
Vol.:(0123456789)

Algorithmica
https://doi.org/10.1007/s00453-020-00795-3

1 3

On Structural Parameterizations of the Edge Disjoint Paths
Problem

Robert Ganian1 · Sebastian Ordyniak2  · M. S. Ramanujan3

Received: 30 March 2020 / Accepted: 22 December 2020
© The Author(s) 2021

Abstract
In this paper we revisit the classical edge disjoint paths (EDP) problem, where one
is given an undirected graph G and a set of terminal pairs P and asks whether G
contains a set of pairwise edge-disjoint paths connecting every terminal pair in P.
Our focus lies on structural parameterizations for the problem that allow for effi-
cient (polynomial-time or FPT) algorithms. As our first result, we answer an open
question stated in Fleszar et al. (Proceedings of the ESA, 2016), by showing that
the problem can be solved in polynomial time if the input graph has a feedback ver-
tex set of size one. We also show that EDP parameterized by the treewidth and the
maximum degree of the input graph is fixed-parameter tractable. Having developed
two novel algorithms for EDP using structural restrictions on the input graph, we
then turn our attention towards the augmented graph, i.e., the graph obtained from
the input graph after adding one edge between every terminal pair. In constrast to
the input graph, where EDP is known to remain NP-hard even for treewidth two, a
result by Zhou et al. (Algorithmica 26(1):3--30, 2000) shows that EDP can be solved
in non-uniform polynomial time if the augmented graph has constant treewidth; we
note that the possible improvement of this result to an FPT-algorithm has remained
open since then. We show that this is highly unlikely by establishing the W[1]-hard-
ness of the problem parameterized by the treewidth (and even feedback vertex set)
of the augmented graph. Finally, we develop an FPT-algorithm for EDP by exploit-
ing a novel structural parameter of the augmented graph.

Keywords  Edge disjoint path problem · Feedback vertex set · Treewidth · Fracture
number · Parameterized complexity

A preliminary and shortened version of this paper has been accepted at ISAAC 2017.

 *	 Sebastian Ordyniak
	 sordyniak@gmail.com

1	 Algorithms and Complexity Group, TU Wien, Vienna, Austria
2	 School of Computing, University of Leeds, Leeds, UK
3	 University of Warwick, Coventry, UK

http://orcid.org/0000-0003-1935-651X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00795-3&domain=pdf

	 Algorithmica

1 3

1  Introduction

The Edge Disjoint Paths (EDP) and Node Disjoint Paths (NDP) are fundamental
routing graph problems. In the EDP (NDP) problem the input is a graph G, and
a set P containing k pairs of vertices and the objective is to decide whether there
is a set of k pairwise edge disjoint (respectively vertex disjoint) paths connect-
ing each pair in P. These problems and their optimization versions–MaxEDP and
MaxNDP–have been at the center of numerous results in structural graph theory,
approximation algorithms, and parameterized algorithms [4, 10, 12, 17, 21, 23,
26, 27, 29].

When k is a part of the input, both EDP and NDP are known to be NP-com-
plete [20]. Robertson and Seymour’s seminal work in the Graph Minors pro-
ject [27] provides an O(n3) time algorithm for both problems for every fixed value
of k. In the realm of Parameterized Complexity, their result can be interpreted
as fixed-parameter algorithms for EDP and NDP parameterized by k. Here, one
considers problems associated with a certain numerical parameter k and the cen-
tral question is whether the problem can be solved in time f (k) ⋅ nO(1) where f is
a computable function and n the input size; algorithms with running time of this
form are called FPT-algorithms [5, 7, 13].

While the aforementioned research considered the number of paths to be the
parameter, another line of research investigates the effect of structural parameters
of the input graphs on the complexity of these problems. Fleszar, Mnich, and Spo-
erhase [12] initiated the study of NDP and EDP parameterized by the feedback ver-
tex set number (the size of the smallest feedback vertex set) of the input graph and
showed that EDP remains NP-hard even on graphs with feedback vertex set number
two. Since EDP is known to be polynomial time solvable on forests [17], this left
only the case of feedback vertex set number one open, which they conjectured to be
polynomial time solvable. Our first result is a positive resolution of their conjecture.

Theorem 1  EDP can be solved in time O(|P||V(G)| 5

2) on graphs with feedback ver-
tex set number one.

A key observation behind the polynomial-time algorithm is that an EDP
instance with a feedback vertex set {x} is a yes-instance if and only if, for every
tree T of G − {x} , it is possible to connect all terminal pairs in T either to each
other or to x through pairwise edge disjoint paths in T.The main ingredient of the
algorithm is then a dynamic programming procedure that determines whether this
is indeed possible for a tree T of G − {x}.

Continuing to explore structural parameterizations for the input graph of an EDP
instance, we then show that even though EDP is NP-complete when the input graph
has treewidth two, it becomes fixed-parameter tractable if we additionally parameter-
ize by the maximum degree. There are, in fact, two ways one may attempt to prove
this: via a reduction to NDP (see, e.g., Proposition 1 in a follow-up paper [16]), or
via an explicit dynamic programming algorithm. Here, we use the latter approach,
which has the advantage of yielding a better running time (see Sect. 4).

1 3

Algorithmica	

Theorem 2  EDP is fixed-parameter tractable parameterized by the treewidth and
the maximum degree of the input graph.

Having explored the algorithmic applications of structural restrictions on the input
graph for EDP, we then turn our attention towards similar restrictions on the augmented
graph of an EDP instance (G, P), i.e., the graph obtained from G after adding an edge
between every pair of terminals in P. Whereas EDP is NP-complete even if the input
graph has treewidth at most two [26], it can be solved in non-uniform polynomial time
if the treewidth of the augmented graph is bounded [29]. It has remained open whether
EDP is fixed-parameter tractable parameterized by the treewidth of the augmented
graph; interestingly, this has turned out to be the case for the strongly related multicut
problems [18]. Surprisingly, we show that this is not the case for EDP, by establishing
the W[1]-hardness of the problem parameterized by not only the treewidth but also by
the feedback vertex set number of the augmented graph.

Theorem 3  EDP is w [1]-hard parameterized by the feedback vertex set number of
the augmented graph..

Motivated by this strong negative result, our next aim was to find natural structural
parameterizations for the augmented graph of an EDP instance for which the problem
becomes fixed-parameter tractable. Towards this aim, we introduce the fracture num-
ber, which informally corresponds to the size of a minimum vertex set S such that the
size of every component in the graph minus S is small (has size at most |S|). We show
that EDP is fixed-parameter tractable parameterized by this new parameter.

Theorem 4  EDP is fixed-parameter tractable parameterized by the fracture number
of the augmented graph.

We note that the reduction in [12, Theorem 6] excludes the applicability of the frac-
ture number of the input graph by showing that EDP is NP-complete even for instances
with fracture number at most three. Finally, we complement Theorem 4 by showing
that bounding the number of terminal pairs in each component instead of the its size is
not sufficient to obtain fixed-parameter tractability. Indeed, we show that EDP is NP-
hard even on instances (G, P) where the augmented graph GP has a deletion set D of
size 6 such that every component of GP⧵D contains at most 1 terminal pair. We note
that a parameter similar to the fracture number has recently been used to obtain FPT-
algorithms for Integer Linear Programming [9].

2 � Preliminaries

2.1 � Basic Notation

We use standard terminology for graph theory, see for instance [6]. Given a graph
G, we let V(G) denote its vertex set, E(G) its edge set and by V(E�) the set of vertices

	 Algorithmica

1 3

incident with the edges in E′ , where E� ⊆ E(G) . The (open) neighborhood of a ver-
tex x ∈ V(G) is the set {y ∈ V(G) ∶ xy ∈ E(G)} and is denoted by NG(x) . For a ver-
tex subset X, the neighborhood of X is defined as

⋃
x∈X NG(x)⧵X and denoted by

NG(X) . For a vertex set A, we use G − A to denote the graph obtained from G by
deleting all vertices in A, and we use G[A] to denote the subgraph induced on A, i.e.,
G − (V(G)⧵A) . A forest is a graph without cycles, and a vertex set X is a feedback
vertex set (FVS) if G − X is a forest. We use [i] to denote the set {0, 1,… , i} . The
feedback vertex set number of a graph G, denoted by ���(G) , is the smallest integer k
such that G has a feedback vertex set of size k. We denote by G the underlying undi-
rected graph of a directed graph G.

2.2 � Edge Disjoint Path Problem

Throughout the paper we consider the following problem.

Let (G, P) be an instance of EDP; for brevity, we will sometimes denote a termi-
nal pair {s, t} ∈ P simply as st. For a subgraph H of G, we denote by P(H) the subset
of P containing all sets that have a non-empty intersection with V(H) and for P′ ⊆ P ,
we denote by P̃′ the set

⋃
p∈P� p.

To streamline our presentation, we will assume that each vertex v ∈ V(G) occurs
in at most one terminal pair, each vertex in a terminal pair has degree 1 in G, and
each terminal pair is not adjacent to each other. These assumptions have also been
used in previous works on EDP (such as in the work of Fleszar et al. [12]), and can
be ensured by a simple reduction: we can add a new leaf vertex for terminal, attach
it to the original terminal, and replace the original terminal with the leaf vertex [29].
However, we do remark that the reduction may in fact increase the value of some of
our parameterizations; in Sect. 6 we showcase how this issue can be circumvented
for one of our parameters, notably the fracture number.

Definition 1  [29] The augmented graph of (G, P) is the graph GP obtained from G
by adding edges between each terminal pair, i.e.,

GP = (V(G),E(G) ∪ P).

2.3 � Parameterized Complexity

A parameterized problem P is a subset of �∗ × ℕ for some finite alphabet � .
Let L ⊆ 𝛴∗ be a classical decision problem for a finite alphabet, and let p be a

1 3

Algorithmica	

non-negative integer-valued function defined on �∗ . Then L parameterized by p
denotes the parameterized problem { (x, p(x)) | x ∈ L } where x ∈ �∗ . For a prob-
lem instance (x, k) ∈ �∗ × ℕ we call x the main part and k the parameter. A param-
eterized problem P is fixed-parameter tractable (FPT in short) if a given instance
(x, k) can be solved in time O(f (k) ⋅ p(|x|)) where f is an arbitrary computable func-
tion of k and p is a polynomial function; we call algorithms running in this time
FPT-algorithms.

Parameterized complexity classes are defined with respect to FPT-reducibility.
A parameterized problem P is FPT-reducible to Q if in time f (k) ⋅ |x|O(1) , one can
transform an instance (x, k) of P into an instance (x�, k�) of Q such that (x, k) ∈ P
if and only if (x�, k�) ∈ Q , and k� ≤ g(k) , where f and g are computable functions
depending only on k. Owing to the definition, if P FPT-reduces to Q and Q is fixed-
parameter tractable then P is fixed-parameter tractable as well. Central to param-
eterized complexity is the following hierarchy of complexity classes, defined by the
closure of canonical problems under FPT-reductions:

All inclusions are believed to be strict. In particular, ��� ≠ �[1] under the Expo-
nential Time Hypothesis.

The class �[1] is the analog of �� in parameterized complexity. A major goal in
parameterized complexity is to distinguish between parameterized problems which
are in ��� and those which are �[1]-hard, i.e., those to which every problem in
�[1] is FPT-reducible. There are many problems shown to be complete for �[1] ,
or equivalently �[1]-complete, including the Multi-Colored Clique (MCC) prob-
lem [7]. We refer the reader to the respective monographs [5, 7, 13] for an in-depth
introduction to parameterized complexity.

