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Abstract

Nowadays, under controlled recording conditions, the state-of-the-art automatic

speaker recognition systems show very good performance in discriminating be-

tween voices of speakers. However, in investigative activities (e.g., anonymous

calls and wire-tapping) the conditions in which recordings are made can not be

controlled and pose a challenge to automatic speaker recognition. Some factors

that introduce variability in the recordings can be the differences in the phone

handset, in the transmission channel and in the recording devices.

The strength of evidence, estimated using statistical models of within-source

variability and between-sources variability, is expressed as a likelihood ratio, i.e.,

the probability of observing the features of the questioned recording in the statis-

tical model of the suspected speaker’s voice given the two competing hypotheses:

the suspected speaker is the source of the questioned recording and the speaker

at the origin of the questioned recording is not the suspected speaker.

The main unresolved problem in forensic automatic speaker recognition today

is that of handling mismatch in recording conditions. This mismatch has to

be considered in the estimation of the likelihood ratio because it can introduce

important errors.

In this work, we handle and analyze this state-of-the-art system. The forensic

automatic speaker recognition system consists of many parts, such as feature

extraction and modeling. We have focused on the modeling part, training models

which can be decomposed in two spaces, the speaker and session subspace.

This technique, called Joint Factor Analysis, is the state-of-the-art in the

speaker verification systems. Using the property of decomposition in two sub-

spaces, we try to solve the problem of mismatched conditions adapting the session

subspace of the train recordings to a new session subspace (which is under differ-

ent conditions).

To estimate the speaker and session subspaces, we need some databases, e.g.

one database containing the traces, and another containing recordings from the

suspect. These databases must be recorded in several conditions to simulate

a real forensic case where mismatched is present. Examples to such recording
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conditions are cellular phones or fixed telephone network.

Finally, an evaluation of the system is presented at the end of the work.

Thanks to this evaluation, we see which recording conditions degrade more the

results, what effect the mismatch have on the results and, how much the adap-

tation can fix these effects.



Version abrégée

A l’heure actuelle, quand les conditions sont contrôlés, les systèmes de recon-

naissance automatique de locuteur possèdent d’excellentes performances lorsqu’il

s’agit de discriminer entre des voix de locuteurs. Cependant, dans les activités

d’investigation (par exemple, les appels anonymes et les écoutes téléphoniques)

les conditions dans lesquelles les enregistrements sont effectués ne peuvent être

contrôlés et posent un défi à la reconnaissance automatique de locuteurs. Cer-

tains facteurs qui introduisent une variabilité dans les enregistrements peuvent

être les différences dans les combinés téléphoniques, dans le canal de transmission

et dans l’appareil d’enregistrement.

La force de la preuve, estimée à l’aide de modèles statistiques des intra- et

inter-variabilités de la source, est exprimée sous la forme d’un rapport de vraisem-

blance, i.e., la probabilité d’observer les caractéristiques de l’enregistrement en

question dans le modèle statistique de la voix du suspect étant donné les deux

hypothèses : le suspect est la source de l’enregistrement en question et le locuteur

à l’origine de l’enregistrement en question n’est pas le suspect.

Le principal problème non résolu dans la reconnaissance automatique de locu-

teurs en sciences forensiques est la manière de traiter les conditions d’enregistrement

différentes. Les conditions d’enregistrement différentes doivent être considérées

dans l’estimation du rapport de vraisemblance, car elles peuvent introduire des

erreurs importantes.

Dans ce travail, on traite et analyse ce système état d’oeuvre. Le système

de reconnaissance automatique du locuteur pour des fins juridiques consiste de

plusieurs parties, tel que l’extraction des caractéristiques et le modelage. Nous

nous avons concentré sur la partie de modélisation, la formation des modèles qui

peuvent être décomposés en deux espaces, le sous-espace de locuteur et de session.

Cette technique, appelée Analyse Factorielle Commune (JFA), est l’état d’ouvre

dans les systèmes de vérification du locuteur. En utilisant la propriété de décomposition

en deux sous-espace, nous essayons de résoudre le problème de conditions différentes

en adaptant le sous-espace de session des enregistrements d’entrâınement à un

nouveau sous-espace de session (qui est sous des conditions différentes).
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Pour estimer le sous-espace de locuteur et de session, nous avons besoin de cer-

taines bases de données, par exemple une base de données contenant les traces,

et un autre contenant des enregistrements du suspect. Ces bases de données

doivent être enregistrées dans plusieurs conditions pour simuler un cas réel ju-

ridique où incompatibles est présent. Quelques exemples de telles conditions sont

les téléphones portables et le reseau de téléphone fixe.

Dernièrement, une évaluation du système est présentée à la fin du travail.

Grâce à cette évaluation, on peut voir quelles conditions d’enregistrement dégradent

plus les résultats, quel effet a le désaccord sur les résultats, et combien l’adaptation

peut fixer ces effets.



Chapter 1

Introduction

1.1 Forensic Automatic Speaker Recognition

Automatic speaker recognition systems, that have been shown to perform a high

accuracy in controlled conditions, are an attractive option for forensic speaker

recognition tasks because forensic cases often include large amounts of audio

data which are difficult to evaluate within the time constraints of an investigation

or analysis required by the courts. The traditional aural-perceptual and semi-

automatic speaker recognition techniques used in forensic speaker recognition

can be complemented by the automatic recognition systems. These traditional

techniques require a high degree of mastery of a language and its nuances, and

experience in extracting and comparing relevant characteristics. Modern criminal

activity spans several countries, there may be cases in which there is a need to

analyze speech in languages where sufficient expertise is unavailable.

The last years, the interest in the use of automatic speaker recognition tech-

niques for forensic has increase and several research groups around the world have

been working in this problem. One of the requirements of this systems is that

the methods used and the results must be understandable an interpretable by

the courts.

1.2 Mismatched recording conditions

In forensic speaker recognition caseworks, the recordings analyzed often differ due

to telephone channel distortions, ambient noise in the recording environments,

the recording devices, as well as their linguistic content and duration. These

factors may influence aural, instrumental and automatic speaker recognition. In

many cases, the recordings are provided by the police or the court and the forensic

expert does not have a choice in defining the recording conditions for the suspect,

1



2 CHAPTER 1. INTRODUCTION

and additional recordings cannot be made. If there is a mismatch in the technical

(encoding and transmission) and acoustic conditions between the recordings of

the databases used, erroneous or misleading results can appear when comparisons

between them are made, and therefore, it is a prior necessity to reduce and

quantify the effect of the mismatch.

In this project, we focus on forensic automatic speaker recognition and the

effect of mismatched recording conditions of the databases used on the strength

of evidence and how to solve the problem using the state-of-the-art techniques.

1.3 Joint Factor Analysis

In state-of-the-art methods of speaker verification, speaker variability is assumed

to be of primary importance but it has long been recognized that session variabil-

ity is a serious problem. If a systematic model of session variability is integrated

with an effective model of speaker variability could prove to be useful in speaker

verification. As a first attempt at this problem, a model of session variability was

proposed in [11] which was referred as eigenchannel MAP. In [5] was showed how

this model can be integrated with standard models of speaker variability, namely

classical MAP [12] and eigenvoice MAP [10], to produce a model of speaker and

session variability which was referred as joint factor analysis.

The purpose of this project is to find a method that allows us to obtain

a speaker model in a way which is immune to the channel effects or at least

one that allows us to adapt the mismatched conditions. We assume that each

speaker- and channel-dependent supervector can be decomposed into a sum of

two supervectors, one of which lies in the speaker space and the other in the

channel space. Given an enrollment recording for a speaker we can disentangle the

speaker and channel effects in the corresponding speaker- and channel-dependent

supervector by calculating the joint posterior distribution of the speaker and

channel factors. An estimate of the speaker supervector which is immune to the

channel effects in the enrollment recording can be obtained (in theory at least)

by suppressing the contribution of the channel factors, and this estimation can

be adapted to new session conditions.

1.4 Objectives of the thesis

The main goal of this project is to measure and compensate the effects of mis-

match that arise in forensic case conditions due to the technical (encoding and

transmission) and acoustic conditions of the recordings of the databases used.

For this purpose, the joint factor analysis technique was proposed to solve the

problem.
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1.5 Organization of the thesis

This thesis is organized as follows:

• Chapter 1: Introduction and presentation of the objectives and contribu-

tions of the thesis.

• Chapter 2: Discussion of the state-of-the-art technique for speaker recogni-

tion and verification systems, the joint factor analysis.

• Chapter 3: Description of the process followed to create and adapt a speaker

model using the joint factor analysis.

