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Two-step wind power prediction approach with

improved complementary ensemble empirical

mode decomposition and reinforcement learning
Huifeng Zhang, Member, IEEE, Dong Yue, Fellow, IEEE Chunxia Dou, Member, IEEE, Kang Li, Senior

Member, IEEE, and Gerhard P. Hancke, Fellow, IEEE

Abstract—The strong stochastic nature of wind power gener-
ation makes it extremely challenging to accurately predict and
support the planning and operation of modern power systems
with significant penetration of renewable energy. This paper
proposes a two-step wind power prediction method, which
consists of two phases: long time-scale coarse prediction and
short time-scale fine correction. In the long time-scale phase,
a complementary ensemble empirical mode decomposition
based sigma point Kalman filter (CEEMDSPKF) approach is
proposed to coarsely predict wind power merely with historical
data. In the short time-scale phase, a deep deterministic policy
gradient (DDPG) approach learns from real-time weather
information to correct the coarse prediction result, which
results in an improved prediction accuracy. A real-life case
study confirms that the proposed method can properly predict
wind power generation and have a better prediction accuracy
than existing techniques, thus offering a viable and promising
alternative for predicting wind power generation.

Index Terms—wind power prediction, empirical mode de-
composition, coarse prediction, fine correction, weather infor-
mation.

I. INTRODUCTION

DRIVEN by the increasing concern over the global

climate change and environmental pollution due to the

intensive consumption of fossil fuels, wind power generation

technologies have developed so quickly in the past few years

that wind power has now become a mature energy resource

worldwide [1]. The increasing wind power generation leads

to a high penetration in power systems, which inevitably

has a significant impact on the operation and reliability

of electrical power systems due to its intermittent charac-

teristics. Accurate wind power prediction has become an
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indispensable task for system operators worldwide for power

system scheduling and operation [2].

The traditional wind power prediction approaches [3]

proposed so far in the literature mainly include multiple

linear regression [4], the auto-regressive integrated mov-

ing average (ARIMA) [5], and the Kalman filter [6]. In

[4], a vector-autoregressive-to-anything process is proposed

to model wind speeds in multiple locations with a time-

dependent interception, which provides both long term and

short term forecasting results from 21 locations in Finland.

In [6], a stochastic wind power model is proposed by using

the ARIMA process, while considering the non-stationary

and physical limits of stochastic wind power generation,

and the model is validated in terms of temporal correlation

and probability distribution. Since these methods rely on the

historical data, the challenges are the high complexity of

the forecasting data along with the increasing nonlinearity

during the power forecasting process [7].

Intelligent methods use artificial intelligence to forecast

wind power generation, such as artificial neural network

(ANN) models [8], [9], support vector machines [10], par-

ticle swarm optimization [11], a Gaussian process [12],

neuro-fuzzy systems [13], empirical mode decomposition

[14], [15], deep learning methods [16], [17], [18]. In [19],

a statistical scenario forecasting method is proposed for

wind power ramp event probabilistic forecasting, and the

obtained results confirm that it can accurately estimate the

characteristics of wind power ramp events. In [10], the

support vector machine based enhanced Markov model is de-

veloped for short-term wind power forecasting based on the

measurement data with specific patterns of wind ramps, and

the numerical test results demonstrate its improved accuracy

in wind power forecasting. In [12], a hybrid deterministic-

probabilistic method with a Gaussian process is proposed to

estimate the forecasting errors, and their experimental results

show that it can reduce the forecasting error due to its capac-

ity to handle the time-varying characteristics of wind power

generation. In summary, the above methods forecast wind

power generation mainly based on the historical measure-

ments from wind farms, while numerical weather prediction

forecasts the wind power without sufficient analysis of the

law of wind power generation [20]. It is highly desirable

that the forecasting process should embed the distributed
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energy resource characteristics at different time scales and

