluid mixing thus increasing heat and mass transfer by the flow. 

CTU 
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As the time dependent flows for every simulation in this section are allowed to develop at a 

targeted Ha = 100 value, residing within the inner region of both velocity jets are small, 

periodic CCW vortices, producing small, time dependent instabilities. The first time that 

these small CCW vortices were observed within the context of this study is at 𝑅𝑅 = 500, 

Figure 25, below this Re value, no CCW we seen. The velocity of the fluid in the outer region 

of the jet, near the side walls, has accelerated to a much greater degree compared to the mean 

velocity of the core, thus producing strong shearing effects within these regions.  

 

 

 

FIGURE 25. Full stream-wise velocity 𝑞𝑥 is demonstrated in the (x, y)-mid-plane at 𝑧 = 0. 

Demonstrating small periodic temporal instabilities of CCW vortices (dark blue) at the inner 

region of the velocity jet at 𝐻𝐻 = 100,𝑅𝑅 = 500. Flow from left to right and magnetic 

vector field is perpendicular to the (x, y) plane. 

 

Combining the accelerated fluid within the velocity jet with the slower moving fluid in the 

core initiates a CCW vortex or reverse motion of the fluid in the outer region of the jet. As 

time develops, the now inherent CCW vortices begin to have a retarding and destabilizing 

effect on the side wall velocity jet. By increasing 𝑅𝑅 further, we observe that the small CCW 

vortices develop in both size and amplitude and begin to have a more dramatic effect on the 

fluid within the jet in its entirety.  

We now use the fixed values of Ha = 100, Re = 1700 to demonstrate why jet detachment 

occurs as this give a good representation as to the phenomena. However, the influence, 

structure and behaviour of the CCW vortices in the lee of the detachment changes its 

influence as Re is increased in value. This change in appearance and influence will be 

addressed further on in the study. This is an important stage in development, as not only does 

the CCW vortices effect one side of the fluid domain, but they determine the flow pattern of 

both sides of the duct, as well as the core as Re increases. This detachment process will now 

be demonstrated in six phases, Figure 26. Close to the outer region of the jet, the now more 

localized CCW vortices begin to elongate in the 𝑥-stream wise direction, influencing larger 

y 
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areas of the fluid along the jet than were initially detected at 𝑅𝑅 = 500, Figure 26 (a). As the 

flow evolves, the CCW vortices lose their periodic nature, becoming increasingly more 

localized and isolated. The structures increase in amplitude, fluctuating the fluid in the jet in 

both 𝑦 & 𝑧-directons, Figure 26 (b). The CCW vortices now begin to develop more intensely, 

exhibiting stronger areas of localized reversed fluid, dramatically altering the relatively 

smooth appearance of the jet. This action results in sporadic areas of fluctuating fluid 

velocities Figure 26(c). We now observe their develop into much large structures and in 

doing so, effect a larger proportion of the surface area of the outer fluid within the jet, 

reducing its velocity over a greater area Figure 26 (d). The effects of this time dependent 

development begin to break up the continual high velocity fluid within the jet, lifting the jet 

away from the side wall. This finally results in total separation in the jet fluid, thus giving the 

immature development of partial jet detachment Figure 26 (e). 
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FIGURE 26. (a – e) demonstrates the temporal evolution of jet detachment at Ha = 100, Re = 

1700. : Full stream-wise velocity 𝑞𝑥 is demonstrated in the (x, y)-mid-plane at 𝑧 = 0. 

Cartoons a, c and d show gradually increasing negative values of the flow which are 

responsible for jet detachment as they mature. Cartoons b and e show the same image but at a 

higher grid resolution. The flow is from left to right and the magnetic vector field is 

perpendicular to the (x, y) plane. Cartoon e1 gives a 3 – D representation of the flow 

including the iso-surfaces of 𝜆2, CCW (gold), CW (blue) and e2 shows jet detachment in the 

𝑞𝑥 plane. 

 

It is apparent from the description above that there are two distinct features concerning the jet 

detachment process: the first being that the CCW vortices must cover a large portion of the 

outer jet domain in order to be able to slow it sufficiently, not only retarding the fluid, but 

also  lifting it away from the sidewall. The second feature is that the detachment initially 

occurs one side of the fluid domain, the jet on the adjacent wall is as yet unaffected by the 

original process. It would therefore be natural to postulate that the jet detachment on the 

adjacent wall would occur in the same manner. However, through this investigation it has 

been discovered not to be the case and the proceeding description demonstrates the process in 

which both jets detach from the side walls, exhibiting a much more complex flow regime 

than initially thought, Figure 27. The results of this next descriptive development have 

bought to light an unexpected aspect in the flow, but at this stage it would be injudicious to 

demonstrate this feature, as the present investigation into jet detachment has yet to be fully 

concluded. 
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Continuing from stage Figure 26 (e), the CCW vortices have now lifted the velocity jet away 

from the side wall and have developed in both amplitude and structure Figure 27 (f).  In the 

proceeding stage Figure 27 (g), two distinct features of the entire development can be 

observed. The CCW vortices have reached a peak amplitude, completely lifting and 

separating the fluid within the jet and secondly, due to the complete lift, the geometry of the 

jet changes, tending to curl the jet in the 𝑦-direction. In doing so, the curl of the jet pushes the 

CCW vortices, housed in the lee of the detached jet, towards and through the core of the 

fluid. This striking occurrence makes the developing transitional movement non-trivial as 

now the core of the fluid domain is no longer deemed laminar Figure 27 (h). The CCW 

vortices in the lee of the detachment shed their inherent KE in the same manner as described 

in Kolomogros theory. They move across the fluids core and dissipate in KE as they travel, 

bought about by the Lorentz force attempting to balance the pressure within the system. The 

CCW vortices travel in the y - direction through the core of the fluid towards the adjacent 

side wall. As they near the adjacent wall they interact with the smaller CCW vortices which 

are already housed there, merging together, thus increasing in KE and display the same effect 

on the adjacent jet as the original Figure 27 (i). The combined amplitude of both sets of CCW 

vortices are now again strong enough to slow the adjacent jet down, lifting it too away from 

the side wall. Once this transient phenomenon has concluded , the regime of both detached 

jets persists for the full duration of the simulation, irrelevant of 𝑀 Figure 27 (j). Establishing 

the mechanism which leads to both side wall jets detaching has not been determined in 

previous studies, ether within a hydrodynamic or MHD flow environment. The specific 

method continues until Re = 5000 is reached. At this much higher Re value, the flow regime 

is completely different, but within the parameter 1630 ≤ 𝑅𝑅 ≤ 5000 the transition to a fully 

turbulent jet regime must be carefully described , as various new flow patterns have been 

observed on the way to a full turbulent regime which will now be described in the following 

section   
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FIGURE 27. Here cartoons (f – j) demonstrate the increasing continuing development of the 

CCW of the stream-wise velocity component 𝑞𝑥 in the (x, y)-mid-plane at 𝑧 = 0 through 

completion of side wall jet detachment at  Ha = 100, Re = 1700. Cartoon  (k)  displays  the 

final fluid flow state after 1345 CTU. The flow is from left to right and the magnetic vector 

field is perpendicular to the flow, within flow domain 𝐿𝑥 = 8𝜋. Data points describe the 

fluids velocity at various points in the flow. 

 

4.5. Higher Reynold Numbers. 
A hydrodynamic turbulent regime is well known and verified to commonly occur at 𝑅𝑅 >

3,500. In an MHD regime however, this can be greatly reduced as the magnetic field 

suppresses instabilities within the flow.  It would be interesting then to determine to what 

extent the magnetic field does in fact supress instabilities within such a Hunt’s flow regime 

and moreover, attain whether jet detachment persists when increasing to moderate 𝑅𝑅 values 

up to a maximum of 𝑅𝑅 = 10,000. Therefore to investigate this further, a mirrored approach 

is adhered to as laid out in the section 4.3. The 𝑅𝑅 values therefore for the proceeding 

investigation were now at targeted values Ha = 100, 1,800 ≤ 𝑅𝑅 ≤ 10,000. The simulations 

were allowed to develop until they were determined to have reached their individual steady 

states in the same manner set out in previous sections.  

As the results of this additional investigation began to develop, it was viewed that when 𝑅𝑅 

was increased, an additionally unusually flow pattern developed, both within the side domain 

of the duct and within its core. In section 4.3 it was beheld that jet detachment, once set into 
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the flow regime, did so in a repetitive almost alternating, staggered formation. But now 

however, as we increased 𝑅𝑅 further, their uniformity began to dissipate, forming 

increasingly multiple staggered detachments on either side of the duct domain, Figure 28. 

 

 

 

 

 

 

Figure 28. Full stream-wise velocity 𝑞𝑥 is demonstrated in the (x, y)-mid-plane at 𝑧 =

0,𝑅𝑅 = 1800, Ha = 100. The flow is from left to right. Here we show the increased effect of 

Re as now multiple jet detachments can be clearly seen. Magnetic vector field is 

perpendicular to the flow, within flow domain 𝐿𝑥 = 8𝜋  

  

The increased number of velocity jet detachments are a result of now multiple CCW vortices 

in the outer region of the jet, a result of progressively stronger shearing effects at the side 

walls at Re = 2,000 Figure 29 (a). Now, increasing the value of Re in incremental steps of 

𝑅𝑅 = 1000, we witness the decline in the number of  jet detachments. Instead, the jets 

become increasingly elongated in the x-stream wise direction. Even though this phenomenon 

develops, there persists CCW vortices within the lee of the outer jet region, travelling through 

the core of the flow domain, shedding vortices in the same manner found at lower Re values 

found in section 4.3, Figure 29 (b). At Re = 4000, a distinct difference in the flow regime 

associated within the side wall instabilities is seen. Here it can be viewed that the jet 

detachments begin to lose their, up to this point, characteristic profile, instead they now 

tending to stay closer to the side walls. There is still evidence of continued vortex shedding 

within the core, but this has also reduced in intensity Figure 29 (c). Increased velocity 

fluctuations within the side domains are now more apparent and the core is adopting a more 

laminar profile. The definitive vortex shedding observed at lower values of Re is no longer 

apparent. Moreover, it has been discovered within this study that at a value of 𝑅𝑅 ≥ 5,000 a 
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Hunt’s Flow regime unequivocally displays fully turbulent side wall jets, with an almost 

laminar, stabilized core Figure 29 (d).   
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Figure 29. Here, snap shots of instantaneous distribution of stream wise velocity at 

increasing values of Re. Here are shown they ars shown in (y, z) cross-section at 𝑥 = 𝐿𝑥/2, 

below. Also are shown are the instantaneous corresponding velocity patterns in the (x, y) mid-

plane, z = 0, which are visualized by the full scale stream-wise velocity component, above.  
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Summary 

Side wall jet detachment, within a square duct is not a new phenomenon.  Previous studies 

into the occurrence have been conducted with ducts walls being fully conducting 𝜎𝑤 = ∞, or 

fully insulating 𝜎𝑤 = 0. Little work is available on systems where there is a combination of 

both conducting and insulating walls, i.e. Hunt’s flow. This investigation addresses this issue 

by employing single shot investigations into variable 𝑅𝑅 parameters with a fixed 𝐻𝐻 value. 

As a result, jet detachment within a Hunt’s flow regime has been observed for the first time at 

𝑅𝑅 =  1,630. Additionally, we have determined there resides an immature band of almost 

periodic CCW vortices housed within the outer region of the jet domain at 𝑅𝑅 ~ 500. Once 

𝑅𝑅 is increased, the immature CCW vortices develop in both size and amplitude due to strong 

shearing effects along the outer region of the jet, fluctuating the fluid within this region in the 

y-direction. Ultimately, the temporally evolved CCW vortices partially lift the fluid contained 

within the outer region of the jet away from the side wall in the y-direction. Once partial 

detachment occurs on one side of the domain, the CCW vortices, now housed within the lee 

of the partially detached jet, move through the core of the fluid in the y-direction, shedding 

vortices as they travel, a consequence of the residing Lorentz force. Eventually, after 

approximately 50 CTU, the travelling CCW vortices merge with the adjacent CCW vortices. 

The KE through this merger is increased and the now merged CCW have the same 

destabilizing effect on the fluid contained in the adjacent jet, thus bringing about partial 

detachment here also. Once partial jet detachment sets into the flow, it remains for the entire 

duration of the simulation. As 𝑅𝑅 is further increased, i.e. 1630 ≤ 𝑅𝑅 ≤ 2000, we observe 

multiple partial detachments within the domain, in addition to the detachments losing their 

almost periodic formation found at lower values of Re.  In adopting 𝑅𝑅 ≥ 3000 the partially 

detached jets begin lose their characteristic curved profile in the y-direction and there is no 

evidence of the CCW vortices moving through the core of the flow as they did previously. 

Instead, the jets become increasingly turbulent, tending to stay closer to the side walls, 

although a historical partial detached jet profile can still be seen. Moreover, the fluid 

contained within the core of the fluid domain becomes increasingly laminar. At 𝑅𝑅 ≥ 5,000 

the side wall jets are now completely turbulent, in addition to the flow exhibiting a relatively 

laminar core. The fully turbulent side wall jets continue to exhibit fully turbulent properties at 

𝑅𝑅 ≥ 10,000, the maximum Re value attained in this section of the study.  The results for Ha 



111 
 

= 100 in a Hunt’s flow regime demonstrated here have been recently accepted for publication 

into EPL [130] Appendix A. 