• Chapter 4: Evaluation of the results obtained in all the cases, matched

conditions, mismatched conditions and adapted conditions.

• Chapter 5: The summary and conclusion of the thesis, with a discussion of

possible extensions of the present work.

• Appendix A: Description of forensic speaker recognition databases used for

the validation of the methods.





Chapter 2

Joint Factor Analysis

In this chapter, the theory underlying the Joint Factor Analysis technique will

be described. Furthermore, we present some algorithms and methods to compute

and estimate the parameters of this kind of model (also called hyperparameters).

The mathematic development and simplification of the algorithms can be found

in [5] and [6].

2.1 The JFA model

The theory underlying classical MAP, eigenvoice MAP and eigenchannel MAP

are combined to create the factor analysis model. We assume a fixed GMM

structure containing a total of C mixture components and an acoustic feature

vector of dimension F.

The decomposition of the speaker- and channel-dependent supervector into

a sum of two supervectors, one of which depends on the speaker and the other

on the channel, is the basic principle of this technique. The speaker and channel

supervectors are statistically independent and normally distributed. The dimen-

sions of the covariance matrices of these distributions are (CF xCF ).

Let M(s) be the speaker supervector for a speaker s and let m denote the

speaker- and channel-independent supervector. The way to estimate m is to take

the supervector from a Universal Background Model (UBM). In classical MAP it

is assumed that, for a randomly chosen speaker s, M(s) is normally distributed

with mean m and a diagonal covariance matrix d2. The next expression describe

it in terms of hidden variables:

M(s) = m+ dz(s) (2.1)

5



6 CHAPTER 2. JOINT FACTOR ANALYSIS

where z(s) is a hidden vector distributed according to the standard normal

density, N(z|0, I ). (The expectation of M(s) is m and its covariance is d2.)

Only the mixture components observed in the adaptation data can be updated

using the MAP adaptation. Thus, if the number of mixture components C is

large, classical MAP tends to saturate slowly in the sense that large amounts of

enrollment data are needed to use it to full advantage.

The pressence of a rectangular matrix v of dimensions CF xR where R ≪
CF is assumed in eigenvoice MAP. Thus, for a randomly chosen speaker s,

M(s) = m+ vy(s) (2.2)

where y(s) is a hidden Rx 1 vector having a standard normal distribution.

Eigenvoice MAP tends to saturate much more quickly than classical MAP since

the dimension of y(s) is smaller than that of z(s). This approach to speaker

adaptation suffers from the drawback that, in estimating v from a given training

corpus, it is necessary to assume that R is less than or equal to the number of

training speakers [10]. Hence, to estimate v properly, a large number of training

speakers are needed. The eigenvoice MAP estimate of the speaker’s supervector is

constrained to lie in the subspace spanned by the training speaker’s supervectors

even if the ’true’ speaker supervector lies elsewhere.

Classical MAP and eigenvoice MAP complement each other due to the strengths

and weaknesses of each other. (Eigenvoice MAP is preferable if small amounts of

data are available for speaker adaptation and classical MAP if large amounts are

available.) The next combination strategy assume a decomposition of the form

M(s) = m+ vy(s) + dz(s) (2.3)

where y(s) and z(s) are assumed to be independent and to have standard

normal distributions. In other words, M(s) is assumed to be normally distributed

with mean m and covariance matrix vv∗+d2. The components of y(s) are called

common speaker factors and the components of z(s) are special speaker factors;

v and d are factor loading matrices. The speaker space is the affine space defined

by translating the range of vv∗ by m. If d=0, then all speaker supervectors are

contained in the speaker space; in the general case (d ̸= 0) the term dz(s) serves

as a residual which compensates for the fact that this type of subspace constraint

may not be realistic.

In order to incorporate channel effects, we suppose a set of given recordings

h = 1, ...,H(s) of a speaker s. For each recording h, let Mh(s) denote the corre-

sponding speaker- and channel-dependent supervector. As in [11], the difference

between Mh(s) and M(s) can be accounted for by a vector of common channel

factors xh(s) having a standard normal distribution. That is, we assume that

there is a rectangular matrix u of low rank (the loading matrix for the channel

factors) such that
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M(s) = m+ vy(s) + dz(s)

Mh(s) = M(s) + uxh(s) (2.4)

for each recording h = 1, ...,H(s). An important detail is that the speaker

factors are assumed to have the same values for all recordings of the speaker

whereas the channel factors vary from one recording to another. We refer as the

channel space the low-dimensional subspace of the supervector space, namely the

range of uu∗.

Thus, in its current form, the joint factor analysis model is specified as follows.

If RC is the number of channel factors and RS the number of speaker factors,

the model is specified by a quintuple Λ of the form (m, u, v, d, Σ) where m

is CF x 1, u is CF xRC , v is CF xRS , and d and Σ are CF xCF diagonal

matrices. To explain the role of Σ, fix a mixture component c and let Σc be

the corresponding block of Σ. For each speaker s and recording h, let Mhc(s)

denote the subvector of Mh(s) corresponding to the given mixture component.

We assume that, for all speakers s and recordings h, observations drawn from

mixture component c are distributed with mean Mhc(s) and covariance matrix

Σc .

The factor analysis model can be reduced to the eigenvoice MAP in the case

where d=0 and u=0 . The classical MAP is obtained if u=0 and v=0. And

finally, if we assume that M(s) has a point distribution instead of the Gaus-

sian distribution specified by the equation 2.1 and that this point distribution is

different for different speakers we obtain the eigenchannel MAP.

Figure 2.1: In the PCA case, a speaker- and channel-dependent supervector
M can be written as a sum of two supervectors, one of which (S) lies in the
speaker space and the other (C) lies in the channel space (in accordance with the
parallelogram rule). In the general case, speaker supervectors are distributed in
the neighborhood of the speaker space.

In order to ensure that the model inherits the asymptotic behavior of classical

MAP the special speaker factors z(s) are included, but they are costly in terms
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of computational complexity. The reason for this is that, although the increase

in the number of free parameters is relatively modest since (unlike u and v) d is

assumed to be diagonal, introducing z(s) greatly increases the number of hidden

variables.

We will use the term Principal Components Analysis (PCA) to refer to the

case where d=0. The model is quite simple in this case since the basic assump-

tion is that each speaker- and channel-dependent supervector is a sum of two

supervectors, one of which is contained in the speaker space and the other in the

channel space. This decomposition is actually unique since the range of uu∗ and

the range of vv∗, being low dimensional subspaces of a very high dimensional

space, (typically) only intersect at the origin (see Fig. 2.1).

2.2 Speaker variability estimation

The supervector defined by a UBM can serve as an estimate of m and the UBM

covariance matrices are good first approximations to the residual covariance ma-

trices Σc (c = 1, ..., C). The problem of estimating v in the case where d=0 was

addressed in [10] and a very similar approach can be adopted for estimating d in

the case where v=0. We first summarize the estimation procedures for these two

special cases and then explain how they can be combined to tackle the general

case, [8].

2.2.1 Baum-Welch statistics

Given a speaker s and acoustic feature vectors Y1, Y2, ..., for each mixture com-

ponent c we define the Baum-Welch statistics in the usual way:

Nc(s) =
∑
t

γt(c) (2.5)

Fc(s) =
∑
t

γt(c)Yt (2.6)

Sc(s) = diag(
∑
t

γt(c)YtY
∗
t ) (2.7)

where, for each time t, γt(c) is the posterior probability of the event that the

feature vector Yt is accounted for by the mixture component c. We calculate

these posteriors using the UBM.

We denote the centralized first- and second order Baum-Welch statistics by

F̃c(s) and S̃c(s):

F̃c(s) =
∑
t

γt(c)(Yt −mc) (2.8)
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S̃c(s) = diag(
∑
t

γt(c)(Yt −mc)(Y
∗
t −mc)) (2.9)

where mc is the subvector of m corresponding to the mixture component c.

In other words,

F̃c(s) = Fc(s)−Nc(s)mc (2.10)

S̃c(s) = Sc − diag(Fc(s)m
∗
c +mcFc(s)

∗ −Nc(s)mcm
∗
c) (2.11)

LetN(s) be the CF xCF diagonal matrix whose diagonal blocks areNc(s)I (c =

1, ..., C). Let F̃ (s) be the CF x 1 supervector obtained by concatenating F̃c(s) (c =

1, ..., C). Let S̃(s) be the CF xCF diagonal matrix whose diagonal blocks are

S̃c(s) (c = 1, ..., C).

