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Abstract

Identifying the periodicities present in a cyclical process allows us to gain knowl-

edge about the sources of variability that drive that phenomenon. For instance,

respiratory traces obtained from a plethysmograph used on rodents in experimental

sleep apnea research reveal many sudden changes in their periodic features as the rat

spontaneously changes its breathing pattern during its sleep-wake activities. Sim-

ilarly, human temperature, as measured by a wearable sensing device over several

days at relatively high temporal resolution (e.g. 5 minutes), may be subject to a dif-

ferent periodic behaviour during the night when the individual transitions between

different stages of sleep. While the theory and methods for analyzing the periodici-

ties of time series data are relatively well-developed for the case of stationary time

series, the task of modelling time series that undergo regime shifts in periodicity,

amplitude and phase remains challenging because the timing of the changes and the

relevant periodicities are usually unknown (both in value and number).

This thesis introduces new methodologies for the automated analysis of non-

stationary periodic time series. In the first part of this research, we present a novel

Bayesian approach for analyzing time series data that exhibit regime shifts in peri-

odicity, amplitude and phase, where we approximate the time series using a piece-

wise oscillatory model with unknown periodicities, and our goal is to estimate the

change-points while simultaneously identifying the changing periodicities in the

data. Our proposed methodology is based on a trans-dimensional Markov chain

Monte Carlo (MCMC) algorithm that simultaneously updates the change-points

vii



and the periodicities relevant to any segment between them. We show that the

proposed methodology successfully identifies time changing oscillatory behaviour

in two applications which are relevant to e-Health and sleep research, namely the

occurrence of ultradian oscillations in human skin temperature during the time of

night rest, and the characterization of instances of sleep apnea in plethysmographic

respiratory traces.

In addition to detecting temporal changes, it may also be of interest to rec-

ognize the recurrence of a relevant periodic pattern. In the second half of this thesis,

we consider periodic phenomena, whose behaviour switches over time, as realiza-

tions of a hidden Markov model where the number of states is unknown along with

the relevant periodicities, the role of which varies over the different states. Flexibil-

ity on the number of states is achieved by using Bayesian nonparametric techniques

that address the stochastic switching dynamics of the time series via a hierarchical

Dirichlet process that captures the temporal mode persistence of the hidden states.

The variable dimensionality regarding the number of periodicities that characterizes

the different regimes is addressed by developing an appropriate trans-dimensional

MCMC sampler. We illustrate the use of our proposed approach in a case study rel-

evant to respiratory research, namely the detection of recurring instances of sleep

apnea in human respiratory traces.
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Chapter 1

Introduction

One major purpose of time series analysis is to build statistical models that provide

accurate understanding of the underlying structure that gives rise to the observed

data. A classic approach for the analysis of time series is via time domain analysis

which builds statistical models with respect to distinctive temporal characteristics.

An alternative strategy to view and examine time series is through frequency domain

(or spectral) analysis, where the aim is to recognize and investigate the periodic or

sinusoidal components that are responsible for the variation in the data. Finding

the periodicities present in an oscillatory process allows us to get insight into the

sources of variability that drive that phenomenon. For example, we analyzed several

respiratory traces obtained from rodents in experimental sleep apnea research and

observed that they exhibit many abrupt changes in their periodic components as the

rat naturally switches its breathing patterns in the course of its sleep-wake activities

[Han et al., 2002; Nakamura et al., 2003]. An example of a breathing trace ob-

tained from a freely behaving rat via an unrestrained whole-body plethysmograph

is shown in Figure 1.1, where we recall that a plethysmograph is a device used for

recording and measuring the volume of air displaced between normal inhalation and
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exhalation when extra effort is not applied. One main goal of this study is indeed

to provide a statistical methodology that can be applied to analyze large breathing

data sets resulting from in vivo plethysmograph studies in rodents to characterize

the occurrence of sleep apnea under different experimental conditions. Sleep apnea

is the temporary interruption of breathing during sleep and is linked to many dis-

eases, including cardiovascular events, cancer and diabetes [Lanfranchi et al., 1999;

Nieto et al., 2012; Harsch et al., 2004], and detecting (and, eventually, forecasting)

all apnea instances that occur while sleeping is in fact one of the primary interests

for healthcare providers, experimental researchers and clinicians working in sleep

apnea research. We therefore aim to provide them with useful statistical tools to aid

the understanding of the pathological implications of this status.

The development of this thesis was also motivated by the recent progress

of information and communication technologies in the health care system. To ad-

dress the issue of personalized medical treatment according to the circadian timing

system of the patient, referred to as chronotherapy [Lévi and Schibler, 2007], a

non-invasive mobile e-Health platform pioneered by the French project PiCADo

(Komarzynski et al. 2018) is used to record and teletransmit skin surface tempera-

ture as well as physical activity data [Huang et al., 2018] from a wearable sensing

device located on the chest. Figure 1.1 displays an example of 4 days of 5-min

skin temperature recording for a healthy individual. This dense physiological sig-

nal seems to exhibit periodicities whose role changes over time in a more or less

abrupt manner. A natural question to ask is whether in addition to the circadian

(24 hours) periodicity that can be expected, this person may be subject to an addi-

tional ultradian periodic behaviour during the night when the individual transitions

between different sleep stages [Carskadon et al., 2005; Komarzynski et al., 2018].

2
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Figure 1.1: (Top) Plethysmographic breathing trace of a rodent characterized by an alternation of
sniffing and normal breathing. The time series displayed contains 20,000 observations where the
signal was sampled at 2000 Hz. (Bottom) Skin surface temperature of a healthy subject recorded
every 5 minutes over 4 days. Block bars on the time axis mark the evening and night intervals from
20.00 to 8.00.

1.1 From Time Domain to Frequency Domain

We define a time series to be a collection of random variables {Yt } t ∈Z indexed by

the sequential order in time. The behaviour of such time series processes are usually

assumed to be weakly stationary. Generally speaking, weakly stationary processes

are characterized by the property that their statistical features do not change over

time. More formally, the definition of weakly stationarity is obtained by restricting

attention to those properties that depend only on the first and second-order moments

of Yt [Priestley, 1981; Brockwell et al., 1991] which are summarized by the mean
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function µ (t) = E
(
Yt

)
and the autocovariance function γ (h), respectively, where

the autocovariance function is defined as

γ (h) = Cov
(
Yt,Yt+h

)
= E

[(
Yt − E (Yt)

) (
Yt+h − E (Yt+h)

)]
, h ∈ Z, (1.1)

and we assume that E
(
Y 2

t
)
< ∞, i.e. the second moment of Yt exists and is finite for

all t. Note that γ (h) is an even function, namely γ (h) = γ (−h). Then, a time series

process is said to be weakly stationary if the mean function µ (t) is constant and

does not dependent on time t, and the autocovariance function γ (h) is independent

of t for each h. A stronger definition of stationarity is given by strict stationarity,

where it is assumed that the time series (Y1, . . . ,Yn) and the time-shifted time se-

ries (Y 1+h, . . . ,Y n+h) have the same joint distribution, for all integers h and n > 0.

Throughout the thesis, we shall use the term stationary to indicate weak stationarity.

The autocovariance function defined in Equation (1.1) is a measure of the

degree of dependence between values of a time series at distinct time lags. However,

in many cases the observed time series are composed of many periodic components,

and it may be of interest to determine how many and which frequencies drive the

variation in the data. Indeed, recognizing the periodicities that occur in a periodic

time series allow us to get an understanding about the causes of variability that

drive that time series. While the autocovariance function may be used to identify

some simple periodic behaviour, spectral analysis provides a more powerful tool to

decompose the variability of a time series according to the underlying periodicities.
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1.2 The Spectral Density Function

Let us consider a zero-mean stationary process {Yt } t ∈Z with autocovariance func-

tion γ (h). Let us also assume that the autocovariance function is absolutely summable,

namely it satisfies
∑

h ∈Z | γ (h) | < ∞. Then, the spectral density function f (ω) - or

power spectrum - of the process {Yt } is defined as the Fourier transform of the

autocovariance function [Priestley, 1981]

f (ω) =
∑
h ∈Z

γ (h) exp (−i2πωh), −0.5 < ω < 0.5, (1.2)

where exp (iω) = cos(ω)+i sin(ω) and i =
√
−1. The spectral density measures how

much of the variation in the process is driven by the oscillations at each frequencyω.

It is an even function of the frequencies and has period one, that is f (ω) = f (1−ω).

Hence, we usually analyze and visualize the spectral density for frequencies in

the interval (0, 0.5). Moreover, the autocovariance function can be expressed as

[Brockwell et al., 1991]

γ (h) =

∫ 0.5

−0.5
exp (i2πωh) f (ω) dω. (1.3)

Equations (1.2) and (1.3) suggest that time and frequency domain are linked to each

other via a duality between the spectral density and the autocovariance function.

Indeed, this unique relationship between γ (h) and f (ω) guarantees that no infor-

mation is lost when considering second-order features of Yt via the spectral density

f (ω) instead of the autocovariance function γ (h). Note also that the variance of the

process Yt (expressed as the autocovariance evaluated at lag h = 0) is equal to the

integrated spectral density, i.e. Var (Yt) = γ (0) =
∫ 0.5

−0.5
f (ω) dω, and hence the spec-
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tral density provides a variance decomposition of a time series process according to

the contribution of each frequency.

1.2.1 Spectral Estimation

Power spectral estimation can be achieved first by mapping the data to the frequency

domain via the discrete Fourier transform (DFT) and then obtaining a statistic called

the periodogram [Brillinger, 1981], which provides an unbiased estimator of the

spectral density function, but is not consistent since its variance does not decrease

as the sample size gets larger.

1.2.1.1 The Periodogram

Suppose that Yt is a zero-mean stationary time series with spectral density f (ω).

Given realization y = (y1, . . . , yn)
′

, the DFT of the data is defined as

d (ω j) =
1
√

n

n∑
t=1

yt exp (−i2πω jt), (1.4)

for j = 0, . . . , n − 1, where the ω j =
j
n

are referred to as the Fourier frequencies

and the d (ω j) are the corresponding Fourier coefficients. The periodogram of the

data at frequency ω j is obtained by taking the square of the absolute value of the

Fourier coefficient, namely

I(ω j) = | d(ω j) | 2 =
1
n

∣∣∣∣∣ n∑
t=1

yt exp (−i2πω jt)
∣∣∣∣∣ 2

. (1.5)

Asymptotic properties of the periodogram are well studied and summarized, for

example, in Priestley [1981] and Percival et al. [1993]. Here, we recall that for a

large sample size and under some regularity conditions, the periodogram ordinates

6



I(ω j) are approximately uncorrelated at distinct frequencies and are asymptotically

distributed as

I (ω j)
D
−→ f (ω j) ε j, (1.6)

where the ε j are exponentially distributed random variables with mean one, and

we assume ω j , {0, 0.5}. If the time series process is also Gaussian, then the

above statement is valid for any sample size [Shumway and Stoffer, 2017]. The

periodogram is an unbiased estimator for the spectral density, since it can be shown

that E [I(ω j)] = f (ω j). However, it is not a consistent estimator as it can also be

shown that the variance Var [I(ω j)] = f 2(ω j) does not vanish as the sample size

increases [Priestley, 1981].

1.2.1.2 Smooth Spectral Estimates

Approaches to obtain consistent estimates of the spectral density were proposed

by several authors and can be broadly grouped in two categories: parametric and

nonparametric.

Nonparametric methods were first developed by Bartlett [1950] and Welch

[1967]. They proposed to split the time series into a fixed number of segments and

obtain an estimate of the spectral density by averaging the periodogram ordinates

across those segments. Other procedures based on spectral windows were investi-

gated by Blackman and Tukey [1958] and Parzen [1961]. Generally, a windowed

spectral estimate can be expressed as

f̂b (ω j) =

k = b∑
k =−b

Wb (k) I
( j + k

n

)
, (1.7)

where I ( · ) is the periodogram defined in Equation (1.5), 2b + 1 is the window

width (or bandwidth), and Wb (k) are symmetric nonnegative weights that satisfy

7



∑k=b
k=−b Wb (k) = 1. The basic idea behind spectral windowing is that we can de-

rive a consistent estimator of the spectral density f (ω) by applying weighted local

smoothing of the periodogram estimates in a small frequency interval containing

ω. However, the performance of these methods is strongly affected by the correct

tuning of the bandwidth which is indeed crucial for balancing the trade-off between

variance reduction and periodogram resolution [Percival et al., 1993].

Equation (1.6) suggests that estimating the spectral density can be seen as a

nonparametric regression problem with the observations being the log-periodogram

ordinates, the unknown regression curve being the logarithm of the spectral density

and the innovations having exponential distributions. Under this framework, Cog-

burn and Davis [1974] proposed fitting a smoothing spline to the log periodogram.

This work was improved by Wahba [1980] who placed a smoothness prior on the

logarithm of the spectral density and developed a data-driven criterion for estimat-

ing the smoothing parameter. Carter and Kohn [1997] extended this approach to a

Bayesian setting where posterior inference is carried out efficiently using Markov

chain Monte Carlo (MCMC) methods and the estimation of the spectral density is

made computationally tractable by using the Whittle approximation to the Gaus-

sian likelihood. In this regard, Whittle [1953, 1957] showed that for large n, the

likelihood of the data y given the spectral density f = ( f (ω0), . . . , f (ωn−1)) can be

approximated as

LW ( y | f ) = (2π)−n/2
n−1∏
j=0

exp
{
−

1
2

[
log f (ω j) + I(ω j)/ f (ω j)

]}
, (1.8)

where LW is referred to as the Whittle’s likelihood. It should be noted that LW

is only a large sample approximation to the true likelihood and its plausibility de-

pends on the data being satisfactorily close to a stationary regime and on the sam-

8



ple size being large enough especially when data appear non-Gaussian. Bayesian

procedures for nonparametric spectral analysis that makes use of the Whittle like-

lihood were also developed by Choudhuri et al. [2004], who placed a Bernstein

polynomial prior [Petrone and Wasserman, 2002] on the normalized spectral den-

sity. Bayesian nonparametric approaches for the estimation of the spectral density

that are based on the true likelihood, without resorting to Whittle’s approximation,

were explored by Rousseau et al. [2012] and Kruijer et al. [2013]. They focused

on studying the theoretical properties of their approach - asymptotic, consistency

and rates of convergence - for a general class of priors and apply their results to the

family of fractionally exponential priors [Robinson, 1991], the latter being a spec-

tral representation of a process which separates the long-range behavior and the

short-memory part of a time series. Practical implementation and computational

aspects of such a modeling approach are discussed in Chopin et al. [2013], where

they propose to draw from the approximate posterior, namely the prior times the

approximate likelihood, via a sequential Monte Carlo sampler [Del Moral et al.,

2006] and then to recover the exact posterior through importance sampling [Robert

and Casella, 2013].

Parametric techniques for spectral estimation are mostly based on autore-

gressive (AR) models for which an analytical formulation of the power spectrum is

available in closed form [Parzen, 1974]. We note that an AR process of order p can

be expressed as

Yt =

p∑
j=1

ψ jYt− j + εt (1.9)

where εt are independent zero-mean errors with variance σ2, and ψ1, . . . , ψp are the

autoregressive coefficients. The general form of the spectral density is then given

9



by

f (ω) =
σ2∣∣∣φ (exp (−i2πω) )

∣∣∣2, (1.10)

where φ (z) = 1−
∑p

j=1 ψ j z j and we assume a stationary solution of Equation (1.10),

i.e. we require that the autoregressive polynomial satisfies φ (z) , 0, for all |z| = 1

[Brockwell et al., 2002]. Parameter estimation can be carried out via maximum

likelihood estimation or by using the Yule-Walker equations (see e.g. Shumway and

Stoffer [2017]). Model selection to determine the order of the AR model is usually

achieved by employing information criteria such as Akaike’s information criterion

(AIC) [Akaike, 1974] or the Bayesian information criterion (BIC) [Schwarz et al.,

1978]. These parametric methods however tend to provide biased estimates of the

spectral density function when the AR approximation to the underlying process is

poor and their performance is very much affected by the correct choice of the order

of the AR model. Nevertheless, a parametric technique will generally outperform a

nonparametric approach when the parametric model is correct [Rosen et al., 2012].

We note that the approaches mentioned above (both parametric and nonpara-

metric) are formulated under the assumption that a power spectrum is continuous

across frequencies. Although these methods can be well suited for time series pro-

cesses with smooth underlying spectrum with few or no peaks, they are severely

challenged in detecting pronounced peakedness, possibly at nearby frequencies, as

can be expected to occur for the type of time series that we wish to analyze in this

thesis.
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1.3 Modeling Periodic Signals

In the signal processing literature it is common to model periodic data as a linear

combination of a finite number of sinusoids plus noise [Priestley, 1981]. Let us

assume that the underlying data generating process Yt is characterized by m relevant

distinct frequencies ω1, . . . , ωm. Let us also define Al and φl as the amplitude and

phase shift of the corresponding frequency ωl, for l = 1, . . . ,m. Then, we can write

the following periodic model

Yt =

m∑
l=1

(
A l cos(2πω l t + φ l)

)
+ εt, (1.11)

where we might assume that the εt are independent zero-mean Gaussian errors with

variance σ2.

There have been several developments for estimating the parameters of such

an oscillatory model. Rife and Boorstyn [1976] and Stoica et al. [1989] addressed

the problem of estimating the parameters, i.e. frequencies, phases and amplitudes,

of the sinusoidal signals under the assumption of a known number of sinusoids

m, where inference is based on maximum likelihood. These approaches, however,

require very long time series and a large separation in the frequencies that drive

the process, which will not always be the case in practice [Djuric, 1996; Andrieu

and Doucet, 1999]. Quinn [1989], Yau and Bresler [1993] and Zhang and Wong

[1993] tackled the problem of model selection on the number of sinusoidal com-

ponents by employing AIC and the minimum description length (MDL) principle

[Rissanen, 1978], the latter being an information criterion based on the concept that

the best-fitting model is the one that enables maximum compression of the data.

Djuric [1996] showed that both AIC and MDL tend to estimate a wrong number of
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sinusoids when the sample size is small and the signal-to-noise ratio is low.

Bayesian approaches to modelling stationary oscillatory signals were ex-

plored for the first time by Bretthorst [1988, 1990] with applications to nuclear

magnetic resonance spectroscopy. Dou and Hodgson [1995, 1996] presented a

Bayesian approach that uses a Gibbs sampler to identify multiple frequencies that

drive the signal. Their method required the number of frequencies to be fixed in

advance, and model selection was achieved by choosing the most probable model

based on the estimation of the parameters for all possible models. Bayesian model

selection for stationary oscillatory signals based on posterior model probabilities

were also investigated by Djuric [1996]. Andrieu and Doucet [1999] introduced a

reversible-jump MCMC method [Green, 1995] that is able to jointly address model

selection and parameter estimation for an unknown number of stationary sinusoidal

signals and avoids the computationally expensive numerical optimization of Dou

and Hodgson [1995, 1996] by sampling the frequencies one-at-time via Metropolis-

Hastings (M-H) steps. To the best of our knowledge, currently there is no extension

of this methodology to analyze nonstationary oscillatory signals.

1.4 Spectral Analysis of Nonstationary Time Series

Many natural phenomena may be nonstationary in the sense that they exhibit changes

in their cyclic or periodic behaviour. Approaches to spectral analysis of nonstation-

ary processes were first developed by [Priestley, 1965] who introduced the concept

of evolutionary spectra, namely spectral density functions which are time depen-

dent as well as localized in the frequency domain. A formal statistical modeling

framework for a specific class of nonstationary time series data, called locally sta-

tionary time series, was presented by Dahlhaus et al. [1997]. Intuitively, a process
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is locally stationary if we can construct an interval around each time point in such

a way that the time series can be considered to be stationary in that interval. Lo-

cally stationary processes can hence be well approximated by piecewise stationary

processes and several authors proposed to approximate the time-varying spectra of

locally stationary time series through the piecewise constant spectra of the corre-

sponding stationary segments [Ombao et al., 2001; Davis et al., 2006; Rosen et al.,

2012]. Let {Yt : t = 1, . . . , n } be a time series process whose behaviour changes at

m time points s1, . . . , sm, and let I j = [s j−1, s j) denotes the sub-interval correspond-

ing to the jth segment. The process Yt is said to be piecewise stationary if can be

expressed [Adak, 1998] as

Yt =

m+1∑
j=1

Y ( j )
t 1[ t ∈ I j ], (1.12)

where Y ( j )
t are independent and stationary processes with spectral density f j (ω),

1[·] denotes the indicator function, and we set s0 = 1 and sm+1 = n. Under this

framework, a major challenge is to determine the number m + 1 of stationary seg-

ments and their corresponding partitions which are identified by the change-point

locations s1, . . . , sm.

[Ombao et al., 2001] proposed a nonparametric method to estimate the time-

varying spectrum of nonstationary processes based on the smooth localized com-

plex exponential (SLEX) basis library. This procedure automatically divides the

time series (in the time domain) into a hierarchy of dyadic subintervals and provides

a windowed estimate of the power spectra in the corresponding blocks. A frequen-

tist parametric approach based on fitting piecewise AR processes was developed by

Davis et al. [2006] where both the number and locations of the segments and the or-

ders of the corresponding AR process are assumed unknown. They suggest an MDL
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criterion for comparing different segmented AR model fits to the data, which results

in an optimization problem that is addressed using a genetic algorithm. Rosen et al.

[2012] introduced a Bayesian approach to model the log of the time-varying spectral

density by splitting the time series into an unknown but finite number of segments

of variable lengths, and to estimate the time-varying spectral density using a fixed

number of smoothing splines. For a given partition of the time series, the likelihood

function is approximated via a product of local Whittle likelihoods and posterior

inference relies on a reversible-jump MCMC algorithm. The methodology is based

on the assumption that, conditional on the position and number of partitions, the

time series are piecewise stationary, and the underlying spectral density for each

partition is smooth over frequencies. However, exploratory analyses of the time

series in our case studies revealed spectral densities with very sharp peaks, often at

several nearby frequencies, thus invalidating the assumption that the spectral den-

sity is smooth over frequencies. In addition, the frequency location of these sharp

peaks appears to change over time.

This thesis introduces new approaches to the automated analysis of nonsta-

tionary periodic time series. Chapter 2 presents a novel Bayesian methodology

for analyzing nonstationary time series data that exhibit regime shifts in period-

icity, amplitude and phase, where we approximate the time series using a piece-

wise oscillatory model with unknown periodicities, and our goal is to estimate the

change-points while simultaneously identifying the potentially changing periodic-

ities in the data. Bayesian inference is performed by developing a reversible jump

MCMC based algorithm for sampling from the posterior in a manner that can si-

multaneously estimate both the number and location of the approximately station-

ary segments, as well as the number, frequency and magnitude of the sinusoids

within each segment. Our methodology can be seen as a novel and non-trivial ex-
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tension of the statistical methodology introduced in [Andrieu and Doucet, 1999] to

the nonstationary setting. We show that the proposed approach successfully identi-

fies time changing oscillatory behaviour in two case studies, where it detects the oc-

currence of ultradian oscillations in human skin surface temperature during the time

of night rest, and can be used to characterize instances of sleep apnea in plethysmo-

graphic respiratory traces. Furthermore, to develop a more general framework, it

is of interest to identify and model the recurrence of a relevant cyclical pattern in a

probabilistic way. In Chapter 3, we consider periodic phenomena whose behaviour

switches dynamically over time as realizations of a hidden Markov model (HMM).