2.4 � Integer Linear Programming

Our algorithms use an Integer Linear Programming (ILP) subroutine. ILP is a well-
known framework for formulating problems and a powerful tool for the development
of FPT-algorithms for optimization problems.

Definition 2  (p-Variable Integer Linear Programming Optimization) Let
A ∈ ℤ

q×p, b ∈ ℤ
q×1 and c ∈ ℤ

1×p . The task is to find a vector x̄ ∈ ℤ
p×1 which mini-

mizes the objective function cx̄ and satisfies all q inequalities given by A and b, spe-
cifically satisfies A ⋅ x̄ ≥ b . The number of variables p is the parameter.

Lenstra [24] showed that p -ILP, together with its optimization variant p -OPT-
ILP (defined above), are in FPT. His running time was subsequently improved by
Kannan [19] and Frank and Tardos [14] (see also [11]).

Proposition 1  [11, 14, 19, 24] p -OPT-ILP can be solved using O(p2.5p+o(p) ⋅ L)
arithmetic operations in space polynomial in L, where L is the number of bits in the
input.

��� ⊆ �[1] ⊆ �[2] ⊆ ⋯ ⊆ ��.

	 Algorithmica

1 3

2.5 � Treewidth

A tree-decomposition of a graph G = (V ,E) is a pair (T , {Bt ∶ t ∈ V(T)}) where
Bt ⊆ V for every t ∈ V(T) and T is a tree such that:

(1)	 for each edge uv ∈ E , there is a t ∈ V(T) such that {u, v} ⊆ Bt , and
(2)	 for each vertex v ∈ V  , T[{ t ∈ V(T) | v ∈ Bt }] is a non-empty (connected) tree.

The width of a tree-decomposition is maxt∈V(T) |Bt| − 1 . The treewidth [22] of G is
the minimum width taken over all tree-decompositions of G and it is denoted by
��(G) . We call the elements of V(T) nodes and Bt bags.

While it is possible to compute the treewidth exactly using an FPT-algorithm [1],
the asymptotically best running time is achieved by using the recent state-of-the-art
5-approximation algorithm of Bodlaender et al. [2].

Fact 1  [2] There exists an algorithm which, given an n-vertex graph G and an inte-
ger k, in time 2O(k)

⋅ n either outputs a tree-decomposition of G of width at most
5k + 4 and O(n) nodes, or correctly determines that ��(G) > k.

It is well known that, for every clique over Z ⊆ V(G) in G, it holds that every tree-
decomposition of G contains an element Bt such that Z ⊆ Bt [22]. Furthermore, if t′
separates a node t from another node t′′ in T, then Bt′ separates Bt⧵Bt′ from Bt′′⧵Bt′
in G [22]; this inseparability property will be useful in some of our later proofs. A
tree-decomposition (T ,Bt ∶ t ∈ V(T)) of a graph G is nice if the following condi-
tions hold:

1.	 T is rooted at a node r such that |Br| = �.
2.	 Every node of T has at most two children.
3.	 If a node t of T has two children t1 and t2 , then Bt = Bt1

= Bt2
 ; in that case we call

t a join node.
4.	 If a node t of T has exactly one child t′ , then exactly one of the following holds:

(a)	 |Bt| = |Bt� | + 1 and Bt′ ⊂ Bt ; in that case we call t an introduce node.
(b)	 |Bt| = |Bt� | − 1 and Bt ⊂ Bt′ ; in that case we call t a forget node.

5.	 If a node t of T is a leaf, then |Bt| = 1 ; we call these leaf nodes.

The main advantage of nice tree-decompositions is that they allow the design of
much more transparent dynamic programming algorithms, since one only needs to
deal with four specific types of nodes. It is well known (and easy to see) that for
every fixed k, given a tree-decomposition of a graph G = (V ,E) of width at most
k and with O(|V|) nodes, one can construct in linear time a nice tree-decompo-
sition of G with O(|V|) nodes and width at most k [3]. Given a node t in T, we
let Yt be the set of all vertices contained in the bags of the subtree rooted at t, i.e.,
Yt = Bt ∪

⋃
p is separated from the root by t Bp.

1 3

Algorithmica	

3 � Closing the Gap on Graphs of Feedback Vertex Number One

In this section we develop a polynomial-time algorithm for EDP restricted to
graphs with feedback vertex set number one. We refer to this particular variant
as Simple Edge Disjoint Paths (SEDP): given an EDP instance (G, P) and a FVS
X = {x} , solve (G, P).

 Additionally to our standard assumptions about EDP (given in Sect. 2.2), we will
assume that: (1) every neighbor of x in G is a leaf in G − X , (2) x is not a terminal,
i.e., x ∉ P̃ , and (3) every tree T in G − X is rooted in a vertex r that is not a terminal.
Property (1) can be ensured by an additional leaf vertex l to any non-leaf neighbor
n of x, removing the edge {n, x} and adding the edge {l, x} to G. Property (2) can be
ensured by adding an additional leaf vertex l to x and replacing x with l in P and
finally (3) can be ensured by adding a leaf vertex l to any non-terminal vertex r in T
and replacing r with l in P.

A key observation behind our algorithm for SEDP is that whether or not an
instance I = (G,P,X) has a solution merely depends on the existence of certain
sets of pairwise edge disjoint paths in the trees T in G − X . In particular, as we
will show in Lemma 1 later on, I has a solution if and only if every tree T in
G − X is �∅-connected (see Definition 3). The main ingredient of the algorithm is
then a bottom-up dynamic programming algorithm that determines whether a tree
T in G − X is �∅-connected. We now define the various connectivity states of sub-
trees of T that we need to keep track of in the dynamic programming table.

Definition 3  Let T be a tree in G − X rooted at r (recall that we can assume that r is
not in P̃ ), t ∈ V(T) , let S be a set of pairwise edge disjoint paths in G[Tt ∪ X] , and let
P� ⊆ P(Tt) , where Tt is the subtree of T rooted at t.

We say that the set S �∅-connects P′ in G[Tt ∪ X] if for every a ∈ P̃� ∩ V(Tt) , the
set S either contains an a-x path disjoint from b, or it contains an a-b path disjoint
from x, where {a, b} ∈ P� . Moreover, for � ∈ {�X} ∪ P(Tt) , we say that the set S �
-connects Tt if S �∅-connects P(Tt)⧵{�} and additionally the following conditions
hold.

•	 If � = �X then S also contains a path from t to x.
•	 If � = p for some p ∈ P(Tt) then:

•	 If p ∩ V(Tt) = {a} then S contains a t-a path disjoint from x.

	 Algorithmica

1 3

•	 If p ∩ V(Tt) = {a, b} then S contains a t-a path disjoint from x and a b-x path
disjoint from a or S contains a t-b path disjoint from x and an a-x path disjoint
from b.

For � ∈ {��, �X} ∪ P(Tt) , we say that Tt is �-connected if there is a set S which �
-connects P(Tt) in G[Tt ∪ X] . See also Figure 1 for an illustration of these notions.

Informally, a tree Tt is:

•	 �∅-connected if all its terminal pairs in P(Tt) can be connected in G[Tt ∪ X] either
to themselves or to x,

•	 �X-connected if it is �∅-connected and additionally there is a path from its root to
x (which can later be used to connect some terminal not in Tt to x via the root of
T),

•	 �p-connected if all but one of its terminals, i.e., one of the terminals in p, can be
connected in G[Tt ∪ X] either to themselves or to x, and additionally one terminal
in p can be connected to the root of Tt (from which it can later be connected to x
or the other terminal in p).

The following lemma shows that an instance has a solution if and only if every
tree T of G − X is �∅-connected. An example for a set of edge-disjoint paths wit-
nessing that a tree T is �∅-connected is illustrated in Figure 2.

Fig. 1   Illustration of the connectedness notions introduced in Definition 3. Colored vertices (i.e., using
the colors green, red, and blue) represent terminal pairs and two vertices having the same color belong
to the same terminal pair. Colored edges (i.e., using the colors green, red, blue, and yellow) represent
edges used by edge-disjoint paths in S. For instance, the left-most tree has three terminal pairs with the
blue terminal pair occuring only once. The colored edges (of the left-most tree) show that the tree is �∅
-connected since every terminal is either connected to X or to its counterpart. The colored edges of the
tree in the center show that the tree is �

X
-connected. Here the yellow edges give the path from the root of

the tree to X. Finally, the colored edges in the right tree show that the tree is p-connected, where p is the
terminal pair for the red vertices (Color figure online)

1 3

Algorithmica	

Lemma 1  (G, X, P) has a solution if and only if every tree T in G − X is �∅
-connected.

Proof  Let S be a solution for (G, X, P), i.e., a set of pairwise edge disjoint paths
between all terminal pairs in P. Consider the set S′ of pairwise edge disjoint paths
obtained from S after splitting all paths in S between two terminals a and b that inter-
sect x, into two paths, one from a to x and the other from x to b. Then the restriction
of S′ to any tree T in G − X shows that T is �∅-connected.

In the converse direction, for every tree T in G − X , let ST be a set of pairwise
edge disjoint paths witnessing that T is �∅-connected. Consider a set p = {a, b} ∈ P
and let Ta and Tb be the tree containing a and b, respectively. If Ta = Tb then either
STa contains an a-b path or STa contains an a-x path and a b-x path. In both cases we
obtain an a-b path in G. Similarly, if Ta ≠ Tb then STa contains an a-x path and STb
contains a b-x path, whose concatenation gives us an a-b path in G. Since the union
of all ST over all trees T in G − X is a set of pairwise edge disjoint paths, this shows
that (G, X, P) has a solution. This completes the proof of the lemma. 	� ◻

Due to Lemma 1, our algorithm to solve EDP only has to determine whether every
tree in G − X is �∅-connected. For a tree T in G − X , our algorithm achieves this by
computing a set of labels L(t), where L(t) is the set of all labels � ∈ {��, �X} ∪ P(Tt)
such that Tt is �-connected, via a bottom-up dynamic programming procedure. We
begin by arguing that for a leaf vertex l, the value L(l) can be computed in constant
time.

Fig. 2   An Illustration of a solution for a tree. The colored vertices represent terminal pairs with two ter-
minals having the same color if they belong to the same terminal pair. The solution S is given by the
colored edges that represent the path connecting the terminal pairs of the respective colors. The label at
each tree node says what connectness property is satisfied by the tree rooted at the node (w.r.t. the illus-
trated solution S) (Color figure online)

	 Algorithmica

1 3

Lemma 2  The set L(l) for a leaf vertex l of T can be computed in time O(1).

Proof  Since l is a leaf vertex, we conclude that Tl is �∅-connected if and only if either
l ∉ P̃ or l ∈ P̃ and (l, x) ∈ E(G) . Similarly, Tl is �X-connected if and only if l ∉ P̃ and
(l, x) ∈ E(G) . Finally, Tl is �-connected for some � ∈ P(Tl) if and only if l ∈ P̃ . Since
all these properties can be checked in constant time, the statement of the lemma fol-
lows. 	� ◻

We will next show how to compute L(t) for a non-leaf vertex t ∈ V(T) with chil-
dren t1,… , tl.

Definition 4  We define the following three sets.