2.2.2 Training an eigenvoice model

In this section we consider the problem of estimating m, v and Σ under the

assumption that d=0. We assume that initial estimates of the hyperparameters

are given. (Random initialization of v works fine in practice.)

2.2.2.1 The posterior distribution of the hidden variables

For each speaker s, set l(s) = I + v∗Σ−1N(s)v. Then the posterior distribution

of y(s) conditioned on the acoustic observations of the speaker is Gaussian with

mean l−1(s)v∗Σ−1F̃ (s) and covariance matrix l−1(s). (See [10], Proposition 1.)

We will use the notation E[· ] to indicate posterior expectations; thus E[y(s)]

denotes the posterior mean of y(s) and E[y(s)y∗(s)] the posterior correlation

matrix.

2.2.2.2 Maximum likelihood re-estimation

This entails accumulating the following statistics over the training set where the

posterior expectations are calculated using initial estimates of m, d, Σ and s

ranges over the training speakers:

Nc =
∑
S

Nc (c = 1, ..., C) (2.12)

Ac =
∑
S

Nc(s)E[y(s)y∗(s)] (c = 1, ..., C) (2.13)

C =
∑
S

F̃ (s)E[y∗(s)] (2.14)



10 CHAPTER 2. JOINT FACTOR ANALYSIS

N =
∑
s

NS). (2.15)

For each mixture component c = 1, ..., C and for each f = 1, ..., F , set i =

(c − 1)F + f let vi denote the ith row of v and Ci the ith row of C. Then v is

updated by solving the equations

viAc = Ci (i = 1, ..., CF ) (2.16)

The update formula for Σ is

Σ = N−1(
∑
S

S̃(s)− diag(Cv∗)). (2.17)

(See [10], Proposition 3.)

2.2.2.3 Minimum divergence re-estimation

Given initial estimates m0 and v0, the update formulas for m and v are

m = m0 + v0µy (2.18)

v = v0T
∗
yy (2.19)

Here

µy =
1

S

∑
s

E[y(s)], (2.20)

T ∗
yyTyy =

1

S

∑
s

E[y(s)y∗(s)]− µyµ
∗
y (2.21)

(i.e. Cholesky decomposition), S is the number of training speakers, and the

sums extend over all speakers in the training set. (See [5], Theorem 7.) The role

of this type of estimation is to get good estimates of the eigenvalues corresponding

to the eigenvoices.

2.2.3 Training a diagonal model

An analogous development can be used to estimate m, d and Σ if v is constrained

to be 0.
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2.2.3.1 The posterior distribution of the hidden variables

For each speaker s, set l(s) = I + d2Σ−1N(s). Then the posterior distribution

of z(s) conditioned on the acoustic observations of the speaker is Gaussian with

mean l−1(s)dΣ−1F̃ (s) and covariance matrix l−1(s).

Again, we will use the notation E[· ] to indicate posterior expectations; thus

E[z(s)] denotes the posterior mean of z(s) and E[z(s)z∗(s)] the posterior corre-

lation matrix.

It is straightforward to verify that, in the special case where d is assumed to

satisfy

d2 =
1

r
Σ, (2.22)

this posterior calculation leads to the standard relevance MAP estimation

formulas for speaker supervectors (r is the relevance factor). The following two

sections summarize data-driven procedures for estimating m, d and Σ which

do not depend on the relevance MAP assumption. It can be shown that when

these update formulas are applied iteratively, the values of a likelihood function

analogous to that given in Proposition 2 of [10] increase on successive iterations.

2.2.3.2 Maximum likelihood re-estimation

This entails accumulating the following statistics over the training set where the

posterior expectations are calculated using initial estimates of m, d, Σ and s

ranges over the training speakers:

Nc =
∑
S

Nc (c = 1, ..., C) (2.23)

a =
∑
S

diag(N(s)E[z(s)z∗(s)]) (2.24)

b =
∑
S

diag(F̃ (s)E[z∗(s)]) (2.25)

N =
∑
s

N(S). (2.26)

For i = 1, ..., CF let and di the ith entry of d and similarly for ai and bi Then

d is updated by solving the equation

diai = bi (2.27)

for each i. The update formula for Σ is

Σ = N−1(
∑
S

S̃(s)− diag(bd)). (2.28)
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2.2.3.3 Minimum divergence re-estimation

Given initial estimates m0 and d0, the update formulas for m and d are

m = m0 + d0µz (2.29)

d = d0Tzz (2.30)

where

µz =
1

S

∑
s

E[z(s)], (2.31)

Tzz is a diagonal matrix such that

T 2
zz = diag(

1

S

∑
s

E[z(s)z∗(s)]− µzµ
∗
z), (2.32)

S is the number of training speakers, and the sums extend over all speakers

in the training set.

We will need a variant of this update procedure which applies to the case

where m is forced to be 0. In this case d is estimated from d0 by taking Tzz to

be such that

T 2
zz = diag(

1

S

∑
s

E[z(s)z∗(s)]). (2.33)

2.2.4 Joint estimation of v and d

There is no difficulty in principle in extending the maximum likelihood and min-

imum divergence training procedures to handle a general factor analysis model

in which both v and d are non-zero (Theorems 4 and 7 in [5]).

In a general factor analysis model all of the hidden variables become corre-

lated with each other in the posterior distributions, therefore joint estimation of

v and d becomes computationally demanding. Given the Baum-Welch statistics,

training a diagonal model runs very quickly and training a pure eigenvoice model

can be made to run quickly (at the cost of some memory overhead) by suitably

organizing the computation of the matrices l(s) in Sec. 2.2.2.1. Unfortunately, in

the general case, no such computational short cuts seem to be possible. Further-

more, many iterations of joint estimation are needed to estimate d properly even

if the eigenvoice component v is carefully initialized, and, it is difficult to judge

when the training algorithm has effectively converged because the contribution of

d to the likelihood of the training data is minor compared with the contribution

of v.
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2.2.5 Decoupled estimation of v and d

An alternative training regimen is presented to where the training speaker are

divided into two disjoint sets. The larger set is used to estimate m and v and

the smaller to estimate d and Σ.

Specifically, a pure eigenvoice model to the larger training set is fit using the

procedures described in Sec. 2.2.2.2 and 2.2.2.3. Then, for each speaker s in the

residual training set, the MAP estimate of y(s) is calculated, namely E[y(s)], as

in Sec. 2.2.2.1. This gives us a preliminary estimate of the speakers supervector

s, namely

s = m+ vE[y(s)]. (2.34)

The speakers Baum-Welch statistics is centralized by subtracting the speakers

supervector (applying the formulas in Sec. 2.2.1 with m replaced by s). Finally,

these centralized statistics are used together with the procedures described in

Sec. 2.2.3.2 and 2.2.3.3 to estimate a pure diagonal model with m = 0. This

gives us estimates of d and Σ.

The training algorithm converges rapidly since it uses only the diagonal and

eigenvoice estimation procedures.

2.3 Training the speaker and session variability subspaces

The speaker and session variability subspaces - described by the transformation

matrices v and u - must be appropriately estimated in order to obtain an effective

factor analysis model. These matrices should represent the types of inter- and

intra-speaker variations expected within and between recording sessions. For

this purpose, databases containing a large number of speaker each with several

independently recorded sessions are needed to train the subspaces. This training

database should include a variety of channels, handset types and environmental

conditions that closely resembles the conditions on which the eventual system is

to be used.

Estimates for the transformation matrices v and u can be obtained in dif-

ferent ways as it was explained in [14]. Four different options for how to obtain

these subspace transformation matrices are examined in this section. The Alize’s

library, that implements an algorithm to train a JFA model, uses the disjoint

estimation method.

2.3.1 Principal Component Analysis

Each utterance in the training dataset is first converted into a single observa-

tion by training a relevance MAP adapted GMM. From these observations, the

within- and between-class scatter matrices are then calculated in order to capture
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the intra-speaker and inter-speaker variability, respectively. The principal com-

ponents of these scatter matrices are determined through eigen decomposition,

with the factors corresponding to the RC and RS largest eigenvalues retained and

used to form the transform matrices v and u respectively.

Even if the PCA analysis is good starting point for further analysis, it has

some shortcomings. Firstly, each utterance is reduced to a single point estimate

through the relevance MAP adaptation process. This approach does not fully

use all data available when calculating the transformation matrix. Secondly, the

optimization criterion or training method used in speaker model training is not

used by this approach and will therefore be suboptimal for this task.

2.3.2 Simultaneous estimation of v and u

The simultaneous approach use an EM algorithm with the speaker and session

factors y(s) and xh(s) as hidden variables to refine u and v. A maximum likeli-

hood criterion over the entire dataset is optimized with each speaker s optimized

as per the speaker model training described above. This method is described in

[9] with the transformation matrix optimization equations presented in [10].

