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Abstract

We study Network Max-Congestion Games (NMC games, for short), a

class of network games where each player tries to minimize the most congested

edge along the path he uses as strategy. We focus our study on the complexity

of computing a pure Nash equilibria in this kind of games. We show that, for

single-commodity games with non-decreasing delay functions, this problem

is in P when either all the paths from the source to the target node are

disjoint or all the delay functions are equal. For the general case, we prove

that the computation of a PNE belongs to the complexity class PLS through a

new technique based on generalized ordinal potential functions and a slightly

modified definition of the usual local search neighborhood. We further apply

this technique to a different class of games (which we call Pareto-efficient)

with restricted cost functions. Finally, we also prove some PLS-hardness

results, showing that computing a PNE for Pareto-efficient NMC games is

indeed a PLS-complete problem.
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Chapter 1

Introduction

1.1 Game Theory

Broadly speaking, game theory is a branch of mathematics focused on the

modelling and study of situations where a number of entities or individuals

(usually called players) interact. Every player is supposed to have some

preferences with respect to his context (i.e. to the context modeled, be it

a market where a number of companies try to maximize their benefits or

an ecologic system where different species strive for survival) as well as a

certain degree of rationality (i.e. he is expected to act in accordance to his

preferences). Therefore, we can see as a game any situation where a set of

players modify their environment through their actions in order to adapt it

to their preferences. In non-cooperative games, which is the kind of games

on which we will focus our study, players are not required to cooperate, that

is they are selfish and respond only to their own interests. Often, it is also

assumed that they can not even communicate.

Given a number of players and assuming that the actions they may per-

form and their preferences are both known, the main objective of game theory

is to study the behaviour of the players, usually with the purpose to predict

the outcome of the game, that is, the state of the environment after the inter-

action of the players, if such a definitive state does exist. To be more precise:
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1.1. Game Theory

every player knows the actions that the other players are adopting, so he can

adapt his own actions to them. Thus, it is possible that the situation enters

a state of equilibrium where everyone is satisfied with his own acting, but it

could also happen that such a situation is never reached because the game

enters a dynamics where players keep acting and reacting endlessly. In this

state, it would be very interesting to be able to determine whether a given

game can enter one of this equilibrium situations, for instance, or this is not

possible. Naturally, it would be even more interesting to actually find the

equilibrium. This kind of issues are the ones that game theory deals with

and the ones that motivate this thesis.

We said that game theory is a branch of mathematics. To be more pre-

cise, we should say that it was born as such. It is generally accepted that

the study of game theory started in the forties with the publication of the

book Theory of Games and Economic Behaviour by John von Neumann and

Oskar Morgenstern. Initially, game theory developed as a tool of economic

analysis, but in the following years the applications of the theory to other

areas such as evolutive biology1 or philosophy of language2 began to be ex-

plored. Nowadays, game theory is applied also to a number of other subjects

related with human behaviour such as psychology, sociology, anthropology

or neurology. With respect to computer science, one simple example should

suffice to show one of the applications of game theory to it: the Internet.

Game theory is a perfect tool to model a large number of situations related

to the use and functioning of the Internet, given that this very large network

can be seen as a field where the (usually selfish) interests of a vast number

of entities converge: users of the network, ISP, large enterprises, etc. Thus,

game theory seems an adequate tool to study different aspects related to the

1See, for instance, the paper [Lewontin, 1961]. Quite interestingly, it is usually ac-

knowledged that the first (and probably unnoticed) application of game theory to the

field of evolutive biology dates back to the 19th century, when Darwin gave sort of a

game-theoretic justification of the fact that the natural proportion (i.e. the situation of

equilibrium) between the number of male and female subjects of any species was 1:1.
2See, for instance, [Lewis, 2002], first published in 1969
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1.2. Aim of this Thesis

behaviour of this entities on the Internet. Quoting professor Papadimitriou

[Papadimitriou, 2001],

The Internet has arguably surpassed the von Neumann computer

as the most complex computational artifact (if you can call it that)

of our time. Of all the formidable characteristics of the Internet

[...], I believe that the most novel and defining one is its socio-

economic complexity: The Internet is unique among all computer

systems in that it is built, operated, and used by a multitude of di-

verse economic interests, in varying relationships of collaboration

and competition with each other. This suggests that the mathe-

matical tools and insights most appropriate for understanding the

Internet may come from a fusion of algorithmic ideas with con-

cepts and techniques from Mathematical Economics and Game

Theory.

This thesis will be focused on an specific area of game theory, which we

shall try to describe informally now. As we mentioned before, we will study

non-cooperative games, that is, games where players do not have means to

cooperate among them – although a player seeking to satisfy his own interest

might indirectly benefit other players. There are plenty of different types of

non-cooperative games, but we will only consider a kind of games where

players compete for the use of a number of given resources, and the costs

they have to assume depends on how congested are the resources they use.

This genre of games are a first step towards the modelling of the Internet as

a game, since communication links can be understood as the resources for

which the users of the Internet compete, and it is rather natural to think

that their interest may be to use the least congested links available.

1.2 Aim of this Thesis

Generally speaking, this thesis is aimed at doing a theoretical research on

game theory, a field which is related to a number of other disciplines, being
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1.3. Outline of the document

sort of a point where they all coincide (which is, in my opinion, one of the facts

that makes it such an appealing field). Therefore, it is one of the objectives of

this thesis to get introduced to the above-mentioned field, i.e. to understand

the significance and the technical details of the different models of games and

main theorems about them. After this first stage of the research has been

concluded, the second objective of the thesis will consist of actively trying to

prove new results about the new model of maximum congestion games.

1.3 Outline of the document

The remainder of this document is organized as follows. Chapter 2 contains a

general introduction to those aspects of game theory which are somehow re-

lated to this thesis, including a description of classical models of games such

as congestion games and a description of the model of maximum congestion

games upon which we will base our work. Chapters 3 and 4 contain the

results of our research. The first of them contains the results about existence

of pure Nash equilibria, whereas the second is focused on the complexity of

computing these equilibria. Chapter 5 summarizes our results and includes

a discussion about their originality and relevance. Finally, Appendix A con-

tains some additional information about the experiments made in Section 4.1.
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Chapter 2

Background

In this chapter we will introduce a number of concepts related to game theory

which we believe indispensable to the successful understanding of the rest of

the document. We will directly provide the formal definition of the different

concepts and game models involved in the thesis.

2.1 Game Theory

2.1.1 Strategic Games

The most general kind of game we will be dealing with here is the so-called

Strategic Game, which can be defined with the following elements: a set of

players, a set of actions for every player and some information about the

preferences of the players.

Definition 2.1.1. A Strategic game (or game, to abbreviate) can be formally

defined as a tuple Γ = (N, (Pi)i∈N , (ci)i∈N) where

• N is a set of n ≥ 2 players.

• For each player i ∈ N , Pi is a set of actions or strategies available

to him. In any given game, every player has to choose as strategy

one of the actions p ∈ Pi. Every element π ∈ P1 × · · · × Pn, known
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2.1. Game Theory

as a pure strategy profile of the game, precisely describes a possible

outcome of the game, that is the strategy followed by all players in the

game. Given a profile π = (p1, . . . , pn), it is understood that pi is the

strategy followed by the player i ∈ N . In addition, Π denotes the set

P1 × · · · × Pn of all the possible profiles for the game.

• ui : Π → R is the payoff function (or utility function) of each one of

the players i ∈ N . In any game Γ, ui(π) is the payoff received by

player i ∈ N when the strategies of all the players are as described in

the strategy profile π. Thus, this payoff does not depend solely on the

strategy adopted by the player, but also on the strategies of the other

players. This payoff function can also be seen as an indication of the

preferences of the player.

Pure and Mixed Profiles Sometimes it is useful to consider that players,

instead of deterministically choosing their strategy among all their available

actions, are able to randomize their choice. In that case, every player i ∈ N

can adopt as strategy a probability distribution over his action set Pi. Let

Ri denote the (infinite) set of all possible probability distributions over the

set of actions of player i

Ri =

{
r : Pi → [0, 1]

∣∣∣∣∣ ∑
p∈Pi

r(p) = 1

}

Then, every element ρ ∈ R1 × · · · × Rn is known as a mixed strategy profile

and, for any given mixed profile ρ ∈ R1 × · · · × Rn, ri(p) is the probability

that player i chooses the action p ∈ Pi
1. When using mixed profiles, we

usually consider expected payoffs. The expected payoff of any player i ∈ N

is then formally defined as

ui(ρ) =
∑

(p1,...,pn)∈Π

((
n∏

j=1

rj(pj)

)
· ui((p1, . . . , pn))

)
1Notice, however, that we will mainly study pure strategy profiles. Thus, unless ex-

plicitly stated, we will always be referring to pure profiles.
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2.1. Game Theory

Payoffs and Costs Although the functions ui have been traditionally in-

terpreted as utility functions, as we described above, it is also quite common

- especially in the research area of this document - to use the alternative

interpretation which considers them as cost functions - i.e. the players have

to assume a cost for the choices they make. In this case, a game is usually

denoted by a tuple Γ = (N, (Pi)i∈N , (ci)i∈N) where each function ci : Π → R
is the cost function of player i ∈ N and ci(π) is the cost assumed by player i

under the pure strategy profile π. Naturally, players try to minimize the

cost of the strategy that they adopt. When mixed strategy profiles are al-

lowed, then the concept of expected cost is defined analogously to that of

expected payoff: the expected cost for player i ∈ N under the mixed profile

ρ = (r1, . . . , rn) is

ci(ρ) =
∑

(p1,...,pn)∈Π

((
n∏

j=1

rj(pj)

)
· ci((p1, . . . , pn))

)

This cost terminology is the one that we will use for the rest of this document.

A Simple Example One of the classical examples in game theory is the

Prisoner’s Dilemma. It is a game involving two players, two suspects of

having committed a crime. Each of them, being interrogated in isolation by

the police, is offered the same deal. He can either testify against the other

suspect or remain silent. The set of allowed actions is therefore equal for both

players, P1 = P2 = {Denounce (D), Silence (S)}. The deal goes like this: if

one suspect denounces the other but the other remains silent, then the first

one is freed and the second one receives a ten-year sentence (i.e. c1((D, S)) =

0 and c2((D, S)) = 10 and, conversely, c2((S, D)) = 0 and c1((S, D)) = 10).

If both suspects denounce the other, both are convicted for five years (i.e.

c1((D, D)) = c2((D, D)) = 5). Finally, if they both remain silent, then

both are convicted for only one year (i.e. c1((S, S)) = c2((S, S)) = 1).

Assuming that both suspects act rationally in defense of their own interests,

their choice should be clear. Both of them should reason that no matter what

the other suspect does, the best option is always to denounce him. Indeed,
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2.1. Game Theory

if any of them thinks that the other one will denounce him, he would better

denounce too in order to get a five-year sentence instead of a ten-year one.

On the other hand, if he thinks that the other will remain silent, he would

better denounce him too, since this would allow him to go with no charges.

Therefore, the strategy profile (D, D) seems to be the natural outcome of

the game. However, it can be easily seen that from a global point of view

both suspects would be better off if they remained silent. This illustrates the

conflicts that usually arise between the interests of individuals and those of

the society.

