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Abstract. ​Decentralization powered by blockchain is validated for its capability          
to build trust like no other computational system before. The evolution of            
blockchain models has opened new use-cases that are becoming operational in           
many industry fields such as: energy, healthcare, banking, cross-border trade,          
aerospace, supply chain, and others. The core component of a decentralized           
architecture is the consensus algorithm - the set of rules that ensures an             
automated and fair agreement between the actors in the same network. Classic            
consensus algorithms are tailored to solve specific problems, but in an open            
ecosystem, each business case is unique and needs a certain level of            
customization. This paper introduces a new meta-consensus model called         
Dynamic Consensus, an architecture extension that allows multiple,        
complementary, consensus algorithms to run on the same platform. While          
classic consensus mechanisms are more appropriate for public or private          
systems (narrow set of rules), a dynamic approach would fit better for federated             
business consortiums (more rules and higher need for adaptability). The model           
is illustrated and analyzed as an ongoing experimental feature that can be added             
to enterprise blockchains designed to operate in cross-domain environments. 

Keywords: ​ Decentralized System, Blockchain, Consensus, Enterprise 

1. Introduction 

1.1 Classic consensus models 

Proof of Work (PoW) was the first consensus model that applied the Nakamoto             
consensus [31] for blockchains. The protocol requires each block to contain a solution             
to a proof of work p​uzzle (i.e. the PoW) and to point to the previous valid block with                  
the best PoW. Despite its energy inefficiency, variations of this algorithm are used by              
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many platforms (Bitcoin, Ethereum, etc,) that are implementing fairly simple          
transaction systems [14]. Even if the algorithm is computationally intensive and           
slow, it provides a secure and verifiable proof of the entire history of the chain. 

Another classic consensus model is the Practical Byzantine Fault Tolerance          
(pBFT) algorithm, proposed as a solution to the Byzantine Generals’ problem [8]. The             
algorithm is known for transaction finality and attack resistance but works only with a              
limited number of consensus members since it was designed for leader-based systems            
that can reduce the quadratic communication complexity of pBFT-like protocols. 

The Proof of Stake (PoS) family of algorithms [12] was inspired by the social              
ecosystem of humans, where the trustworthy ones (risk takers) are entitled to decide             
over the next state of the network. Ouroboros [19] and Algorand [15] opened the road               
for Casper [7] and other variations that are following a similar path. Considering the              
acceptable trade-off between energy efficiency and decentralization, PoS has few          
proven vulnerabilities [13] and it is considered one of the most balanced consensus             
methods.  

Besides the briefly presented consensus models above, there are many other           
algorithms and variations that are worth mentioning: Proof of Burn, Proof of Elapsed             
Time, Proof of Capacity, Proof of Identity and others [3]. 

From an analytical point of view, several studies [28, 4, 27, 5] have reached an               
important conclusion: each classical consensus mechanism comes with performance         
trade-offs, each has its own advantages and disadvantages, and thus, it can perform             
better or worse, depending on the application context, business perspective and           
hardware infrastructure constraints. 

1.2 Enterprise perspective 

If we analyze the range of blockchain models from public to enterprise, we can              
identify the following focus points:  

● transparency was traded for on-demand permission-based access and        
controlled privacy [36] 

● the development and assessment of benchmarks and frameworks are focused          
on analyzing the existing architectures in order to identify the best choice for             
a specific context [26, 11]; 

● the optimization of algorithms is targeting only certain parameters:         
high-performance [21], efficiency [24], decentralized storage [32]. In this         
case, a multi-objective optimization would be very hard to perform; 

● already functional products are using domain-focused solutions, tailored for         
individual applications and technologies [20, 2] 

● industrial international standardization initiatives are already mature enough        
to be implemented in the next generation of products [16, 18] 

Looking over the above points, we can conclude the following: for           
multi-organization enterprise networks, there is no easy way to establish a sole            
consensus mechanism because the need for flexibility is higher than the need for             
cross-organization communication.  
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1.3 Practical solutions 

Pioneers of enterprise-ready blockchain solutions are already using permissioned         
consensus methods that are flexible enough to match a large variety of use-cases. For              
example, Corda R3 is not using block-based ordering, instead, it uses notaries for             
transaction ordering and timestamping services to reach consensus (validity and          
uniqueness) [​6​]. The Hyperledger family clearly states that there is no magic key that              
opens all doors, that is why various products are using different consensus            
mechanisms, most of them based on permissioned voting systems: Kafka for Fabric,            
Proof of Elapsed Time for Sawtooth, Sumergi in Iroha and RBFT in Indy [​34​]. 

