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Abstract
Direction-of-arrival (DOA) estimation of two targets plays an important role in automotive radar. Two

cases are distinguished: when the targets are closely spaced and the conventional beamformer is not

able to resolve them, and when the targets are widely spaced and the beamformer is able to resolve

them.

In the first case, accurate estimates can be obtained using high-resolution techniques. In the second case,

estimates are typically biased. Automotive radar applications demand real-time processing and therefore

the computational cost has to be addressed. For the resolved scenario, we propose a procedure to reduce

the bias of the beamformer estimates, thus avoiding the use of iterative algorithms. The final estimates

are obtained after applying a correction term, which is calculated off-line and stored in a look-up table.

For the non-resolved scenario, we consider a practicable implementation of the maximum likelihood

estimator. A simplified version of the cost function is used to reduce the complexity. The peak location

from the beamformer can also be used to delimit the search range.

The results of the mentioned methods are compared with other iterative algorithms, in terms of perfor-

mance and computational cost. Applying the correction factors, the bias of the beamformer estimates

are successfully reduced, making them accurate enough for the automotive radar application. The sim-

plified implementation of the ML cost function reduces significantly the computational cost, allowing its

use in real-time applications. Moreover, the performance obtained is also within the acceptable range

for the automotive radar application, even for narrow angular separations. A block diagram containing

the proposed methods is finally given, which is proposed as a suitable DOA estimation system for the

automotive radar application.
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Abbreviations, Acronyms and Symbols

ACC adaptative cruise control

ADAS advanced driver assistant system

ANP alternating notch periodogram

AP alternating projection

AWGN additive white Gaussian noise

BF beamformer

BW beamwidth

CRB Cramer-Rao bound

DOA direction of arrival

FFT fast Fourier transform

GS global search

LCA lane change assistant

LUT look-up table

MC Monte-Carlo

MLE maximum likelihood estimation

RMSE root mean squared error

SNR signal-to-noise ratio

ULA uniform linear array

(·)† the pseudoinverse

θ̂ estimate or estimator of a parameter θ

σ2 variance
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1 Introduction
In today’s passenger vehicles, sophisticated security applications can be offered by using the radar tech-

nology. Some examples of advanced driver assistant systems (ADAS) based on radar applications are:

adaptive cruise control (ACC), forward collision warning (FCW) or lane change assistant (LCA). In all

of them, a sequence of radar pulses is used to illuminate the scene, and the information of the vehicle

environment is obtained by analyzing the data collected from a receiving antenna array. The classifica-

tion of surrounding targets is possible by applying radar pre-processing, which divides the received data

into processing cells, corresponding to range and relative velocity. Each processing cell contains a single

snapshot [6]. Direction-of-arrival (DOA) estimation for a single target can be optimally solved by using

the conventional beamformer (BF), which is the maximum likelihood estimator (MLE) for this scenario

[3].

Nevertheless, the two-target case is also present in the automotive radar application, which typically

occurs when a ghost target is introduced in the system due to specular multipath with the guardrail, as

illustrated in the figure below.

starget

sghost
∆θ

guardrail

Figure 1.1: Two-target scenario with specular multipath with the guardrail.

In these situations, the BF method may not be able to resolve closely spaced targets. If it is able to resolve

the targets, it typically produces biased estimates.

In the resolved case, other iterative techniques can be used to obtain more accurate estimates, such as

the RELAX algorithm [4], the method of alternating projections (AP) [13] or the alternating notch peri-

odogram (ANP) algorithm [2]. All mentioned MLE implementations divide the two-target problem into

a sequence of single-target problems, requiring a few iterations to reach the corresponding convergence

conditions.
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Referring to the non-resolved case, the iterative techniques may require many iterations when the targets

are closely separated, and moreover their iterative nature makes them difficult to parallelize.

Subspace-based methods are also commonly presented as a high-resolution alternative for DOA estima-

tion, e.g. the MUSIC algorithm [7]. However, we do not consider them as a possible solution for the

scenario in this thesis, for two reasons:

• On the one hand, subspace-based methods require an eigendecomposition of the spatial covariance

matrix, which is computationally complex and also hard to parallelize.

• On the other hand, the estimation for closely spaced targets fails when a low number of snapshots

are used, and particularly for highly correlated signals [3].

In contrast to subspace-based methods, the MLE is statistically efficient for two correlated targets in the

non-resolved case, and still when a single snapshot is available [10]. Nevertheless, a direct implemen-

tation of the MLE requires a two-dimensional search, in which a computationally complex cost function

has to be evaluated at each grid point. Therefore, the computational burden is again the main drawback.

In this document, we present fast procedures for estimating the DOA parameters in both the resolved

and the non-resolved case. We first consider an initial estimation by using the BF method. Depending

on the situation, this is followed by:

a) Resolved scenario:

We identify this case by the presence of two main beams in the BF spectrum. The estimated

parameters are obtained after applying a bias correction term, which is calculated off-line and

stored in a look-up table (LUT).

b) Non-resolved scenario:

In this case, only a single main beam is present in the BF spectrum, which corresponds to the

superposition of both targets. The BF peak location is used to delimit the search range of the

MLE cost function evaluation, from which a final estimation is obtained. The complexity of

this technique is reduced by considering the cost function simplifications presented in [1].

Finally, a quadratic interpolation is used in both cases to obtain refined estimates [11].

We note that in case b) a previous distinction from the single-target scenario has to be assumed, where

simple methods, such as described in [5], can be applied.

