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List of Abbreviations 22 

AFO     Ankle-foot orthosis  23 

BoS     Base of support 24 

CoM     Center of mass  25 

CNS     Central Nervous system 26 

DR     Damping Ratio 27 

DRT     Dorsiflexion resistive torque 28 

DRR     Dorsiflexion range-of-motion restriction 29 

DPRT     Dorsi-plantarflexion resistive torques 30 

DPRR     Dorsi-plantarflexion range-of-motion restrictions 31 

PC1     First principal component 32 

GM(s)     Gain Margin(s) 33 

HS     Heel Strike 34 

IMU        Inertial Measurement Unit 35 

MP     Minimal phase 36 

NMP     Non-minimum phase 37 

N&B     Nyquist and Bode 38 

PM(s)     Phase Margin(s) 39 

PCA     Principal component analysis 40 

ROM     Range of motion  41 

RMS     root-mean-square 42 

SM     spring-mass 43 

SMD     spring-mass-damper 44 

TF(s)     Transfer function(s) 45 

TO     Toe off 46 
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Highlights: 50 

▪ This study introduces methods to quantify vertical limb dynamics while walking. 51 

▪ A model identification approach is proposed to quantify lower limb compliant 52 

dynamics. 53 

▪ Linear control theory is applied to analyse the effect of vertical loading impacts on 54 

stability. 55 

▪ Proposed methods are applied to investigate the structural impacts of wearable 56 

devices.  57 

▪ Our methods show that a wearable orthosis has significant effect on the limbs’ 58 

vertical dynamics. 59 

 60 
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Abstract  71 

Extensive research is ongoing in the field of orthoses/exoskeleton design for efficient lower 72 

limbs assistance. However, despite wearable devices reported to improve lower limb 73 

mobility, their structural impacts on whole-body vertical dynamics have not been 74 

investigated. This study introduced a model identification approach and frequency domain 75 

analysis to quantify the impacts of orthosis-generated vibrations on limb stability and 76 

contractile dynamics. Experiments were recorded in the motion capture lab using 11 77 

unimpaired subjects by wearing an adjustable ankle–foot orthosis (AFO). The lower limb 78 

musculoskeletal structure was identified as spring-mass (SM) and spring-mass-damper 79 

(SMD) based compliant models using the whole-body centre-of-mass acceleration data. 80 

Furthermore, Nyquist and Bode methods were implemented to quantify stabilities resulting 81 

from vertical impacts. Our results illustrated a significant decrease (p < 0.05) in lower limb 82 

contractile properties by wearing AFO compared with a normal walk. Also, stability margins 83 

quantified by wearing AFO illustrated a significant variance in terms of gain-margins (p < 84 

0.05) for both loading and unloading phases whereas phase-margins decreased (p < 0.05) 85 

only for the respective unloading phases. The methods introduced here provide evidence that 86 

wearable orthoses significantly affect lower limb vertical dynamics and should be considered 87 

when evaluating orthosis/prosthesis/exoskeleton effectiveness. 88 

Keywords: ankle–foot orthosis, limb contractile properties, dynamic stability, gait, vertical 89 

impacts, loading and unloading phases, wearable devices  90 

 91 

 92 

 93 
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1. Introduction 94 

People with growing age and/or neuromuscular impairments tend to avoid bipedal activities 95 

because of fear of falling [1]. Clinically, a range of lower limb orthoses or exoskeletons is 96 

recommended for assistance or rehabilitation [2]. Intensive research studies are ongoing to 97 

make these devices portable, lightweight and stronger [3]. Most of the commercially 98 

available orthoses/exoskeletons are made of the metallic structure strapped rigidly to the 99 

lower limbs for efficient power transmission. Earlier studies have reported that the vertical 100 

impact forces generated because of inertial changes at the lower extremity (ankle–foot) are 101 

two to three times of the body weight and resultant shock waves are considered as one of the 102 

major reasons for worsening joint diseases and neuromuscular injuries [4, 5]. However, their 103 

effects on gait dynamic stability and lower limb contractual properties have not been reported 104 

in view of wearable devices. Lower-limbs contractile properties are being used to simulate 105 

walking dynamics in terms of spring-mass system [6-8]. Such models are also built in 106 

portable motion monitoring devices such as inertial measurement units [9] to understand limb 107 

compliant dynamics. 108 

 Considering prior modelling approaches, studies have developed various bipedal models to 109 

simulate lower limb vertical dynamics to investigate limb contractile properties and 110 

neuromotor control aspects. These include spring-mass [7, 10, 11] and spring-mass-damper 111 