2.1.2 Nash Equilibria

This notion of “natural outcome” that we have just seen in the previous

section is of great interest. One of the applications of game theory consists

of studying and predicting the future behaviour of any set of entities or

individuals competing in a common market. In the case of the Prisoner’s

dilemma, we have already seen that the strategy profile (D, D) is the one

that should arise as the predictable outcome of the interaction of the two

suspects. This profile can be thought of as a state of equilibrium, a stable

state in which no player of the game is willing to move, to change his strategy,

since any movement would damage his own interests. Notice that in the

Prisoner’s dilemma this profile (D, D) is the only one of the four possible

pure profiles (D, D), (D, S), (S, D), (S, S) which is an equilibrium.

This conceptualization of equilibrium has been known for years under

the name of Nash equilibrium in honour of the American mathematician

John F. Nash, and is arguably one of the most popular, at least in the area

of non-cooperative games. Before giving a formal definition, let us provide

some extra notation which is quite common in game theory. Given a tuple

π = (p1, . . . , pn), it is usual to denote with (π−i, p) (where 1 ≤ i ≤ n) the

tuple that we obtain if we substitute the i-th element of π for the element p.

Therefore (π−i, p) = (p1, . . . , pi−1, p, pi+1, . . . , pn).

Definition 2.1.2 (Pure Nash Equilibrium). Let Γ = (N, (Pi)i∈N , (ci)i∈N)

10



2.1. Game Theory

be a strategic game. The pure strategy profile π = (p1, . . . , pn) ∈ Π is said

to be a Pure Nash Equilibrium (PNE, for short) if no player is interested

in changing his strategy, that is, if no unilateral modification of his strategy

would decrease the cost that he is assuming. Formally,

∀i ∈ N ∀p ∈ Pi ci((π−i, p)) ≥ ci(π)

If the profile π is a mixed strategy profile, we then have a Mixed Nash

Equilibrium. In this document, however, we will mainly study Pure equilib-

ria. Therefore, any mention to a Nash Equilibria will refer to a Pure Nash

Equilibria unless explicitly stated.

Observe that we have no guarantee that any of the pure strategy profiles

of a given game is a Nash equilibrium, nor we have any guarantee that there

is no more than one Nash equilibrium. This fact goes against the usefulness

of the concept of Nash Equilibria as a tool for predicting the behaviour of

the players of a given game, and is one of the most widely criticized points of

this concept: how can we predict the final equilibria situation of a market if

there are many pure Nash equilibria, how can we tell which of them is going

to be the one where the game ends up? However this criticism, to the present

date no one has been able to come up with a better notion of equilibrium.

2.1.3 Congestion Games

In his seminal paper [Rosenthal, 1973], Rosenthal describes a new class of

strategic games that have since then proved useful to model a wide array

of situations. All games of this class, called Congestion Games, share a

fundamental property: they all possess at least one Nash Equilibrium. The

proof of this property can be seen in Section 2.3, here we will formally describe

the class of games. Any congestion game is a strategic game with the special

feature that the n players of the game compete for the resources of a given

set of resources. Specifically, every player has to choose a subset of this set of

resources among a particular number of subsets. The cost that he will have

11



2.1. Game Theory

to pay is given by the congestion of the resources he chooses, that is, by the

number of other players that choose the same resources as him.

Definition 2.1.3. An (unweighted) Congestion Game is defined as a tuple

Γ = (N, E, (Pi)i∈N , (de)e∈E) where

• N = {1, . . . , n} is the set of players.

• E is the set of resources, which is finite.

• Pi ⊆ P(E) is the set of allowed actions for every of the layers i ∈ N .

As it happened with general strategic games, each player i ∈ N chooses

as strategy one of the actions in Pi, and every element π ∈ P1×· · ·×Pn

is a pure strategy profile of Γ that describes the strategy followed by

all players. Now, for any resource e ∈ E, Λe(π) denotes the set of users

of e under the profile π = (p1, . . . , pn), that is, the set of players for

which this resource is part of their strategy: Λe(π) = {i ∈ N | e ∈ pi}.
We finally say that the congestion le(π) of the resource e under π is the

number of users of e under π, le(π) = |Λe(π)|.

• de : N → R is the delay function of each resource e ∈ E, which we as-

sume to be polynomial-time computable. This function models the de-

lay de(k) provoked by the resource e under a congestion k ∈ {1, . . . , n}
(in other words, the cost of using this particular resource under a given

congestion). The cost assumed by each player is then defined as the

sum of costs induced by each of the resources he uses. That is, the cost

function ci : Π → R of every player i ∈ N under the strategy profile

π = (p1, . . . , pn) is

ci(π) =
∑
e∈pi

de(le(π))

Weighted Congestion Games Sometimes it is useful to model situations

where the different players have a different degree of influence on the con-

gestion of the resources they use. In other words, the players can be seen as

12



2.1. Game Theory

having an associated weight or demand that determines the extent to which

they congest the resources. This requires a small modification of the defini-

tion that we have already given, but has important consequences, as we will

see in section 2.3. The games of this new kind are commonly called weighted

congestion games, so we will call the games of the previous kind unweighted

congestion games (or, simply, congestion games, given that the original defi-

nition does not consider weights). In his paper [Milchtaich, 1996], Milchtaich

defines this kind of games as follows.

Definition 2.1.4. A weighted congestion game is defined as a tuple Γ =

(N, E, (Pi)i∈N , (de)e∈E, (wi)i∈N). The set of players N , the set of resources

E, the sets Pi of available actions, the delay functions de as well as the

concepts of strategy profile and set of users of a resource are defined in the

same manner as in unweighted congestion games (see definition 2.1.3). In

contrast, now every player i ∈ N has a positive integer weight wi ∈ N+ that

influences the congestion of the resources used by player i as follows. The

congestion of resource e ∈ E is now the sum of the weights of its users

le(π) =
∑

i∈Λe(π)

wi

Finally, the cost function ci : Π → R associated to every player i has the

same definition as before:

ci((p1, . . . , pn)) =
∑
e∈pi

de(le((p1, . . . , pn)))

It is immediate to see that the class of weighted games is a generalisation

of the class of unweighted games, given that every unweighted game can be

seen as a weighted game where all players have weight one. Furthermore,

both weighted and unweighted games are clearly a specific kind of strategic

games.

2.1.4 Network Congestion Games

In some cases it can be useful to consider more succinct computational rep-

resentations of a congestion game, given that the naive representation would
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2.1. Game Theory

require, in addition of the listing of all resources, that all available subsets

of resources to each players be also listed, and that could potentially re-

quire an amount of space exponentially larger with respect to the number

of resources. One of the most used implicit representations of the subsets

of resources available to each player is given by means of the structure of a

graph in the so-called network congestion games. In a game of this kind, the

set of resources is considered to be the set of edges of a given graph, whereas

the set of available actions of any player consists of the set of paths in the

graph between two particular nodes.

Definition 2.1.5. A network congestion game is defined as a tuple Γ =

(N, G, ((si, ti))i∈N , (de)e∈E(G)), where

• N = {1, . . . , n} is the set of players.

• G = (V, E) is a directed graph.

• (si, ti) ∈ V × V is the pair of origin and destination nodes (or source

and target nodes) of every player i ∈ N .

• de : N → R is the delay function of every edge e ∈ E, which we assume

to be polynomial-time computable.

As we said before, the set Pi of actions available to each player i is

now defined implicitly by this pair of nodes as the set of all (si − ti)

paths2. This set is finite, since we do not consider paths containing

repeated edges. We will sometimes use P to denote the union of the

sets of actions of all players, P =
⋃

i∈N Pi. The definition of the rest of

elements of the game is the same that we gave in the previous section

for general congestion games.

Weighted NCGs The extension of network congestion games to allow

players to have different weights is completely identical to that of general

2We will use the shorthand (s− t) path to refer to a path between the nodes s and t.
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2.1. Game Theory

congestion games. We therefore refer the reader to section 2.1.3 for details,

and we will just give here a formal definition.

Definition 2.1.6. A weighted network congestion game is defined as a tu-

ple Γ = (N, G, ((si, ti))i∈N , (de)e∈E(G), (wi)i∈N). The set of players N , the

directed graph G, the pair of origin and destination nodes (si, ti) of each

player, the set Pi of actions available to him, the delay function de of each

edge in G and the cost function ci : Π → R associated to every player i are

defined as in the model of unweighted congestion games (see definition 2.1.5).

On the other hand, now every player has a positive integer weight wi ∈ N+,

and the congestion of any edge e ∈ E is defined as

le(π) =
∑

i∈Λe(π)

wi

Again, all unweighted NCG can be seen as a weighted NCG where all

players have weight one, and they can be easily seen to be subclasses of

unweighted CG and weighted CG, respectively.

Single-commodity Games If the all the origin nodes of all players in a

NCG Γ are the same node, and so are all the destination nodes, then Γ is

said to be a single-commodity game. If that does not happen, Γ is said to

be a multi-commodity game. Notice that for single-commodity games, all

players share the same set of actions Pi = P . For the sake of simplicity, we

will refer to single-commodity games as tuples

Γ = (N, G, (s, t), (de)e∈E(G))

Analogously, we will refer to weighted single-commodity network congestion

games as tuples

Γ = (N, G, (s, t), (de)e∈E(G), (wi)i∈N)

.
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2.1. Game Theory

2.1.5 Network Maximum Congestion Games

We will now describe the game model which we plan to carry on our research

on. It is a class of strategic game which highly resembles the class of net-

work congestion games that we have just described, since all players have to

choose a path in a graph and the cost assumed by them is still based on the

congestion of the edges of the path they choose. In the games of this new

model, which we call network maximum congestion games (or network max-

congestion games, NMC games, for short), the exact cost is not given by the

sum of the congestion of the edges, but instead by the maximum congestion

among them.

Before we go into a formal definition, let us give a brief justification for

the study of this model. Consider the next situation: we have a number of

users of a communication network, each of them sending packets between

different network endpoints. It may happen that the users want to route

their information through a path with maximum bandwidth, that is, a path

such that the congestion of the most congested link is minimized. In this

case, the traditional model of congestion games is not useful anymore to

study the needs and behaviour of the users. However, we believe that the

model that we present here is a first and interesting step towards being able

to successfully analyse situations like this one3.

Let us now give a more formal definition of this new class of games.

Definition 2.1.7. A network max-congestion game is defined by a tuple

Γ = (N, G, ((si, ti))i∈N , (de)e∈E(G)) where

• N = {1, . . . , n} is the set of players.

• G = (V, E) is a directed graph.

• (si, ti) ∈ V × V is the pair of origin and destination nodes (or source

and target nodes) of every player i ∈ N .

3Other examples from the telecommunications field which justify the study of our model

can be found in [Banner and Orda, 2006].
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• de : N → R is the delay function of every edge e ∈ E, which we assume

to be polynomial-time computable.

The definition of the different elements of the game mirrors that of the

network congestion games model (see definition 2.1.5). The set Pi of actions

available for player i is the set of (si − ti) paths in the graph G. Every pure

strategy profile, thus, is an element π in the set P1 × · · · × Pn. For every

edge e ∈ E, Λe(π) = {i ∈ N | e ∈ pi} is the set of users of e in the profile π.