The remaining thesis is organized as follows. In Chapter 2, we formulate the DOA estimation problem

for two targets in the single-snapshot case. The BF method, the MLE for two targets and the correspond-

ing proposed improvements are presented in Chapter 3, where also the mentioned iterative algorithms

are briefly described. A possible overall DOA estimation procedure is proposed in Chapter 5. The perfor-

mance comparison, in terms of RMSE and computational cost, is shown in Chapter 5. The conclusions

are finally exposed in Chapter 6.
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2 Problem Formulation
In this section, the signal model is provided for the single- and the two-target scenario. Since the interest

of the thesis is focused on situations in which a single snapshot is only available, both data models are

presented for a single snapshot.

2.1 Parametric Data Model

Consider an array, composed of M sensors with uniform linear distribution (M -ULA), and assume that a

radar pulse impinges on it from a single-target reflection, where θ is the physical DOA of the target, as

shown in Figure 2.1.

x

y

0 d (M − 1)d

θ1

s1

Figure 2.1: Uniform linear array composed of M elements in the single-target scenario.

In radar applications, and also in automotive radar, the array aperture is typically much smaller than the

inverse relative bandwidth of the radar signal, therefore narrowband condition can be assumed to be

valid ∗. The resulting array output vector x generated from a single-target reflection is given by

x= a(φ1)s1, (2.1)

where s1 and φ1 are the complex target response parameter and DOA parameter, respectively, and

a(φ) =
1
p

M
[1, e jφ , . . . , e jφ(M−1)]T

is the normalized ULA steering vector [3]. φ = kd sin(θ ) is the electrical angle, k = 2π

λ
is the wavenum-

ber, λ is the wavelength and d is the array element spacing.

∗ We assume narrowband conditions when the physical size of the array, measured in wavelengths, is much less than the inverse

relative bandwidth: d

λ
≪ fo

Bo
. In typical radar applications d

λ
≈ 1 and

fo

Bo
≈ 103 [6]
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In the presence of additive noise, the expression in (2.1) takes the form

x= a(φ1)s1+ n, (2.2)

where noise vector n is assumed to be spatially white, circular complex Gaussian distributed, with zero

mean and common variance σ2.

In addition to the single-target scenario, the two-target case is also relevant for DOA estimation in

automotive radar applications. This situation usually occurs when a ghost target is introduced in the

system due to specular multipath with the guardrail.

Then, the expression for the array output vector is obtained by inserting a second target into (2.2)

x= a(φ1)s1+ a(φ2)s2+ n, (2.3)

which can also be formulated in compact form as

x= A(φ1,φ2)s+ n, (2.4)

where A(φ1,φ2) = [a(φ1), a(φ2)] is the steering matrix and s = [s1, s2] denotes the vector of target

response parameters.
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3 DOA Estimation for Two Targets
The conventional beamformer (BF) is the simplest technique for DOA estimation, data preprocessing is

not required and an efficient implementation is also possible using the FFT.

However, the estimates obtained in the two-target case are often biased, and furthermore, the BF is un-

able to resolve closely spaced targets, due to its resolution limit.

In this Chapter, after briefly introducing the BF, two improvements are proposed in order to exploit the

advantages of the BF in resolved scenarios. The first makes it possible to reduce the bias by using a look-

up table, and the second minimizes the number of points to evaluate, through the use of a parabolic

approximation. Afterwards, the MLE for two targets is presented and we briefly describe a simplified

implementation, from which can be used as a high-resolution method for non-resolved situations.

For performance comparison with other algorithms, we finally present three iterative techniques: the

RELAX algorithm, the method of alternating projections (AP) and the Alternating Notch Periodogram

algorithm (ANP). All of them are computationally practicable implementations of the MLE and do not

require an eigendecomposition.

3.1 The Conventional Beamformer

The BF method consists of maximizing the array output power when the aperture is steered to the true

direction. Given the output vector x with single target from φ according to (2.2), the array response is

given by

y= wHx, (3.1)

where w is the array weighting vector. Constraining the norm of w to be unity and maximizing the power

of (3.1), we obtain the well-known solution

P(φ) = |a(φ)Hx|2, (3.2)

which is the spatial equivalent to the periodogram in spectral analysis [12].

The BF technique performs efficiently in the single-target case. But in contrast, when we deal with the

two-target case, the method yields biased estimates and is not able to resolve closely spaced targets,

regardless of the SNR.

The BF resolution is limited by the beamwidth BW = 2π

M
, and consequently, by the array aperture size.

Therefore, high-resolution techniques are required for situations in which the targets’ separation is lower

than the BF resolution limit, i.e., |φ2−φ1|< BW . An example is illustrated in Figure 3.1.
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Figure 3.1: BF spectrum example for resolved (left) and non-resolved (right) two-target scenario, targets are sepa-

rated by |φ2 −φ1|= 2BW and |φ2 −φ1| = 0.5BW , respectively.

3.1.1 BF for Two Targets

In this section, the behavior of the BF is analyzed for the two-target scenario. But before going into

detail, some definitions are made in order to simplify further notation.

From (3.2), we first define the Spatial Fourier transform S(φ) as

S(φ) = a(φ)Hx, (3.3)

then, we proceed to evaluate (3.3) for the two-target case, but as an exception, we consider the noise-free

case:

S(φ) = a(φ)Ha(φ1)s1+ a(φ)Ha(φ2)s2. (3.4)

This exception is made for the purpose of evaluating only the contribution of targets, irrespective of the

noise. Thus, we can more easily identify how to improve the method.