[6, 8, 12] based inverted pendulum models in which model parameters are adjusted to get a 112 

model output equivalent to the ground reaction force (GRF) data collected experimentally 113 

from human subjects. These approaches use rigid body elements (e.g., spring, mass and 114 

damper models) that underestimate the actual impact dynamics in the lower limbs during 115 

weight loading and unloading gait phases. During these phases, a rate of deceleration or 116 

acceleration illustrates highly transient features and also acts as somatosensory feedback to 117 

actuate leg muscles [13-15]. Alternatively, a few studies also employ a general second-order 118 
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underdamped system in which model parameters (natural frequency, damping ratio) are 119 

estimated using time series data collected from human subjects [16, 17]. These fixed-order 120 

empirical models also underrate limb vertical dynamics to mimic actual gait transients which 121 

illustrate sinusoidal patterns. Furthermore, the efficiency of the best-fit models has not been 122 

reported in either of the mentioned modelling approaches. Because of these limitations, lower 123 

limb contractile properties are previously reported with large variations [18]. A critical need 124 

remains to validate previously reported lower limb vertical dynamics by applying methods 125 

that will address the highlighted discrepancies. 126 

Recent studies also apply whole-body vertical vibrations/impact forces as a rehabilitation tool 127 

to recover from chronic ankle instabilities, ankle sprains and muscular or neural deficits [19-128 

21]. Oppositely, a range of heel pads is also reported in prior studies to damp the vertical 129 

loading impacts [22, 23]. Previously, the effectiveness of these rehabilitation techniques on 130 

gait dynamic stability is reported to assess in anterior-posterior and medial-lateral directions 131 

[24, 25] but lacked to quantify in the vertical direction despite the vertical GRFs having 132 

maximum magnitudes and rate of variations. That may be because of the methodological and 133 

or analytical limitations in existing techniques used to simulate limb vertical dynamics. 134 

This study proposes methods of identifying lower limb compliant models directly from the 135 

experimental data. From the engineering control theory, Nyquist and Bode (N&B) methods 136 

are implemented to analyse the effect of compliant dynamics on walking stability. More 137 

recent studies employed these techniques for gait dynamic stability assessments in the 138 

forward direction of motion [26-28]. These methods are applicable to quantify gait 139 

stability/instability in all three anatomical directions, hence, overcome the limitations of 140 

previously reported assessments [24, 29] which were reported in the anterior-posterior and 141 

medial-lateral directions (deficient to quantify the impact of vertical forces). This study 142 

extends the work done previously by considering vertical loading impacts while performing a 143 
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level ground walk. Furthermore, these methods are applied to investigate wearable ankle–foot 144 

orthosis (AFO) impacts on the vertical limb dynamics for a range of clinically applied 145 

adjustments.  146 

2. Materials and Methods 147 

2.1 Experimental protocol and setup 148 

A total of 11 healthy subjects (aged 30±1 yrs, weight 74±3 kg and height 1.72±2.5 m) were 149 

included in this study. The subjects were inducted with no prior history of neurological or 150 

neuromuscular impairments. Each subject signed an informed consent form. The 151 

experimental protocol was approved by the institutional ethical review board at the 152 

University of Leeds.  153 

An adjustable ankle–foot orthosis was designed to induce perturbations into the ankle joint in 154 

the sagittal plane following earlier studies [30, 31]. The AFO was made with metallic 155 

(aluminium) shank and carbon-fibre foot parts embedded with an adjustable Ultraflex ankle–156 

foot joint [32] as shown in Figure 1(a). The AFO was tuneable to a range of clinical stiffness 157 

and a range of motions (ROMs; ±67.8 Nm and ±40°) both in dorsiflexion and plantarflexion 158 

directions. The simulated ankle–foot restrictions and their operating ranges are summarised in 159 

Table 1. The AFO restrictions were implemented following prior studies [30, 33] in which 160 

various gait-related aspects were investigated by applying restrictions to the healthy subjects 161 

ankle-foot joint. Clinically, these restrictions are tuned using AFO to treat ankle-foot 162 

deficiencies such as foot drop, Charcot-Marie tooth etc.  A total of 26 reflective markers were 163 

attached to the body at lower limbs. The placement of the markers was followed from Visual-164 