 

4.6. Ha = 200 
 

The investigation carried out within this section is based on the work in a prior study of 

𝐻𝐻 = 200 [102]. In order to attempt to alleviate confusion between the subsequent study and 

the present, past work stated will be referred to as (P) and the present study will be referred to 

as (Q). Instabilities at the side wall region observed in P determined jet detachment at 

𝑅𝑅 ≥ 3,700, albeit the conductivity of the duct walls were different to the present study, Q. 

This section will give a direct comparison between the two investigations, with the view to 

determining as to what extent differing duct conductivity alters the flow regime and at what 

flow parameters. 

Once the present investigation, Q, had begun to develop early results, it gave a surprising 

difference concerning the point at which partial jet detachment was first observed. But before 

the jet detachment comparative can be demonstrated, the study into KE must be first 

demonstrated, as the imminent presence of any time dependent fluctuations within a flow 

regime can be confirmed by measuring the three components of KE, i.e. 𝑞𝑥, 𝑞𝑦  and 𝑞𝑧. 

Within P, the mean value of the three separate components of velocity are viewed as a 

function of 𝑅𝑅. From the results documented in P [102], it can be clearly viewed that there 

are two transitional phases of instability. The first instability threshold is suggested at 

1000 ≤ 𝑅𝑅 ≤ 2500 and tends to agree with the results found by Ting et al [85]. The second 

instability threshold witnesses a sharp increase in all three components of KE by two orders 

of magnitude and is seen at 𝑅𝑅 ≥ 3500.At this increase, side velocity jets detach themselves 

from the duct walls. The KE component closest to the external magnetic field, 𝑞𝑦, was 

determined to be the weakest component, thus distributing less influence on the mean flow. 

If we now study and compare the three components of KE within this present study, Q, we 

witness a similar instability threshold as in P; in so far as that the sharpest increase in 

intensity is 1000 ≤ 𝑅𝑅 ≤ 2000 within all three components. Therefore confirming previous 

instability threshold ranges. It should be gently reminded that within the threshold limits 

stated above in Q, that there have been three different new flow phenomena: the replacement 
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of TW vortices by new instabilities, pike teeth and jet detachment, making this particular 

transition point in Hunt’s flow development an interesting stage in which to study further.  

The first comparative difference that we find is that within this particular regime Q, we 

observe that jet detachment occurs within this first stage of transition and not within the 

second stage of transition stated in the study of P, a difference of 𝑅𝑅 = 1870. Moreover, as 

Re is increased further, we observe the 𝑞𝑥 component continuing to increase by almost 

another other of magnitude, giving two in total, whilst the 𝑞𝑦 and 𝑞𝑧 components dissipate.  

At 𝑅𝑅 = 3000 the 𝑞𝑥 component begins to sharply drop by one order of magnitude, whilst 𝑞𝑦 

and 𝑞𝑧 becomes constant and increasing respectively. In fact, as can be seen from observing 

Figure 30, the 𝑞𝑥 component can be viewed has having the greatest amount of KE energy 

within all differing Re values. However, 𝑞𝑧 continues to steadily increase between 3000 ≤

𝑅𝑅 ≤ 5000, thus suggesting an anisotropic flow regime. Upon reaching Re = 5,000, all three 

components essentially do not alter up to Re = 10,000. Therefore at 1630 ≤ 𝑅𝑅 ≤ 5000 it 

can be viewed that this is indeed a second transitional phase in flow development, equally as 

important as the first transitional stage described in the previous section. It is important 

because here, within this Re range, jet detachments alter their appearance several times until 

fully turbulent side layers are observed. This result suggests that as in previous work P, there 

are two phases of transition to turbulence, but at different Re values.  An interesting result, as 

once fully turbulent side layers develop in the flow we observe the same flow regime through 

to 𝑅𝑅 = 10000, the maximum Re value used in this section and this can be further observed 

in Figure 30. However, although the side wall jets become increasingly turbulent as Re is 

increased, the opposite effect is occurring within the core of the flow and will be discussed 

next 
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FIGURE 30. Three separate components of KE (𝐸𝑥2), (𝐸𝑦2) & (𝐸𝑧2) are plotted as a 

function of Re (left). Instantaneous snap shot of the full stream-wise velocity 𝑞𝑥 

demonstrated in the (x, y) mid-plane cut at 𝑧 = 0, Ha = 100, Re = 2,000 (right). Grid 

resolution set at 1283 (top) and 2563 (bottom). The flow moving from left to right. Magnetic 

vector field is perpendicular to the flow, within flow domain 𝐿𝑥 = 8𝜋 

 

In addition to the KE within a system, the pressure gradient produced by different flow 

regimes is also an important part of any investigation and is a fundamental concern for any 

proposed system. Within the context of this investigation the pressure gradient is evaluated 

through the force required to deliver the mass flow rate at a constant value, −𝜕𝜕
𝜕𝑥

= 𝑜.̅ The 

analytical calculations for this process do not need to be conducted within the scope of this 

work, as the numerical calculation has been included within the code used. The calculated 

pressure gradient Figure 31, can be represented as a function of several values of 𝑅𝑅. It can 

clearly be seen that as 𝑅𝑅 is increased, the pressure gradient within the system also increases. 

This result ties in with the observation found within the KE investigation and mirrors its 

result somewhat. At approximately the point of where we observe the first transitional phase, 

i.e. jet detachment, we witness the sharpest increase in the pressure gradient. The gradient 

continues to increase, past the second phase of transition through to Re = 10000. By studying 

both Figures 30 and 31 simultaneously, we can determine that the 𝑅𝑅 value which has most 

influence on the stability of the Hunt’s flow regime, at this particular 𝐻𝐻 value is 

approximately within the first transitional phase, i.e. 1,000 ≤ 𝑅𝑅 ≤ 3,000. This is not 

surprising, as the increase in the fluids mean velocity strongly suggests increased stronger 

instability development within the flow. In should be noted also that the increased pressure 
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gradient within the system conversely gives rise to a stronger Lorentz force. As the effects 

within the core of the flow attempts to balance inertia, therefore stronger velocity jets are 

assumed to develop at the side walls compared to the jets found at Ha = 100.  

 

 

 

 

 

 

FIGURE 31.  Distribution of the pressure gradient as a function of 𝑅𝑅 for. Ha = 200, 

1,000 ≤ 𝑅𝑅 ≤ 10,000. 

 

We will now develop the study further to determine whether the comparative results 

demonstrated within the KE and pressure gradient investigation do in fact coincide with the 

two transitional turbulent phases. Also we will demonstrate through Figure 32 (a - e) the 

effect the Lorentz force has on the flow regime.  At Re = 1,000 the flow is essentially laminar 

Figure 32 (a), but as demonstrated In section 4.2, instabilities within the side layers are 

developing in the form of CCW, both at the outer region and within the jet itself. As we have 

already seen from Figures 30 and 31 the greatest increase in all three components of KE and 

pressure gradient can be found at 1,000 ≤ 𝑅𝑅 ≤ 2,000. Within Figure 32 (a) Re = 1000, it is 

clear that the flow is essentially laminar, although side wall jets and two bands of CCW 

vortices can be seen residing, however at this stage there is no jet detachment. At Re = 2,000 

Figure 32(b) there is detachment, but only on one side of the flow domain, At this Re value, 

the movement of the CCW vortices through the core of the flow shown in section 4.1 does 

not occur, demonstrating the effects a stronger magnetic field has on the flow. Additionally, 

the study in P stated jet detachment at a much higher Re value, i.e. 𝑅𝑅 ≥ 3500, a comparative 

difference of 𝑅𝑅 ≈ 1500. Multiple jet detachments however now develop at Re = 3000, 

Figure 32 (c), but coinciding with the increasing pressure gradient and consequently the 

increasing Lorentz force, the core of the flow regime is now exhibiting a more laminar 
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appearance,  the cause thus justifying the suggested predictions of the KE and pressure 

gradient graph. A second stage which can be identified in Figure 32 is the observation of 

multiple detachments from the side walls at approximately Re = 3,000 Figure 32 (c), again as 

is predicted in the Figures 30 and 31. The KE within the system from 5,000 ≤ 𝑅𝑅 ≤ 10,000 

Figure 32 (d and e) is essentially identical, suggesting that the flow at these very different Re 

parameters are very similar. But, this is a surprising phenomenon as the flow regime at Re = 

5,000 is visually noticeably different, still exhibiting jet detachment compared to the fully 

turbulent side wall jets shown at Re = 10,000. 
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FIGURE 32. Transitional states of jet detachments moving towards fully developed turbulent 

side wall jets at Ha = 200, Re = 1,000, 2,000, 3,000, 4,000, 5,000 & 10,000. Instantaneous 

patterns in the (x, y) mid-plane are visualized by the full scale stream-wise velocity 

component. Flow direction is from left to right and the magnetic field vector is perpendicular 

to the (x, y) plane 

 

Taking this study one step further, the natural advancement would be to determine at what Re 

value we have jet detachment at 𝐻𝐻 = 200, having already established the event between 

1,000 ≤ 𝑅𝑅 ≤ 2,000. To this end, four additional simulation were conducted and it was 

determined that jet detachment was initialized between 1,550 < 𝑅𝑅 < 1,600, this can be 

seen in Figure 33. The same CCW vortices housed at the outer region of the jet were again 

responsible for detachment mechanism of both walls. 

 

 

 

 

FIGURE 33. Full stream-wise velocity component  𝑞𝑥 is demonstrated in the (x, y) mid-

plane at z = 0. Jet detachment is witnessed for the first time in a Hunt’s flow regime at Ha = 

200, 1,550 < 𝑅𝑅 < 1600. Vortex shedding is also observed in the lee of the detachment 

(dark blue). Flow is from left to right 

Re = 10000 
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Summary 

Therefore to briefly summaries what has been observed so far in this section: the initial 

graphs in this section Figures 30 & 31, predicted that instabilities within the flow would be 

observed in the temporal mean velocity flow at approximately 1,000 < 𝑅𝑅 < 3,000, thus 

bringing forth instabilities. Having determined the KE and pressure gradient predictions, we 

then progressed to the visual representation of the flow regime in the 𝑥- stream wise direction 

at the z = 0 plane. The observations demonstrated within the graphs, Figures 30 & 31, proved 

to coincide with Figure 32, demonstrating a change in regime from a laminar state to a 

turbulent regime through the occurrence of side wall jet detachments, re-confirming that any 

time dependent fluctuations within a flow regime can be confirmed by measuring the three 

components of KE. By evaluating the results in Q, we can now make a direct comparison to 

the results obtained in P. Within P, a rectangular cross sectional duct was used with a wall 

conductance ratio of 𝑐 = 0.7, which to all sense of purposes exhibits a fully conducting duct. 

Initial conditions comprised of a non-MHD regime, which after temporal evolution, the 

magnetic field was applied, i.e. 𝐻𝐻 was implemented. The results witnessed in P 

demonstrated that the values of 𝑅𝑅 ≪ 1,000 TW vortices were present at the side walls. 

Increasing 2,500 ≤ 𝑅𝑅 ≤ 3,500 P’s study witnessed the three components of velocity 

increase to values between 10−5 to 10−4. Assuming that the stability threshold for P was 

between these 𝑅𝑅 values. At 𝑅𝑅 ≥ 3,700 the study conducted in P witnessed a sharp increase 

in the full scale KE fluctuations, which eventually lead to jet detachment. Jet detachment was 

witnessed for the first time not only at these parameters, but the first time in its entirety.  

The situation however has changed within this present study, Q.  We still witness an 

essentially laminar flow regime 𝑅𝑅 < 1,000, but where this study differs is the stage in 

which instabilities are detected in the KE profile. The values witnessed here show the 

transition to turbulent instabilities at values of 1,000 ≤ 𝑅𝑅 ≤ 3,000. In addition to this, the 

present study has determined that jet detachment from the side walls has occurred at 1,550 ≤

𝑅𝑅 ≤ 1,600, this is almost a 90% difference compared to P’s study. As Re is further 

increased, multiple jet detachments are witnessed, eventually leading to fully turbulent side 

wall jets similar to that observed at Ha = 100. The present study can therefore demonstrate 

the importance and influence that the wall conductance ratio has on the mean velocity profile, 

noticeably the implementation of insulating walls and perfectly conducting Hartmann walls. 

As we have now made direct comparisons to earlier studies in MHD flow, it would be natural 
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to embark on a comparable investigative into one’s own research. We have already 

demonstrated the differing flow instabilities and phenomena for two Ha values, but to give an 

even better, more rounded comparable account, Ha = 300 will be now investigated and a full 

comparison between all three values of Ha will be given. 

 

 

 

4.7.Comparing low to moderate Ha values. 
 

Contained within this section will be the comparative study of three different 𝐻𝐻 values. We 

have already demonstrated the differing flow regimes for 𝐻𝐻 = 100 & 200, therefore rather 

than separately demonstrate an additional 𝐻𝐻 value, we will combine all three values into one 

complete study. The aim of which will be to construct direct comparison between all 

involved. This particularly different approach to this section, one feels, will better 

demonstrate the differing mean flow regimes that each 𝐻𝐻 value brings. The comparative 

will include the previously applied initial conditions set out in the sections which included  

𝐻𝐻 = 100 & 200 and 𝑅𝑅 parameters will also mirror the previous studies within this thesis. 