This approach addresses the issues highlighted for the PCA approach, specif-

ically using all data available in the matrix optimization as well as optimizing

the same criterion as the speaker model enrollment. Compared to PCA, the si-

multaneous approach therefore provides a more refined and theoretically optimal

solution for training both u and v .

As the simultaneous method employs ML as the optimization criterion it will

fit the training data as well as it can. Considering the purpose of having separate

subspaces, this result may actually not be desirable. Specifically, these subspaces

have been termed speaker and channel subspaces but there is no means within

an ML framework to constrain the u to capture only session variability and not

capture speaker variability. If, for instance, v is not of high enough rank, there

will be significant speaker variability captured by u.

As in speaker model training the value and information contained in xh(s) is

effectively discarded, any speaker information captured in u will also be discarded.

It should be noted that the simultaneous optimization is performed under

the assumption that d=0, to ensure that as much of the observed variability is

modeled by the low-rank speaker and session spaces.

2.3.3 Disjoint estimation of v and u

Matrices u and v can be optimized independently in an attempt to explicitly

capture the variability they are intended to model.

The optimization equations presented in [10] are again used to train u but

with µ(s) estimated by a very loosely constrained relevance MAP, that is, by
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setting it to be very small. The reason of using a small value is that the relevance

MAP adaptation will be preferred to model any common speaker characteristics

found across sessions for a given speaker s in the training dataset and that u will

be preferred only to capture the differences between sessions of the same speaker,

that is, the inter-session variability.

To train v we use the model without u and with no relevance MAP (d=0).

This approach forces v to represent as much of the variability in the training

dataset as possible.

As it is not directly optimizing the ML criterion, the disjoint optimization

approach will generally produce a lower overall likelihood than the previous ap-

proach , however, u is more likely to fulfill its role in modeling only the session

variability.

2.3.4 Coupled estimation of v and u

Similar to the disjoint approach, the coupled estimation has the exception that an

attempt is made to explicitly remove session variation during the optimization

of v by incorporating a pre-trained session variability component (u). Under

the coupled approach, variability likely to be caused by session conditions, as

described by u, is modeled explicitly.

The same procedure as in the disjoint estimation is used to train u. Once op-

timization of u is complete, the procedure followed in the simultaneous approach

is used to optimize v including u into the FA model for each speaker. However,

to perform this optimization, u is held constant rather than re-estimated. The

optimization of v is once again performed under the assumption of no relevance

MAP component (d=0).





Chapter 3

Process Description

In this chapter, the whole process to adapt the speaker model is described from

the feature extractor stage to the result stage. All the steps are explained and

some alternatives are shown. In this project, we have focused in two systems to

see the factor analysis performance, one is a speaker verification system and the

other is a forensic automatic speaker recognition system.

3.1 Database

Data from the Polyphone IPSC-03 database was used to develop an experimental

framework. This database was chosen for two main reasons. First, the datasets

cover a wide range of acoustic (fix telephone, cell phone and microphone) allowing

for vigorous testing under mismatched conditions. Secondly, this database con-

tains three different kinds of recordings (reference database, controlled database

and trace database). The database was recorded by Philipp Zimmerman, Damien

Dessimoz and Filippo Botti from the Scientific Police Institute of Université de

Lausanne (UNIL), and Anil Alexander and Andrzrej Drygajlo from the Signal

Processing Intitute of École Polytechnique Fédérale de Lausanne (EPFL) [1].

This database has 62 useful speakers, all males. Each speaker has record-

ings in the three different conditions above. The recordings have three different

modes; normal mode (reading a printed text), spontaneous mode (involving two

simulated situations) and the dialog mode (reading a text in the tone of conver-

sation).

To realize the experiments we have divided the database in three subsets of

speakers. The first subset contains 35 speakers to train a UBM. The second is

formed with 20 speakers to play the role of imposters or the population database.

And the last one involves 7 speakers to play the role of suspects.

17
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As said before, the database is divided in three parts (population, controlled

and reference database). In the forensic framework, each subset has a special

purpose which will be described below.

The population database (P) is used to model the variability of the speech

of all the potentially relevant sources using the automatic speaker recognition

method. The calculated between-sources variability pdf is then used to estimate

the denominator of the likelihood ratio p(E|H1). Ideally, the technical charac-

teristics of the recordings (e.g., signal acquisition and transmission) should be

selected according to the characteristics analyzed in the trace.

The reference database (R) is recorded with the suspected speaker to model

his/her speech with the automatic speaker recognition method. Speech utterances

should be produced in the same way as those of the P database. The suspected

speaker model obtained is then used to calculate the value of the evidence (E)

by comparing the questioned recording with the model.

The controlled database (C) is recorded with the suspected speaker to eval-

uate her/his within-source variability when the utterances of this database are

compared to the suspected speaker model. The calculated within-source variabil-

ity pdf is then used to estimate the numerator of the likelihood ratio p(E|H0).

The recording of the C database should be constituted of utterances as close as

possible to the trace, according to the technical characteristics, quantity, and

style of the speech.

The Polyphone IPSC-03 database is ideally organized to simulate a real foren-

sic case. A complete description of the database can be found in appendix A.

3.2 Feature extraction

Mel-Frequency Cepstral Coefficients (MFCC) is one of the most popular feature

extraction methods used in speaker verification and identification systems. It is

based on the properties of human auditory system on the perception of frequen-

cies. Thus, it analyses more in detail the lower frequencies and more roughly

the highest frequencies. Here is the configuration parameters used in the feature

extractor:

• Frame size of 25 ms.

• Frame shift of 10 ms.

• Hamming window.

• Number of filters 24.

• Number of cepstral coefficient 12

• Use of the log-energy.
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• Use of the first and second derivative (delta and acceleration).

• Use of CMS (Cepstral Mean Subtraction).

• Use of energy normalization.

• The triangular filter bank has a low frequency of 100 Hz and a high fre-

quency of 7,2 kHz for the recordings sampled at 16 kHz (GSM and PSTN)

and 5 kHz for those sampled at 11,025 kHz (room microphones).

3.3 Universal Background Model

In order to estimate the speaker- and channel-independent supervector needed to

create the joint factor analysis model, an Universal Background Model (UBM)

was trained.

To train the UBM, all the speakers were used except those that will play the

role of suspects and those that will play the role of imposters. Thus, a total of 35

speakers were used for the train. This UBM has a diagonal Gaussian distribution

of 64 mixtures.

The most important part was to decide if train an UBM for each condition

or train a global UBM regarding all possible conditions. Finally we decided to

choose the second option. Using all the condition, the UBM will be channel-

independent and will not produce a source of mismatch in the speaker model.

Forensic laboratories have databases each time larger and larger, and new

channel conditions are now available. Thus, the idea of training a UBM, which

is speaker-independent, can now have a sense of channel-independent.

We used the reference database of each speaker to create the UBM. So finally

we have a UBM created with 35 speakers and 3 recordings per speaker, doing a

total of 105 recordings.

3.4 Speaker and Session Models

To follow the methodology of a speaker verification system and a forensic auto-

matic speaker recognition system, two subsets of speaker have been used.

The first subset was used to estimate the distribution curve of the H0 hy-

pothesis, where the suspected speaker is the source of the questioned recording.

It contains a total of 7 speakers to play the role of suspects.

The second subset was used for the same purpose as the first one, but with

this database we estimate the H1 hypothesis, where the speaker at the origin of

the questioned recording is not the suspected speaker. This subset has a total of

20 speakers to simulate the imposters or the population database.

For each speaker, we have train a set of 5 models for comparison between

them. These models are known as Speaker model, True Speaker model, Session
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model, Substitution model and Joined model. The first three models will be

described in this section and we will leave the Substitution and Joined model

(Sec. 3.6) after describe the adaptation methods (Sec. 3.5).

To train the speaker model, we have used the reference database as in the

case of the UBM. We have 3 recordings per speaker to create each model.

3.4.1 True Speaker Model

This model regards only the speaker subspace. It creates a GMM using the next

expression:

M(s) = m+ vy(s), (3.1)

where m is the session-speaker dependent supervector mean of dimension CF,

v is CF xCF diagonal matrix and y(s) is the speaker vector (y(s) is normally

distributed among N(0|I)). Matrix v satisfies the following equation:

I = τv∗Σ−1v, (3.2)

where τ is the relevance factor required in the standard MAP adaptation.