The congestion le(π) of the edge e in the strategy profile π is again defined

as the number of players of the game that use e in the strategy that they play

in π, le(π) = |Λe(π)|. Finally, and this is where the novelty of this model

lies, the cost assumed by each player i ∈ N in the profile π = (p1, . . . , pn) is

now defined as the maximum delay of the edges of its path:

ci(π) = max
e∈pi

de(le(π))

Weighted Network Max-Congestion Games As it happened with con-

gestion games, we will also consider NMC games where players are allowed

to have different weights.

Definition 2.1.8. A weighted network max-congestion game is defined as a

tuple Γ = (N, G, ((si, ti))i∈N , (wi)i∈N , (de)e∈E(G)). The set N of players, the

directed graph G, the origin and destination nodes (si, ti) and the delay func-

tions de are defined as we did with unweighted games (see definition 2.1.7),

and so are the set Pi of actions available to every player, the set Λe of users

of every edge e and the cost function ci : Π → R associated to every player i.

However, every player i now has a positive integer weight wi ∈ N+, and the

congestion of any edge e ∈ E is defined as

le(π) =
∑

i∈Λe(π)

wi

Single-commodity Games The definition of single-commodity NMC games

is also analogous to the one that we gave for congestion games (see the
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previous section). A (possibly weighted) NMC game is said to be single-

commodity if all players share the same endpoints (si, ti); if that is not the

case, it is said to be multi-commodity. Therefore, we will denote unweighted

and weighted single-commodity games with tuples Γ = (N, G, (s, t), (de)e∈E(G))

and Γ = (N, G, (s, t), (wi)i∈N , (de)e∈E(G)), respectively.

2.1.6 Potential Functions and Games

Potential functions were systematically studied for the first time in [Monderer

and Shapley, 1996] as a mechanism to establish certain properties of strategic

games, most notably the existence of pure Nash equilibria, as we will see in

Section 2.3. Let us here give some definitions related to this technique. The

main idea is to find a global measure of potential that decreases only along

with any decrease of the cost assumed by any player, but there are different

kinds of potential function that follow this idea in different grades.

Definition 2.1.9. The function φ : Π → R is said to be an exact potential

for a strategic game Γ = (N, (Pi)i∈N , (ci)i∈N) if for every π ∈ Π, i ∈ N ,

p ∈ Pi, it holds that ci(π−i, p)− ci(π) = φ(π−i, p)−φ(π). Any strategic game

possessing an exact potential function is called an exact potential game.

Definition 2.1.10. The function φ : Π → R is said to be an ordinal potential

for a strategic game Γ = (N, (Pi)i∈N , (ci)i∈N) if for every π ∈ Π, i ∈ N ,

p ∈ Pi, it holds that ci(π−i, p) < ci(π) ⇔ φ(π−i, p) < φ(π). Any strategic

game possessing an ordinal potential function is called an ordinal potential

game.

Definition 2.1.11. The function φ : Π → R is said to be a generalized

ordinal potential for a strategic game Γ = (N, (Pi)i∈N , (ci)i∈N) if for every

π ∈ Π, i ∈ N , p ∈ Pi, it holds that ci(π−i, p) < ci(π) ⇒ φ(π−i, p) <

φ(π). Any strategic game possessing an ordinal potential function is called a

generalized ordinal potential game.

Notice that every exact potential game is an ordinal potential game and

every ordinal potential game is a generalized ordinal potential game.
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2.1.7 Pareto-efficient games.

We will here briefly describe a simple class of games whose definition arises

from what in economics is known as Pareto improvement (a concept named

after V. Pareto, an Italian economist). A Pareto improvement is performed

when a player changes his strategy to reduce the cost he is paying while, at

the same time, the cost of no other player is increased by this change.

Definition 2.1.12. We say that a strategic game is Pareto-efficient if the

cost functions of the game are defined in such a way that all the improving

movements that a player may do provoke no harm to the other players, that

is, if for any profile π, player i and strategy p ∈ Pi, it holds that

ci(π−i, p) < ci(π) ⇒ ∀j ∈ N cj(π−i, p) ≤ cj(π)

2.2 Computational Complexity

We will here give some computational complexity definitions which are re-

lated to our thesis; specifically to the study of the complexity of finding Nash

equilibria for certain classes of games, as we will point out in the next sec-

tion. Before we give a formal definition, we shall discuss a little bit about

functional extensions of the basic complexity classes P and NP.

2.2.1 Search Problems, FP and FNP

When dealing with computational problems, sometimes we do not only want

to know if an object with some desired properties exists (e.g. if there exists

any truth assignment that satisfies a given Boolean formula), but to obtain

one of the objects with such properties, if any of them exists at all (e.g. we

want to obtain one of the satisfying assignments). This kind of problems

are usually called search problems (see [Johnson, 2007] for a good discussion

about them). The class FNP of search problems (which stands for Functional

NP; see, for instance, [Megiddo and Papadimitriou, 1991]) is the analogous

version of the decision problems complexity class NP.
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Definition 2.2.1. A FNP search problem Π consists of

i) A polynomial-time recognizable set of instances IΠ.

ii) A polynomial-time recognizable relation

RΠ = {(x, y) | x ∈ IΠ ∧ |y| ≤ p(|x|)}

where p is a polynomial. The goal of the problem is, given any instance

x ∈ IΠ, to find a y such that (x, y) ∈ RΠ.

We will also consider the class of problems TFNP (for Total Functional NP)

for which the existence of the object that we are looking for is guaranteed.

Definition 2.2.2. A search problem Π is in TFNP if it is in FNP and for each

x ∈ IΠ there is at least one y such that (x, y) ∈ RΠ.

Finally, let us give the definition of the class FP (for Functional P) for the

sake of completeness:

Definition 2.2.3. A search problem Π is in FP if it is in TFNP and there

exists a polynomial-time algorithm such that for any x ∈ IΠ outputs a y such

that (x, y) ∈ RΠ.

We clearly have that FP ⊆ TFNP ⊆ FNP, but it is currently unknown

whether any of the inclusions is strict or not.

Now, a combinatorial optimization problem is a search problem where

we do not only want to find an object with a given set of properties, but we

want to find the object with these properties that optimizes a given function.

Formally, we say that a combinatorial optimization problem Π is defined as a

tuple (IΠ, RΠ, cΠ), where (IΠ, RΠ) is a search problem and cΠ is an associated

cost function. For ease (and slightly abusing of the notation) let us denote

by RΠ(x) the (possibly empty) set of solutions of the instance x ∈ IΠ, that

is, the set

RΠ(x) = {y | (x, y) ∈ RΠ}
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Then, we say that any solution y ∈ RΠ(x) of a given instance x ∈ IΠ has a

cost cΠ(x, y). As we said, given any instance x of a combinatorial problem Π,

we want to find a solution y ∈ RΠ(x) that globally minimizes (or maximizes,

depending on what kind of optimization we are dealing with) the function

cΠ, i.e., a solution such that cΠ(x, y) is an optimum value. Consider, as

an illustration, the MAX-SAT problem. The set of instances IMAX-SAT of

the problem contains all possible accepted encodings of a weighted boolean

formula in conjunctive normal form, that is, a formula where all the clauses

have an associated weight. For any given weighted formula x ∈ IMAX-SAT, the

set of feasible solutions RMAX-SAT(x) contains all possible truth assignments

for formula x. Finally, the cost cMAX-SAT(x, y) of a solution y ∈ RMAX-SAT(x)

is the sum of the weights of the clauses of x that are satisfied by the truth

assignment y.

Observe that any combinatorial optimization problem Π = (IΠ, RΠ, cΠ)

can be seen as a simple search problem just by adding the condition of local

optimality to the properties of the object that we want to find. That is,

the combinatorial optimization problem Π = (IΠ, RΠ, cΠ) is equivalent to the

search problem Π′ = (IΠ′ , RΠ′), where IΠ′ = IΠ and

RΠ′ = {(x, y) | x ∈ IΠ ∧ y ∈ RΠ(x) ∧ ∀ z ∈ RΠ(x) cΠ(x, z) ≥ cΠ(x, y)}

(in the case of a minimization problem). This allows us to be able to classify

optimization problems into the classes FNP, TFNP and FP that we defined

above.

There is a large number of combinatorial optimization problems for which

there is no known polynomial-time algorithm able to solve them. In some

cases, the algorithmic technique of local search [Aarts and Lenstra, 2003] has

been proved useful for finding good (but not always globally optimal) solu-

tions for this problems. The idea is to conduct a search guided by a neighbor-

hood structure that, in some sense, relates good solutions to similar solutions

that may possibly be as good, or even better. Formally, a local search prob-

lem is defined as a tuple Π = (IΠ, RΠ, cΠ, NΠ) which is the conjunction of a

combinatorial optimization problem (IΠ, RΠ, cΠ) with a neighborhood struc-
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ture NΠ which relates solutions of the problem to other solutions. Thus,

any solution y ∈ RΠ(x) has a (possibly empty) set of neighboring solutions

NΠ(x, y) ⊆ RΠ(x). Given a pair (Π, NΠ), the local search problem is to find a

solution y ∈ RΠ(x) which is a local optimum, i.e. such that all his neighbors

do not have a strictly lower cost (for the case of minimization problems). To

follow with our previous example, a common neighborhood structure used

to tackle the MAX-SAT problem with a local search algorithm is known

as the flip algorithm, for it relates any given truth assignation to all other

assignations where only a variable has a different truth value.

Note that again any local search problem Π = (IΠ, RΠ, cΠ, NΠ) can be

seen as a simple search problem Π′ = (IΠ′ , RΠ′) where IΠ′ = IΠ and

RΠ′ = {(x, y) | x ∈ IΠ ∧ y ∈ RΠ(x) ∧ ∀ z ∈ NΠ(x, y) cΠ(x, z) ≥ cΠ(x, y)}

2.2.2 The Class PLS

The class PLS (for Polynomial-time Local Search), first introduced in [John-

son et al., 1988; Schäffer and Yannakakis, 1991], captures the complexity

of those local search problems where a move from one solution to a better

solution in the neighborhood requires only polynomial time.

Definition 2.2.4. A local search problem Π = (IΠ, RΠ, cΠ, NΠ) belongs to

the complexity class PLS if there exist the following three polynomial-time

algorithms:

• A polynomial-time algorithm AΠ that, for any string x is able to de-

termine if x ∈ IΠ and, if that is the case, to produce a feasible initial

solution y ∈ RΠ(x).

• A polynomial-time algorithm CΠ that, for any instance x ∈ IΠ and any

string y decides if y is a feasible solution for x (i.e. if (x, y) ∈ RΠ)

and, if that is the case, computes the cost of the solution cΠ(x, y).

• A polynomial-time algorithm FΠ that, given a pair (x, y) ∈ RΠ de-

termines if the solution y is locally optimal with respect to the neigh-
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borhood NΠ and, if not, returns a solution z ∈ NΠ(x, y) such that

cΠ(z, y) < cΠ(x, y) (for a minimization problem).

Any PLS problem can be seen to belong the class FNP. In addition, since,

by definition, any instance of a PLS problem is guaranteed to have at least

one feasible solution (the initial one), and assuming finiteness of the search

space, any instance of the problem will have at least one local optimum.

Thus, we have that PLS ⊆ TFNP. On the other hand, any search problem Π

in FP can be formulated as a PLS problem (see [Johnson et al., 1988] for the

details. Thus, we have that

FP ⊆ PLS ⊆ TFNP

2.2.3 PLS-reductions

It is useful to define a suitable notion of reduction among search problems

in order to identify problems that are complete, that is, problems that are

the most difficult among those of their class. We will directly give the formal

definition of the kind of reductions which are usually used to relate PLS

problems, which are known as PLS-reductions.