For the sake of continuity, the temporal flow simulation will be given towards the end of the 

study, first focusing on the inherent vital contributors to a turbulent regime. All comparatives 

will be set into the same graphical results, thus giving the reader an increased dynamic 

pattern in determining the results gained. The values which will be compared in this section 

will be 𝐻𝐻 = 100, 200 & 300, 1,000 ≤ 𝑅𝑅 ≤ 10,000. 

Beginning with the study into the pressure gradient within each regime: the greater the effects 

of 𝑱 × 𝑩, the greater the pressure distribution throughout the flow regime. This can clearly be 

viewed in Figure 34. Interestingly though, as the value of 𝑅𝑅 increases, the pressure within 

each regime begins to dissipate rather sharply at the initial stages, then eases, this is done at 

an almost identical rate for each 𝐻𝐻 value. If by purely studying the Figure 34 alone, we 

would assume that if 𝑅𝑅 was increased even further than is demonstrated here, that the 

pressure gradient contained within all three 𝐻𝐻 values would eventually converge to the same 

𝑅𝑅 value. This situation though is at present beyond the scope of this thesis and should be 

investigated further to see if low-moderated Ha value regimes do in fact converge into the 
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same pressure gradient. If however, assuming that we have the information to make such a 

statement, then this would suggest that the pressure within a system would eventually be the 

same, irrelevant of 𝐻𝐻. At present it can only be determined on an assumption.  

Therefore the pressure gradient within the system is predictably the greatest at the highest 

level of Ha investigated here, as one would expect. We can assume, using the information 

provided Figure 34, and the fact that the Lorentz force is reduced at the side walls because of 

insulation properties, that one would expect to see elongated side velocity jets compare to Ha 

= 100 & 200 velocity profiles in the same x-stream wise direction. By making this initial 

assumption we can plot the differing time and domain averaging velocity profiles as mid-

plane cut in the z = 0 plane, Figure 35. 

 

 

 

 

 

 

  

 

 

 

FIGURE 34. Here we demonstrate the pressure gradient distribution,  𝜕𝑝/𝜕𝑥 for 1000 ≤

𝑅𝑅 ≤ 10000,  Ha = 100 ( blue), 200 (green) and 300 (red) as a function of Re. 
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FIGURE 35. Comparative results for laminar Hunt’s flow for Ha = 100 (red), 200 (green) 

and 300 (blue), Re = 1,000. A basic velocity profile along the y – direction demonstrating the 

effects of the varying strength of the magnetic field on the flow. The resolution in the (y, z) 

plane is 2563points, grid clustering is set by hyperbolic tangent with stretching coefficient 

𝐴𝑦 = 3.0 and 𝐴𝑧 = 3.0 in the y and z directions correspondingly. 

 

Here the visual representation of the jet profile differs to the investigations in 𝐻𝐻 =

100 & 200, in so far that Figure 36 demonstrates the mean velocity profiles as a function of 

Ha, rather than Re. The predicted increase in the length of the velocity jets at Ha = 300 

stipulated earlier can be viewed as being justified. It should also be noted that the width of the 

velocity jets has decreased in size also, due to 𝑱 × 𝑩. Later on in this study will be an in depth 

analysis into the width of velocity jets at differing 𝑁 & 𝑅𝑅 values: to determine whether the 

predicted scaling laws demonstrated in [82] do in fact scale to 𝑁−13. Presently, initial results 

into this particular scaling law are somewhat contradicting. Revisiting Figure 35 we also note 

that the velocity jet on the left hand side of 𝐻𝐻 = 300 is distorted and does not follow the 

same smoother pattern as 𝐻𝐻 = 100 & 200 for the same 𝑅𝑅 = 1000 value. This 

demonstrates the initial evolution of a turbulent regime at  Ha = 300, which would suggest 

that this is the second different observation within this comparative study. The three figures 

on the right Figure 36, all demonstrate a dip in the velocity profile at the base of the outer 

region of the jet. The dips are attributed to the reversed flow in the regime. Therefore if there 

is reversed flow, it strongly suggests CCW vortices and this can evidently be seen in Figures 

36. 
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FIGURE 36. Instantaneous snap shot of comparative velocity profiles for varying values of 

Ha and fixed Re value. We demonstrate mid-plane cuts at x = 0 (left), z = 0 (right). 

 

Ha = 100, Re = 1000 

Ha = 200, Re = 1000 
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Ha = 300, Re = 1000 
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Having now confirmed our initial assumptions, we can progress further to study the KE 

comparatives within the collective regime. As the KE within a system is a by-product of the 

shearing effects within a flow, the rise of therefore demonstrates the developments of 

instabilities. Also, the KE can be used as an indication as to which direction, either x, y or z, 

the strongest vortices travel. To accomplish this study then we will present the three separate 

components of KE, i.e. 𝐸𝑥,𝐸𝑦 & 𝐸𝑧 all as functions of Re. By adopting this approach, it will 

demonstrate the spread of KE throughout the flow regimes as the velocity of the fluid and 

magnetic fields are increased Figure 37. If we take for example component 𝐸𝑦, Figure 37 (b), 

this is particularly interesting due a sharp initial increase in KE for all values of Ha, but once 

the regime achieves  𝑅𝑅 ≥ 2,000, the KE within the regime dissipates. But surprisingly, 

begins to rise again, further suggesting additional instabilities within the flow, reaching a 

peak at 𝑅𝑅 = 5,000 for all 𝐻𝐻 values. The 𝐻𝐻 = 100 regime suddenly drops dramatically 

revisiting 0 again, thus demonstrating no kinetic energy within the regime. This is however a 

little confusing as we already know that at this 𝑅𝑅 value the 𝐻𝐻 = 100 regime witnesses’ 

fully turbulent side wall jets and an essentially laminar core. 𝐻𝐻 = 200 on the other hand has 

a second peak at 𝑅𝑅 = 5000, but the drop in KE here is more gradual, which is what you 

would assume to be the outcome. This begs the question as to why the 𝐻𝐻 = 100 KE regime 

reverts back to 0, knowing from our previous results that at higher values of 𝑅𝑅, we observe a 

fully turbulent regime in the side walls. The two separate components, 𝐸𝑥& 𝐸𝑦 both 

demonstrate a reduction in KE in the flow regimes as we progress past Re = 3,000. This 

indicates that once the flow regime has achieved a fully turbulent state and the Lorentz force 

has damped out large amounts of turbulence within the core of the flow, the KE contained 

within dissipates monotonically. Another interesting observation, through the monotonic 

dissipation, which was too witnessed in Figure 37, was that if the values of Re were 

increased, both 𝐸𝑥 & 𝐸𝑦 components would eventually reach the same Re value, i.e. 

approximately zero. By further postulating that the KE contained within these two particular 

components would indeed tend to zero, then that would indicate that the liquid metal 

contained within the blankets would have the same amount of inherent KE as water in the 

stream-wise and span-wise directions , thus behaving as such. But this is speculation and a 

more detailed, extended Re investigation is required to verify this large assumption. The last 

component 𝐸𝑧, behaves differently for each separate Ha value once past Re = 2,000. Once 

past this Re value all Ha regimes demonstrate anisotropic behaviour, steadily increasing until 

Re = 5,000 is achieved. Ha = 100 then drops sharply, but this would coincide with the fact 
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that at Ha = 100, Re = 5,000, the flow regime is deemed to exhibit fully turbulent side wall 

jets and an essentially laminar core. Therefore the anisotropic vortices at this higher Re value 

would become saturated. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 37. Three components of KE 𝐸𝑥 (a), 𝐸𝑦 (b) & 𝐸𝑧 (c) comparative as a function of 

Re at Ha = 100 (blue), 200 (green) & 300 (red). 

 

4.8. Jet Width  
The thickness of the velocity jet, 𝛿𝑖, produced within a Hunt’s flow regime has historically 

yet to be fully resolved. Within previous studies [82, 102] investigations have been somewhat 

un-decisive, even though a jet thickness scaling law of 𝑁−13 has been presented. Therefore 

there is a certain amount of confusion surrounding this issue. The method for determining 

this elusive parameter stipulated within [82, 102] has included taking measurements from the 

duct wall to a tangent line at the inflection point of the mean velocity profile along the 𝑦 = 0 

a b 

c 
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a 

axis. Within this study, the measurement method of 𝛿𝑖 has been done differently. Instead of 

employing a tangent line applied to the inner region of the jet and calculating the distance 

from the tangent line to the wall, it has been determined that although this method has been 

met with some success, once we enter into flow regimes where we experience fully turbulent 

velocity profiles at higher 𝑅𝑅 values, the method is inadequate. Therefore in order to 

overcome this difficulty, we have derived a method which allows the width measurement to 

alter along the 𝑦 = 0 plane. The reason for this is to allow a certain amount of freedom in 

attaining the point in which the jets, within the entire study, could be optimally measured. 

In addition to the jets being measured within the 𝑦 = 0 plane, Figure 38 (a), an additional 

study was undertaken which include the measurement of the jet in the 𝑧 = 0 plane also, i.e. 

from one Hartmann wall to another Figure 38 (b). This inclusive step has been included to 

enable a more rounded approximation to the theoretical physical appearance to the jet. The 

aim is to determine if scaling laws in the context of this study for Re, Ha & N parameters can 

be found, either confirming previous results, or presenting new findings. 

  

  

 

 

 

 

FIGURE 38. Instantaneous velocity profiles in the x - stream-wise direction at Ha = 100, Re 

= 1000 demonstrating jet measurement method. 

 

This supplementary investigation was conducted via two separate approaches and the data 

required to carry out this additional study was obtained from the observations carried out in 

an extensive hysteresis test and as single shot studies. Full results on the hysteresis tests are 

not included within this work. But once the results of this extensive test have been completed, 

an academic paper will be produced. One believes that by employing two separate methods, it 

would further justify any results that may be achieved. Therefore initially, we studied the jet 

𝑦 = 0 

𝑧 = 0 
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width as a function of Ha in both y & z-directions as single shot studies. Our set parameters 

were Re = 2,000, Ha = 10, 100, 200, 300, 800 and 2,000. As all investigative data was 

collated, converted to log scaling for asymptotic clarity, super imposed onto a linear fit and 

plotted, it was observed that as a function of Ha  there was very little evidence to suggest a 

linear fit, and thus, subsequently a power law between the thickness of the velocity jet in both 

the y & z-directions Figure 39 (a). Upon initial results, a further six studies were carried out 

to determine if the results at Re = 2,000 extended to Re values ranging from 500 ≤ 𝑅𝑅 ≤

10,000, using the same Ha values as before. The results from the additional six Re studies 

also demonstrated that there is very little evidence to suggest a linear fit to the data for a wide 

range of Re values as functions of Ha. The next progressive step forward was to determine 

whether there was some type of linear fit by switching the study and investigating the jet 

width as a function of Re. Therefore, Ha was fixed and the width of the jet plotted against 

500 ≤ 𝑅𝑅 ≤ 10,000. As we have now moved the study to become a function of Re, both the 

increasing and decreasing data gained from the previous hysteresis investigation could now 

be included also and it is this which was studied first. As both increasing and decreasing 

hysteresis data was plotted, results demonstrated that at lower values of Re, i.e. 500 ≤ 𝑅𝑅 ≤

2,000 there again was no real correlation to a linear fit. But within the same data set, at 

higher values of Re, i.e. 2,000 ≤ 𝑅𝑅 ≤ 10,000 the results suggested a good correlation in the 

y-direction, Figure 39 (b). Therefore, the lower Re values were omitted from the study and 

the higher Re values were investigated further. Upon plotting the higher Re values only, an 

essentially clear straight line was observed in the y-direction. In the z-direction, the linear fit 

data is not so convincing, but this is to be expected, as the velocity jets as Re increases 

becomes increasingly turbulent and anisotropic. It can be seen that there is a very good 

correlation between the Re values and the linear fit of both increasing and decreasing data 

sets, Figure 39 (b & c), including single shot investigations. Having established an initial 

visually good fit, it suggested that there was evidence a scaling power law contained within 

the results could be possible, therefore a further analysis was thus conducted. Due the fact 

that we are implementing the width of the jet against Re, 𝑅2 was used to determine its 

variability in the y-direction against the model, in this case the Re values. A small Matlab 

code was thus wrote to achieve this and the results demonstrate a strong argument that the 

power law scales to 𝑅𝑅
1
4 for this particular senerio are presented in Table 3(a). The jet width 

in the z-direction does not conclude to the same result, instead, the results are inconclusive, as 

the average result for a perfect fit is 1.22𝑅𝑅0.0401, this can be viewed in Table 3(b). The 
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investigation was extended to include the data from the single shot investigations and the 

results in both the y & z-directions essentially matched the results found in the hysteresis 

results.   
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FIGURE 39. Here jet width comparisons are plotted as a function of Ha (a) and of Re (b) for 

increasing and decreasing hysteresis data. Plot (c) demonstrates the increase in jet width, 

again as a function of Re in the y-direction.  