3.4.2 Session Model

This is a model that takes only into account the channels subspace. The original

Alize’s source code creates a model using

Mh(s) = m+ uxh(s). (3.3)

This source code was modified to obtain a model as

Mh(s) = uxh(s), (3.4)

where u is the eigenchannel matrix of low rank Rc (a CF xRc matrix) and

xh(s) are the session factors (xh(s) is normally distributed among N(0|I) and

theoretically does not dependent on s). The number of session factors was fixed

to 40 (in [3] was shown that this rank obtain the best results).

Apart from the session model of each speaker, we have trained one global

model per condition, using all the possible recordings, to create a more complete

model of each condition.

3.4.3 Speaker Model

The speaker model is a complete model taking into account the speaker and

channel subspaces. It creates a GMM as
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Mh(s) = m+ vy(s) + uxh(s), (3.5)

so finally we obtain the expression of the JFA model.

The parameters that compose this model were previously described in Sec. 3.4.1

and 3.4.2.

3.5 Adaptation

Due to the ability of joint factor analysis to decompose a speaker model into two

well defined subspaces (speaker and channel subspace), we can adapt mismatched

conditions in a simple way. There are different methods of adaptation that have

been proven to have a good performance (as we can see in [3] and [4]). We will

explain the most important strategies.

A training set in which there are multiple recordings of each speaker is needed

in order to use the speaker-independent hyperparameter estimation algorithms,

it seems very unlikely that speaker and session effects can ever be broken out

using a training corpus in which there is just one recording for each speaker.

Figure 3.1: We estimate the speaker-independent hyperparameters on a larger
ancillary training corpus that contains multiple recordings for each speaker. This
is followed by adapting the hyperparameters that model inter-speaker variability
(namely m, v and d) to the target speaker population; we assume that channel
effects are invariant so we keep u fixed. [7]

To deal with this problem, first, we estimate a full set of hyperparameters

m, u, v, d and Σ on the ancillary training corpus and then, holding u and Σ

fixed, re-estimate m, v and d on the enrollment data (but not the test data) for

the target speakers (Fig. 3.1). In other words, the hyperparameters associated

with channel space are kept fixed and only the hyperparameters associated with

the speaker space are re-estimated. It is necessary to keep the orientation of the

speaker space fixed. This procedure is the base of the strategy called traditional

approach.

There are also three techniques for combining information from a data-rich

domain and limited target domain data [4]. The main idea is to deal with this
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limited data problem by exploiting data from a data-rich domain in the session

subspace estimation procedure in order to achieve a dual goal. The first purpose

is to obtain a more robust estimation procedure by adding large amounts of data.

The second objective is to incorporate certain session variability characteristics

not present in the limited available target domain but that could appear in the

test domain. These techniques are called joining matrices, pooled statistics and

scaling statistics.

Finally, from all the methods described below, we decided to implement the

traditional approach technique and the joining matrices method.

3.5.1 Traditional Approach

In the traditional approach method [3], suppose we have a segment of speech Y

to test and a targeted speaker s with a model learned from speech T. By using

the session factor decomposition, we obtain

m(hY ,sY ) = m+ vysY + uxhY
(3.6)

and

m(hT ,sT ) = m+ vysT + uxhT
(3.7)

To compensate the session component in the score computation the next

strategy is used. The test speaker and the target speaker are assumed to have the

same identity. In this case, ysY (speaker component in the test) is not estimated,

but it is assumed to be equal to the speaker component in the target speaker

ysT . The channel component (uxhY
) is estimated in the test Y. To compensate

the channel mismatch, the channel component in the target mean supervector

(uxhT
) is replaced by the one estimated in the test (uxhY

). The vector m from

the UBM in the score equation remains unchanged. This strategy was adopted

in [10] and [15]. In practice, a compensation is needed in the world model to

avoid session mismatch in the same way as the target model. If world model

compensation is not applied, a negative difference between the likelihoods of the

test data can be observed: the likelihood estimated on the target model can be

larger than the one estimated on the world model. For that reason, the UBM is

trained with all the possible conditions to avoid the mismatch.

3.5.2 Alternative Approach

Taking into account the expressions in 3.6 and 3.7, another approach is proposed.

The alternative approach [3] is a strategy in which all the sessions are con-

sidered and treated separately. For each session, we estimate independently the

session mismatch and the speaker of all other sessions. So, the channel mismatch

can simply be eliminated from each session. However, the session mismatch is
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estimated in the model space, and the session compensation (for the test) must

be performed in the feature space.

To do the latter, we adopt a strategy used in [13], namely

t̂ = t−
M∑
g=1

p(g|t)ugxhY
(3.8)

where t is a frame of size F, p(g|t) is the Gaussian occupation probability of the

component g, and ug is a subset of u corresponding to g. Hence, two options are

available in order to compensate the session mismatch.

1. Feature Space Compensation. All the compensations are performed in the

feature space. This option is interesting because it operates in the feature

space and is independent of the classifier.

2. Symmetrical Compensation. The target models are compensated by elim-

inating the session mismatch directly in the model and the compensation

in the test is performed in the feature space. This new approach is called

symmetrical factor analysis (SFA).

3.5.3 Joining Matrices

A simple way to combine different session variability subspaces is joining session

variability subspaces that have been estimated on different datasets. This process

is carried out by simply stacking the session variability directions estimated in

each one of them in a bigger subspace.

The major advantage of this approach is that subspaces can be treated and

trained independently. From a practical point of view, this property is highly

desirable because we can refine a well-trained reference subspace by simply ap-

pending new session variability information from other domains.

On the other hand, it has some deficiencies. The first one refers to the prin-

ciple of keep the overall size of the joined subspace relatively small, thus, it is

necessary to restrict the size of each contributing subspace, loosing potentially

useful directions of variability. The second one concerns the importance of each

subspace, no particular emphasis is placed on the target domain data because all

the directions play an equal role in the new subspace.

3.5.4 Pooled Statistics

This time, all data is pooled to perform the estimation. An obvious advantage

of this method is that the estimation is performed using a substantial amount of

data, making it potentially more robust. Unfortunately, we can not prevent the

supplementary set to dominate the estimation and to have the biggest effect on

the variability directions.
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3.5.5 Scaling Statistics

Based on the fact that we are usually most interested in the session variability

present in a specific domain (the closest to the target domain conditions), it is

reasonable to think that somehow these data should become more important in

the subspace estimation procedure. Moreover, we should be able to get some

advantage by using all the data available together rather than separately.

The idea of this approach is based on giving a specific weight to each dataset

in the training session variability subspace with a dual purpose. First, allow

the estimation procedure to learn from a broader set of data leading us to more

robust subspace estimation, and second the most important data is highlighted.

This second point is especially necessary when not enough data of this type is

available and the variability presented could be overshadowed by the other types.

Specifically, a previously fixed weight depending on the dataset is used to

scale the first order statistics supervector extracted from each utterance. Thus,

the matrix of first order statistics S, input in the EM procedure for training the

variability subspace, takes the following form:

S = αStgt + (1− α)Sbckg (3.9)

where Sbkg and Stgt are the matrices whose columns are the first order statis-

tics of utterances belonging to target data and other background data available

respectively.

More generally, this could be extended to:

S = α1S1 + α2S2 + ...+ αnSn (3.10)

with
∑n

i=0 ai and n different background sets.

In this way, the weight of each subset in the EM procedure can be balanced

such that the available data can be combined in an optimal way. The problem of

finding the optimal selection of weights is the main disadvantage, and is unique

for each case. Although this can be solved empirically, choosing the weights in a

proportional way to the quantity of data in target domain is a reasonable option,

keeping at least a minimum weight for the rest of the sets.

3.6 Adapted Models

In this section, we will explain how to implement the theory seen previously

( 3.5.1 and 3.5.3). At the beginning, the alternative approach was supposed to

be implemented also, but finally we discarded that option because it works in the

feature space instead of the score domain. Another reason was the difficulty to

implement it using the Alize’s source code.
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The idea is to move the model trained under certain conditions along the

channel subspace to fit the conditions of the test recordings. In other words, we

want to go from Fig.3.2 to Fig.3.3.

Figure 3.2: Initial trained model position

Figure 3.3: Final adapted model position

3.6.1 Substitution Model

This model tries to adapt the session conditions in a simple way. The principal

idea is to obtain the channel conditions of the test recording (we will name it

as C2) and use this information to adapt the trained model (which is under

conditions C1).

The adaptation procedure was done as follows:

1. Obtainment of the true speaker model of a train recording under conditions

C1.