Definition 2.2.5. A local search problem Π1 is PLS-reducible to another local

search problem Π2 if there exist the following two polynomial-time computable

functions:

i) A function f : IΠ1 → IΠ2 that maps every instance of the first problem

to an instance of the second problem.

ii) A function g : {(x, y) | x ∈ IΠ1 ∧ y ∈ RΠ2(f(x))} → RΠ1(x) such that

for all instances x ∈ Π1 we have that if y is a local optimum for the

instance f(x), then g(x, y) is a local optimum for x.

Intuitively, the function f maps instances x of the problem Π1 to instances

f(x) of the problem Π2. Once we have found a solution y ∈ RΠ2(f(x)) for the

instance f(x) of Π2, the function g maps this solution “back” to a solution
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of the first instance x. The only requirement that we place on this process

of mapping and remapping back is that if we find a local optimum for the

instance of Π2, then the instance of Π1 that we get when we map the local

optimum back must also be a local optimum.

With this definition of a PLS-reduction, we now can define the usual

notion of completeness:

Definition 2.2.6. A local search problem Π is PLS-complete if

i) Π belongs to PLS

ii) Any other problem in PLS can be reduced to Π through a PLS-reduction.

The first problem which was identified as PLS-complete (through a con-

struction analogous to the NP generic reduction to CIRCUIT-SAT, see [John-

son et al., 1988]) was the CIRCUIT-FLIP problem, defined as follows. The

set of instances contains all possible acyclic boolean circuits with and, or and

not gates, while the feasible solutions are all those possible binary inputs (i.e.

binary strings) to the circuit. The cost of any solution x is then the output

of the circuit (seen as a binary number) when the input x is applied to the

circuit. For any given solution x, the set of its neighbors contains all those

binary strings obtained by flipping a single bit of the string x.

Since then, other interesting problems such as the WEIGHTED MAX-

CUT with a flip neighborhood [Schäffer and Yannakakis, 1991] structure

or the TSP with the Lin-Kernighan neighborhood structure [Papadimitriou,

1992] have been shown to belong to the class PLS.

2.3 Relevant Results

In this section we will describe some relevant results of game theory which

are related to this thesis.
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2.3.1 Existence of Nash equilibria

We will first present those results which refer to the existence of Nash equilib-

ria for the games of the classes that we described above. As we mentioned,

the potential nonexistence of pure Nash equilibria has often been signaled

as one of the weak points of the concept of Nash equilibrium itself, since it

places a limit on the usefulness of the concept as a tool of prediction. The

next theorem, proved by Nash some fifty years ago in his famous paper [Nash,

1950], shows that if we allow the players to play mixed strategy profiles, then

the existence of at least one Nash equilibrium is guaranteed for any strategic

game.

Theorem 2.3.1 (Nash, 1950). Every strategic game has at least one mixed

Nash equilibrium profile.

If we want to be able to make such as a strong statement with pure

profiles, however, we need to consider restricted classes of games. This is the

case of congestion games

Theorem 2.3.2 (Rosenthal, 1973). Every unweighted congestion game has

at least one pure Nash equilibrium profile.

R.W. Rosenthal was the first to prove this interesting property in his pa-

per [Rosenthal, 1973]. His proof essentially formulated the problem of finding

a PNE in a congestion game as a binary integer programming optimization

problem whose solution was a PNE for the game. Given that all binary

integer programming problem can be solved (even though not always effi-

ciently), all congestion game must have a PNE. From another point of view,

what Rosenthal did was to provide an exact potential function and (implic-

itly) base his proof on the following theorem by Monderer and Shapley:

Theorem 2.3.3 (Rosenthal, 1973). Every unweighted congestion game has

an exact potential function.

Theorem 2.3.4 (Monderer and Shapley, 1996). Any strategic game possess-

ing a generalized ordinal potential function has at least one PNE profile.
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Proof. This simple proof is implicit in [Monderer and Shapley, 1996]. Let φ

be an ordinal potential function for the strategic game Γ. Since the strategy

space Π of the game is finite, there must exist at least one strategy profile

π∗ that minimizes φ. This profile, by the definition of a generalized ordinal

potential function, is a PNE.

The next important theorem further clarifies the relation between exact

potential games and congestion games, essentially stating that (up to iso-

morphism) they are the same class of games.

Theorem 2.3.5 (Monderer and Shapley, 1996). Every (finite) exact poten-

tial game is isomorphic to an unweighted congestion game.

However, if we switch to games with weights things change quite sig-

nificantly. On one hand, not all weighted congestion games have an exact

potential function, in contrast with Theorem 2.3.3:

Theorem 2.3.6 (Fotakis et al., 2005). There exist weighted CG (even with

identity delay functions) which possess no exact potential function.

On the other hand, not only weighted games are not guaranteed to possess

exact potential functions, but they are neither guaranteed to possess PNE

profiles. Even for the most restricted class of weighted games, i.e. weighted

single-commodity network congestion games, it is known that some games

may not have pure Nash equilibria:

Theorem 2.3.7 (Fotakis et al., 2005). There are weighted single-commodity

network congestion games which have no PNE profile.

In fact, deciding if a given weighted network congestion game with non-

decreasing delay functions possesses a PNE is a hard problem:

Theorem 2.3.8 (Dunkel and Schulz, 2006). The problem of determining if a

given weighted network congestion game with non-decreasing delay functions

has any PNE profile is strongly NP-complete for single-commodity instances

as well as for multi-commodity instances when the number of players is fixed.
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The proof of Theorem 2.3.7 is through a game with piecewise delay func-

tions. If we put an additional restriction, however, and consider only those

games with linear delay functions, this is not true anymore, even for multi-

commodity games:

Theorem 2.3.9 (Fotakis et al., 2006). Every weighted multi-commodity net-

work congestion game with linear delay functions has at least one PNE profile.

2.3.2 Complexity of Nash Equilibria Computation.

The proofs of the two main above theorems about PNE existence (Nash,

Rosenthal) are both non-constructive. Thus, they leave unresolved an issue

of remarkable importance from the point of view of the computer science:

what is the computational complexity of finding a Nash equilibrium? Is

it a task which can be solved efficiently? For the class of general strategic

games, this questions were recently answered in a series of papers which were

published in a short period of time, each of them extending the results of

the previous one. Daskalakis, Papadimitriou and Goldberg started the series

proving the next theorem in October 2005:

Theorem 2.3.10 (Daskalakis et al., 2005). The problem of computing a

(possibly mixed) Nash equilibrium for a given strategic game with at least

four players is PPAD-complete4.

One month later, Chen and Deng, in parallel with Daskalakis and Pa-

padimitriou, proved that the theorem also holds for games with three players.

4The complexity class PPAD (for Polynomial Parity Argument, Directed version) was

originally described in [Papadimitriou, 1994], and is another subclass of the TFNP class,

which we described in Section 2.2. As it happens with the class PLS, the other subclass of

TFNP that we have seen, we have that

FP ⊆ PPAD ⊆ TFNP

Note, in addition, that the relation between the classes PPAD and PLS is currently not

known.
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Theorem 2.3.11 (Chen and Deng, 2005b; Daskalakis and Papadimitriou,

2005). The problem of computing a (possibly mixed) Nash equilibrium for a

given strategic game with at least three players is PPAD-complete.

Finally, one month later, in December 2005, Chen and Deng resolved

complexity of the problem for two-player games.

Theorem 2.3.12 (Chen and Deng, 2005a). The problem of computing a

(possibly mixed) Nash equilibrium for any given strategic game is PPAD-

complete.

On the other hand, if we consider the class of unweighted congestion

games (for which the existence of pure Nash equilibria is guaranteed, as we

stated before), the complexity of finding a PNE was settled by Fabrikant,

Papadimitriou and Talwar in a 2004 article.

Theorem 2.3.13 (Fabrikant et al., 2004). The problem of computing a pure

Nash equilibrium is PLS-complete for the following classes of games:

i) Unweighted congestion games.

ii) Symmetric unweighted congestion games.

iii) Unweighted multi-commodity network congestion games.

However, if we consider only unweighted single-commodity network con-

gestion games, then the computation of a PNE can be done efficiently, as the

same authors prove through a reduction to the min-flow problem.

Theorem 2.3.14 (Fabrikant et al., 2004). The computation of a PNE for

unweighted single-commodity network congestion games can be done in poly-

nomial time.

If we allow players to have weights, we have that in network congestion

games with linear delay functions (for which the existence of a PNE is as-

sured, see Theorem 2.3.9), the computation of a PNE can be carried out in

pseudo-polynomial time.
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Single-com. Multi-com.

Unweight. FP PLS-complete

Weight.
stepwise delay functions: a PNE May not exist

linear delay functions: pseudopolynomial time

Figure 2.1: Existence and complexity of computing a PNE in network con-

gestion games. If not stated otherwise, the games have non-decreasing delay

functions.

Theorem 2.3.15 (Fotakis et al., 2005). The computation of a PNE for

weighted multi-commodity network congestion games with linear delay func-

tions can be carried out in pseudo-polynomial time.

We have outlined the main results about existence and computability of

PNE in network congestion games in Table 2.1. As it can be seen in the

whole section, three are the components of the game which play a major role

in this kind of results: the game being weighted or unweighted, the game

being single or multi-commodity and, finally, the kind of delay function of

the game.

2.3.3 Results on Max-congestion Games

As we said on the introduction, there are some papers which we have dis-

covered during the development of this thesis that also present some results

for the model of max-congestion games. We will here just mention the three

papers that we are referring to, and we will leave a detailed comparison of

the results for the conclusions chapter, once we have presented our results.

The three papers are

i) [Caragiannis et al., 2005], presented at the International Symposium

on Algorithms and Computation (ISAAC) of December 2005.

ii) [Busch and Magdon-Ismail, 2006], presented at the International Sym-

posium on Theoretical Aspects of Computer Science (STACS) of Febru-

ary 2006.
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iii) [Banner and Orda, 2006], presented at the INFOCOM conference of

April 2006.
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Chapter 3

Existence of Pure Nash

Equilibria

In this first chapter or results we study the existence of pure Nash equilib-

rium profiles for different kinds of NMC games. Specifically, we will see how

changes in the restrictions we place upon the main components of the game

–i.e. weights, delay functions, graph topology (single- / multi-commodity

games)– affect the existence of PNE.

Allowing all kind of delay functions, we can see that even some (weighted)

single-commodity games have no PNE profile. Consider, as an example, a

simple NMC game with only two parallel links, two players with weights

w1 = 1 and w2 = 2 and delay functions as defined in Fig. 3.1. It can be seen

(a quick check suffices, since there are only four possible strategy profiles)

that no matter what strategies the players choose, at least one of them will

always have a better alternative. If both choose the first link, player two has

d1(w) =


4, if w = 1

1, if w = 2

4, if w = 3

d2(w) =


5, if w = 1

3, if w = 2

2, if w = 3

Figure 3.1: Delay Functions of a NMC game with no PNE profiles.
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an incentive to move to the second one (where his cost would be 3 instead

of 4). If both choose the second link, player two again has an incentive to

change, since moving to link 1 would report him a cost of 1 instead of two.