 

Table 3(a) Jet thickness as a function of Re in the y plane 

Direction Points Perfect fit 𝑹𝟐 Approx fit 𝑹𝟐 

y-up 6 0.03327R𝑅0.2703 0.9991 0.03988𝑅𝑅0.25 0.9936 

y-up 5 0.03406𝑅𝑅0.2677 0.9984 0.03994𝑅𝑅0.25 0.9941 

y-up 4 0.03337𝑅𝑅0.2700 0.9967 0.03998𝑅𝑅0.25 0.9913 

y-up 3 0.04016𝑅𝑅0.2497 0.9999 0.04005𝑅𝑅0.25 0.9999 

y-down 6 0.03271𝑅𝑅0.2721 0.9984 0.03985𝑅𝑅0.25 0.9919 

y-down 5 0.03039𝑅𝑅0.2803 0.9987 0.03989𝑅𝑅0.25 0.9872 

y-down 4 0.03077𝑅𝑅0.2789 0.9971 0.03996𝑅𝑅0.25 0.9865 

y-down 3 0.02574𝑅𝑅0.2984 0.9999 0.0400𝑅𝑅0.25 0.9736 

 

Table 3(a). Here we demonstrate the thickness of the velocity jet in the y plane from the 

results gained from the hysteresis investigation. The perfect fit column represents actual data 

points. Approximate fit represents a forcing study to determine the correlation against Re. 
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Table 3(b) Jet thickness as a function of Re in the z-plane 

Direction Points Perfect Fit 𝑹𝟐 

z-up 6 1.224𝑅𝑅0.03972 0.9864 

z-up 4 1.224𝑅𝑅0.03974 0.997 

z-up 3 1.22𝑅𝑅0.04013 0.9919 

z-down 6 1.26𝑅𝑅0.03657 0.9919 

z-down 4 1.209𝑅𝑅0.04112 0.993 

z-down 3 1.183𝑅𝑅0.04346 0.9868 

 

Table 3 (b). Represents the jet width in the z plane for increasing data points. The 

approximate forcing procedure has not been conducted here as there is little relevant 

correlation  with Re. 

 

To conclude: the width of the velocity jet within MHD duct flow regimes has been 

historically studied and through earlier investigations [82], have resulted in a scaling power 

law, i.e. 𝑁−13,  which has been regarded as a stable fundamental results for many years within 

the MHD community. This present investigation has been targeted to either confirm these 

prior results, or suggest a new power law based upon a Hunt’s flow regime. From the early 

resulting data achieved by this additional investigation, through a multitude of different 

simulations, there is strong evidence to suggest conflicting results to that stated in earlier 

investigations [82]. 

By implementing an 𝑅2 study, we can conclude that the scaling power law stipulated in this 

study is 𝑅𝑅
1
4  (i.e. 𝑁−14 ).  By approaching the problem from different angles and achieving 

essentially the same concluding results, we can confidently state that the power law given 

here is conclusive for Ha = 100. In order to verify the conclusion even further, additional 

studies have been undertaken at increased Ha values to determine the same law, but as these 

results have yet to be concluded and will not be presented in this work. Once the further 

investigation has been accomplished, the results of which will be published.  
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5. High Hartmann, Ha = 800 & 2000. 
 

Within previous chapters, the investigation into the differing flow regimes of a conducting 

fluid subjected to low externally applied  magnetic fields, i.e. N = 1, 4 and 9 respectively, has 

been extensively conducted. Included within this chapter, we now turn our attention to the 

study of differing flow regimes of a conducting fluid subjected to high external magnetic 

fields, 𝐻𝐻 = 800 & 2000, i.e N = 64 and 400. At these higher Ha parameters we are 

beginning to approach magnetic fields commonly found in nuclear fusion environments, i.e. 

𝐻𝐻 > 4,000. A vital commonality running through this study in its entirety has been the 

strict adherence to identical initial conditions and methodologies, as inherent comparative 

studies could be concluded upon in the full knowledge that all simulations, whether 

employing high or low parameters, would result in a well-rounded comparable 

approximations of fluid flows and transitional phases. The simulations therefore in this 

chapter have again been carried out at a fixed Ha value to a single shot targeted Re number, 

mirroring the methods employed in chapter 4. 

For continuity, we begin with the lower of the two high Ha values, i.e. 𝐻𝐻 = 800, giving a 

full description of the various flow regimes at this parameter, progressing later on through to 

𝐻𝐻 = 2,000. The Re values used at 𝐻𝐻 = 800 are 100 ≤ 𝑅𝑅 ≤ 20,000. At 𝐻𝐻 = 2000 

however we investigate a slightly different range, 500 ≤ 𝑅𝑅 ≤ 10,000. Both Ha values will 

be studied as separate regimes, culminating in a comparison towards the end of the chapter. 

Although we have already witnessed new and interesting flow regimes in previous chapters, 

as we develop this study further, we again observe new and interesting flow regimes. 

However, as we progress it will become evident that there are similarities which can be found 

at lower Ha regimes. 

 

5.1. Ha = 800. 
Throughout the temporal evolution of each flow simulation studied so far, a particular 

structure has demonstrated commonality, the presence of TW vortices at the initial phase. 

Here, at 𝐻𝐻 = 800, we observe TW vortices repeatedly. There is however a striking 

difference in the TW vortices observed at this higher Ha value, compared to those found at 

lower Ha regimes. The TW vortices are still observed close to the side walls, but they now 
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appear to be elongated in the x - direction, Figure 40 (a). This phenomenon cannot be 

attributed to the increase in fluids velocity, as their stretched appearance is observed at the 

lower end of Re values implemented, i.e. 𝑅𝑅 = 100. Therefore, an alternative phenomenon 

must be responsible for their stretched appearance. By increasing the value of Ha, 

consequently, we have increased the MHD interaction within the flow regime, which in turn 

is having a much greater effect on the flow.  

Through completion of the first flow simulation at 𝑅𝑅 = 100, it is evident that now stretched 

TW vortices again quickly disappear after approximately 10 CTU, but unlike the flow 

regimes described in chapter 4, there is no evidence of new instabilities emerging once the 

TW vortices have disappeared. The flow after this short transient period becomes completely 

laminar, exhibiting no instabilities and no side wall velocity jets. The Lorentz force 

completely dominates the regime, Figure 40 (b). By increasing to 𝑅𝑅 = 200,  we again see 

the appearance and disappearance of the stretched TW vortices at the side walls, for 

approximately the same amount of CTU as at Re = 100, but now, we see the re-emergence of 

the same new instabilities found at Ha = 100, 200 & 300. There is however one striking 

difference. At this Re parameter, the new instabilities do not occupy 80% of the flow region, 

instead they predominantly occupy the side walls, perpendicular to the external magnetic 

field and not penetrating the core, which was observed in Chapter 4. This particular regime 

categorically demonstrates the effects of a completely laminar core, bought about by strong 

MHD effects which reside there, i.e. the Lorentz force, Figure 40 (c). No further instabilities 

develop and once this pattern sets in, at approximately 80 CTU, the flow regime does not 

alter through to completion at 540 CTU. At Re = 300 we finally witness the growth of the 

new instabilities proceeding the disappearance of the TW vortices. The new instabilities now 

penetrate the core, occupying approximately 60 – 70% of the domain, similar to that 

witnessed at lower Ha values found in chapter 4. Therefore this suggests that the Lorentz 

force does not have the same influencing effect on the regime at this particular parameter. 

After 100 CTU, the new instabilities have completely spread through the regime and continue 

to fluctuate until the simulation has completed at 520 CTU.   It should also be mentioned at 

this point that small localized areas of CCW vortices reside in the outer region of the jet 

domain which are beginning to influence the fluid within the jet, which results in non-

periodic, infrequent partial jet detachment, different in appearance to that found at lower Ha 

values. However, the detachments which do occur do not follow the same pattern found at Ha 

= 100. Here the CCW vortices do not travel through the core, instead they only effect the side 
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wall jets where they initially reside. A completely different phenomenon bought about by the 

increased presence of the Lorentz force, Figure 40 (e )    
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FIGURE 40. Snapshots of the flow from left to right at the plane, z = 0. The fluctuating 

components of kinetic energy 𝑞 =< 𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2 > are demonstrated at Ha = 800 (a) Re = 

100, (b) Re = 200, (c) Re = 300, (d) Re = 400. 𝑈𝑥 is demonstrated at Re = 400 in its entirety at 

(e) and closer at (f).  

Emphasis at this point should be put onto the term partial, as at this Re value, the fluid within 

the jet has not fully lifted away from the side wall and there is no total separation of the flow 

within the jet domain, Figure 40 (f). Increasing slightly to 𝑅𝑅 = 500, the CCW vortices at 

each side wall have increased in KE, lifting the jet away from the side wall, resulting in total 

separation of the fluid within the jet, the characteristic observed at Ha = 100, Figure 41 (a - 

b).  Here however, at this higher Ha value the method of jet detachment differs to that 

observed at lower Ha values. The CCW vortices movement through the core of the flow, 

interacting with the adjacent CCW vortices, seen lower Ha values is not observed. The 

method now has changed somewhat; Instead, the CCW develop separately at each side wall 

without moving through the core Figure 41. The same phenomenon which was observed for 

partial jet detachment at Re = 400 This phenomenon can only be adhered to the strong effects 

that the Lorentz force has on the flow, totally inhibiting the movement of the CCW through 

the core, keeping them close to the side walls. We may conclude then, that the jet 

detachments observed at Ha = 800 and within the range of 100 ≤ 𝑅𝑅 ≤ 500 are totally 

decoupled, exhibiting thin, turbulent side wall jets detachments and an essentially laminar 

core. 

The transitional phases of temporal flow development at Ha = 800, 500 ≤ 𝑅𝑅 ≤ 1800 do not 

alter dramatically to that which was just described at 100 ≤ 𝑅𝑅 ≤ 500, but as Re = 2000 is 

f 
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reached an additionally interesting development occurs: a slower CW vortex is observed 

underneath the jet at the point of fluid separation. Throughout the entire investigation, this is 

the first time that a CW vortex has been observed within such an area. 

 

 

 

 

 

 

 

 

 

FIGURE 41. Contours of velocity component 𝑈𝑥 moving from left to right in the (x, y) mid-

plane at z = 0 at Ha = 800, Re = 500. CCW vortices (dark blue) tend to stay closer to the side 

walls, without moving through the core. 

 

Moreover, we now have a regime where there are multiple jet detachments, adjacent to each 

other in an almost periodic formation, similar to the regimes demonstrated at lower Ha values 

in Chapter 4 Figure 42 (a). Again, the multiple detachments have been the result of the 

intense, localized CCW vortices at the outer jet region, but like the regimes at 100 ≤ 𝑅𝑅 ≤

500, the CCW vortices have not moved through the core of the flow.  At the point where the 

jet totally detaches itself from the side wall we have already stated that there is a CW vortex 

underneath the detachment, but also there is another dramatic observation. As can be seen in 

Figure 42 (b) at the point of fluid separation, the leading edges of the jets change their 

characteristic representation. In other words they become increasingly turbulent, exhibiting 

additional instabilities.  At Re = 10000 the velocity jets have lost their parallel, periodic 

formation found at Re = 2000, however they continue to demonstrate turbulence at their 

leading edge and through the entire length of their separated domain. By focusing in on their 

inherent structure it can be clearly seen that there are pairs of CCW vortices rotating around 

each other in a CW rotation (need to put a figure in showing this).  The CW rotating vortex 

x 

y 
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seen underneath the leading edge of the jet detachment at Re = 2000 is also seen at Re = 

10000 but there is still separated jet detachment at the comparative Re = 10,000 value with 

regions of slower CW vortices at the leading edge, Figure 42 (b). It is a common occurrence 

so far at this Ha value that the CCW vortices responsible for jet detachment do not move 

through the core of the flow due to the increased Lorentz force and at Re = 10000 this is also 

the same. Instead they stay increasingly closer to the side walls, elongating in the x - 

direction, Figure 42 (b). This results in an increased laminar core in the y – direction. 

Progressing through the Re = 20000, the highest Re value studied, jet formation at the leading 

edge is becoming increasingly turbulent and the jets themselves are becoming increasingly 

elongated in the x – direction and their width in the y – direction has decreased. As can be 

clearly seen at the bottom of Figure 43 (c), there are distinct CW rotating vortices underneath 

the leading edge of the jet. 
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FIGURE 42. Full stream velocity 𝑈𝑥 is shown in the (x, y) mid-plane cut at z = 0 for (a) Re = 

2000, (b) Re =10,000 & (c) Re = 20000, Ha = 800. Flow is from left to right. (c) shows pin 

point fluid velocities at various areas in the flow. 

 

As well as the visual representation of the flow regime extensively demonstrated above, the 

three components of KE contained within each differing flow regime  must be analysed to 

confirm the amplitude of the inherent vortices and the transitional phases of the flow. This 

additional study will be done as a comparative investigation at the end of this chapter. 

 

 

5.2. Ha = 2000 
By studying the flow regime at the highest Ha value within this entire investigation, we are 

beginning to approach the realistic working environment set within a thermo nuclear fusion 

reactor. Therefore this particular sub-section will be of particularly interests if we are to 

determine the Hunt’s Flow regime as a proposed liquid metal blanket cooling system for 

nuclear fusion reactor environments. 