The number of states is assumed unknown along with their relevant periodicities,

which may vary over the different states as each state is characterized by different

spectral properties. Flexibility on the number of states is achieved following Fox

et al. [2011], namely by using Bayesian nonparametric methods that address the

stochastic switching dynamics of the time series via a hierarchical Dirichlet pro-

cess that captures the temporal mode persistence of the hidden states. The variable

dimensionality regarding the number of periodicities that characterizes the different

states can also be addressed by developing a reversible-jump MCMC sampler. We

illustrate the use of our proposed methodology in an application relevant to res-

piratory research and sleep medicine, namely the detection of recurring instances

of sleep apnea in human respiratory traces. We conclude and discuss our current

findings in Chapter 4.
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Chapter 2

Bayesian Model Search for

Nonstationary Periodic Time Series

We develop a novel Bayesian methodology for modelling oscillatory data that show

regime shifts in periodicity, amplitude and phase. We assume that, conditional on

the position and number of change-points, the time series can be approximated

by a piecewise changing sinusoidal regression model. The timing and number of

changes are unknown, along with the number and values of relevant periodicities

in each segment. We develop a reversible jump MCMC technique that jointly ex-

plores the parameter space of the change-points and sub-models for all segments.

The chapter is organized as follows. Section 2.1 and 2.2 present the model, the

prior specifications and the general structure of our Bayesian approach. Sections

2.3 and 2.4 provide a detailed explanation of our sampling scheme and simula-

tion studies to demonstrate the performance of our proposed procedure. In Section

2.5 we illustrate the use of our methodology in two data-rich scenarios related to

sleep, circadian rhythm and e-Health research, namely the identification of the spec-

tral properties of experimental breathing traces arising in sleep apnea research, and
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the analysis of human temperature data measured over several days by a wearable

sensor. Further details about the sampling scheme are provided in Section 2.A.

This chapter formed the manuscript for “Bayesian Model Search for Nonstationary

Periodic Time Series” which has been published in Journal of the American Sta-

tistical Association. Julia code that implements the methodology can be found at

https://github.com/Beniamino92/AutoNOM.

2.1 The Model

Consider a time series realization y1, . . . , yn whose periodic behaviour may change

at k unknown time-points s (k) = (s1, . . . , sk)
′

where k is also unknown. Assume

that in each sub-interval I j = [s j−1, s j) there are m j relevant frequencies ω j =

(ω j, 1, . . . , ω j,m j)
′

, for j = 1, 2, . . . , k + 1. Setting s0 = 1 and sk+1 = n, we can

write the following sinusoidal model (Andrieu and Doucet, 1999)

yt =

k+1∑
j=1

f
(
t, β j, ω j

)
1[ t ∈ I j ] + εt, (2.1)

where

f
(
t, β j, ω j

)
= α j + µ j t +

m j∑
l=1

(
β (1)

j, l cos(2πω j, l t) + β (2)
j, l sin(2πω j, l t)

)
, (2.2)

β j = (α j, µ j, β
′

j, 1, . . . , β
′

j,m j
)
′

, β j, l = ( β (1)
j,l , β

(2)
j,l )

′

, 1[·] denotes the indicator func-

tion, and µ j and α j may, if needed, account for a linear trend within each segment.

For simplicity we assume independent zero-mean Gaussian errors with regime-

specific variances

εt ∼ N (0, σ2
j), for t ∈ I j and j = 1, . . . , k + 1, (2.3)
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noting that, in principle, the methodology can in principle be extended to the non-

Gaussian case.

The dimension of the model is given by the number of change-points k and

the number of frequency components in each regime denoted by m(k) = (m1, . . . ,mk+1)
′

.

Furthermore, let β (k) = (β
′

1, . . . ,β
′

k+1)
′

,ω (k) = (ω
′

1, . . . ,ω
′

k+1)
′

,σ 2
(k) = (σ2

1, . . . , σ
2
k+1)

′

and θ (k) = (β
′

(k), ω
′

(k), σ
2′
(k) )

′

. Using Equation (2.1), the likelihood of ( k, m(k), s (k), θ (k) )

given the data y = ( y1, . . . , yn )
′

is

L ( k, m(k), s (k), θ (k), | y ) =

k+1∏
j=1

L ( m j, θ j | y j ), y j =
(

yt : t ∈ I j
)
, (2.4)

where

L ( m j, θ j | y j ) = ( 2πσ2
j )−n j/2 exp

[
−

1
2σ2

j

∑
t ∈ I j

{
yt − xt

(
ω j

) ′
β j

} 2]
, (2.5)

θ j = (β
′

j, ω
′

j, σ
2′
j )

′

is the vector of parameters, n j the number of observations of

the jth segment, and the vector of basis functions xt
(
ω j

)
is defined as

xt
(
ω j

)
=

(
1, t, cos(2πω j,1t), sin(2πω j,1t), . . . , cos(2πω j,m jt), sin(2πω j,m jt)

)′
. (2.6)

2.2 Bayesian Inference

Given some pre-fixed maximal numbers of change-points, kmax, and frequencies per

regime, mmax, inference is achieved by assuming that the true model is unknown but

comes from a finite class of models where each modelMk, with k change-points, is

parameterized by the vector

( m(k), s (k), θ (k) ) ∈ Πk, Πk ∈ Π.
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Let Sk =
{

s (k) ∈ [1, n] k : 1[1<s1<···<sk<n]

}
and Ωm j = (0, 0.5) m j denote, respectively,

the sample space for the locations of change-points and the frequencies of the jth

segment. The overall parameter space can be written as a finite union of subspaces

Π =

kmax⋃
k=0

{
k
}
×Πk, and Πk =

k+1∏
j=1

{
m j

}
× Sk ×

mmax⋃
m j=1

{
IR2m j+2 ×Ωm j × IR+

}
.

Bayesian inference on k, m(k), s (k) and θ (k) may be achieved through the following

factorization of the joint posterior distribution

π ( k, m(k), s (k), θ (k) | y ) = π (k | y) π (m(k) | k, y) π (s (k) |m(k), k, y) π (θ (k) | s (k), k, m(k), y),

where we use π ( · ) as generic notation for probability density or mass function,

whichever is appropriate. Sampling from it poses a multiple model selection prob-

lem, namely of the number of change-points and number of frequencies in each

regime, which can be addressed by constructing a reversible-jump MCMC algo-

rithm Green [1995]. The algorithm in its basic structure iterates between the fol-

lowing two moves:

1. Segment model move: Given a partition of the data at k locations s (k), infer-

ence on the parameters m(k) and θ (k) is based on the conditional posterior

π (m(k), θ (k) | k, s(k), y) =

k+1∏
j=1

π (m j, θ j | k, s (k), y j).

A reversible-jump MCMC algorithm is performed in parallel on each of the

k + 1 segments, where at each iteration the number of sinusoids m j, the linear

coefficients β j, the frequencies ω j and the residual variances σ2
j are sampled

independently in each segment, for j = 1, . . . , k + 1. Notice that at this stage
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the algorithm will explore subspaces of variable dimensionality regarding the

number of frequencies per segment, while the change-point model remains

fixed.

2. Change-point model move: This step performs a reversible-jump MCMC

algorithm for change-point model search where the number k and locations of

change-points s (k) are sampled, along with the linear coefficients, number of

frequencies and their values as well as the residual variances for any segments

affected by the move.

2.2.1 Prior Specifications

Our prior specifications assume independent Poisson distributions for the number

of change-points k and the frequencies in each segment m j, conditioned on k ≤ kmax

and 1 ≤ m j ≤ mmax, respectively. For example, if X is Poisson distributed with mean

λ, then the truncated Poisson distribution at xmax has probability mass function

π
(
X = x | X ≤ xmax

)
=

λx

x!
∑xmax

h=0
λh

h!

, x = 0, . . . , xmax.

This prior is used by several authors. For example, Green [1995] assumed this prior

to model the number of change-points in a Poisson point process, and Denison

et al. [1998] for the number of knots when fitting smoothing splines. Richardson

and Green [1997] utilized a Poisson prior on the unknown number of Gaussian

mixtures, and similarly Andrieu and Doucet [1999] on the number of sine waves in

a regression model. The prior mean λ is an hyper-parameter fixed in advance that

can potentially differ between the prior on k and the one on m j. It can be interpreted

as the expected number of change-points and the expected number of sinusoids in
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each regime, respectively.

Given k, a prior distribution for the positions of the change-points s (k) can

be chosen as in Green [1995]

π (s (k) | k) =
(2k + 1)!

(n − 1)2k+1

k∏
j=0

(
s j+1 − s j

)
1[s0<s1<···<sk<n], s0 = 1, sk+1 = n. (2.7)

This implies that the location of the changes s1, . . . , sk are distributed as the even-

numbered order statistics from 2k + 1 points uniformly distributed on [1, n]. To

show this, consider X1, . . . , X2k+1 ∼ Uniform(1, n), where the joint distribution of

the order statistics is given by

π1, ..., 2k+1(x1, . . . , x2k+1) =
(2k + 1)!

(n − 1)2k+11[1<x1<···<x2k+1<n]. (2.8)

The interpretation of the latter is straightforward: there are (2k + 1)! ways to or-

der the realisations of X1, . . . , X2k+1, and the product of their densities is 1
(n−1)2k+1 .

Hence, we can marginalise the joint density in Equation (2.8) with respect to the

even numbered x2, . . . , x2k as

π2,...,2k(x2, . . . , x2k) =

∫ x2

1

∫ x4

x2

· · ·

∫ x2k

x2k−2

∫ n

x2k

(2k + 1)!
(n − 1)(2k+1) dx2k+1dx2k−1 . . . dx3dx1

=
(2k + 1)!

(n − 1)(2k+1) (n − x2k)(x2k − x2k−2) · · · (x4 − x2)(x2 − 1)1[1<x2<···<x2k<n].

Finally, we can set s1 = x2, s2 = x4, . . . , sk = x2k and obtain the prior density for

the locations of the change-points π (s (k) | k) given in Equation (2.7).

Conditional on k and m(k), we choose a uniform prior for the frequencies

ω j, l ∼ Uniform(0, φω), l = 1, . . . ,m j, and j = 1, . . . , k + 1, where 0 < φω < 0.5.

The value of φω can be chosen to be informative in the sense that it may reflect

prior information about the significant frequencies that drive the variation in the
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data, for example by choosing φω in the low frequencies range ( 0 < φω < 0.1).

Analogous to a Bayesian regression [Gelman et al., 2014; Bishop, 2006], a zero-

mean isotropic Gaussian prior is assumed for the coefficients of the jth segment,

β j ∼ N2m j+2( 0, σ2
β I ), j = 1, . . . , k + 1 where the prior variance σ2

β is fixed at a

relatively large value (e.g. in our case 10 2). The prior on the residual variance σ2
j

of state j is specified as Inverse-Gamma
( ξ0

2 ,
τ0
2

)
, where η0 and ν0 are fixed at small

values. Notice that when these two hyper-parameters are set to zero we obtain the

non-informative Jeffrey’s prior [Gelman et al., 2014].

In ordinary parametric problems it is often considered a safe choice to use

improper priors [Robert, 2007]. However, in view of the Jeffreys-Lindley’s para-

dox [Lindley, 1957; Jeffreys, 1998] when performing model selection, it is known

that improper priors may cause several problems. For example, in the context of

Bayesian models for normal mixtures, as the priors become less informative, the

posterior probability for the number of mixture components tends to concentrate on

low values and often to have a mode on the smallest model, as discussed in Jen-

nison [1997] and Jasra et al. [2005]. Assuming prior distributions that are proper,

but reasonably flat over the range of parameters values that could possibly arise -

such as β j ∼ N2m j+2( 0, σ 2
β I ) - mitigate this issue, but only partially, as the results

will then depend on the arbitrary degree - e.g. σ 2
β - of vagueness utilized. In fact,

by fixing σ 2
β = 10 6 in our simulation studies, we always find a posterior mode that

corresponds to the smallest model, i.e. a model with no change-points and one rel-

evant frequency. However, a weakly informative prior obtained by fixing σ 2
β = 10 2

appears to perform satisfactorily, for all our experiments. Alternatively, the model

could be parameterized in such a way that the priors do not depend on the scale

of the observations. For example, a popular Bayesian model for linear regression

is to assume a hierarchical parameterization for the linear coefficients β j and the
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residual variance σ 2
j of the form π (β j, σ

2
j ) = π (σ 2

j ) π (β j |σ
2
j ) [Gelman et al.,

2014]. The prior on the residual variance π (σ 2
j ) may be specified as before (i.e

Inverse-Gamma
( ξ0

2 ,
τ0
2

)
), whereas the prior on the basis function coefficients can be

chosen as π (β j |σ
2
j ) ∼ N2m j+2( 0, σ 2

j V0 ). Following this hierarchical structure, the

prior variance of β j is tied to σ 2
j , which is the sampling variance of the observations

y and thus prior beliefs about β j are calibrated by the scale of the measurements y.

However, we still need to specify V0 which can be chosen of the form σ2
β I, where

σ2
β may be fixed, as discussed before, at a relatively large value.

2.3 Sampling Scheme for Nonstationary Periodic Pro-

cesses

Here we provide the sampling scheme associated with the nonstationary periodic

processes that we wish to model. An outline of the overall procedure is as follows.

Start with an initial configuration of number of change-points k, along with their

locations s (k); this yields a partition of the data y = (y1, . . . , yk+1)
′

. Initialize the

number of frequencies in each regime m(k) and their values ω (k), along with the

coefficients β (k) and residual variances σ2
(k). At each iteration of the algorithm a

segment model and a change-point model move are estimated. A random choice

with probabilities (2.9) based on the current number of parameters will determine

whether to attempt a birth, death or a within-model move. In particular, let z denote

the current number of parameters, i.e. change-points k in the change-point model or

frequencies m j in the jth segment model; then, the dimension may increase by one

(birth step) with probability bz, decrease by one (death step) with probability dz or

23



remain unchanged (within step) with probability µz = 1 − bz − dz, where

bz = c min
{

1,
π (z + 1)
π (z)

}
, dz+1 = c min

{
1,

π (z)
π (z + 1)

}
, (2.9)

for some constant c ∈ [0, 1
2 ], and π (z) is the prior probability of the model including

z. Reversibility of the Markov chain is guaranteed for move types that involve

a change in dimensionality as bz π (z) = dz+1 π (z + 1). Here we chose c = 0.4

but other values are legitimate as long as c is not larger than 0.5, to assure that

the sum of the probabilities does not exceed 1 for some values of z. Naturally,

bk=kmax = bm=mmax = 0 and dk=0 = dm=1 = 0. The pseudocode of the overall algorithm

that describes an iteration of the sampler is given in Algorithm 1. We next describe

the specific procedures needed to update the moves. More details are provided at

the end of the chapter, in Section 2.A.

Algorithm 1

1. For each segment j = 1, . . . , k + 1, perform a segment model move (Section
2.3.1)

Draw U ∼ Uniform (0, 1)

if U ≤ bm j → birth-step

else if bm j ≤ U ≤ dm j → death-step

else → within-step

2. Perform a change-point model move (Section 2.3.2):

Draw U ∼ Uniform (0, 1)

if U ≤ bk → birth-step

else if bk ≤ U ≤ dk → death-step

else → within-step
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2.3.1 Updating a Segment Model

Given the number of change-points k and their locations s (k), a segment model

move is performed independently and in parallel on each of the k + 1 partitions.

Hence, throughout this subsection the subscript relating to the jth segment may be

dropped and a segment of interest is denoted by y = (ya, . . . , yb)
′

, which contains

n observations. Assume that the current number of frequencies is set at m; then,

an independent random choice is made between attempting a birth, death or within-

model step, with probabilities given in (2.9). An outline of these moves is as follows

(further details are provided in Section 2.A.1).

Within-Model Move: Conditioned on the number of frequencies m, we

sample the vector of frequencies ω following Andrieu and Doucet [1999], i.e. by

sampling the frequencies one-at-time using a mixture of M-H steps, with target

distribution

π (ω |β, σ2, m, y) ∝ exp
[
−

1
2σ2

b∑
t = a

{
yt − xt

(
ω

) ′
β
}2
]
1[

ω ∈Ωm

] . (2.10)

In particular, the proposal distribution is a combination of a Normal random walk

centred around the current frequency and a sample from values of the Discrete

Fourier transform of y. Next, the corresponding vector of linear coefficients β is

updated in a Gibbs step from its conjugate Gaussian posterior

β
∣∣∣ω, σ2, m, y ∼ N2m+2 ( β̂, Vβ), (2.11)
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where

Vβ =

(
σ−2
β I + σ−2X(ω)

′

X(ω)
)−1

,

β̂ = Vβ

(
σ−2X(ω)

′

y
)
,

(2.12)

and we denote with X(ω) the design matrix with rows given by xt
(
ω

)
(Equation

2.6), for t = a, . . . , b. Finally, the residual variance σ2 is then updated in a Gibbs

step from

σ2 |ω, β, m, y ∼ Inverse-Gamma
(

n + ν0

2
,
γ0 +

∑b
t = a

{
yt − xt

(
ω

) ′
β
}2

2

)
. (2.13)

Between-Model Moves: For this type of move, the number of frequencies

is either proposed to increase by one (birth) or decrease by one (death). If a birth

move is proposed, we have that m p = m c + 1, where current and proposed val-

ues are denoted by the superscripts c and p, respectively. The proposed vector of

frequencies is constructed by proposing an additional frequency to include in the

current vector. Conditional on the frequencies, the corresponding vector of linear

coefficients and the residual variance are sampled as in the within-model move. If

a death move is proposed, we have that mp = mc − 1. Hence, one of the current

frequencies is randomly chosen to be removed. The proposed corresponding vector

of linear coefficients is drawn, along with the residual variance. For both moves,

the updates are jointly accepted or rejected in a M-H step.

We note that we may use a reversible-jump MCMC sampler on a somewhat

reduced model, namely by analytically integrating the linear basis coefficients β

out of the segment model. This may be lead to a slightly more accurate and faster

algorithm than the corresponding samplers operating on the full model [Han and
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Carlin, 2001]. However, posterior samples are not provided for any parameters no

longer appearing within the sampling scheme. In particular, no information about

the amplitude and phase of any frequency can be retrieved by such a reduced sam-

pler. Hence, we have not investigated further this option, since posterior estimates

of those parameters are necessary for characterizing the spectral properties of the

time series we wish to analyze.

2.3.2 Updating the Change-Point Model

This part of the algorithm identifies the number and locations of change-points.

Suppose the number of change-points is currently set to some value k, then accord-

ing to the probabilities given in (2.9) a random decision is made between adding,

removing or moving a change-point. The rules for updating these types of moves

are described below and more details are given in Section 2.A.2.

Within-Model Move: An existing change-point is proposed to be relo-

cated with probability 1
k , obtaining say s c

j . The update for the selected change-point

is proposed from a mixture of a Normal random walk centred on the current change-

point s c
j and a sample from a uniform distribution on the interval [s c

j−1+ψs, s c
j+1−ψs].

Here, we introduced ψs as a fixed minimum time between change-points avoiding

change-points being too close to each other. Rosen et al. [2012] used a similar

scheme, but on a discrete-scale. The number of frequencies and their values are

kept fixed, and, conditional on the relocation, the linear coefficients for the seg-

ments affected by the relocation are sampled. These updates are jointly accepted or

rejected in a M-H step and the residual variances are updated in a Gibbs step.

Between-Model Moves: For this type of move, the number of change-

points may either increase (birth) or decrease (death) by one. If a birth move is
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proposed, we have that k p = k c + 1. The new proposed change-point is drawn

uniformly on f (s c
(k c), ψs), the support of s c

(k c) given the constraints imposed by ψs,

i.e. f (s c
(k c), ψs) = [1 + ψs, s c

1 − ψs] ∪ [s c
1 + ψs, s c

2 − ψs] ∪ . . . ∪ [s c
k c + ψs, n − ψs].

The latter involves splitting an existing segment. The number of frequencies and

their values in the proposed segments are selected from the current states. Two

residual variances for the new proposed segments are then constructed from the

current single residual variance. Finally, two new vectors of linear parameters are

sampled. If a death move is proposed, we have that k p = k c−1. Hence, a candidate

change-point to be removed is selected from the vector of existing change-points,

with probability 1
k c . The latter involves merging two existing partitions. The num-

ber of frequencies and their values in the proposed segments are selected from the

current states. A single residual variance is constructed from the current variances

relative to the segments affected by the relocation. Finally, a new vector of linear

coefficient is drawn. For both type of moves, these updates are jointly accepted or

rejected.

2.4 Simulation Studies

We carry out simulation studies to explore the performance of our method, which

will be referred to as AutoNOM (Automatic Nonstationary Oscillatory Modelling).

In Section 2.4.1 we illustrate the performance of our methodology when the simu-

lated data are generated from the proposed model. Section 2.4.2 deals with scenar-

ios when the model is misspecified relative to the generating process. Our results

are compared with two state-of-the-art existing methods.
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2.4.1 Illustrative Example

In this simulation example, we generate a time series consisting of n = 900 data

points from model (2.1) with k = 2 change-points located at positions s (2) =

(300, 650), and fixed number of frequencies per regime m(2) = (3, 1, 2). Further

details of the parameterization are given in Table 2.1.

Figure 2.1 (top panel) shows a realization from this model. The prior means

λω and λs, say, on the number of frequencies and change-points, respectively, were

set to 2, to reflect a fair degree of prior information on their numbers. We discuss

in Section 2.4.1.1 that AutoNOM was relatively insensitive to these prior specifi-

cations, for this example. The maximum number of change-points kmax was set to

15, and the maximum number of frequencies per regime mmax was set to 10. Fur-

thermore, we fixed ψs = 20 and φω = 0.25 (see Appendix 2.A) for the uniform

distribution for sampling the frequencies. The full estimation algorithm was ran

for 20,000 updates, 5,000 of which are discarded as burn-in period. The estimation

took 390 seconds with a (serial) program written in Julia 0.62 on a Intel R© CoreTM i7-

4790S Processor 16 GB RAM. The results, summarized in Table 2.4 clearly show

that a model with two change-points has the highest estimated posterior probability

(left panel) and that AutoNOM correctly identifies the right number of significant

frequencies in each regime (right panel).