time intervals [21]. However, a single algorithm cannot mine

and capture the intermittent and volatility of wind power

generation properly, which can lead to poor forecasting accu-

racy, especially when it comes to the nonlinearity problems

[22]. Therefore, hybrid models have emerged that aggregated

the advantages of different forecasting methods, optimiza-

tion algorithms and signal processing tools. Reference [23]

utilizes wavelet transformation to decompose the historical

data into a set of components with different frequencies, and

combines this with a genetic algorithm and back-propagation

network to forecast short-term wind speed. In literature [24],

an accurate prediction method composed two-dimensional

convolution neural network, it decomposed the original

signals to subsignals and selected best candidate inputs with

minimum forecasting error. Reference [25] proposes four

modules, including a data process, optimization, forecasting

and evaluation. A signal processing method is employed to

decompose, construct and mine an electricity power system,

a whale optimization algorithm is utilized to optimize those

parameters of individual models, and an evaluation module

includes hypothesis testing. A proper approach is thus to

blend different methods within different time scales, which

could compliment the drawbacks of the different methods

and adjust the forecasting error in real-time.

In compliance with the above analysis, this paper proposes

a multiple time-scale forecasting method with a CEEMD-

SPKF correction approach to overcome the challenge of

effectively integrating different techniques for dealing with

the intermittent characteristics of wind power generation.

The main idea of the approach is summarized as follow:

(1) A two-step prediction framework with different time

scales is used to handle the strong stochastic nature of

wind power generation. It includes a long time-scale coarse

forecasting phase and short time-scale correction phase. (2)

The long time-scale coarse prediction is made by a CEEMD-

SPKF approach using historical data. With consideration of

boundary effects [26], Sigma points are firstly utilized to

approximate boundary for overcoming boundary effect of

following complementary ensemble empirical mode decom-

position (CEEMD) method, which is used to decompose the

data into several relative stable sequences. Then the sigma

point based Kalman filter is used to update each stable

sequence to reconstruct the original data. (3) In the short-

time scale phase, a DDPG method is utilized for a short time-

scale correction with real-time weather information, which

can further improve the prediction accuracy.

The remainder of the paper is organized as: The forecast-

ing framework is elaborated in section II, and long time-

scale prediction with CEEMDSPKF is detailed in section

III. Section IV presents short time-scale correction and a

case study respectively, and Section V concludes the paper.

Coarse

prediction

Weather data

Historical data

Correction

Long time-scale prediction

Short

time-scale

correction

Predicted results

Fig. 1. The main structure of the two-step prediction approach

II. THE FRAMEWORK FOR THE MULTIPLE TIME-SCALE

PREDICTION OF WIND POWER GENERATION

Wind power generation is significantly influenced by

environmental factors, such as wind, temperature, humid-

ity, pressure, precipitation, even lightning, may impact on

the power generation, directly or indirectly. To properly

deal with these challenges, a multiple time-scale prediction

method is proposed, taking the following two steps within

different time-scales: (1) A long time-scale coarse prediction

based on historical data with more than 6 hours ahead

prediction; (2) A short time-scale correction based on real-

time weather data with less than 6 hours ahead prediction

[6]. The framework of a two-step prediction for wind power

generation is illustrated in Fig.1. The long-term and short-

term (or real-time) time-scale here are both two relative

definitions, the long term time-scale can be one month, one

week or one day, and short-term time-scale can be one week,

one day or real-time information. In the simulation section,

6-hour interval is taken as short time-scale and one-day

interval is taken as long time-scale. Since it is not enough

for the prediction results obtained with merely historical

data, it requires more detailed real-time weather information

to improve the prediction quality. A reliable wind power

generation prediction depends heavily on the weather data,

but a reliable prediction period with a high confidence level

can be very short. To adequately use the weather data to

correct the coarse prediction results with deep reinforcement

learning method, this paper proposes a two-step prediction

approach, and the details are elaborated on in the following

section.

