
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/151658                     
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/417954186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/151658
mailto:wrap@warwick.ac.uk


Title: Modelling to quantify the likelihood that local elimination of transmission has occurred 
using routine gambiense human African trypanosomiasis surveillance data 

Running title: Quantifying EOT with routine gHAT data 

Christopher N Davis1,2,*, †, Maria Soledad Castaño3,4,*, Maryam Aliee1,2,*, Swati Patel2,5, Erick 
Mwamba Miaka6, Matt J Keeling1,2,7, Simon E F Spencer2,5, Nakul Chitnis3,4,**, Kat S Rock1,2,**,‡ 

  
1 Mathematics Institute, University of Warwick, Coventry, United Kingdom 
2 Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), 
University of Warwick, Coventry, United Kingdom 
3 Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, 
Switzerland 
4 University of Basel, Basel, Switzerland 
5 Department of Statistics, The University of Warwick, Coventry, United Kingdom 
6 Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, the 
Democratic Republic of the Congo 
7 School of Life Science, University of Warwick, Coventry, United Kingdom 
 
†Corresponding author: C.Davis.7@warwick.ac.uk 
‡Alternate corresponding author: K.S.Rock@warwick.ac.uk 
 
*Authors contributed equally 
**Authors contributed equally 
 
Keywords: Gambiense human African trypanosomiasis (gHAT); modelling; elimination of 
transmission; surveillance 
  

mailto:C.Davis.7@warwick.ac.uk
mailto:K.S.Rock@warwick.ac.uk


Abstract 
 
Background The gambiense human African trypanosomiasis (gHAT) elimination programme in the 
Democratic Republic of Congo (DRC) routinely collects case data through passive surveillance and 
active screening, with several regions reporting no cases for several years, despite being endemic in 
the early 2000s.  
 
Methods We use mathematical models fitted to longitudinal data to estimate the probability that 
selected administrative regions have already achieved elimination of transmission (EOT) of gHAT. We 
examine the impact of active screening coverage on the certainty of model estimates for transmission 
and therefore the role of screening in the measurement of EOT.  
 
Results In three example health zones of Sud-Ubangi province we find there is a moderate (>40%) 
probability that EOT has been achieved by 2018, based on 2000–2016 data. Budjala and Mbaya 
reported zero cases during 2017–18 and this further increases our respective estimates to 99.9% and 
99.6% (Model S); and to 87.3% and 92.1% (Model W). Bominenge had recent case reporting, 
however if zero cases were found in 2021 it would substantially raise our certainty that EOT has been 
met there (99.0% for Model S and 88.5% for Model W), and this could be higher with 50% coverage 
screening that year (99.1% for Model S and 94.0% for Model W).  
 
Conclusions We demonstrate how routine surveillance data coupled with mechanistic modelling can 
estimate the likelihood that EOT has already been achieved. Such quantitative assessment will 
become increasingly important for measuring local achievement of EOT as 2030 approaches. 
 
  



Introduction 

The decline in reported cases of the parasitic infection gambiense human African trypanosomiasis 
(gHAT) in the Democratic Republic of Congo (DRC) is a strong indicator of the progress towards 
elimination objectives. The World Health Organization (WHO) established goals for elimination in 
2012: elimination of gHAT as a public health problem (EPHP) by 2020, and elimination of 
transmission (EOT) by 2030 [1, 2]. In the DRC, which has consistently been the country with the 
highest global gHAT burden (>69% in each of the last 10 years), there were 26,318 cases at the peak 
of infection in 1998, however by 2019, just 604 cases of gHAT infection were reported [3]. 
 
Cases of gHAT, which are commonly fatal when untreated [4], are typically reported by routine 
surveillance, which comprises active screening and passive surveillance. There is no prophylactic 
available and mass drug administration is not viable with currently approved treatments; as a result, 
control of the infection is predominantly through a series of serological testing, parasitological 
confirmation, and then treatment. In active screening, at-risk settlements are targeted for the mass 
screening of all residents [2]. Passive surveillance is conducted in fixed health centres with available 
gHAT diagnostic tools, where patients with symptoms can self-present and be tested for infection. 
These surveillance strategies, designed to deliver effective control for gHAT, also double to provide 
valuable information on monitoring and evaluation of the gHAT situation across endemic settings. 
 