We begin the study at the benchmark Re value employed almost throughout the entire 

investigation, 𝑅𝑅 = 500. Immediately, as with other differing flow regimes investigated in 

this study, TW vortices are present at the initial temporal evolution of the regime. In fact, 

throughout the remainder of this 𝐻𝐻 = 2,000 study, TW vortices have been present at all Re 

values at the initial stage for every simulation. It can be postulated that within this particular 

Hunt’s flow study, in its entirety, TW vortices are essentially a common feature and 

contribute to the first transitional phase to a turbulent regime. This investigation has proved 

this to be an accurate statement. However, we have also discovered that the transition to 

turbulence enters different transitional phases which are highly dependant upon the value of 

Re and  Ha, thus the Lorentz force Therefore it can be suggested that TW vortices are 

regarded as the first onset to a turbulent regime, subjected to a combination of critical Ha and 

Re values.  The range at which Re was studied in this chapter mirrors that set out in Chapter 

4. The decision for ensuring 𝑅𝑅 ≤ 10000 was mainly due to computational costs, in addition 

to keeping strict consistency policies for post processing the other flow parameters.  
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For the moment one will remain with TW vortices as new additional instabilities have been 

observed at their outer region at simulation parameters 𝐻𝐻 = 2000, Re = 500. After only 

approximately 5 – 10 CTU, the TW vortices columnar structure appears to be stretched in the 

x-stream-wise direction Figure 43 (a), similar to their formation found at Ha = 800. Within 

this particular regime though, as we approach 30 CTU, two small additional periodic rows of  

CCW vortices are seen at the outer region of the TW vortices, similar to the structures found 

at Ha = 100, Re = 1450, i.e. pike teeth. These new instabilities remain in the outer region of 

the TW vortices for approximately 40 CTU before the KE contained within the regime 

increases amplitude and spreads throughout the flow occupying 80 – 90% of the domain.  

The development of the KE here almost mirrors that to what was observed in chapter 4. The 

second appearance of the small additional CCW vortices in between the transitional phases 

further iterates the suggestion that they could in fact be the catalyst to intensify the KE 

contained within the TW vortices, eventually being responsible for the KE spreading through 

the entire duct domain, Figure 43 (b - c).  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 43. Close snap shots of  𝑞𝑡 = 𝑞𝑦2 + 𝑞𝑧2 in the z = 0 plane, Ha = 2,000, Re = 500. 

Demonstrated is the stretched appearance of the TW vortices (a) and the temporal evolution 

of the new instabilities (red) spreading through the duct domain (b) & (c). 

 

At this particular Ha value, partial jet detachment, the emphasis again on partial, occurs at 

the lowest Re value we have investigated, 𝑅𝑅 = 500. It is observed again that the CCW 
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vortices are the main instigators for reducing the velocity of the fluid within the jet, but they 

exhibit a different behaviour than their turbulent appearance observed at 𝐻𝐻 = 800 for the 

same Re value: in so far as they are now small periodic structures located at each side wall, in 

an almost parallel formation. Although the CCW vortices have retarded the fluid within the 

jet, as of this point they are not sufficiently strong enough both in size and amplitude to cause 

flow separation within the jet, thus not fully detaching the jet from the side walls. Therefore 

at 𝐻𝐻 = 2000, 𝑅𝑅 = 500, we confirm that there is partial, but not full jet detachment Figure 

44.  The core of the flow has been completely laminarized by the strong Lorentz force which 

resides there. 

 

 

 

 

 

 

 

FIGURE 44. A close up snap shot of velocity 𝑈𝑥 in the mid-plane z = 0, fluid flow is from 

left to right. The CCW vortices (dark blue) are shown not to fully separate the velocity jet 

(pink) at Re = 500, Ha = 2,000. 

 

The flow regime alters however as Re increases to 𝑅𝑅 = 1,000. The temporally evolved 

CCW vortices retain their periodic formation for the time being, Figure 45 (a) and have 

developed to cover extended areas of the fluid within the jet. As the flow develops over time, 

the extended CCW vortices cause flow separation within the fluid of the jet, thus fully lifting 

the jet away from the side walls. But yet again, the CCW vortices do not move through the 

core of the flow and only develop as each separate side wall. At 𝐻𝐻 = 2000,𝑅𝑅 = 1000 we 

can now confirm that we have full jet detachment from the side walls. In section 5.1 we 

demonstrated that at Ha = 800, a small CW vortex was found underneath the leading edge of 

the jet detachment and stated that this was the first time that this CW vortex had been 
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observed. At this higher Ha value, we again see the same CW vortex underneath the point of 

jet detachment Figure 45 (a). In fact, the CW vortex is inherent to all Re values studied at this 

high Ha value, but as will be demonstrated later, the CW vortex has an increasingly turbulent 

effect on the leading edge of the jet, similar in manner to the turbulent effect shown at Ha = 

800. Progressing to 𝑅𝑅 = 3,000 a different flow regime temporally evolves: interestingly the 

periodic, almost parallel CCW vortices found previously have now bunched together in 

groups of approximately fourteen smaller separate entities in an alternative formation at the 

side walls.  At approximately 100 CTU, the unusual alternating formation sets into the flow 

and remains for the full duration of the simulation Figure 45 (b). By studying the KE 

contained within each individual vortex, it has been found that there is a slight incremental 

build up, beginning with the leading partial detachment through to the last in the series, 

Figure45 (c) as the fluctuating transverse velocity component is 𝑞𝑡 is measured. The flow 

behind the last partial detachment demonstrates short periods of laminaization which can be 

visually seen within Figure 45 (c) and through measuring the fluctuating velocity component 

𝑞𝑥2. Once this alternating bunching pattern sets in, it continues through to completion. It must 

be noted that this is the only Ha and Re values that demonstrate this unusual pattern.  Thus 

the jet detachments at Re = 3,000 can now be characterised as train detachment, with the 

length comparable to the computational domain. The reason as to why we have this particular 

new train detachment flow regime is still unknown and requires further investigation.  

The flow regime at 𝑅𝑅 = 4,000 observes a change once more Figure 45 (d). If however we 

briefly remind ourselves of previous flow regimes by reverting back to lower levels of 

𝐻𝐻 & 𝑅𝑅, jet detachment is seen to take a curved, almost smooth geometry as it leaves the 

side wall and moves in the y – direction towards the core. At 𝑅𝑅 = 4,000, Ha = 2,000 

however, the leading edge of the detachment has altered, exhibiting the same turbulent 

appearance found at Ha = 800, even though full detachment is still observed Figure 45 (d). 

By focusing our attention upon this leading edge, we begin to see a brake up of the fluid 

within the jet, a resultant of small areas of increased CW and CCW vortices, Figure 45 (e). 

Moreover, underneath the leading edge, a CCW is present, which is different to the CW 

vortex found at Ha = 800 Figure 45 (e) . It can be postulated that the presence of the CCW 

vortex underneath the leading edge aids the turbulence within this region Figure 45 (f). The 

same leading edge turbulent regime can also be observed at 𝑅𝑅 = 5,000 & 10,000.  
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Progressing to the final and maximum Re parameter used at this Ha value, i.e. Re = 10,000, 

the grouping of the CCW vortices seen at Re = 3,000 & 4,000 have disappeared, replaced by 

a flow regime exhibiting an ordered periodic formation again, witnessed at lower Re values 

Figure 45 (g). Partial detachment is attained, but not full detachment. It should be noted at 

this point that throughout the entire Ha = 2,000 study, there was not a single CCW vortex that 

moved through the core of the flow. In fact, the core of the flow remained essentially laminar 

throughout. Therefore the CCW vortices have achieved partial and full jet detachment in a 

different manner to that observed in Chapter 4.  
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FIGURE 45. Full stream velocity 𝑈𝑥 is demonstrated in the (x, y) mid-plane at z = 0 for a, b, 

d, e, f, g. Also c demonstrates 𝑞𝑡.Here (a) Re = 1,000, (b & c) Re = 3,000, (d, e & f) Re = 

4,000 and (g) Re = 10,000, Ha = 2,000. Data displayed in (e) and (f) describes the pinpoint 

fluid velocities underneath and on top of the partial jet detachment. 
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5.3. Comparison 

In order to gain a deeper understanding of the flow regimes described in sub-section 5.1 & 

5.2, a direct comparison between the two different Ha values will now be presented. 

Comparative plots will be displayed, analysed and conclusions drawn. 

We begin for the sake of continuity once more with the pressure gradient. Over the course of 

the investigation, as a whole, the effects of 𝑱 × 𝑩 have been seen to increase along with 

increasing Ha. Therefore one can consider the Lorentz force to be a major contributor to the 

pressure gradient in an MHD flow regime.. When the flow is relatively slow, i.e. at lower 

values of Re, the flow is dominated by the Lorentz force and there is a noticeably large 

pressure gradient in both Ha regimes, even more so at Ha = 2,000. As the flow velocity 

increases, the pressure gradient also begins to increase, demonstrating the increasing effects 

of inertia. The greatest difference in the pressure gradient observed is 188%, at Ha = 800, 

500 ≤ 𝑅𝑅 ≤ 3,000, for the same Re values but for Ha = 2,000 we have 177%, which 

coincides with the second transitional phase to turbulence, i.e. jet detachment.  However, 

upon further investigation of the pressure gradients Figure 46 (a) can be somewhat 

misleading, as the difference between the pressure gradient of the two regimes is only 19% 

over the total investigation. To explain this further, over the entire Ha = 800 study, the 

pressure gradient increase from 500 ≤ 𝑅𝑅 ≤ 10,000 is 394% and over the same Re range for 

Ha = 2,000 we have an increase of 378%. At the third transitional phase, were both regimes 

have reached a stage were fully turbulent side wall jets and an essentially laminar core are 

observed, the pressure gradient in both regimes has diminished in comparison to the second 

transitional phase. Also, as with the study in Chapter 4, the trend of the graph suggests that at 

greater Re values than studied here, the two comparative regimes would converge to the same 

point, i.e. zero, meaning that the importance of the Lorentz force diminishes. This again 

suggests that as the Ha and Re parameters increase, the MHD fluid regimes inside the duct 

would behave in the same manner as water.  

Moving onto the KE comparisons within both flows, we will first examine the three separate 

components of KE as a function of Re, then consolidate to give a final more rounded picture. 

As KE results from the work done by a combination of pressure and shear forces, a reduction 

of which suggests a decrease in the magnetic energy due to the effect of the Lorentz force. 

Additionally, as stated in chapter 4, by studying this phenomenon, we are also able to 

determine the flows transitional phases into a turbulent regime, if there is indeed one. 
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Therefore beginning with 𝑞𝑥2 at Ha = 2000, Figure 46 (b), we observe three transitional 

phases. The first phase occurs at the point at which partial jet detachment is found, between 

Re = 500 – 1000, here partial jet detachment resides in an almost periodic staggered 

formation at each side wall. As the fluid increases in velocity, the CCW vortices in the lee of 

the detachment eventually lift the jet away from the side wall to give full jet detachment. It 

should be noted that the CCW vortices do not move through the core of the flow.  The 

dramatic increase in KE between Re = 1000 - 3000 is in direct comparison to the grouping 

together of fourteen smaller partial jet detachments.  The grouping obviously displays much 

more KE and is the second transition phase to turbulence. At values Re = 3000 - 5000 the 

flow gradually moves into its third and final phase of transition were the Lorentz force is 

much stronger, almost laaminarizing the core of the flow and giving fully turbulent side wall 

jets. Subsequent to the regime at Re = 5000, the KE in the flow alters very little, but never the 

less, continues to drop. In direct comparison, Ha = 800, there is again three transitional 

phases which coincide with the visual flow development demonstrated in section 5.1, at Re = 

500. At this Re value there is already partial jet detachment at the walls, previously seen in 

Figure 40 (f), but interestingly, as the regime moves into its second transitional phase, the KE 

drops as full detachment occurs and then begins to rise slightly, before moving into its final 

third transitional phase where we see an almost fully turbulent side wall jet regime. The KE 

comparison of the two 𝑞𝑥2 regimes at Re = 3000 demonstrates a difference of 69%, thus 

suggesting a weaker Lorentz force and a much more turbulent regime at this Re parameter at 

Ha = 2000.The first transitional phases in both regimes demonstrate an increase in KE as the 

flows develop from partial jet detachment to full jet detachment. The second phase observes a 

drop in the KE in both regimes, especially within the Ha = 2000 regime as it drops to almost 

the same level as the initial transitional phase. Once both regimes have reached the point 

where they display fully turbulent side wall jets, the KE within the 𝑞𝑦2 component continues 

to drop or remains essentially stable, through and into the third and final transitional phase. 

Interestingly, as both Ha regime hit Re = 10000 they basically demonstrate the same inherent 

KE, suggesting that the Lorentz force exerts the same effect on the flow irrelevant of Ha. 

Although at present this conclusion cannot be conclusively drawn without further study into 

other Ha values, it does show some evidence to this effect.  The last and certainly not the 

least component studied, 𝑞𝑧2, clearly demonstrates an increasingly anisotropic regime,  

especially at Ha = 2000, Figure 46 (d). It should be noted also that the 𝑞𝑧2 component is the 

only component which increases throughout the entire high Ha investigation, further 



143 
 

demonstrating that the vortices within the regime become increasingly anisotropic as the Re 

values are increased.  