If player one goes to the first link and player two to the second one, player

one will likely want to move to the second link, where he would have to pay

a cost of 2 units instead of 4. Finally, if player one chooses the second link

and player two chooses the first one, player one will find out that a move to

the first link would decrease the cost he is paying from 5 to 4. Actually, it is

interesting to see that the problem of determining whether a given game of

this class has any PNE is, NP-complete, as we show in the next theorem.

Theorem 3.0.1. The problem of deciding if a weighted single-commodity

NMC game with arbitrary delay functions has a PNE profile is NP-complete.

Proof. The membership in NP is quite straightforward. On one hand, every

strategy profile has size polynomial with respect to the size of the game, since

it contains one path for each player (and, since the game is weighted, the

representation of the input game contains at least one bit per player). On

the other hand, checking if a given strategy profile is a PNE is a task that

can be done in polynomial time: for each of the players, we just check if there

is a (s− t) path with lower cost. This can be done by fixing the strategies of

all other players and applying a shortest-path-like algorithm to the graph.

With respect to the hardness, the proof is based on a reduction from the

satisfiability problem. Starting with a boolean formula F with n different

boolean variables x1, x2, . . . , xn, the reduction is as follows. There are n + 2

players p1, . . . , pn, pn+1, pn+2, each of them having a weight of n+2 bits which

uniquely identifies the player (e.g. with all bits but the i-th set to 0). Note

that in this manner the definition of the delay functions of any edge can be

dependant on the specific players that are using the edge (in other words, the

value of the delay of an edge can depend upon if a given player is using that

edge). The graph of the game consists only on three parallel links e, eT and

eF , with respective delay functions d, dT and dF defined in Fig. 3.2. Here,

M is a very large integer, and σF and σT are boolean assignments defined as
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d(w) =

2, if only pn+2 uses e

M , otherwise
dF (w) =

0, if σF (F )

4, otherwise

dT (w) =



0, if σT (F )

3, if ¬σT (F ) ∧ pn+1 and pn+2 use eT

5, if ¬σT (F ) ∧ pn+1 uses eT ∧ pn+2 does not

1, if ¬σT (F ) ∧ pn+2 uses eT ∧ pn+1 does not

Figure 3.2: Delay Functions for the game of Theorem 3.0.1

follows:

σF (xi) = False ⇔ player pi uses edge eF

σT (xi) = True ⇔ player pi uses edge eT

Now, suppose that F is satisfied by at least one assignment σ∗, and let

π∗ be a strategy profile such that every player pi (with 1 ≤ i ≤ n) uses edge

eT if σ∗(xi) is true and uses edge eF otherwise. Both boolean assignments

σT and σF are thus equivalent to σ∗, so (as long as players pn+1 and pn+2

choose either edge eT or edge eF ) all players have to assume a cost of 0, which

implies that π∗ is a PNE.

On the other hand, suppose that F is unsatisfiable, and let π be any

strategy profile. Since the formula is unsatisfiable, both boolean assignments

σT and σF are always such that σT (F ) = σF (F ) = False. In this situation,

no matter what the other players choose, it can be seen (e.g. by examining

the 9 different possibilities) that either player pn+1 or player pn+2 always have

an incentive to change their strategy.

Now, it would be interesting to consider a very natural restriction on

the delay functions of the games, namely that they be non-decreasing. If

we examine first unweighted games, we have to note that, unlike what hap-

pens with (traditional) unweighted congestion games, not all unweighted
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non-decreasing delay NMC games have an exact potential function:

Lemma 3.0.2 (Caragiannis et al., 2005). There exist unweighted non-decreasing

delay NMC games which possess no exact potential function.

Therefore, the existence of PNE profiles cannot be proved directly by

means of the usual potential function technique, as Rosenthal did. In early

stages of our research, we managed to independently prove the existence of

these PNE profiles by means of constructive proof, but our algorithm did

only work for certain subclasses of unweighted non-decreasing delay NMC

games. Further research led us to discover that a more general proof can

be obtained which is actually made up of two results of previous papers,

[Monderer and Shapley, 1996] and [Banner and Orda, 2006]. Indeed, even

though the games of this class can not always be shown to have an exact

potential function, even for weighted NMC games we can show that there

always exist a generalized ordinal potential function. This implies, as we

have seen in Theorem 2.3.4, that they possess at least one PNE profile.

Let us carefully go through the proof of this statement. First Let Γ =

(N, G, ((si, ti))i∈N , (de)e∈E(G), (wi)i∈N) be a weighted network max-congestion

game. For any possible strategy profile π of the game, let A(π) be a tuple

A(π) = (ci1(π), ci2(π), . . . , cin(π)) such that ci1(π) ≥ ci2(π) ≥ · · · ≥ cin(π)

are the costs assumed by the players ordered in non-increasing order. Let

<l: Nn → Nn be the usual (total) lexicographical order defined over all

possible pairs of tuples A(π), A(π′). Now, consider two possible strategy

profiles π and π′ such that only one player has changed his strategy between

them, i.e. such that π = (π−i, p) and π′ = (π−i, p
′) for some strategies p 6= p′

of player i.

Claim 3.0.3 (Banner and Orda, 2006, Theorem 3).

ci(π
′) < ci(π) ⇒ A(π′) <l A(π)

Proof. The proof of the statement is an adaptation of the proof of Theorem 3

of in [Banner and Orda, 2006] which can be directly generalized to the case

of arbitrary non-decreasing delay functions.
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Recall that player all players but player i have the same strategy both in

π and π′. Thus, between π and π′ only player i changes his strategy, and by

doing this he obtains a lower cost. Assume that the value of the cost payed

by player i in π is the j-th element of the vector A(π), i.e.

A(π) = (ci1(π), ci2(π), . . . , cij−1
(π), ci(π), cij+1

(π), . . . , cin(π))

Assume also that the first m elements of A(π) have values greater or equal

than ci(π) (thus m ≥ j).

Now, suppose that A(π′) ≥l A(π). By definition of the ordering, this

means that either the first m elements of the vector have the same value in

both A(π) and A(π′) or at least one of them has increased its value. Since

the value ci(π) that was occupying the j-th position has decreased, in both

cases another element of the vector must have increased its value to at least

ci(π). The only way for player i to make a resource increase its delay is to

actually use it (for the delay functions are non-decreasing), so we have that

in π′ player i is using a resource with a value at least ci(π). That contradicts

the fact that ci(π
′) < ci(π). Therefore, we have that A(π′) <l A(π).

Now we are able to prove the following theorem:

Theorem 3.0.4. Any weighted NMC game with non-decreasing delay func-

tions has a generalized ordinal potential.

Proof. The function γ that maps each profile π to the value of A(π) seen as a

n-digit number in base D+1 (that is, γ(π) =
∑

0≤j≤n A(π)j ·(D+1)j), where

D = maxe∈E de(W ) and W =
∑

i∈N wi, is therefore a generalized potential

function.

Corollary 3.0.5 (Banner and Orda, 2006). Any weighted NMC game with

non-decreasing delay functions game has a PNE.

Thanks to the result by Monderer and Shapley that we mentioned in

Theorem 2.3.4, the proof of the previous corollary is slightly simpler than

the one in [Banner and Orda, 2006]. However, note that it is essential for the

35



proof of Claim 3.0.3 that the delay functions of the game be non-decreasing;

we have not been able to extend the idea of the proof to games with arbitrary

delay functions.

Finally, let us briefly consider NMC games that are Pareto-efficient, i.e.

where the cost functions are so that all improving movements that a player

may do provoke no harm to the other players. It is easy to see that the

function σ(π) =
∑

i∈N ci(π) is a generalized ordinal potential function (but

not an exact potential function) for these games (as well as for the more

general class of Pareto-efficient strategic games).

Proposition 3.0.6. Let Γ = (N, (Pi)i∈N , (ci)i∈N) be a Pareto-efficient game.

Then, σ(π) =
∑

i∈N ci(π) is a generalized potential function for Γ.

This is a sufficient condition for the following theorem.

Theorem 3.0.7. Any Pareto-efficient weighted NMC game has a PNE pro-

file.

So far we have proved the existence of pure Nash equilibria profiles for

a number of subclasses of network max-congestion games. In the follow-

ing chapter we will deal with the computational complexity of finding these

equilibria.
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Chapter 4

Computation of Pure Nash

Equilibria

In the previous chapter, we analysed what kind of network max-congestion

games do possess pure Nash equilibrium profiles. We saw that as long as we

enforce the delay functions of the games to be non-decreasing, we can ensure

that all kinds of NMC games, be them single or multi-commodity, weighted

or unweighted, have PNE. In this chapter, we tackle the issue from a more

constructive point of view and study what is the computational complexity

of computing those PNE. First, we study some classes of NMC games with

non-decreasing delay functions for which the computation of a PNE can be

done in polynomial time. Later, we move to some other classes for which we

have not been able to prove that the computation of a PNE belongs to P,

and we show that, at least, it does belong to the class PLS. We also prove

the PLS-completeness of this same problem for a particular class of games.

4.1 Single-commodity Games

For single-commodity games, we were able to design an algorithm that com-

putes PNE profiles for some kind of weighted single-commodity non-decreasing

delay NMC games. The algorithm BDP (for Best Disjoint Path) is essen-
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4.1. Single-commodity Games

Algorithm 1: Computation of a PNE (BDP algorithm)

input : A weighted single-com. game

Γ = (N, G, (s, t), (de)e∈E(G), (wi)i∈N) with non-decreasing

delay functions

output: A strategy profile π for Γ

begin
Let M be a maximal set of (s− t) disjoint paths;

N ′ := N ;

while N ′ 6= ∅ do
i := argmax

i∈N ′
wi;

p := argmin
p∈M

max
e∈p

de(le(π) + wi);

Allocate player i to path c;

N ′ := N ′ \ {i};

end

tially an adaptation of the round-robin philosophy. It proceeds in two phases.

First, it computes a maximal set M of (s− t) disjoint paths, and then it as-

signs players to paths in M step by step: at each step, the player i with

maximum weight (from the set of players still unassigned) is assigned to the

path p ∈ M that yields him the minimum cost, that is, the path that mini-

mizes the value maxe∈p de(le(π)+wi), where π is the (partial) strategy profile

we are constructing.

Before we could find a formal proof of the correctness, we ran some ex-

periments which empirically tried to confirm or refute the hypothesis that

the algorithm actually computed a PNE profile. The experiments consisted

of the following steps:

• We generated random unweighted single-commodity NMC games with

identity delay functions and with a maximum of 500 players and with

a graph of at most 100 nodes.

• We applied the BDP algorithm over the random game.
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4.1. Single-commodity Games

• We checked that the obtained strategy profile was indeed a PNE profile.

The randomly generated games were simpler than the weighted NMC

games that we are considering in the section, but this does not invalidate

the utility of the experiment. We ran more than 100.000 times the above-

mentioned steps to find that all computed profiles were PNE profiles. This

clearly supported the idea that, at least for this simpler games, the algo-

rithm could be proved to be correct. Some more details about the process of

generation of random games can be found in Appendix A.

Let us now present a formal analysis of the properties of the profiles

computed by the algorithm.

Lemma 4.1.1. After each iteration of the BDP algorithm, no player already

assigned to some path in the (partial) profile π has an incentive to change

his strategy for another path from M .