III. LONG TIME-SCALE PREDICTION WITH THE

CEEMDSPKF APPROACH

A. Sigma point based Kalman filter approach

Generally speaking, the wind power output is largely a

function of the wind speed, wind direction, effective contact

area with the wind turbine blades and the wind turbines’

wake. Since above factors can be formulated as a time

sequence process, wind power generation can also be con-

sidered as a time sequence process, the wind power at next

period can be estimated with previous power information,
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which can be expressed with discrete nonlinear dynamic

system as follows:
{

xt+1 = F (xt, ut) + vt
yt = H (xt) + nt

(1)

where xt represents the system state at the t time instant,

ut, yt denote the input and output vector at the tth time

instant, and vt, nt are the input noise and measurement noise

respectively, and F (·), H(·) are some non-linear functions.

The above nonlinear dynamic system can be approximated

by a linear system, the extended Kalman filter is a popular

method by linearizing the state equation and observation

equation with state estimations. However, it has two draw-

backs: (1) the complexity of deducing the Jacobian matrix

makes it difficult to be applicable to real-life cases; (2) If

the sampling interval is not short enough, the linearization

can generate large deviations, which makes the dynamic

system unstable. To overcome these problems, a sigma point

Kalman filter is used to capture the statistical values of the

selected sigma points, and to linearize the dynamic system

by a weighed statistical linear regression approach to capture

smaller truncation errors. As it is introduced in literature

[6], Kalman filter model can also be described with linear

sequence model, it can also be employed to update CEEMD

sequence and thus predict wind power sequence recursively.

For a given dynamic system, the sigma point based Kalman

filter needs to find sigma points before making predictions,

differing from other Kalman filters. This approach is used

to obtain the statistical values arising from the nonlinear

systems. In particular, a weighted statistical linear regression

is used to identify the sigma points. For a given sample set

x0 , the sigma points can be calculated as [27]:
{

χk,i = x̂k−1 + (
√

(I + λ)Pk−1)i, i = 1, 2, . . . , I

χk,i = x̂k−1 − (
√

(I + λ)Pk−1)i−I , i = I + 1, I + 2, . . . , 2I
(2)

Where χk,i represents the ith sigma point at the tth step

(χk,i = x̂k−1 especially when i = 0), x̂k−1 is the estimated

value at the k − 1th step (especially x̂0 = E [x0]), I is the

dimension of x0, Pk−1 is the covariance matrix of x̂k−1,

(
√

(I + λ)Pk−1)i represents the ith column of the square

root of matrix (I + λ)Pk−1 , and λ = α2(I + β) − I ,

where α is a distribution statistic of those sigma points,

which is taken in 0.0001 ≤ α ≤ 1, and β is a scalar

parameter, it is generally taken in [3, I]. The sigma point

based Kalman filter takes the mean value and variance as two

representative statistical measures, and it approximates the

mean value, extreme value and variance to avoid boundary

effect of following CEEMD process at certain degree.

B. The proposed CEEMDSPKF approach

On the basis of the above sigma points, empirical mode

decomposition can be utilized to extract the embedded char-

acteristics from the original data, and it has an excellent self-

adaptability for prediction, while independent of subjective

experience [28]. It has shown to be an efficient way for

mining non-linear and non-stationary data and it is also easy

to implement. The main procedure of empirical mode de-

composition is to decompose the data/sequence into several

intrinsic mode function components. Each IMF is defined

as a function that satisfies the following requirements: 1) In

the whole data set, the number of extrema and the number

of zero-crossings must either be equal or differ at most

by one. 2) At any point, the mean value of the envelope

defined by the local maxima and the envelope defined by

the local minima is zero. By definition, an intrinsic mode

function is any function with the same number of extrema

and zero crossings, whose envelopes are symmetric with

respect to zero. For a given sequence, the sequence must

have at least one maximum and minimum value, and the data

between these extremes cannot be invalid. If the sequence

can be differentiable, the maximum and minimum value

can be deduced with differentiable information. When the

above conditions are properly satisfied, the sequence can

be represented by the summation of several intrinsic mode

functions and residue components. The extraction of intrinsic

mode functions generally takes following steps:

Step 1: Check the condition of the original data/sequence

χ0(t), ensure that the decomposition conditions can be

satisfied, set l = 1 and j = 1, define χ11(t) as the original

set χ0(t);

Step 2: Identify all the maximum and minimum values,

and use the cubic spline interpolation to create the lower

and upper envelope, which can be represented as alowjl (t),
aupjl (t). Then, calculate the mean value:

mjl(t) =
alowjl (t) + aupjl (t)

2
(3)

Step 3: Calculate component hjl(t) as follows:

χjl(t)−mjl(t) = hjl(t) (4)

Step 4: Use the criterion (5) to judge whether hjl(t) is

an intrinsic mode function, if sd(j, l) ∈ [0.2, 0.3] is satisfied

[29], then hjl(t) is the jth intrinsic mode function, and if

j < N, χj+1,l(t) = χjl(t) − hjl(t), j = j + 1, go to Step

2; if j ≥ N , go to Step 5. If it is not satisfied, hj,l+1(t) =
hjl(t)−mjl(t), l = l + 1, go to Step 2.

sd(j, l) =
T
∑

t=0

|hjl(t)− hj,l+1(t)|
2

h2
j,l+1(t)

(5)

Step 5: If j ≥ N , then all the intrinsic mode functions

have been identified, and the residue component r(t) can be

calculated as:

r(t) = χ0(t)−

N
∑

j=1

hj(t) (6)

Based on the above extracted IMFs, the state variable of

each IMF can be estimated as follows:

Step 6: Initialize k = 1, hj,0 = hj ;
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Step 7: Calculate the following parameters:

hj,k|k−1 = F (hj,k−1, uj,k−1) (7)

ĥ−
j,k =

2I
∑

i=0

ω
(m)
i

(

hj,k|k−1

)

i
(8)

P−
k =

2I
∑

i=0

w
(c)
i

[

(

hj,k|k−1

)

i
− ĥ−

j,k

] [

(

hj,k|k−1

)

i
− ĥ−

j,k

]T

+Rv

(9)

where Rv is the covariance matrix of input noise vk , ĥ−
j,k

and P−
k are the covariance parameters of ĥj,k and Pk, ω

(m)
i

is the weight value which can be obtained by:

ω
(m)
0 =

λ

I + λ
(10)

ω
(c)
0 =

λ

I + λ
+

(

1− α2 + γ
)

(11)

ω
(m)
i = ω

(c)
i =

1

2(I + λ)
, i = 1, 2 . . . , 2I (12)

λ = α2(I + β)− I (13)

Step 8: Calculate P−
k according to (7), (8) and (9), while

the predicted output ŷ−k can also be derived according to the

output parameter Yk|k−1 as follows:

Yk|k−1 = H
[

hj,k|k−1

]

(14)

ŷ−k =

2I
∑

i=0

w
(m)
i

(

Yk|k−1

)

i
(15)

Step 9: Calculate the following covariance matrices:

P̂ykyk
=

2I
∑

i=0

w
(c)
i

[(

Yk|k−1

)

i
− ŷ−k

] [(

Yk|k−1

)

i
− ŷ−k

]T
+Rn

(16)

P̂xkyk
=

2l
∑

i=0

w
(c)
i

[(

χk|k−1

)

i
− x̂−

k

] [(

Yk|k−1

)

i
− ŷ−k

]T

(17)

where Rn is the covariance matrix of the measurement noise

nk.

Step 10: Update the gain factor and estimation with the

covariance parameter Kk:

Kk = P̂hj,kyk
P̂−1
ykyk

(18)

ĥj,k = ĥ−
j,k +Kk

[

yk − ŷ−k
]

(19)

Step 11: Update the covariance matrix Pk, if k <
maxcount1 (where maxcount1 denotes the maximum it-

eration number), k = k + 1 and go to Step 7.