With a reduction in the number of cases reported, some regions of the DRC, which were previously 
endemic at the beginning of the twenty-first century, are now reporting no new cases in multiple years 
of annual reporting. This is true in several health zones of the former Equateur province (now 
consisting of the five provinces Nord-Ubangi, Sud-Ubangi, Equateur, Mongala and Tshuapa). The 
former Equateur province had the highest burden of gHAT in the DRC in 2000, but, following 
extensive active screening campaigns, now reports far fewer infections [1, 5, 6]. This low reporting 
introduces the possibility that local EOT may have already been achieved in some health zones — 
administrative regions made up of approximately 100,000 inhabitants. However, with intensified 
disease management infections, such as gHAT, the interplay between surveillance and control is 
complex; gHAT active screening will reduce in regions with little or no reporting, but this in turn could 
lead to less chance of detecting remaining infection if it is stopped too early.  
 
Current WHO guidance suggests cessation of active screening in a village once three years have 
been observed with no case reporting [2], which is thought to give reasonable probabilities that EOT 
is met in the village (> 90% probability for villages with fewer than 2,000 inhabitants when active 
screening coverages are over 20% in the village [7]) and be a cost-effective use of resources [8]. 
However, it is less clear how diminishing screening over time across health zones impacts our ability 
to assess whether there is ongoing transmission.  
 
Several modelling studies have addressed EOT for gHAT [9]. The expected time to EOT has been 
estimated in both specific regions [10] and across each of the health zones of DRC reporting gHAT 
data in the last 20 years [11]. The value of screening information for EOT has also been considered 
[7, 10] and the cost-effectiveness of active screening in the DRC assessed [8, 12]. However, there 
has been no assessment of how available data can be used to estimate the probability that EOT has 
already occurred. 
 
In the present study, we utilise two previously developed models of gHAT transmission with 
parameters matched to the screening and case data from three health zones in the Sud-Ubangi 
province of the DRC: Bominenge, Budjala and Mbaya. These health zones have all had zero or low 
numbers of reported gHAT cases in the last decade, despite varying active screening efforts. We 
estimate the changing transmission over time and thereby calculate the probability that these health 
zones have already achieved EOT. We also project forward to determine the probability of EOT up 
until 2040. Due to a reduction in active screening in these health zones, we examine how increasingly 
limited data impact the certainty of our model estimates and highlight that active screening is a key 
tool in measuring elimination. 
 

Methods 

Description of data 



Data on active screening and passive surveillance is made available through the WHO HAT 
Atlas [1, 5, 6]. In this study, we use data from 2000–2018 of the annual screening numbers and 
the number of confirmed cases in active screening and passive surveillance for three health 
zones (Bominenge, Budjala and Mbaya). In addition to case numbers, the infection stage of 
most cases is known from 2015 onwards and this provides some information about the 
duration of infection in these patients. Stages of gHAT are defined by the point at which 
parasites cross the blood-brain barrier and stage 2 (late stage) is diagnosed through detection 
of trypanosomes in the cerebrospinal fluid (CSF) or an elevated white blood cell (WBC) count 
in the CSF (>5 WBC/µl). Traditionally, different treatments were required for the different 
stages which is why lumbar puncture was routinely performed. The new treatment — 
fexinidazole — removes the need for staging in patients without severe symptoms, however 
this was not approved for use in DRC until after the data period [13]. 

From the selected health zones (see Table 1), Bominenge has had the best recent active 
screening coverage and despite this relatively extensive case-finding effort, only a small 
number of reported cases. Budjala has had a low active screening coverage, and only one 
reported case in the last five years. Mbaya has had a very low active screening coverage, and 
last reported a single case in 2015. Thus, for all three health zones, the small case numbers 
suggest that transmission may have already been halted in these regions. 

The population size of each health zone is reported in Table 1, with Mbaya being substantially 
smaller than Budjala and Bominenge. We assume a 3% annual population growth rate in these 
health zones for comparison with the observed data. 