Figure 2.1 (middle panel) shows the estimated posterior distribution for the

location of the change-points, conditioned on three segments. The posterior means

of the change-point locations are Ê (s1 | k = 2, y) = 298.7 and Ê (s2 | k = 2, y) =

650.1. Figure 2.1 (bottom panel) shows that the estimated posterior distributions

are an excellent match to the true frequencies.
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Figure 2.1: Illustrative example. (Top) Simulated time series. (Middle) Estimated posterior distribu-
tion for the location of the change-points, conditioned on k = 2. The dotted vertical lines represent
true location of change-points. (Bottom) Estimated posterior distribution of the frequencies for each
different segment, conditioned on k = 2, m1 = 3, m2 = 1 and m3 = 2. The dotted vertical lines
represent true values of the frequencies.
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Table 2.1: Illustrative example. Parameter values for simulation from model (2.1). The value of the
intercept was set to zero for every segment.

Frequencies Linear coefficients Trends and variances
ω1,1 1/24 β1,1 (2.0, 3.0) µ1 .010
ω1,2 1/15 β1,2 (4.0, 5.0) µ2 .000
ω1,3 1/7 β1,3 (1.0, 2.5) µ3 -.005
ω2,1 1/12 β2,1 (4.0, 3.0) σ2

1 4.02

ω3,1 1/22 β3,1 (2.5, 4.0) σ2
2 3.52

ω3,2 1/15 β3,2 (4.0, 2.0) σ2
3 2.82

2.4.1.1 Sensitivity Analysis

To investigate the influence of the prior means λω and λs we simulate 10 realizations

from the same model and run our estimation algorithm for combinations of values

for λω and λs, ranging from 0.1 to 10.0. Table 2.2 shows the average posterior

probability of choosing the correct model, i.e. π̂ ( k = 2, m1 = 3, m2 = 1, m3 =

2 | y ). Table 2.3 displays the average mean squared error

MSE =
1
n

n∑
t=1

{
f̂t − ft

}2
,

to asses the distance between the true underlying signal ft and the estimated signal

f̂t. The latter is obtained by averaging across models of differing number of com-

ponents, in contrast to model selection. Specifically, if we run our procedure for S

iterations, then the estimated signal f̂t is defined as

f̂t =
1
S

S∑
s=1

k (s)+1∑
j=1

f
(
t, β (s)

j , ω
(s)
j

)
1[ t ∈ I (s)

j ], t = 1, . . . , n, (2.14)

where the superscript (s) denotes the s th sample of the Markov chain. Both analyses

suggest that, for this example, the choice of the prior means λω and λs has hardly

noticeable impact on the results. However, our experience is that small values for
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these hyper-parameters are preferable as they prevent the algorithm from overfitting

and seems to be more robust to model misspecification.

Table 2.2: Sensitivity analysis of illustrative example. Average probability of chosing the correct
model from 10 replications with varying λω and λs

λs = .1 λs = .2 λs = 0.5 λs = 1.0 λs = 2.0 λs = 5.0 λs = 10.0

λω = .1 .98 .97 .97 .99 .93 .91 1.0
λω = .2 .99 .99 .99 .99 .99 .99 .98
λω = .5 .99 1.0 .98 .95 .98 1.0 .99
λω = 1.0 .99 .94 .93 .99 .99 .99 .99
λω = 2.0 .99 .99 .99 .99 .99 .99 .99
λω = 5.0 .97 .96 .96 .97 .97 .93 .98
λω = 10.0 .94 .95 .95 .91 .93 .95 .85

Table 2.3: Sensitivity analysis of illustrative example. Average MSE from 10 replications with
varying λω and λs

λs = .1 λs = .2 λs = .5 λs = 1.0 λs = 2.0 λs = 5.0 λs = 10.0

λω = .1 .349 .435 .370 .416 .446 .470 .319
λω = .2 .354 .360 .378 .361 .370 .404 .394
λω = .5 .400 .347 .378 .447 .430 .346 .364
λω = 1.0 .302 .392 .400 .382 .321 .400 .337
λω = 2.0 .307 .369 .404 .340 .407 .329 .391
λω = 5.0 .360 .387 .362 .396 .346 .350 .324
λω = 10.0 .355 .386 .340 .387 .420 .393 .428

2.4.1.2 Detecting Spectral Peaks and Comparison with Existing Methods

We simulate a time series from the same simulation model as in Section 2.4.1 with

the only difference that the residual variances were set equal to one for all seg-

ments and thus are smaller than above. The performance of AutoNOM is compared

with two existing methods, namely the Bayesian adaptive spectral estimation for

nonstationary time series proposed by Rosen et al. [2012], referred to as Adapt-
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Table 2.4: Illustrative example. (left panel) posterior probabilities for number of change-points;
(right panel) posterior probabilities for number of frequencies in each regime, conditioned on k = 2.

k π̂ ( k | y)
0 .00
1 .02
2 .97
3 .01
4 .00

m π̂ ( m1 | k = 2, y) π̂ ( m2 | k = 2, y) π̂ ( m3 | k = 2, y)
1 .00 .99 .00
2 .00 .01 .98
3 .98 .00 .02
4 .02 .00 .00
5 .00 .00 .00

SPEC, and the frequentist piecewise vector autoregressive method of Davis et al.

[2006], referred to as AutoPARM. Specifically, we explore the performances of

these methodologies in identifying the number and location of change-points, and

the number and location of frequency peaks in each estimated segment. Adapt-

SPEC requires the user to specify in advance the number of basis function J used

for smoothing the periodogram in the segments. We run AdaptSPEC for two dif-

ferent specifications, namely J = 7 and J = 15 basis functions. The model is fitted

with a total of 15,000 iterations, 5,000 of which are discarded as burn-in, by us-

ing the R package provided by the authors. Posterior samples of peak frequencies

are obtained by considering the modes of the spectrum per MCMC iteration. Au-

toPARM is performed with default tuning parameters. We note that Davis et al.

[2006] do not discuss computation of confidence intervals for frequencies.

The modal number of change-points for AdaptSPEC is 2 for both J = 7

and J = 15, with posterior probability π̂ (k = 2 | y) of 76% and 88%, respectively;

the modal number of change-points for AutoNOM is 2 and AutoPARM identifies

2 change-points as well. Conditioned on the modal number of change-points, Ta-

ble 2.5 displays the estimated location of changes (left panel) and frequency peaks

(right panel) for the different compared methods, where we report the standard de-

viation for the estimate obtained from the empirical distribution of the posterior
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samples. Similarly, we show in Figure 2.2 the estimated location of the frequency

peaks and their 95% credible intervals, for each of the three identified segments;

dotted vertical lines represents the true location of the frequency peaks. Results for

AutoNOM are conditioned on the modal number of frequencies per regime.

It becomes clear that the detection of periodicities by AdaptSPEC is affected

by the specification of the number of spline basis functions used for the smooth-

ing, where increasing the number of basis function yields a better performance for

AdaptSPEC. The example also shows that smoothing by splines may lead to peaks

in the periodogram to be over-smoothed and neighbouring close peaks to be merged.

AutoPARM seems to also suffer from the latter problem.

Table 2.5: Illustrative example with unitary residual variances. Estimated change-points locations
(left panel) and frequency peaks (right panel) for AutoNOM (AN), AdaptSPEC (AS J = 7, 15) and
AutoPARM (AP); posterior standard deviations are also reported for Bayesian methods.

s1 s2 ω1,1 ω1,2 ω1,3 ω2,1 ω3,1 ω3,2

True 300 650 .042 .067 .143 .083 .046 .067

AN
300.87

(.97)
650.46

(.31)
.042

(.0004)
.067

(.0002)
.142

(.0005)
.083

(.0002)
.045

(.0003)
.067

(.0003)

AS J7
319.65
(15.36)

628.51
(37.35)

.083
(.0030)

- -
.082

(.0070)
.057

(.0010)
-

AS J15
298.5
(1.21)

647.01
(.14)

.057
(.0030)

.141
(.0020)

-
.088

(.0050)
.056

(.0030)
-

AP 299 648 .060 .140 - .080 .055 -
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Figure 2.2: Illustrative example with unitary residual variances. Estimated frequency peaks for
AutoNOM (AN), AdaptSPEC (AS, J = 7, 15) and AutoPARM (AP); 95% credible intervals (hori-
zontal lines) are also reported for Bayesian methods. Dotted vertical lines are true locations of the
frequency peaks.

When we increased the residual variance to the high levels set originally,

AdaptSPEC failed to detect any change-points for both J = 7 and J = 15, with

posterior probability π̂ (k = 0 | y) of 69% and 93%, respectively, while AutoPARM

found 7 change-points and thus severely overestimates their number. Our conclu-

sion from this comparison is that although AdaptSPEC and AutoPARM may be

well suited for time series processes with smooth time-varying spectra with few or

no peaks, both methods are severely challenged in detecting changes in spectra that

exhibit pronounced peakedness, possibly at nearby frequencies, as can be expected

to occur in reality for the type of time series that we wish to analyze.

2.4.2 Misspecified Model

We investigate the performance of our proposed method for identifying spectral

peaks when the model is misspecified relative to the generating process. In par-

ticular, we explored simulation studies under three different settings. In the first

two scenarios we generated data from two types of autoregressive (AR) processes,

namely a piecewise AR process and a slowly varying AR process. We compare

the performance of our procedure with AutoPARM and AdaptSPEC. In the third
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setting we assumed that the innovations are t-distributed, and therefore violate the

Gaussianity assumption of εt in Equation (2.3). For all models, our estimation al-

gorithm was run for 20,000 iterations, 5,000 of which were used as burn in, and the

hyperparameters were chosen as φs = 40, λω = 0.05 and λs = 0.01.

2.4.2.1 Piecewise Autoregressive Process

Although modeling a time series as a linear combination of a finite number of sinu-

soids plus noise is common in the signal processing literature, such line-spectrum

based models are rare in the statistics literature. In fact, it is commonly assumed

that the power spectrum is continuous across frequencies. We investigate the perfor-

mance of the proposed procedure when analyzing data generated from a piecewise

AR process whose local spectral density functions show sharp peaks. Specifically,

a realization is simulated from

yt =



1.9 yt−1 − .975 yt−2 + ε(1)
t for 1 ≤ t ≤ 250

1.9 yt−1 − .991 yt−2 + ε(2)
t for 251 ≤ t ≤ 400

−1.35 yt−1 − .37 yt−2 + .36 yt−3 + ε(3)
t for 401 ≤ t ≤ 550,

(2.15)

where ε(1)
t

iid
∼ N(0, 0.25) and ε(i)

t
iid
∼ N(0, 1) for i = 2, 3. Figure 2.3 (top panel) shows

a realization from model (2.15). After applying our methodology AutoNOM, the

posterior probability of two change-points is 97.93% and the posterior means of the

change-point locations are Ê (s1 | k = 2, y) = 251.19 and Ê (s2 | k = 2, y) = 401.56.

The estimated location of the frequency peaks for our proposed procedure in com-

parison to AdaptSPEC and AutoPARM and the true values are shown in Figure

(2.3) (bottom panels). It is evident that the proposed and existing methodologies

successfully identify the true location of the frequency peaks in each segment, with
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AdaptSPEC showing less precision.
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Figure 2.3: Piecewise AR process. (Top) A realization from model (2.15). Vertical dotted lines are
the estimated locations of the change-points. (Bottom) Estimated frequency peaks for AutoNOM
(AN), AdaptSPEC (AS J = 10) and AutoPARM (AP); 95% credible intervals (horizontal lines) are
also reported for Bayesian methods. Dotted vertical lines are true locations of the frequency peaks.

2.4.2.2 Slowly Varying Autoregressive Process

In this section, we analyze an AR process whose continuous spectral density is

changing slowly over time. We note though that this scenario is a large departure

from the assumptions of our model. In particular, we consider the same slowly

varying AR(2) process investigated by Ombao et al. [2001] and Davis et al. [2006],

namely

yt = at yt−1 − .81 yt−2 + εt, t = 1, . . . , 1031, (2.16)

where at = .8 [1 − .5 cos (πt/1031)] and εt
iid
∼ N(0, 1). Notice that the parame-

ter at is changing gradually over time whereas the coefficient associated with the

second lag remains constant. A realization from model (2.16) is shown in Figure

37



0 200 400 600 800 1000
t

8

6

4

2

0

2

4

6

8

y t

(a)

0 200 400 600 800 1000
t

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Fr
eq

ue
nc

ie
s

(b)
True
AN
AS J10
AP

Figure 2.4: Slowly varying AR(2) process. (a) A realization from model (2.16). (b) True time
varying frequency peak (solid line) and estimated time varying frequency peak for AutoNOM (AN),
AdaptSPEC (AS J = 10) and AutoPARM (AP).

2.4 (a) and the corresponding time varying frequency peak is displayed in Fig-

ure 2.4 (b) as a solid line. Figure 2.4 (b) also shows the estimated time varying

frequency peak for AutoNOM, AdaptSPEC and AutoPARM. For AutoNOM and

AdaptSpec, the time changing frequency peak has been averaged across the MCMC

samples, giving a smoother estimate (especially for AdaptSPEC) than the one ob-

tained by AutoPARM. For each method, we compute the residual sum of squares

RS S =
∑1031

t=1 (ωt−ω̂t)2 between the true time changing frequency peakωt and its es-

timate ω̂t. The RS S in this example was 0.111, 0.174, 0.085 for AutoNOM, Adapt-

SPEC and AutoPARM, respectively. It is clear that even in this scenario where

the data generating model was very different from the underlying assumptions of

our model, our approach seems to outperform AdaptSPEC and remains competitive

with AutoPARM in estimating the time varying frequency peak.

2.4.2.3 Non-Gaussian Time Series

We investigate the performance of our approach in the scenario when the innova-

tions are t-distributed. We simulate a time series from the same simulation model

presented in Section 2.4.1, where errors were generated from a t-distribution with

2, 3, and 2 degrees of freedom for the sequence of three segments, respectively.
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The degrees of freedom were chosen low such that the corresponding distributions

show heavy tails. A realization of this time series is shown in Figure 2.5. Our

proposed methodology correctly identifies the 2 change-points, as the estimated

posterior probability π̂ (k = 2 | y) is 0.99. The posterior means of the change-point

locations are Ê (s1 | k = 2, y) = 303.6 and Ê (s2 | k = 2, y) = 650.5, showing an ex-

cellent match to the true values s (2) = (300, 650). Furthermore, the posterior mode

of the number of frequencies in each segment is m̂(2) = (3, 1, 2), which is a correct

estimate of m(2) = (3, 1, 2). We also display in Figure 2.5 the estimated signal (us-

ing Equation (2.14)) as a dotted line. We can conclude that, although our model

assumes Gaussianity, AutoNOM seems to perform well even in the case where the

oscillatory underlying process is t-distributed with heavy tails.
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Figure 2.5: Illustrative example with t-distributed residual variances. Simulated time series (solid
line) and estimated signal (dotted line). The dotted vertical lines represent the estimated location of
the change-points.

2.5 Case Studies

The development of our methodology was motivated by the following two case

studies where dense physiological signals were observed which exhibit unknown

periodicities whose role may change over time in a more or less abrupt manner and
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where their detection is of relevance to the health and well-being of the subject.

2.5.1 Analysis of Human Skin Temperature

The development of information and communication technologies, in particular

widespread internet access and availability of mobile phones and tablets, allows

considering new developments in the health care system. To address the issue of

personalized medical treatment according to the circadian timing system of the pa-

tient, referred to as chronotherapy [Lévi and Schibler, 2007], a novel and validated

non-invasive mobile e-Health platform pioneered by the French project PiCADo

(Komarzynski et al. 2018) is used to record and teletransmit skin surface temper-

ature as well as physical activity data [Huang et al., 2018] from an upper chest

e-sensor. Figure 2.6 (a) shows an example of 4 days of 5-minutes temperature

recording for a healthy individual. The circadian rhythms in core and skin surface

temperature are usually 8-12 hours out of phase, with respective maxima occurring

near 16:00 at day time, and near 2:00 at night [Kräuchi and Wirz-Justice, 1994].

The early night drop in core body temperature, which is critical for triggering the

onset of sleep [Van Someren, 2006], results from the vasodilation of the skin vessels

and associated rise in skin surface temperature [Kräuchi, 2002]. Under the assump-

tion of stationarity Komarzynski et al. [2018] analyzed the skin temperature time

series identifying both strong 12 hours (circahemidian) and 24 hours (circadian)

rhythms.

Here, we applied our methodology to the skin-temperature time series shown

in Figure 2.6 (a) for 300,000 iterations, discarding the first 100,000 updates as burn-

in. The maximum number of change-points kmax was set to 10, whereas the maxi-

mum number of frequencies per regime mmax was set to 5. The estimated number
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of change-points had a mode at 7, with π̂ ( k = 7 | y) = 0.97 and their estimated

posterior distributions are shown in Figure 2.6 (c). Inspecting them alongside the

physical activity data we can see that the change points mainly correspond to the

start and end points of the prolonged rest periods at nights showing that skin tem-

perature alternates between day activity and night rest including sleep. Figure 2.7

shows the estimated posterior distribution of the frequencies for the sleep segments

(2, 4, 6, 8) along with the square root of the estimated power of the correspond-

ing frequencies, where the power of each is frequency ω j,l is summarized by the

sum of squares of the corresponding linear coefficients, i.e. I (ω j,l) = β (1) 2

j,l + β (2) 2

j,l

[Shumway and Stoffer, 2005]. Figure 2.6 (b) shows the piecewise fitted signal,

along with a 95 % credible interval obtained from the 2.5 and 97.5. Cycles of ap-

proximately 3 hours appear in segments 2, 4 and 6; cycles that range approximately

1-1.5 hour appear in segments 2, 4, 8 and cycles of around 2 hours appear in seg-

ments 4 and 6 while some longer periods identified in segments 4, 6, 8 indicate the

presence of a trend.

Stages of sleep are characterized by ultradian oscillations between rapid eye

movements (REM) and non-rapid eye movements (non-REM). The biological func-

tionality that regulates the alternations between these two types of sleep is not yet

much understood [Altevogt et al., 2006]. However, several physiological changes

that occur over night differ between REM and non-REM phases, such as heart rate,

brain activity, muscle tone and body temperature (Berlad et al., 1993; Pace-Schott

and Hobson, 2002). The body cycles between REM and non-REM sleep stages

with an average length that ranges approximately between 70 to 120 minutes, and

there are usually four to six of these sleep cycles each night (Carskadon et al., 2005;

Shneerson, 2009). Our analysis was able to use skin temperature data alone to de-

tect periods of sleep throughout the day and identify oscillatory behaviour during
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the night, whose frequencies are compatible with ultradian oscillations between

REM and different non-REM sleep stages.

2.5.1.1 Comparison with Existing Methods

Here, we provide a comparison with the current state-of-the-art methods, AutoPARM

and AdaptSPEC. AdaptSPEC was fitted with J = 12 basis functions and the re-

sults shown below are conditioned on the modal number of segments, whereas Au-

toPARM is performed with default tuning parameters. The estimated logarithm of

the time-varying spectrum of the skin temperature time series is displayed in Figure

2.8, for both AutoPARM (top panel) and AdaptSPEC (bottom panel). The elements

of the time-varying spectrum are functions of frequency and time, and the loca-

tions of the change-points are identified visually by inspecting the abrupt changes

in power over the time axis. Broadly speaking, both AutoPARM and AdaptSPEC

identify five segments and show some general agreement with each other in es-

timating change-points and local spectra. Both methodologies, which are based

on continuous spectrum models, seem to smooth the local spectra at low frequen-

cies in a considerable way. The only frequency peak is estimated by AutoPARM

in the third segment and corresponds to a cycle of approximately 1.2 hour, which

finds analogies with the spectral properties of Segment 4 estimated by our proposed

approach. In particular, AutoPARM identifies the spectrum of an AR(2) process

with autoregressive parameters (1.55, -0.69) in that segment. However, and most

importantly, both existing methods clearly fail to detect either circadian or ultra-

dian rhythmicity which were elicited by our method (see Figure 2.6 and Figure 2.7)

and are to be expected as body temperature is known to be a circadian biomarker

[Kräuchi and Wirz-Justice, 1994].
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Figure 2.6: Analysis of skin temperature of a healthy subject. Panel (a) are the time series of
skin temperature and corresponding physical activity. Panel (b) is the estimated signal (solid line)
along with its 95% credible interval; vertical lines are the estimated locations of the change-points.
Panel(c) is the estimated posterior density histogram of the locations of the changes, conditioned on
k = 7 change-points. Rectangles on the time axis of each plot correspond to periods from 20.00 to
8.00. The variation in skin temperature finds analogies with the rest-activity pattern that alternates
between day activity and night rest.
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(b) Segment 4 
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(c) Segment 6 
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(d) Segment 8 

Figure 2.7: Spectral properties for segments corresponding to night rest. Estimated posterior dis-
tribution of the frequencies along with square root of the estimated power of the corresponding
frequencies. The results are conditional on the modal number of frequencies per segment.
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Figure 2.8: Estimated time-varying log spectrum for the skin temperature time series. (Top) Au-
toPARM. (Bottom) AdaptSPEC. Rectangles on the time axis of each plot correspond to periods
from 20.00 to 8.00.
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2.5.1.2 Phase Shift

We notice that in the framework of analyzing circadian biomarker data, such as

body temperature, a change in acrophase may be of interest to the clinician as this

may be indicative of a disruption of the bodyclock. Our proposed methodology can

indeed be used to investigate phase since the sinusoidal function f
(
t, β j, ω j

)
that

characterizes the j th segment (see Equation 2.2)) can be re-written using trigono-

metric identities1 as

f
(
t, B j, ω j, τ j

)
= α j + µ j t +

m j∑
l=1

(
B j, l cos(2πω j, l t + τ j, l)

)
,

where B j = (B j, 1, . . . , B j,m j) and τ j = (τ j, 1, . . . , τ j,m j). With this notation, B j, l is

the amplitude of the frequency ω j, l and τ j, l is the phase shift of the corresponding

frequency. The phase τ j, l of a frequency of interest ω j, l can be estimated in terms

of the coefficients β (1)
j, l and β (2)

j, l using the following equality

τ j, l = arctan
(
−
β (2)

j, l

β (1)
j, l

)
, −π ≤ τ j, l ≤ π,

where credible intervals can be easily obtained from the empirical percentiles of the

posterior sample.

1 cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b)
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2.5.2 Characterizing Instances of Sleep Apnea in Rodents

Sleep apnea is the temporary (≥ 2 breaths) interruption of breathing during sleep.

Moderate or severe (≥ 15 events per hour) sleep apnea, occurs in about 50 % of

men and 25 % of women over the age of 40 [Heinzer et al., 2015], with 91%

of people with sleep apnea being undiagnosed [Tan et al., 2016]. Sleep apnea is

linked to many diseases. Patients with sleep apnea are at increased risk of: cardio-

vascular events [Lanfranchi et al., 1999], cancer [Nieto et al., 2012], liver disease

[Sundaram et al., 2016], diabetes [Harsch et al., 2004], metabolic syndrome [Parish

et al., 2007], cognitive decline [Osorio et al., 2016], and increased risk of demen-

tia in the elderly [Lal et al., 2012]. The motivation of this research is to provide

a statistical methodology that can be applied to analyze large breathing data sets

resulting from in vivo plethysmograph studies in rats to characterize the occurrence

of sleep apnea under different experimental conditions. If this could be attained,

a concrete aid to the understanding of the pathological implications of this status

could be provided to clinicians and experimental biologists.