Pk = P−
k +KkP̂ykyk

KT
k (20)

The complementary ensemble empirical mode decomposi-

tion approach is then used to solve the mode mixing problem

by homogenizing its scale in the time-frequency space with

added noise. The principle of the complementary ensemble

empirical mode decomposition approach can automatically

project the composed components in different scales onto

an appropriate uniform reference frame by adding positive

and negative white noise, which can properly deal with the

mode mixing problem in a certain degree.

(1) Before mode decomposition, add positive and negative

white noise to the calculated sigma data as follows:
{

Si(t)
+ = S(t) + ni(t)

Si(t)
− = S(t)− ni(t)

(21)

(2) Combined with formula (3)-(6), decompose the pro-

cessed data Si(t)
+, Si(t)

− into the summation of intrinsic

mode functions: IMF+
i,j , IMF−

i,j and residue component

with Ne trials, it can be described as:

IMFj(t) =
1

2Ne

Ne
∑

i=1

(

IMF+
i,j(t) + IMF−

i,j(t)
)

(22)

where the positive intrinsic mode functions and negative

intrinsic mode functions are taken together to recover the

information of the targeted data.

(3) Update the above IMFs with a sigma point based

Kalman filter, and reconstruct the original data with the

above positive and negative intrinsic mode functions, which

can be generally presented as follows:

S′(t) =
N
∑

j=1

IMFj(t) (23)

where the obtained data S′(t) can be reconstructed to

approximate the targeted data.

C. The CEEMDSPKF approach for coarse wind power

prediction

Since empirical mode decomposition can transform the

sequence into several intrinsic mode functions with steady

state features together with a residual component, the sigma

point Kalman filter can then be effectively used to conduct

non-linear prediction, and if the sequence like the intrinsic

mode functions has a steady state feature, the predicted

results can be more accurate. Due to nonlinear and inter-

mittent characteristics of wind power generation, this paper

proposes the elaborated CEEMDSPKF method for wind

power prediction (See Algorithm 1). The complementary

ensemble empirical mode decomposition decomposes the

original sequence into several steady sequences, and then the

decomposed sequences are used to reconstruct the original

data for wind power prediction based on the extended

Kalman filter, which can be seen in Fig.2.

IV. SHORT TIME-SCALE CORRECTION WITH A DEEP

REINFORCEMENT LEARNING APPROACH

Since the long time-scale approach can merely coarsely

predict the power generation process, those predicted results

cannot be accurate enough for further scheduling. With

consideration of the real-time weather’s impact on wind

power generation, the DDPG approach is employed to learn

the wind power generation process to correct those coarse
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Algorithm 1

1: procedure The CEEMDSPKF algorithm for long time-

scale coarse prediction

2: Select sigma points with formula (2), count = 1;

3: Fit those sigma points with spline interpolation;

4: while sd(j, l) /∈ [0.2, 0.3] and count < maxcount1
do

5: Decompose interpolated curve with formula

(3),(4),(5),(6);

6: Calculate different IMFs and residue;

7: count = count+ 1;

8: end while

9: Update IMFs by formula (19) with those updated

parameters in formula (16),(17),(18) and (20);

10: Reconstruct the data with formula (21),(22) and (23);

11: end procedure

prediction results. Some definitions can be presented as

follows:

Definition 1 (State set): The weather information V (t) =
[Tem(t), Spd(t), Dir(t), Hum(t)] is defined as state set,

where Tem(t),Spd(t), Dir(t) and Hum(t) represent the

temperature, speed, wind direction and humidity variables,

and then it can be utilized to obtain a corrected prediction

result S′∗(t).
Definition 2 (Action set): The deviation S′∗(t) − S′(t)
between the corrected set and the coarse prediction set is

taken as action set A(t), which can be deduced with weather

information.

