
 

International Journal of Sciences: 

Basic and Applied Research 

(IJSBAR) 

 

ISSN 2307-4531 
(Print & Online) 

 
http://gssrr.org/index.php?journal=JournalOfBasicAndApplied 

--------------------------------------------------------------------------------------------------------------------------- 

65 
 

Application of Aboodh Transform Iterative Method for 

Solving Time – Fractional Partial Differential Equations 

Gbenga O. Ojo
a
*, Nazim I. Mahmudov

b
 

a,b
Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Mathematic, TRNC via 

Mersin 10, Turkey 

a
Email: ojo.gbenga@emu.edu.tr, 

b
Email: nazim.mahmudov@emu.edu.tr 

 

 

Abstract   

In this paper, the Aboodh transform iterative method is used to obtain approximate analytical solution of time-

fractional partial differential equations. The fractional derivative are considered in Caputo sense, this method is 

a combination of the Aboodh transform and the new iterative method. Illustrative examples are considered and 

the comparison between the exact and approximate solutions are presented for different values of alphas. Also, 

the surface plots are provided in order to comprehend the effect of the fractional order. The major advantage of 

this method is the reduced computational effort and complexity without involving the tedious calculations of 

Adomian polynomials. In general, the method is efficient, precise, easy to implement and yield good results. 

Keywords: Iterative method; Fractional derivative; Partial differential equation; Integral transform; Aboodh 

transform. 

1. Introduction  

The conceptual idea of fractional calculus can be traced back to the question asked by L’Hospital in 1695 [1]. 

Since then, several researchers have proposed variety of new fractional operators with different contributions 

and growth to the field of fractional calculus [2-7].  

------------------------------------------------------------------------ 
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Fractional calculus is concerned with the integrals and derivatives of arbitrary non-integer order of functions. It 

has gained much attention because it provides more practical models [8-10], for some essential properties of 

fractional calculus see [11-13]. Many integral transform methods have been used to solve linear and nonlinear 

differential equations of fractional order. In the case of nonlinear partial differential equations of fractional 

order, asymptotic, perturbation and iterative methods have been used to handle the nonlinear term [14-16]. 

Though this methods are simple in principle but they involve complex and so much computational effort which 

is costly. In pursuit of a reduced complex and computational method, integral transform methods are now been 

coupled together with the new iterative method introduced by Daftardar-Gejji and Jafari [17-20]. In this paper, 

we proposed a new iterative method called Aboodh transform iterative method for solving fractional partial 

differential equations without the need of Lagrange multipliers and Adomian polynomials. The rest of the paper 

is structured as follows: Definitions and preliminary ideas are considered in Section 2, the main concept of the 

proposed method is summarized in Section 3. In Section 4, we illustrate the efficiency of the method by 

considering some examples of practical importance. Finally, conclusion is presented in Section 5.  

2. Preliminary Ideas 

 In this section, we presents some known definitions and results. 

Definition 1.  Aboodh transform is defined over the set of exponential function as [18] 

 1 2  , ( 1) [0, ), 1,2;( , , 0): ( )  ik t iPe t iA Q Q p k kt        ,                                  (1) 

( )Q t is denoted by 

   ( )A Q t H  ,                                                                                            (2) 

And defined as 

  1 2

0

1
( ) ( ) ( ), 0,tA Q t Q t e dt H t k k  





     .                                           (3) 

Definition 2. Inverse Aboodh transform of function ( )Q t , if 

   ( )A Q t H  , 

then the inverse Aboodh transform is defined as 

1( ) [ ( )], (0, ).Q t A H t                                                                             (4) 
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Definition 3. One parameter Mittag-Leffler function is given as [14] 

( 1)

0

( ) , , ,Re( ) 0
rz

r

r

E z z 
 



 



   .                                                         (5) 

Lemma 1. Aboodh transform of Caputo fractional derivative is given as [18] 

( )

2

1
( )

0

[( ( ); )] [ ( )]
s

r

n
Q

t

r

A D Q t A Q t 

 


   





  , 1n n   , n .                                                   (6) 

Lemma 2. If Aboodh transform of 1 2( ), ( ), ( )kQ t Q t Q t are 1 2( ), ( ), , ( )kH H H   respectively, k

1,2, , n , then [18] 

1 1 2 2

1 1 2 2

1 1 2 2

[ ( ) ( ) ( )]

[ ( )] [ ( )] [ ( )]

( ) ( ) ( ),

k k

k k

k k

A Q t Q t Q t

A Q t A Q t A Q t

H H H

  

  

     

  

   

   

                                                        (7) 

Where 1 2, , , k   are arbitrary constants. Aboodh transform of some functions are given in Table 1.  