That is, V¬��
t is the set of those children ti , 1 ≤ i ≤ l , such that Ti is not �∅-con-

nected, V�X
t is the set of those children ti such that Ti is �X-connected and Vt is the

set comprising the remaining children. Observe that {Vt,V
¬��
t ,V

�X
t } forms a partition

of {t1,… , tl} and moreover �� ∈ L(t) and �X ∉ L(t) for every t ∈ Vt . Let H(t) be the
graph with vertex set Vt ∪ V

¬��
t having an edge between ti and tj (for i ≠ j ) if and only

if L(ti) ∩ L(tj) ≠ � and not both ti and tj are in Vt . The following lemma is crucial
to our algorithm, because it provides us with a simple characterization of L(t) for
a non-leaf vertex t ∈ V(T) . See also Figure 3 for an illustration of H(t), the sets Vt ,
V
¬��
t  , and V�X

t  , as well as the characterization given in the following lemma.

Lemma 3  Let t be a non-leaf vertex of T with the children t1,… , tl . Then Tt is:

•	 �∅-connected if and only if L(t�) ≠ � for every t� ∈ {t1,… , tl} and H(t) has a
matching M such that |V¬��

t ⧵V(M)| ≤ |V�X
t |,

•	 �X-connected if and only if L(t�) ≠ � for every t� ∈ {t1,… , tl} and H(t) has a
matching M such that |V¬𝛾�

t ⧵V(M)| < |V𝛾X
t |,

•	 �-connected (for � ∈ P(Tt) ) if and only if L(t�) ≠ � for every t� ∈ {t1,… , tl} and
there is a ti , 1 ≤ i ≤ l , with � ∈ L(ti) such that H(t) − {ti} has a matching M with
|V¬��

t ⧵V(M)| ≤ |V�X
t |.

Proof  Towards showing the forward direction let S be a set of pairwise edge disjoint
paths witnessing that Tt is �-connected for some � ∈ {��, �X} ∪ P(Tt) . Then S con-
tains the following types of paths:

	(T1)	 A path between a and b that does not contain x, where {a, b} ∈ P(Tt),
	(T2)	 A path between a and x, which does not contain b, where {a, b} ∈ P(Tt),
	(T3)	 A path between x and t (only if � = �X),

V
¬��
t ={ ti | �� ∉ L

(
ti
) | 1 ≤ i ≤ l }

V
�X
t ={ ti | �X ∈ L

(
ti
) | 1 ≤ i ≤ l }

Vt =
{
t1,… , tl

}
⧵
(
V
¬��
t ∪ V

�X
t

)

1 3

Algorithmica	

	(T4)	 A path between a and t, which does not contain x, (only if � = p for some
p ∈ P(Tt) and a ∈ p),

For every i with 1 ≤ i ≤ l , let Si be the subset of S containing all paths that use at
least one vertex in Tti and let S′

i
 be the restriction of all paths in Si to G[Tti ∪ X] .

Consider an i with 1 ≤ i ≤ l . Because the paths in S are pairwise edge disjoint, we
obtain that at most one path in S contains the edge (ti, t) . We start with the following
observations.

	(O1)	 If Si contains no path that contains the edge (ti, t) , then S′
i
 shows that Tti is �∅

-connected.
	(O2)	 If Si contains a path say si that contains the edge (ti, t) , then the following state-

ments hold.

	 (O21)	 If si is a path of Type (T1) for some p ∈ P(Tt) , then S′
i
 shows that Tti is

p-connected,
	 (O22)	 If si is a path of Type (T2) for some p ∈ P(Tt) , then the following state-

ments hold.

	 (O221)	 If the endpoint of si G[Tti ∪ X is a terminal in a ∈ p then si G[Tti is
p-connected.

	 (O222)	 Otherwise, i.e., if the endpoint of si G[Tti is x, then si shows that Tti
is �X-connected.

	(O3)	 If si is a path of Type (T3), then S′
i
 shows that Tti is �X-connected.

	(O4)	 If si is a path of Type (T4), for some terminal-pair p ∈ P(Tti) then S′
i
 shows that

Tti is p-connected.

Fig. 3   An Illustration of the graph H(t) together with the matchings M required for the characterization
given Lemma 3. The example assumes that t has 7 children with 4 or them being in V¬��

t
 , two of them

being in V
t
 , and one child in V�

X

t
 . The figure only shows the children in V¬��

t
∪ V

t
 since these make up the

vertex set of the graph H(t). The vertex labels give the set L(t
i
) for each of the children of t and the edges

give the edges in H(t). The left-most figure illustrates H(t). The middle figure shows a matching M (the
green edges) that shows that T

t
 is �∅-connected. The right figure shows a matching M that shows that T

t
 is

�
X
-connected

	 Algorithmica

1 3

Let M be the set of all pairs {ti, tj} ⊆ Vt ∪ V
¬𝛾�
t such that ti ∈ V

¬��
t or tj ∈ V

¬��
t and S

contains a path that contains both edges (ti, t) and (t, tj) . We claim that M is a match-
ing of H(t). Since an edge (ti, t) can be used by at most one path in S, it follows that
the pairs in M are pairwise disjoint and it remains to show that M ⊆ E(H(t)) , namely,
L(ti) ∩ L(tj) ≠ � for every (ti, tj) ∈ M . Let s ∈ S be the path witnessing that
(ti, tj) ∈ M . Because s contains the edges (ti, t) and (t, tj) , it cannot be of Type (T3) or
(T4). Moreover, if s is of Type (T2) then either Tti or Ttj is �X-connected, contradict-
ing our assumption that ti, tj ∈ Vt ∪ V

¬��
t  . Hence s is of Type (T1) for some terminal-

pair p ∈ P(Tt) , which implies that Tti and Ttj are p-connected, as required.
In the following let ti ∈ V

¬��
t  . Because of Observation (O1), we obtain that Si con-

tains a path, say si , using the edge (ti, t) (otherwise Tti is �∅-connected). Moreover,
together with Observations (O2)–(O4), we obtain that either:

	(P1)	 si is a path of Type (T1) for some p ∈ P(Tt),
	(P2)	 si is a path of Type (T2) for some p ∈ P(Tt) and the endpoint of si in G[Tti ∪ X]

is a terminal a ∈ p,
	(P3)	 si is a path of Type (T4) for some p ∈ P(Tt).

Because t is not connected to x and t is not a terminal, we obtain that if si satisfies
(P1), then there is a tj ∈ {t1,… , tl} with p ∈ L(tj) such that si contains the edge (tj, t) .
Similarly, if si satisfies (P2) then there is a tj ∈ V

�X
t such that si contains the edge

(tj, t) . Consequently, every ti ∈ V
¬��
t for which si satisfies (P1) or (P2) is mapped to a

unique tj ∈ {t1,… , tl} such that si contains the edge (tj, t).
We now distinguish three cases depending on � . If � = � , then S contains no path

of type (T4) and hence for every ti ∈ V
¬��
t either (P1) or (P2) has to hold. In particu-

lar, for every ti ∈ V
¬��
t ⧵V(M) there must be a tj ∈ V

�X
t such that si contains the edge

(tj, t) . Consequently, if |V𝛾X
t | < |V¬𝛾�

t ⧵V(M)| , this is not achievable contradicting our
assumption that S is a witness to the fact that Tt is �∅-connected.

If � = �X , then S contains a path of Type (T3), which due to Observation (O3)
uses the edge (t�, t) for some t� ∈ V

�X
t  . Since again (P1) or (P2) has to hold for every

ti ∈ V
¬��
t  , we obtain that for every ti ∈ V

¬��
t ⧵V(M) there must be a tj ∈ V

�X
t ⧵{t�}

such that si contains the edge (tj, t) . Consequently, if |V�X
t | ≤ |V¬��

t ⧵V(M)| then
|V𝛾X

t ⧵{tj}| < |V¬𝛾�
t ⧵V(M)| and this is not achievable contradicting our assumption

that S is a witness to the fact that Tt is �X-connected.
Finally, if � = p for some p ∈ P(Tt) , then S contains a path of Type (T4),

which due to Observation (O4) uses the edge (t�, t) for some t� ∈ {t1,… , tl} with
p ∈ L(t�) . Observe that t′ cannot be matched by M and hence M is also a matching
of H(t) − {t�} . Moreover, Since (P1) or (P2) has to hold for every ti ∈ V

¬��
t ⧵{t�} , we

obtain that for every ti ∈ V
¬��
t ⧵(V(M) ⧵ {t�}) there must be a tj ∈ V

�X
t ⧵{t�} such that

si contains the edge (tj, t) . Consequently, if |V𝛾X
t ⧵{t�}| < |V¬𝛾�

t ⧵(V(M) ∪ {t�})| then
this is not achievable contradicting our assumption that S is a witness to the fact that
Tt is p-connected.

Towards showing the reverse direction we will show how to construct a set S of
pairwise edge disjoint paths witnessing that Tt is �-connected.

1 3

Algorithmica	

If � = � , then let M be a matching of H(t) such that |V¬��
t ⧵V(M)| ≤ |V�X

t | and let
� be a bijection between V¬��

t ⧵V(M) and |V¬��
t ⧵V(M)| arbitrarily chosen elements in

V
�X
t  . Then the set S of pairwise edge disjoint paths witnessing that Tt is �∅-connected

is obtained as follows.

	(S1)	 For every ti ∈ Vt⧵V(M) , let S′ be a set of pairwise edge disjoint paths witnessing
that Tti is �∅-connected. Add all paths in S′ to S.

	(S2)	 For every ti ∈ V
�X
t ⧵{ �(t�) | t� ∈ V

¬��
t ⧵V(M) } , let S′ be a set of pairwise edge

disjoint paths witnessing that Tti is �∅-connected. Add all paths in S′ to S.
	(S3)	 For every (ti, tj) ∈ M , choose p ∈ L(ti) ∩ L(Tj) ∩ P(Tt) arbitrarily and let S1 and

S2 be sets of pairwise edge disjoint paths witnessing that Tti and Ttj are p-con-
nected, respectively. Moreover, let s1 ∈ S1 and s2 ∈ S2 be the unique paths
connecting a terminal in p with ti and tj , respectively. Then add all path in
(S1⧵{s1}) ∪ (S2⧵{s2}) and additionally the path s1◦(ti, t, tj)◦s2 to S.

	(S4)	 For every ti ∈ V
¬��
t ⧵V(M) , choose p ∈ L(ti) ∩ P(Tt) arbitrarily and let S1 be a set

of pairwise edge disjoint paths witnessing that Tti is p-connected. Moreover, let
s1 be the unique path in S1 connecting a terminal in p with ti . Furthermore, let
S2 be a set of pairwise edge disjoint paths witnessing that T�(ti) is �X-connected
and let s2 be the unique path in S2 connecting x with �(ti) . Then add all path in
(S1⧵{s1}) ∪ (S2⧵{s2}) and additionally the path s1◦(ti, t, �(ti))◦s2 to S.

It is straightforward to verify that S witnesses that Tt is �∅-connected.
If � = �X , then the set S of pairwise edge disjoint paths witnessing that Tt is �X

-connected is defined analogously to the case where � = � only that now step (S2) is
replaced by:

	(S2’)	 Choose one t� ∈ V
�X
t ⧵{ �(t�) | t� ∈ V

¬��
t ⧵V(M) } arbitrarily; note that such a t′

must exist because |V¬𝛾�
t ⧵V(M)| < |V𝛾X

t | . Let S′ be a set of pairwise edge dis-
joint paths witnessing that Tt′ is �X-connected and let s′ be the unique path in
S′ connecting t′ with x. Then add all paths in S′⧵s′ to S and additionally the
path obtained from s′ after adding the edge (t�, t) . Finally, for every child in
V
�X
t ⧵({ �(t��) | t�� ∈ V

¬��
t ⧵V(M) } ∪ {t�}) proceed as described in Step (S2).