An unrestrained whole-body plethysmograph is used to produce a breathing

trace from freely behaving rats for periods of up to 3 hours. Plethysmographs were

made using an 2L air-tight box connected to a pressure transducer, with an air pump

and outlet valve producing a flow rate of 2L/min. Airflow pressure signals were

amplified using Neurolog system (Digitimer) connected to a 1401 interface and

acquired on a computer using Spike2 software (CED). Apneas are subclassified

as post-sigh apneas, if the preceding breath was at least 25% above the average

amplitude of prior breaths, or spontaneous apneas, if there was no manifestation of a

previous sigh [Davis and ODonnell, 2013]. Airflow traces from the plethysmograph

are shown in Figure 2.9 (left panels) and consist of three time series, which will be
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referred to as (a), (b) and (c). They correspond to different actions for this rat: (a)

an alternation of sniffing and normal breathing; (b) spontaneous apnea followed by

normal breathing; (c) normal breathing followed by a sigh, and a post-sigh apnea.

We note that these actions were classified by eye by an experienced experimental

researcher. Each time series contains 20,000 observations where the signal was

sampled at 2000 Hz so that we have 2000 observations per second.
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Figure 2.9: Plots of the respiratory traces of a rat (left panels) and corresponding estimated posterior
power (right panels). Panel (a) is characterised by an alternation of sniffing and normal breathing.
Panel (b) is a plot of the trace of a spontaneous apnea, followed by normal breathing. Panel (c)
shows normal breathing followed by a sigh, and a post-sigh apnea. Dotted vertical lines correspond
to the estimated locations of the change-points.
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Our procedure allows us to set an upper bound, φω, (Appendix 2.A) for the

uniform interval where the new frequencies are sampled. As the periodogram ordi-

nates for these data were approximately zero for all frequencies larger than 0.01, we

decided accordingly to set φω = 0.01. The locations of the changes (vertical lines)

are displayed in Figure 2.9 (left panels). The posterior power of the frequencies, for

each time series, is shown in Figure 2.9 (right panels). These results are conditional

on the modal number of change-points and the modal number of frequencies per

segment.

Table 2.6: Spectral properties of respiratory traces of a rat. Periodicities (in seconds) corresponding
to the first two largest values of the estimated power, for each time series (a), (b) and (c).

(a) (b) (c)
Period Power Period Power Period Power

Segment 1
.19
.15

.2272

.0883
.20
.25

.0015

.0010
.25
.21

5.2540
.0915

Segment 2
.20
.28

.2613

.0686
.49
.34

.0117

.0099
.27
.42

.0107

.0043

Segment 3
.48
.32

.0692

.0491
.48
.28

.0145

.0122
.24
.37

.0365

.0095

Segment 4
.58
.47

.0400

.0251
.36
.24

.0253

.0155

Segment 5
.19
.16

.3231

.1044

For each data set, we summarise in Table 2.6 the spectral properties of each

partition by displaying the periodicities corresponding to the first two largest values

of the estimated power. When the rat is sniffing, (a), the air flow trace oscillates

with a dominant period of approximately 0.2 seconds, namely 5 cycles per second.

Normal breathing, (a) and (b), is characterised by lower frequencies and lower mag-

nitude than sniffing, by oscillating with a dominant period of around 0.5 seconds,

namely around 2 cycles every second. Apneas, (b) and (c), appear to be charac-

terised by higher frequencies than normal breathing but with a lower power, with

dominant periods of around 0.25 and 0.35 seconds. Notice that in the first partition
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of (c), the highest value of the power corresponds to the frequency responsible for a

sigh before apnea. Moreover, our methodology identifies different frequencies that

explain the variation between the third and fourth partition of (c), leading to the

hypothesis that there might be a time changing spectrum during the occurrence of

an apnea instance. A comparison of our results with the results from AutoPARM

and AdaptSPEC is provided in the Supplementary Material, Section 4.2.

2.5.2.1 Comparison with Existing Methods

The estimated time-varying spectral properties for three plethysmographic respi-

ratory traces of the rat are displayed in Figure 2.10, for both AutoPARM (center

panels) and AdaptSPEC (right panels). AutoPARM appears to identify fairly well

changes in actions of this rat, such as (a) the alternation between sniffing and nor-

mal breathing, (b) the change from normal breathing to a spontaneous apnea, and

(c) different actions of apnea, sigh and post-sigh apnea. We note that these actions

were classified by eye by an experienced experimental researcher. AdaptSPEC de-

tects changes in a satisfactory way for (a) and (c) but does not detect which distinct

frequencies drive the oscillations in these data in particular as all peaks correspond-

ing to low frequencies are smoothed. Notice that the periodogram ordinates for

these time series were approximately zero for all frequencies larger than 0.01. In

addition, AdaptSPEC is not able to detect any changes from normal breathing to a

spontaneous apnea since it identifies only one segment in (b). It seems that the AR

building block of AutoPARM can better model peaked structures compared to the

smoothing spline nature of AdaptSPEC. Generally, our method find a larger num-

ber of change-points which are associated with changes in the spectrum, as seen

in Figure 2.10 (left panels). For example, in (c) AutoNOM identifies different fre-

quencies that explain the variation between Segment 3 and Segment 4, leading to

49



the hypothesis that there might be a time changing spectrum during the occurrence

of an apnea instance.
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Figure 2.10: (Left) Plots of respiratory traces of a rat along with estimated change-points locations
by AutoNOM. (a) is characterised by an alternation of sniffing and normal breathing. (b) is a plot
of the trace of a spontaneous apnea, followed by normal breathing. (c) shows normal breathing
followed by a sigh, and a post-sigh apnea. (Center) AutoPARM estimated time-varying log spectra
for three different respiratory traces of a rat. (Right) AdaptSPEC estimated time-varying log spectra
for three different respiratory traces of a rat.
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2.A Details of the Sampling Scheme

In this section we provide further details about the sampling scheme for nonstation-

ary periodic processes explained in Section 2.3. Section 2.A.1 describes a segment

model move and Section 2.A.2 shows a change-point model move. In Section 2.A.3

we provide more details about Jacobian evaluations which are required to compute

the (trans-dimensional) acceptance probabilities for both segment and change-point

model moves.

2.A.1 Updating a Segment Model

2.A.1.1 Within-Model Move

Samplingω: To obtain samples from the conditional posterior distribution π (ω |β, σ2, m, y)

(see Equation (2.10)), we draw the frequencies one-at-time using a mixture of M-

H steps. In order to explore the parameter space efficiently, we design a mixture

distribution q (ω p
l |ω

c
l ), so that

q (ω p
l |ω

c
l ) = δω q1 (ω p

l |ω
c
l ) + (1 − δω) q2 (ω p

l |ω
c
l ), l = 1, . . . ,m, (2.17)

where q1 is defined in Equation (2.18) below, q2 is the density of a univariate Nor-

mal N (ω c
l , σ

2
ω), δω is a positive real number such that 0 ≤ δω ≤ 1, and c and p

refer to current and proposed values, respectively. According to Equation (2.17) we

carry out with probability δω a M-H step with proposal distribution q1 (ω p
l |ω

c
l ),

q1 (ω p
l |ω

c
l ) ∝

ñ−1∑
h = 0

Ih 1
[

h/n ≤ ω p
l < (h+1)/n

] , (2.18)
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where ñ = bn/2c and Ih is the value of the squared modulus of the Discrete Fourier

transform of the observations y evaluated at frequency h/n

Ih =
∣∣∣∣ b∑

j = a

y j exp
(
− i 2π

h
n

) ∣∣∣∣ 2
.

In this way frequencies are proposed from regions in parameter space with

high posterior density, yielding a Markov chain which converges quickly to its in-

variant distribution. The proposal distribution q1 (ω p
l |ω

c
l ) is independent of the

current state ω c
l . The acceptance probability for this move is

α = min
{

1,
π (ω p |β, σ2, m, y)
π (ω c |β, σ2, m, y)

×
q1 (ω c

l )
q1 (ω p

l )

}
,

whereω p = (ω c
1 , . . . , ω

c
l−1, ω

p
l , ω

c
l+1, . . . , ω

c
m)
′

. On the other hand, with probability 1

- δω, we perform a random walk M-H step with proposal distribution q2 (ω p
l |ω

c
l ),

whose density is a univariate Normal distribution with mean ω c
l and variance σ2

ω,

i.e. ω p
l |ω

c
l ∼ N(ω c

l , σ
2
ω

). This perturbation around the current value ω c
l allows

a local exploration of the conditional posterior distribution. The acceptance proba-

bility for this move is

α = min
{

1,
π (ω p |β, σ2, m, y)
π (ω c |β, σ2, m, y)

}
.

Setting δω to a relative low value integrates a fairly high acceptance rate with a quick

exploration of the parameter space. For our experiments, we set σ2
ω = (1/50n)2 and

δω = 0.2.
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2.A.1.2 Between-Model Moves

The number of frequencies on a segment is proposed to either increase or decrease

by one. Let θ c = (β c ′ , ω c ′ , σ 2c ′ )
′

and assume the Markov chain is currently at

( m c, θ c ). We propose a move to ( m p, θ p ) by drawing from a proposal density

q ( m p, θ p |m c, θ c ) and accepting this update with probability

α = min
{

1,
L ( m p, θ p | y)
L ( m c, θ c | y)

×
π(m p) π(θ p |m p)
π(m c) π(θ c |m c)

×
q (m c, θ c |m p, θ p )
q (m p, θ p |m c, θ c )

}
, (2.19)

where we notice (and show in Section 2.A.3.1) that the Jacobian which takes ac-

count for the change of dimension is equal to one. The proposed state ( m p, θ p ) is

drawn by first drawing m p, followed by ω p, β p and σ 2p. In fact, we can rewrite the

proposal density as

q (m p, θ p |m c, θ c ) = q (m p |m c) × q (θ p |m p, m c, θ c)

= q (m p |m c) × q (ω p |m p, m c, θ c)

× q (β p |ω p, m p, m c, θ c)

× q (σ 2p | β p, ω p, m p, m c, θ c).

(2.20)

Birth move: If a birth move is proposed, we have that m p = m c + 1. The

proposed frequency vector ω p is constructed as

ω p = (ωc
1, . . . , ω

c
mc , ω

p
mp)

′

,

namely by keeping the current vector of frequencies and proposing an additional

frequency ω p
mp . Alternatively to Andrieu and Doucet [1999], we choose to sample

ω
p
mp uniformly on the interval (0, φω), where we recall that 0 < φω < 0.5. Addi-
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tionally, for computational and/or modelling reasons, we would like not to sample

frequencies that are too close to each other. Hence, we choose to draw a candidate

value ωp
mp uniformly from the union of intervals of the form [ωc

l + ψω, ω
c
l+1 − ψω],

for l = 0, . . . ,mc and denoting ω c
0 = 0 and ωc

mc+1 = φω. Here, ψω is a fixed min-

imum distance between frequencies, which is chosen larger than 1
n ; in fact, when

the separation of two frequencies is less than the Nyquist step [Priestley, 1981],

i.e. |ω l − ω l+1 | <
1
n , the two frequencies are indistinguishable [Dou and Hodgson,

1995]. Moreover, we sort the proposed vector of frequencies ω p to ensure iden-

tifiability and perform practical estimation, as suggested in Andrieu and Doucet

[1999]. For proposed ω p and given σ 2c, the proposed vector of linear coefficients

β p is drawn from its conjugate Gaussian posterior (as in Equation 2.11). Finally,

the residual variance σ 2p is sampled directly from its posterior conditional distri-

bution π (σ 2p |ω p, β p, m p, y) (see Equation (2.13)). The proposed state (mp, θ p )

is accepted or rejected in a Metropolis-Hastings step with probability

α = min
{

1,
L ( θ p, m p | y)
L ( θ c, m c | y)

×
π (m p) π (θ p |m p)
π (m c) π (θ c |m c)

×
dm p ·

( 1
m p

)
· q (β c ) · q (σ 2c )

bm c · q (ω p
m p) · q (β p ) · q (σ 2p )

}
,

where the likelihood function is given in Equation (2.5), π( m ) is the density of the

Poisson distribution truncated at mmax, bm c and dm p are defined in Equation (2.9),

q (β c) and q (β p) are the Normal densitiesN2mc+2 ( β̂ c, Vβ c) andN2mp+2 ( β̂ p, Vβ p),

respectively (Equation 2.11); q (σ2
p ) and q (σ2

c ) are the Inverse-Gamma proposal

densities defined in Equation (2.13).

Death move: If a death move is proposed, then m p = m c − 1. A vector

of frequencies ω p is constructed by randomly selecting with probability 1
m c one of

the current frequencies as the candidate frequency for removal. Given ω p and σ 2c,

a vector of linear coefficients β p is drawn from its Gaussian posterior conditional
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distribution. Finally, conditioned on ω p and β p, the residual variance σ 2p is drawn

from its posterior Inverse-Gamma distribution. It is straightforward to see that the

acceptance probability for the death step has the same form as the birth step, with

the proper change of labelling of the variables, and the ratio terms inverted.

2.A.2 Updating a Change-Point Model

2.A.2.1 Within-Model Move

Let s c
(k) = (s c

1 , . . . , s
c
k )
′

be the current vector of change-points locations, mc
(k) =

(m c
1 , . . . ,m

c
k+1)

′

be the current vector of number of frequencies,ω c
(k) = (ω c ′

1 , . . . ,ω
c ′
k+1)

′

be the current vector of frequencies. Let β c
(k) = (β c ′

1 , . . . ,β
c ′
k+1)

′

andσ 2
(k) = (σ 2c

1 , . . . , σ
2c
k+1)

′

be the current vectors of linear coefficients and residual variances, respectively.

Let us also define θ c
(k) = (β c ′

(k), ω
c ′
(k), σ

2c ′
(k) )

′

. Following Green [1995], a

change-point, s c
j say, is randomly selected with probability 1

k from the existing set

of change-points. In order to explore the parameter space in an efficient way and

similar to above we construct a mixture distribution q ( s p
j | s

c
j ), as

q ( s p
j | s

c
j ) = δs q1 ( s p

j | s
c
j ) + (1 − δs) q2 ( s p

j | s
c
j ) (2.21)

where q1 is the density of a Uniform [s c
j−1 + ψ, s c

j+1 − ψ], q2 is the density of a uni-

variate Normal N (s c
j , σ

2
s) and δs is a positive real number such that 0 ≤ δs ≤ 1.

We propose with probability δs a candidate value s p
j from the above uniform distri-

bution where ψ is a fixed minimum time between change-points avoiding change-

points being too close to each other. On the other hand, with probability (1− δs), s p
j

arises as a Normal random walk proposal centered at the current change-point s c
j .
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The proposed vector of change-points locations is denoted by

s p
(k) = (s c

1 , . . . , s
c
j−1, s

p
j , s

c
j+1, . . . , s

c
k )
′

,

and hence the proposed value s p
j induces a new proposed data partition on [s c

j−1, s
c
j+1]

corresponding to [s c
j−1, s

p
j ) and [s p

j , s
c
j+1). We denote the vectors of observations

belonging to these two proposed segments as y p
j and y p

j+1, which include n p
j and

n p
j+1 observations, respectively. Given s p

(k), the proposed number of frequencies

m p
j , m p

j+1 are set equal to the current ones m c
j , m c

j+1, so that m p
(k) = mc

(k). Simi-

larly, the proposed pair of frequency vectors ω p
j , ω p

j+1 is chosen equal to the cur-

rent pair ω c
j , ω

c
j+1 in the corresponding segments, i.e. ω p

(k) = ω c
(k). The proposed

vectors β p
j , β p

j+1 are sampled from their Gaussian posterior conditional distribu-

tions π (β p
j |ω

p
j , σ

2c
j , m p

j , y p
j ) and π (β p

j+1 |ω
p
j+1, σ

2c
j+1, m p

j+1, y p
j+1 ). This move is

accepted in a M-H step with probability

α = min
{

1,
L ( k, m p

(k), s p
(k), θ

p
(k) | y )

L ( k, mc
(k), s c

(k), θ
c
(k) | y )

×
π( s p

(k) | k) π( θ p
(k) |m

p
(k), k)

π( s c
(k) | k) π( θ c

(k) |m
c
(k), k )

×

∏ j+1
h= j q ( β c

h )∏ j+1
h= j q ( β p

h )

}
,

where the likelihood is specified in Equation (2.4) and q (β c
h ) and q (β p

h ) are the

multivariate Normal densitiesN2m c
h +2 ( β̂ c

h , Vβ c
h
) andN2mp

h +2 ( β̂ p
h , Vβ

p
h
), respectively

(Equation 2.11), for h = { j, j + 1}. Note that the likelihood ratio and the prior ratio

differ from one only for the two segments affected by the move of the change-

points. Next, the residual variances σ 2p
j , σ 2p

j+1 are drawn from their posterior con-

ditional distributions π (σ 2p
j |ω

p
j , β

p
j , m p

j , y p
j ), π (σ 2p

j+1 |ω
p
j+1, β

p
j+1, m p

j+1, y p
j+1) in a

Gibbs step.
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2.A.2.2 Between-Model Moves

Let ξ c
(k c) = ( s c ′

(k c), mc ′
(k c), θ

c ′
(k c) )

′

and assume the Markov chain is at ( k c, ξ c
(k c) ). We

propose a move to ( k p, ξ p
(k p) ) by first drawing k p, followed by sampling the change-

point locations s p
(k p). The latter involves either merging two segments (death) or

splitting a segment (birth). The number of frequencies and their values in the pro-

posed segments are selected from the current state. We draw β p
(k p) and jointly update

the entire state ( k p, ξ p
(k p) ). Hence, we propose a move to ( k p, ξ p

(k p) ) by drawing

from a proposal density of the form

q ( k p, ξ p
(k p) | k

c, ξ c
(k c) ) = q ( k p | k c ) × q ( ξ p

(k p) | k
p, k c, ξ c

(k c) )

= q ( k p | k c ) × q ( s p
(k p) | k

p, k c, ξ c
(k c) )

× q ( m p
(k p), ω

p
(k p) | s

p
(k p), k p, k c, ξ c

(k c) )

× q (σ 2p
(k p) |m

p
(k p), ω

p
(k p), s p

(k p), k p, k c, ξ c
(k c) )

× q (β p
(k p) |σ

2p
(k p), m p

(k p), ω
p
(k p), s p

(k p), k p, k c, ξ c
(k c) ).

Birth move: If a birth move is proposed, we have that k p = k c + 1. We

draw a new change-point uniformly on f (s c
(k c), ψs), the support of s c

(k c) given the

constraints imposed by ψs, i.e. f (s c
(k c), ψs) = [1 + ψs, s c

1 − ψs] ∪ [s c
1 + ψs, s c

2 −

ψs]∪ . . . ∪ [s c
k c +ψs, n−ψs]. Hence, the new proposed location s̃ j is sampled from

a Uniform { f (s (k c), ψs)}, where the proposal density is given by

q (s p
(k p) | k

p, k c, ξ c
(k c)) =

1
(n − 2ψs (k c + 1) − 1)

. (2.22)
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As the proposed location s̃ j will lie within an existing interval (s c
j , s c

j+1) with prob-

ability one, we can define the proposed change-points location vector as

s p
(k p) = (s c

1 , . . . , s
c
j , s̃ j, s c

j+1, . . . , s
c
k c)

′

.

The number of frequencies m p
j ,m

p
j+1 corresponding to the two newly proposed seg-

ments [s c
j , s̃ j) and [s̃ j, s c

j+1) are set equal to the current number of frequencies on the

whole segment (s c
j , s c

j+1). Therefore, we can construct the proposed vector of the

number of frequencies m p
(k p) and the proposed vector of frequencies ω p

(k p) as

m p
(k p) = ( m c

1 , . . . ,m
c
j−1,m

c
j ,m

c
j ,m

c
j+1, . . . ,m

c
k c+1)

′

,

ω p
(k p) = (ω c ′

1 , . . . ,ω
c ′
j−1,ω

c ′
j ,ω

c ′
j ,ω

c ′
j+1, . . . ,ω

c ′
k c+1)

′

.

The proposed vector of residual variances σ 2p
(k p) is

σ 2p
(k p) = (σ 2c

1 , . . . , σ
2c
j−1, σ

2p
j , σ

2p
j+1, σ

2c
j+1, . . . , σ

2c
k c+1 )

′

,

where the residual variances σ 2p
j , σ

2p
j+1 for the split partition are constructed follow-

ing Green [1995], namely as a perturbation of the current varianceσ 2c
j . Specifically,

we draw u ∼ Uniform (0, 1) and let σ 2p
j , σ

2p
j+1 be deterministic transformations of

σ 2c
j , i.e

σ
2p
j =

u
1 − u

σ 2c
j , σ

2p
j+1 =

1 − u
u

σ 2c
j . (2.23)

Finally, the proposed vector of linear coefficients β p
(k p) is

β p
(k p) = (β c ′

1 , . . . ,β
c ′
j−1,β

p ′

j ,β
p ′

j+1,β
c ′
j+1, . . . ,β

c ′
k c+1 )

′

,
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where the vectors β p
j , β p

j+1 are drawn from their posterior conditional distribution.

The proposed move to the state (k p, ξ p
(k p)) is accepted with probability

α = min
{

1,
L ( k p, ξ p

(k p) | y )

L ( k c, ξ c
(k c) | y )

×
π (k p) π (ξ p

(k p) | k
p)

π (k c) π (ξ c
(k c) | k

c)
×

dk p · 1
k p ·

1
2 · q (β c

j )

bk c · q (s p
(k p)) ·

∏ j+1
h= j q (β p

h )
× Jσ 2

}
,

where the likelihood function is provided in Equation (2.4), q (s p
(k p)) is the uniform

density defined in Equation (2.22); q (β c
h ), q (β p

h ) are the multivariate Normal pro-

posal densities as in Equation (2.11), and the Jacobian Jσ 2 is

Jσ 2 =

∣∣∣∣∣∣ ∂ (σ 2p
j , σ

2p
j+1)

∂ (σ 2c
j , u)

∣∣∣∣∣∣ = 2
(√

σ
2p
j +

√
σ

2p
j+1

) 2
.

The evaluation of the Jacobian is provided in Section 2.A.3.2 and the numerator of

the proposal ratio is better understood by looking at the details of the death step,

which are given below.

Death Move: If a death step is proposed, then k p = k c − 1. A candidate

change-point s c
j to be removed is sampled uniformly from the vector of existing

change-points; that is, we propose to remove s c
j with probability 1

k c . Then, the

proposed vector of change-points locations s p
(k) is defined as

s p
(k) = (s c

1 , . . . , s
c
j−1, s

c
j+1, . . . , s

c
k c)

′

.