There are many use-cases, pilot applications or even commercial solutions          
developed using Hyperledger [29] or Corda [25]. Most of these solutions require a             
custom adaptation effort, particularly because of these two aspects:  

● the virtual machine model needs more components in order to be able to             
process smart contracts written in high-level programming languages        
required for a large variety of constraints, rules and integration needs [33, 1]; 

● the consensus model needs on-demand difficulty control [22] to allow fast           
adaptation. Such an engine would be able to offer more flexibility for            
cross-domain, cross-shard [1], multi-organization rules or consortiums [10]. 

2.  Dynamic Consensus 

2.1 Starting point  

Based on the summarized analysis presented above (classic consensus models,          
enterprise perspective, practical solutions), this section introduces the concept of          
Dynamic Consensus, a meta-mechanism meant to increase the flexibility and          
adaptability of blockchain solutions by leveraging the usage of multiple consensus           
rules at the same time.  

An enterprise network is a private permissioned network with thousands of           
cross-domain or cross-organization processes that are functioning in parallel. As          
depicted in Fig. 1, the data exchange is intense and for a realistic scenario, it has to be                  
governed by a continuously changing set of rules. 

 
Fig 1. Data exchange in a multi-organization environment 
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The needs for such a business ecosystem are very hard to reproduce using fixed logic               
components. Such a network would be cost-ineffective and underperforming with a           
classic consensus mechanism where all nodes have to be aware in real-time of the              
entire state space. Also, a single consensus mechanism would probably reduce the            
parallelism capacity of the system.  

2.2 Hierarchical structure 

An enterprise network is usually built across a consortium of organizations           
(companies) aiming for interoperability and data exchange. Each organization has its           
own domains (departments or sub-organizations) and each domain controls multiple          
shards (data processing clusters). Each shard is responsible for a specific industrial            
process and contains several nodes (processing agents). The nodes perform the actual            
consensus computations. Fig. 2 shows the hierarchical structure of an enterprise           
network that is designed for a generic consortium. 

 

 
Fig 2. Hierarchical design of an enterprise network 

 
In a blockchain architecture, any data-exchange that affects the decentralized          

ledger is formally considered a transaction. In the above-presented design, once a            
transaction is issued, it is fairly easy to identify its origin and target by using the                
system hierarchy. This is the first step that allows the grouping of transactions based              
on their source of emittance and their source of impact. In this case, local transactions               
are processed only at a lower level with a reduced number of nodes, while cross-entity               
transactions require more decision nodes. This approach saves processing and          
propagation time and allows the use of an ad-hoc consensus at a lower scale and the                
use of an overall consensus of all nodes over some global (system-wide) transactions.  
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2.3 Channels and virtual domains 

Side channels, plasma, state channels and other similar mechanisms [35,9], are           
solutions that keep only relevant information on-chain while the processing is           
performed off-chain.  

In the context of the above-presented consortium design, we propose to use            
channels as communication rooms where members (nodes) from multiple         
organizations can subscribe to specific topics. The members of a channel are not             
dependent on the hierarchical localization and channels are turning into virtual           
cross-organization domains. Each such domain will be created with the approval of            
the involved organizations. All operations inside the channel can be processed with a             
topic-driven consensus algorithm chosen by the participating members (nodes). Fig.3          
presents an example of a channel that acts as a virtual domain across organizations.  