Now that we have examined the three separate components of KE and the way in which they 

determine the transitional phases of the higher Ha flow regimes, we are now able to combine 

all three to components to demonstrate the full scale KE across the entire duct domain within 

the two separate Ha regimes Figure 47. As is clearly seen, the full scale KE is at it’s highest 

at the lower values of Re, which coincides with the point in which we have a transition from 

partial to full jet detachment. Both regimes exhibit a reduction in energy as Re = 2,000 is 

approached. Within the Ha = 800 regime the KE continues to decrease gradually, the same 

however cannot be said for Ha = 2,000. At the second transition phase, Re = 2,000, there is a 

sharp increase in KE again, which continues to rise until Re = 4,000 is reached, the regime 

subsequently then decreases monotonically to its lowest value at Re = 10,000. This is not 

surprising, due to the fact that at Re = 10,000, a turbulent flow regime is observed within the 

side wall jet region. The decrease of KE is clearly the result of the growing importance of the 

Reynolds stresses as Re values increase in addition to the Lorentz force. The full scale KE 

plot clearly demonstrates that this latter phenomenon clearly damps out turbulent fluctuations 

in both regimes. 
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FIGURE 46. Here we demonstrate the comparative graphs at Ha = 800 & 2,000 as a 

function of Re for (a) ∂p
∂x

 and three components of KE (b) q𝑥2 , (c) 𝑞𝑦2 and (d) 𝑞𝑧2.  

 

 

 

 

 

 

FIGURE 47. Full scale KE comparison for Ha = 800 & 2000 as a function of Re. 

 

This next step forward, now that the KE study was complete, is to determine whether there is 

indeed a difference in the velocity profiles of the two Ha values at Re = 500 and Re = 5000. 

As is evident from Figure 48 (a - b), the jets are much more pronounced along the side walls 

of the duct at Ha = 2,000 within both Re values investigated in 𝑞𝑥. In addition to this, there is 

a much stronger reversed flow for Ha = 2,000 at the lower Re parameter, i.e. Re = 500, Figure 

48 (a). This demonstrates that the CCW vortices, which are housed within this region, have a 

stronger effect on the flow regime, which has been observed when jets partially detach. As 

the regime is increased to Re = 2000 two opposite effects occur: the jets decrease in both  𝑞𝑥 

c d 
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& 𝑞𝑦, the jets at Ha = 800 increase in the 𝑞𝑦 and decrease in the 𝑞𝑥. Demonstrating increased 

thickness in the side wall jets, which further suggests increased instabilities housed within, 

hence their increased width. The velocity jet at Ha = 2,000 however have become 

increasingly thinner, displaying slight turbulence within their region. Both Figure 48 (a - b) 

demonstrate the differing effects that the Lorentz force and inertia has on the different flow 

regimes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 48. Mid plane cut at z = 0 of 𝑞𝑥 velocity component for (a) Re = 500 and (b) Re = 

5000. Ha = 800 (red), Ha = 2,000 (blue). 
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Summary 

Large nuclear fusion reactors operate within very hostile environments, where intense 

magnetic fields can operate in excess of eight Tesla. Therefore it is of paramount importance 

that flow simulations mirror, as much as possible, these harsh environments in order for 

liquid metal blankets to be realized as real contenders for the proposed cooling system of a 

fusion reactor. Contained within this chapter there has been an investigation into the flow of 

fluid travelling through a duct at high Ha values, one of which is close to the magnetic field 

strength observed in fusion reactor environments. At higher values of Ha, it is quite evident 

that the flow regimes differ to that observed at lower Ha parameters. This is to be expected, 

as the increase in Ha brings with it an increase in the MHD interactions within the regimes, 

i.e. 𝑱 × 𝑩. It is interesting however to observe the increased effect that the Lorentz force has 

on the regimes, dominating large areas of the flow from the core out towards the side walls. 

The increased Lorentz force damps extended areas of turbulent flow within the duct thus 

exhibiting an essentially laminar core. The first evidence of this is the stretched appearance 

the TW vortices. Thinner side wall jets have been observed as Ha is increased along with a 

more intense reverse flow near the outer region of the high velocity jet. An additionally 

interesting difference between the high and low Ha values is the way in which jet detachment 

occurs. At lower values of Ha, the CCW vortices housed at the outer region of the jet, move 

through the core of the flow regime, thus resulting in a turbulent core. At higher values of Ha 

however, the CCW vortices are still responsible for slowing the jet down and lifting it away 

from the side walls, but transitional movement of the CCW vortices is not observed in either 

regime, tending to stay closer to the side walls. We can postulate that this scenario can only 

be determined by the strong MHD effects inherent at higher Ha values. However, this is yet 

to be confirmed and requires a much more in depth analysis as to the extent in which the 

Lorentz force has on a Hunt’s flow regime. Due to the fact that the core of the flow is 

subjected to an almost full laminarzation, heat and mass transfer at these high Ha parameters 

would be extremely limited. 

Equally interesting is the behaviour of the pressure gradient at these high parameters. 

Initially, there is quiet a substantial decrease in the pressure gradient across the entire domain 

at the beginning of both Ha regimes, but as Re is progressively increased to Re = 10,000, the 

pressure reduces and tends towards zero, although this assumption is un-validated at the 

present moment as higher Re values need to be studied at these fixed Ha parameters. What is 
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most interesting about this phenomenon is that we have seen strong Lorentz force effects 

damping out turbulent fluctuations within larger areas of the core. The combined MHD 

effects, inherent of higher Re and Ha values, In addition to the decreasing pressure gradient 

observed in both systems leads to the assumption that the KE in both flow regimes, within the 

context of these parameters investigated, behave very similar to a flow which is 

hydrodynamic and non-conducting, similar to water, This suggestion is quiet contradictory as 

a hydrodynamic flow at these Re values is well known to be fully turbulent But at present 

these are purely assumptions and the clarification of such requires much further investigation.     
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6. Low Hartmann, Ha = 10. 
It is well defined that in purely hydrodynamic laminar flow regime between solid walls, the 

velocity profile is parabolic for low values of Re Figure 49 (a). Additionally, as Re 

progressively increases in a purely hydrodynamic flow, we could expect to observe an 

increasingly turbulent flow regime Figure 49 (b). However, if an electrically conducting fluid 

traverses through the same solid walls, subjected to an externally applied magnetic field, the 

effects of the Lorentz force, specified by the component of the electrical current 

perpendicular to the magnetic field: 𝒇𝑳 = 𝑱 × 𝑩 alters the appearance of the flow in the duct. 

The altercation arises as the momentum balance is established between the pressure gradient 

and 𝑱 × 𝑩, exhibiting a velocity profile commonly referred to as the M-profile. Briefly, we 

remind ourselves that at lower values of Ha, viscous forces dominate electromagnetic forces. 

Naturally then, at this low Ha value used within this chapter, we would expect to observe a 

flow where the effects of the Lorentz force would be minimal. The question therefore one 

would ask is “At what point, if any, would one expect to see a  turbulent flow within a Hunt’s 

flow regime at such a low Ha value ?”. The remainder of this Chapter will attempt to answer 

this question by giving a progressive, visual in depth representation of Hunt’s flow as Ha is 

fixed at 𝐻𝐻 = 10 and Re increases in value 100 ≤ 𝑅𝑅 ≤ 20,000. Initial conditions and 

methodologies mirror those set out in previous Chapters 4 & 5. 

 

 

 

 

 

 

 

FIGURE 49. Instantaneous velocity profiles of a hydrodynamic flow in the x-direction. (a) 

Ha = 0, Re = 1,000, (b) Ha = 0, Re = 2,000. 
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Therefore, if we begin our investigation at the lowest value of Re studied in this Chapter, i.e. 

𝑅𝑅 = 100, we immediately observe TW vortices present again at the side walls. With other 

values of Ha studied within the context of this research, it has been demonstrated that as the 

flow temporally evolves the TW vortices disappear to be replaced with new forms of 

instabilities. Now however, at Ha = 10, this is not the case. The TW vortices instead of 

disappearing to be replaced, they do not disappear instead they temporally evolve, loosing 

their columnar appearance. Their inherent KE also develops in magnitude and distributes 

itself throughout the entire domain. By continuing along the vein of temporal evolution, the 

presence of the Lorentz force, although being much weaker at this Ha parameter, begins to 

exert its effects throughout the core of the flow. Gradually, the Lorentz force damps out the 

fluctuating KE, leaving a fully laminar state Figure 50 (a – c). As we progress through to 

higher Re numbers, we discover that this described flow pattern at 𝐻𝐻 = 10 is a common 

occurrence at the beginning of all simulations at these Ha and Re values, even at 𝑅𝑅 = 1,000. 

Based on the fact that we are observing a conducting fluid subjected to an external magnetic 

field, the velocity profile which one would predict would be a laminar,  M-shaped profile, 

predictably it is exactly this which is observed, Figure 50 (a). The flows velocity profile 

however  maybe misleading, because if we compare the velocity profile of 𝐻𝐻 = 10 against 

the velocity profiles of 𝐻𝐻 = 100 & 2,000, we gain a true perspective of the effects that 

𝑱 × 𝑩 has on the differing regimes Figure 51 (a). As is apparent, the effect of the Lorentz 

force on a low Ha value within the context of this study is minimal. Moreover, the Lorentz 

force temporally evolves the flow into the characteristic M-profile over a longer period of 

time compared to higher Ha values. At high Ha values, the M-shaped velocity profile is 

instantaneous at the initial point of all simulations within this study, here however at 𝐻𝐻 =

10, it is not. The effects of the Lorentz force gradually spreads out from within the core of the 

domain, temporally evolving out towards the side wall in the y-direction. This gradual effect 

Lorentz force can be observed through to 𝑅𝑅 = 10,000. At 𝑅𝑅 = 20,000, the effects of 

𝑱 × 𝑩 have very little effect on the flow and only weak velocity jets are observed at this high 

Re parameter Figure 52. 

Throughout this investigation so far, the transitional phases to a fully turbulent regime within 

Hunt’s flow has been the main focus of study. Now however, we will investigate laminar 

Hunt’s flow, or to be more precise, the transitional phase from  initial conditions to a laminar, 

homogeneous regime. The reason for this alternative is that at these low Ha values, most if 
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not all flow regimes, within the context of this chapter, demonstrate a temporally evolving 

laminar flow. Instabilities throughout the domain occur at the beginning of the simulations, 

the Lorentz force and viscous forces, thus tend to damp out turbulence as the flow is allowed 

to develop. Therefore the most interesting phenomena in the developing regime is whilst 

under this transitional period. Therefore, flow regimes under the widely regarded threshold 

for non-MHD turbulent regimes, i.e. 𝑅𝑅 = 1,200 will now be studied further. It must be 

stressed at this point that all previous and subsequent flow investigations within this chapter 

are at a fixed 𝐻𝐻 = 10.   

 

  

 

  

 FIGURE 50. Mid-plane cut at z = 0 of the temporal damping of 𝑞𝑡 = 𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2. (a) 

Demonstrates the presence of TW vortices (b) exhibits the temporal evolution of 𝑞𝑡 and (c) 

shows the laminarization of the flow at the end of the simulation.   
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FIGURE 51.  (a) represents a typically 3-D predicted instantaneous velocity profile at Ha = 

10, Re = 100. Within (b) we see the 2-D mid-plane cuts at x = 0 (left) z = 0 (right) for the 

comparative of Ha = 10, 100 & 2,000. 

 

 

 

 

 

 

 

 

 

 

FIGURE 52. 3-D instantaneous velocity representation of the weak effects that 𝒇𝑳 = 𝑱 × 𝑩 

has on a flow regime at Ha = 10, Re = 20,000. 

 

The description of the subsequent flow regimes will now range from 100 ≤ 𝑅𝑅 ≤ 1000. 

Under such low parameters, the investigation will demonstrate interesting flow patterns at the 

early stages of temporal development before the effect of 𝑱 × 𝑩 completely laminarizes the 

flow. By commencing the study at 𝑅𝑅 = 100, the KE contained within the TW vortices is 

initially localized, mirroring what is found at higher Ha and Re numbers within this 

investigation. After approximately 30 CTU, the KE begins to spread throughout the entire 

flow domain and continues to do so for a further 15 CTU. As the flow temporally evolves the 
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opposing Lorentz force rapidly supresses the KE fluctuations in the core of the flow, leaving 

an essentially laminar, homogeneous regime in 𝑞𝑥. Interestingly, although the regime is 

classified as laminar, clearly there are instabilities within the flow. This can be confirmed by 

almost periodic patches of, in comparison to the core, high areas of KE close to the side 

walls, suggesting that the instabilities are small vortical structure. By focusing in on the small 

areas of KE, it has been observed that they contain small paired vortices rotating around each 

other in a CW motion Stages of this evolution can be observed in Figure 53 (a – c). It worth 

noting at this point, that the range of the fluctuating KE values at this particular Re is very 

low, i.e. 0.02 ∗ 10−15 − 0.03 ∗ 10−16. Residing between the core and the outer region of the 

jet, a band of fluid is observed in approximately the same region in which the band of CCW 

vortices are witnessed at higher Ha values. The slower velocity band however does not 

contain any CCW vortices at this point and thus no reversed fluid flow is observed travelling 

in the x-direction. Interestingly, in comparison to the entire domain, inclusive of the velocity 

jets and core, the band produces the slowest fluid flow in the entire region, only slightly 

perturbing the fluid within the outer jet in the y & z-direction.  It must be stressed that the 

fluctuations are very weak at this stage, but nevertheless, if we directly compare the velocity 

of the fluid within the jet at the beginning of the regime, to its velocity once the flow has 

laminarized, we can obviously see the combined effects of the Lorentz force and the slower 

band of fluid. The velocity range of the jet therefore is 4.65 – 1.84 units. In fact, this type of 

temporal flow development is also observed at 𝑅𝑅 = 200. As the first two Re numbers 

studied are quite low in value, there is no evidence of reversed flow near the outer region side 

wall jets. Therefore one can be confident in stating that within the context of a Hunt’s flow 

regime, velocity jets are being constructed purely through the effects of the Lorentz force 

spreading through the fluid in the span-wise y-direction.  