Table 1: Aboodh transform of some functions [18] 

 ( )Q t  

   ( )A Q t H   

 

 

          1 
1
   

 t  3

1

   

 nt  2

!
n

n

    

 t  2

( 1)




 

 
  

3. Aboodh Transform Iterative Method  

In this section, we demonstrate the idea of Aboodh transform iterative method. Consider the fractional partial 

differential equation of the form: 

( , ) ( ( , )) ( ( , )) ( , )D Q x t L Q x t N Q x t g x t    , 1n n   ,                                                 (8) 
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with initial condition 

( )( ,0) ( )r

rQ x Q x , 0,1,2,..., 1.r n                                                                                             (9) 

( , )D Q x t
is the Caputo fractional derivative of the fractional function ( , )Q x t  while L , N and ( , )g x t  are 

linear operator, nonlinear operator and the source function respectively. Applying the Aboodh transform to 

eq.(8) and using the initial condition, we have: 

    
( )

2

1
( ,0)1 1

0

[ ( , )] ( , ) ( ( , )) ( ( , )) .
r

r

n
Q x

r

A Q x t A g x t A L Q x t N Q x t     





 
    

 
                (10) 

Taking the inverse Aboodh transform of eq.(10), we have: 

    
( )

2

1
( ,0)1 1 1

0

( , ) ( , ) ( ( , )) ( ( , )) .
r

r

n
Q x

r

Q x t A A g x t A L Q x t N Q x t     






  
     

  
        (11) 

The nonlinear term is decomposed as in [18]: 

1

0

0 1 0 0

( ( , )) ( ( , )) ( ( , )) ( , ) ( , )
r r

r j j

r r j j

N Q x t N Q x t N Q x t N Q x t N Q x t
  

   

       
        

       
    .            

(12) 

Similarly, the linear term can be decomposed as: 

1

0

0 1 0 0

( ( , )) ( ( , )) ( ( , )) ( , ) ( , )
r r

r j j

r r j j

L Q x t L Q x t L Q x t L Q x t L Q x t
  

   

       
        

       
               (13) 

Now, we define the k-th order approximate series as: 

( )

0 1 2

0

( , ) ( , ) ( , ) ( , ) ( , ) ... ( , ), .
k

k

m k

m

Q x t Q x t Q x t Q x t Q x t Q x t k


                                 (14) 

Assume that the solution of eq.(8) is: 

( , ) lim
k

Q x t


 ( )

0

( , ) ( , )
k

k

m

m

Q x t Q x t


 .                                                                                         (15) 

The series solution of eq.(15) absolutely and uniformly converges to a unique solution for eq.(8) if L and N are 

contractions, see [17]. Applying the linearity property after substituting eq.(12) and eq.(14) into eq.(11), we 

have: 
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( )

2

1
( ,0)1 1

0 0

1
1 1

0 0

1 0 0

( , ) ( , )

( ( , )) ( ( , )) ( ( , )) ( , ) ( , ) .

r

r

n
Q x

r

r r

r r

r j j

r j j

Q x t A A g x t

A A L Q x t N Q x t L Q x t N Q x t N Q x t

 



 



 

 


 

 


  

  
    

  

       
                  

 

  

                                                                                                                                                                               

(16) 

Now, we generate the following iterations: 

 
( )

2

1
( ,0)1 1

0

0

( , ) ( , )
r

r

n
Q x

r

Q x t A A g x t    






  
   

  
 , 1 ,n n                                   (17) 

  1 1
1 0 0( , ) ( ( , )) ( ( , ))Q x t A A L Q x t N Q x t

                                                   (18) 

 

1
1 1

1

1 0 0

( , ) ( ( , )) ( , ) ( , )
r r

r r j j

r j j

Q x t A A L Q x t N Q x t N Q x t

 




  

                                

   ,                (19) 

4. Application 

 In this section, some examples were considered in order to demonstrate the efficiency of the method. 