Finally, if � = p for some p ∈ P(Tt) , then let ti be a child with p ∈ L(ti) and let M be
a matching of H(t) − {ti} such that |V¬��

t ⧵(V(M) ∪ {ti})| ≤ |V�X
t ⧵{ti}| . Moreover, and

let � be a bijection between V¬��
t ⧵(V(M) ∪ {ti}) and |V¬��

t ⧵(V(M) ∪ {ti})| arbitrarily
chosen elements in V�X

t ⧵{ti} . Then the set S of pairwise edge disjoint paths witness-
ing that Tt is p-connected is obtained analogously to the case where � = � above
only that we do not execute the steps (S1)–(S4) for ti but instead do the following:

	(S0)	 Let S′ be a set of pairwise edge disjoint paths witnessing that Tti is p-connected
and let s′ be the unique path in S′ connecting a terminal in p to ti . Then we add
all path in S�⧵{s�} and additionally the path s�◦(ti, t) to S.

	 Algorithmica

1 3

This completes the proof of Lemma 3. 	� ◻

The following two lemmas show how the above characterization can be employed
to compute L(t) for a non-leaf vertex t of T. Since the matching employed in
Lemma 3 needs to maximize the number of vertices covered in V¬��

t  , we first show
how such a matching can be computed efficiently.

Lemma 4  There is an algorithm that, given a graph G and a subset S of V(G), com-
putes a matching M maximizing"> |V(M) ∩ S| in time O(

√�V��E�).

Proof  We reduce the problem to Maximum Weighted Matching problem, which
can be solved in time O(

√�V��E�) [25]. The reduction simply assigns weight two
to every edge that is completely contained in S, weight one to every edge between
S and V(G)⧵S , and weight zero otherwise. The correctness of the reduction follows
because the weight of any matching M in the weighted graph equals the number of
vertices in S covered by M. 	� ◻

Lemma 5  Let t be a non-leaf vertex of T with children t1,… , tl . Then L(t) can be
computed from L(t1),… , L(tl) in time O(�P(Tt)�l2

√
l).

Proof  First we construct the graph H(t) in time O(l2|P(Tt)|) . We then check for
every � ∈ {��, �X} ∪ P(Tt) , whether Tt is �-connected with the help of Lemma 3
as follows. If � ∈ {��, �X} we compute a matching M in H(t) that maximizes
|V(M) ∩ V

¬��
t | , i.e., the number of matched vertices in V¬��

t  . This can be achieved
according to Lemma 4 in time O(

√
ll2) . Then in accordance with Lemma 3, we

add �∅ or �X to L(t) if |V¬��
t ⧵V(M)| ≤ |V�X

t | or |V¬��
t ⧵V(M)| ≤ |V�X

t | , respectively.
For any � ∈ P(Tt) , again in accordance with Lemma 3, we compute for every child
t′ of t with � ∈ P(Tt�) , a matching M in H(t) − {t�} that maximizes |V(M) ∩ V

¬��
t | .

Since t has at most two children t′ with � ∈ P(Tt�) and due to Lemma 4 such
a matching can be computed in time O(

√
ll2) , this is also the total running time

for this step of the algorithm. If one of the at most two such matchings M satisfies
|V¬��

t ⧵(V(M) ∪ {t�})| ≤ |V�X
t ⧵{t�}| , we add � to L(t) and otherwise we do not. This

completes the description of the algorithm whose total running time can be obtained
as the time required to construct H(t) ( O(l2|P(Tt)| ) plus |P(Tt)| + 2 times the time
required to compute the required matching in H(t) ( O(

√
ll2) ), which results in a total

running time of O(l2�P(Tt)� + �P(Tt)�
√
ll2) = O(�P(Tt)�l2

√
l) . 	� ◻

We are now ready to put everything together into an algorithm that decides
whether a tree T is �∅-connected.

Lemma 6  Let T be a tree in G − X . There is an algorithm that decides whether T is
�∅-connected in time O(|P(T)||V(T)| 5

2).

Proof  The algorithm computes the set of labels L(t) for every vertex t ∈ V(T) using
a bottom-up dynamic programming approach. Starting from the leaves of T, for
which the set of labels can be computed due to Lemma 2 in constant time, it uses

1 3

Algorithmica	

Lemma 5 to compute L(t) for every inner node t of T in time O(�P(Tt)�l2
√
l) . The

total running time of the algorithm is then the sum of the running time for any inner
node of T plus the number of leaves of T, i.e., O(|P(T)||V(T)| 5

2) . 	� ◻

Theorem 1  SEDP can be solved in time O(|P||V(G)| 5

2).

Proof  We first employ Lemma 6 to determine whether every tree T of G − X is �∅
-connected. If so we output Yes and otherwise No. Correctness follows from
Lemma 1. 	� ◻

4 � Treewidth and Maximum Degree

The goal of this section is to obtain an FPT-algorithm for EDP parameterized by the
treewidth � and maximum degree � of the input graph. Before we proceed to the
theorem, we remark that the transformation described in Sect. 2.2 (which ensures
that each terminal occurs in a leaf of G and that no vertex occurs in more than one
terminal pair) does not increase the treewidth of the augmented graph by more than
2—indeed, the transformation merely results in the replacement of each edge in GP
(connecting two terminals in P) with a path containing two new internal vertices
(the leaves created in G for these two terminals). It is well known (and easy to see)
that subdividing a set of edges in a graph twice can only increase treewidth by at
most 2.

Theorem 2  EDP can be solved in time 2O(�� log�)
⋅ n , where � , � and n are the tree-

width, maximum degree and number of vertices of the input graph G, respectively.

Proof  Let (G, P) be an instance of EDP and let (T ,B) be a nice tree-decomposition
of G of width at most k = 5� + 4 ; recall that such (T ,B) can be computed in time
2O(k)

⋅ n by Fact 1. Consider the following leaf-to-root dynamic programming algo-
rithm Å , executed on T. At each bag Bt associated with a node t of T, Å will compute
a table Mt of records, which are tuples of the form {(����, ����, ������)} where:

•	 used is a multiset of subsets of Bt of cardinality 2 such that
∀v ∈ Bt ∶ |{U ∈ BT | v ∈ U }| ≤ � (i.e., v occurs in at most �-many subsets in
used).

•	 give is a mapping from subsets of Bt of cardinality 2 to [�] such that
∀v ∈ Bt ∶ (

∑
u∈Bt

����({v, u})) ≤ � (i.e., the sets containing v receive a total
value of at most � ), and

•	 single is a mapping which maps each terminal ai ∈ Yt such that its counterpart
bi ∉ Yt to an element of Bt.

Before we proceed to describe the steps of the algorithm itself, let us first intro-
duce the semantics of a record. For a fixed t, we will consider the graph Gt

	 Algorithmica

1 3

obtained from G[Yt] by removing all edges with both endpoints in Bt (we note
that this “pruned” definition of Gt is not strictly necessary for the algorithm, but
makes certain steps easier later on). Then � = {(����, ����, ������)} ∈ Mt if and
only if there exists a set of edge disjoint paths Q in Gt and a surjective mapping �
from terminal pairs occurring in Yt to subsets of Bt of size two with the following
properties:

•	 For each terminal pair ab that occurs in Yt:

–	 Q either contains a path whose endpoints are a and b, or
–	 Q contains an a-x1 path for some x1 ∈ Bt and a b-x2 path for some x2 ∈ Bt

which is distinct from x1 , and furthermore �(ab) = {x1, x2} ∈ ����;

•	 for each terminal pair ab such that a ∈ Yt but b ∉ Yt:

–	 Q contains a path whose endpoints are a and x ∈ Bt , where (a, x) ∈ ������;

•	 for each distinct x1, x2 ∈ Bt , Q contains precisely ����({x1, x2}) paths from x1 to
x2.

In the above case, we say that Q witnesses � . It is important to note that the equiva-
lence between the existence of records and sets Q of pairwise edge disjoint paths
only holds because of the bound on the maximum degree. That is because every
vertex of G has degree at most � , it follows that any set Q of pairwise edge disjoint
paths can contain at most � paths containing a vertex in the boundary. Moreover, we
note that by reversing the above considerations, given a set of edge disjoint paths
Q in Gt satisfying a certain set of conditions, we can construct in time 3�k a set of
records in Mt that are witnessed by Q (one merely needs to branch over all options
of assigning paths in � which end in the boundary: they may either contribute to
give or to single or to used). These conditions are that each path either (i) connects
a terminal pair, (ii) connects a terminal pair to two vertices in Bt , (iii) connects two
vertices in Bt , or (iv) connects a terminal a ∈ Yt whose counterpart b does not lie in
Yt to a vertex in Bt.

Å runs as follows: it begins by computing the records Mt for each leaf t of T. It
then proceeds to compute the records for all remaining nodes in T in a bottom-up
fashion, until it computes Mr . Since Br = � , it follows that (G, P) is a yes-instance
if and only if (�, �, �) ∈ Mr . For each record � , it will keep (for convenience) a set
Q� of edge disjoint paths witnessing � . Observe that while for each specific � there
may exist many possible choices of Q� , all of these interact with Bt in the same way.

We make one last digression before giving the procedures used to compute Mt
for the four types of nodes in nice tree-decompositions. First, observe that number
of edge disjoint paths in Gt ending in Bt is upper-bounded by �k , it follows that each
record in Mt satisfies |������| ≤ �k . The total number of possible records is upper-
bounded by all possible choices for ������ ( 2�⋅k ), times the number of choices for ����
(which is 2�⋅k log k : there are at most k� choices for each vertex, and hence at most
(k�)k choices in total), times ���� (which can be argued equivalently as ���� , since
it is merely a different encoding of a multiset). As a consequence, |Mt| ≤ 2O(�k log k)

1 3

Algorithmica	

for each node t in T, which is crucial to obtain an upper-bound on the running time
of Å .

Case 1:	� t is a leaf node. If v ∈ Bt is not a terminal, then Mt = {�, �, �} . On the
other hand, if v ∈ Bt is a terminal, then Mt = {�, �, {(v, v)}}.

Case 2:	� t is an introduce node: Let p be the child of t in T and let v be the vertex
introduced at t, i.e., v ∈ Bt⧵Bp . Recall that v has no neighbors in Gt . As a
consequence, if v is not a terminal, then Mt = Mp . If v is a terminal and
its counterpart w lies in Gt , then for each {(����, ����, ������)} ∈ Mp we
add the record {(�����, �����, �������)} to Mt , where:

•	 ����� = ����,
•	 ������′ is obtained by deleting the unique tuple (w, ?) from single, and
•	 ����′ is obtained by adding the subset {v, ?} to used.

Finally, if v is a terminal and its counterpart w does not lie in Gt , then for each
{(����, ����, ������)} ∈ Mp we add the record {(����, ����, ������ ∪ (v, v))} to Mt .