We continue by defining the steering weighting function W (φ−φi), or shifted beam pattern [10], as

W (φ−φi) = a(φ)Ha(φi) =
1

M

M−1
∑

m=0

e j(φ−φi )m, (3.5)

and using the finite geometric series and the sine definition as a sum of complex exponentials, (3.5) can

be re-written as

W (φ−φi) =
1

M

sin((φ−φi)
M

2
)

sin((φ−φi)
1

2
)

e− j(φ−φi )
M−1

2 . (3.6)
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Using the notation above, we can formulate the BF spectrum for two targets, ignoring the presence of

noise, as

P(φ) = |S(φ)|2
= |s1|2|W (φ−φ1)|2+ |s2|2|W (φ−φ2)|2+ 2Re{s1s∗

2
W (φ−φ1)W (φ−φ2)

∗} (3.7)

where the first two terms are the target contributions and the third term is a cross-term contribution.

The BF has been designed for DOA estimation of a single target. Thus, it is not optimal for two targets

and we have to deal with leakage and cross-terms.

We can define the cross product of the steering weighting function as

Q12(φ) =W (φ−φ1)W (φ−φ2)
∗ =Q12,mag(φ)e

j∠Q12(φ) (3.8)

where Q12,mag is a real-valued function.

Noting that the phase of Q12(φ) can be easily calculated by computing

∠Q12(φ) = ∠W (φ−φ1)−∠W (φ−φ2) = (φ1−φ2)
M − 1

2
,

the cross-term contribution from (3.7) can be characterized by using the definition stated in (3.8), as

P(φ)cross−term= 2|s1||s2|Q12,mag(φ) cos((∠s1−∠s2) + (φ1−φ2)
M − 1

2
). (3.9)

This result is crucial to detect which factors affect the bias of the BF estimates. Actually, it is the basis to

understand the improvement described in the following section.

3.1.2 BF using Look-Up Table

As a result of (3.9), when we estimate using the BF in the two-target case, we have that the bias obtained

not only depends on the angular separation between DOA parameters, but also on the phase difference

between the target response parameters.

Considering φ2 > φ1, and using notation δ = φ2 −φ1, ϕ = ∠s2 −∠s1 and α =
|s2|
|s1|

for convenience, we

can formulate an array output vector depending on these parameters as

x(ϕ,δ,α) = a(−
δ

2
) + αe jϕa(

δ

2
) (3.10)

where the noise-free case is also considered.
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Thereby, the bias of the BF estimates corresponding to the parameters δ, ϕ and α can be expressed as

L1(ϕ,δ,α) = φ1− φ̂1,BF(ϕ,δ,α)

L2(ϕ,δ,α) = φ2− φ̂2,BF(ϕ,δ,α)
(3.11)

where φ̂1,BF(ϕ,δ,α) and φ̂2,BF(ϕ,δ,α) are the BF estimates for the array output vector x(δ,ϕ,α), and

where it is also considered φ̂2,BF > φ̂1,BF ∀ ϕ,δ,α.

Assuming α to be constant, we proceed to evaluate the functions defined in (3.11) by varying ϕ and δ.

Since we are focused on resolved scenario, we have to evaluate δ for higher values than the BF resolu-

tion limit, but also for lower values than 2π− BW = (M − 1)BW , due to the 2π-periodicity of the BF

spectrum. Therefore, we consider δ ∈ [BW, (M − 1)BW].

The phase difference has to be evaluated for ϕ ∈ [−π,π).

Figure 3.2 shows the tables obtained by evaluating L1, L2 (left, right) for scalars α = 1 (top), 0.85

(center) and 0.7 (bottom). We have considered a ULA with M = 8 elements and the grid parameters

described above, with step sizes ∆ϕ = 2π

120
and ∆δ = 2π

160
.

As we can observe, for α = 1 the bias of the estimates φ̂1,BF and φ̂2,BF are reciprocals but with the sign

changed, i.e., L2(ϕ,δ, 1) = −L1(ϕ,δ, 1). For the other values of α, the tables obtained have the same

distribution as for α= 1, but the intensity of the biases is different. Actually, we have that

L1(ϕ,δ,α) = αL(ϕ,δ)

L2(ϕ,δ,α) = − 1

α
L(ϕ,δ)

where L(ϕ,δ) = L1(ϕ,δ, 1).

This result can be deduced from (3.9), since the cross term is scaled by the factor |s1||s2|. Therefore, it is

only necessary the evaluation of L(ϕ,δ) to get the bias of L1(ϕ,δ,α) and L2(ϕ,δ,α).

Another important fact to note are the values of all the tables at both the upper and lower left corners.

The scalars obtained at these areas show that the BF is not able to estimate properly for the correspond-

ing values of ϕ and δ. The BF spectrum obtained evaluating these points is similar than in non-resolved

case, i.e., only a single main beam with beamwidth > BW is present in the spectrum. Therefore, these

correction factors will be set to 0, in order not to introduce more errors.

The key idea for reducing the bias is to compute L(ϕ,δ) off-line for every point of interest, ϕ and δ, and

store them into a look-up table (LUT). When estimating in the resolved case, we can correct the bias of

the BF estimates by using the LUT.
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Figure 3.2: Evaluation of the BF bias functions L1(ϕ,δ,α), L2(ϕ,δ,α) (left, right), considering a ULA with M = 8

elements. The target response parameters are constrained to α = 1 (top), 0.85 (center) and 0.70

(bottom).

9



Given the array output vector x composed of two targets according to (2.4), we apply the bias correction

as follows.