Example 1. Consider the time-fractional gas dynamics equation:   

21
2
( ) (1 ) 0,t xD Q Q Q Q     0 1,                                                   (20) 

with the initial condition: 

0( ) ,xQ x e                                                                   (21) 

from example 1, we set: ( ( , ))L Q x t Q  , 

2 21
2

( ( , )) ( )xN Q x t Q Q  , 

( ,0) xQ x e . 
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Now, using the iterative procedure described in the previous section, we have: 

( )

2

1
( ,0)1 1

0

0

r

r

n
Q x

r

Q A     






  
   

  
  

2

( ,0)1 Q x
A



                                                     (22) 

xe . 

  1 1
1 ( ( , )) ( ( , ))Q A A L Q x t N Q x t

      

  1 2 21 1
0 0 02

( )xA A Q Q Q

     
  

                                                             (23) 

( 1)

xe t





 
 . 

   1 1
2 1 0 1 0( ( , )) ( , ) ( , ) ( ( , ))Q A A L Q x t N Q x t Q x t N Q x t

        
 

     1 2 2 2 21 1 1
1 0 1 0 1 0 02 2

(( ) ) ( ) ( )x xA A Q Q Q Q Q Q Q

         
   

                  (24) 

2

(2 1)

xe t 





 
 . 

 

 
1 2

1 1
1

0 0

( , ) ( , ) ( , )
r r

k k j j

j j

Q A A L Q x t N Q x t N Q x t

 




 

        
         

           

 
                                       (25)

  1 1
1( , )kA A Q x t




     

( 1)

x ke t
k







 
 . 

We get the k-th order approximate series as: 

0 1 2

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
k

k

m k

m

Q x t Q x t Q x t Q x t Q x t Q x t
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2

( 1) (2 1) ( 1)

x x x kx e t e t e t
k

e
  

  

  

     
                                                       (26) 

 
2

( 1) (2 1) ( 1)
1

kx t t t
k

e
  

  



     
      

( 1)

0

m
k

x t
m

m

e






 



  . 

The approximate series solution approach the exact solution as  k , 

( , ) lim
k

Q x t



( ) ( , )kQ x t  

xe lim
k

( 1)

0

m
k

t
m

m



 



  

( )xe E t

 .                                              (27) 

If =1, then the exact solution to eq.(13) is: 

1( , ) ( )xQ x t e E t  

t xe  .                                                                    (28) 

In Table 2, we calculated the absolute error 10aE Q Q  when =0.5, 0.7, 0.9 and 1, Figure 1 displays the 

surface plot when = 0.5, 0.7, 0.9 and 1. 

Table 2:. Absolute error for Example 1. 

x  t    0.50      0.70                  0.90                  1.00 

 0.25  
61.5205 10  

109.2193 10    
133.0753 10      

154.7740 10  

0.25  0.50  
58.2890 10  

72.0323 10      
103.0295 10      

129.9392 10  

 0.75  
48.4239 10  

64.8597 10      
81.7279 10        

108.7867 10  

 1.00  
34.4421 10  

54.6780 10       
73.0698 10       

82.1271 10  
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                                     Figure 1(a):  = 0.5                                   Figure 1(b):  = 0.7 

 

Figure 1(c):  = 0.9            Figure 1(d):  = 1.0 

Figure 1: Surface plot for example 1 with different values of alpha. 

Example 2. Consider the time-fractional Fokker-Plane equation: 

   2 24
3

( ) 0x
t xxx xx

D Q Q Q Q     , 0 1  ,                                                            (29) 

with the initial condition 

2

0( )Q x x .                                                                               (30) 

From example 2, we set: 

 3
( ( , )) x

x
L Q x t Q  , 

 2 24( ( , )) ( )xx x x
N Q x t Q Q   , 

2( ,0)Q x x . 
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Now, using the iterative procedure described in the previous section, we have: 

( )

2

1
( ,0)1 1

0

0

r

r

n
Q x

r

Q A     






  
   

  
  

2

( ,0)1 Q x
A



                                                                  (31) 

2x . 