The number m p
j and the vector of relevant frequencies ω p

j of the newly merged

segment [s c
j−1, s

c
j+1) are selected by drawing an index at random from { j, j + 1}, ob-

taining say j ∗, and setting the proposed parameters equal to the current ones relative

to the selected index. That is, we set m p
j = m c

j ∗ and ω p
j = ω c

j ∗ . Hence, the proposed

vectors of number of frequencies m p
(k p) and their values ω p

(k p) are constructed as
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follows

m p
(k p) = ( m c

1 , . . . ,m
c
j−1,m

p
j ,m

c
j+2, . . . ,m

c
k c+1 )

′

,

ω p
(k p) = (ω c ′

1 , . . . ,ω
c ′
j−1,ω

p ′

j ,ω
c ′
j+2, . . . ,ω

c ′
k c+1)

′

.

The residual variance σ 2p
j of the newly merged segment is obtained by inverting

the transformation of Equation (2.23). Specifically, we construct σ 2p
j =

√
σ 2c

j σ 2c
j+1

and set the proposed vector of residual variances σ 2p
(k p) as

σ 2p
(k p) = (σ 2c

1 , . . . , σ
2c
j−1, σ

2p
j , σ

2c
j+2, . . . , σ

2c
k c+1 )

′

.

The proposed vector of linear coefficients β p
(k p) is

β p
(k p) = (β c ′

1 , . . . ,β
c ′
j−1,β

p ′

j ,β
c ′
j+2, . . . ,β

c ′
k c+1)

′

,

where the vector of coefficients β p
j is drawn from its Gaussian posterior conditional

distribution. The acceptance probability for the death step has the same form of the

birth step, with the proper change of labelling of the variables, and the ratio terms

inverted.

2.A.3 Jacobian Evaluation

2.A.3.1 Segment Model Move

The Jacobian term involved in Equation (2.19) is equal to one. In fact, in a similar

fashion as of Godsill [2001], the proposal is made directly in the new parameter

space rather than via the dimension matching random variables introduced by Green

[1995]. Since equivalent results were stated but not proved by Godsill [2001] or
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Rosen et al. [2012] among the others, we believe is worth making a brief digression

and show that the Jacobian term is unity for a simple example.

Example: Assume the current dimension of the model is m c = 3 with cor-

responding value of the parameters θ c = (x c
1 , x c

2 , x c
3 ). We propose a birth move to

a model with m p = 4 and θ p = (x p
1 , x p

2 , x p
3 , x p

4 ); the first three entries of the pro-

posed parameter are set equal to the ones of the current values, whereas the fourth

entry is drawn from a proposal distribution q (u). Specifically,

θ p = g (θ c, u),

where

g (θ c, u) :=



g1 : x p
1 = x c

1 ,

g2 : x p
2 = x c

2 ,

g3 : x p
3 = x c

3 ,

g4 : x p
4 = u, u ∼ q (u)

Then, the Jacobian term is given by

∂ θ p

∂ (θ c, u)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1

∂x c
1

∂g1

∂x c
2

∂g1

∂x c
3

∂g1

∂u
∂g2

∂x c
1

∂g2

∂x c
2

∂g2

∂x c
3

∂g2

∂u
∂g3

∂x c
1

∂g3

∂x c
2

∂g3

∂x c
3

∂g3

∂u
∂g4

∂x c
1

∂g4

∂x c
2

∂g4

∂x c
3

∂g4

∂u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1,

as the matrix of partial derivatives is the identity.

If we propose a death move to a model with m p = 2 and θ p = (x p
1 , x p

2 ),

the proposed vector of parameter is constructed by deleting at random one of the
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entries of the current parameter vector. Then, it is easily noticeable that for this type

of move the Jacobian term is again equal to one.

2.A.3.2 Change-Point Model Move

Now we provide the details of the Jacobian evaluation for the birth step of the

change-point model move. Notice that except for the residual variances σ 2c
j , σ

2p
j

and σ 2p
j+1, the matrices of partial derivatives corresponding to all the other param-

eters are identity matrices, and their determinants are equal to one. Hence, as the

determinant of a block diagonal matrix is equal to the product of the determinants

of the diagonal blocks, we focus only on the block whose determinant differs from

one.

For simplicity of notation, let x = σ 2c
j , y1 = σ

2p
j , and y2 = σ

2p
j+1. We

propose a move from x to y = (y1, y2) via a transformation g (x, u), where we draw

u ∼ Uniform (0, 1) and set

g(x, u) :=


g1 : y1 =

u
1 − u

x,

g2 : y2 =
1 − u

u
x.

(2.24)

Then, the Jacobian J is given by

J :=
∂ y

∂ g (x, u)
=

∣∣∣∣∣∣∣∣∣∣∣
∂ g1

∂ x
∂ g1

∂ u
∂ g2

∂ x
∂ g2

∂ u

∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
u

1 − u
x

(1 − u)2

1 − u
u

−
x
u2

∣∣∣∣∣∣∣∣∣∣∣ =
2x

u (1 − u)
. (2.25)

Moreover, if we use that

x = u2x + (1 − u)2x + 2x(1 − u)u,
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we can rewrite Equation (2.25) as

2x
u (1 − u)

=
2
(
u2x + (1 − u)2x + 2x(1 − u)u

)
u (1 − u)

= 2
(

u
1 − u

x +
1 − u

u
x + 2x

)

= 2
(

y1 + y2 + 2
√

y1
√

y2

)
by using (2.24),

=

(
√

y1 +
√

y2

)2

, (2.26)

as required.

For the death step, the residual variance of the newly merged segment is

constructed by inverting the transformation of Equation (2.24). If we let y1 = σ 2c
j ,

y2 = σ 2c
j+1, then the proposed residual variance x = σ

2p
j is constructed as

x =
√

y1y2.

In fact,


y1 =

u
1 − u

x

y2 =
1 − u

u
x

→


x = y1

1 − u
u√

y2

y1
=

1 − u
u

→


x =

√
y1 y2

u =
1(

1 +
√

y2
y1

) (2.27)

Notice that the Jacobian of the inverse transformation is the inverse of the Jacobian.

Hence, the Jacobian term for the death step is obtaining by inverting the result

obtained in Equation (2.26).
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Chapter 3

A Spectral Hidden Markov Model

for Nonstationary Oscillatory

Processes

In the previous chapter we presented a Bayesian approach for analyzing nonsta-

tionary processes that exhibit time-varying oscillatory behaviour to detect change-

points and simultaneously identify the potentially changing periodicities in the data.

However, in addition to detect temporal changes, it may also be of interest to rec-

ognize and model the recurrence of a relevant periodic behaviour in a probabilistic

way. For example, we found that human respiratory traces measured in the context

of experimental sleep apnea research exhibit abrupt changes in their periodic be-

haviour, where several patterns, such as instances of apnea, recur over time. Indeed,

identifying (and ultimately predicting) all instances of apnea that occur during sleep

is one of the primary interests for healthcare providers, clinicians and experimental

biologists working in sleep apnea research.

Our methodology is built on the framework of a hidden Markov model
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(HMM) [Rabiner et al., 1989] where we assume the number of states to be un-

known, since we do not always have complete prior information about the number

of different regimes of periodic behaviours that occur in a time series. The number

of frequencies that characterizes each periodic regime is also assumed unknown, as

the variability in each different state may be driven by a different number of relevant

periodicities.

An HMM is a stochastic process model based on a discrete latent state se-

quence whose transition probabilities follow a Markovian structure [Rabiner, 1989;

Ephraim and Merhav, 2002]. Conditioned on this state sequence, the observations

are assumed to be conditionally independent, and generated from a family of prob-

ability distributions, which hereafter we refer to as the emission distributions. The

HMM has been successfully utilized in many applications, such as speech recog-

nition [Rabiner, 1989; Juang and Rabiner, 1991; Jelinek, 1997], digit recognition

[Raviv, 1967; Rabiner et al., 1989], biological and physiological data [Krogh et al.,

1994, 2001; Huang et al., 2018; Langrock et al., 2013; Yaghouby and Sunderam,

2015], and finance [Bhar and Hamori, 2004]. A disadvantage of the classical para-

metric HMM setting is that it generally requires the number of states to be fixed in

advance, where model selection is usually carried out by employing Akaike’s in-

formation criterion [Akaike, 1974] or the Bayesian information criterion [Schwarz

et al., 1978]. Alternatively, in a nonparametric approach, the hierarchical Dirichlet

process (HDP) presented by Teh et al. [2006] may be used as a building block for an

HMM with an unspecified number of states. Specifically, the HDP-HMM approach

places a Dirichlet process (DP) prior on the Markovian transition probabilities of

the system, while allowing the atoms associated with the state-specific conditional

DPs to be shared between each other, yielding an HMM with a countably infinite

number of states. However, the approach proposed by Teh et al. [2006] does not
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adequately represent the temporal persistence of the regimes, resulting in unreal-

istic rapid switching and redundancy of states. This issue was addressed by Fox

et al. [2011] who presented a sticky HDP-HMM, which includes a self-transition

parameter that better captures the temporal mode persistence of the hidden state

sequence.

In this chapter, we build upon the work by Fox et al. [2011] to propose a

novel Bayesian methodology for modelling periodic phenomena whose behaviour

switches dynamically over time as realizations of an HMM. The number of states

is assumed unknown along with their relevant periodicities, which may vary over

the different states as each state is characterized by different spectral properties.

Flexibility on the number of states is achieved by assuming a sticky HDP-HMM

that penalises rapid switching dynamics of the underlying process as in Fox et al.

[2011]. Inference for variable dimensionality regarding the number of periodicities

that characterizes the emission distributions of each regime is attained by develop-

ing an appropriate form of reversible-jump MCMC sampler [Green, 1995]. The

rest of the chapter is organized as follows. Section 3.1 presents the model and the

general framework of our Bayesian approach. Section 3.2 and 3.3 provide the in-

ference scheme and simulation studies to illustrate the performance of the proposed

method. In Section 3.4, we illustrate the use of our approach to detect instances of

apnea in human breathing traces (data provided from Dr. Robert Huckstepp’s lab,

Warwick Life Sciences).

3.1 The Model

As before, let y = (y1, . . . , yT )′ be a realization of a time series whose oscilla-

tory behaviour may switch dynamically over time. In addition, we introduce z =
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(z1, . . . , zT )′ to denote the hidden discrete-valued states of a Markov chain that char-

acterizes the different periodic regimes, where zt represents the state of the Markov

chain at time t. Any observation yt given the state zt, is assumed to be condition-

ally independent of the observations and states at other time steps [Rabiner, 1989].

A flexible nonparametric approach is obtained by assuming that the state space is

unbounded, i.e. has infinitely many states as in [Beal et al., 2002; Teh et al., 2006].

Thus, the Markovian structure on the state sequence z is given by

z t | z t−1, (π j )∞j=1 ∼ π z t−1 , t = 1, . . . ,T, (3.1)

where π j = (π j1, π j2, . . . ) represents the (countably infinite) state-specific vector of

transition probabilities, and in particular π jk = p (z t = k | z t−1 = j ), where p ( · )

is used as a generic notation for probability density or mass function, whichever

appropriate. We assume the state at the first time step follows an initial transition

distribution π 0 = (π01, π02, . . . ), namely z 0 ∼ π 0.

3.1.1 Oscillatory Emissions

Assume that each state j represents a periodic regime that is characterized by d j

relevant periodicities whose frequencies are denoted by ω j = (ω j1, . . . , ω j d j)
′

, re-

calling that periodicity is the inverse of frequency. Let β j = (β
′

j1, . . . , β
′

j d j
)
′

be

the vector of linear coefficients that can be associated with the amplitude and phase

corresponding to each frequency ω jl that characterizes the oscillatory behaviour

of state j, where β jl = ( β (1)
jl , β

(2)
jl )

′

and l = 1, . . . , d j. Furthermore, let us define

θ j = ( d j, ω
′

j, β
′

j , σ
2
j)
′

, where σ2
j accounts for a state-specific variance. Then, each

observation is assumed to be generated from the following emission distribution
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yt

∣∣∣ z t = j,
(
θ j )∞j=1 ∼ N

(
f t j , σ

2
j

)
, t = 1, . . . ,T, (3.2)

where the mean function f t j for state j at time t is [Andrieu and Doucet, 1999;

Hadj-Amar et al., 2019] specified to be oscillatory

f t j = xt
(
ω j

) ′
β j, (3.3)

and the vector of basis functions xt
(
ω j

)
is defined as

xt
(
ω j

)
=

(
cos(2πω j1t), sin(2πω j1t), . . . , cos(2πω j d jt), sin(2πω j d jt)

)′
.

The dimension of each oscillatory function depends on the unknown num-

ber d j of periodicities relevant to that specific regime. Given a pre-fixed maximal

number of periodicities per regime, dmax, the parameter space Θ j for the vector of

emission parameters θ j can be written as

Θ j =

dmax⋃
d j=1

{
d j

}
×

{
Ωd j × IR2d j × IR+

}
,

where Ωd j = (0, 0.5) d j denotes the sample space for the frequencies of the jth

regime.

We notice that in the previous chapter we used the sinusoidal modelling ap-

proach specified in Equation (3.3) for oscillatory data that show regime shifts in

periodicity, amplitude and phase, where we assumed that, conditional on an (un-

known) number of change-points and their (unknown) positions, the time series

process can be approximated by a sequence of segments, each with time-varying

sinusoidal models of the general form given in Equation (3.3). However, the ap-
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proach proposed in this chapter is combined with an HMM framework, which can

furthermore address the occurrence and recurrence of periodic regimes over time

by assigning probabilities with which these transitions occur between regimes.

3.1.2 Bayesian Nonparametric Framework for Unbounded Markov

States

In contrast to classic methods that assume a parametric prior on the number of

states or use model selection techniques to determine the number of regimes in an

HMM, here we follow Beal et al. [2002]; Teh et al. [2006] and Fox et al. [2011],

and assume the number of states to be unknown. We therefore do not need to

pre-specify the number of hidden states which provides a more flexible modelling

framework. The DP [Ferguson, 1973] may be used in frameworks where an element

of the model is a discrete random variable of unknown cardinality [Hjort et al.,

2010]. The underlying structure of an unbounded HMM (i.e. where the number of

possible states is unknown) provides such a setting and can be seen as an infinite

mixture model, where the mixing proportions are modelled as DPs [Beal et al.,

2002; Rasmussen and Ghahramani, 2002; Teh et al., 2006].

In particular, the current state z t indexes a specific transition distribution π z t

over the positive integers, whose probabilities are the mixing proportions for the

choice of the next state zt+1. To allow the same set of next states to be reachable

from each of the current states, we introduce a set of state-specific DPs, whose

atoms are shared between each other [Teh et al., 2006]. Furthermore, we follow Fox

et al. [2011] and penalize rapid switching dynamics between the states or redundant

modes by increasing the expected probability of self-transitions. In particular, the
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state-specific transition distribution π j is modelled with the following HDP

π j

∣∣∣ η, κ, α ∼ DP
(
η + κ,

ηα + κ δ j

η + κ

)
, (3.4)

where

α
∣∣∣ γ ∼ GEM ( γ ). (3.5)

The sequence α = (α k )∞k=1 can be seen as a global probability distribution

over the positive integers that ties together the transition distributions π j and guar-

antees that they have the same support. We denote by GEM (γ) 1 the stick-breaking

construction [Sethuraman, 1994; Pitman, 2002] of α as

αk = νk

k−1∏
l=1

(1 − νl), (3.6)

where

νk | γ ∼ Beta ( 1, γ ), (3.7)

for k = 1, 2, . . . , and γ is a positive real number that controls the expected value of

the number of elements in α with significant probability mass. In fact, Equations

(3.6) and (3.7) can be motivated by the equivalent process where a stick of length

one is split into lengths specified by the weights αk, where the k th proportion is a

random fraction νk of the remaining stick after the preceding ( k − 1 ) proportions

have been constructed. Notice that this construction ensures that the sequence α

satisfies
∑∞

k=1 α k = 1 with probability one.

Conditional on α, the hierarchical structure given in Equation (3.4) indicates

that each state-specific transition distribution π j is distributed according to a DP

1GEM is an abbreviation for Griffiths, Engen and McCloskey, see Ignatov [1982]; Perman et al.
[1992]; Pitman [1996] for background.
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with concentration parameter η + κ and base distribution that is itself a DP, namely

(ηα + κ δ j)/(η + κ). Here, η is a positive real number that controls the variability

of the π j’s around α, while κ is a positive real number that inflates the expected

probability of a self-transition [Fox et al., 2007], and δ j denotes a unit-mass measure

concentrated at j. By setting κ = 0 in Equation (3.4), we obtain the original HDP-

HMM framework proposed by Teh et al. [2006]. Their approach might inadequately

model the temporal persistence of the hidden states, yielding an unrealistically rapid

alternation between different (and often redundant) regimes. Instead, we use the

sticky version formulated in Fox et al. [2007] which allows to increase the temporal

state persistence of the system since the expected probabilities of self-transitions

are inflated by an amount proportional to κ, i.e.

E
[
π jk | η, κ, α

]
=

η

η + κ
αk +

κ

η + κ
δ ( j, k),

where δ ( j, k) = 1 if k = j and zero otherwise.

3.2 Inference

Our inference scheme is formulated in a full Bayesian framework. Section 3.2.1

presents a reversible jump MCMC based algorithm to obtain posterior samples

of the emission parameters θ j, where a trans-dimensional MCMC sampler is de-

veloped to explore subspaces of variable dimensionality regarding the number of

periodicities that characterize state j. In Section 3.2.2 we introduce the Chinese

restaurant franchise with loyal custumers [Fox et al., 2011], a metaphor that pro-

vides the building blocks to perform Bayesian nonparametric inference for updating

the HMM parameters. The resulting Gibbs sampler is provided in Section 3.2.2.1.
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3.2.1 Emission Parameters

Conditional on the state sequence z, the observations y are implicitly partitioned

in a finite number of states, where each state refers to at least one segment of

the time series. When a type of periodic behaviour recurs over time, the corre-

sponding state is necessarily related to more than one segment of the data. Let

y ∗j = ( y ′j1, y
′

j2, . . . , y
′

jR j
)
′

be the vector of (non-adjacent) segments that are assigned

to state j, where y jr denotes the r th segment of the time series for which z t = j and

R j is the total number of segments assigned to that state. Then, the likelihood of the

emission parameter θ j given the observations in y ∗j is

L ( θ j | y ∗j ) = ( 2πσ2
j )−T ∗j /2 exp

[
−

1
2σ2

j

∑
t ∈ I ∗j

{
yt − xt

(
ω j

) ′
β j

} 2 ]
, (3.8)

where I ∗j and T ∗j denote the set of time points and number of observations, respec-

tively, associated with y ∗j .

Following Hadj-Amar et al. [2019], the prior specifications of our Bayesian

framework assume independent Poisson distributions for the number of frequen-

cies d j for each state j, constrained on 1 ≤ d j ≤ dmax. Conditional on d j, we choose

a uniform prior for the frequencies ω j, l ∼ Uniform(0, φω), l = 1, . . . , d j, where

0 < φω < 0.5. The value of φω can be chosen to reflect prior information about

the significant frequencies that are responsible for the overall variation in the data.

Analogous to a Bayesian regression [Bishop, 2006], a zero-mean isotropic Gaus-

sian prior is assumed for the coefficients of the jth regime, β j ∼ N2d j( 0, σ2
β I ),

where the prior variance σ2
β is fixed at a large value (e.g 10 2). The prior on the

residual variance σ2
j of state j is specified as Inverse-Gamma

( ξ0
2 ,

τ0
2

)
, where ξ0 and

τ0 are fixed at small values, noticing that when ξ0 = τ0 = 0 we obtain Jeffreys’
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uninformative prior [Bernardo and Smith, 2009].

Bayesian inference on θ j is based on the following factorization of the joint

posterior distribution

p ( θ j | y ∗j ) = p ( d j | y ∗j ) p (ω j | d j, y ∗j ) p (β j |ω j, d j, y ∗j ) p (σ2
j |β j, ω j, d j, y ∗j ).

(3.9)

Sampling from the posterior distribution in (3.9) poses a model selection problem

regarding the number of periodicities thus requiring an inference algorithm that is

able to explore subspaces of variable dimensionality. This will be addressed by the

reversible-jump sampler introduced in the following section.

3.2.1.1 Reversible-Jump Sampler

Here we provide the details for drawing θ j from the posterior distribution p ( θ j | y ∗j )

given in Equation (3.9). Our methodology follows Andrieu and Doucet [1999] and

Hadj-Amar et al. [2019] and relies on the principles of reversible-jump MCMC

introduced in Green [1995]. Notice that, conditional on the state sequence z, the

emission parameters θ j can be updated independently and in parallel for each of the

current states. Hence, for the rest of this subsection and for ease of notation, we

drop the subscript corresponding to the jth state.

At each iteration of the algorithm, a random choice with probabilities given

in (3.10) based on the current number of frequencies d will dictate whether to add

a frequency (birth step) with probability bd, remove a frequency (death step) with

probability rd, or update the frequencies (within step) with probability µd = 1−bd−

rd, where
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bd = c min
{

1,
p ( d + 1 )

p ( d )

}
, rd+1 = c min

{
1,

p ( d )
p ( d + 1 )

}
, (3.10)

for some constant c ∈ [0, 1
2 ] and p ( d ) is the prior probability. We fixed c = 0.4

but other values are admissible as long as c is not larger than 0.5 to guarantee that

the sum of the probabilities does not exceed 1 for some values of c. Naturally,

bdmax = r1 = 0. An outline of these moves is as follows (further details are provided

in Appendix 3.B).

Within-Model Move: Conditional on the number of frequencies d, we sam-

ple the vector of frequencies ω following a similar procedure to the one of Andrieu

and Doucet [1999] and Hadj-Amar et al. [2019]. That is, we update the frequen-

cies one-at-time using a mixture of Metropolis-Hastings (M-H) steps, with target

distribution

p (ω |β, σ2, d, y ∗) ∝ exp
[
−

1
2σ2

∑
t ∈ I ∗

{
yt − xt

(
ω

) ′
β
}2
]
1[

ω ∈Ωd

] . (3.11)

Specifically, the proposal distribution is a combination of a Normal random walk

centred around the current frequency and a draw from the periodogram of ŷ, where

ŷ denotes a segment of data randomly chosen from y ∗ with probability proportional

to the number of observations belonging to that segment. Naturally, when a state

does not recur over time, i.e. when a state refers to only one segment of the time

series, that segment is chosen with probability one. Next, the corresponding vector

of linear coefficients β is updated in a Gibbs step from

β
∣∣∣ω, σ2, d, y ∗ ∼ N2d ( β̂, Vβ), (3.12)
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where

Vβ =

(
σ−2
β I + σ−2X ∗(ω)

′

X ∗(ω)
)−1

,

β̂ = Vβ

(
σ−2X∗(ω)

′

y∗
)
,

(3.13)

and we denote with X ∗(ω) the design matrix with rows given by xt
(
ω

)
(Equation

3.1.1), for t ∈ I ∗. Finally, the residual varianceσ2 is updated in a Gibbs step directly

from

σ2
∣∣∣β, ω, y ∗ ∼ Inverse-Gamma

(
T + ξ0

2
,
τ0 +

∑
t ∈ I ∗

{
yt − xt

(
ω

) ′
β
}2

2

)
. (3.14)

Trans-Dimensional Moves: For these type of moves, the number of pe-

riodicities is either proposed to increase by one (birth) or decrease by one (death)

[Green, 1995]. If a birth move is proposed, we have that d p = d c + 1, where

current and proposed values are denoted by the superscripts c and p, respectively.