Step 1) Estimate the DOA parameters by using the BF, obtaining

φ̂1,BF , φ̂2,BF

Step 2) Estimate the target response parameters as [4]

ŝi = a(φ̂i,BF)
Hx , i = 1,2

Step 3) Compute the estimation of the LUT parameters by

ϕ̂ = ∠ŝ2−∠ŝ1

δ̂ = φ̂2,BF − φ̂1,BF

α̂ =
|ŝ2|
|ŝ1|

Step 4) Get the indexes of the LUT corresponding to the ϕ and δ which are closest to the estimates, i.e,

nopt = arg min
n
{ |ϕn− ϕ̂| }

qopt = arg min
q
{ |δn− δ̂| }

Step 5) Apply the correction factor to the BF DOA estimates

φ̂1,BF+LUT = φ̂1,BF+ α̂L(ϕ̂nopt
, δ̂qopt

)

φ̂2,BF+LUT = φ̂2,BF− 1

α̂
L(ϕ̂nopt

, δ̂qopt
)

where φ̂1,BF+LUT and φ̂2,BF+LUT are the refined DOA estimates.
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3.1.3 Parabolic Approximation

The DOA estimates are obtained by locating the peaks of the BF spectrum P(φ), formulated in (3.2).

The spectrum is generally evaluated on a discrete grid with step size ∆φ, which set the resolution for

locating the peaks.

The idea of the improvement is to approximate the shape of the main beams of the BF spectrum with a

parabolic function. Thus, we can obtain an estimation of the peak location via a quadratic interpolation,

reducing considerably the number of points to evaluate [11].

The equation which defines the parabola with vertex at (φi, P(φi)) and focus at (φi, P(φi)− P0) takes

the form

(φ−φi)
2 = 4P0(P(φ)− P(φi)). (3.12)

We can find φi by solving a system of equations, formed by the evaluation of (3.12) at three points

located near to the peak. The result, solving for the DOA parameter φi, is given by

φ̂i = φi,m−
∆φ

2

P(φi,m+1)− P(φi,m−1)

P(φi,m+1)− 2P(φi,m) + P(φi,m−1)
, (3.13)

where φi,m is the initial estimation of the peak position and φ̂i is the refined peak location.

Given an M -ULA and referring to the BF spectrum, if we consider ∆φ = BW

2
as the largest possible step

size, we can guarantee that at least we will obtain three representative points of a main beam, as it is

illustrated in Figure 3.3.

∆φ

2BW

Figure 3.3: Possible samplings of a main beam from the BF spectrum, for M -ULA, step size∆φ = BW

2
and BW = 2π

M
.

For an angular sector φ ∈ [φmin,φmax], the minimum number of points to evaluate is

Nev al =
(φmax −φmin)

∆φ
+ 1= M

(φmax −φmin)

π
+ 1. (3.14)

Thus, only 2M points are required to evaluate the complete field-of-view.
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While evaluating the BF spectrum in the two-target case, the parabolic shape better approximates the

main beams when the power is expressed in dB. Therefore, we use the logarithm of the BF spectrum

10 log10(P(φ)) in the following.

Figure 3.5 illustrates the performance of the parabolic approximation. We consider a ULA with M = 8

elements in the two-target case, and we evaluate the BF spectrum for 2M samples (blue lines). Markers

’*’ and ’o’ correspond to the points used to apply the method for the first and the second target, respec-

tively, as it is described in (3.13). The red lines correspond to the obtained peaks.

The BF spectrum is also evaluated for 1000 samples (green lines), in order to contrast the results.

−3 −2 −1 0 1 2
−50

−40
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Figure 3.4: BF spectrum of 8-ULA for 2M samples (blue lines) and 1000 samples (green lines). The refined peaks

(red lines) are obtained by the parabolic approximation of points ’*’ and ’o’, respectively.

As we can observe, the parabolic approximation gives an accurate location of the corresponding peaks,

by using only 2M samples of the BF spectrum.
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3.2 MLE for DOA parameters

For DOA parameters Φ = [φ1, · · · ,φK], where K denotes the number of targets to estimate, the maximum

likelihood estimator is given by the global minimum of the following trace argument [10]

arg min
Φ
{ Tr[P⊥

A
(Φ)R̂] } (3.15)

where R̂ = xxH is the sample covariance matrix, and P⊥
A
= I− PA denotes the orthogonal projection of

the steering matrix A, i.e.,

PA = A(AHA)−1AH (3.16)

using notation A= A(Φ) and PA = PA(Φ) for convenience.

We can interpret (3.15) as a minimization problem of power measurement, where data vector x has been

projected onto the orthogonal space defined by the columns of the steering matrix A.

As a consequence, the minimum will be measured when the projection removes all the signal compo-

nents, and that occurs when the projection is orthogonal to

a(φ1), · · · ,a(φK) (3.17)

where φ1, · · · ,φK are the true DOA parameters.

We can also turn (3.15) into a maximization problem, by using PA instead of the orthogonal P⊥
A

:

arg max
Φ
{ Tr[PA(Φ)R̂] }. (3.18)

Now, the power measurement will be maximum when the space, onto which data are projected, is

spanned by (3.17).

In order to continue simplifying (3.18), we can exploit the cyclic permutation property of the trace

operation, as applied below

Tr[PA(Φ)R̂] = Tr[PA(Φ)xxH] = Tr[xHPA(Φ)x].

Since trace of a scalar is a scalar, the cost function to maximize of (3.18) can be re-formulated as

c(Φ) = xHPA(Φ)x. (3.19)
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3.2.1 MLE for Single Target

For the particular case of single target, we have that the steering matrix contains only a single steering

vector A(Φ) = a(φ), thus, the projection matrix takes the form:

PA(φ) = a(φ)[a(φ)Ha(φ)]−1a(φ)H = a(φ)a(φ)H.

If we evaluate (3.19) for this case, we have

c(φ) = xHa(φ)a(φ)Hx= |a(φ)Hx|2

Thus the BF is actually the maximum likelihood estimator for DOA parameter φ [3], for a single target.
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3.2.2 MLE for Two Targets

In the two-target case, the evaluation of the cost function is not as simple as for a single target. In order

to compute the projection matrix PA, the inversion of AHA is first required, where A is now composed of

two steering vectors.