  1 1
1 0 0( ( , )) ( ( , ))Q A A L Q x t N Q x t

      

     1 2 21 4
0 0 03

( )x
xx xx x

A A Q Q Q

     
   

                                              (32) 

2

( 1)
x t

 
 . 

  1 1
2 1 0 1 0( ( , )) ( ( , ) ( , )) ( ( , ))Q A A L Q x t N Q x t Q x t N Q x t

        
 

                                                                         

       1 2 2 2 21 4 4
1 0 1 0 1 0 03

(( ) ) ( ) ( )x
xx xxx xx x x

A A Q Q Q Q Q Q Q

         
   

                          (33) 

2 2

(2 1)
x t 

 
 . 

 

1 2
1 1

1

0 0

( ( , )) ( , ) ( , )
r r

k k j j

j j

Q A A L Q x t N Q x t N Q x t

 




 

        
         

           

   

  1 1
13

x
k x

A A Q




     

                                             (34) 

2

( 1)

kx t
k



 
 . 

We get the k-th order approximate series as: 
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0 1 2

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
k

k

m k

m

Q x t Q x t Q x t Q x t Q x t Q x t


       

2 2 2 22

( 1) (2 1) ( 1)

kx t x t x t
k

x
  

       
                                                                  (35) 

 
22

( 1) (2 1) ( 1)
1

kt t t
k

x
  

       
      

22

( 1)

0

m
k

x t
m

m

x


 



  . 

The approximate series solution approach the exact solution as  k , 

( , ) lim
k

Q x t



( ) ( , )kQ x t  

2x
lim
k

2

( 1)

0

m
k

x t
m

m



 



                                   (36) 

   
2 ( )x E t . 

If =1, the exact solution to eq.(29) is: 

2

1( , ) ( )Q x t x E t  

2 .tx e                                                              (37) 

In Table 3, we calculated the absolute error 10aE Q Q  when = 0.5, 0.7, 0.9 and 1, Figure 1 displays the 

surface plot when = 0.5, 0.7, 0.9 and 1. 
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Table 3: Absolute error for Example 2. 

x  t    0.50    0.70                   0.90              1.00 

 0.25  
71 .3220 10     

117.3986 10    
142.4689 10    

163.8858 10  

0.25  0.50  66.6521 10  
81.6310 10     

112.4313 10     
137.9764 10  

 0.75  
56.7603 10  

73.9000 10     
91.3866 10      

117.0515 10  

 1.00  43.5649 10  
63.7542 10     

82.4636 10      
91.7070 10  

 

Figure 2(a):  = 0.5            Figure 2(b):  = 0.7 

 

Figure 2(c):   = 0.9             Figure 2(d):   = 1.0 

Figure 2: Surface plot for example 2 with different values of alpha. 

Example 3. Consider the nonhomogenous time-fractional Klomogorov equation: 

2 ( 1)t

t xx xD Q x e Q x Q xt     , 0 1  ,                                                             (38) 

with the initial condition 

0 ( ) 1Q x x  ,                                                                                            (39) 

from example 3, we set: 

2( ( , )) ( 1)t

xx xL Q x t x e Q x Q    , 
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( ( , )) 0N Q x t  , 

( , )g x t xt . 

Now, using the iterative procedure described in the previous section we have: 

 
( )

2

1
( ,0)1 1

0

0

( , )
r

r

n
Q x

r

Q A A g x t    






  
   

  
  

2 3

1
( ,0)1

0

n
Q x x

r

A   






 
  

 
                                                             (40) 

1

( 2)
( 1) xtx







 
   . 

  1 1
1 0 0( ( , )) ( ( , ))Q A A L Q x t N Q x t

      

 1 21
0 0( ) ( 1)( )t

xx xA A x e Q x Q

        
                                (41) 

 
2 1

( 1) (2 2)
( 1) t tx

 

 



   
   . 