 

 

 

 

 

 
a 

x 

y 



153 
 

 

 

 

 

 

 

 

 

 

 

FIGURE 53. (Top to bottom) Here we demonstrate the damping effects that 𝒇𝑳 = 𝑱 × 𝑩 has 

on  𝑞𝑡 = 𝑞𝑦2 + 𝑞𝑧2 at Ha = 10, Re = 100. The bottom image (c), shows that the greatest 

development of  𝑞𝑡 = 𝑞𝑦2 + 𝑞𝑧2 is close to the side walls, housed within the jets. 

 

By increasing to 𝑅𝑅 = 400, there is a defined transitional period within the flow regime as 

the Lorentz force begins to have a greater effect on the flow. The KE within the flow again 

dominates the initial regime, but then temporally dissipates, leaving a homogeneous, laminar 

flow. The range of KE contained within is still very small, but in comparison to the KE at 

𝑅𝑅 = 100 & 200, there has been quiet a large increase, i.e. 9.5 ∗ 10−6 − 5 ∗ 10−7, especially 

within 𝑞𝑥.  Again, a band of slower moving fluid can be clearly defined within the outer 

region of the jet. The temporal evolution of the flow at 𝑅𝑅 = 400, results in the slower band 

of fluid losing its familiar laminar appearance, lifting the outer region of the jet in the y – 

direction.  The slower band of fluid not only influences the outer jet, but effects the jet in its 

entirety, having a negative effect on it’s over all velocity. This transitional period completely 

alters the flow regime and creates a regime which resembles a type of Kelvin-Helmholtz 

instability, Figure 54 (a – c). As the flow temporally evolves further, the Lorentz force damps  
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out the velocity fluctuations and reverts the flow back to a laminar regime after 

approximately 20 CTU .   

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 54. Full stream-wise velocity 𝑞𝑥 in the (x, y) mid-plane at z = 0 for Ha = 10, Re = 

400. The turbulent transitional period is demonstrated, from and initially laminar state (a) 

through to the transition to turbulence (b), through to laminar flow once more (c). Flow is 

from left to right. Data points are displayed of fluid velocities within the flow. 
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Progressing to 𝑅𝑅 = 800 & 1,000, the short transitional phases from laminar, to turbulent, 

through to laminar again become increasingly interesting. To aid in the elimination of 

continuous repetition, both of these higher Re numbers will be studied in unison. The reason 

for this approach is that the flow regime at 𝑅𝑅 = 800 is similar in appearance and behaviour 

to that at 𝑅𝑅 = 1,000.  The range of KE contained within 𝑅𝑅 = 800, 𝑀𝑠     8 ∗ 10−25 − 5 ∗

10−26, the velocity of the fluid within the jets at the beginning of the simulation, i.e. 1 – 10 

CTU is  5.75 units. The concluding jet velocity, once the regime has been subjected to the 

transitional phases, i.e. 50 – 100 CTU is 1.76 units; At 𝑅𝑅 = 1,000,   1.2 ∗ 10−19 − 1 ∗

10−20, initial jet velocity 5.92 units, i.e. 1 – 10 CTU, concluding jet velocity, i.e. 50 – 100 

CTU is 1.75 units. As is evident, the initial and concluding jet velocities from both Re 

regimes are essentially equivalent. Therefore, this suggests that a temporally evolving flow 

regime at these Re parameters are essentially identical and that the Lorentz force has the same 

final effect for both regimes. But the transitional stage of both regimes produces the most 

interesting phenomenon.  

 

The transitional phases at 𝑅𝑅 = 1000 can be demonstrated in four phases Figure 55 (a –d). 

The regime immediately demonstrates the initial effects an opposing Lorentz force has on the 

flow, displaying velocity jets (red) and a reduced velocity core (light blue). Although the 

effects can clearly be seen, the flow is deemed to be laminar Figure 55 (a). In addition to the 

velocity jets, a band of slower moving fluid in the outer region of the jet (dark blue) is also 

clearly defined. Here we observe the flow before its first transitional phase at  approximately 

1 – 10 CTU. As the regime temporally evolves, i.e. 10 – 30 CTU, we see a first transitional 

phase. The band of slower moving fluid located at the outer region of the jet begins to have 

an increasing effect, slowing the fluid contained within the jet, thus lifting it in the y – 

direction and altering the flow into a turbulent regime Figure 55 (b).  In doing so, both the 

jets and the slower fluid lose their characteristic elongated profile and becoming increasingly 

more localized into smaller turbulent regions. The now fully turbulent jets stretch in the y – 

direction, thus producing a turbulent core with isolated areas of slower and faster CW 

rotating vortices, similar to the process in which one observes a Kelvin – Helmholtz 

instability.  The visual process upon first inspection is very similar to the mechanism in 

which the CCW vortices lift the side wall jets described in Chapter 4, but here there are no 
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CCW vortices, this suggests that the slower band of fluid is singularly responsible for the first 

transitional phase in this particular flow development. Progressing further into the temporal 

evolution of the flow, i.e. 30 – 60 CTU, it can clearly be seen that the regime is fully 

turbulent Figure 55 (c). There are distinct, isolated areas of reduced KE in an almost periodic, 

staggered  formation located at the side walls, but also moving through the core. The final 

transitional phase, i.e. 60 – 500 CTU  is a return to a laminar regime once more Figure 55 (d). 

The Lorentz force progressively damps out all turbulent fluctuations within the flow and the 

jets eventually merge once more, becoming the more familiar single entity at each side wall, 

thus reverting the regime back to a homogeneous, laminar flow state.  At this stage all 

fluctuations have been damped out by the Lorentz force. It should be noted that the effect of 

the Lorentz force are  weak in comparison to the flow regimes described in Chapters 4 and 5 

and as a result the velocity jets are much wider in the both the y and z – directions, Figure 56 

(a) and (b). 
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FIGURE 55. Full stream-wise velocity 𝑞𝑥 in the (x, y) mid-plane, at z = 0 for Ha = 10, Re = 

1000. (a), (b) and (c) show pin point fluid velocity within the flow. 

 

At high values of Re, i.e. 10,000 & 20,000 the initial same transient process can be seen as in 

the lower values of Re throughout this chapter. At Re = 10,000 the velocity of the fluid has 

greatly increased, but nevertheless the flow regime still demonstrates very weak damping 

Lorentz force effects, Figure 56 (a - b). At Re = 20,000 Figure 56 (c - d), the highest Re value 

studied.. The fact that the velocity profile exhibits very weak to no side wall velocity jets is a 

surprising result. The MHD effects on the flow regime at this Re parameter, i.e. high fluid 

velocity are negligible.   
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FIGURE 56. Instantaneous velocity profiles of Hunt’s flow in the x-stream wise direction at 

Ha = 10, Re = 10,000 (a) & (b), in addition too Re = 20,000 (c) & (d). 

 

Summary 

Here we have investigated an electrically conducting fluid subjected to a relatively low 

applied external magnetic field. The values employed for this particular smaller investigation 

were 𝐻𝐻 = 10, and 100 ≤ 𝑅𝑅 ≤ 20,000. By taking the entire investigation as a whole, the 

Lorentz force administers a weak effect on the fluid as demonstrated in the cross sectional 

velocity comparison with higher Ha values. Nevertheless, the effects of the Lorentz force are 

strong enough to alter the velocity profile of every Re number studied until Re = 20,000 is 

reached. The question posed at the beginning of this chapter was: “At what point, if any, 

would one expect to see a fully turbulent flow within a Hunt’s flow regime at such a low Ha 

value ?”. Having now conducted the investigation in its entirety, it can be stated with full 

confidence that a fully turbulent flow regime at such a low Ha value occurs at the first 

transition to turbulence phase, approximately, i.e.  10 – 40 CTU for 𝑅𝑅 ≤ 10000. Once the 

regime has reached this temporal phase, it persists for approximately 30 – 60 CTU, which can 

be deemed as quiet a short transitional period. After 60 CTU, the Lorentz force completely 

damps out all turbulent fluctuations in the flow, reverting it back to an essentially laminar 

state. Throughout the small additional study, velocity jets have been present for all flow 

regimes up to and including 𝑅𝑅 = 10000. Due to weaker effect of the Lorentz force at this 

c d 
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Ha value, the velocity jets are much thick in both the y and z – directions and not as 

pronounced in the x – direction, in comparison to higher values of Ha.  When the regime is 

increasing to Re = 20000, the Lorentz force has very little effect on the flow regime and 

essentially the characteristic velocity jets diminish leaving an almost parabolic flow profile, 

closely resembling that of a hydrodynamic profile. A linear stability analysis on Hunt’s flow 

was previously studied at a low Ha value [103] which uncovered a wide variety of 

perturbations, including streaks spreading out from the core towards the duct wall in the y-

direction. Having established the behaviour of Hunt’s flow at even lower values of Ha, it 

would be interesting to conduct a linear stability analysis as an additional investigation to 

determine whether the unstable modes stipulated in [103] are similarly observed at Ha = 10. 

This can be viewed as further work. 
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7. Conclusions and outlook. 

The present investigation was concerned with the transition to turbulence in a particular duct 

configuration known as Hunt’s flow, which has very strong side wall jets. Low, moderate and 

high magnetic fields were considered. The purpose of this study was to understand what 

happens to the side wall jets as the Reynolds number, which characterizes the fluid, is varied. 

For moderate magnetic fields with Ha = 100 - 200 the transition was found to involve a 

number of instabilities and various on-linear effects as the Reynolds number was increased. 

First, at low values of Re the familiar Ting-Walker vortices were reproduced in the side-wall 

jets. These vortices have the characteristic length scale of the Shercliff layer 𝑂(𝐻𝐻−1/2). It is 

important to note that these vortices are weak and thus have a negligible effect on the mixing 

of the flow. It was demonstrated in this study that when Re was increased, these small Ting-

Walker vortices completely disappear, being replaced by new much more energetic, larger 

and thicker vortices which occupy almost all of the duct cross-section. This phenomenon has 

not been observed in any prior study. Increasing Re leads to the emergence of new, more 

energetic vortical structures, “pike-teeth”, which are aligned with the field, and serve as the 

seeds to another phenomenon, jet detachments. The jet detachments from the sidewalls are 

important as they lead to intensive fluid mixing at lower Ha values. Jet detachment is not a 

new phenomenon, but as to what causes it was unknown until this investigation. It was found 

in this study that jet detachments occurs due to large-scale counter rotating vortices which 

appear in the outer region of the jets and lift the higher velocity fluid contained  within the 

jets away from the side wall. This process was extensively investigated and explained in 

chapter 4.  

The detachments at the two sidewalls are not independent: but rather coupled by the counter 

rotating vortices from one jet travelling through the core of the flow and causing a respective 

jet detachment at the opposite wall. But this is only observed at the lower end of the Ha 

parameters used within this study. As Re is increased, an additional new phenomenon 

appears, detachments becomes more irregularly and frequent, leading to multiple jet 

detachments at the side walls. Intuitively, one would expect that the higher the fluids velocity 

the more turbulent the flow becomes. However, this is not the case found in this study, as a 

yet further increase in Re leads to a previously unseen flow regime with a nearly laminar 

core, populated by very weak quasi-two-dimensional vortices and fully turbulent jets. In this 
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flow regime only the fluid near-wall is mixing. Another new result found in this study were 

multiple flow states that can exist for the same values of Re and Ha depending upon initial 

conditions. An intensive investigation into hysteresis-like phenomenon has been performed 

by first gradually increasing Re to a certain value and then reducing it back to its initial value. 

For moderate values of Re the flow was found to return to a state different from the initial one 

that existed at the same Re value: namely, instead of the original Ting Walkers vortices, jet 

detachment was found for a different Re number 

Finally, at high values of Ha the scenario of transition to turbulence was found to be similar 

to that summarised above, but with some essential differences. First of all, the much stronger 

Lorentz force leads to a more laminar core with thinner jets. Secondly, the jet detachments 

that now occur at higher Re are smaller in size and occur more frequent. Next, the large-scale 

vortices that lead to jet detachments in a moderate magnetic field, are now smaller in size and 

are now most probably related to the reversed flow at the outer edge of the jets. This issue 

requires an additional investigation. 

Concerning the outlook and the scope for future work, there are several issues that need to be 

studied. First of all, the dependence of the flow on the initial state is very important. Here 

temporal evolution of the flow has been investigated as the conditions along the flow are 

periodic. What is important is to study the spatial evolution for various entrance and exit 

conditions. These conditions will determine which of the multiple states is realised in 

practice. For example, one state may exist when the flow is enters the magnetic field, but 

another when the flow follows a 90 or 180 degree bend, as in certain blanket designs.  

Another type of flow that needs to be studied is for a duct with finite conductivity of thin 

walls. The reason is that the balance of the fluid carried by the core and the jets strongly 

depends on this. In some cases the finite flow in the core may lead to situations with more 

intensive flow mixing. 