3D help document [34] as illustrated in Figure A1 (Appendix A). The subjects were asked to 165 

get familiar with the AFO by wearing it on an eight-metre walkway, and then the trials were 166 

recorded in a motion capture lab using 12 cameras (Qualisys software and Oqus cameras) and 167 
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two force plates (AMTI BP400600-2000) at 1 kHz and 400 Hz, respectively. The trials were 168 

recorded first at normal speed barefoot, then wearing AFO (free mode) and applying the 169 

aforementioned restrictions. Prior to recording the experiments, each participant was asked to 170 

perform a few trials to get familiar with his preferred normal pace and to ensure this pace in 171 

all walking conditions. The preferred walking speed trials were recorded following 172 

previously reported similar studies [35-37]. A total of five trials were recorded per subject per 173 

walking condition. 174 

Table 1 here 175 

Figure 1 here 176 

2.2 Data processing  177 

The lower-limb joint angles and moments were computed using Visual3D motion analysis 178 

software (C-Motion Inc., Germantown, MD) and filtered at 6 Hz using fourth-order 179 

Butterworth. The ankle and knee joint angles and moments are illustrated in Figure 1(b–e). 180 

The vertical GRF raw data was exported to MATLAB 2017a and normalised with individual 181 

subject body weight. The resultant signals present whole-body CoM-acceleration (i.e. 182 

GRF/mass) which were further processed into two steps. Firstly, the finite difference 183 

algorithm [38] was implemented using Eq. 1 to determine the rate of change in the body’s 184 

CoM-acceleration (‘𝑎  ̇ ’ unit 𝑚/𝑠3). The resultant waveforms were filtered using Butterworth 185 

fourth order filter at 18Hz and illustrated in Figure 2(a) – named as actual CoM-oscillations 186 

(i.e. before rectification).  187 

𝑎  ̇ =  (𝑎2 − 𝑎1) (𝑡2 − 𝑡1)⁄                                                  (1) 188 

where 𝑎2, 𝑎1 are two consecutive samples of CoM-acceleration and 𝑡2, 𝑡1 are respective time 189 

instants. Secondly, the root-mean-square (RMS) of the aforementioned CoM-oscillations 190 
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(�̇�𝑟𝑚𝑠) was computed using Eq. 2. The RMS of CoM-oscillations was computed following 191 

prior similar studies [37, 39, 40] where higher order signals (derivative) were reported to be 192 

rectified in-order to analyse or characterise important features in the frequency domain. 193 

Likewise, in the current study, a frequency domain stability analysis was performed to the 194 

RMS CoM-oscillations as discussed in the subsequent section 2.3.  195 

�̇�𝑟𝑚𝑠 =  √(𝑎1̇)2 + (𝑎2̇)2/2                                                    (2) 196 

Where 𝑎1̇ and 𝑎2̇ are the rate-of-change of CoM-acceleration and present two consecutive 197 

samples of the actual CoM-oscillations. The RMS CoM-oscillations were time normalised to 198 

500 samples (stance phase) and filtered using fourth-order Butterworth filter at 18 Hz. After 199 

computing the RMS and filtering the waveforms, the resultant vertical CoM-oscillations are 200 

plotted in Figure 2(b). Both the actual and respective RMS waveforms of CoM-oscillations 201 

are presented in Figure 2(a) and 2(b) respectively for the normal walking condition. An 202 

optimum cut-off frequency for the Butterworth filter is selected applying residual analysis 203 

method [41] to the raw waveforms of CoM-oscillations and the order of the filter was 204 

confirmed from prior similar studies [42]. The data filtration using fourth order Butterworth 205 

at 18Hz removed the noise effectively, however, due to averaging of consecutive samples, the 206 

last few samples of the unloading phases illustrated over smoothening in Figure 2(a). To 207 

overcome this issue, the whole stance phase (500 samples) was split into two windows of 208 

equal lengths. Each window (250 samples) was processed independently while computing 209 

RMS and applying filtration. Thus, the windowing of the stance phase eliminates the over 210 

smoothening effect and resultant waveforms are illustrated in Figure 2(b). The resultant 211 

CoM-oscillations showed oscillatory impulsive responses with decaying magnitudes in 212 

loading and rising magnitudes during the respective unloading phases as shown in Figure 213 

2(b). Observing these responses, window sizes of 150 samples were selected for further 214 
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analysis such that the initial 30 percent of the stance from heel contact (HC) present the 215 

loading phase and the last 30 percent towards toe-off present the unloading phases [43].  216 

Figure 2 here 217 

The derivative of CoM-acceleration waveforms induced noise in the output data. 218 

Furthermore, the variations in the subjects’ demographic data (weight, height and foot length) 219 

and adaptability towards orthosis restrictions induced artefacts in the output waveforms. 220 