Definition 3 (Reward set): The correction error δ(t) can

be described as |S∗(t)−S′∗(t)| (S∗(t) represents real data),

and the reward set R(V,A) can be defined as −δ(t).
Definition 4 (Optimal state-action value): The optimal

state-action value function Q∗(V,A) can also be expressed

as the maximum value of Q(V,A) with the Bellman theory

as follows:

Q∗(V ′, A′) = max
A′

[R(V,A) + ηV Q
∗(V,A)] (24)

where V ′ and A′ represent the next state of V and A, and

ηV ∈ [0, 1) denotes the discount factor. The actor-critic

network learns the relationship between weather information

and wind power with training network weights θµ and θQ,

and two target networks are also copied to calculate the

target value zi = R(V (i), A(i)) + ηV iQ(V (i), A(i)) and on-

line approximation loss L = 1/NQ

∑

i∈NQ
(Q(V (i), A(i))−

z(i))
2, where NQ denotes the sample number. For seeking

the optimal value, a policy gradient approach is utilized to

update the actor policy as follows:

▽J = 1/NQ

∑

i∈NQ

▽AQ(V (i), A(i))▽θµ µ(V (i)) (25)

where µ(V (i)) = argmaxAQ(V (i), A(i))+ ξi, ξi represents

the designed noise for avoiding local convergence. After the

Sampling points

Sigma Points

Caculate mean value Caculate the component

Decomposition

Kalman filter

Reconstruction

, 1 1
ˆ ( ( ) )c l- -= + +k i k k ix I P

, 1 1
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Fig. 2. The flowchart of CEEMDSPKF approach

above procedures, two network weights θµ and θQ can be

updated as follows:

{

θ
′

µ = τθµ + (1− τ)θ
′

µ

θ
′

Q = τθQ + (1− τ)θ
′

Q

(26)

where τ ∈ [0, 1) represents updating control parameter. Then

the optimal weights can further deduce the predicted results

combined with weather information, the flowchart is shown

in Fig.3, and the procedures of whole algorithm is presented

in Algorithm 2, where maxcount2 denotes the maximum

iteration number.
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Algorithm 2

1: procedure The DDPG algorithm for short time-scale

correction

2: Initialization: Collect weather information V and

coarse prediction result S′, initialize critic network Q
and actor network µ,, and their copied target networks

Q
′

and µ
′

, ReplayBuffer = φ, episode = 1;

3: while episode < maxcount2 do

4: Calculate action A, R and V ′;

5: Store transition information (V,A,R, V ′) in

ReplayBuffer;

6: Select random minibatch from NQ transition

samples;

7: Set zi =

{

R(V (i), A(i)), If i+ 1 = NQ

R(V (i), A(i)) + ηV iQ(V (i), A(i)), else
8: Update critic network by minimizing loss L;

9: Update actor network with sampled policy gra-

dient ∇J ;

10: Update weights θµ
′

and θQ
′

of two networks;

11: episode = episode+ 1;

12: end while

13: end procedure

V. CASE STUDY

The proposed method is further applied to predict the wind

power generation where the whole period is split into two

time series with different time-scales: long time series and

short time series. Since the effect of weather information on

wind farm can be more representative cases than single wind

turbine, and some observable information can be easier to

obtain from wind farm rather than single wind turbine, wind

farm is taken as for analysis, those related data can be found

in [30]. Two cases are studied: 1) The ordinary period is

selected from May 1st to May 6th of 2014, the historic data

from April 25th to April 30th of 2014 is taken for training. 2)

Four seasonal periods are selected for representing Spring,

Summer, Autumn and Winter, the data of each season is

the typical month of the season. The distribution statistic

parameter α is set as 0.8, the initial values of covariance

matrix P0 is the identity matrix, the initial covariance matrix

Rv and Rn of input noise and measurement noise are both

set as identity matrix, and the trials number of decomposition

parameter Ne is set as 10. The network weight θµ and θQ
is initially set as 0, the updating control parameter τ is set

as 0.5, the designed noise ξi is taken as white noise, it can

be generated with function randn, and discount factor ηV
is set as 0.9.