The proposed vector of frequencies is constructed by proposing an additional fre-

quency to be included in the current vector. If a death move is chosen, we have that

d p = d c−1 and one of the current periodicities is randomly selected to be removed.

Conditional on the frequencies, the corresponding vector of linear coefficients and

the residual variance are sampled as in the within-model move. For both moves, the

updates are jointly accepted or rejected in a M-H step.

3.2.2 HMM Parameters

Here we explain how to perform posterior inference about the probability distribu-

tion α, the transition probabilities π j and the state sequence z. As described in Sec-

tion 3.1.2, flexibility on the number of states is achieved by assuming an HDP that
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penalises rapid switching dynamics of the hidden states. The Chinese restaurant

franchise with loyal customers presented by Fox et al. [2011], which extends the

Chinese restaurant franchise introduced by Teh et al. [2006], is a metaphor that can

be used to express the generative process behind such an HDP and provides a gen-

eral framework for performing inference. We provide a more detailed introduction

to DP and HDP in Appendix A at the end of the thesis, and a detailed explanation of

the Chinese restaurant franchise with loyal customers in Appendix 3.A of this chap-

ter. A high level summary of the metaphor is as follows: in a Chinese restaurant

franchise the analogy of a Chinese restaurant process [Aldous, 1985] is extended

to a set of restaurants, where an infinite global menu of dishes is shared across these

restaurants. The process of seating customers at tables happens in a similar way as

for the Chinese restaurant process, but is restaurant-specific. The process of choos-

ing dishes at a specific table happens franchise-wide, namely the dishes are selected

with probability proportional to the number of tables (in the entire franchise) that

have previously served that dish. However, in the Chinese restaurant franchise with

loyal customers, each restaurant in the franchise has a speciality dish which may

keep many generations of customers eating in the same restaurant.

The global probability distribution α can be seen as a collection of ratings for

dishes served in the global menu, the values of the dishes correspond to the hidden

states z, whereas transition probabilities π j represent restaurant-specific probability

distributions over unique dishes. As explained in Appendix 3.A.2, table counts

m̄ jk of considered dishes are sufficient statistics for updating the collection of dish

ratings α, where m̄ jk denotes how many of the tables in restaurant j considered dish

k. The sampling of m̄ jk is additionally simplified when introducing table counts m jk

of served dishes and override variables o jt. The meaning and definition of served

and considered dishes as well as the role of the newly introduced auxiliary variables
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m jk, m̄ jk and o jt are given in Appendix 3.A.1.

3.2.2.1 Gibbs Sampler

Kivinen et al. [2007] and Fox et al. [2011] consider a Gibbs sampler which uses

finite approximations to the DP to allow sampling in blocks of the state sequence z.

In particular, conditioned on observations y, transition probabilities π j and emission

parameters θ j, the hidden states z are sampled using a variant of the HMM forward-

backward procedure (see Appendix 3.C.1) presented in Rabiner [1989]. In order to

use this scheme, we must truncate the countably infinite transition distributions π j

(and global menu α), and this is achieved using the following approximation to a

DP [Ishwaran and Zarepour, 2002]

GEM Kmax (γ) := Dir
(
γ/Kmax, . . . , γ/Kmax

)
, (3.15)

where the truncation level Kmax is a number that exceeds the total number of ex-

pected HMM states, and Dir (·) denote the Dirichlet distribution. Conditioned on

the state sequence z and collection of dish ratings α, we sample m jk, o jt and m̄ jk as

described in Appendix 3.C.2. Dish ratings α and transition distributions π j are then

updated from the following posterior distributions

α | m̄, γ ∼ Dir
(
γ/Kmax + m̄·1, . . . , γ/Kmax + m̄·Kmax

)
π j | z, α, η, κ ∼ Dir

(
η α1 + n j1, . . . , η α j + κ + n j j, . . . , η αKmax + n jKmax

)
,

(3.16)

for each state j = 1, . . . ,Kmax. Here, m̄ is the vector of table counts of considered

dishes for the whole franchise, and marginal counts are described with dots, so that

m̄·k =
∑Kmax

j=1 m̄ jk is the number of tables in the whole franchise considering dish k.

We denote with n jk the number of Markov chain transitions from state j to state k in
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the hidden sequence z. Then, given the state sequence z and transition probabilities

π j, we draw the emission parameters θ j for each of the currently instantiated state

as described in Section 3.2.1, where each reversible-jump MCMC update is run for

several iterations. We also need to update emission parameters for states which are

not instantiated (namely, those states among {1, . . . ,Kmax} that are not represented

during a particular iteration of the sampler), and hence we draw the corresponding

emission parameters from their priors. Finally, we sample the hyperparameters γ, η

and κ in a Gibbs step (see Appendix 3.C.3).

For the HDP-HMM, different procedures have been applied for sampling the

hidden state sequence z. Teh et al. [2006] originally introduced an approach based

on a Gibbs sampler which has been shown to suffer from slow mixing behaviour due

to strong correlations that is frequently observed in the data at nearby time points.

Van Gael et al. [2008] presented a beam sampling algorithm that combines a slice

sampler [Neal et al., 2003] with dynamic programming. This allows to constrain

the number of reachable states at each MCMC iteration to a finite number, where

the entire hidden sequence z is drawn in block using a form of forward-backward

filtering scheme. However, Fox et al. [2011] showed that applications of the beam

sampler to the HDP-HMM resulted in slower mixing rates compared to the forward-

backward procedure that we use in our truncated model. Recently, Tripuraneni et al.

[2015] developed a particle Gibbs MCMC algorithm [Andrieu et al., 2010] which

uses an efficient proposal and makes use of ancestor sampling to enhance the mixing

rate.

3.2.2.2 Label Switching

The proposed approach may suffer from label switching (see e.g. Redner and

Walker [1984]; Stephens [2000]; Jasra et al. [2005]) since the likelihood is invari-
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ant under permutations of labelling of the mixture components, for both hidden

state labels {1, . . . ,Kmax} and frequency labels {1, . . . , dmax} in each state. The label

switching problem occurs when using Bayesian mixture models and needs to be

addressed in order to draw meaningful inference about the posterior model param-

eters. In our multiple model search, the frequencies (and their corresponding linear

coefficients) are identified by keeping them in ascending order for every iteration of

the sampler. Posterior samples of the model parameters corresponding to different

hidden states are post-processed (after the full estimation run) using the relabelling

algorithm developed by Stephens [2000]. The basic idea behind this algorithm is to

find permutations of the MCMC samples in such a way that the Kullback-Leibler

(KL) divergence [Kullback and Leibler, 1951] between the ‘true’ distribution on

clusterings, say P (θ), and a matrix of classification probabilities, say Q, is mini-

mized. The KL distance is given by d(Q, P (θ)) KL =
∑

t
∑

j pt j(θ) log pt j(θ)
qt j

, where

pt j(θ) = p (zt = j | zt−1, y,π, θ ) is part of the MCMC output obtained as in Appendix

3.C.1, and qt j is the probability that observation t is assigned to class j. The algo-

rithm iterates between estimating Q and the most likely permutation of the hidden

labels for each MCMC iteration. We chose the strategy of Stephens [2000] since it

has been shown to perform very efficiently in terms of finding the correct relabelling

(see e.g. Rodriguez and Walker [2014]). However, it may be computationally quite

intensive in memory since it requires the storage of a matrix of probabilities of di-

mension N × T × Kmax, where N is the number of MCMC samples. Furthermore,

at each iterative step, the algorithm requires to go over Kmax! permutations of the

labels for each MCMC iteration, which might significantly slow down the compu-

tation when using large values of Kmax. Related approaches to the label switching

issue include pivotal reordering algorithms [Marin et al., 2005], label invariant loss

functions [Celeux et al., 2000; Hurn et al., 2003] and equivalent classes represen-
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tative methods [Papastamoulis and Iliopoulos, 2010], where an overview of these

strategies can be found in Rodriguez and Walker [2014].

3.3 Simulation Studies

This section presents results of simulation studies to explore the performance of

our proposed methodology in two different settings. In the first scenario the data

are generated from the model described in Section 3.1 and thus this simulation

study provides a “sanity” check that the algorithm is indeed retrieving the correct

pre-fixed parameters. We also investigate signal extraction for the case that the

innovations come from a heavy-tailed t-distribution instead of a Gaussian. Our

second study deals with artificial data from an HMM whose emission distributions

are characterized by oscillatory dynamics generated by state-specific autoregressive

(AR) time series models.

3.3.1 Illustrative Example

We generated a time series consisting of T = 1450 data points from a three-state

HMM with the following transition probability matrix showing high probabilities

of self transition along the diagonal

π =


0.9900 0.0097 0.0003

0.0001 0.9900 0.0099

0.0097 0.0003 0.9900

 ,

and Gaussian oscillatory emissions as specified in Equation (3.2), where the pa-

rameters of each of the three regimes are given in Table 3.1. A realization from this
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model is displayed in Figure 3.1. The prior mean on the number of frequencies d j

is set equal to 1 and we place a Gamma (1, 0.01) prior on the concentration param-

eters γ and (η+ κ), and a Beta (100, 1) prior on the self-transition proportion ρ as in

Fox et al. [2011]. The maximum number of periodicities per regime dmax is set to

5, while the truncation level Kmax for the DP approximation is set equal to 7. Also,

we set φω = 0.25 as a threshold for the uniform prior. The proposed estimation

algorithm is run for 15,000 iterations, 3,000 of which are discarded as burn-in. At

each iteration, for each instantiated set of emission parameters, 2 reversible-jump

MCMC updates were performed. The full estimation algorithm took 31 minutes

with a program written in Julia 0.62 on an Intel R© CoreTM i7 2.2 GHz Processor 8

GB RAM. For our experiments, we used the R package label.switching of Papasta-

moulis [2016] to post-process the MCMC output with the relabelling algorithm of

Stephens [2000].

Table 3.1: Illustrative Example. Frequencies ω j and linear coefficients β j for the three different
regimes. The number of periodicities d j in each regime is 1, 1 and 2, respectively. The innovations
σ2

j are set to (0.4)3, (0.08)2 and (0.3)2, respectively.

Frequencies Linear Coefficients

ω 11 1/25 β 11 = (0.8, 0.8)
′

ω 21 1/19 β 21 = (0.2, 0.2)
′

ω 31 1/12 β 31 = (1.0, 1.0)
′

ω 32 1/8 β 32 = (1.0, 1.0)
′

Table 3.2 (left panel) shows that our estimation algorithm successfully de-

tects the correct number of states in the sense that a model with k = 3 regimes

has the highest posterior probability. In addition, our approach correctly identi-

fies the right number of frequencies in each regime, as shown in Table 3.2 (right

panel). Table 3.3 displays the estimated posterior mean and standard deviation of

the frequencies along with the square root of the power of the corresponding fre-
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Figure 3.1: Illustrative Example. Dots represent the simulated time series, where the different colors
corresponds to (true) different regimes. The state-specific estimated oscillatory mean function is
displayed as a solid curve, and the estimated state sequence as a piecewise horizontal line at the top
part of the graph.

Table 3.2: Illustrative example. (left panel) posterior probabilities for number of distinct states k;
(right panel) posterior probabilities for number of frequencies in each state, conditioned on k = 3.

k π̂ ( k | y)
1 0.00
2 0.00
3 0.99
4 0.01
5 0.00
6 0.00
7 0.00

m π̂ ( d1 | k = 3, y) π̂ ( d2 | k = 3, y) π̂ ( d3 | k = 3, y)
1 0.99 1.00 0.01
2 0.01 0.00 0.99
3 0.00 0.00 0.00
4 0.00 0.00 0.00
5 0.00 0.00 0.00
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Table 3.3: Illustrative Example. Estimated posterior mean (and standard deviation) of frequencies
and square root of the power of the corresponding frequencies.

ω 11 ω 21 ω 31 ω 32

True 0.0400 0.0526 0.0833 0.1250

Estimated
0.0399

(8.8 ·10−6)
0.0526

(6.3 ·10−6)
0.0833

(9.6 ·10−6)
0.1249

(9.4 · 10−6)

A 11 A 21 A 31 A 32

True 1.131 0.283 1.414 1.414

Estimated
1.069
(0.029)

0.281
(0.004)

1.380
(0.022)

1.367
(0.022)

quencies, where the results are conditional on three estimated states and the modal

number of frequencies within each state. Here, the power of each frequency ω jl

is summarized by the amplitude A jl =

√
β (1) 2

jl + β (2) 2

jl , namely the square root of

the sum of squares of the corresponding linear coefficients (see e.g. Shumway

and Stoffer [2017]). Our proposed method seems to provide a good match be-

tween true and estimated values for both frequencies and their power, for this

example. We also show in Figure 3.1 the state-specific estimated signal (Equa-

tion (3.3)), and the estimated state sequence using the method of Stephens [2000]

(as a piecewise horizontal line). The rows of the estimated transition probability

matrix were π̂1 = (0.9921, 0.0073, 0.0006), π̂2 = (0.0005, 0.9956, 0.0040) and

π̂3 = (0.0051, 0.0006, 0.9942). The high probabilities along the diagonal reflect

the estimated posterior mean of the self transition parameter ρ̂ = 0.9860, which is

indeed centered around the true probability of self-transition.
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Figure 3.2: Illustrative Example. (a) Trace plots (after burn-in) for posterior sample of frequencies,
conditional on modal number of states and number of frequencies in each state; red lines correspond
to true values of the frequencies. (b) Trace plots (including burn-in) of the likelihood for three
Markov chains initialized at different starting values.

Diagnostics for verifying convergence were performed in several ways. For

example, we observed that the MCMC samples of the likelihood of the HMM

reached a stable regime, while initializing the Markov chains from overdispersed

starting values (see Figure 3.2 (b)). This diagnostic might be very useful, for ex-

ample, in determining the burn-in period. However, we note that it does not guar-

antee convergence since steady values of the log likelihood might be the result of

a Markov chain being stuck in some local mode of the target posterior distribution.

The likelihood of an HMM with Gaussian emissions can be expressed as

L (z,π, θ | y) = p(z1 | y,π, θ)N(y1 ; f 1 z 1 , σ
2
z 1

)
T∏

t=2

p (z t | z t−1, y,π, θ )N(yt ; f t z t , σ
2
z t

),

where N ( yt; f j t, σ
2
j) denotes the density of a Gaussian distribution with mean

f jt = xt
(
ω j

) ′
β j (as in Equation 3.3) and variance σ2

j , evaluated at yt. Conditioned

on the modal number of states, we also validated convergence for the state-specific
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emission parameters by analyzing trace plots and running averages of the corre-

sponding MCMC samples, with acceptable results as each trace reached a stable

regime. As an example, we show in Figure 3.2 (a) trace plots (after burn-in) for the

posterior values of the frequencies.

Signal Extraction with Non-Gaussian Innovations: In many scientific ex-

periments it may be of interest extracting the underlying signal that generates the

observed time series and HMMs can be used to this end [Chung et al., 1991; Kr-

ishnamurthy et al., 1993; Krishnamurthy and Chung, 2007]. Here, we study the

performance of our proposed approach in estimating the time-varying oscillatory

signal f jt (Equation 3.3) when the Gaussian assumption of εt in Equation (3.2) is

violated. In particular, we generated 20 time serie, each consisting of 1024 obser-

vations from the same simulation setting introduced above, where the innovations

are now simulated from heavy-tailed t−distributions with 2, 3, 2 degrees of free-

dom for state 1,2,3, respectively. The linear basis coefficients are chosen to be

β 11 = (3, 2)
′

, β 21 = (1.2, 4.0)
′

, β 31 = (1.0, 5.0)
′

, β 32 = (4.0, 3.0)
′

. As a measure

of performance we compute the mean squared error MSE = 1
1024

∑1024
t=1 ( ft z t − f̂t z t)

2

between true and estimated signal and compare the proposed approach with the

method of Hadj-Amar et al. [2019] referred to as AutoNOM (Automatic Nonsta-

tionary Oscillatory Modelling), which we believe is the state-of-the-art in extracting

the signal of nonstationary periodic processes. Our proposed estimation algorithm

was run with the same parameterization as above while AutoNOM was performed

for 15,000 updates, 3,000 of which were discarded as burn-in, where we fixed 15

maximum number of change points and 5 maximum number of frequencies per seg-

ment. The prior means for the number of change-points and frequencies per seg-

ment are fixed at 2 and 1, respectively, and the minimum distance between change-
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points is set at 10. For both methodologies, the estimated signal is obtained by

averaging across MCMC iterations.

Figure 3.3: Signal extraction with non-Gaussian innovations. Boxplots of the MSE values for Au-
toNOM and our oscillatory HDP-HMM when (a) the data exhibit recurrent patterns (b) the data do
not exhibit recurrent patterns.

Figure 3.3 (a) presents boxplots of the MSE values for AutoNOM and our

proposed approach. It becomes clear that the estimates of the signal obtained using

our proposed methodology are superior to those obtained using AutoNOM. How-

ever, this result is not surprising as the two approaches make different assumptions.

In particular, AutoNOM does not assume recurrence of a periodic behaviour and

hence needs to estimate the regime-specific modeling parameters each time it de-

tects a new segment, while our oscillatory HDP-HMM has the advantage of using

the same set of parameters whenever a particular periodic pattern recurs in the time

series. Hence, we also compared the performance of the two approaches in extract-

ing the signal (under non-Gaussian innovations) in a scenario where the time series

do not exhibit recurrence. Specifically, we generated 10 time series manifesting two

change-points (where the oscillatory behaviour corresponding to the three different
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partitions are parameterized as above) and computed the MSE between true and

estimated signal as we did in the previous scenario. The corresponding boxplots

displayed in Figure 3.3 (b) show that the two approaches seem to perform in similar

way, with AutoNOM being slightly more accurate than our oscillatory HDP-HMM.

We conclude that both methodologies have their own strengths. Our proposed pro-

cedure is superior to AutoNOM in the sense that the additional HMM provides a

framework for modelling and explicitly quantifying the switching dynamics and

connectivity between different states. On the other hand, AutoNOM is better suited

to scenarios where there are nonstationarities arising from singular change-points

and the observed oscillatory processes evolve without exhibiting recurrent patterns.

3.3.2 Markov Switching Autoregressive Process

We now investigate the performance of our approach in detecting time-changing

periodicities in a scenario where the data generating process shows large departures

from our modelling assumptions. The HMM hypothesis which assumes condi-

tionally independent observations given the hidden state sequence, such as the one

formulated in Equation (3.2), may sometimes be inadequate in expressing the tem-

poral dependencies occurring in some phenomena. A different class of HMMs that

relaxes this assumption is given by the Markov switching autoregressive process,

also referred to as the AR-HMM [Juang and Rabiner, 1985; Albert and Chib, 1993;

Frühwirth-Schnatter, 2006], where an AR process is associated with each state.

This model is used to design autoregressive dynamics for the emission distributions

while allowing the state transition mechanisms to follow a discrete state Markov

chain.

We generated T = 900 observations from an AR-HMM with two hidden
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states and autoregressive order fixed at p = 2, that is

z t ∼ πz t−1 ,

y t =

p∑
l=1

ψ (zt)
l y t−l + ε (zt),

(3.17)

where π1 = (0.99, 0.01) and π2 = (0.01, 0.99). The AR parameterization ψ (1) =

(1.91, −0.991) and ψ (2) = (1.71, −0.995) is chosen in such a way that the state-

specific spectral density functions display a pronounced peakedness. Furthermore,

ε(1)
t

iid
∼ N(0, 0.1 2) and ε(2)

t
iid
∼ N(0, 0.05 2). A realization from this model is shown

in Figure 3.4 (top) as a blue solid line. Our proposed estimation algorithm was

run for 15,000 iterations 5,000 of which are used as burn-in. At each iteration, we

performed 2 reversible-jump MCMC updates for each instantiated set of emission

parameters. The rate of the Poisson prior for the number of periodicities is fixed

at 10−1 and the corresponding truncation level dmax was fixed to 3. The maximum

number of states Kmax was set equal to 10 whereas the rest of the hyperparame-

ters are specified as in Section 3.3.1. Our procedure seems to overestimate the

number of states, as a model with 8 regimes had the highest posterior probability

π̂ ( k = 8 | y) = 97%. However, this is not entirely unexpected as a visual inspec-

tion of the realization displayed in Figure 3.4 (top) suggest more than two distinct

spectral patterns in the sense that the phases, amplitudes and frequencies appear to

vary stochastically within a regime. Figure 3.4 (bottom) shows the estimated time-

varying frequency peak along with a 95% credible interval obtained from the poste-

rior sample. The estimate was determined by first selecting the dominant frequency

(i.e. the frequency with the highest posterior power) corresponding to each obser-

vation and then averaging the frequency estimates over MCMC iterations. While

our approach identifies a larger number of states when the data were generated from
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an AR-HMM we note that the data generating process are very different from the

assumptions of our model and the proposed procedure still provides a reasonable

summary of the underlying time changing spectral properties observed in the data.

Furthermore, by setting the truncation level Kmax equal to 2, we retrieve the true

transition probability matrix that generates the switching dynamics between the two

different autoregressive patterns, as the vectors of transition probabilities obtained

using our estimation algorithm are π̂1 = (0.99, 0.01) and π̂2 = (0.98, 0.02).
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Figure 3.4: (Top) A realization from model (3.17), where the piecewise horizontal line represents the
true state sequence. (Bottom) True time varying frequency peak (dotted red line) and the estimate
provided by our proposed approach (solid blue line) where we highlight a 95% credible interval ob-
tained from the posterior sample. (Right) Boxplots of the MSE values for AutoNOM, our oscillatory
HDP-HMM and AdaptSPEC.