Ultimately, the test for a blanket concept is how efficiently heat and tritium are removed from 

the blanket. Therefore, the final step is to study the non-isothermal flows. At the present 

moment, the rigorous tests that have been carried out on this specific blanket design (Hunt’s 

flow) have demonstrated that it would not be an ideal candidate for use within a nuclear 

fusion reactor environment. The reason for this has been self-evident throughout this 

investigation at higher values of Ha: heat and mass transfer are of paramount importance 

within blanket design and development. Due to the increasingly strong electromagnetic forces 



162 
 

which are present within an MHD flow regime subjected to high magnetic fields, as in a 

fusion reactor. It has been demonstrated through this study that this greatly reduced the 

turbulent nature of the flow within the core, thus severely hindering the turbulent nature of 

the fluid contained within. This in turn, hinders the heat and mass transfer capabilities within 

this particular specific blanket design.  
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Calculating jet width 
 
 
 
% Taking slice at midpoint of data showing  /\___/\ profile 
midpoint=ceil(size(U,2)/2); % find midpoint 
Zslice=Z(midpoint,:)';      % Y positions of slice 
Uslice=U(midpoint,:);       % Values at y positions 
  
% finding maximum of jet on left hand side of slice  /\_   
% storing value (Umax) and location (Umaxlocation) 
[Umax,Umaxlocation]=max( Uslice( 1:midpoint ) );  
  
  
Umidpoint=Umax/2;  % value of U to measure width of jet at (1/2 maximum 
value) 
  
  
u2=find( Uslice(1:Umaxlocation) > Umidpoint,1 );   % finds 1st point where 
value of U is greater than Umidpoint (1/2 maximum value)   (above) 
u1=u2-1;                                        % gets the point just the 
other side of Umidpoint (point before prevous point)     (below) 
u4=find(Uslice(Umaxlocation:midpoint) < Umidpoint,1)+Umaxlocation-1; 
                                                % finds 1st point after the 
maximum where value of U is less than 1/2 maximum value (below) 
u3=u4-1;                                        % gets the point just the 
other side of Umidpoint (point before prevous point)     (above)  
  
ZvalueLHS=interpy(Zslice(u1),Zslice(u2),Uslice(u1),Uslice(u2),Umidpoint); 
    % Interpolates between points either side of Umidpoint on LHS of peak 
to 
    % find Y value at U=1/2 maximum value on LHS of peak 
     
ZvalueRHS=interpy(Zslice(u3),Zslice(u4),Uslice(u3),Uslice(u4),Umidpoint); 
    % Interpolates between points either side of Umidpoint on RHS of peak 
to 
    % find Y value at U=1/2 maximum value on RHS of peak 
  
Zwidth=ZvalueRHS-ZvalueLHS % finds Z width, the distance between Z values 
at U= 1/2 maximum value 
  
% Uslice([u1,u2,u3,u4]) % Displays U value before and after 1/2 maximum 
value 
% Yslice([u1,u2,u3,u4]) % Displays Y values corresponding the the U values 
above 
  
% Taking slice at midpoint of data showing  /''\ profile 
Yslice=Y(:,Umaxlocation); 
Uslice=U(:,Umaxlocation)'; 
  
utemp=find(Uslice > Umidpoint); % finds the locations where U is greater 
than 1/2 maximum value 
u2=utemp(1);        % takes the first of these locations just after U rises 
above 1/2 maximum value 
u1=u2-1;            % find the location just before previous point (last 
point where U is below maximum value on LHS) 
u3=utemp(end);      % takes the last location just before U falls below 1/2 
maximum value 
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u4=u3+1;            % finds location just after previos point (first point 
where U is blow maximum value on RHS) 
  
YvalueLHS=interpy(Yslice(u1),Yslice(u2),Uslice(u1),Uslice(u2),Umidpoint); 
    % Interpolates between points either side of Umidpoint on LHS of peak 
to 
    % find X value at U=1/2 maximum value on LHS of peak 
     
YvalueRHS=interpy(Yslice(u3),Yslice(u4),Uslice(u3),Uslice(u4),Umidpoint); 
    % Interpolates between points either side of Umidpoint on RHS of peak 
to 
    % find X value at U=1/2 maximum value on RHS of peak 
  
Ywidth=YvalueRHS-YvalueLHS % finds Y width, the distance between Y values 
at U= 1/2 maximum value 
 

 

Cross section 𝑽𝒚 & 𝑽𝒛 

 

 
midpoint=ceil(size(U,2)/2); 
figure(4) 
plot(Z(midpoint,:),U(midpoint,:),'-b') 
title ( 'Hunts flow Z axis') 
  
midpoint=ceil(size(U,1)/2); 
figure(5) 
plot(Y(:,midpoint),U(:,midpoint),'-b') 
title ('Hartmann Layer and flat core, Y direction') 
 
 
 
 

Energy Integral 
 
 
% Inputs 
fname=input('Enter file name to look at ( no extension): ','s'); 
columnToUse = input('Enter column number (2 to 6): '); % column of file 
containing the data t plot & integrate 
  
data = load([fname '.oft']);    % This loads the file chosen 
numtimesteps=size(data,1); 
  
npt = input(['Enter number of integratio time steps (max ' 
num2str(numtimesteps) '): '])-1; 
  
% Now this following commands goes and gets the data from the loaded file 
time = data(:,1); % gets the time 
dataFromColumn = data(:,columnToUse);  % this gets the data from the 
desired column 
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% Fix jumps in the time between the runs 
needs_fixing = any(diff(time)<0); 
previousJumps = 0; 
while needs_fixing 
    currentJump = find(diff(time)<0,1); 
    time((currentJump+1):end) = time((currentJump+1):end)+time(currentJump) 
- previousJumps; 
    needs_fixing = any(diff(time)<0); 
    previousJumps = time(currentJump); 
end 
  
% The following plots and calculates the integral 
figure() 
if npt == numtimesteps+1 
plot(time,dataFromColumn,'-b') 
else 
plot(time,dataFromColumn,'-r',time((end-npt):end),dataFromColumn((end-
npt):end),'-b') 
end 
total_integral = trapz(time,dataFromColumn) 
integral_LastPoints = trapz(time((end-npt):end),dataFromColumn((end-
npt):end)) 
%approximate the line height = total integral / time(end) 
%approximate the line height from the last point = integral last point/ 
%time(end)-time(end-npt-1)) 
 
 

 

Hysteresis 

 

%% HYSTERESIS DOWN - get data points 
  
% set up 
figure  % make a new figure 
set(gcf,'name','HYSTERESIS DOWN') % name the figure 
cd('C:\Users\braidenl\Documents\MATLAB\Post_SEPTEMBER_2014_RESULTS\ZEUS 
SIMULATION RUNS\All matlab Information\HYSTERESIS DOWN\7010000_ITS Fin Re 
500') 
load flux.oft % navigate to hysterysis down folder and load flux (for 
finding changes in Hartman number) 
%% Identify changes in Hartman number 
start_point = 3000; % skip begining where system is unstructured 
number_of_jumps = 11; % number of Hartman number values 
  
data = flux(:,3); % use dp/dx to find changes in Hartman number 
  
%%%%%%%%%%% algorith to detect changes n Hartman number %%%%%%%%%%%%%%%%%%% 
% looks for increasngly bigger jumps in dp/dx, and uses the later values 
last_point=data(start_point-1); % intialise point 
max_diff = abs(data(start_point)-data(start_point-1)); % inital diffrence 
between initial points 
jumps_down=[]; % initalise locatons array 
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for ii = start_point:numel(data)% from the start point to the end of the 
data 
    current_point = data(ii); % update current point 
    if abs(current_point-last_point)>max_diff % test if diffrence between 
last point and current point is biggest so far 
        jumps_down(end+1)=ii; % if so store the index 
        max_diff = abs(current_point-last_point); % and update the maximum 
difference  
    end 
    last_point = current_point; % update last point for next iteration 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
jumps_down = jumps_down(end-number_of_jumps+3:end); % ony take last however 
many data points to remove errors from small difference at start of 
algorithm 
jumps_down=[690,1035,jumps_down]; % manually add first points (As hard to 
detect due to system being unstructured) 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% POPUP BOX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% gets file/ column from user and plots 
filename = questdlg('Choose a file - Hysteresys 
Down','File','enrg.oft','flux.oft','tauw.oft','flux.oft'); 
load(filename) 
switch filename 
    case 'enrg.oft' 
        columnNumber= listdlg('promptString','Choose a 
column','name','Column','listString',{'time','Etotal','E''','Ex''','Ey''','
Ez'''},'Selectionmode','single'); 
        plot(enrg(:,columnNumber)) 
    case 'flux.oft' 
        columnNumber = listdlg('promptString','Choose a 
column','name','Column','listString',{'time','flux','dp/dx','Tw'},'Selectio
nmode','single'); 
        plot(flux(:,columnNumber)) 
    case 'tauw.oft' 
        columnNumber = listdlg('promptString','Choose a 
column','name','Column','listString',{'time','Tw','Ty','Tz'},'Selectionmode
','single'); 
        plot(tauw(:,columnNumber)) 
    otherwise 
        error('Problem with options') 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% adds tick marks and labels for Hartman numbers 
Ha = [10:-1:1,0.5]; % genretate decending Hartman numbers 
Ha = num2str(Ha.'); % convert to text 
set(gca,'Xtick',jumps_down,'XtickLabel',Ha) % add labels at locations 
calulated by algorithm earlier 
  
  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% HYSTERESIS UP 
figure 
set(gcf,'name','HYSTERESIS UP') 
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cd('C:\Users\braidenl\Documents\MATLAB\Post_SEPTEMBER_2014_RESULTS\ZEUS 
SIMULATION RUNS\All matlab Information\HYSTERESIS UP\7010000 Re 10000  
complete') 
load flux.oft 
  
%% 
end_point = 1; 
number_of_jumps = 11; % number of jumps from end 
  
data = flux(:,3); 
last_point=data(end); 
max_diff = abs(data(end-1)-data(end)); 
jumps_up=[]; 
  
% algorit as above but works in other direction along x axis 
for ii = numel(data)-1:-1:end_point 
    current_point = data(ii); 
    if abs(current_point-last_point)>max_diff 
        jumps_up(end+1)=ii; 
        max_diff = abs(current_point-last_point); 
    end 
    last_point = current_point; 
end 
  
  
jumps_up = jumps_up(end-number_of_jumps+1:end); 
jumps_up = fliplr(jumps_up);% flip as algoritm was done backwards 
%% 
filename = questdlg('Choose a file - Hysteresys 
Up','File','enrg.oft','flux.oft','tauw.oft','flux.oft'); 
load(filename) 
switch filename 
    case 'enrg.oft' 
        columnNumber= listdlg('promptString','Choose a 
column','name','Column','listString',{'time','Etotal','E''','Ex''','Ey''','
Ez'''},'Selectionmode','single'); 
        plot(enrg(:,columnNumber)) 
    case 'flux.oft' 
        columnNumber = listdlg('promptString','Choose a 
column','name','Column','listString',{'time','flux','dp/dx','Tw'},'Selectio
nmode','single'); 
        plot(flux(:,columnNumber)) 
    case 'tauw.oft' 
        columnNumber = listdlg('promptString','Choose a 
column','name','Column','listString',{'time','Tw','Ty','Tz'},'Selectionmode
','single'); 
        plot(tauw(:,columnNumber)) 
    otherwise 
        error('Problem with options') 
end 
%% 
Ha = [0.5,1:10]; 
Ha = num2str(Ha.');  
set(gca,'Xtick',jumps_up,'XtickLabel',Ha) 
  
cd('C:\Users\braidenl\Documents\MATLAB') % navigate back to 'default' 
directory 
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Velocity Profile 𝑽𝒙, 𝑽𝒚 & 𝑽𝒛 
 

load vel2 
for i=1:129; 
    for j=1:129; 
        Z(i,j)= vel2(j+(i-1)*129,1); 
        Y(i,j)= vel2(j+(i-1)*129,2); 
        U(i,j)= vel2(j+(i-1)*129,3); 
        V(i,j)= vel2(j+(i-1)*129,4); 
        W(i,j)= vel2(j+(i-1)*129,5); 
        dUdY(i,j)= vel2(j+(i-1)*129,6); 
        dUdZ(i,j)= vel2(j+(i-1)*129,7); 
    end 
end 
figure(1) 
mesh(Z,Y,U) 
xlabel('z'),ylabel('y');zlabel('x') 
figure(2) 
mesh(Z,Y,V) 
figure(3) 
mesh(Z,Y,W) 
figure(4) 
mesh(Z,Y,dUdY) 
title('dU/dy') 
figure(5) 
mesh(Z,Y,dUdZ) 
title('dU/dz') 
 
 

Velocity profile Time and Domain averaging at z = 0 

 

load vel0 
  
for i=1:129; 
    for j=1:129; 
        Z(i,j)= vel0(j+(i-1)*129,1); 
        Y(i,j)= vel0(j+(i-1)*129,2); 
        U(i,j)= vel0(j+(i-1)*129,3); 
        V(i,j)= vel0(j+(i-1)*129,4); 
        W(i,j)= vel0(j+(i-1)*129,5); 
        dUdY(i,j)= vel0(j+(i-1)*129,6); 
        dUdZ(i,j)= vel0(j+(i-1)*129,7); 
    end 
end 
figure(1) 
mesh(Z,Y,U) 
xlabel('z'),ylabel('y');zlabel('x'); 
figure(2) 
mesh(Z,Y,V) 
figure(3) 
mesh(Z,Y,W) 
figure(4) 



181 
 

mesh(Z,Y,dUdY) 
title('dU/dy') 
figure(5) 
mesh(Z,Y,dUdZ) 
title('dU/dz') 
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