Proof. The claim obviously holds after the first iteration. By induction,

suppose that it also holds for the (partial) profile πk obtained after the k-th

iteration, let i be the player assigned to path p on the iteration k + 1 and

let us consider the profile πk+1 = (πk
−i, p) computed after this (k + 1)-th

iteration. By construction, player i is satisfied with his strategy in πk+1. Let

us now suppose that for some player j already assigned to p in πk there is an

incentive to change his strategy to another path p′ ∈ M . This means that

maxe∈p′ de(le(π
k)+wj) < maxe∈p de(le(π

k)+wi). Since wi ≤ wj and the delay

functions are non-decreasing, maxe∈p′ de(le(π
k) + wi) ≤ maxe∈p′ de(le(π

k) +

wj), but this implies that maxe∈p′ de(le(π
k) + wi) < maxe∈p de(le(π

k) + wi),

which contradicts the fact that p has been chosen to minimize this last value.

Thus, no player assigned to p has incentive to change his strategy.

Now, let us suppose that for some player j assigned to a path p′ 6= p ∈ M

there is an incentive to change his strategy to another path in M . The cost

induced by paths different than p has clearly remained unchanged from πk to

πk+1 (since we are considering only disjoint paths), while the cost induced by

path p cannot be lower in πk+1 than in πk, for the delay functions are non-
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4.1. Single-commodity Games

decreasing. Thus, this contradicts our inductive hypothesis that all players in

πk were satisfied with their path. Hence, all players in πk+1 are satisfied.

For graphs where all the (s − t) paths are disjoint, the set M computed

by the BDP algorithm coincides with the set of all the strategies available to

players. Hence, the computed profile can be immediately seen to be a PNE.

Corollary 4.1.2. For single-commodity NMC games where the graph con-

sists only of a number of (s − t) disjoint paths, the profile computed by the

BDP algorithm is a PNE.

On the other hand, if we consider general graph topologies but we restrict

the delay functions of the edges to be identical, we have that, although there

may be strategies other than the disjoint paths, none of them will yield a

better cost.

Corollary 4.1.3. For single-commodity NMC games where all the delay

functions are identical, the profile computed by the BDP algorithm is a PNE.

Proof. Notice that the profiles π computed by the algorithm have the prop-

erty that, for any path p ∈ M , all edges e ∈ p have the same congestion

le(π). Thus, we now have that the delay induced by all edges of p is equal.

Since M is maximal, any (s− t) path p′ shares at least one edge e with some

path p ∈ M , and this edge e induces a delay equal to the delay induced by

the whole path p. Hence, a player choosing p′ would have to assume a cost

at least as large as if he chose p, which (by the previous lemma) is no better

than the cost of the path he has been assigned to in π.

Given that a maximal set of disjoint paths (even a maximum set, see for

instance [Kleinberg and Tardos, 2006]) can be obtained in polynomial time

and that our algorithm runs also in polynomial time, we can then state the

following theorem.

Theorem 4.1.4. Computing a PNE can be done in polynomial time for

both (a)Weighted single-commodity NMC games with non-decreasing delay
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4.2. Multi-commodity Games

functions where all the (s−t) paths of the graph are disjoint. and (b) Weighted

single-commodity NMC games with identical non-decreasing delay functions.

We have not been able to extend the idea of this algorithm to general

weighted single-commodity games, nor to prove completeness of the problem

for some complexity class harder than FP. The complexity of the problem

for general weighted single-commodity games, thus, remains open, but we

believe this contribution to be interesting enough, both for the importance

of the class of games with identical non-decreasing delay functions and for

the simplicity of the algorithm.

4.2 Multi-commodity Games

We will here study the complexity of the computation of equilibria in multi-

commodity NMC games. The technique of distributing players among a set

of disjoint paths cannot be applied to this kind of games anymore, since edge-

disjoint paths among different commodities may not exist (and even if they

do, a simple distribution of players among paths may not lead to a PNE).

The majority of our attempts to find an algorithm to do this task for general

multi-commodity games have been unsuccessful. So far, we have only been

able to solve the problem for a particular subclass of this games, but this, in

our opinion, should be seen as an important first step.

4.2.1 l-common-edges Games

The particular subclass of games that we just mentioned, which we call l-

common-edges games, is made up of unweighted NMC games with identity

delay functions where the graph of the game has a restricted topology. Let us

first describe the graph topology of these games. Let M = {(si, ti) | i ∈ N}
be the set of the m different commodities of a NMC game (note that m ≤
|N |). A l-common-edges game is a game whose graph has the following

topology:
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4.2. Multi-commodity Games

• There is a set E∗ of l common or public edges such that for each edge

e ∈ E∗ and each commodity i ∈ M there is exactly one (si-ti) path pe
i

using e.

• For each commodity i ∈ M there are two different sets of (si-ti) paths:

- A set Li of li private paths that are edge-disjoint with respect to

all other paths in the graph.

- A set L′
i = {pe

i | e ∈ E∗} of l public paths that are edge-disjoint

one with respect to the other (exactly one path for every common

edge).

Note that, given this l-common edges topology, the congestion of any path

pe
i is always equal to the congestion of the edge e ∈ E∗.

We will also use the following notation. For each edge e ∈ E∗, let

Pe =
⋃

i∈M {pe
i} be the set of m paths using the common edge e. For any

commodity i, we denote by Ni the set of players choosing (si-ti) paths and

let ni = |Ni|. For any subset S ⊆ M , we denote by NS the set of players

that choose paths between the two nodes of any commodity in S and let

nS = |NS|. Let also LS =
⋃

i∈S Li and L′
S =

⋃
i∈S L′

i be, respectively, the

sets of all private and public paths of commodities in S, and let lS = |LS|
and l′S = |L′

S|. Finally, let kS the quotient nS

l+lS
.

4.2.2 An Algorithm

We now present an algorithm for the computation of PNE in the previously

described class of games (see Algorithm 2). In the subsequent description, we

will denote by kS the quotient nS

l+lS
. Given an unweighted multi-commodity

NMC game, the algorithm starts (lines 2-5) by searching a subset of com-

modities which may be able to dominate all the set of common edges, that

is, to be the only commodities whose players use those edges in such a way

that players from other commodities can be satisfied even if they only use

their private paths.
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4.2. Multi-commodity Games

Algorithm 2: PNE computation in multi-commodity NMC games.

input : An unweight. l-common-edges game Γ = (N, G, ((si, ti))i∈N)
output: A profile π for the given game

begin1

// Selection of a proper subset of commodities:

foreach t := 1, . . . ,m do2

foreach S ⊆ M s.t. |S| = t and while S is not proper do3

if ∀i ∈ M \ S
(
bkSc ≥

⌈
ni

li

⌉
− 1
)

then4

S is a proper subset5

// Distribution of players among paths:

foreach i ∈ S do6

foreach p ∈ Li do7

Allocate bkSc players from Ni to path p8

foreach e ∈ E∗ do9

Allocate bkSc players from NS to the paths in Pe10

foreach i ∈ S do11

foreach p ∈ Li do12

if there remain unallocated players in Ni then13

Allocate one player from Ni to path p14

foreach e ∈ E∗ do15

if there remain unallocated players in NS then16

Allocate one player from NS to a suitable path p ∈ Pe17

Let N ′
S be the set of players from NS still not allocated18

while N ′
S 6= ∅ do19

Let j be a player from N ′
S20

Let i ∈ S be a commodity s.t.21

1) ∃ a path p ∈ Li with only bkSc allocated players, and22

2) ∃ a player j′ ∈ Ni already allocated to a path p′ ∈ L′
i23

Allocate player j′ to path p and player j to path p′24

N ′
S := N ′

S \ {j}25

foreach i ∈ M \ S do26

Allocate players in Ni to paths in Li in a Round-Robin fashion27

end28
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4.2. Multi-commodity Games

Lemma 4.2.1. After the execution of lines 2-5 of Algorithm 2, the following

statements hold:

i) ∀i ∈ M \ S
(
bkSc ≥

⌈
ni

li

⌉
− 1
)

ii) ∀S ′ ⊆ M
(
|S ′| < |S| ⇒ ∃i ∈ M \ S ′

(
bkSc <

⌈
ni

li

⌉
− 1
))

iii) ∀i ∈ S
(

ni

li
≥ kS

)
Proof. The first proposition is exactly the condition in line 4. Notice that

this condition will evaluate to true sooner or later, since it always holds when

S = M . The second proposition is directly implied by the order in which the

algorithm considers the subsets of M .

Finally, let us prove the last proposition. Suppose that there exists a

commodity i ∈ S for which the proposition does not hold, i.e. ni

li
< kS or,

equivalently, ni < kS · li. Thus,

kS\{i} =
nS\{i}

l + lS\{i}
=

nS − ni

l + lS − li
>

nS − kS · li
l + lS − li

=
nS − ( nS

l+lS
) · li

l + lS − li

=
nS(l + lS − li)

(l + lS)(l + lS − li)
=

nS

l + lS
= kS

Therefore, it holds that

kS\{i} > kS >
ni

li
≥
⌈

ni

li

⌉
− 1

Since
⌈

ni

li

⌉
− 1 is an integer,

⌊
kS\{i}

⌋
≥
⌈

ni

li

⌉
− 1. On the other hand, thanks

to the first proposition of the lemma we can state that

∀i′ ∈ M \ S

(⌊
kS\{i}

⌋
≥ bkSc ≥

⌈
ni′

li′

⌉
− 1

)
Combining the two last propositions, we have that

∀i′ ∈ M \ (S \ {i})
(⌊

kS\{i}
⌋
≥
⌈

ni′

li′

⌉
− 1

)
but, since |S \ {i}| < |S|, that contradicts what we have shown in the second

proposition of the lemma. Consequently, the third proposition must hold.
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4.2. Multi-commodity Games

Once the algorithm has determined which subset S ⊆ M dominates the

set E∗ of common edges, it distributes players among paths in a particular

manner. In the first place (l. 6-25), it distributes all the players from the

commodities in S. The loop in lines 6-8 allocates bkSc players to every path

of every commodity i ∈ S. Since, as we have seen, ni ≥ li ·kS, enough players

exist to allow this allocation. After the execution of the loop, lS ·bkSc players

have been allocated. Thus, there remain at least kS · l unallocated players.

This fact ensures the correct execution of the second loop (lines 9-10), given

that it allocates exactly bkSc · l players to paths in L′
S. After the execution of

these loops, every path in LS, as well as every edge in E∗, have a congestion

of exactly bkSc units. Next (l. 11-14), the algorithm iterates again through

all the private paths of every commodity in S, allocating –when possible–

one more player to each of them. Similarly, the loop of lines 15-17 allocates

to each group of paths Pe (for all e ∈ E∗) at most one more player from NS.

Therefore, after the execution of these two loops every path in LS and every

edge in E∗ have congestion either bkSc or bkSc+ 1.