Modelling approach 

To estimate the likelihood of having achieved EOT in the health zones, we define mechanistic 
models of gHAT infection adapted from previous work (originally presented in Rock et al. [14] 
and Stone et al. [15] and adapted in numerous ways since then — see supplementary material 
for detailed information). The models capture the underlying infection dynamics, which are 
defined in a stochastic framework because we need to account for the chance events of 
infection, which will be amplified due to the low numbers in the regions [10]. Furthermore, the 
stochastic framework means we can directly measure EOT in the model outcomes, which 
cannot be done without defining a threshold of elimination if using a deterministic framework. 

We use two independent models developed by different teams with different structures and 
assumptions (Model W and Model S) to provide a more complete picture on the uncertainty of 
our predictions and greater confidence when the models provide aligned results. Both models 
use parameters matched to the data for 2000–2016 from the three health zones using a 
deterministic variant of their model. For each health zone, the dynamics are averaged over 
200,000 stochastic simulations, whereby 1,000 realisations are executed for each of 200 
parameter sets, taken from the posterior of the deterministic model fits, to account for any 
parameter uncertainty. A full description of each model and details of the model fitting 
processes are given in the supplementary material. 

We calculate the probability of EOT at each time point as the proportion of stochastic 
simulations that result in EOT (see supplementary material for full definition). In conducting the 
model realisations, simulated active screening events use the same coverage that appears in 
the data for the known period (2000–2018), with unknown and future screening coverages 
taken as the mean value from the last five years of data (2014–2018); passive surveillance is 
assumed to continue from 2019 at the same level as 2000–2018 for Model W, and at the 
highest value from the data period for Model S. The 2019 coronavirus (COVID-19) pandemic 
caused an interruption of active screening activities in the DRC in 2020 [16, 17], however since 
the active screening coverage is already considered very low in these health zones, we do not 
explicitly consider this impact here; we assume passive surveillance was not altered. 

Finally, we also consider what proportion of our realisations have zero case observations in 
various years. For example, whilst the model fitting only used data for 2000–2016, we now 
know that Budjala and Mbaya reported zero cases in both 2017 and 2018, so we look to see 
how, using only realisations which match this reporting, changes the probability estimates for 



EOT. Similarly, we consider what would happen to the probability of achieving EOT by 2021 if 
either the mean active screening was conducted and no cases were reported in each health 
zone, or if a very large active screening with 50% coverage was performed, also with no cases 
reported. Under Model S, perfect specificity was assumed for this active screening, but not in 
other years. This enables us to investigate whether there is value in using a one-off, large 
active screening for monitoring and evaluation purposes. 

Results 

Simulations of the two models in the three health zones are shown in Figure 1. These 
simulations used model parameters obtained from fitting to 2000–2016 data and used known 
screening data for 2000–2018. From 2019 the simulations presented here use continued mean 
active screening each year. In Bominenge and Budjala the models produce relatively tight 
credible intervals for case reporting and new infections due to the high case numbers in the 
early 2000s and the high coverage active screening, both of which reduce our uncertainty. 
During 2000–2016, the two models’ credible intervals are largely overlapping for each of these 
health zones. In Mbaya, there has not been very high case reporting nor screening during 
2000–2016 and uncertainty in the inferred transmission and predicted future reporting is larger. 
Model W has a wide tail on new infections for Mbaya compared to Model S and is, in part, 
explained by Model S assuming improvement in passive surveillance during the data period, 
whereas Model W assumes constant passive detection rates throughout. A similar long-tailed 
effect in Budjala is seen under Model W. 

In Bominenge and Budjala, both models estimate that new infections have fallen more than 
99% during the data period (2000–2018). In Mbaya, the percentage decrease is smaller at 
91% (Model W) and 97% (Model S), linked to less active screening and the large challenge of 
moving from low to zero infections, with small and hard-to-identify pockets of infection 
remaining. 