 
Fig 3. Channel acting as a virtual domain across organizations 

2.4 Indexing functions 

In the configuration stage, each organization defines the following parameters for its            
nodes:  

● contextual power (C​p​). The higher the value, the larger the impact of the             
node in the decision process. C​p ​can be considered a low pass filter, where a               
node with a maximum C​p ​can be involved in all the decisions across the              
consortium, while a node with a minimum C​p ​will be involved only in the              
least important decisions; 

● location interest (L​i​). Each location has a unique identifier across the           
network. Using an array, each node specifies its interest value (boolean) for            
every specific location in the network (organization, domain, virtual domain) 

 

5 



6 

From a generic perspective, a transaction has the following fields: type(​t​), asset(​as ​),            
source(​so​), target(​ta ​), timestamp(​ts ​), context(​c​), location effect(​le​). Considering the        
system-wide constant expiration timestamp(θ) and predicate functions ​e(ts)​, ​d(so,ta)         
defined as: 

 

The importance function (IMP​func​) is a classification function that outputs the           
corresponding consensus algorithm and is defined as follows:  

 

The exact mathematical weights of the classification function are dependent on the            
configuration parameters of each system. Multiple interactive simulations and         
relevant training data can reveal optimal values based on hardware specifications,           
network size and business case. At the system level of each node, there is a shared                
lookup routing table (​Fig. 4) that stores the routing address for all the available              
consensus algorithms. For each transaction the determines the ​associated class      IMP func     
of the consensus algorithm. The algorithm address is determined by querying the            
lookup table for the determined class.  

 

Fig. 4. Indexing table of consensus algorithms 
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The algorithm dispatch process is dynamically executed at the node level for every             
visible transaction in the pool. A node decides to participate in a consensus round for               
a transaction if the following conditions are met at the same time:  

● the context(c) of a transaction corresponds to the contextual power of the            
node (C​p​); 

● the location effect(le) of a transaction corresponds with the location interest           
(L​i​) of the node 

2.5 Overall architecture 

Most of the enterprise-oriented blockchain architectures [34, 6, 17] already offer a            
high level of abstraction. From a software engineering perspective, in order to migrate             
towards a dynamic consensus capable platform, the static consensus module should           
be replaced with a meta-consensus component. This component acts as a dispatcher            
for all transactions. From the perspective of a consortium owner, Fig.5 displays an             
overall functional architecture.  

 
 

Fig. 5. Dynamic Consensus Architecture 
 
The level of consensus parallelism can be observed in the context of multiple             
heterogeneous groups that are processing transactions with different consensus         
algorithms. The most important nodes should run on a hardware configuration with            
higher security requirements, thus, they can participate in multiple groups at the same             
time.  
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2.6 Prerequisite actions for integration 

In order to integrate the dynamic consensus model in an existing multi-organization            
infrastructure, the following guidelines need to be followed :  

● the previously described indexing functions are based on a common set of            
rules that has to be defined at the consortium level. All existing rules will              
balance the importance, location and context according to        
application-specific needs. A new rule added to the set has to be validated             
by the entire network with a top-level voting-based consensus algorithm; 

● for reducing the complexity of simulation, the initial state can be: all the             
nodes receive the same power and the meta consensus is fed with only one              
entry. Gradually, adding more algorithms and adjusting the power of the           
nodes should be a context-driven decision; 

● the existing static consensus has to be generalized and abstracted in order to             
be able to swap the modules; 

● the host network should activate the support for state decoupling procedures           
like state sharding [23],  layering, etc. 

3. Conclusions  

The performance of enterprise blockchains is a topic of great interest. Some of the              
existing platforms are highly adapted to specific needs but are unable to scale and              
others are highly scalable but not flexible enough for cross-organizational          
collaboration.  

The purpose of this paper is to show that a master consensus algorithm is              
suboptimal in a multi-organization network. As an substitute, we propose a dynamic            
consensus model that comes with the following advantages: 

● different rules for different transactions based on relevance and impact; 
● network consensus (machine-to-machine) can be separated from the business         

consensus (might require human intervention); 
● the bottleneck for parallelism is solved using a hierarchical structure; 
● the data exchange in an open collaborative ecosystem can be regulated to            

match enterprise privacy and security policies; 
● from an architectural perspective, the presented model covers the         

decentralization, consensus and security properties described by the DCS         
Theorem [30];  

Dynamic Consensus is currently being integrated and tested on the Insolar Assured            
Ledger Platform [17] on a sharded multi-organization infrastructure. Future         
publications will include comparison sheets between classic static implementations         
and the proposed dynamic approach. 
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