  1 1
2 1 0 1 0( ( , )) ( ( , ) ( , )) ( ( , ))Q A A L Q x t N Q x t Q x t N Q x t

        
 

 1 21
1 1( ) ( 1)( )t

xx xA A x e Q x Q

        
                                              (42) 

 
2 3 1

(2 1) (3 3)
( 1) t tx

 

 



   
   . 

 

1 2
1 1

1

0 0

( ( , )) ( , ) ( , )
r r

k k j j

j j

Q A A L Q x t N Q x t N Q x t

 




 

        
         

           

   

  1 1
1( 1)( )k xA A x Q




                                                                 (43) 
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( 1) 1

( 1) (( 1) 2)
( 1)

k kt t
k k

x
 

 

 

    
   . 

We get the k-th order approximate series as: 

0 1 2

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
k

k

m k

m

Q x t Q x t Q x t Q x t Q x t Q x t


       

 

   

1 2 1

2 3 1 ( 1) 1

( 2) ( 1) (2 2)

(2 1) (3 2) ( 1) (( 1) 2)

( 1) (( 1) 1) ( 1)

( 1) ( 1)
k k

t t t

t t t t
k k

x x x

x x

  

   

  

   

 

  

     

        

        

     
 

1 ( 1) 1

( 2) ( 1) (( 1) 2)

0 0

( 1)
m m

k k

t t t
m m

m m

x
  

  

  

      

 

 
     

 
  .                                 (44) 

The approximate series solution approach the exact solution as  k , 

( , ) lim
k

Q x t



( ) ( , )kQ x t  

1 ( 1) 1

( 2) ( 1) (( 1) 2)

0 0

( 1) lim
m m

k k

t t t
m m

k
m m

x
  

  

  

      


 

 
     

 
                                 (45) 

1 ( 1) 1

( 2) (( 1) 2)

0

( 1) ( ) lim
m

k

t t
m

k
m

x E t
 

 

  

    




 
     

 
 . 

If =1, then the exact solution to eq.(38) is: 

2 ( 1) 1

12 (( 1) 2)

0

( , ) ( 1) ( ) lim
m

k

t t
m

k
m

Q x t x E t




 

  




 
     

 
  

2

2
( 1)(2 1)tt x e t      .                                                             (46) 

In Table 4, we calculated the absolute error 10aE Q Q  when = 0.5, 0.7, 0.9 and 1, Figure 1 displays the 

surface plot when = 0.5, 0.7, 0.9 and 1. 
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Table 4: Absolute error for Example 3. 

x  t    0.50   0.70               0.90                   1.00 

 0.25 62.6439 10  
91.4797 10     

134.9361 10     157.9936 10  

0.25 0.50  41.3304 10  73.2619 10     104.8625 10        111.5953 10  

 0.75 31.3521 10  67.7100 10        
82.7736 10      91.4103 10  

 1.00  37.1297 10  
57.5083 10        74.9271 10       

83.4141 10  

 

Figure 3(a):  = 0.5                       Figure 3(b):  = 0.7 

 

Figure 3(c):  = 0.9                           Figure 3(d):  = 1.0 

Figure 3: Surface plot for example 3 with different values of alpha. 

Example  4. Consider the time-fractional Klein-Gordon type equation: 

2 os( )t xxD Q Q Q c x    , 1 2  ,                                                 (47) 

with initial conditions 

0 ( ) cos( )Q x x ,
0

/ ( ) 1Q x  ,                                                                                                                           (48) 

from example 5, we set:  

( ( , )) xxL Q x t Q Q  , 
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( ( , )) 0N Q x t  , 

( , ) 2cos( )g x t x , 

( ,0) cos( )Q x x , 

/ ( ,0) 1Q x  . 

Now, using the iterative procedure described in the previous section we have: 

          
( )

2

1
( ,0)1 1

0

0

( , ) , 2
r

r

n
Q x

r

Q A A g x t n    






  
    

  
  

(0) (1)

2 3 2

( ,0) ( ,0) ( , )1 Q x Q x g x t
A    

    
                                  (49) 

2cos( )

( 1)
cos( )

x t
x t



 
   . 