These artefacts induce variability and hence nonlinearity in the data. In order to confirm this 221 

non-linearity resulted due to demographic variations among the subjects, at first, the PCA 222 

was performed using a single subject all trials and the results illustrated that the first principle 223 

component (PC1) counted 99% of the variance of the input waveforms. Further, the PCA was 224 

applied combined to all eleven subjects’ walking trials and results illustrated that the 225 

variation explained by PC1 reduced to 90%. Implies, the combined data scatted in other 226 

dimensions as well. Thus, the demographic variations among the testing subjects induced 227 

non-linearity. The requirement for analysing these oscillatory waveforms applying Nyquist 228 

and Bode methods is to be modelled using linear time-invariant models. Following similar 229 

applications from prior studies [44, 45], we have implemented principal component analysis 230 

(PCA) to reduce the artefacts from repeatedly measured oscillatory waveforms. This 231 

technique converts a set of correlated variables into linearly uncorrelated variables called 232 

principal components (PCs). For each walking condition, an input data matrix (5 trials x 11 233 

subjects) was used to reduce the variability in the data following an earlier study [46]. The 234 

PCs which explained variances >80% were used to reconstruct the linear waveforms. The 235 

mean of each subject’s five trials was used for further analyses. 236 

2.3 CoM-vibrations modelling and analysis 237 
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In the vertical direction, the resultant CoM-oscillations were modelled in time and frequency 238 

domains applying two different model identification approaches as illustrated in Figure 3. 239 

Since vertical GRF vector presents the resultant of whole-body inertial impacts, spring-mass 240 

or spring-mass-damper models were used to present the resultant effect of whole limb 241 

dynamics. In the first approach, a sum of sinusoidal functions was found the best fit 242 

(99±0.5%) to the time series linear waveforms applying curve fitting tools (least square 243 

regression) in MATLAB 2017a for both loading and unloading phases (models presented in 244 

Appendix – Table A.1). This approach follows the spring-mass system identification, with 245 

the assumption damping ratio approaching zero and the body experiencing free vibrations. 246 

The time-domain models were converted to the frequency domain by Laplace transformation, 247 

also known as transfer function (TF). In the second approach, frequency-domain models were 248 

identified directly as the ratio of output to input polynomials using the System Identification 249 

Toolbox in MATLAB with criteria of best fit >95% (models presented in Appendix – Table 250 

A.1). This approach follows spring-mass-damper (SMD) based model identification with 251 

relatively less fit for loading phase waveforms and unable to predict the unloading phase at 252 

all. Hence, the second approach was used to quantify contractile properties as a result of 253 

loading impacts, including the effect of damping factor.  254 

Figure 3 here 255 

A transfer function presents a system in the frequency domain as a ratio of Laplace of the 256 

output to input polynomials. The roots of the denominator of a TF are used to define the 257 

stability of a system (i.e., stable if it lies on the left half of the s-plane; otherwise, it is 258 

unstable). Furthermore, the modelled TFs can illustrate the non-minimum phase (NMP) 259 

systems in which numerator/denominator roots lie on the right half of the s-plane (Figure 260 

A2). Based on a study, most of the flexible systems had NMP natures and were found 261 

difficult to analyse [47]. We have applied unit impulse inputs to the modelled TFs, which is a 262 
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standard control engineering approach to test systems responses in the frequency domain [28] 263 

and resultant outputs presented the CoM-oscillations as gain and phase plots in the frequency 264 

domain (Figure A3).  265 

2.4 Nyquist and Bode (N&B) stability criteria 266 

The N&B methods present TFs graphically as gain or phase versus logarithmic frequency 267 

axes (Figure A3). Both methods are applied alternatively; however, Bode plot is more widely 268 

used with its distinct graphical representation for gain and phase plots compared with an 269 

equivalent single Nyquist plot. Here, both methods were implemented, and stability margins 270 

were confirmed from each other. The Nyquist criteria define relative stabilities in terms of 271 

gain and phase margins. It employed Cauchy’s theorem with distinct stability cutoffs (i.e., 0 272 

dB gain and ±180°±2kπ phase) with reference of which stability margins are quantified such 273 

that the points where gait and phase plots cut respective axis are called cutoff frequencies. At 274 

phase cutoff frequency, the difference of gain plot from ‘0dB axis’ measures gain margin 275 

(GM), and at gain cutoff frequency, the difference of phase magnitude from ‘±180°±2kπ 276 

axes’ measures as phase margins (PM) as illustrated in Figure A3. The GM and PM quantify 277 

the ability of a system to withstand internal or external disturbances. Applying Nyquist and 278 