Let us now analyze the loop of lines 19-25:

Lemma 4.2.2. At each iteration of the loop of lines 19-25 of Algorithm 2,

the following propositions hold:

i) There exists a commodity i ∈ S such that

(a) There exists a path p ∈ Li with only bkSc allocated players, and

(b) There exists a player j′ ∈ Ni already allocated to a path p′ ∈ L′
i

ii) Every path in LS and every edge in E∗ (and thus every path in L′
S have

congestion either bkSc or bkSc+ 1

Proof. i) Consider the set S∗ ⊆ S of commodities i ∈ S with at least one

path in Li having congestion bkSc. Let us first see that, at any iteration

of the loop, this set S∗ is not empty. Since we have entered the loop,

there remain some unallocated players in N ′
S ⊆ NS. That implies that

all paths in L′
S have congestion bkSc + 1. If there were a path in L′

S
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4.2. Multi-commodity Games

with congestion bkSc, then there would be a path with that congestion

in each L′
i, i ∈ S, due to the nature of our graph topology. But that

is not possible, otherwise the loop of lines 15-17 would have allocated

to these paths the unallocated players from N ′
S. It is then impossible

that all commodities i ∈ S have congestion bkSc + 1, otherwise the

total number of players allocated would be (lS + l) · (bkSc+1), which is

strictly greater than nS, the actual number of players. Thus, we have

that S∗ contains at least one commodity.

In turn, that fact implies that no player of NS∗ is in N ′
S, the set of

unallocated players; otherwise, the loop of lines 11-14 would have allo-

cated him to one of the paths of his commodity with congestion bkSc.
All the players in N ′

S, then, come from commodities in S \S∗ (and that

also proves that S∗ ( S, that is, that S \ S∗ is not empty).

Let us now suppose that all players in NS∗ are allocated to paths in LS∗ .

One one hand, that means that all shared paths in L′
S are allocated only

to players in NS\S∗ . Since, by definition of S∗, all paths in LS\S∗ have

congestion bkSc + 1, the number of players in NS\S∗ already allocated

equals (bkSc + 1) · (l + lS\S∗). Furthermore, there is at least one more

(unallocated) player in NS\S∗ , otherwise we would have not entered

the loop. Therefore, the total number of players in NS\S∗ is nS\S∗ ≥
(bkSc + 1) · (l + lS\S∗) + 1 > (bkSc + 1) · (l + lS\S∗), so we have that
nS\S∗

l+lS\S∗
> bkSc+ 1.

On the other hand, that means that the number of players in each

commodity i∗ ∈ S∗ is ni∗ < (bkSc+1) · li∗ . Therefore, ni∗
li∗

< bkSc+1 <
nS\S∗

l+lS\S∗
= kS\S∗ , using the previous inequality. In turn, the total number

of players in NS∗ is nS∗ < (bkSc + 1) · lS∗ , so we have that nS∗
lS∗

<

(bkSc+ 1) < kS\S∗ , using the same inequality as before. Therefore,

kS =
nS

l + lS
=

nS∗ + nS\S∗

l + lS∗ + lS\S∗
<

nS\S∗

l + lS\S∗
= kS\S∗

which makes use of the general fact that c
d

< a
b
⇒ a+c

b+d
< a

b
.
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Now, we can apply lemma 4.2.1 to state that

∀i ∈ M \ S

(
kS\S∗ > kS ≥ bkSc ≥

⌈
ni

li

⌉
− 1

)
while, as we have just seen, ∀i∗ ∈ S∗

(
kS\S∗ > ni∗

li∗
>
⌈

ni∗
li∗

⌉)
. Merging

both assertions, we have that

∀i ∈ M \ (S \ S∗)

(
kS\S∗ >

⌈
ni

li

⌉
− 1

)
which implies that

∀i ∈ M \ (S \ S∗)

(⌊
kS\S∗

⌋
≥
⌈

ni

li

⌉
− 1

)
since

⌈
ni

li

⌉
− 1 is an integer.

This last assertion, however, contradicts the second proposition of lemma 4.2.1.

For that reason, we have to conclude that there exists at least one player

in NS∗ which is allocated to a path in L′
S, and the proposition is proved.

ii) The second proposition is not difficult to prove, since the algorithm

first reallocates a player from a path with congestion bkSc+1 to a path

with congestion bkSc and then allocates a player to the first path.

At the end of the loop of lines 19-25, then, we have that for any commodity

i ∈ S, any player j ∈ Ni is allocated to a path with congestion at most

bkSc + 1. Since all the other paths available to j are in LS ∪ L′
S and thus

have congestion at least bkSc, player j has no incentive to change his strategy.

With respect to the players of commodities in M \ S, the algorithm (l.

26-27) simply allocates them to paths in Li in a Round-Robin fashion. We

then have that, if ni is divisible by li, all paths in Li will have congestion
ni

li
. Thus, for any commodity i ∈ M \ S and any player j ∈ Ni, player j will

have no incentive to change his strategy, since all the other paths in Li have

the same congestion ni

li
, whereas all the paths in L′

i have an edge in E∗ with

congestion at least bkSc ≥
⌈

ni

li

⌉
− 1 = ni

li
− 1 (recall lemmas 4.2.1 and 4.2.2).
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On the other hand, if ni is not divisible by li, all paths in Li will have

congestion either
⌊

ni

li

⌋
or
⌊

ni

li

⌋
+ 1. Thus, for any commodity i ∈ M \ S and

any player j ∈ Ni, player j will have no incentive to change his strategy, since

the paths in Li will have congestion at least
⌊

ni

li

⌋
, and –as we have already

seen– the paths in L′
i have congestion at least bkSc ≥

⌈
ni

li

⌉
− 1 =

⌊
ni

li

⌋
. As

no player has an incentive to change his strategy, we can conclude that the

profile computed by our algorithm is a PNE. Furthermore, if we consider

that the number of commodities is fixed, the running time of the algorithm

can be proved to be polynomial. Therefore, the following theorem is proved.

Theorem 4.2.3. Let Γ be an unweighted l-common-edges game. Algorithm 2

computes a PNE for Γ; furthermore, if we consider the number of commodi-

ties to be a fixed constant k, the algorithm solves the problem of computing

a PNE for unweighted k-commodities l-common-edges games in polynomial

time.

4.3 Towards PLS

The absence of an exact potential function for NMC games with non de-

creasing delay functions prevents us from being able to prove (in a manner

completely analogous to the way that this can be done for congestion games,

see [Fabrikant et al., 2004]) that the computation of a PNE for general NMC

games is in PLS. However, we will now see that the generalized ordinal poten-

tial function γ introduced in the proof of theorem 3.0.4, along with a special

definition of the neighborhood structure of the search problem, suffice for the

proof of the aforementioned membership in PLS.

Theorem 4.3.1. The problem of computing a PNE for weighted multi-commodity

non-decreasing delay NMC belongs to PLS.

Proof. Consider the search problem of finding a local optimum of γ, where

the set of feasible solutions contains all valid strategy profiles of our game
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and the neighborhood N(π, Γ) of a solution π is the set of all profiles π′ where

exactly one player has changed his strategy for a better one:

N(π, Γ) = {π′ ∈ Π | ∃i ∈ N ∃p ∈ Pi π′ = (π−i, p) ∧ ci(π
′) < ci(π)}

Notice that this last condition ci(π
′) < ci(π) implies that (i) the neigh-

borhood of π is empty if and only if π is a PNE and (ii) For any neighbor

π′ ∈ N(π, Γ) of a given profile π, it holds that γ(π′) < γ(π) (by definition of

γ and Theorem 3.0.4). Thus, finding a PNE is equivalent to finding a local

minimum of the function γ with respect to the neighborhood defined above.

This search problem belongs to PLS, since (a) an initial solution can

be produced in polynomial time by assigning to every player an arbitrary

strategy, (b) The cost γ(π) of any profile π can be computed in polynomial

time. (c) deciding whether N(π, Γ) = ∅ (i.e. π is a local optimum) or, if this

is not the case, computing a strategy profile π′ ∈ N(π, Γ) s.t. γ(π′) < γ(π)

can be done in polynomial time using a modification of the Dijkstra algorithm

where the shortest path computation is done considering that the length of

an edge e is de(le(π)) and the length of a path p is maxe∈p de(le(π)).

Notice that the previous proof can be immediately generalized to the

case of general max-congestion games. We only have to see that, since the

representation of the game explicitly contains the set of actions for each

player, deciding if a given profile is a local optimum with respect to the

neighborhood can be done in polynomial time by computing the cost of all

neighbors of the profile.

Also observe that, as we mentioned before, the neighborhood used in the

proof is not the neighborhood that one may initially think of when consider-

ing the nature of games (see, for instance, [Fabrikant et al., 2004; Nisan et al.,

2007]), where the neighbors of a given profile π are all profiles π′ = (π−i, p)

(for some i ∈ N and p ∈ Pi). Given that max-congestion games are not exact

potential games and that we only have at our disposal a generalized ordinal

potential function, we have to restrict the neighbors to those profiles where
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the deviating player improves his cost in order to get a search problem whose

local optima coincide with the PNE profiles of the game.

Finally, let us say that the requirement of the delay functions being non-

decreasing is essential to the proof of Claim 3.0.3, so the above technique can

not be trivially extended to games with arbitrary delay functions. However,

there is another particular class of games with delay functions that are not

restricted to be non-decreasing which does actually possess a generalized

ordinal potential function. An analogous proof can be used to show that the

problem of computing a PNE for any Pareto-efficient strategic is equivalent

to the PLS problem of finding a local minimum of the function σ that allowed

us to prove theorem 3.0.7) with respect to the neighborhood defined in the

proof of theorem 4.3.1.

Theorem 4.3.2. Computing a PNE for Pareto-efficient strategic games is

in PLS.

Proof. This problem is equivalent to the problem of finding a local minimum

of the function σ with respect to the neighborhood defined in the proof of

theorem 4.3.1.

Corollary 4.3.3. Computing a PNE for Pareto-efficient NMC is in PLS.

The Pareto-efficiency may seem too strong a restriction, i.e. one may

think that the class of NMC games which are Pareto-efficient is a very simple

class and the the previous PLS upper bound is too loose. However, allowing

unrestricted delay functions makes the problem complex to the point that

it can be proved to be PLS-hard: we next prove that the computation of a

PNE for Pareto-efficient weighted parallel links1 NMC games is a PLS-hard

problem. The proof is based on a PLS-reduction from the MAX-CUT problem

with the flip neighborhood, for which finding a local optimum is known to be

PLS-hard [Schäffer and Yannakakis, 1991]. In this problem, we are given an

undirected graph with weights on the edges and we have to find a partition

1A parallel links game is a restricted version of a single-commodity game where all the

edges of the graph are edges between s and t (i.e. the graph is actually a multi-graph).
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of the nodes into two disjoint sets A and B such that the cut of the partition

(i.e. the sum of weights of edges between nodes assigned to different sets)

cannot be increased by changing one single node from A to B or vice versa.

Theorem 4.3.4. The problem of computing a PNE for weighted Pareto-

efficient parallel links NMC games is PLS-complete.

Proof. Let us define WT as the sum of weights of all edges and WA (and

analogously, WB) as the sum of weights of edges with both endpoints in A

(B). Then, the value of the cut is WT − (WA + WB), and maximizing it is

equivalent to minimizing WA + WB, since WT is fixed.