  1 1
1 0 0( ( , )) ( ( , ))Q A A L Q x t N Q x t

    
 

  1 1
0 0( )xxA A Q Q

                                                       (50) 

                               

2 12cos( ) 4cos( )

( 1) (2 1) ( 2)

x t x t t
  

  



     
   . 

   1 1
2 1 0 1 0( ( , )) ( , ) ( , ) ( ( , ))Q A A L Q x t N Q x t Q x t N Q x t

        
 

  1 1
1 1( )xxA A Q Q

                                                       (51) 

 

2 3 2 14cos( ) 8cos( )

(2 1) (3 1) (2 2)

x t x t t
  

  



     
   .  

 

1 2
1 1

1

0 0

( ( , )) ( , ) ( , )
r r

k k j j

j j

Q A A L Q x t N Q x t N Q x t
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  1 1
1 1( )k xx kA A Q Q



 
                                                   (52) 

1 ( 1) 1( 1) 2 cos( ) ( 1) 2 cos( ) ( 1)

( 1) (( 1) 1) ( 2)

k k k k k k k kx t x t t

k k k

  

  

    

      
   . 

We get the k-th order approximate series as: 

0 1 2

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
k

k

m k

m

Q x t Q x t Q x t Q x t Q x t Q x t


       

11 2 1 3 1 ( 1)

( 2) (2 2) (3 2) ( 2)
cos( )

k ktt t t
k

x t
  

   

   

       
                   (53) 

1( 1)

( 2)

0

cos( )
m m

k
t

m

m

x






 



  . 

The approximate series solution approach the exact solution as  k , 

( , ) lim
k

Q x t



( ) ( , )kQ x t  

cos( )x lim
k


1( 1)

( 2)

0

m m
k

t

m

m







 



 .                                (54) 

If = 2, then the exact solution to eq.(47) is: 

( , ) cos( ) sin( )Q x t x t  .                                                              (55) 

In Table 4, we calculated the absolute error 10aE Q Q  when =1.95, 1.97, 1.99 and 2 with x = 0.1, 

Figure 4 displays the surface plot when =1.4, 1.6, 1.8 and 2. 

Table 5: Absolute error for Example 4. 

 t    1.95    1.97           1.99          2.00 

 0.01  
85.6674 10     

83.2015 10   
81.0058 10         0  

 0.02  
73.9252 10  

72.2340 10   
87.0697 10        0  

 0.03  
31.3521 10  

76.9042 10   
72.1942 10        0  

  0.04  
62.6695 10  

61.5307 10   
74.8793 10         0  
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Figure 4(a):  =1.4                   Figure 4(b):  =1.6 

 

Figure 4(c):   =1.8                    Figure 4(d):   =2 

Figure 4: Surface plot for example 4 with different values of alpha. 

Example 5:  Consider the time-fractional Klein-Gordon type equation: 

sin( )t xxD Q Q Q x    , 1 2  ,                                                                            (56) 

with the initial conditions: 

0 ( ) sin( ),Q x x  
0

/ ( ) 1Q x  ,                                                               (57) 

from example 5, we set: 

( ( , )) xxL Q x t Q Q  , 

( ( , )) 0N Q x t  , 

( , ) sin( )g x t x , 

( ,0) sin( )Q x x , 

/ ( ,0) 1Q x  . 

Now, using the iterative procedure described in the previous section, we have: 
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( )

2

1
( ,0)1 1

0

0

( , ) , 2
r

r

n
Q x

r

Q A A g x t n    






  
    

  
  

(0) (1)

2 3 2

( ,0) ( ,0) ( , )1 Q x Q x g x t
A    

    
                                                                (58) 

s ( )

( 1)
s ( )

in x t
in x t



 
   . 

  1 1
1 0 0( ( , )) ( ( , ))Q A A L Q x t N Q x t

      

  1 1
0 0( )xxA A Q Q

                                                    (59) 

     

12s ( ) 2 s ( )

( 1) (2 1) ( 2)

in x t in x t t
  

  



     
   . 