Overall, using the results from all model fits to data from 2000–2016, Model S is more optimistic that 
the three health zones may have already achieved EOT. However, both models find there is a wider 
distribution of predicted elimination years for Mbaya, shown by the shallower slope in the probability 
of EOT over time. In Mbaya, only one case has been reported since 2009, which, on the surface, may 
suggest EOT is likely to have been achieved. This corresponds well with modelling predictions of a 
72% (Model W) and 96% (Model S) probability of EOT by 2020 (Figure 2, first column). However, this 
probability is lower than the other health zones for future times as the very low levels of active 
screening provide fewer data and so there is much more uncertainty in these predictions.  
 
Using all simulation results we predict a moderate (>57%) probability of EOT in the present day 
(2020) in all health zones and under both models (Figure 2, first column). By selecting subsets of our 
simulations that match the zero case reporting that occurred in 2017 and 2018 for Budjala and 
Mbaya, we see that the probability that EOT has already been met increases for both models and in 
both health zones. These additional two years of zeros raise the probability more under Model W 
(57% to 92% for Budjala and 72% to 94% in Mbaya) compared to Model S (98% to >99% for Budjala 
and 98% to >99% in Mbaya). 33% and 0.3% of simulations match the 2017/18 zero case reporting in 
Budjala and 62% and 90% match it in Mbaya (Model W and S respectively). 
 
Bominenge has had low level case reporting in 2017 and 2018, however if there were no cases 
reported in 2021 there would be an estimated 99% probability of having met EOT under Model S and 
89% under Model W. Without this information the models currently have lower certainty in EOT; 86% 
in 2020 for Model S and 61% in Model W. It is noted that the mean coverage of active screening for 
2014–2018 is very low in all the health zones (12% for Bominenge, and virtually no screening in 
Budjala and Mbaya), however by doing a single large screen covering 50% of the population in 2021, 
this could further raise the estimated probability that EOT had been achieved to 94% if zero cases 
were found under Model W; Model S finds this still results in a >99% probability (virtually no change). 
 
Discussion 
 
As infections fall across gHAT endemic areas, more locations will achieve local EOT. Cases provide 
an indication of the underlying transmission; however, we cannot directly equate cases with 



transmission or remaining infection. The number of cases includes time lags in reporting infections, 
such that the last infection event could occur years before the last remaining infected person is found 
and treated or dies. In contrast, insufficient active screening and underreporting may present 
transmission as much lower than in reality [9]. Therefore, mathematical modelling is useful in 
untangling the relationship between case data and true infections. 
 
In this study, we have considered health zones of the Sud-Ubangi province that have seen a large 
decline in reported cases, where the data indicate EOT may have been met already or would be 
expected soon. Indeed, we have estimated moderate probabilities of EOT by 2016 for all three health 
zones (Figure 2).  
 
The future projection of the probability of EOT for Mbaya provides lower estimates than the other 
health zones, as the very low active screening coverage provides less surveillance information and so 
greater uncertainty for predictions (Figure 2, first column). This underlines the importance of a passive 
surveillance system that can provide data on the testing of individuals within health facilities. 
Additional information, that no cases were reported in 2017–18, provides a greater certainty of EOT 
for future times (Figure 2, second column), which is further increased if another active screening 
reported no cases (Figure 2, third and fourth column).  
 
For Budjala and Bominenge, we have estimated high probabilities of EOT within the next five years, 
assuming active screening will continue with similar coverage. Past high coverage of active screening 
(e.g., up to 62% in Bominenge and 53% in Budjala) enables better model estimation of transmission 
patterns in the health zone. Maintaining a high active screening coverage can both reduce any 
remaining transmission, by the detection and treatment of infection, and provides the surveillance 
mechanism required to have confidence that EOT has been reached. A single year of high-coverage 
active screening resulting in no new case detections would be very informative in establishing EOT in 
locations where there was lower certainty based on past data. 
 
All predictions are under the assumption that, despite different levels of active screening, the efficacy 
of future passive surveillance will remain as good as during the data period. Passive surveillance is 
critical to be maintained to provide the support for people not tested in active screening, particularly in 
these low transmission areas where, without it, there would be no measure of the infection level [18].  
Health facilities in these regions need to continue to be equipped with diagnostics, such that gHAT 
can be rapidly identified and diagnosed where it occurs, to reduce the probability of future 
transmission.  
 