Now, given a MAX-CUT instance, we can define a weighted parallel links

max-congestion game in the following way. There’s one player for every node

of the original graph, and the weight of each player is used as a means of

identifying that player. Thus, the weight wi of player i is a binary number

of length n where the i-th digit is 1 and the rest of the digits are 0. The

graph G of the game is a simple graph with two nodes, s and t, and two

parallel links e1 and e2 from s to t. Finally, the delay function of both edges

is defined as

d(l) =
∑

1≤i<j≤n
s.t. li=lj=1

wi,j +
∑

1≤i<j≤n
s.t. li=lj=0

wi,j

where li is the i-th digit of l and wi,j is the weight of edge (i, j). Intuitively,

player i choosing edge e1 can be thought of as node i being assigned to set

A (equivalently for edge e2 and set B). The delay of both edges is then

WA + WB. Thus, in any PNE the value WA + WB cannot be decreased by

one player moving from one edge to the other, so the partition of nodes of

the MAX-CUT problem induces a maximum cut with respect to the flip

neighborhood. Besides, the game is clearly Pareto-efficient, so the proof is

complete.

Note that the previous reduction implies the PLS-hardness of the com-

putation of a PNE for Pareto-efficient weighted network congestion games
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(since there is no distinction between parallel links NMC games and parallel

links network congestion games) and general Pareto-efficient strategic games.
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Chapter 5

Conclusions

In this final chapter we will quickly summarize the results so far presented

in this thesis. Afterwards, we will point out the main open problems and

suggest some future research lines.

5.1 Summary and Discussion of the Results

We will here discuss, as a recapitulation, about the development of this thesis

and the obtained results and their relevance when compared to the results

obtained in the other papers that deal with the model of max-congestion

games, which were mentioned in Section 2.3.3. Unfortunately for the origi-

nality of the results that we present here, it was not until a medium stage

of our research that we found these other papers, some of whose results sub-

sumed part of ours. The cause of our ignorance, our lack of skill apart, could

be attributed to the fact that two of the mentioned papers were published

once we had already started our research. Also, the novelty of this research

area and the high number of publications provoke, on one hand, a somewhat

misleading lack of uniformity in denominations and notation and, on the

other hand, a difficulty to keep up to date with new publications. A proof

of this can be seen in the fact that each of the three mentioned papers gives

a different name to what we call max-congestion game (Bottleneck routing
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games, Network load games, Routing games on maximum congestion), not to

mention that the results of the three papers are overlapping, which probably

shows that the authors of each of the papers were not aware of the other

publications.

For this reason, we believe that the value of this thesis is also to bee looked

for in the documenting effort, the unification of results mostly written under

different notation paradigms and the clarification of obscure points.

Chronologically, the first model of max-congestion games that we studied

was the simplest one: unweighted and single-commodity network games with

identity delay functions. A preliminary study of the properties of this games

led us to the development of the polynomial-time BDP algorithm and the

analysis of its properties and correctness. The idea behind the algorithm is

quite simple: given that the edges have identity delay functions, the multiples

choices that players have (as many as (s − t) paths are in the graph) can

actually be reduced to a smaller set of disjoint paths. This guarantees some

nice properties which can be exploited in order to obtain an equilibrium

profile just by evenly distributing players among paths. Once we could prove

the correctness of this idea for games with identity functions, we tried to

extend it to the general class of single-commodity games. We could prove that

the algorithm was still correct if we allowed non-decreasing delay functions,

but only as long as we enforce the different edges to have all the same delay

function. This is not a minor restriction; however, we believe that the model

of games where all edges have identical delay functions is still quite broad

and useful. Consider, for instance, that we want to model a situation where

different users of a corporate network are routing their packets solely within

the network. In this case, it seems acceptable to think that all the links in

the network will probably be equal and thus have equal delay functions.

We also managed to prove the correctness of the quite straight-forward

extension of the algorithm to single-commodity games with non-decreasing

delay functions where the graph of the game was made up only of disjoint

paths, but we could not further extend the algorithm to the general case nor
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find another way of dealing with this case.

Later, we tackled the extension of the algorithm to unweighted multi-

commodity games. There was no obvious way of dealing with the fact that the

idea of considering only disjoint paths is not appropriate for multi-commodity

games, since it may be the case that there exist less disjoint paths than

commodities. Thus, we started to consider restricted graph topologies and

ended up designing a rather involved algorithm for games with what we

called l-common-edges graphs (see Section 4.2). This is quite a restrictive

graph topology, for the interactions among players are confined to a set of l

common disjoint edges, but we believe it to be a first step for the study of

these games.

After this first algorithmic approach, we moved on to a more theoretical

approach. We discovered the existence proof in [Banner and Orda, 2006],

which applied to general network max-congestion games, as long as the delay

functions were restricted to be non-decreasing. We reworked, clarified and

slightly simplified this proof by means of some ideas which were present in

[Monderer and Shapley, 1996]. Afterwards we proved that the computation

of a PNE for network max-congestion with non-decreasing delay functions

belongs to the class PLS. Our proof is based in the classical congestion games

proof, but introduces a couple of novelties that overcome the absence of

exact potential functions for our games. Namely, we show that the existence

of a generalized ordinal potential function is sufficient, as long as we use a

particular neighborhood structure, to prove the membership in PLS.

Once this result was accomplished, we tried to prove PLS-hardness. We

found a rather interesting reduction from a well-known PLS-complete prob-

lem, the MAX-CUT problem with the flip neighborhood, to the problem of

computing a PNE in max-congestion games (see 4.3.4). Unfortunately, the

reduction used some delay functions which were not non-decreasing, so the

PLS-hardness could only be proved for games with arbitrary delay functions,

which so far we do not know to belong to PLS. This means that it is un-

likely to find an efficient algorithm to compute PNE profiles for NMC games
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with arbitrary delay functions, but we still do not know if it happens the

same if we enforce the delay functions to be non-decreasing. With the goal

of proving the PLS-completeness of our problem for at least one subclass of

network max-congestion games, we moved on to the consideration of Pareto-

efficient games, an apparently very restricted class of games for which we

had easily showed that the computation of a PNE belongs to PLS. However,

it turned out that our previous PLS-reduction used a Pareto-efficient game,

so the PLS-completeness was proved.

5.2 Novelty of the Results

Let us here discuss the relevance of our results. As we have already said,

the existence of PNE for general network max-congestion games with non-

decreasing delay functions had already been proved in [Banner and Orda,

2006]. However, we think that our proof, which uses part of theirs, is slightly

clearer. It also uses a previous result of the field that the authors of the paper

seem to ignore, and we believe this to be interesting, especially considering

the high degree of fragmentation of this research field.

With respect to the constructive part of the thesis, that is, the two al-

gorithms that we have developed to compute pure Nash equilibria, they are

also mainly original results. [Caragiannis et al., 2005] states that there is

a PTAS1 that computes a strategy profile with optimum social cost2 for

weighted single-commodity NMC games with identical delay functions on

the links. This means that if we are just interested in the complexity of a

PNE without taking into account its social cost, this PTAS can compute it in

1A PTAS (for Polynomial-Time Approximation Scheme) is an approximation algorithm

that, given an instance of an optimization problem and a value ε > 0, outputs a solution of

the instance with cost at most (1+ε) times worse than the optimal cost. The computation

time of the PTAS is polynomial with respect to the size of the instance, but not necessarily

with respect to the value 1/ε. Indeed, if it is also polynomial with respect to this value,

it is called a FPTAS (Fully Polynomial-Time Approximation Scheme)
2The social cost of a profile is some kind of global measure of its cost.
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polynomial time. However, the mentioned paper does not provide any proof

of their statement, so we still believe that our BDP algorithm is interesting

for its conceptual clarity. On the other hand, we do not know any attempt

to algorithmically solve the problem in the case of multi-commodity NMC

games, so our second algorithm, however valid only for a restricted class of

games, is an original contribution.

Finally, concerning all our results about membership in PLS and PLS-

completeness, as far as we know they are all completely original, since no

other paper relates NMC games to the PLS class.

5.3 Future Research

Let us here provide some insight on possible future lines of research which

have came up during the development of the thesis.

• First, it would be very interesting to settle the computational complex-

ity of PNE computation for weighted single-commodity NMC games

with non-decreasing delay functions and no other restriction, either

through a novel algorithmic approach or through a PLS-reduction.

• Another major result would be the analog for multi-commodity games,

i.e. to determine if general NMC games with non-decreasing functions

(for which we only know that belong to PLS) are PLS-complete or not.

• Another possibility would be to consider the so-called splittable games,

that is weighted games where the players can route their weight through

different paths, and see to which extent our results apply to this model

• Other interesting problems related to this model which we have not

dealt with here include a number of decisional problems such as the

following: What is the complexity of what is known as nashifying a

given strategy profile, that is, transforming a given profile into an equi-

librium profile without increasing the cost paid by any player? How
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many selfish movements do we need from one given strategy profile to

reach a situation of equilibrium or, in other words, how far from the

equilibrium is a given situation? It would be very interesting if we

could solve any of them, since this would give us more insight into the

model.
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Appendix A

Experimentation

In this appendix we present the algorithms that we used for the generation of

random graphs and random NMC games. These algorithms have been used

to experiment with our BDP algorithm, as we mentioned in Section 4.1. The

algorithms were implemented in C++ with the aid of the Boost libraries. We

will here just describe the design of the algorithms.

First, Figure A.1 shows the algorithm used to randomly generate acyclic

graphs. The algorithm takes as input an integer n nodes which determines

the number of nodes of the generated graph and a real number pedge which

determines the probability that two given nodes of the graph have an edge

between them. The graph generation is based on the well-known fact that

every directed acyclic graph has at least one topological ordering. Our algo-

rithm follows then the next procedure: it numbers the nodes of the graph,

puts them in order and, for every pair v1 and v2 such that v1 < v2 in the

ordering, it builds a directed edge (v1, v2) with probability pedge. This way

the graph is guaranteed not to have cycles.

Second, Figure A.2 shows the algorithm used to randomly generate the

unweighted NMC games with identity delay functions. This algorithm takes

as its input a pair of integer numbers max nodes i max players which deter-

mine the maximum number of nodes in the graph and players in the game,

respectively. The functioning of the algorithm is next described. First, it
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Algorithm DAGGeneration

input : A positive integer number n nodes

input : A positive real number pedge ∈ [0, 1]

output: A directed acyclic graph G

begin1

G := emptyGraph(n nodes)2

for all i ∈ {1, . . . , n nodes} do3

for all j ∈ {1, . . . , n nodes} do4

if randomRealNumber(0,1) < pedge then5

G := addEdge(G, i, j)6

return G7

end8

Figure A.1: Directed acyclic graph generation.

randomly chooses a number n nodes ≤ max nodes of nodes and a number

n < max players of players. Second, it generates a random directed acyclic

graph and chooses randomly the pair of origin and destination nodes (s, t)

of all players. If there is at least one (s − t) path, then the generated game

is returned. Otherwise, the process goes back to the point where the graph

is generated.
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Algorithm GameGeneration

input : A positive integer number max nodes

input : A positive integer number max players

output: An unweighted single-commodity NMC game with identity

delay functions Γ = (N, G, (s, t), (id)e∈E(G))

begin1

n nodes := randomIntegerNumber(3, max nodes)2

n := randomIntegerNumber(2, max players)3

p := randomRealNumber(0,1)4

graph ok := fals5

do6

G := DAGGeneration(n nodes, p)7

if checkConnectivity(G, 0, n nodes− 1) then8

graph ok := True9

while ¬graph ok10

Γ := createGame(n, G, (0, n nodes− 1), (id)e∈E(G)))11

return Γ12

end13

Figure A.2: Generation of an unweighted single-commodity NMC game with

identity delay functions.
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