Bode methods, the gait instability refers to how much a person deviates from the point of 279 

stability for which the reference thresholds are 0dB gain and ±180° phase. A GM quantifies 280 

robustness with respect to amplitude, and a PM quantifies the ability to withstand time 281 

delays. A system may have one or more GMs and PMs, and among those, the one with the 282 

smallest absolute margin would be critical to define the system’s stability [48]. The 283 

contractile properties define lower-limbs overall compliant dynamics (resultant of muscles 284 

activation) such as damping ratio, natural frequency and peak gain. These properties quantify 285 

limb impact forces attenuation properties. Previously, these contractile properties were 286 

evaluated using resultant ankle moments [16] or vertical GRFs [6, 18]. These properties have 287 
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been used to differentiate healthy versus impaired subjects’ ability to generate/absorb impact 288 

forces. In the current study, the structural impact of a wearable orthosis on the limb compliant 289 

dynamics are evaluated using these properties. These properties are defined here using 290 

formulae described in control theory texts [49] (Figure A4). 291 

1) Damping Ratio (DR) - The damping ratio is a dimensionless quantity that quantifies the 292 

system’s ability to attenuate oscillations/vibrations in response to a disturbance. Practically, 293 

an underdamped system has 0 < ζ < 1, and an undamped system has ζ = 0. A decrease in the 294 

damping ratio implies more oscillations resulting from heel contact. 295 

𝜁 = −cos(𝜃) 296 

where ‘𝜃’ is the angle from the origin to the pole location. 297 

2) Peak Gain (Mr) - It presents the maximum magnitude in the gain plot. For a normal gait 298 

performance, peak gains are required to maintain the range of healthy subject data to provide 299 

optimum somatosensory inputs to the neuromotor for balance control. 300 

3) Natural Frequency (ωn) – This presents the frequency of CoM-oscillations, which is used 301 

to analyse the response of a system. 302 

𝜔𝑛 = |𝑠| 303 

where ‘s’ is pole location. Since the natural frequency of oscillations depends on pole 304 

locations, the pole which presents maximum natural frequency is used for analysis. 305 

2.5 Statistical Analysis 306 

Both contractile properties and stability margins were compared statistically using IBM 307 

SPSS-V23 software. First, the distribution of data samples in each variable was tested 308 

applying the Shapiro–Wilk test and found overall non-normal distributions (p < 0.05). 309 
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Observing that, a nonparametric Wilcoxon signed-rank test was applied in pairwise. Gait 310 

metrics are considered statistically significant if p < 0.05. All AFO walking conditions are 311 

compared with a normal walk to understand the effect of an orthosis on gait dynamic stability 312 

with/without applying restrictions, and all AFO-restricted walking conditions are also 313 

compared with an AFO free-mode walk to understand the dynamic response of AFO 314 

adjustments. 315 

3. Results 316 

The best models fitted to whole-body vertical vibrations are identified from the coefficient of 317 

determinant (R2) as described in the Appendix (Tables A.2 and A.3). Lower limb contractile 318 

dynamics identified from spring-mass models illustrated that the natural frequency (ωn) of 319 

CoM-oscillations decreased (p < 0.05) in all AFO walking conditions when compared with 320 

both normal and AFO (free-mode) walks as illustrated in Figure 4 and Table A.3. The only 321 

exception was the dorsi-plantar combined resistance (DPRT) condition which illustrated an 322 

increase (p < 0.05) in frequency. Considering peak gains (Mr), only the dorsiflexion-323 

restricted walking conditions (i.e., moderate restriction [DRT] and severe restriction [DRR]) 324 

showed a decrease (p < 0.05) in peak gain compared with a normal walk. The best-fit 325 

sinusoidal models illustrated undamped response, that is, the damping ratio (ζ) approaches 326 

zero in all walking conditions. 327 

Figure 4 here 328 

Considering the second modelling approach (spring-mass-damper system), the natural 329 

frequency of CoM-oscillations are in range to that of the first modelling approach. However, 330 

the damping ratio reduced the peak gains as shown in Figure 5 and Table A.4. Both methods 331 

illustrated similar patterns with respect to natural frequency and peak gains, that is, the 332 

natural frequency decreased compared with the normal and AFO free-mode walks and the 333 
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peak gain decreased compared with a normal walk. Overall, SMD models illustrated a low 334 

damping ratio (DR) in all walking conditions. The DR increased by wearing AFO in free 335 

mode and decreased significantly on applying restriction compared with both normal and 336 