This study did not take into account the cost of gHAT interventions. Therefore, whilst we strongly 
advocate for bolstered active screening in regions where it has been limited recently, if the goal is to 
improve information, this is not necessarily a cost-effective use of resources in terms of averting 
morbidity or mortality. The value of this information in a cost framework is beyond the scope of this 
analysis but would be an interesting avenue for future work, in which the challenges of optimising 
limited resources in an end-game setting could be explored.  
 
Movement of people, asymptomatic infections in humans, and the potential for animal reservoirs to 
reintroduce infection [19, 20] provide additional challenges in estimating EOT. Our models make the 
assumption that animals do not contribute to the gHAT transmission process in humans, since their 
role in this is unclear [21]. Furthermore, we do not account for a reservoir of asymptomatic humans 
that are infected but are difficult to detect due to the parasites surviving in the skin, rather than the 
blood. These individuals are known to exist, but the extent and consequence for elimination 
campaigns remains unknown [22]. Therefore, our predictions for the year of EOT could be altered if 
these types of undetected transmission occur frequently. 
 
Conclusions 
 
Historically good coverage in active screening has been shown to be effective in reducing gHAT 
infection but maintaining this coverage can provide an accurate measure on the probability EOT has 
been met in health zones close to this goal. Passive surveillance remains a vital control mechanism, 
but broader screening can help increase the certainty in measurement of EOT. Active screening in 
previously endemic areas could therefore be useful in certifying regional EOT. Modelling can be used 



to identify regions for which this could provide improved certainty, and those where further active 
screening is unlikely to be required.  
 
In this study the health zones of Bominenge, Budjala and Mbaya in the Sud-Ubangi province were 
found very likely to meet the EOT goal by 2030 and indeed, Budjala and Mbaya were found to have 
already met this goal by 2020 with >92% probability. Bominenge, in particular, has lower certainty that 
the goal has been already met (61% under Model W and 86% under Model S), however a one-off 
year of high coverage active screening could provide valuable information to better inform this.  As we 
approach 2030, quantitative evaluation of gHAT data will be key to safe cessation of activities and 
reducing the risk of recrudescence in areas believed to have no remaining transmission. 
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Tables 

Table 1: Active screening coverage and new cases in the last five years of data for our three 
example health zones in Sud-Ubangi province.  

Health 
zone 

Population size 
(2015) 

Number of people in active screening 
(2014–2018)  

New cases detected 
(2014–2018) 

Bominenge 156,827 67,916  
(12,576, 22,423, 32,917, 11,002, 20,650 in 

each year 2014–2018 respectively) 

12 
 (including 2 in 2018) 

Budjala 129,539 2,713  
(all in 2016) 

1  
(in 2016) 

Mbaya 66,457 0 1  
(in 2015) 

 
  



 
Figures 
 
Figure 1: Case reporting and inferred infection dynamics by the two models in three health zones for 
Sud-Ubangi province, DRC. The first row shows the number of people screened in each year in each 
health zone, with dashed lines representing our assumed future active screening coverage. The 
second row shows the total reported case data as a black solid line and the model fits as coloured 
lines (median) and shaded area (95% credible and prediction intervals). The last row shows our 
estimated number of new infections in humans (transmission) over time. Model S is orange and 
Model W is green. Individual model results showing mean values can be found in the SI. 
 
Figure 2: Probability of elimination of transmission (EOT) by year for each of the models. The top row 
is the results for Model S and the bottom row for Model W. Each column represents our results based 
on model fitting to data for the period 2000–2016 and using known screening coverage for 2017 and 
2018. For 2019 onwards, these are predictions assuming continuation of the mean active screening 
coverage (based on 2014–2018 coverage) and passive surveillance. In the second to fourth columns, 
we only show the subset of results which also meet additional criteria. The second column shows the 
probability of EOT for those simulations which have zero case reporting in 2017 and 2018 in Budjala 
and Mbaya (matching the reported data for those years). In the third and fourth columns, we show the 
subset of results if zero cases are observed in 2021 under mean active screening (third column) or a 
50% coverage screen (fourth column); we allow cases to be detected in Bominenge during 2017–
2018 but not in Budjala or Mbaya.  
 