M(s) = m+ vy(s) (3.11)

2. Obtainment of the session model of a test recording under conditions C2.

M′(s) = (uxh)
′(s) (3.12)
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3. Addition of the session model to the true speaker model.

M′′(s) = m+ vy(s) + (uxh)
′(s) (3.13)

4. Generation of the new GMM that we will call as Substitution model.

3.6.2 Joined Model

This approach is similar to the previous one, but instead than change the whole

session model, we complement it with the new session conditions. We will refer,

as in the previous strategy, the conditions in the training recording as C1 and the

conditions in the test recording as C2.

The procedure is as follows:

1. Obtainment of the speaker model of a train recording in conditions C1.

M(s) = m+ vy(s) + uxh(s) (3.14)

2. Obtainment of the session model of a test recording in conditions C2.

M′(s) = (uxh)
′(s) (3.15)

3. Creation of a new session model combining uxh(s) and (uxh)
′(s). The

result will be a new matrix with eigenchannels from C1 and C2, (uxh)
′′(s).

The contribution of each condition in the new matrix can be chosen.

4. Removal of the session subspace from the original model M(s) and addition

of this new session model to the first speaker model to obtain the Joined

model.

M′′(s) = m+ vy(s) + (uxh)
′′(s) (3.16)

5. Generation of the new GMM that we will call as Joined model.

This adaptation does not allowed us to achieve good results in certain situ-

ations, so we decided to discard it when presenting the results and we will just

focus in the substitution procedure.
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3.7 Speaker Verification

In the speaker verification system, we compute the log-likelihood ratio between

the speaker model and the UBM. For this purpose, we have created two datasets

of test recordings, one to obtain scores for the H0 hypothesis and the other for

the H1 hypothesis.

The H0 database, contains recordings where the speaker is the same as the

suspect. The trace database of the suspect was used as the H0 database, it

contains 11 recordings. Doing that, we assure that the suspected speaker is the

source of the questioned recording.

For the H1 database, we have used the trace database of each imposter. In

that case we know that the speaker at the origin of the questioned recording is

not the suspected speaker.

Once we have the 2 databases prepared, we compute the log-likelihood ratio

between the suspect model and the UBM. With these scores, we can estimate the

probability density function of each hypothesis.

We have used 0 as threshold so, for this system, the H0 curve must be above

0 and the H1 curve must be below 0. The performance of the system will be

described in Sec. 4.1.

3.8 Forensic Automatic Speaker Recognition

The FASR system follows the methodology described in [2], where 3 databases

are needed (trace, reference and control database). Fig. 3.4 shows all the steps

and operations to obtain the log-likelihood ratio.

The first step is to obtain the evidence (E), for this purpose we obtain the

log-likelihood between the trace and the suspect model. Then, to estimate the H0

probability density function, we compute the scores between the control database

and the suspect model. The last step is to estimate the H1 probability density

function, for that reason we compute the scores between the trace and the pop-

ulation models.

Once we have the H0 and H1 distribution and the evidence, we proceed to

calculate the log-likelihood ratio. For this purpose we use the expression

LR =
p(E|H0)

p(E|H1)
(3.17)

where LR is the strength of the evidence, and is the ratio that the expert will

present to the court. The performance of the system can be found in Sec. 4.2.
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Figure 3.4: Block diagram of the evidence processing and interpretation sys-
tem. [2]



Chapter 4

Evaluation

We now present a set of results related to the different systems and situations de-

veloped for the JFA framework. First of all, we developed two well differentiated

systems, the first one is a speaker verification system and the second one is a sim-

ulation of a real forensic casework. Each system was tested with three different

situations; these situations are matched conditions, mismatched conditions with

the non-adapted models and mismatched conditions using the adapted models.

These conditions are GSM, PSTN and room microphones (Room acoustic).

To present the results, we used some plots to draw the scores. One of those

plots are the Tippett plots that represents the proportion of the likelihood ratios

greater than a given LR, i.e., P (LR(Hi) > LR), for cases corresponding to the

hypotheses H0 (the suspected speaker is the source of the questioned recording)

and H1 (the speaker at the origin of the questioned recording is not the suspected

speaker) true. The separation between the two curves in this representation is

an indication of the performance of the system or method.

The likelihood ratio value of 1 is important for the forensic case, as it is the

threshold between the support for the hypotheses H0 and H1. This is the reason

why we look at the values of the Tippett curves at this point. The value of the

curve at the point 0 (which is equal to log10(1)) give us the proportion of the

distribution that is above 1. In principle, the results for an ideal system should

be: the 100% of the H0 distribution above 0 (this means that value in 0 is 1) and

the 100% of the H1 curve below 0 (the value of the point 0 is 0).

The first system developed was the speaker verification system; we used it to

check is our adaptation method works correctly in a simple framework. If the

results were not good we would not have proposed to use them in a forensic case.

The next step, and the original project idea, was to create a forensic casework

to study the utility of the adaptation method in a strict and rigorous field. The

process seems to improve the results but there is still work to do to obtain a

29
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perfect adaptation.

The performance of the system varies on many factors, as the number of

speaker playing the role of imposter or population database, the number of record-

ings used to train the session model or the number of speakers to train the UBM.

During this project, several configurations have been used in order to obtain the

best performance of the system. Some of these values can be found at Sec. 3.
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4.1 Speaker Verification

As described in Sec. 3.7, this system compares the log-likelihood ratio between the

suspect and the UBM and makes a decision (the recording belongs to the suspect

or not) comparing the score with the threshold. Thus, if the log-likelihood is

above 0 we can say that the speaker in the recording is the same as the suspect

and if it is below 0, they are two different speakers.

Translating the above to our case, that means that the H0 distribution curve

must be above 0 and the H1 distribution curve below 0.

We will see in the next sections how the effect of mismatched conditions can

influence in the results, and how the adapted model can solve the problem.

The model used to obtain the scores was the speaker model explained in

Sec. 3.4.3, we used that model because it contains information related to the

speaker and the channel subspace. In the case of adapted conditions we used the

substitution model described in Sec. 3.6.1, that is the session adapted model.

We have made four different sets of experiments involving the three different

conditions of the database. In each case, a plot with the three possible situations

is shown (matched, mismatched and adapted conditions).

The situations of matched conditions are drawn in blue; this means that the

speaker model was trained under the same condition as the test recordings. In

color red we can find the mismatched situation, it means that the speaker model

was trained under different condition of the test recordings. Finally, in black, we

can see the results obtained by adapting the speaker model to the conditions of

the test recordings.

Analyzing the results, we can conclude that the pair of conditions where

the system works best is the one where we adapt from GSM to Room acoustic

conditions, all the H0 distribution is above 0 and all the H1 distribution is below

0, so they are quite separated and there is no overlap between the two curves.

Also, we can say that the worst system performance appears when we try to adapt

from PSTN to GSM conditions, the H0 mean is near 0 and the distribution has

a high variance (a large proportion of the results are below 0).

The mentioned graphics are shown below.
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4.1.1 Speaker in GSM and test in PSTN

In this case, we have trained two speaker models, one in PSTN conditions to

perform a test in matched conditions and one in GSM conditions, the last one

serves to make a test in mismatched conditions and in adapted conditions. Using

the PSTN session model, we have adapted the speaker to the test conditions.

The results are presented in the following plots.
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Figure 4.1: Matched, mismatched and adapted conditions (PDF Plot)

In this case, even the results in mismatched conditions are quite good. But

our interest lies in the adaptation process, we can see that the H0 distribution

curve is almost all above 0 and the two distribution are quite far separated.
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4.1.2 Speaker in PSTN and test in GSM

This situation is the opposite of the experiment presented in Sec. 4.1.1, the

speaker model in GSM conditions serves us to perform the matched test and

the speaker model in PSTN is used to the mismatched and adapted test. The

following plots illustrate the performance of this system.
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Figure 4.2: Matched, mismatched and adapted conditions (PDF Plot)

This is the worst case of all experiments done, the adapted H0 is centered in

0 and the variance is quite high. Moreover, the two distributions are very close

and the overlap is quite significant.
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4.1.3 Speaker in GSM and test in Room acoustic

In this experiment, we trained a speaker model in room acoustic conditions and

we used the speaker model in GSM conditions that we had trained for the previous

tests. Once we had the two models, we compute the test using the speaker model

in room acoustic conditions to evaluate the matched case and the speaker model

in GSM conditions for the mismatched and adapted test.