Case 3:	� t is a join node: Let p, q be the two children of t in T. For each
{(����p, ����p, ������p)} ∈ Mp and each {(����q, ����q, ������q)} ∈ Mp , we
add a new record {(����, ����, ������)} to Mt constructed as follows:

1.	 for each x, y ∈ Bt , we set ����(xy) ∶= ����p(xy) + ����q(xy);
2.	 for each terminal pair v, w such that (v, ?v) ∈ ������p and (w, ?w) ∈ ������q where

?v = ?w,

•	 we delete (v, ?v) from ������p and
•	 we delete (w, ?w) from ������q;

3.	 for each terminal pair v, w such that (v, ?v) ∈ ������p and (w, ?w) ∈ ������q where
?v ≠ ?w,

•	 we delete (v, ?v) from ������p and
•	 we delete (w, ?w) from ������q and
•	 we add {?v, ?w} to used;

4.	 we set ���� ∶= ���� ∪ ����p ∪ ����q;
5.	 we set ������ ∶= ������p ∪ ������q;
6.	 finally, we restore the records in Mp and Mq to their original state as of step 1

(i.e., we restore all deleted items).

Case 4:	� t is a forget node: Let p by the child of t in T and let v be the vertex
forgotten at t, i.e., v ∈ Bp⧵Bt . We note that this will be the by far most

	 Algorithmica

1 3

complicated step, since we are forced to account for the edges between v
and its neighbors in Bt.

Let us begin by considering how the records in Mt can be obtained from those in
Mp ; in particular, let us fix an arbitrary � = (����t, ����t, ������t) ∈ Mt . This means
that there exists a set Q� of edge disjoint paths (along with a mapping � ) in Gt satis-
fying the conditions given by � . Furthermore, let Ev = {wv ∈ E(G) | w ∈ Bt } , i.e.,
Ev is the set of edges which are not present in Gp but are present in Gt . The crucial
observation is that for each set Q� , there exists a set Q� of edge disjoint paths satisfy-
ing the conditions given by some � = (����p, ����p, ������p) ∈ Mp such that Q� can
be obtained by merely “extending” Q� using the edges in Ev ; in particular, Ev can
increase the number of paths contributing to ����p , change the endpoints of paths
captured by ����p , and also change the endpoints of paths captured by ������p.

Formally, we will proceed as follows. For each � ∈ Mp , we begin with the wit-
ness Q� stored by Å , and then branch over all options of how the addition of the
edges in Ev may be used to augment the paths in Q� . In particular, since |Ev| ≤ k ,
there are at most k + 1 vertices incident to an edge in Ev , and due to the degree
bound of � it then follows that there are at most �(k + 1) distinct paths in Q� which
may be augmented by Ev . Since each edge in Ev may either be assigned to extend
one such path or form a new path, we conclude that there exist at most kO(�k) pos-
sible resulting sets of edge-disjoint paths in Gt . For each such set Q′ of edge-disjoint
paths, we then check that conditions (i)-(iv) for constructing records witnessed by Q′
hold, and in the positive case we construct these records in time 3�k as argued earlier
and add them to Mt.

Summary and running time. Algorithm Å begins by invoking Fact 1 to compute a
tree-decomposition of width at most k = 5� + 4 and O(n) nodes, and then converts
this into a nice tree-decomposition (T ,B) of the same width and also O(n) nodes. It
then proceeds to compute the records Mt (along with corresponding witnesses) for
each node t of T in a leaves-to-root fashion, using the procedures described above.
The number of times any procedure is called is upper-bounded by O(n) , and the run-
ning time of every procedure is upper-bounded by the worst-case running time of
the procedure for forget nodes. There, for each record � in the data table of the child
of t, the algorithm takes its witness Q� and uses branching to construct at most kO(�k)
new witnesses (after the necessary conditions are checked). Each such witness Q�
gives rise to a set of records that can be computed in time 3�k , which are then added
to Mt (unless they are already there). All in all, the running time of this procedure is
upper-bounded by 2O(�k log k)

⋅ kO(�k)
⋅ 3�k = 2O(�k log k) , and the run-time of the algo-

rithm follows. 	� ◻

1 3

Algorithmica	

5 � Lower Bounds of EDP for Parameters of the Augmented Graph

In this section we will show that EDP parameterized by the feedback vertex set
number (and hence also parameterized by the treewidth) of the augmented graph
is W[1]-hard. This nicely complements the result in [29] showing that EDP is
solvable in polynomial time for bounded treewidth and also provides a natural
justification for the FPT-algorithm presented in the next section, since it shows
that more general parameterizations such as treewidth are unlikely to lead to an
FPT-algorithm for EDP.

The reduction will proceed in several steps, the first of which uses a reduction
from the following multidimensional variant of subset sum, which was introduced
in [15].

We will use the fact that the problem is strongly W[1]-hard, which was shown
in [15].

Lemma 7  [15, Lemma 4] MRSS is W[1]-hard even if all integers in the input are
given in unary.

Our next step is to move from subset sum problems to EDP variants, with a final
goal of showing the hardness of EDP parameterized by the feedback vertex set num-
ber of the augmented graph. We will first show that the following directed version,
which also allows for multiple instead of just one path between every terminal pair,
is W[1]-hard parameterized by the feedback vertex set number of the augmented
graph and the number of terminal pairs.

Lemma 8  MDEDP is W[1]-hard parameterized by the following parameter: the
feedback vertex set number of the undirected augmented graph plus the number of

	 Algorithmica

1 3

terminal triples. Furthermore, this holds even for acyclic instances when all integers
on the input are given in unary.

Proof  We prove the lemma by a parameterized reduction from MRSS. Namely,
given an instance I = (k, S, t, k�) of MRSS we construct an equivalent instance
I� = (G,P) of MDEDP in polynomial time such that |P| ≤ k + 1 , ���(G

P
) ≤ 2k + 2

and G is acyclic.
We start by introducing a gadget G(z) for every item-vector z ∈ S . G(z) is a

directed path (pz
1
,… , pz

l
) , where l = 2(

∑
1≤i≤k z[i]) + 2 . We let P contain one tri-

ple (s, t, |S| − k�) as well as one triple (si, ti, t[i]) for every i with 1 ≤ i ≤ k . Then
G is obtained from the disjoint union of G(z) for every z ∈ S plus the vertices
{s, t, s1, t1,… , sk, tk} . Moreover, G contains the following edges:

•	 one edge from s to the first vertex of G(z) for every z ∈ S,
•	 one edge from the last vertex of G(z) to t for every z ∈ S,
•	 for every i with 1 ≤ i ≤ k and every z ∈ S an edge from si to the vertex pz

j
 (in

G(z)), where j = 1 + 2(
∑

1≤j<i z[j]) + 2l − 1 for every l with 1 ≤ l ≤ z[i],
•	 for every i with 1 ≤ i ≤ k and every z ∈ S an edge from pz

j
 (in G(z)), where

j = 1 + 2(
∑

1≤j<i z[j]) + 2l , to ti for every l with 1 ≤ l ≤ z[i],

This completes the construction of (G, P). Since G
P
− {s, t, s1, t1,… , sk, tk} is a

disjoint union of directed paths, i.e., one path G(z) for every z ∈ S , we obtain
that G

P
 has a feedback vertex set, i.e., the set {s, t, s1, t1,… , sk, tk} , of size at most

2(k + 1) = 2k + 2 . Moreover, G is clearly acyclic and |P| ≤ k + 1 . It hence only
remains to show that (k, S, t, k�) has a solution if and only if so does (G, P).

Towards showing the forward direction let S′ ⊆ S be a solution for I  . Then we
construct a set Q of pairwise edge-disjoint paths in G containing |S| − k� path from s
to t as well as t[i] paths from si to ti , i.e., a solution for I′ , as follows. For every
z ∈ S⧵S� , Q contains the path (s, G(z), t), which already accounts for the |S| − k�
paths from s to t. Moreover, for every i with 1 ≤ i ≤ k and z ∈ S� , Q contains the
path (si, pzj , p

z

j+1
, ti) for every j with 1 + 2(

∑
1≤o<i z[o]) < j ≤ 1 + 2(

∑
1≤o<i z[o]) + 2(z[i])

and j is even. This concludes the definition of Q. Note that Q now contains
∑

z∈S� z[i]
paths from si to ti for every i with 1 ≤ i ≤ k and since S′ is a solution for I  , it holds
that

∑
z∈S� z[i] ≥ t[i] . Consequently, Q is a solution for I′.

Towards showing the reverse direction, let Q be a solution for I′ . Then Q must
contain |S| − k� pairwise edge disjoint paths from s to t. Because every path from s to
t in G must have the form (s, G(z), t) for some z ∈ S , we obtain that all the edges of
exactly |S| − k� gadgets G(z) for z ∈ S are used by the paths from s to t in G. Let
S′ ⊆ S be the set containing all z ∈ S such that G(z) is not used by a path from s to t
in Q. We claim that S′ is a solution for I  . Clearly, |S�| = k� and it remains to show
that

∑
z∈S� z ≥ t . Towards showing this observe that for every i with 1 ≤ i ≤ k , a path

from si to ti has to use at least one edge {pz
j
, pz

j+1
} from some z ∈ S� and j with

1 + 2(
∑

1≤o<i z[o]) < j ≤ 1 + 2(
∑

1≤o≤i z[o]) and j is even. Since G(z) for every z ∈ S�
has at most z[i] of those edges, we obtain that for every z ∈ S� , Q contains at most
z[i] path from si to ti using edges in G(z). Because the paths in Q from si to ti cannot

1 3

Algorithmica	

use any edge from G(z) such that z ∉ S� ; this is because all edges of such G(z) are
already used by the paths from s to t in Q. Hence the total number of paths in Q
from si to ti is at most

∑
z∈S� z[i] and since Q contains t[i] paths from si to ti , we

obtained that
∑

z∈S� z[i] ≥ t[i] . 	� ◻

Our next aim is now to reduce from MDEDP to the following undirected ver-
sion of MDEDP.

To do so we first need the following auxiliary lemma.

Lemma 9  Let I = (G,P) be an instance of MDEDP such that G is acyclic. Then in
polynomial time we can construct an instance I� = (G�,P�) such that:

	(P1)	 I has a solution if and only if so does I′,
	(P2)	 G′ is acyclic and the graph G�(P�) is Eulerian, where G�(P�) is the graph obtained

from G′ after adding n edges from t to s for every (s, t, n) ∈ P�,
	(P3)	 |P�| ≤ |P| + 1 and ���(G�) ≤ ���(G) + 2.

Proof  The construction of I′ is based on the construction of (G�,H�) from (G, H)
in [28, Theorem 2]. Namely, for every v ∈ V(G) let �(v) = max{0, �G(P)(v) − �G(P)(v)}
and �(v) = max{0, �G(P)(v) − �G(P)(v)} where �D(v) and �D(v) denote the number of
out-neighbors respectively in-neighbors of a vertex v in a directed graph D. . Then

where G(P) is the graph obtained from G after adding n edges from t to s for every
(s, t, n) ∈ P . Hence

∑
v∈V(G) �(v) =

∑
v∈V(G) �(v) = q . We now construct the instance

I� = (G�,P�) from (G, P) by adding one triple (s, t, q) to P as well as adding the
vertices s and t together with �(v) edges from s to v and �(v) edges from v to t for
every v ∈ V(G) . It is straightforward to verify that I′ satisfies Properties (P2) and
(P3). Moreover, the reverse direction of Property (P1) is trivial. Towards showing
the forward direction of Property (P1), assume that I has a solution S and let G′′ be
the graph obtained from G′ after removing all edges appearing in a path in S. Then

0 =|E(G(P))| − |E(G(P))|
=

∑
v∈V(G)

(
�G(P)(v) − �G(P)(v)

)

=
∑

v∈V(G)

(�(v) − �(v)),

	 Algorithmica

1 3

G��({(s, t, q)}) is Eulerian and G′′ is acyclic, hence there are q pairwise edge-disjoint
paths in G′′ from s to t. 	� ◻

We are now ready to show that MUEDP is W[1]-hard parameterized by the
combined parameter the feedback vertex set number of the augmented graph and
the number of terminal triples.