For B= AHA ∈ C2×2, we have

B=

�

1 β

β 1

�

,

where β = aH
1

a2 and using that aH
1

a1 = aH
2

a2 = 1. Since the inversion formula can be applied easily for

2-by-2 matrices, the computation of B−1 is given by

B−1 =
1

1− |β |2

�

1 −β
−β∗ 1

�

, (3.20)

and inserting (3.20) into (3.16), we obtain

PA =
1

1− |β |2 (a1aH
1
− βa1aH

2
− β∗a2aH

1
+ a2aH

2
).

Finally, we can use the simplified expression above to re-write the cost function described in (3.19).

Thereby, the cost function in the two-target case takes the form

c(φ1,φ2) = xHPA(φ1,φ2)x=
1

1− |β |2 (|α1|2− 2Re{βα1α
∗
2
}+ |α2|2) (3.21)

where α1 = aH
1

x and α2 = aH
2

x.

In contrast to the BF estimation in the two-target scenario, the MLE requires a two-dimensional search

over a given grid, demanding more expensive computations for the cost function evaluation. However,

the situations in which high-resolution techniques are required motivate the use of MLE-based methods,

owing its optimum capability to resolve them.

Nevertheless, as we will see in the following section, the evaluation of the MLE cost function also admits

simplifications which reduce considerably the computational cost.

3.2.3 Global Search

The Global Search is a direct implementation of the MLE cost function evaluation. In the two-target case

and given a two-dimensional grid, the algorithm consists of computing c(φi,φ j) for each point of the

grid, obtaining the DOA estimates by locating the global maximum.

15



The Figure below illustrates the MLE cost function evaluation, considering a ULA with M = 8 elements

and two targets separated by |φ2−φ1| = 0.5BW . The global maximum is indicated with a dotted cross

and the star corresponds to the true DOA parameters.

 

 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ1 in rad

φ
2

in
ra

d

Figure 3.5: Normalized MLE cost function evaluation for a ULA with M = 8 elements and two targets, with |φ2 −
φ1| = 0.5BW and ∆φ = 2π

96
. It is illustrated the true DOA parameters (star) and the global maximum

(dotted cross).

The first trivial improvement is to evaluate only the triangular area defined by φ1 < φ2, since the

computation of c(φ1,φ2) and c(φ2,φ1) produce the same result. Therefore, the number of points to

evaluate is reduced to

S2 =
Nev al(Nev al − 1)

2

where Nev al is the number of grid points at each dimension.

Continuing with reducing the area to evaluate, we can delimit the search range by using the information

of the BF spectrum. For two targets with similar powers in non-resolved case, the evaluation of the BF

spectrum is characterised by having a single main beam, due to the resolution limit. The peak may occur

at an intermediate point between the targets location, since it is produced because of the superposition

of both contributions.

We can exploit this property by delimiting the search range to the area surrounding the peak. When we

extend the search perimeter to BW , the number of evaluations is reduced significantly.

As in the case of the BF estimation, we can also use the parabolic approximation to obtain a refined peak

of the global maximum. Despite being a two-dimensional paraboloid function, we can solve for each

dimension separately by applying the method described in Section 3.1.3.
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In [1], we can find a further analysis of the improvements described above: a more formal definition of

delimiting the search range is given by using a rotational shift of the field-of-view, and two simplified

cost functions are also proposed, which make it possible to reduce the computational burden.

To be precise, we consider the simplification from [1] which not employs an eigendecomposition: using

a unitary transformation, the covariance matrix and the projection matrix are reduced to real-valued

matrices Ĉ and V(φ1,φ2), respectively, where the centro-hermitian property of the forward-backward

(FB) averaged covariance matrix is used. This method exploits the symmetry of both matrices to simplify

the evaluation of the MLE cost function to

c(φ1,φ2) = Tr{V(φ1,φ2)Ĉ}= v(φ1,φ2)
T ĉ

where v(φ1,φ2) and ĉ are the vectorization of the non-redundant elements from matrices Ĉ and

V(φ1,φ2). Noting that ĉ has to be computed only once, the author propose to pre-calculate off-line

and store the projection operators v(φ1,φ2). Thereby, this simplification reduces the computation of the

MLE cost function to only S1 =
M(M+1)

2
real-valued multiply-add operations. The required storage space

depends on the total number of points to evaluate, which in turn is defined by the step size.
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3.3 Iterative Algorithms

In this section, three iterative implementations of the MLE are presented: the RELAX algorithm, the

method of alternating projections and the Alternating Notch Periodogram algorithm. A brief description

for both techniques is given below.

3.3.1 RELAX algorithm

The main goal of the RELAX algorithm is to transform a multiple-target estimation problem into an iter-

ative sequence of single-target estimation problems, which can be efficiently solved using the BF.

Given the array output vector x composed of K sources, single-target output vectors x1, · · · ,xK are gen-

erated by proceeding as described below:

xk = x−
K
∑

i=1,i 6=k

ŝia(φ̂i) , k = 1, · · · , K (3.22)

where ŝi and φ̂i are, respectively, the estimates of the target response parameter and the DOA parameter

of source i. The target response parameter is estimated by using

ŝk = a(φ̂k)
Hxk , k = 1, · · · , K . (3.23)

As it is described in [4], both (3.22) and (3.23) correspond to the minimization of the following nonlinear

least-squares (NLS) criterion:

cN LS =‖ x−
K
∑

i=1

sia(φi) ‖2 . (3.24)

In the two-target case, the algorithm proceeds as follows. Initially, it is assumed to be a single target and

we consider x1 = x, from which φ̂1 is obtained by locating the global maximum of the BF spectrum. The

target response parameter ŝ1 is estimated as described in (3.23).