   1 1
2 1 0 1 0( ( , )) ( , ) ( , ) ( ( , ))Q A A L Q x t N Q x t Q x t N Q x t

        
 

  1 1
1 1( )xxA A Q Q

    
                                                              (60) 

   

2 3 2 14s ( ) 4 s ( )

(2 1) (3 1) (2 2)

in x t in x t t
  

  



     
   . 

 

1 2
1 1

1

0 0

( ( , )) ( , ) ( , )
r r

k k j j

j j

Q A A L Q x t N Q x t N Q x t

 




 

        
         

           

   

  1 1
1 1( )k xx kA A Q Q



 
                                      (61) 

( 1) 1( 1) 2 s ( ) ( 1) 2 s ( ) ( 1)

( 1) (( 1) 1) ( 2)

k k k k k k k kin x t in x t t

k k k

  

  

   

      
   . 

We get the k-th order approximate series as: 

0 1 2

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
k

k

m k

m

Q x t Q x t Q x t Q x t Q x t Q x t
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2

2 31 2 1

1 ( 1)

s ( ) 2s ( ) 2 s ( )

( 1) ( 1) (2 1)

4s ( ) 4 s ( )

( 2) (2 1) (3 1) (2 1)

( 1) 2 s ( ) ( 1) ( 1) 2 s ( )

( 1) ( 2) (( 1) 1)

s ( )

k k k k k k k k

in x t in x t in x t

in x t in x tt t

in x t t in x t

k k k

in x t
  

  

  

 

  



   



  

 

 

     

       

  

      

     

    

 

                                 (62) 

 
1 ( 1)( 1) 2 s ( ) ( 1) ( 1) 2 s ( )

( 1) ( 2) (( 1) 1)

0

m m m m m m m m
k

in x t t in x t

m m m

m

  

  

   

      



   . 

The approximate series solution approach the exact solution as  k , 

( , ) lim
k

Q x t



( ) ( , )kQ x t  

 
( 1)( 1) 2 s ( ) ( 1) ( 1) 2 s ( )

( 1) ( 2) (( 1) 1)

0

lim
m m m m m m m m

k
in x t t in x t

m m m
k

m

  

  

  

      




   .                                                                                                                                                                  

(63) 

If = 2 with set to 2, then the exact solution to eq.(56) is: 

( , ) sin( ) sin( )Q x t x t  ,                                                              (64) 

which agrees with the solution obtained by perturbation iteration transform in [21]. In Table 5, we calculated the 

absolute error 10aE Q Q  when =1.95, 1.97, 1.99 and 2 for x = 0.1, Figure 5 displays the surface plot 

when =1.4, 1.6, 1.8 and 2. 

Table 6:  Absolute error for Example 5. 

 t    1.95    1.97                  1.99             2.00 

 0.01  
82.0718 10     

83.2015 10   
81.0058 10         0  

 0.02  
71.4510 10  

72.2340 10   
87.0697 10    

171.3878 10  

 0.03  
74.4939 10  

76.9042 10   
72.1942 10        0  

  0.04  
79.9784 10  

61.5307 10   
74.8793 10         0  
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Figure 5(a): = 1.4                         Figure 6(b): = 1.6 

 

Figure 5(c):  = 1.8                      Figure 5(d):  = 2 

Figure 5: Surface plot for example 5 with different values of alpha. 

 

5. Conclusion 

 In this paper, we proposed the Aboodh transform iterative method for the approximate analytical solutions of 

time fractional partial differential equations. The fractional order are considered in Caputo sense, we obtained 

both approximate and exact solutions. It was observed that the series solutions converges rapidly to the exact 

solutions. Also, the graphical solutions in Figures 1-5 and the absolute error in Tables 2-6 shows that the 

solution depends on time t and the fractional order. The proposed method is easy to implement without 

requirement for perturbation, discretization, linearization or any restrictive assumptions. In constrast to other 

approximate analytical methods, the proposed method provides the exact solutions without the need for 

Largrange multipliers or Adomian’s polynomials. Future research work can extend the purposed method to solve 

boundary value problems.   
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