−1.5 −1 −0.5 0 0.5 1 1.5

1

2

3

4

5

6

Log−likelihood Ratio

E
st

im
at

ed
 P

ro
ba

bi
lit

y 
D

en
si

ty

GSM and Room acoustic

 

 
Matched − H0
Matched − H1
Mismatched − H0
Mismatched − H1
Adapted − H0
Adapted − H1

Figure 4.3: Matched, mismatched and adapted conditions (PDF Plot)

This experiment has achieved the best performance, in the case of mismatched

conditions without adaptation, the two distributions are below 0, so the system

will have a high error rate. Nevertheless, all the adapted H0 distribution is above

0 and the overlap is negligible.
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4.1.4 Speaker in Room acoustic and test in GSM

As in Sec. 4.1.2, this case is the opposite of the experiment in Sec. 4.1.3. The

speaker models used are the same but the test conditions are GSM. The speaker

model in GSM conditions is used to compute the matched test and the model in

room acoustic conditions for the mismatched and adapted test.
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Figure 4.4: Matched, mismatched and adapted conditions (PDF Plot)

As in the case studied in Sec. 4.1.2, the adapted H0 curve is centered in 0, but

in this case, the overlap is not as high as in the referred case. Even so, the error

rate can be high due to some scores are below 0, resulting in detection errors.
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4.2 Forensic Automatic Speaker Recognition

The FASR used in a forensic framework was described in Sec. 3.8, the purpose

of this system is to obtain the likelihood ratio that serves as the strength of the

evidence. Three databases are needed for this methodology in order to obtain

the evidence, the H0 distribution and the H1 distribution.

In a forensic casework, it is difficult to have a complete population database

that matches with all the possible conditions or, at least, with the conditions

under which the trace was recorded.

In this section, we simulate four forensic cases involving different conditions.

Thus, as in the verification system (Sec. 4.1), we try to see the performance of

adapting the joint factor analysis model under the case of mismatched conditions.

Each case was developed as follows: firstly, we have computed the results

for the case of matched conditions, where the population database was recorded

under the same conditions of the trace. Secondly, we have obtained the results of

the mismatched conditions situation; there are a mismatch of conditions between

the P database and the T database. And finally, we have adapted the P database

conditions to match with the T database.

The following plots show the performance of the system developed. In blue

we can see the H0 distribution curve (it is the distribution of the scores between

the suspect model and the control database). The H1 distribution (that is the

distribution of the scores between the population database and the trace) is

represented in three colors: red for the matched conditions, magenta for the

mismatched conditions and black for the adapted conditions case.

Theoretically, if the system works perfectly, the black curve should be the

same, or at least very similar, to the red curve. We can see that our method can

adapt quite well the mean but we have a problem with the variance.

As we done previously for the speaker verification system, we can conclude

that the best adaptation is achieved when we adapt from GSM to PSTN condi-

tions. In this case, the method can adapt quite good the H1 mean but the shape

of the distribution is not exactly the same. The worst situation is when we adapt

from GSM to room acoustic conditions. We can see that the variance problem is

also present but this time we must add the problem of mean mismatch.

The referred plots are presented below.
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4.2.1 Population database in GSM and trace in PSTN

In this simulated case, we have trained two sets of population models, one in

PSTN conditions to perform the test in matched conditions and the other in

GSM conditions. As in the verification system, we have used each set of models

to recreate a situation where there is a mismatch between the databases. The

models under PSTN conditions serve as to simulate a case where the trace and

the P database are in the same conditions and we used the other set of models

to see the performance under mismatched and adapted conditions. The results

are presented in the following plots.
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Figure 4.5: Matched, mismatched and adapted conditions (PDF Plot)

In this case, we can see how the mismatched H1 distribution is shift to the

left taking a different position than the matched case. With the adaptation

technique, we fixed this displacement of the curve but we have problems with

the distribution height. This adaptation is one of the most successful we have

achieved, the adapted curve fits pretty well to the matched one. In Tab. 4.1

we can observe the percentage of the distribution which is above 0 for the H0

hypothesis and the percentage below 0 for the H1 hypothesis.
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Figure 4.6: Matched, mismatched and adapted conditions (CDF Plot)
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Figure 4.7: Matched, mismatched and adapted conditions (Tippett Plot)

H0 (> 0) H1 Matched (< 0) H1 Mismatched (< 0) H1 Adapted (< 0)

100% 52.97% 94.82% 38.68%

Table 4.1: Population database in GSM and trace in PSTN (Results)
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4.2.2 Population database in PSTN and trace in GSM

This situation is the opposite of the case presented in Sec. 4.2.1, the population

models in GSM conditions serve us to perform the matched test and the models

in PSTN are used to the mismatched and adapted tests. The following plots

illustrate the performance of this system.
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Figure 4.8: Matched, mismatched and adapted conditions (PDF Plot)

From this experiment we realize that the adapted distribution is shifted to

the position of the matched conditions, however the height and the variance are

different from the matched one. Nevertheless, the adapted curve fits pretty well

to the matched one as in the previous case. The Tab. 4.2 presents the results as

explained in the previous section.
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Figure 4.9: Matched, mismatched and adapted conditions (CDF Plot)
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Figure 4.10: Matched, mismatched and adapted conditions (Tippett Plot)

H0 (> 0) H1 Matched (< 0) H1 Mismatched (< 0) H1 Adapted (< 0)

100% 68.65% 88.83% 61.86%

Table 4.2: Population database in PSTN and trace in GSM (Results)
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4.2.3 Population database in GSM and trace in Room acoustic

For this situation, we trained the population models in room acoustic conditions

and we used the models in GSM conditions that we had trained for the previous

tests. Once we had the two set of models, we compute the test using the models

in room acoustic conditions to evaluate the matched case and the models in GSM

conditions for the mismatched and adapted test.
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Figure 4.11: Matched, mismatched and adapted conditions (PDF Plot)

Surprisingly, this experiment has the worst performance of the four cases,

even if the experiment developed in Sec. 4.1.3 has the best performance in the

speaker verification system. The adapted curve does not fit, in terms of mean

and variance, with the matched distribution and this produce important errors.

The results can be found in Tab. 4.3.
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Figure 4.12: Matched, mismatched and adapted conditions (CDF Plot)
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Figure 4.13: Matched, mismatched and adapted conditions (Tippett Plot)

H0 (> 0) H1 Matched (< 0) H1 Mismatched (< 0) H1 Adapted (< 0)

100% 95.34% 99.84% 69.38%

Table 4.3: Population database in GSM and trace in Room acoustic (Results)
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4.2.4 Population database in Room acoustic and trace in GSM

As in Sec. 4.2.2, this simulation is the opposite of the experiment in Sec. 4.2.3.

The population models used are the same but the trace conditions are GSM. The

population models under GSM conditions are used to compute the matched test

and the models under room acoustic conditions serve for the mismatched and

adapted test.
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Figure 4.14: Matched, mismatched and adapted conditions (PDF Plot)

In this case, we have managed to adapt quite good the H1 mean, compared to

the mismatched conditions, but the problem of unequal variance and height has

to be taken into account, the matched and adapted distributions have a totally

different aspect. In Tab. 4.4 we show the performance of this case.
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Figure 4.15: Matched, mismatched and adapted conditions (CDF Plot)
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Figure 4.16: Matched, mismatched and adapted conditions (Tippett Plot)

H0 (> 0) H1 Matched (< 0) H1 Mismatched (< 0) H1 Adapted (< 0)

100% 97.34% 100% 70.24%

Table 4.4: Population database in Room acoustic and trace in GSM (Results)
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Conclusions and future work

In this work, we handled the state-of-art method presented for modeling the

speaker and session variability, the joint factor analysis. Ideally, in a forensic

framework, all databases (reference, control and population databases) must be

recorded in the same conditions for a better performance. As we can consider that

practically every case is unique, it is almost impossible to have a database with

recordings under the new conditions. This new approach is quite a convenient

technique to solve the problem of mismatch in the databases. One important

criterion that affects the performance of the system is the size of the database

used to model the channel or session conditions, more than one recording per

condition is needed to train a good session model. Furthermore, we need a

database with recordings in several conditions in order to react to any possible

situation.

In the evaluation chapter, we saw that the joint factor analysis models work

well when the databases are recorded in the same conditions. However, in mis-

matched conditions, the performance degrades even reaching the point of working

completely wrong. The performance of the system can be enhanced by applying

an adaptation in the conditions. In this case, the system can work correctly but

not how it would do ideally. We tested only the situation when only one database

is in mismatch, an idea for the future could be evaluate the case of more than

one database in mismatch.