Once the first target is estimated, we are able to generate x2 by using (3.22), in order to estimate the

parameters of the second target as the same way as for the first target.

In the following iterations, "cleaner" output vectors x1 and x2 are produced, which, in turn, makes it

possible to reduce the bias while estimating with the BF, because of its optimal performance in the

single-target case.

Therefore, the algorithm requires a higher number of iterations to yield accurate estimates when the

targets are closely spaced, since the "cleaning" process is less effective for these situations, due to the

behaviour of the BF in non-resolved case. However, the computational cost at each iteration is much less

than the computations required to calculate the MLE cost function.

The RELAX algorithm can also take advantage of the quadratic interpolation, proposed for obtaining the

global maximum of the BF spectrum.
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3.3.2 Alternating Projection method and Alternating Notch Periodogram algorithm

Both the AP and ANP techniques are based on a similar simplification concept as the RELAX algorithm:

turn the multi-dimensional maximization of the MLE cost function into multiple one-dimensional maxi-

mization problems.

However, whereas the first algorithm exploits each iteration to refine the initial estimation, the two

methods presented in this section iterate to find the global maximum of the MLE cost function, avoiding

the evaluation of all the grid points.

This technique, also known as "deterministic hill climbing", provides a much simpler estimation of the

global maximum than the Global Search, nevertheless the global convergence is not guaranteed [14].

The multi-dimensional cost function evaluation is simplified by varying only one DOA parameter at a

time, while fixing the other DOA parameters to their previously estimated values. This process requires

an important initialization step, which is simply solved for both algorithms by

φ̂
(0)

1 = arg min
φ1

{ Tr[PA([φ1])R] }

φ̂
(0)

2 = arg min
φ2

{ Tr[PA([φ̂
(0)

1 ,φ2])R] }
· · ·
φ̂
(0)

K = arg min
φK

{ Tr[PA([φ̂
(0)

1 , φ̂
(0)

2 , · · · , φ̂(0)K−1,φK])R] }

where K denotes the number of targets, and PA(Φ) is the projection matrix defined in (3.16).

As it is introduced above, K 1-D evaluations of the MLE cost function are produced at each iteration.

Considering iteration n, the DOA estimates are given by

φ̂
(n)

i = arg min
φi

{ Tr[PA([φi,Φ
(n)

i ])R] } , i = 1, · · · , K

where Φ
(n)

i = [φ̂
(n)

1 , · · · , φ̂(n)i−1, φ̂
(n)

i+1, · · · , φ̂(n)K ] is the vector containing the pre-estimated DOA parameters.

The main difference between algorithms AP and ANP is the way to compute PA([φi,Φi]): the first method

uses a projection matrix decomposition to simplify its evaluation, and the second algorithm exploits con-

current Gram-Schmidt procedures, which allows its evaluation via FFT [2].

The ANP algorithm requires a greater computational burden, but nevertheless the results are expected

to be better.

The improvements proposed for the Global Search can been applied likewise to the AP and ANP methods,

since the concepts in which they are based are also present in both the two iterative algorithms.
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4 DOA Estimation Block Diagram
In this Chapter, we present the procedure proposed to estimate the DOA parameters for single and two

targets, considering the single-snapshot case.

Given the the array output vector x as defined in (2.4), the procedure consists of the following steps:

1. Analysis of the BF Spectrum resulting from x

2a. Presence of a single main beam

-a.3a Main beam suitable for the single-target case: the BF method is the maximum likelihood

estimator

⇒ φ̂ = φ̂BF

-a.3b Main beam suitable for the two-target case: use peak location to reduce the search

range and apply the Global Search

⇒ [φ̂1, φ̂2] = [φ̂1,GS, φ̂2,GS]

2b. Presence of two main beams

-b.3 Use the BF DOA estimates to compute the LUT parameters and apply correction factors

⇒ [φ̂1, φ̂2] = [φ̂1,BF+LUT , φ̂2,BF+LUT ]

As we can observe, the initial BF estimation is used in all cases to compute the final estimates, thus,

the invested computation time is not in vain. In order to distinguish in 2a between the single- and the

multiple-target case, a measurement of the beamwidth can be used. Nevertheless, an evaluation of the

BF over a fine grid is required, thus making useless the parabolic approximation to reduce the number

of evaluations.

In order to avoid this situation, we propose to use the criteria described in [5], which also allows to

identify a single target, but without requiring a fine evaluation of the BF Spectrum. Its applicability

is reduced to the single-snapshot case, which suits with the scenario considered in this thesis, and the

computation involves simple operations over the array output vector x, which not overloads the final

computational burden.
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In the Figure 4.1, we present the recommended procedure for DOA estimation with one or two targets,

in the single-snapshot case.

x BF Spectrum Analysis:

m?

k?

P(φ) = 20 log |a(φ)Hx|

single−mainlobemulti−mainlobe

single−target multi−target

θ̂BF

θ̂

θ̂1,BF ,θ̂2,BF θ̂0

θ̂1,BF , θ̂2,BF θ̂0

Apply LUT to GS by using

θ̂1, θ̂2 θ̂1, θ̂2

two-target resolved case single-target resolved case two-target non-resolved case

Figure 4.1: Block Diagram: DOA parameters estimation for one or two targets in the single-snapshot case.
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5 Results
In this Chapter, we first describe the simulation setup for two-target DOA estimation, using a single

snapshot. We then present the Cramér-Rao bound corresponding to the described scenario and comment

the relevance of the step size.

Finally, the simulation results are shown and a further discussion of them is also given, considering both

the resolved and the non-resolved case.

5.1 Simulation Model

We consider a ULA with M = 8 sensors, which are spaced by d = λ

2
. Single snapshots are simulated for

two target reflections with DOA parameters φ1 and φ2, as defined in model (2.4).