AFO free-mode walks. 337 

Figure 5 here 338 

Walking with AFO in its free mode illustrated no difference in loading phase stability 339 

margins compared with a normal walk. However, applying restrictions to the ankle–foot joint 340 

by tuning AFO (Figure 6, Table A.2), all walking restrictions showed a decrease (p < 0.05) 341 

in GMs during the loading phase compared with a normal walk, and only totally restricted 342 

walking conditions (i.e., DPRR, DRR) showed a decrease in GMs (p < 0.05) when compared 343 

with an AFO free-mode walk. The PMs increased significantly in all AFO restricted walks 344 

when compared with an AFO free-mode walk, and no difference was found when compared 345 

with a normal walk. During the respective unloading gait transitions (Figure 7, Table A.2), 346 

moderately restricted walking conditions (i.e., DPRT, DRT) illustrated an increase (p < 0.05) 347 

in both GMs and PMs when compared with AFO free-mode walk. Comparing with a normal 348 

walk, both moderately restricted conditions also illustrated an increase in GMs, however, 349 

decreased in the PMs. In comparison, totally restricted walking conditions (i.e., DPRR, DRR) 350 

showed a decrease in GMs and an increase in PMs compared with an AFO free-mode walk. 351 

However, both of these restricted walking conditions illustrated a decrease in PMs compared 352 

with a normal walk. 353 

Figure 6 here 354 

Figure 7 here 355 
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Gait spatiotemporal parameters are also evaluated and summarised in Table A.5 (Appendix 356 

A). There is no difference found in the walking speed and stride duration while comparing 357 

AFO restricted conditions with AFO free-mode walk. However, a normal walk at preferred 358 

speed illustrated a significant increase in both parameters when compared with all AFO 359 

walking conditions. The initial double limb support time is significantly increased (p < 0.05) 360 

in all AFO walking conditions compared with a normal walk.   361 

4. Discussion 362 

The goal of this study was to introduce methods for quantifying vertical vibration impacts on 363 

walking stability and lower-limb compliant dynamics. These methods are further applied to 364 

investigate wearable orthosis structural impacts. Our results illustrated significant variations 365 

in the aforementioned gait dynamics with the effect of wearable AFO which was tuned to 366 

various clinically applied ranges (Table 1). Compared with prior studies [6, 7], this study 367 

evaluated lower limb vertical dynamics directly from the experimental GRF data applying 368 

system identification approach. The identified models included spring-mass (SM) and spring-369 

mass-damper (SMD) based approaches with predictable best-fit coefficients. In earlier 370 

studies, the rigid elements, such as body mass, spring stiffness and damper parameters, are 371 

adjusted randomly to achieve the resultant GRF close to the experimental data. These 372 

empirical models are speculated to overrate limb compliant dynamics because of either misfit 373 

or missing limb dynamics.  374 

Further analysis of both identified models illustrated that the SM model was found the best fit 375 

(99%) to the experimental data and offered lesser variations while quantifying stability 376 

margins applying Nyquist and Bode methods. However, SM models do not consider the 377 

damping factor that is responsible for the decays in transient impacts generated during heel 378 

contact, which illustrates a limitation of the SM-based modelling approach. In comparison, 379 
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the SMD-based model identification illustrated large standard deviations in stability margins 380 

with relatively less fit to the impact loading waveforms (Appendix Table A.6). That follows 381 

the Nyquist stability criteria which quantify GM/PM with respect to the reference point (-382 

1,0j), where a large deviation would result if gain or phase magnitudes deviate [48]. These 383 

findings illustrate that the gait dynamic stability evaluation is sensitive to the best-fit model 384 

and that spring-mass models are more appropriate for such evaluations. However, the 385 

consideration of the damping factor makes the SMD model potentially appropriate while 386 

quantifying limb compliant dynamics in the vertical direction. Despite SMD models having 387 

the damping characteristics of the lower limbs, this approach was not found to be convergent 388 

to the respective unloading phase oscillatory waveforms.  389 

Prior studies illustrate that the CoM-oscillations generated during loading and unloading gait 390 

phases transmit along the longitudinal direction of the lower limbs [4] and act as 391 

somatosensory feedback to control neuromuscular activations [50]. Our results from SMD 392 

models illustrated that the variations in peak gain both with/without wearing AFO are in 393 

range (30 to 22 dB) to an earlier study [16] where the limb contractile properties are 394 

quantified from ankle–foot torque waveforms fitted to a second-order underdamp model. 395 