In addition, we simulated 10 time series from model (3.17) and computed

the mean squared error MSE = 1
900

∑900
t=1(ωt − ω̂t) between the true time-varying

frequency peak ωt and its estimate ω̂t for the proposed approach, AutoNOM and

the procedure of Rosen et al. [2012], referred to as AdaptSPEC (Adaptive Spectral

Estimation). For both AutoNOM and AdaptSPEC, we ran the algorithm for 15,000
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MCMC iterations (5,000 of which were used as burn-in), fixed the maximum num-

ber of change-points at 15 and set the minimum distance between change-points to

30. The number of spline basis functions for AdaptSPEC is set to 10. AutoNOM

is performed using a Poisson prior with rate 10−1 for both number of frequencies

and number of change-points. Boxplots of the MSE values for the three differ-

ent methodologies are displayed in Figure 3.4 (right), showing that our oscillatory

HDP-HMM seems to outperform the other two approaches in detecting the time-

varying frequency peak, for this example. However, our procedure finds some very

short sequences (such as in Figure 3.4 (bottom) for t ≈ 200, 500, 700) demonstrat-

ing that the sticky parameter might not always be adequate enough in capturing

the correct temporal mode persistence of the latent state sequence. AutoNOM and

AdaptSPEC are less prone to this problem as both methodologies are able to spec-

ify a minimum time distance between change-points; though, we acknowledge that

this constraint might not be optimal when the observed data exhibit relatively rapid

changes. We also notice that, not surprisingly, the estimates of the time-varying

frequency peak obtained using AutoNOM and our oscillatory HDP-HMM, which

are based on a line-spectrum model, are both superior than the ones obtained via the

smoothing spline basis of AdaptSPEC, which is built upon a continuous-spectrum

setting; this is consistent with the findings in Hadj-Amar et al. [2019]. However,

it is important to keep in mind that, while AutoNOM and AdaptSPEC allow to

retrospectively analyse the spectral changing properties of a process from an ex-

ploratory angle, unlike our spectral HDP-HMM they do not quantify a probabilistic

mechanism for the recurrence of periodic dynamic patterns.
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3.4 A Case Study: Identifying Recurrence of Sleep

Apnea in Humans

Sleep apnea is a chronic respiratory disorder characterized by recurrent episodes

of temporary cessation of breathing during sleep [Heinzer et al., 2015]. There are

two main types of sleep apnea in humans: Obstructive Sleep Apnea/Hypopnea Syn-

drome (OSAHS), a disorder caused by complete or partial obstruction of the upper

airways whilst still having the drive to breathe from the central nervous system, and

Central Sleep Apnea (CSA), a cessation of breathing caused by reduced impulses

from the central nervous system, suppressing the neuronal drive to active respira-

tory muscles to breathe [Banno and Kryger, 2007; Albert et al., 2008]. Instances of

OSAHS and CSA can be furthermore subclassified based on the degree of reduc-

tion in airflow to the lungs whereby apneas are classified as a reduction of airflow by

90% and hypopneas require a reduction in airflow by at least 30% (with a reduction

of blood oxygen levels by at least 3%) [Berry et al., 2017]. OSAHS and CSA both

negatively affect several organ systems, such as the heart and kidneys in the long

term. They are also associated with increased likelihood of hypertension, stroke,

cardiovascular diseases, daytime sleepiness, depression and a diminished quality of

life [Teran-Santos et al., 1999; Peker et al., 2002; Young et al., 2002; Yaggi et al.,

2005; Dewan et al., 2015]. Hence, detecting apneic and hyponeic events during

sleep is one of the primary interests of researchers and clinicians working within

the field of sleep medicine as well as healthcare providers,

The airflow trace shown in Figure 3.5 was collected over a time span of 5.5

minutes of continuous breathing and measured via a facemask attached to a pressure

sensor. The data are sampled at rate of 4Hz, namely 4 observations per second, for
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a total of 1314 data points. During this time, simulated apneic and hyponeic events

occurred; apneas appear in the first and second minute and around the start of the

fifth minute, where there are two instances of hypopneas in the first half of the

second minute and at the start of the fourth minute as marked in Figure 3.5. Note

these events were classified by eye by an experienced experimental researcher.

We fitted our oscillatory HDP-HMM to the time series displayed in Figure

3.5 for 100,000 iterations, 60,000 of which were discarded as burn-in, where at

each iteration, we carried out 10 reversible-jump MCMC updates for each instanti-

ated set of emission parameters. The truncation level Kmax was set to 10, whereas

the maximum number of frequencies per state dmax was fixed to 3. The rate of

the Poisson prior for the number of frequencies is set equal to 10−2 and the prior

on the self-transition proportion ρ is specified as Beta (10 3, 1), and the rest of the

parameterization is chosen as in Section 3.3.1. The posterior distribution over the

number of states had a mode at 7, with posterior probability π̂ ( k = 7 | y) = 77%, as

reported in Table 3.4. Figure 3.5 shows the fitted signal (yellow line) along with a

95% credible interval obtained from the posterior sample and the estimated hidden

state sequence (piecewise horizontal line), where we highlight our model estimate

for apnea state (red) and hypopnea state (blue) while reporting the ground truth at

the top of the plot. Conditional on the modal number of regimes, the number of

periodicities belonging to apnea and hypopnea had a posterior mode at 2 and 3,

respectively. Conditional on the modal number of frequencies, Table 3.5 displays

the posterior mean and standard deviation of periodicities (in seconds) and powers

that characterize the two states classified as apnea and hypopnea, showing that ap-

nea instances seem to be characterized by larger periods and lower amplitude than

hypopnea.
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Figure 3.5: Case Study. Dots represent the airflow trace collected over a period of five and half
minutes of continuous breathing. The estimated signal (solid line) is shown along with its 95%
credible interval. The piecewise horizontal line corresponds to the estimated state sequence where
we highlight the states corresponding to estimated apnea (red) and hypopnea (blue), while reporting
the ground truth at the top of the plot.

Table 3.4: Case Study. Posterior distribution for number of distinct states k

k 1 2 3 4 5 6 7 8 9 10
π̂ ( k | y) 0.00 0.00 0.00 0.00 0.00 0.21 0.77 0.02 0.00 0.00

Table 3.5: Case study. Posterior mean and standard deviation of periodicities (in seconds) and
powers that characterize the two states classified as apnea and hypopnea.

Apnea Hypopnea
Period Power Period Power

9.862
(2.20·10−2)

0.1581
(1.05·10−2)

6.084
(6.95·10−5)

0.370
(2.2·10−2)

6.823
(1.54·10−5)

0.2161
(1.06·10−2)

5.252
(3.48·10−5)

0.683
(2.1·10−2)

- -
3.984

(7.910·10−5)
0.178

(1.8·10−2)
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Our estimation algorithm detected all known apnea and hypopnea instances.

In order for them to qualify as a clinically relevant obstructive event they must have

a minimum length of 10 seconds [Berry et al., 2017]. Thus, we only highlight the

clinically relevant instances in Figure 3.5, discarding sequences of duration less

than 10 seconds. We also detected a post sigh apnea (after the third minute) which

is a normal phenomenon to observe in a breathing trace and hence should not count

as a disordered breathing event. Again, such an event after a sigh can be identified

as a sigh is characterized by an amplitude which is always higher than any other

respiratory event and hence can be easily detected. Subtracting the number of sighs

from the total number of apneas/hypopneas results in a measure of all apneas of

interest without the confounding data from post sigh apneas. A common score to

indicate the severity of sleep apnea is given by the Apnea-Hypopnea Index (AHI)

which consists of the number of apneas and hypopneas per hour of sleep [Ruehland

et al., 2009]. Our proposed approach seems to provide a realistic estimate of the

total number of apnea and hypopnea instances recurring in this case study.

3.A Chinese Restaurant Franchise with Loyal Cus-

tomers

The Chinese restaurant franchise with loyal customers [Fox et al., 2011], which ex-

tends the Chinese restaurant franchise introduced by Teh et al. [2006], is a metaphor

which aids in expressing the generative process behind an HDP such as the one for-

mulated here and provides a general framework for performing inference. In a

Chinese restaurant franchise the analogy of a Chinese restaurant process [Aldous,
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1985] is extended to a set of restaurants, where an infinite global menu of dishes

is shared across J of such restaurants. The process of seating customers at tables

happens in a similar way as for the Chinese restaurant process, but is restaurant-

specific. The process of choosing dishes at a specific table happens franchise-wide,

namely the dishes are selected with probability proportional to the number of tables

(in the entire franchise) that have previously served that dish. However, in the Chi-

nese restaurant franchise with loyal customers, each restaurant in the franchise has

a speciality dish which may keep many generations of eating in the same restaurant.

More formally, define y j1, . . . , y jN j to be the set of customers in restaurant

j, where N j is the number of customers in restaurant j and each customer is pre-

allocated to a specific restaurant designated by that customer’s group j. Let us

also define indicator random variables t ji and k jt, such that t ji indicates the table

assignment for customer i in restaurant j, and k jt the dish assignment for table t in

restaurant j. In the Chinese restaurant franchise with loyal customers, customer i in

restaurant j chooses a table via t ji ∼ π̃ j, where π̃ j ∼ GEM (η + κ), and η and κ are

as in Section 3.1.2. Each table is assigned a dish via k jt ∼ (ηα + κ δ j)/(η + κ), so

that there is more weight on the house speciality dish, namely the dish that has the

same index as the restaurant. Despite the fact that this dish can be served in each

restaurant, it is more special in the dish’s namesake restaurant. Here, α follows a DP

with concentration parameters γ, as defined in Equation (3.5), and can be seen as a

collection of ratings for the dishes served in the global menu. After marginalizing

over π̃ j and α, we obtain the following predicting distributions [Teh et al., 2006;

95



Fox et al., 2011]

p (t ji | t j1, . . . , t ji−1, η, κ ) ∝
T j∑
t=1

ñ jt δ(t ji, t) + (η + κ) δ (t ji, T j + 1),

(3.18)

p (k jt | k1, k2, . . . , k j−1, k j1, . . . , k j t−1, γ) ∝
K∑

k=1

m·k δ (k jt, k) + γ δ (k jt,K + 1),

(3.19)

where ñ jt is the number of customers in restaurant j sitting at table t, m jk is the

number of tables in restaurant j serving dish k, T j is the total number of occupied

tables in restaurant j, and K is the total number of unique dishes served in the

franchise. Marginal counts are described with dots and thus m·k =
∑J

j=1 m jk is the

number of tables in the whole franchise serving dish k. Also we denote with k j =

(k j1, . . . , k jT j)
′

the dish assignments for all tables in restaurant j. Equations (3.18)

and (3.19) dictate that customer i in restaurant j sits in one among the T j currently

occupied tables, say t ji, with probability proportional to the number of currently

seated customers ñ jt, or starts a new table T j + 1 with probability proportional to

η + κ. The first customer to sit at a table proceeds to the buffet line and chooses

a dish based on the popularity of that dish in the whole franchise, namely chooses

an already selected dish k with probability proportional to m·k, or orders a new dish

K + 1 with probability proportional to γ.

Note that in the HMM formulated in Equation (3.1), the value of the state

corresponds to the dish index, i.e. k jt ji = z ji = z t, where we follow Fox et al.

[2011] and suppose there exist a bijection f : t → ji of time indexes t to restaurant-

customer indexes ji (see Figure 3.6, [Fox, 2009]). This mapping still ensures a

Markov structure over the hidden states zt, which, based on the value of the state
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𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6

1 2 2 2 1 3

f (1) = 01 
f (2) = 11 
f (3) = 21

f (4) = 22 
f (5) = 23 
f (6) = 12

Figure 3.6: Mapping between time indexes t and restaurant-customer indexes ji. This example
shows: (top) a directed acyclic graph of an HMM with hidden states z = (1, 2, 2, 2, 1, 3), (bottom)
the corresponding bijection f ( t ) → i j of time indexes t to restaurant-customer indexes ji. The
Markovian structure given in Equation (3.1) implies that customers yt are assigned to restaurants
determined by z t−1. For example, as z3 = 2, we have that y4 is seated at restaurant j = 2. In
addition, y4 is the second customer to be seated in that restaurant which means that y4 is assigned a
restaurant-customer index y22.

zt−1 = j, are linked to a restaurant-customer index ji. Moreover, as motivated in

Section 3.1.2, we increase the temporal state persistence of the system by inflating

probabilities of self-transitions by an amount proportional to κ. The state z t−1 deter-

mines the restaurant to which the customer y t is assigned, since z t ∼ π z t−1 , and, in

particular, every observations yt for which z t−1 = j are assigned to restaurant j. The

increased popularity of the speciality dish of the house, which is determined by the

sticky parameter κ, implies that children, say zt+1, are more keen to eat in the same

restaurant as their parent, say zt, and, in turn, more likely to eat the specialty dish

of the restaurant. Once a restaurant is instantiated, this family loyalty may keep

many generations eating in the same restaurant. We display in Figure 3.7 an ex-

ample of a Chinese restaurant franchise corresponding to the hidden state sequence

z = (1, 1, 1, 3, 3, 3, 3, 2, 2, 1, 1, 1).
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1 2 3

𝑘11=1 𝑘21=1 𝑘13=3 𝑘14=1 𝑘15=1
𝑦01

𝑦12 𝑦11 𝑦13 𝑦14 𝑦15 𝑦16

𝑘31=3 𝑘32=3 𝑘33=2

𝑘21=2
𝑦21

𝑘22=1

𝑦22 j = 2

j = 1

j = 3𝑦31
𝑦32 𝑦33 𝑦34

Figure 3.7: Chinese restaurant franchise including J = 3 restaurants (rectangles) corresponding to a
hidden state sequence z = (1, 1, 1, 3, 3, 3, 3, 2, 2, 1, 1, 1). Conditioned on the value of the states z, the
customers y are partitioned in both restaurants and dishes, but the table assignments are unknown
as multiple tables can serve the same dish. For this example we choose t1 = (1, 2, 1, 3, 4, 5, 5), t2 =

(1, 2) and t3 = (1, 1, 2, 3). Custumers (y ji) are seated at tables (circles) in the restaurants, where at
each table a dish k jt is chosen from a global menu (dotted rectangle on top). This picture is best
viewed in colours.
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3.A.1 Served and Considered Dishes:

As suggested in [Fox et al., 2011] and briefly introduced in Section 3.2.2, we aug-

ment the space and introduce considered dishes k̄ jt and override variables o jt so that

we have the following generative process

k̄ jt |α ∼ α

o jt | η, κ ∼ Bernoulli
(

κ

η + κ

)

k jt | k̄ jt, o jt =


k̄ jt, o jt = 0,

j, o jt = 1.

(3.20)

That is, a table first considers a dish k̄ jt without taking into account the dish of

the house, i.e. k̄ jt is chosen from the infinite buffet line according to the ratings

provided by α. Then, the dish k jt that is actually being served can be the house-

speciality dish j, with probability ρ = κ/(η + κ), or the initially considered dish k̄ jt,

with probability 1 − ρ. The predictive distribution for the considered dishes k̄ jt is

analogous to Equation (3.19) and is given by

p (k̄ jt | k̄1, k̄2, . . . , k̄ j−1, k̄ j1, . . . , k̄ jt−1, γ) ∝
K̄∑

k=1

m̄·k δ (k̄ jt, k) + γ δ (k̄ jt, K̄ + 1), (3.21)

where m̄·k is the total number of tables in the franchise that considered dish k, K̄

is the number of unique dishes considered in the franchise, and we denote with

k̄ j = (k̄ j1, . . . , k̄ jT j) the considered dishes in restaurant j. We observe that each

served dish had to be considered by at least one table in the franchise. However,

there may be some dishes considered that were never served, implying that K̄ ≥ K.
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3.A.2 Sufficient Statistics for Updating Dish Ratings

Table counts m̄ jk of considered dishes are sufficient statistics [Fox et al., 2007] for

updating the collection of dish rating α (see Equation 3.16). In fact, the posterior

distribution of α can be written as

(α1, . . . , αK̄ , α̃)
∣∣∣ m̄, γ ∼ Dir

(
m̄·1, . . . , m̄·K̄ , γ

)
, (3.22)

where we define α̃ =
∑∞

k=K̄+1 αk and recall that K̄ is the number of unique dishes

considered in the franchise. Therefore, when the states z are given, it is sufficient

to update m̄ jk, instead of sampling t ji and k jt.

In order to show this result, let G0 ∼ DP (γ,H) be the global probability

distribution of an HDP having base measure H with support Φ, and concentration

parameter γ. We provide an introduction to DP and HDP in Supplementary Material

A and B. Let us also consider a finite partition {φ1, φ2, . . . , φK̄ , φ̃K̄} of Φ, where φ̃K̄ =

Φ \ ∪ K̄
k=1{φk} is the set of all currently unrepresented parameters. The distribution

of G0 over this finite partition may be expressed using the formal definition of DP

given by Ferguson [1973] as

(
G0(φ1), . . . ,G0(φK̄), G0(φ̃K̄)

) ∣∣∣ γ, H ∼ Dir
(
γH(φ1), . . . , γH(φK̄), γH(φ̃K̄)

)
∼ Dir

(
0, . . . , 0, γ

)
,

(3.23)

assuming that H is absolutely continuous with respect to Lebesgue measure, and

thus yielding H(φk) = 0, for k = 1, . . . , K̄ and H(φ̃K̄) = 1. A definition of Dirichlet

distribution where some of the parameters are allowed to be 0 can be found in Ethier

and Griffiths [1993].

100



We observe that, for each currently instantiated table t, the table-specific

considered dish φ̄ jt is drawn from G0 and is associated, through k̄ jt, to one among

the unique set of dishes {φ1, . . . , φK̄}. Thus, we have m̄·k observations φ̄ jt drawn

from G0 in the franchise assuming value φ k. Then, the posterior of G0 over the

previously defined finite partition is given by

(
G0(φ1), . . . ,G0(φK̄), G0(φ̃K̄)

) ∣∣∣ φ̄, γ ∼ Dir
(
m̄·1, . . . , m̄·K̄ , γ

)
, (3.24)

where we are using the Dirichlet-categorical conjugacy and we denote with φ̄ all

realisations φ̄ jt from G0. Since
(
G0(φ1), . . . ,G0(φK̄), G0(φ̃K̄)

)
is by definition equal

to (α1, . . . , αK̄ , α̃) we obtain Equation (3.22).

3.B Updating Emission Parameters

3.B.1 Within-Model Move

Updatingω: Samples from the conditional posterior distribution p (ω |β, σ2, d, y ∗)

(see Equation (3.11)) are obtained by drawing the frequencies one-at-time using a

mixture of M-H steps. We follow Andrieu and Doucet [1999] and Hadj-Amar et al.

[2019] and design a mixture proposal distribution of the form

q (ω p
l |ω

c
l ) = ξω q1 (ω p

l |ω
c
l ) + (1 − ξω) q2 (ω p

l |ω
c
l ), l = 1, . . . , d, (3.25)

where q1 is defined in Equation (3.26) below, q2 is the density of a NormalN (ω c
l , σ

2
ω),

ξω is a positive value such that 0 ≤ ξω ≤ 1, and the superscripts c and p refer to

current and proposed values, respectively. Equation (3.25) states that a M-H step
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with proposal distribution q1 (ω p
l |ω

c
l )

q1 (ω p
l |ω

c
l ) ∝

T̃−1∑
h = 0

Ih 1
[

h/T ≤ ω p
l < (h+1)/T

] , (3.26)

is performed with probability ξω. Here T̃ = bT̂/2c, T̂ is the number of observations

in ŷ, and Ih is the value of the periodogram of ŷ, i.e the squared modulus of the

Discrete Fourier transform evaluated at frequency h/T

Ih =
∣∣∣∣ ∑

t ∈ I ∗
yt exp

(
− i 2π

h
T

) ∣∣∣∣ 2
,

where we recall that ŷ is a segment of data that is randomly selected from y∗ with

probability proportional to the number of observations belonging to that segment.

The acceptance probability for this move is

α = min
{

1,
p (ω p |β, σ2, d, y ∗)
p (ω c |β, σ2, d, y ∗)

×
q1 (ω c

l )
q1 (ω p

l )

}
,

where ω p = (ω c
1 , . . . , ω

c
l−1, ω

p
l , ω

c
l+1, . . . , ω

c
p)
′

. With probability 1 - ξω, we carry out

a random walk M-H step with proposal distribution q2 (ω p
l |ω

c
l ), whose density is

Normal with mean ω c
l and variance σ2

ω, i.e. ω p
l |ω

c
l ∼ N(ω c

l , σ
2
ω ). This move is

accepted with probability

α = min
{

1,
p (ω p |β, σ2, d, y ∗)
p (ω c |β, σ2, d, y ∗)

}
.

Low values of ξω yield to high acceptance rate combined with an efficient explo-

ration of the parameter space. We followed Andrieu and Doucet [1999] and set

σ2
ω = (1/5T )2 and ξω = 0.2.

102



3.B.2 Trans-Dimensional Moves:

Birth move: If a birth move is attempted, the number of frequencies is proposed

to increase by one, namely d p = d c + 1. The proposed frequency vector ω p is

constructed as follows

ω p = (ωc
1, . . . , ω

c
d c , ω

p
d p)

′

,

where the proposed additional frequency ω p
d p is drawn following Hadj-Amar et al.

[2019], namely by drawing a candidate value ωp
dp uniformly from the union of in-

tervals of the form [ωc
l + ψω, ω

c
l+1 − ψω], for l = 0, . . . , dc and denoting ω c

0 = 0 and

ωc
dc+1 = φω. Here, ψω is a fixed minimum distance between frequencies, which is

chosen larger than 1
n ; in fact, when the separation of two frequencies is less than

the Nyquist step [Priestley, 1981], i.e. |ω l − ω l+1 | <
1
n , the two frequencies are

indistinguishable [Dou and Hodgson, 1995]. Also, we sort the proposed vector of

frequencies ω p to ensure identifiability when performing estimation, as suggested

by Andrieu and Doucet [1999]. For proposed ω p and given σ 2c, the proposed

vector of linear coefficients β p is drawn from its Gaussian posterior conditional

distribution p (β p |ω p, σ 2c, d p, y ∗ ). The proposed state ( d p, ω p, β p ) is jointly

accepted or rejected with probability

α = min
{

1,
L ( θ p | y ∗)
L ( θ c | y ∗)

×
p ( d p) p (ω p | d p) p (β p |ω p, d p)
p ( d c) p (ω c | d c) p (β c |ω c, d c)

×
rd p ·

( 1
d p

)
· q (β c )

bd c · q (ω p
d p) · q (βp )

}
,

(3.27)

where the likelihood L (· | y ∗) is provided in Equation (3.8), p( d ) is the Pois-

son density truncated at dmax, bd c and rd p are the probabilities specified in Equa-

tion (3.10), q (ωp
dp) is the density of the uniform proposal for sampling the ad-

ditional frequency, q (β c) and q (β p) are the Normal densities N2dc ( β̂ c, V c
β ) and

N2dp ( β̂ p, V p
β ), respectively (Equation 3.12). Finally, the residual variance σ2 is
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updated in a Gibbs step from Equation (3.14).

Death move: If a death move is attempted, the number of frequencies is

proposed to decrease by one, i.e. d p = d c − 1. The proposed vector of frequencies

ω p is constructed by choosing with probability 1
d c one of the current frequencies

as the candidate frequency to be removed. Conditioned on ω d and σ 2c, a vector of

linear coefficients β p is drawn from its Gaussian posterior conditional distribution.

The proposed state ( d p, ω p, β p ) is jointly accepted or rejected with probability

given in Equation (3.27), with the correct adjustment of labelling of the variables,

and the terms in the ratio inverted. The residual variance is then updated in a Gibbs

step from Equation (3.14).