The targets are considered with random phases and, if not stated otherwise, similar magnitudes. To have

a more realistic radar simulation setup, we use the following distributions:

|si| ∼ 100.1 N(0,1), ∠si ∼ U[0,2π), i = 1,2

where N (0,1) is the Normal distribution with zero mean and standard deviation 1, and U[a, b) is the

uniform distribution between a and b.

The noise vector n is assumed to be spatially white, circular complex Gaussian distributed, with zero

mean and common variance σ2. The SNR is defined as −20 log(σ) (dB).

In order to compute estimation errors, the physical DOA θ = sin−1(
φ

kd
) in degrees is used instead of the

electrical angle. We consider the averaged root mean squared error (RMSE) as the performance index,

which is given by

RMSE =

s

1

MC

MC
∑

m=1

(θ1− θ̂1,m)
2+ (θ2− θ̂2,m)

2

2

where θ̂1,m and θ̂2,m are the physical DOA estimates in Monte-Carlo iteration run m, and MC is the

number of Monte-Carlo iterations, which is set to MC = 1000.

Regarding computational cost, the simulations have been conducted on a Windows PC with an AMD

AthlonX2 processor at 1.80 GHz and 2 GB RAM. The average CPU times have been calculated by using

functions tic and toc from MATLAB (version R2009a).
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5.2 The Cramér-Rao bound

The Cramér-Rao bound (CRB) provides a lower bound on which can be used as an accuracy metric of

the estimation algorithms. For DOA estimation of parameters φ1 and φ2 in the single-snapshot case, the

CRB is given by [9]

CRBφ =
σ2

2
(Re{SHDHP⊥

A
DS})−1

where S = diag{s1, s2} is the diagonal matrix of the target response parameters, D = [d(φ1),d(φ2)]

is the differential steering matrix with d(φ) = ∂

∂ φ
a(φ) , and P⊥

A
is the orthogonal projection of the

steering matrix A, which is defined in (3.15). As mentioned above, we use the physical angle to calculate

estimation errors, therefore CRBθ should be used instead:

CRBθ = G−1CRBφG−1

where G = diag{kd cos(θ1), kd cos(θ2)} is the transformation matrix.

5.3 Effect of the step size

The step size ∆φ not only determines the estimation accuracy, but it also affects the computational cost.

Therefore, we simulate each scenario for different values of ∆φ, in order to be able to contrast the re-

sults and establish a compromise between them.

5.4 Performance Comparison

The simulation results are divided into the resolved and the non-resolved scenario. The following pa-

rameters and algorithm settings are assumed for each case:

i) Resolved scenario:

• Angular separation φ2−φ1 ∈ [BW, (M − 1)BW]

• BF+LUT is computed by using a 128-by-128 lookup table

• Convergence condition ε = 10−3 (iterative algorithms)

• Number of steps limited to 3 (iterative algorithms)

ii) Non-resolved scenario:

• Angular separation φ2−φ1 ∈ [0.1BW, 2BW]

• Convergence condition ε = 10−3 (iterative algorithms)

• Maximum number of steps limited to 10 (iterative algorithms)

where the convergence condition ε is considered as described in [4], [13] and [2] for the RELAX algo-

rithm, the alternating projection method and the ANP algorithm, respectively.
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5.4.1 Resolved scenario

A performance comparison, averaged RMSE versus angular separation, is given in the Figure below. The

step size is set to ∆φ = 2π

16
(top) and ∆φ = 2π

32
(bottom), both with SNR = 32 dB.
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Figure 5.1: Performance comparison, averaged RMSE versus angular separation, with SNR = 32 dB and step size

∆φ = 16 (top) and∆φ = 32 (bottom).
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The results above show the fluctuation of the bias in the BF estimation, when varying the angular sep-

aration. We can also appreciate how the corrections applied, by using the LUT, reduce significantly the

bias, containing the average RMSE within a range of [0.3◦, 0.5◦]. Actually, the pattern of fluctuation of

the bias corresponds directly with the correction factors distribution, as it is shown in the figure below.
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Figure 5.2: Bias of the BF estimates pattern: performance comparison, average RMSE versus angular separation

(top), and correction factors distribution, corresponding to a 128-by-128 Lookup Table (bottom).

The performance of the BF using the LUT yields poor results for values of angular separation lower

than |φ2 −φ1|/BW ≈ 1.6. However, it is caused due to the BF spectrum evaluation at this area, which

produce a single main beam, similar as it occurs in the non-resolved case. Therefore, this fact does

not affect the performance of the proposed algorithm, because these situations will be solved as in non-

resolved case by using high-resolution techniques, as it is described in the diagram proposed in Chapter 4.

Regarding the step size, we use the results showed in the Figure 5.1 to set the optimum value for each

algorithm, attending to the compromise between accuracy and computational cost. Thereby, we consider

a step size of 2π

16
for the BF methods and 2π

32
for the iterative algorithms.

A performance comparison, RMSE versus SNR, is shown in the Figure 5.3 (top). Since the behaviour of

the BF method, using and not using the LUT, fluctuates along the angular separation, the results have

been simulated by using random angular separations within the resolved case range. Thus, an averaged

performance comparison is presented.
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The computational cost is also given in the Figure 5.3 (bottom). The average CPU times are computed

for the performance comparison simulation.
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Figure 5.3: Performance comparison and computational cost comparison, with random angular separation within

the resolved case range: averaged RMSE versus SNR (top) and CPU time versus SNR (bottom). The step

size values are set to ∆φ = 2π

32
(BF and BF+LUT) and∆φ = 2π

64
(RELAX, AP and ANP).