Lemma 10  MUEDP is W[1]-hard parameterized by the following parameter: the
feedback vertex set number of the augmented graph plus the number of terminal tri-
ples. Furthermore, this holds even when all integers on the input are given in unary.

Proof  We prove the lemma by a parameterized reduction from MDEDP.
Namely, given an instance I = (G,P) of MDEDP we construct an equivalent
instance I� = (H,Q) of MUEDP in polynomial time such that |Q| ≤ |P| + 1 ,
���(HQ) ≤ ���(G

P
) . The result then follows from Lemma 8.

Let (G�,P�) be the instance of MDEDP obtained from (G, P) by Lemma 9.
Then I� = (H,P) is simply obtained from (G�,P�) by disregarding the direc-
tions of all edges in G′ . Because of Lemma 9, we obtain that |Q| ≤ |P| + 1 and
���(HQ) ≤ ���(G

P
) and it hence only remains to show the equivalence of I and I′ .

Note that because of Lemma 9, it holds that (G�,P�) is acyclic and G�(P�) is Eulerian.
It now follows from [28, Lemma 5] that (G�,P�) and (H, P) are equivalent, i.e., any
solution for (G�,P�) is a solution for (H, P) and vice versa. Together with the equiva-
lency between (G, P) and (G�,P�) (due to Lemma 9) this shows that I and I′ are
equivalent and concludes the proof of the lemma. 	� ◻

Finally, using a very simple reduction from MUEDP we are ready to show that
EDP is W[1]-hard parameterized by the feedback vertex set number of the aug-
mented graph.

Theorem 3  EDP is W[1]-hard parameterized by the feedback vertex set number of
the augmented graph.

Proof  We prove the lemma by a parameterized reduction from MUEDP. Namely,
given an instance I = (G,P) of MUEDP we construct an equivalent instance
I� = (G�,P�) of EDP in polynomial time such that ���(G�P�

) ≤ ���(G
P
) + 2|P| . The

result then follows from Lemma 10.
I′ is obtained from I as follows. For every (s, t, n) ∈ P , we add 2n new vertices

s1,… , sn and t1,… , tn to G and an edge between si and s as well as an edge between
ti and t for every 1 ≤ i ≤ n . Moreover, for every i with 1 ≤ i ≤ n , we add the terminal
pair (si, ti) to P′ . It is straightforward to verify that I and I′ are equivalent. Moreo-
ver, if F is a feedback vertex set for G

P
 , then F ∪ { s, t | (s, t, n) ∈ G } is a feedback

vertex set for G′P′

 and hence ���(G�P�
) ≤ ���(G

P
) + 2|P| , which concludes the proof

of the theorem. 	� ◻

1 3

Algorithmica	

6 � An FPT‑Algorithm for EDP Using the Augmented Graph

In light of Theorem 3, it is natural to ask whether there exist natural structural
parameters of the augmented graph which would give rise to FPT-algorithms for
EDP but which cannot be used on the input graph. In other words, does consider-
ing the augmented graph instead of the input graph provide any sort of advantage
in terms of FPT-algorithms? In this section we answer this question affirmatively
by showing that EDP is fixed-parameter tractable parameterized by the so-called
fracture number of the augmented graph. We note that a parameter similar to the
fracture number has recently been used to obtain FPT-algorithms for Integer Lin-
ear Programming [9].

Definition 5  A vertex subset X of a graph H is called a fracture modulator if each
connected component in H⧵X contains at most |X| vertices. We denote the size of a
minimum-cardinality fracture modulator in H as frac(H) or the fracture number of
H.

Note the the fracture number is always at most the treewidth of the augmented
graph and even though it is known that EDP parameterized by the treewidth of
the augmented graph is in XP [29], it is open whether it is in FPT. Moreover, [12,
Theorem 6] shows that EDP parameterized by the fracture number of the input
graph is paraNP-hard.

Before we start our journey towards a fixed-parameter algorithm for EDP
parameterized by the fracture number, we make a short digression related to the
assumptions about EDP instances made in Sect. 2—notably, that each terminal
occurs in a leaf of G and no two terminals occur on the same vertex. In particular,
we observe that the assumption is “safe” to make when parameterizing by the
fracture number.

Lemma 11  There is a linear-time transformation which takes as input an arbitrary
instance (G, P) of EDP and outputs an equivalent instance (G0,P0) of EDP such
that frac(GP0

0
) ≤ 3frac(GP)2 + frac(GP) and (G0,P0) satisfies the following condi-

tions: each vertex in a terminal pair has degree 1 and each vertex occurs in at most
one terminal pair.

Proof  Consider an arbitrary fracture modulator X of GP such that |X| = frac(GP) = k
(which may, e.g., be computed using Lemma 13), and let (G0,P0) be the instance
obtained from (G, P) by the reduction described in Sect. 2.2—in particular, for each
(a, b) ∈ P , we create a new leaf a′ adjacent to a and a new leaf b′ adjacent to b,
and replace (a, b) with (a�, b�) . Observe that each such newly created leaf of G0 has
degree 2 in GP0

0
.

Consider an arbitrary vertex v in V(GP) − X , and let C be the connected compo-
nent of GP − X containing v. Note that v may only be adjacent to vertices in X ∪ C
in GP , and hence by the definition of the augmented graph we obtain that v occurs
in at most 2k many sets in P. On the other hand, for a vertex x ∈ X and a component

	 Algorithmica

1 3

C ∈ G − X there can be at most |C| ≤ k many tuples in P containing x and a vertex
in C.

Now let us consider the graph GP0

0
− X . For each component C′ in GP0

0
− X such

that there exists some v ∈ C ∩ V(G) , let C be the component of GP − X containing v.
Then C′ consists of all vertices of C (at most k in total), all new leaf vertices created
from these vertices in C (at most 2k2 in total), and all new leaf vertices created from
vertices in X due to terminal pairs with one vertex in C (at most k2 in total). As a
consequence, |C�| ≤ 3k2 + k . On the other hand, if C′ contains no vertex from V(G)
then it contains at most 2 newly created leaf vertices.

Since each component of GP0

0
− X has size at most 3k2 + k , it is easy to construct

a fracture modulator of GP0

0
 of that size: one may simply add an arbitrary set of 3k2

vertices to X. Hence frac(GP0

0
) ≤ 3k2 + k , as claimed. 	� ◻

We now proceed with a simple structural observation about fracture modulators.

Lemma 12  Let (G, P) be an instance of EDP and let k be the fracture number of
its augmented graph. Then there exists a fracture modulator X of GP of size at most
2k such that X does not contain any terminal vertices. Furthermore, such a fracture
modulator X can be constructed from any fracture modulator of size at most k in
linear time.

Proof  Let X′ be arbitrary fracture modulator of size k and let P′ ⊆ P be the set of ter-
minal pairs p such that p ∩ X� ≠ � . Consider the set X = X�⧵P̃� ∪ {NG(a) | a ∈ P̃� } .
Because every terminal a ∈ P̃ has at most one neighbor in G (recall our assumption
on (G, P) given in Sect. 2.2), it holds that |X| ≤ 2|X′| . Moreover, for vertex a that
we removed from X′ , it holds that a is in a component of size two in GP⧵X , i.e., the
component consisting of a and b where {a, b} ∈ P� . Consequently, every component
of GP − X either has size two or it is a subset of a component of GP − X� . 	� ◻

We note that the problem of computing a fracture modulator of size at most k is
closely related to the Vertex Integrity problem [8], and that a variant of it has been
recently considered in the context of Integer Linear Programming [9].

Lemma 13  [9, Theorems 7 and 8] There exists an algorithm which takes as input
a graph G and an integer k, runs in time at most O((k + 1)k|E(G)|) , and outputs
a fracture modulator of cardinality at most k if such exists. Moreover, there is a
polynomial-time algorithm that either computes a fracture modulator of size at most
(k + 1)k or outputs correctly that no fracture modulator of size at most k exists.

Proof  The algorithm is based on a bounded search tree approach and relies on the
following observations.

	(O1)	 If G is not connected then each fracture modulator of G is the disjoint union of
fracture modulators for all connected components of G.

1 3

Algorithmica	

	(O2)	 If G is connected and D is any set of k + 1 vertices of G such that G[D] is con-
nected, then any fracture modulator has to contain at least one vertex from D.

These observations lead directly to the following recursive algorithm that either
determines that the instance (G, k) is a NO-instance or outputs a fracture modula-
tor X of size at most k. The algorithm also remembers the maximum size of any
component in a global constant c, which is set to k for the whole duration of the
algorithm. The algorithm first checks whether G is connected. If G is not con-
nected the algorithm calls itself recursively on the instance (G[C], k) for each
connected component C of G. If one of the recursive calls returns NO or if the
size of the union of the solutions returned for each component exceeds k, the
algorithm returns that I is a NO-instance. Otherwise the algorithm returns the
union of the solutions returned for each component of G.

If G is connected and |V(G)| ≤ c , the algorithm returns the empty set as a solu-
tion. Otherwise, i.e., if G is connected but |V(G)| > c the algorithm first computes
a set D of c + 1 vertices of G such that G[D] is connected. This can for instance be
achieved by a depth-first search that starts at any vertex of G and stops as soon as
c + 1 vertices have been visited. The algorithm then branches on the vertices in D,
i.e., for every v ∈ D the algorithm recursively computes a solution for the instance
(G − {v}, k − 1) . It then returns the solution of minimum size returned by any of
those recursive calls, or NO if none of those calls return a solution. This completes
the description of the algorithm. The correctness of the algorithm follows immedi-
ately from the above observations. Moreover the running time of the algorithm is
easily seen to be dominated by the maximum time required for the case that at each
step of the algorithm G is connected.

In this case the running time can be obtained as the product of the number of
branching steps times the time spent on each of those. Because at each recursive call
the parameter k is decreased by at least one and the number of branching choices is
at most c + 1 , we obtain that there are at most (c + 1)k = (k + 1)k branching steps.
Furthermore, the time at each branching step is dominated by the time required to
check whether G is connected, which is linear in the number of edges of G. Putting
everything together, we obtain O((k + 1)k|E(G)|) as the total time required by the
algorithm, which completes the proof of the lemma. 	� ◻

We note that the depth-first search algorithm in the above proof can be easily
transformed into a polynomial time approximation algorithm for finding fracture
modulators, with an approximation ratio of k + 1 . In particular, instead of branch-
ing on the vertices of a connected subgraph D of G with k + 1 vertices, this algo-
rithm would simply add all the vertices of D into the current solution.

For the rest of this section, let us fix an instance (G, P) of EDP with a fracture
modulator X of GP of cardinality k which does not contain any terminals. Fur-
thermore, since the subdivision of any edge (i.e., replacing an edge by a path of
length 2) in (G, P) does not change the validity of the instance, we will assume
without loss of generality that G[X] is edgeless; in particular, any edges that may
have had both endpoints in X will be subdivided, creating a new connected com-
ponent of size 1.