Furthermore, the peak gains quantified here illustrated decreasing trends by applying 396 

restrictions to the ankle joint, also reported previously for patients (50 to 39 dB) [16] having 397 

reduced ankle motions because of spastic gait. However, both the damping ratio and the 398 

natural frequency of CoM-oscillations (impact forces) are far less in our study compared with 399 

a prior study. This might be resultant of the empirical-based modelling approach adopted 400 

previously without any predictable accuracy of best fit. In another study [18], SMD model 401 

based lower limb compliant dynamics is reviewed and has reported large variations in the 402 

damping ratio (0.17 to 1.9), whereas our results support lower ranges (0.25±0.006 for a 403 

normal walk) of these reported DRs [6, 7]. This study also illustrated a decrease in DR on 404 
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applying moderate to severe AFO restrictions. This implies that the leg muscles are stiffed 405 

enough against applied restrictions and unable to generate any further moments. This is 406 

consistent with prior studies where the ankle and knee joint moments are reported to increase 407 

during loading phases and under similar walking conditions [6, 8]. 408 

Considering walking stabilities, the loading and unloading phases are of particular 409 

importance, during which a maximum push-off is exerted in the leading limb and braking 410 

torque is generated in the trailing limb. Previously reported methods [24, 29] used to quantify 411 

gait stability in anterior-posterior and medial-lateral directions (e.g. margin-of-stability 412 

quantifies CoM w.r.t BoS), however, the current study scaled the gait stability in the vertical 413 

direction and filled this gap. Stability margins quantified in this study illustrated unstable 414 

responses during both of these two phases. This is consistent with the prior studies where 415 

vertical oscillations were reported to deteriorate the lower limb joints performance [4, 5] and 416 

various foot insoles were used to damp their effect [22, 23]. Thus, vertical CoM-oscillations 417 

induce instability even in a normal walk, however, this instability normally remains tolerable 418 

i.e. the margins are small enough to prevent fall as quantified here as GMs and PMs. This 419 

instability diminishes as CoM-oscillations decay towards mid-terminal stance during which 420 

these oscillations remain relatively steady-state as illustrated in Figure 2(b). Thus, the 421 

periodic instability quantified in this study during loading and unloading phases also 422 

reinforce the argument of inherent instability in the human gait and regain of stability during 423 

single limb support (i.e. mid-terminal stance - during which CoM remains within BoS in the 424 

AP direction). 425 

During the impact loading, our results using SM models illustrated a decrease in instability 426 

(GMs) by restricting ankle-foot motion through AFO, and no effect was found in terms of 427 

PMs (time delay). Because the AFO rigid structure allows less freedom to the ankle-foot 428 

movements, hence, subjects adapted wearable device with a reduction in their preferred 429 
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walking speed and joints movements, as a result, the vertical CoM-oscillations reduced both 430 

in magnitude (peak gains) and GMs during loading. Also, the increase in initial double-limb-431 

support time by wearing AFO illustrated that the subjects emphasized to stay longer on their 432 

double limbs during the loading phase in an effort to maintain instability closer to normal 433 

thresholds. Our results for the PMs also reflect this outcome with a relative increase in time 434 

delays by wearing AFO, though this increase is statistically insignificant. Thus, a neuromotor 435 

control illustrates robustness with respect to time delays during loading phases and decreased 436 

peak gains and GMs compared with a normal walk. Earlier studies reported that a nominal 437 

range of CoM-oscillations is essential as sensory feedback in neuromotor balance control and 438 

muscles activations [51]. Our results for the loading phases illustrated that this sensory 439 

feedback gets affected in terms of peak gain and GMs by wearing wearable orthosis.  440 

During the respective unloading phases, the instability quantified by GMs increased in both 441 

AFO (free mode) and moderately applied restrictions and decreased for severe restrictions. 442 

This is because moderately applied resistive torques allow leg muscles to increase their 443 

activity against applied restrictions, also illustrated by an increase in ankle and knee moments 444 

near push-off (Table A.7), whereas more severe restrictions do not allow ankle–foot motion 445 

at all. Overall, wearable AFO illustrated a reduction in PMs (time delays) compared with a 446 

normal walk, although the effect size was small. This is consistent with a prior study where 447 

very small delays are reported in the activation of leg muscles in response to AFO 448 

plantarflexion resistance [30].  449 

The methods introduced in this study provide a proof of concept that wearable devices affect 450 

gait vertical dynamics and hence neuromotor control. The whole-body vertical oscillations 451 

were modelled here just like the mathematical models used in Visual3D or OpenSim software 452 

to compute gait biomechanics. This study involved various data processing and mathematical 453 

steps, but also the following limitations of this work have been identified. Firstly, the 454 
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analysing signals (i.e. vertical GRFs) are experimentally measured using the force plates only 455 

for the stance phase, hence, these methods are limited to assess stance phase stability. 456 