As we said before, the performance of the technique depends not only on the

number of recordings used to model the session but also to other factors. These

factors can be, i.e., the number of speakers used to train the UBM, that is a hy-

perparameter of the joint factor analysis model. Another factor is the number of

speakers used to estimate the H1 distribution curve. The GMM parameters such

the number of mixtures, iterations, the number of features, are important factors

to improve the robustness of the speaker model. In this thesis we tried to obtain

45



46 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

the best results optimizing some parameters. The future work can be focused on

finding the optimal value of the parameters to improve the performance of the

system.

To summarize, the joint factor analysis is a powerful technique to compensate

the mismatch of conditions. In the speaker verification system we have seen that it

can work perfectly, but there is still much work to do in the forensic case because

this field requires a very high accuracy and rigor. The next step is obtain an

adapted distribution that fits perfectly the curve under matched conditions in

order to present it to the court and the experts.
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Appendix A

Description of the Polyphone

IPSC-03 database

This database description has been taken from [1].

This database for forensic speaker recognition was recorded by the Institut

de Police Scientifique (IPS), University of Lausanne, and the Signal Processing

Institute, Swiss Federal Institute of Technology, Lausanne (EPFL). It contains

speech from 73 male speakers, in three different recording conditions and several

different controlled and uncontrolled speaking modes. This database was recorded

between January and June 2005.

The recordings for the database were made in controlled conditions, in a

quiet room, located in the IPS and École des Science Criminélles (ESC) building

of UNIL.

The recording conditions of this database include transmission through a pub-

lic switched telephone network (PSTN), a global system for mobile communica-

tions (GSM) network as well as calling-room acoustic conditions. The recording

room contained a fixed line (PSTN) and mobile (GSM) telephone, and they both

used the Swisscom rtelephone network provider.

The fixed line telephone instrument was a ’Meridian, Northern Telecom r’,

and the mobile handset was a Nokia r8310.

All the telephone calls were made from the recording room to an ISDN server

located at the Signal Processing Institute, EPFL. The European ISDN (DSS1)

transmission standard was used, and an answering machine application was used

to record the calls. The transmitted speech was sampled at 16,000 Hz and

recorded as 16-bit linear PCM Microsoft WAV files.

Along with these recordings, a third recording condition was simulated using

a microphone and recorder placed directly in the recording room. The subjects

spoke into a Sony relectret condenser microphone (CARDIO ECM-23), placed
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at a distance of about 30cm from the mouth of the speaker and connected to a

Sony rportable digital recorder (ICD-MS1). This speech was recorded in MSV

format, at a sampling rate of 11,025 Hz. The cues were presented to the subjects

in the form of a printed Microsoft rPowerPoint presentation (in order to avoid

introducing the sound of a computer in the room), and care was taken to ensure

that the recording room was free of any additional sound-adsorbing material.

The recorded speakers were male, aged between 18 and 50, with a majority

being university-educated students, assistants (between 18 and 30 years of age)

and faculty from within IPS and EPFL. All the utterances were in French.

The recordings of telephonic speech were made in two sessions with each of

the subjects, the first using the PSTN (fixed) recording condition and the second

using the GSM (mobile) recording condition. Additionally, two direct recordings,

per speaker, were made on the microphone-recorder (digital) system described

above. The length of each of these recordings was 10-15 minutes. Thus, four

recordings were obtained, per speaker, in three different recording conditions (one

in PSTN, one in GSM and two in room acoustic conditions). These conditions

were called Fixed, Cellular and Digital respectively.

In addition to the actual text to be read out, the cue sheets contained de-

tailed instructions for completing the task of speaking in three distinct styles.

The first of these was the normal mode which involved simply reading printed

text. The second spontaneous mode involved two simulated situations of a death

threat call and a call to the police informing them of the presence of a bomb in

a toilet. The third (dialog) mode involved reading a text in the tone of a conver-

sation. The recordings (MSV format on the recorder and WAV on the answering

machine) were edited with CoolEdit Pro 2 rand grouped into various ”subfiles”

as described below.

The database contains 11 traces, 3 reference and 3 control recordings, grouped

as the T, R and C sub-databases respectively.

• The T database consists of 9 files with read text and 2 spontaneous files.

These 9 files are edited into three groups of 3 files, each having similar

linguistic content. The spontaneous files are the simulations of calls as

described earlier.

• The R database consists of recordings of read text only. Two of these

recordings are identical one to the other. The content of the R database is

similar to the IPSC-01 and IPSC-02 databases.

• The C database consists of recordings in the three different modes described

above, viz., the normal, spontaneous and dialog.

A total of 73 speakers were recorded for this database, and it should be noted

that the recordings for 63 of these are complete, with the four sets of recordings,
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Figure A.1: Layout of the IPSC03 database.

i.e., PSTN, GSM, and two sets of acoustic room recordings. For the remaining

10 are only partially complete and for whom the fourth set of acoustic-room

recordings, not available (for technical reasons).

The lengths of the recordings vary from a few seconds for the shortest (T40

and T50) to approximately two minutes for the longest (R01 and R02). This

represents a total recording time of approximately 40 to 45 hours.

The nomenclature of the files can be described with an example:

Speaker No.1, in the fixed condition, for the file Control02, with speech in the

normal mode, is called M001FRFC02 NO.wav.

The individual parts of the filename represent:

• M the sex of the speaker - Male

• 001 the chronological ’number’ of the speaker; this number goes from 001

to 073.

• FR the language of speech - French

• C to denote it is a control recording. This is replaced by ’T’ for the trace

and by ’R’ for the reference recordings.

• 02 the number of the subfile. This number can take the values 10, 11, 12,

20, 21, 22, 30, 31 and 32 for the T recordings; 00, 01 and 02 for the R

recordings; and 01, 02 and 03 for the C recordings.

• NO the mode of the speech referring to the normal speaking mode. These

letters are replaced by SP for the spontaneous and by DL for dialog mode.

The layout of this database is illustrated in Fig. A.1.





Bibliography

[1] A. Alexander. Forensic automatic speaker recognition using bayesian interpretation

and statistical compensation for mismatched conditions. PhD thesis, EPFL, 2005.

[cited at p. 17, 49]

[2] A. Drygajlo. Forensic automatic speaker recognition. IEEE Signal Processing Mag-

azine, 24(2):132–135, 2007. [cited at p. 27, 28]

[3] B. G. B. Fauve and D. Matrouf. State-of-the-art performance in text-independent

speaker verification through open-source software. IEEE Trans. Speech Audio Pro-

cess., 15(7):1960–1968, 2007. [cited at p. 20, 21, 22]

[4] J. Gonzalez and B. Baker. On the use of factor analysis with restricted target data

in speaker verification. The Speaker and Language Recognition Workshop, pages

103–108, 2010. [cited at p. 21]

[5] P. Kenny. Joint factor analysis of speaker and session variability: Theory and

algorithms. Tech. Report 06/08-13, CRIM, 2005. [cited at p. 2, 5, 10, 12]

[6] P. Kenny and G. Boulianne. Factor analysis simplified. ICASSP2005, 1:637–640,

March 2005. [cited at p. 5]

[7] P. Kenny and G. Boulianne. Speaker and session variability in gmm-based speaker

verification. IEEE Trans. Speech Audio Process., 15(4):1448–1460, May 2007.

[cited at p. 21]

[8] P. Kenny and N. Dehak. A new training regimen for factor analysis of speaker

variability. March 2008. [cited at p. 8]

[9] P. Kenny and P. Demouchel. Experiments in speaker verification using factor anal-

ysis likelihood ratios. Odyssey: The speaker and language recognition workshop,

pages 219–226, 2004. [cited at p. 14]

[10] P. Kenny and P. Demouchel. Eigenvoice modeling with sparse training data. IEEE

Trans. Speech Audio Process., 13(3):345–354, 2005. [cited at p. 2, 6, 8, 9, 10, 11, 14, 22]

[11] P. Kenny and M. Mihoubi. New map estimators for speaker recognition. Proc.

Eurospeech, September 2003. [cited at p. 2, 6]

53



54 BIBLIOGRAPHY

[12] D. Reynolds and T. Quatieri. Speaker verification using adapted gaussian mixture

models. Digital Signal Processing, 10:19–41, 2000. [cited at p. 2]

[13] C. Vair and D. Colibro. Channel factors compensation in model and feature domain

for speaker recognition. Proc. Odyssey, pages 1–6, 2006. [cited at p. 23]

[14] R. Vogt and B. Baker. Factor analysis subspace estimation for speaker verification

with short utterances. Interspeech, 2008. [cited at p. 13]

[15] R. Vogt and S. Sridharan. Experiments in session variability modelling for speaker

verification. Proc. ICASSP, pages I–987–I–900, 2006. [cited at p. 22]