	 Algorithmica

1 3

Our next step is the definition of configurations. These capture one specific way a
connected component C of GP − X may interact with the rest of the instance. It will
be useful to observe that for each terminal pair ab there exists precisely one con-
nected component C of GP − X which contains both of its terminals; we say that ab
occurs in C. For a connected component C, we let C+ denote the induced subgraph
on GP[C ∪ X].

A trace is a tuple (x1,… , x
�
) of elements of X. A configuration is a tuple (�, �)

where

•	 � is a multiset of at most k traces, and
•	 � is a mapping from subsets of X of cardinality 2 to [k2] ; here k2 is an upperbound

on the number of edge-disjoint paths between two vertices in X using only edges
in some component.

A component C of GP admits a configuration (�, �) if there exists a set of edge dis-
joint paths F in C+ and a surjective mapping � (called the assignment) from � to the
terminal pairs that occur in C with the following properties.

•	 For each terminal pair st that occurs in C:

•	 F either contains a path whose endpoints are s and t, or
•	 F contains an s-x1 path for some x1 ∈ X and a t-x2 path for some distinct

x2 ∈ X and there exists a trace L = (x1,… , x2) ∈ � such that �(L) = st.

•	 for each distinct a, b ∈ X , F contains precisely �({a, b}) paths from a to b.
•	 F contains no other paths than the above.

Intuitively, � stores information about how one particular set of edge disjoint paths
A which originate in C is routed through the instance: they may either be routed
only through C+ (in which case they don’t contribute to � ), or they may leave C+
(in which case � stores the order in which these paths visit vertices of X, i.e., their
trace). On the other hand, � stores information about how paths that originate out-
side of C can potentially be routed through C (in a way which does not interfere with
A). Observe that for any particular � there may exist several distinct configurations
( (�, �1), (�, �2) and so forth); similarly, for any particular � there may exist several
distinct configurations ( (�1, �), (�2, �) and so forth).

If a set F of edge disjoint paths in C+ satisfies the conditions specified above for a
configuration (�, �) , we say that F gives rise to (�, �) . Clearly, given F and (�, �) , it
is possible to determine whether F gives rise to (�, �) in time polynomial in |V(C)|.

While configurations capture information about how a component can inter-
act with a set of edge disjoint paths, our end goal is to have a way of capturing all
important information about a component irrespective of any particular selection of
edge disjoint paths. To this end, we introduce the notion of signatures. A signature
of a component C, denoted sign(C) , is the set of all configurations which C admits.
The set of all configurations is denoted by �.

1 3

Algorithmica	

Lemma 14  Given a component C, it is possible to compute sign(C) in time at most
kO(k2) . Furthermore, |sign(C)| ≤ |�| ≤ kO(k2).

Proof  We begin with the latter claim. The number of traces is k! + (k − 1)! +⋯ + 1! ,
which is upper-bounded by 2 ⋅ k! . Consequently, the number of choices for � is
upper-bounded by (2 ⋅ k!)k ≤ kO(k2) . On the other hand, the number of choices for �
is upper-bounded by (k2)k2 . Since the number of configurations is upper-bounded by
the number of choices for � times the number of choices for � , we obtain |�| ≤ kO(k2) .
Note that it is possible to exhaustively construct � in the same time bound.

For the former claim, observe that C+ contains at most 2k2 edges. Consider the
following exhaustive algorithm on C+ . The algorithm exhaustively tries all assign-
ments of edges in C+ to labels from {�} ∪ [2k2] . For each such assignmentF  , it
checks that each label forms a path in C+ ; if this is the case, then F is a collection of
edge disjoint paths of C+ . We can then loop through each configuration (�, �) in � ,
check whether F gives rise to (�, �) , and if yes we add (�, �) to sign(C) . In total, this
takes time at most kO(k2)

⋅ kO(k2) = kO(k2) . 	� ◻

Our next step is the formulation of a clear condition linking configurations of
components in GP − X and solving (G, P). This condition will be of importance
later, since it will be checkable by an integer linear program. For a trace � , we say
that a, b occur consecutively in � if elements a and b occur consecutively in the
sequence � (regardless of their order), i.e., � = (… , a, b,…) or � = (… , b, a,…) .
Let D be the set of connected components of GP − X.

A configuration selector is a function which maps each connected compo-
nent C in GP − X to a configuration (�, �) ∈ sign(C) . We say that a configuration
selector S is valid if it satisfies the condition that dem(ab) ≤ sup(ab) for every
{a, b} ⊆ X , where dem (demand) and sup (supply) are defined as follows:

•	 dem(ab) is the number of traces in
⋃

C∈D S(C) where ab occur consecutively.
•	 sup(ab) is the sum of all the values �(a, b) in

⋃
C∈D S(C).

For completeness, we provide the formal definitions of sup(ab) and dem(ab)
below.

•	 dem(ab): let the multiset A0 be the restriction of the multiset
⋃

C∈D S(C) to
the first component of each configuration. Then we set A =

⋃
�∈A0 � , i.e., A

is the multiset of all traces which occur in configurations originating from S.
Finally, let Aab be the restriction of A only to those traces where ab occurs
consecutively, and we set dem(ab) = |Aab|.

•	 sup(ab): Stated formally, let the multiset B0 be the restriction of the multi-
set

⋃
C∈D S(C) to the second component of each configuration. Then we set

B =
⋃

�∈B0 � , i.e., B is the multiset of all mappings which occur in configura-
tions originating from S. Finally, we set sup(ab) =

∑
�∈B �(ab).

The next, crucial lemma links the existence of a valid configuration selector to
the existence of a solution for EDP.

	 Algorithmica

1 3

Lemma 15  (G, P) is a yes-instance if and only if there is a valid configuration
selector.

Proof  Assume (G, P) is a yes-instance and let Q be a solution, i.e., Q is a set of edge
disjoint paths in G which link each terminal pair in P. We will construct a valid con-
figuration selector S. First, consider a connected component C of GP − X . Observe
that Q restricted to C+ forms a set of edge disjoint paths QC which consists of:

•	 paths starting and ending in X,
•	 paths starting and ending at terminals of a terminal pair, and
•	 paths starting at terminals of a terminal pair and ending in X.

We will use QC to construct a configuration (�C, �C) of C, as follows. For each
{x, y} ⊆ X , �C({x, y}) will map each tuple {x, y} to the number of paths in QC
whose endpoints are precisely x and y. On the other hand, for each pair of paths in
QC which start at terminals s, t of a terminal pair and end at x, y ∈ X , we add the
trace (x, z1,… , z

�
, y) to � , where zi is the (i + 1)-th vertex visited by the s-t path of

Q in X. For example, if the s-t path used by the solution intersects with vertices
in X in the order (a, b, c, d), then we add the trace (a, b, c, d) to �C . As witnessed
by QC , the resulting configuration (�C, �C) is a configuration of C and in particular
(�C, �C) ∈ sign(C).

Let S be a configuration selector which maps each connected component C to
(�C, �C) constructed as above. We claim that S is valid. Indeed, for each {a, b} ∈ X ,
dem(ab) is the number of terminal-to-terminal paths in Q which consecutively visit
a and then b in X (or vice-versa, b and then a). At the same time, sup(ab) is the num-
ber of path segments in Q whose endpoints are a and b. Clearly, dem(ab) = sup(ab).

On the other hand, assume we have a valid configuration selector S. We will use
S to argue the existence of a set Q of edge disjoint paths which connect all terminal
pairs in (G, P). For each component C we know that C admits S(C) = (�C, �C) and
hence there exists a set of edge disjoint paths, say FC , which satisfies the following
conditions:

•	 For each terminal pair st in C, FC either contains a path whose endpoints are s
and t or two paths from s and t to two distinct endpoints in X;

•	 For each distinct a, b ∈ X , FC contains precisely �C({a, b}) paths from a to b.

Let F =
⋃

C∈D FC , and let �C be the surjective assignment function for C which
goes with FC . We will now construct the set Q from F as follows. For each termi-
nal pair s, t in some component C, we add a s-t path L into Q, where L is obtained
as follows. If FC contains a path whose endpoints are s and t, then we set this to
L. Otherwise, L is composed of the following segments:

•	 the two paths in FC whose endpoints are s and t, and
•	 for each x, y ∈ X which occur consecutively in the trace �−1

C
(st) , we choose an

arbitrary x-y path segment from F  , use it for L, and then delete this path seg-
ment from F .

1 3

Algorithmica	

First of all, observe that since S is valid, there will always be enough x-y path
segments in F to choose from in the construction of L. Furthermore, each L is
an s-t path, and all the paths in Q are edge disjoint. Hence (G, P) is indeed a yes-
instance and the lemma holds. 	� ◻

Lemma 16  There exists an algorithm which takes as input an EDP instance (G, P)
and a fracture modulator X of GP and determines whether there exists a valid con-
figuration selector S in time at most 22k

O(k2)

⋅ |V(G)|.

Proof  Consider the following instance of Integer Linear Programming. For each sig-
nature � such that there exists a connected component C of GP − X where
sign(C) = � , and for each configuration (�, �) ∈ � , we create a variable z�

(�,�)
 , and for

each we add a constraint requiring it to be nonnegative. The first set of constraints
we create is as follows: for each signature � , we set

where d� is the number of connected components of GP − X with signature �.
Next, for each {x, y} ⊆ X and for i ∈ [k] , let � x,y

i
 be the set of all configurations

(�, �) such that the number of traces in � where x, y occur consecutively is i. Simi-
larly, for i ∈ [k2] , let �x,y

i
 be the set of all configurations (�, �) such that �({x, y}) = i .

These sets are used to aggregate all configurations with a specific “contribution” i
to the demand and supply. For example, all configurations whose first component is
� = {(a, b, c), (a, d, e, b), (e, b, a)} would belong to � a,b

2
 , and similarly all configura-

tions whose second component � satisfy �({a, b}) = 3 would belong to �x,y

3
 . We can

now add our second set of constraints: for each {x, y} ⊆ X,

The number of variables used in the ILP instance is upper-bounded by the number
of signatures times the cardinality of the largest signature. By Lemma 14, the latter
is upper-bounded by kO(k2) , and therefore the former is upper-bounded by 2kO(k2) ; in
total, the instance thus contains at most 2kO(k2) variables. Since we can determine
sign(C) for each connected component C of GP − X by Lemma 14 and the number
of connected components is upper-bounded by |V(G)|, we can also construct this ILP
instance in time at most 2kO(k2)

⋅ |V(G)| . Moreover, Proposition 1 allows us to solve
the ILP instance in time at most 22k

O(k2) , and in particular to output an assignment �
from variables z�

(�,�)
 to integers which satisfies the above constraints.

To conclude the proof, we show how � can be used to obtain the desired configu-
ration selector S. For each set of connected components with signature � , let S map
precisely z�

(�,�)
 connected components to configuration (�, �) . Observe that due to the

first set of constraints, in total S will be mapping precisely the correct number of
components with signature � to individual configurations (�, �) . Moreover, the

∑
(�,�)∈�

z
�

(�,�)
= d� ,

�
i∈[k]

⎛
⎜⎜⎝
i ⋅

�
(�,�)∈� x,y

i

z
�

(�,�)

⎞
⎟⎟⎠
≤

�
i∈[k2]

⎛
⎜⎜⎝
i ⋅

�
(�,�)∈�x,y

i

z
�

(�,�)

⎞
⎟⎟⎠
.