A. Case 1: Two-step prediction approach for ordinary pe-

riod

one hour interval is taken as coarse forecasting, the

whole period can be divided into 125 time periods, and

15 minutes for each interval is considered as short time-

scale correction, which means that the whole period is

split into 500 time periods for correcting coarse prediction
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Actor target

network
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network

ritic

network
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network

Fig. 3. The flowchart of DDPG approach

results. This test case is utilized to verify the efficiency of

the proposed multiple time-scale prediction approach, the

weather information consists of wind speed, air humidity,

environmental temperature, wind direction and effective

wind speed on the wind turbine blades. Firstly, sigma

points are selected from long time-scale historic information,

those sigma points can cover all turning points. Then it

can decompose into four IMFs and residual results with

different frequency levels, which can be seen in Fig. 4. The

predicted results with one hour interval are shown in Fig.5,

where proposed CEEMDSPKF can be better than ARIMA,

CEEMD,complete ensemble empirical mode decomposition-

local linear embedding-extreme learning machine (CEEMD-

LLE-ELM) and empirical mode decomposition-local lin-

ear embedding-improved extreme learning machine (EMD-

LLE-IELM) in literature [14], which reveals that the pro-

posed CEEMDSPKF can be superior to other EMD based

approaches. Combined with real-time weather information,

the predicted wind power in all time-scale with the proposed

two-step prediction approach (TPA) can be obtained in Fig.6,
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scale

TABLE I
THE COMPARISON OF DIFFERENT ALTERNATIVES ON FOUR METRICS

WITH 1 HOUR INTERVAL

Methods MAE SDE RMSE MAPE

ARMA 211.31 101.56 173.25 29.71

ARIMA 203.12 98.43 154.27 25.4173

RBF 193.56 78.77 94.56 20.12

BP 159.25 62.35 79.29 12.1124

CEEMD 164.26 70.74 85.97 14.7611

CEEMD-LLE-ELM 155.17 64.38 85.22 12.85

EMD-LLE-IELM 151.25 61.75 83.75 12.93

CEEMDSPKF 144.76 60.32 81.77 12.79

where those methods in [31], [32], [33], [24] are taken

for verifying the priority of the proposed TPA. It can be

seen that the predicted results by the multiple time-scale

prediction method converge to real data better in comparison

to other alternatives. Here, the mean absolute error (MAE),

standard deviation of error (SDE), root mean squared error

(RMSE) and mean absolute percent error (MAPE) metrics

are utilized to testify the prediction efficiency. All those

obtained results are classified into two parts: long time-

scale and all time-scale. The obtained results with one hour

interval are shown in Table I, where the unit of MAPE is %,

CEEMD-LLE-ELM and EMD-LLE-IELM are also taken for

comparison, it can see that those traditional methods such as

ARMA, ARIMA, RBF and BP have worse performance, and

CEEMDSPKF has better prediction results in comparison to

other improved EMD methods. The obtained results with

all time-scale information are presented in Table II, where it

can be seen that TPA has better performance on four metrics

in comparison to other alternatives in literatures [31], [32],

[33], [24], [34].
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TABLE II
THE COMPARISON OF DIFFERENT ALTERNATIVES ON FOUR METRICS IN