As it can be observed in the Figure above, the performance of the iterative algorithms is close to the CRB.

Nevertheless, the computational cost is also expensive, mostly for the AP and ANP methods.
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Despite being less close to the CRB, the BF technique using LUT corrections yields estimates with a

converging error of 0.3◦, which is acceptable for the automotive radar application [8]. Moreover, the

estimation process requires only one-third of the time that the RELAX algorithm needs.

An extensive comparison between the BF method and the RELAX algorithm is given below. Figure 5.4

shows the averaged RMSE versus SNR (top), considering again random angular separations within the

resolved case range. It is also shown the computational cost versus SNR (bottom).
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Figure 5.4: Comparison between the BF method and the RELAX algorithm, with random angular separation within

the resolved case range: averaged RMSE versus SNR (top), and average CPU time versus SNR (bottom).
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In the Figure above, the results of the RELAX algorithm are presented after 1, 2 and 3 iterations (green

lines), in order to contrast the effectiveness of the "cleaning" process after each iteration. The BF method

is simulated before and after applying the bias correction (blue and cyan lines, respectively).

It can be observed that the RELAX algorithm requires for one iteration almost as much time as the BF

using correction factors, noting that the second method yields more accurate estimates.

After the second and the third iteration, the RELAX algorithm takes up two- and three-times the time

required by the BF using the LUT, respectively.

Therefore, the proposed improvement for the BF method is shown as the fastest technique with an ac-

ceptable estimation error, considering angular separations within the resolved case range.

5.4.2 Non-resolved scenario

As in the resolved case, a performance comparison is first given. Figure 5.5 corresponds to the averaged

RMSE versus angular separation, with SNR= 32dB.

We consider ∆φ = 2π

96
for the Global Search technique, ∆φ = 2π

32
for the RELAX algorithm and the AP

method, and ∆φ = 2π

96
for the ANP technique.
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Figure 5.5: Performance comparison with SNR = 32 dB: averaged RMSE versus angular separation.

The first feature to note is the excellent result obtained by the Global Search for narrow angular sep-

arations, which is caused by delimiting the search range. This improvement adds information to the

estimation process, thus reducing significantly the probability of great errors, and allowing results even

below the CRB.

The Global Search performs better than the iterative algorithms, for values of angular separation

|φ2−φ1|§ BW , which corresponds to the non-resolved case.
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A final performance comparison is presented below. Figure 5.6 shows the averaged RMSE versus SNR,

with angular separation |φ2 − φ1| = 0.5BW (top) and |φ2 − φ1| = 0.75BW (bottom). The step size

is considered as described above. In the Figure 5.7 it is also shown the average CPU time versus SNR,

which is computed for |φ2−φ1|= 0.75BW .
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Figure 5.6: Performance comparison, averaged RMSE versus SNR, with angular separation |φ2−φ1| = 0.5BW (top)

and |φ2 −φ1| = 0.75BW (bottom).
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Figure 5.7: Computational cost comparison, CPU time versus SNR, with angular separation |φ2 −φ1| = 0.75BW .

As it can be observed in the Figure 5.6, the iterative algorithms yield quite biased estimates. Especially

for the narrow angular separation, where the averaged RMSE is greater than 1◦, also with good SNR.

The proposed Global Search technique is also biased, however, with a converging error of 0.4◦ for

|φ2 − φ1| = 0.5BW , it is the unique algorithm to produce estimates which are accurate enough for

the automotive radar application.

In spite of requiring a two-dimensional search, the simplifications applied allow a considerably reduction

of the computational cost, which can be observed in Figure 5.7. Moreover, it has to be considered that

the Global Search technique is not an iterative method, thus allowing also an easy parallelization by

evaluating independently the cost function for each grid point.
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6 Conclusion
In this thesis, we have considered the DOA estimation problem for two targets, focusing on the single-

snapshot case. We have distinguished between the cases when the BF is able to resolve the two targets,

and when it is not.

In the resolved scenario, the use of a look-up table has been proposed to reduce the bias of the BF esti-

mates, which allows a fast implementation.

For the non-resolved scenario, we have considered the evaluation of the MLE cost function over a two-

dimensional grid, in which an initial BF estimation is used to delimit the search range. Regarding the

simplification of the cost function, the required projection operators can be calculated off-line in a sim-

plified form and stored.

In order to further reduce the computational burden, a quadratic interpolation is used to obtain refined

peak locations, which is applicable to estimate the global maximum from the BF spectrum as well as

from the two-dimensional cost function evaluation.

The proposed methods have been compared with other MLE implementations. To be precise, we have

considered the RELAX algorithm, the method of alternating projections and the ANP technique, all of

them iterative algorithms. The resolved scenario has been simulated separately from the non-resolved

case, evaluating first the RMSE versus the angular separation, for various step sizes, and second the

RMSE versus SNR, showing also the corresponding computational time.

From the multiple simulations, the following results have been presented:

i) Resolved case:

• The LUT corrections considerably reduce the bias when estimating with the BF method.

• The converging RMSE of the proposed method is within the acceptable error range for the auto-

motive radar application.

• The BF method using the LUT corrections requires only a third of the time of the fastest iterative

algorithm.

ii) Non-resolved case:

• Comparing with the iterative algorithms mentioned, the Global Search is the unique algorithm to

yield estimates which are accurate enough for the automotive radar application, with reasonable

computational time.

• The improvements proposed considerably reduce the computational burden of the MLE cost func-

tion evaluation.

• The time required by the iterative algorithms is comparable to the resulted from the global search

technique, however, this approach can be easily parallelized since it is not iterative.
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We have also presented a block diagram which illustrates how to combine both methods, proposed as a

suitable DOA estimation system for the automotive radar application.
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