	 Algorithmica

1 3

second set of constraints ensures that, for every {x, y} ⊆ X , the total demand does
not exceed the total supply. Hence S is valid and the lemma holds. 	� ◻

Theorem 4  EDP is fixed-parameter tractable parameterized by the fracture number
of the augmented graph.

Proof  We begin by computing a fracture modulator of the augmented graph by
Lemma 13. We then use Lemma 16 to determine whether a valid configuration
selector S exists, which by Lemma 15 allows us to solve EDP. 	� ◻

7 � Hardness for Large Components with One Terminal Pair

In the previous section we have shown that EDP is fixed-parameter tractable param-
eterized by the fracture number. One might be tempted to think that tractability still
applies if instead of bounding the size of each component one only bounds the num-
ber of terminal pairs in each component. In this section we show that this is not the
case, i.e., we show that even if both the deletion set as well as the number of termi-
nal pairs in each component are bounded by a constant, EDP remains NP-complete.
Namely, this section is devoted to a proof of the following theorem.

Theorem 5  EDP is NP-complete even if the augmented graph GP of the instance
has a deletion set D of size 6 such that each component of GP − D contains at most
1 terminal pair">.

We will show the theorem by a polynomial-time reduction from the following
problem.

 It is shown in [28, Theorem 4] that MEDP is strongly NP-complete.

Proof of Theorem 5  We provide a polynomial-time reduction from the MEDP prob-
lem. Namely, for an instance I = (G, (s1, t1), (s2, t2), (s3, t3), n1, n2, n3) of MEDP, we
construct an instance I� = (H,P) in polynomial time such that I has a solution if
and only if so does I′ and HP has a deletion set D ⊆ V(H) of size 6 such that each
component of HP − D contains at most one terminal pair.

The graph H is obtained from G after adding:

1 3

Algorithmica	

	(C1)	 for every i with 1 ≤ i ≤ n1 two new vertices si
1
 and ti

1
 , where si

1
 is connected by

an edge to s1 and ti
1
 is connected by an edge to t1,

	(C2)	 for every i with 1 ≤ i ≤ n2 two new vertices si
2
 and ti

2
 , where si

2
 is connected by

an edge to s2 and ti
2
 is connected by an edge to t2.

	(C3)	 for every i with 1 ≤ i ≤ n3 two new vertices si
3
 and ti

3
 , where si

3
 is connected by

an edge to s3 and ti
3
 is connected by an edge to t3.

This completes the description of H. The set P is defined as
{ (si

1
, ti
1
) | 1 ≤ i ≤ n1 } ∪ { (si

2
, ti
2
) | 1 ≤ i ≤ n2 } ∪ { (si

3
, ti
3
) | 1 ≤ i ≤ n3 } . Observe

that after setting the deletion set D to {s1, t1, s2, t2, s3, t4} , the graph HP − D has one
component consisting of the vertices si

1
 and ti

1
 for every i with 1 ≤ i ≤ n1 , one com-

ponent consisting of the vertices si
2
 and ti

2
 for every i with 1 ≤ i ≤ n2 , one component

consisting of the vertices si
3
 and ti

3
 for every i with 1 ≤ i ≤ n3 , and the possibly large

components of G − D . Hence every component of HP − D contains at most one ter-
minal pair.

It remains to show that I has a solution if and only if so does I′ . For the forward
direction let S be a solution for I  , i.e., S is a set of pairwise edge disjoint paths in G
containing n1 paths P1,… ,Pn1

 between s1 and t1 , n2 paths Q1,… ,Qn2
 between s2 and

t2 , and n3 paths R1,… ,Rn2
 between s3 and t3 . Then we obtain a solution for I  , i.e., a

set S′ of pairwise edge disjoint paths in H containing one path between every termi-
nal pair in P as follows. For every i with 1 ≤ i ≤ n1 , we add the path between si

1
 and

ti
1
 in H defined as (si

1
, s1)◦Pi◦(t1, t

i
1
) to S′ , where S1◦S2 denotes the concatenation of

the two sequences S1 and S2 . Similarly, for every i with 1 ≤ i ≤ n2 , we add the path
between si

2
 and ti

2
 in H defined as (si

2
, s2)◦Qi◦(t2, t

i
2
) to S′ . Finally, for every i with

1 ≤ i ≤ n3 , we add the path between si
3
 and ti

3
 in H defined as (si

3
, s3)◦Ri◦(t3, t

i
3
) to S′ .

Because all the path added to S′ are pairwise edge disjoint and we added a path for
every terminal pair in P, this shows that S′ is a solution for I′.

Towards showing the reverse direction, let S′ be a solution for I′ , i.e., a set of pair-
wise edge disjoint paths containing one path, denoted by Pp for every terminal pair
p ∈ P . Observe that if p = (si

1
, ti
1
) for some i with 1 ≤ i ≤ n1 , then Pp contains a path

between s1 and t1 in G. The same applies if p = (si
2
, ti
2
) for some i with 1 ≤ i ≤ n2 and

p = (si
3
, ti
3
) for some i with 1 ≤ i ≤ n3 . Hence the set S containing the restriction of

every path Pp in S′ to G contains n1 paths between s1 and t1 , n2 paths between s2 and
t2 in G, and n3 paths between s3 and t3 , which are all pairwise edge disjoint. Hence S
is a solution for I  . 	� ◻

8 � Conclusion

Our results close a wide gap in the understanding of the complexity landscape of
EDP parameterized by structural parameterizations. On the positive side we pre-
sent three novel algorithms for the classical EDP problem: a polynomial-time algo-
rithm for instances with a FVS of size one, an FPT-algorithm w.r.t. the treewidth
and maximum degree of the input graph, and an FPT-algorithm for instances that

	 Algorithmica

1 3

have a small deletion set into small components in the augmented graph. On the
negative side we solve a long-standing open problem concerning the complexity of
EDP parameterized by the treewidth of the augmented graph: unlike related multicut
problems [18], EDP is W[1]-hard parameterized by the feedback vertex set number
of the augmented graph.

Acknowledgements  Robert Ganian acknowledges support by the Austrian Science Fund (FWF), Projects
P31336 and Y1329. Sebastian Ordyniak acknowledges support from the Engineering and Physical Sci-
ences Research Council (EPSRC, project EP/V00252X/1). The authors also wish to thank the anonymous
reviewers for their exceptionally detailed and helpful comments.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput. 25(6), 1305–1317 (1996)

	 2.	 Bodlaender, H.L., Grønås Drange, P., Dregi, Fedor V. Fomin, Daniel Lokshtanov, and Michal Pilip-
czuk. A c k n 5-approximation algorithm for treewidth. SIAM J. Comput., 45(2):317–378, (2016)

	 3.	 Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth
of graphs. J. Algorithms 21(2), 358–402 (1996)

	 4.	 Chekuri, C., Khanna, S., Shepherd, F.B.: An O(sqrt(n)) approximation and integrality gap for dis-
joint paths and unsplittable flow. Theory Comput. 2(7), 137–146 (2006)

	 5.	 Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D.: Dániel Marx. Michal Pilipczuk, and Saket
Saurabh. Parameterized Algorithms. Springer, Marcin Pilipczuk (2015)

	 6.	 Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
	 7.	 Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Sci-

ence. Springer, Berlin (2013)
	 8.	 Grønås Drange, P., Dregi, M.S., van ’t Hof, P, : On the computational complexity of vertex integrity

and component order connectivity. Algorithmica 76(4), 1181–1202 (2016)
	 9.	 Dvořák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S. Solving integer linear programs with

a small number of global variables and constraints. In: Proceedings of the IJCAI 2017, 2017 (to
appear)

	10.	 Ene, A., Mnich, M., Pilipczuk, M., Risteski, A. On routing disjoint paths in bounded treewidth
graphs. In: Proceedings of the SWAT 2016, volume 53 of LIPIcs, pp. 15:1–15:15. Schloss Dagstuhl
(2016)

	11.	 Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S. Graph layout problems
parameterized by vertex cover. In: ISAAC, Lecture Notes in Computer Science, pp. 294–305.
Springer (2008)

	12.	 Fleszar, K., Mnich, M., Spoerhase, J. New algorithms for maximum disjoint paths based on tree-
likeness. In: Proceedings of the ESA 2016, pp. 42:1–42:17 (2016)

	13.	 Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science,
vol. XIV. An EATCS Series. Springer, Berlin (2006)

	14.	 Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica 7(1), 49–65 (1987)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Algorithmica	

	15.	 Ganian, R., Klute, F., Ordyniak, S. On structural parameterizations of the bounded-degree vertex
deletion problem. Algorithmica (to appear), 2000. to appear. https​://doi.org/10.1007/s0045​3-020-
00758​-8

	16.	 Ganian, R., Ordyniak, S. The power of cut-based parameters for computing edge disjoint paths.
Algorithmica, 2020 (to appear)

	17.	 Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow
and multicut in trees. Algorithmica 18(1), 3–20 (1997)

	18.	 Georg Gottlob and Stephanie Tien Lee: A logical approach to multicut problems. Inf. Process. Lett.
103(4), 136–141 (2007)

	19.	 Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3),
415–440 (1987)

	20.	 Karp, RiM: On the computational complexity of combinatorial problems. Networks 5(1), 45–68
(1975)

	21.	 Ken-ichi, K., Kobayashi, Y., Kreutzer, S. An excluded half-integral grid theorem for digraphs and
the directed disjoint paths problem. In Proc. STOC 2014, pp. 70–78. ACM (2014)

	22.	 Kloks, T.: Treewidth: Computations and Approximations. Springer, Berlin (1994)
	23.	 Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using packing integer pro-

grams. Math. Program. 99(1), 63–87 (2004)
	24.	 Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res, 8(4):538–

548 (1983)
	25.	 Micali, S., Vazirani, V.V. An O(sqrt(|V|)|E| ) algorithm for finding maximum matching in general

graphs. In 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York,
USA, 13-15 October 1980, pp. 17–27. IEEE Computer Society, 1980

	26.	 Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete for series-paral-
lel graphs. Discrete Appl. Math. 115(1–3), 177–186 (2001)

	27.	 Robertson, N., Seymour, P.D.: Graph minors xiii the disjoint paths problem. J. Comb. Theory Ser. B
63(1), 65–110 (1995)

	28.	 Vygen, J.: Np-completeness of some edge-disjoint paths problems. Discrete Appl. Math. 61(1),
83–90 (1995)

	29.	 Zhou, X., Tamura, S., Nishizeki, T.: Finding edge-disjoint paths in partial k-trees. Algorithmica
26(1), 3–30 (2000)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/s00453-020-00758-8
https://doi.org/10.1007/s00453-020-00758-8

	On Structural Parameterizations of the Edge Disjoint Paths Problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Notation
	2.2 Edge Disjoint Path Problem
	2.3 Parameterized Complexity
	2.4 Integer Linear Programming
	2.5 Treewidth

	3 Closing the Gap on Graphs of Feedback Vertex Number One
	4 Treewidth and Maximum Degree
	5 Lower Bounds of EDP for Parameters of the Augmented Graph
	6 An FPT-Algorithm for EDP Using the Augmented Graph
	7 Hardness for Large Components with One Terminal Pair
	8 Conclusion
	Acknowledgements
	References