Secondly, the best fit models (i.e. curve fitting approach) did not consider the damping effect 457 

of the lower limbs, hence, the second approach (i.e. system identification) was adopted with 458 

relatively less fit (R2) to define the limb contractile dynamics completely. Lastly, in this 459 

study, the CoM-oscillations modelled using the best-fit criteria (i.e. R2) were resulted in the 460 

higher-order frequency domain transfer functions which can be simplified with little 461 

compromise in the results.          462 

Summarising, an SMD based model identification was found more predictive to quantify 463 

limb contractile dynamics, and SM models were determined appropriate to quantify limb 464 

dynamic stabilities. Limb contractile dynamics are important to evaluate in a situation like 465 

poor neuromuscular sensation or leg paraesthesia in which patients experience serious 466 

weight-bearing problems. These methods are helpful in the differential diagnosis of an 467 

impaired limb and in the evaluation of rehabilitative measures such as heel pads, assistive 468 

orthosis and vibration therapies. A reduced ankle–foot motion simulated here by wearing an 469 

AFO also mimics ankle–foot impairments such as Charcot-Marie-Tooth (CMT), foot drop 470 

and spastic gait [52] and thus gives insight for stability evaluation in such patients. Further 471 

analysis of modelled limb dynamics applying Nyquist criteria provides critical information 472 

about limb stability. In the future, we will extend the scope of our research by acquiring the 473 

CoM-oscillations data for the swing phase using IMU sensors and applying model reduction 474 

techniques to optimise the higher-order models used in this study. Further, these methods will 475 

be applied to evaluate the effectiveness of wearable orthosis in patients with lower limb 476 

impairments. 477 
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Table 1 614 

Table 1. The ankle-foot restricted conditions simulated using an adjustable ankle-foot 615 

orthosis (AFO). 616 
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 638 

AFO Restrictions (Single limb) Abbreviation Range 

Normal (without AFO) Normal - 

AFO restriction free AFO 
(reference) 

Free 

Dorsiflexion resistive torque DRT 33Nm 

Dorsiflexion range-of-motion restriction DRR 35°±5° 

Dorsi-plantarflexion resistive torques DPRT ±33Nm 

Dorsi-plantarflexion range-of-motion 

restrictions 

DPRR ±35°±5° 
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Figure 1 639 

640 
Figure 1. Ankle-foot orthosis and resultant ankle and knee joints angle and moment waveforms are 641 

plotted for with/without AFO restrictions.  642 
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Figure 2 650 

651 

 652 

Figure 2. Rate of change in vertical-GRF illustrating impulsive oscillations during loading and 653 

unloading of stance phase. (a) actual CoM-oscillations, (b) root-mean-square (RMS) values of CoM-654 

oscillations, (c) CoM-oscillations act as somatosensory feedback. 655 
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Figure 3 

 

 

Figure 3. Lower limb model identification approaches using vertical-GRF. (a) Spring-mass (SM) model, (b) Spring-mass-damper (SMD) model. 
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Figure 4 1 

 2 

Figure 4. Lower limb contractile dynamics quantified from loading impact using a spring-3 

mass model identification approach. ‘★’ illustrate a significant difference with a normal 4 

walk, ‘■’ illustrate the significant difference with an AFO free-mode walk. 5 
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Figure 5 19 

 20 

Figure 5. Lower limb contractile dynamics quantified from loading impact using spring-21 

mass-damper model identification approach. ‘★’ illustrate a significant difference with a 22 

normal walk, ‘■’ illustrate the significant difference with an AFO free-mode walk. 23 
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Figure 6 32 

 33 

Figure 6. Loading phases stability margins compared to gain margins (GM) and phase 34 

margins (PM) with and without the effect of an ankle-foot orthosis (AFO). ‘★’ illustrate a 35 

significant difference with a normal walk, ‘■’ illustrate a significant difference with an AFO 36 

free-mode walk. 37 
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Figure 7 50 

 51 

Figure 7. Unloading phases stability margins compared with and without an ankle-foot 52 

orthosis (AFO). ‘★’ illustrate a significant difference with a normal walk, ‘■’ illustrate a 53 

significant difference with an AFO free-mode walk. 54 
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