ALL TIME-SCALE

Methods MAE SDE RMSE MAPE

Literature [31] 111.37 54.77 62.54 12.11

Literature [32] 99.32 49.28 58.27 11.59

Literature [33] 85.76 41.35 49.92 10.26

Literature [24] 81.39 37.22 44.76 9.98

Literature [34] 73.46 36.58 38.93 9.14

TPA 53.96 30.783 34.3332 8.4152

B. Case 2: Two-step prediction approach for seasonal peri-

ods

The four seasonal sets of data of wind power generation

has been taken to test the forecasting accuracy, the data

of January is taken as representative data of Spring, April

is taken as the representative data of Summer, July is

taken as the representative data of Autumn, and October

is taken as the representative data of Winter. A six-hour

interval is taken as short time-scale and a one-day interval

is taken as long time-scale, short time-scale information

is taken to correct the predicted data of long time-scale,

the analysis and comparison are taken in both long time-

scale and all time-scale, further analysis can be done on

those results in Spring, Summer, Autumn and Winter. In

Fig.7, it shows that ARIMA, BP and RBF has worse

performance than other alternatives, and CEEMDSPKF can

approximate to actual data better than other alternatives.

In all time-scale, comparisons with other alternatives in

literatures [31], [32], [33], [24] are taken in Fig.8, it can

see that all predicted results are better than those results in

mere long time-scale, and the proposed TPA is also better

than those existing alternatives. For better comparison with

global prediction efficiency, the obtained results of the whole

year are presented in Fig.9 and Fig.10. In long time-scale,

CEEMDSPKF has less prediction on MAE, SDE, RMSE

and MAPE metrics in comparison to other alternatives. In

comparison to alternatives in literatures [31], [32], [33], [24],

the proposed TPA has better accuracy than other alternatives

on MAE, SDE, RMSE and MAPE metrics. The comparison

of those results can be found in Table III and Table IV, it

can be seen that the performance on four metrics can be or-

dered as BP<ARMA<RBF<ARIMA<CEEMD<CEEMD-

LLE-ELM<EMD-LLE-IELM<CEEMDSPKF in long time-

scale, and the proposed TPA has better performance than

other methods in the whole year.

VI. CONCLUSION

Considering the strong stochastic characteristic of in-

termittent wind power generation, a two-step prediction

method with multiple time-scales is proposed to improve the

prediction performance. The proposed prediction approach

consists of two phases: the long time-scale coarse prediction

and short time-scale correction. The CEEMDSPKF approach

can better predict wind power generation in comparison to

other improved EMD approaches, and the proposed TPA can

be superior to other two-step methods. The results can reveal

that the proposed two-step prediction method can offer a

promising way for predicting wind power generation.
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Fig. 7. The predicted seasonal results in comparison to other alternatives in long time-scale
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Fig. 9. The prediction results of a one-year period on four metrics in long time-scale
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TABLE III
THE COMPARISON OF SEASONABLE RESULTS ON FOUR METRICS IN LONG TIME-SCALE

Seasons Metrics ARMA ARIMA BP RBF CEEMD CEEMD-LLE-ELM EMD-LLE-IELM CEEMDSPKF
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MAPE 23.9011 22.1992 32.18576 23.61708 21.6106 18.5863 16.2749 15.5362
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RMSE 128.6471 119.7954 211.9081 111.1505 97.7741 93.2937 89.5859 81.7677
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THE COMPARISON OF SEASONABLE RESULTS ON FOUR METRICS IN ALL TIME-SCALE
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Spring

MAE 55.5536 52.1276 51.0036 48.2756 46.4583 44.543
SDE 14.5671 14.0219 13.7655 13.1793 11.8766 11.2122
RMSE 77.9615 71.3368 68.5987 65.1195 60.8799 56.3191
MAPE 14.3674 13.2874 11.4769 10.0285 9.2379 8.66679

Summer

MAE 56.1785 52.1996 48.8754 46.1189 43.2258 42.8713
SDE 13.5342 13.0176 12.7549 12.1349 11.9887 11.4988
RMSE 71.6588 68.2975 61.7699 60.3896 57.9983 52.1073
MAPE 31.7689 30.0786 28.1187 27.5789 26.7543 25.0225

Autumn

MAE 61.2786 60.1876 58.4988 57.3986 52.1199 51.4962
SDE 17.2987 17.0019 16.6165 16.5519 14.9998 14.665
RMSE 77.7653 75.3987 69.8909 66.4895 62.3355 59.7863
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Winter
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