3.C Updating HMM Parameters

3.C.1 Sampling Hidden State Sequence

Given observations y, transition probabilities π and emission parameters θ, we sam-

ple the state sequence z using the forward-backward procedure introduced by Ra-

biner [1989] and presented for a Bayesian setting in Fox et al. [2011]. Let us define,

recursively, backward messages bt, t−1 (k) as

b T+1,T (k) = 1, bt, t−1 (k) ∝
Kmax∑
j = 1

πk jN ( yt; f j t, σ
2
j) bt+1, t ( j), t = T, . . . , 2,

(3.28)

for each state k = 1, . . . ,Kmax, where we recall that πk j = p (zt = j | zt−1 = k).

Here, N ( yt; f j t, σ
2
j) denotes the density of a Gaussian distribution with mean

f jt = xt
(
ω j

) ′
β j (as in Equation 3.3) and variance σ2

j , evaluated at yt. Note that

bt, t−1 (k) ∝ p (yt, . . . , yT | zt−1 = k, π, θ), namely a backward message passed from
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zt to zt−1 is proportional to the probability of the partial observation sequence from

t to the end, given the state zt−1. We then observe that we may recursively sample

each state z t conditioned on z t−1 since

p (z | y,π, θ ) = p (z1 | y,π, θ )
T∏

t = 2

p (z t | z t−1, y,π, θ ).

The first state z1 is sampled from the following posterior conditional distribution

p (z1 = k | y,π, θ ) ∝ π 0kN ( y1; fk t, σ
2
k) b2, 1 (k), (3.29)

where we recall that π0k is the initial transition distribution p (z 1 = k). The rest of

the sequence z 2, . . . , zT are then sampled, recursively, from

p (zt = k | zt−1 = j, y,π, θ ) ∝ π jkN ( yt; fk t, σ
2
k) bt+1, t (k).

3.C.2 Sampling Table Counts and Override Variables

Conditioned on state sequence z and collection of dish ratings α, as well as hyper-

parameters η and κ, we sample m jk, o jt and m̄ jk as in Fox et al. [2011] from

p (m, o, m̄ | z, α, η, κ) = p (m | z, α, η, κ) × p (o |m, z, α, η, κ)

× p (m̄ | o, m, z, α, η, κ),

where m and m̄ denote the vectors of table counts of served and considered dishes,

respectively, and o is the vector of override variables. Hence, we first draw m, we

then sample o, and finally determine m̄.

Updating m jk : Let consider sampling from p (m | z, α, η, κ). Conditional

on the value of the states z, the customers y are partitioned according to both restau-
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rants and dishes, but the table assignments are unknown because multiple tables can

be served the same dish (see Figure 3.7). Table assignments may be sampled from

the following conditional distribution

p (t ji = t | t− ji, k jt = k, k− jt, α, η, κ) ∝


ñ− ji

jt , t ∈ {1, . . . ,T j}

η αk + κ δ(k, j), t = T j + 1,
(3.30)

where ñ− ji
jt is the number of customers in restaurant j that sits at table t with-

out including the customer y ji, t− ji are the table assignments for all customers in

restaurant j except for y ji, and similarly k− jt denote the dish assignments for all

tables without counting table t in restaurant j. Equation (3.30) implies that we

can sample table assignments after knowing the dish assignments and also states

that a custumer enters the restaurant and chooses an already occupied table with

probability proportional to ñ− ji
jt , or starts a new table served dish k with probability

proportional to η αk + κ δ(k, j). Note that, when joining a new table, a mass pro-

portional to κ is added if the dish assigned to that table was the house speciality

dish. Moreover, the form of Equation (3.30) also implies that a customer table as-

signment t ji, conditioned on the dish assignment k, follows a DP with concentration

parameter η αk +κ δ ( j, k). Hence, the inference algorithm is performed by introduc-

ing a set of auxiliary random variables t (i)
jk which indicate whether or not customer i

in restaurant j has joined a new table serving dish k. These variable are sampled in

the following way

t (i)
jk

∣∣∣ n jk, αk, η, κ ∼ Bernoulli
(

η αk + κ δ(k, j)
η αk + κ δ(k, j) + i

)
, i = 1, . . . , n jk, (3.31)

recalling that n jk is the number of transitions from state j to state k. Table counts
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m jk are then determined by summing over these auxiliary random variables, i.e.

m jk =

n jk∑
i=1

t (i)
jk . (3.32)

Updating o jt : Let now consider sampling from p (o |m, z, α, η, κ). First,

we observe that, when j , k, there are m jk tables for which o jt = 0, since the

corresponding considered dishes were not overridden with probability one. On the

other hand, when j = k, the served dish k jt = j, which is the house speciality dish,

can arise from either an override decision (i.e. o jt = 1) or a considered dish k̄ jt = j

which has not been overridden (i.e. o jt = 0). The resulting conditional distribution

is given below

p (o jt | k jt = j, α, ρ) ∝


ρ o jt = 1,

α j (1 − ρ) o jt = 0.
(3.33)

Hence, we may sample m j j Bernoulli random variables from Equation (3.33) or

sample o j · =
∑

t o jt, i.e. the total number of override dishes in restaurant j, from the

following Binomial distribution

o j · ∼ Binomial
(
m j j,

α j (1 − ρ)
ρ + α j (1 − ρ)

)
(3.34)

Updating m̄ jk : Conditioned on table counts m jk of served dishes for all j

and k, and override variables o jt for each of these instantiated tables, the number of

tables m̄ jk that considered dish k in restaurant j is computed deterministically in the

following way
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m̄ jk =


m jk j = k,

m j j − o j · j , k.
(3.35)

noticing that, for house speciality dishes, we subtract the sum o j· of override tables

within restaurant j, since o jt = 1 holds when table t is served dish j.

3.C.3 Sampling Hyperparameters

We follow Fox et al. [2011] and parameterize the model by (η+κ) and ρ = κ/(η+κ).

The previous parameterization can be restored using the equalities η = (1−ρ)(η+κ)

and κ = ρ(η + κ). We place a Beta (cρ, dρ) prior on the expected value ρ of the

override variable o jt and a vague Gamma (aη+κ, bη+κ) prior on (η + κ). A Gamma

(aγ, bγ) prior is placed on the concentration parameter γ. The posterior distribution

of these hyperparameters and the concentration parameter γ are given below. Here,

we omit the full derivations of these results which follow closely Escobar and West

[1995] and Teh et al. [2006] and are provided in details in Fox et al. [2007].

Updating (η+κ) : Let J be the number of instantiated restaurant in the fran-

chise at a given iteration of the sampler. We introduced auxiliary random variables

r = {r1, . . . , r j}, where each r j ∈ [0, 1], and s = {s1, . . . , sJ}, with each s j ∈ {0, 1}.

Then, the posterior distribution of (η + κ), conditioned on these newly introduced

set of parameters is given by

(η + κ)
∣∣∣ r, s, y ∼ Gamma

(
aη+κ + m·· −

J∑
j=1

s j, bη+κ −
J∑

j=1

log r j

)
, (3.36)
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where the auxiliary variables r and s are updated in a Gibbs step from

r j

∣∣∣ η + κ, r− j, s, y ∼ Beta
(
η + κ + 1, n j·

)
,

s j

∣∣∣ η + κ, s− j, r, y ∼ Bernoulli
( n j·

n j· + η + κ

)
,

(3.37)

and we recall that marginal counts are described with dots and hence m·· is the total

number of tables serving dishes in the franchise, and n jk is the number of transitions

from state j to k in the state sequence z.

Updating γ : The posterior distribution of γ can be updated in a similar way.

We introduce auxiliary random variables ψ ∈ [0, 1] and ξ ∈ {0, 1} and draw γ from

the full conditional

γ
∣∣∣ψ, ξ, y ∼ Gamma

(
aγ + K̄ − ξ, bγ − logψ

)
, (3.38)

where the auxiliary variables ψ and ξ are drawn in a Gibbs step from

ψ
∣∣∣ γ, ξ, y ∼ Beta

(
γ + 1, m̄··

)
,

ξ
∣∣∣ γ, ψ y ∼ Bernoulli

( m̄··
m̄·· + γ

)
,

(3.39)

where we recall that K̄ is the number of unique considered dishes in the franchise,

and m̄ j· represents the total number of tables in restaurant j with considered dishes

that were not overridden.

Updating ρ: Finally, we sample the self-transition proportion ρ from its

conditional posterior distribution which is given by

ρ | o ∼ Beta
( J∑

j=1

o j· + cρ, m·· −
J∑

j=1

o j· + dρ
)
. (3.40)
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Chapter 4

Summary and Discussion

This thesis presented novel Bayesian approaches to the automated analysis of non-

stationary periodic time series. The development of our methodologies was mo-

tivated by our collaborators in the medical life sciences who observe dense phys-

iological signals, here breathing traces and skin temperature, which naturally are

subject to oscillatory behaviour with unknown periodicities which may change, of-

ten suddenly, over time. In particular, to date no probabilistic modelling approach

has been proposed that is able to address the time changing spectral characteristics

of the data in a satisfactory way such that it could be conceived to be used, for

example, for detecting, and ultimately predicting, instances of apnea.

In Chapter 2, we introduced a novel Bayesian approach for analyzing non-

stationary time series data that exhibit oscillatory behaviour. Our approach is based

on the assumption that, conditional on the position and number of change-points,

the time series can be approximated by a piecewise changing sinusoidal regression

model. The timing and number of changes are unknown, along with the number and

values of relevant periodicities in each regime. Bayesian inference is performed via

a reversible jump MCMC algorithm that can simultaneously estimate both the num-
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ber and location of change-points, as well as the number, frequency and magnitude

of sinusoids within each segment. Our methodology can be seen as a novel and

relevant extension of the work in Andrieu and Doucet [1999] to the nonstationary

setting. We illustrated the utility of our methodology in two case studies. First, we

analyzed human skin temperature time series data obtained from a wearable device,

which exhibited unknown periodicities that changed over time in an abrupt manner.

Our proposed methodology identified interesting oscillations whose frequencies are

consistent with ultradian oscillations between REM and non-REM sleep stages.

Second, we characterized the occurrence of sleep apnea in large breathing data sets

resulting from in vivo plethysmograph studies on rodents. Our spectral investigation

was able to distinguish very sharp peaks, corresponding to different nearby frequen-

cies, that may be associated to the different actions of the rodent including instances

of apnea. Although we have not discussed this in detail here, several diagnostics

for monitoring convergence were carried out in both simulation and case studies. In

particular, we verified that the target posterior distribution reached a stable regime

by analyzing the trace plot of the log likelihood across MCMC iterations [Marin and

Robert, 2007]. We are aware that assessing convergence only based on this simple

tool may sometimes be misleading since stable values of the log likelihood could

simply mean that the Markov chain is stuck in some local mode of the posterior

distribution. Additionally, conditioned on the modal number of change-points and

modal number of frequencies per regime, we have also monitored (within-model)

convergence by analyzing the traces and running averages plots for all parameters

across MCMC iterations. Comparable results were also obtained when running

several chains starting at over-dispersed initial values. We notice that the diagnostic

tool recently introduced by Bruce et al. [2018] and Li and Krafty [2019] to assess

convergence for reversible jump MCMC samplers appears relevant. In the context
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of adaptive spectral analysis of nonstationary time series, they point out that al-

though the number of partitions change across models, a power spectrum is defined

at each time point. The power spectrum is modeled with a fixed number of splines,

yielding a vector of summary measures of parameters that maintain the same in-

terpretation across models in their samplers. However, our proposed sampler has

a further layer of variable dimensionality, as not only the number and locations of

the change-points may change from one iteration to the next, but also the number

of frequencies in each segment are not fixed throughout the simulation. Finally,

although a Gaussian distribution is assumed, it is conceivable that our model can

be extended to allow for other error distributions in Equation (2.1). For example,

a generalized linear model [McCullagh and Nelder, 1989] may be used to model

periodic count data by assuming that the observed data follows a Poisson distribu-

tion, i.e. yt ∼ Poisson (µt). The logarithmic link function of the expected value µt of

the response variable yt may be expressed as log ( µt ) =
∑k+1

j=1 f
(
t, β j, ω j

)
1[ t ∈ I j ],

where the definitions of the variables are the same as for Equation (2.1). Bayesian

inference can, in principle, be achieved in a similar way as described in Chapter

2, namely by iterating between segment and change-point model moves, where the

formulation of the acceptance probabilities and some proposal distributions need to

be modified accordingly. We believe that such an extension would find use in sev-

eral ranges of applications, for example in studying population cycles in ecology

and epidemiology, where the abundance of species are measured as count variables

[White and Bennetts, 1996; Bhaskaran et al., 2013; Bramness et al., 2015].

Additionally to recognize temporal changes, it is of interest to identify and

model the recurrence of a relevant cyclical pattern in a probabilistic manner. Chap-

ter 3 presented a novel HMM approach which can address the challenges of mod-

elling periodic phenomena whose behaviour switches dynamically over time, and

112



provides a flexible framework for gaining information from them. The number of

states is assumed unknown as well as their relevant periodicities which may differ

over the different regimes since each regime is represented by a different periodic

pattern. To address flexibility on the number of states, we assume an HDP that pe-

nalises rapid changing dynamics of the process and provides effective control over

the switching rate as in Fox et al. [2011]. The variable dimensionality with respect

to the number of frequencies that specifies the different states is tackled by devel-

oping an appropriate reversible-jump MCMC algorithm. We note that we used a

similar sinusoidal modelling approach, for cyclical data that show regime shifts in

periodicity, amplitude and phase, to the one developed in Chapter 2. However, the

statistical methodology proposed in Chapter 3 is built upon an HMM framework,

which can additionally model and recognize the occurrence and recurrence of peri-

odic patterns over time by assigning probabilities with which these transitions occur

between different states. We also observe that our proposed methodology will re-

visit a regime only if that regime is not out of phase with earlier visits. Future

research may address this matter by first specifying the oscillatory mean function

of Equation (3.3) as f t j =
∑d j

l=1(A j, l cos(2πω j, l t + τ j, l)) and then allow the phase τ j, l

associated with each frequency ω j, l to vary independently of previous visits to the

same state. However, it may not always be correct to a priori assume that a shift in

phase for a particular periodicity should be classified with the same state. For exam-

ple, when analyzing physiological data in the context of cancer chronotherapy [Lévi

and Schibler, 2007] or delayed sleep phase syndrome [Sack et al., 2007], detecting

a phase shift in the circadian rhythm of a patient might be crucial in determining

when and which particular treatment to give.

We illustrated the use of our approach in a case study relevant to respiratory

research, where our methodology was able to identify recurring instances of sleep
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apnea in human breathing traces. Although here we have focused on the detection

of apnea instances, our proposed methodology provides a very flexible and gen-

eral framework to analyze different breathing patterns. The growth of information

and communication technologies permits new advancements in the health care sys-

tem to facilitate support in the homes of patients in order to proactively enhance

their health and well-being. We believe that our proposed HMM approach can aid

the iterative feedback between clinical investigations in sleep apnea research and

practice with computational, statistical and mathematical analysis and modelling of

disease progression and remission, treatment responses and adverse events as well

as disease prevention.
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schemes’, The Annals of Statistics 1(2), 353–355.

Bramness, J. G., Walby, F. A., Morken, G. and Røislien, J. [2015], ‘Analyzing

seasonal variations in suicide with Fourier Poisson time-series regression: a

registry-based study from Norway, 1969–2007’, American Journal of Epidemi-

ology 182(3), 244–254.

Bretthorst, G. L. [1988], Bayesian Spectrum Analysis and Parameter Estimation,

Vol. 48, New York: Springer-Verlag.

Bretthorst, G. L. [1990], ‘Bayesian analysis. I. Parameter estimation using quadra-

ture NMR models’, Journal of Magnetic Resonance 88(3), 533–551.

Brillinger, D. R. [1981], Time series: data analysis and theory, Vol. 36, SIAM.

Brockwell, P. J., Davis, R. A. and Calder, M. V. [2002], Introduction to Time Series

and Forecasting, Vol. 2, Springer.

Brockwell, P. J., Davis, R. A. and Fienberg, S. E. [1991], Time Series: Theory and

Methods, Springer Science & Business Media.

Bruce, S. A., Hall, M. H., Buysse, D. J. and Krafty, R. T. [2018], ‘Conditional adap-

tive Bayesian spectral analysis of nonstationary biomedical time series’, Biomet-

rics 74(1), 260–269.

117



Carskadon, M. A., Dement, W. C. et al. [2005], ‘Normal human sleep: an

overview’, Principles and Practice of Sleep Medicine 4, 13–23.

Carter, C. K. and Kohn, R. [1997], ‘Semiparametric Bayesian inference for time

series with mixed spectra’, Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 59(1), 255–268.

Celeux, G., Hurn, M. and Robert, C. P. [2000], ‘Computational and inferential dif-

ficulties with mixture posterior distributions’, Journal of the American Statistical

Association 95(451), 957–970.

Chopin, N., Rousseau, J. and Liseo, B. [2013], ‘Computational aspects of Bayesian

spectral density estimation’, Journal of Computational and Graphical Statistics

22(3), 533–557.

Choudhuri, N., Ghosal, S. and Roy, A. [2004], ‘Bayesian estimation of the spec-

tral density of a time series’, Journal of the American Statistical Association

99(468), 1050–1059.

Chung, S.-H., Krishnamurthy, V. and Moore, J. [1991], ‘Adaptive processing tech-

niques based on hidden Markov models for characterizing very small chan-

nel currents buried in noise and deterministic interferences’, Philosophical

Transactions of the Royal Society of London. Series B: Biological Sciences

334(1271), 357–384.

Cogburn, R. and Davis, H. T. [1974], ‘Periodic splines and spectral estimation’, The

Annals of Statistics pp. 1108–1126.

Dahlhaus, R. et al. [1997], ‘Fitting time series models to nonstationary processes’,

The Annals of Statistics 25(1), 1–37.

118



Davis, E. M. and ODonnell, C. P. [2013], ‘Rodent models of sleep apnea’, Respira-

tory Physiology & Neurobiology 188(3), 355–361.

Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. [2006], ‘Structural break

estimation for nonstationary time series models’, Journal of the American Statis-

tical Association 101(473), 223–239.

Del Moral, P., Doucet, A. and Jasra, A. [2006], ‘Sequential Monte Carlo sam-

plers’, Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy) 68(3), 411–436.

Denison, D., Mallick, B. and Smith, A. [1998], ‘Automatic Bayesian curve fit-

ting’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)

60(2), 333–350.

Dewan, N. A., Nieto, F. J. and Somers, V. K. [2015], ‘Intermittent hypoxemia and

osa: implications for comorbidities’, Chest 147(1), 266–274.

Djuric, P. M. [1996], ‘A model selection rule for sinusoids in white Gaussian noise’,

IEEE Transactions on Signal Processing 44(7), 1744–1751.

Dou, L. and Hodgson, R. [1995], ‘Bayesian inference and Gibbs sampling in spec-

tral analysis and parameter estimation. I’, Inverse Problems 11(5), 1069.

Dou, L. and Hodgson, R. [1996], ‘Bayesian inference and Gibbs sampling in spec-

tral analysis and parameter estimation: II’, Inverse Problems 12(2), 121.

Ephraim, Y. and Merhav, N. [2002], ‘Hidden Markov processes’, IEEE Transac-

tions on Information Theory 48(6), 1518–1569.

119



Escobar, M. D. and West, M. [1995], ‘Bayesian density estimation and inference

using mixtures’, Journal of the American Statistical Association 90(430), 577–

588.

Ethier, S. N. and Griffiths, R. [1993], ‘The transition function of a fleming-viot

process’, The Annals of Probability pp. 1571–1590.

Ferguson, T. S. [1973], ‘A Bayesian analysis of some nonparametric problems’,

Annals of Statistics 1(2), 209–230.

Fox, E. B. [2009], Bayesian nonparametric learning of complex dynamical phe-

nomena, PhD thesis, Massachusetts Institute of Technology.

Fox, E. B., Sudderth, E. B., Jordan, M. I. and Willsky, A. S. [2007], ‘The sticky

HDP-HMM: Bayesian nonparametric hidden Markov models with persistent

states’, Arxiv preprint .

Fox, E. B., Sudderth, E. B., Jordan, M. I. and Willsky, A. S. [2011], ‘A sticky HDP-

HMM with application to speaker diarization’, The Annals of Applied Statistics

pp. 1020–1056.
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and Finkenstädt, B. [2018], ‘Hidden Markov models for monitoring circadian

121



rhythmicity in telemetric activity data’, Journal of The Royal Society Interface

15(139), 20170885.

Hurn, M., Justel, A. and Robert, C. P. [2003], ‘Estimating mixtures of regressions’,

Journal of computational and graphical statistics 12(1), 55–79.

Ignatov, T. [1982], ‘On a constant arising in the asymptotic theory of symmetric

groups, and on Poisson-Dirichlet measures’, Theory of Probability & Its Appli-

cations 27(1), 136–147.

Ishwaran, H. and Zarepour, M. [2002], ‘Exact and approximate sum representations

for the Dirichlet process’, Canadian Journal of Statistics 30(2), 269–283.

Jasra, A., Holmes, C. C. and Stephens, D. A. [2005], ‘Markov chain Monte Carlo

methods and the label switching problem in Bayesian mixture modeling’, Statis-

tical Science pp. 50–67.

Jeffreys, H. [1998], The theory of probability, OUP Oxford.

Jelinek, F. [1997], Statistical Methods for Speech Recognition, MIT press.

Jennison, C. [1997], ‘Discussion of on Bayesian analysis of mixtures with an un-

known number of components, by s. richardson and pj green’, J. Roy. Statist. Soc.

Ser. B 59, 778–779.

Juang, B.-H. and Rabiner, L. [1985], ‘Mixture autoregressive hidden Markov mod-

els for speech signals’, IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing 33(6), 1404–1413.

Juang, B. H. and Rabiner, L. R. [1991], ‘Hidden Markov models for speech recog-

nition’, Technometrics 33(3), 251–272.

122



Kivinen, J. J., Sudderth, E. B. and Jordan, M. I. [2007], Learning multiscale repre-

sentations of natural scenes using Dirichlet processes, in ‘2007 IEEE 11th Inter-

national Conference on Computer Vision’, IEEE, pp. 1–8.

Komarzynski, S., Huang, Q., Innominato, P. F., Maurice, M., Arbaud, A., Beau, J.,

Bouchahda, M., Ulusakarya, A., Beaumatin, N., Breda, G. et al. [2018], ‘Rel-

evance of a mobile internet platform for capturing inter-and intrasubject vari-

abilities in circadian coordination during daily routine: pilot study’, Journal of

Medical Internet Research 20(6), e204.
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Appendix A

Dirichlet Process and Hierarchical

Dirichlet Process

A.1 Dirichlet Process

The Dirichlet process (DP) is a stochastic process used in Bayesian nonparametric

models. Informally, it can be seen as a distribution over probability distributions,

meaning that a realization from a DP is itself a probability distribution.

Dirichlet Process: A formal definition of DP is due to Ferguson [1973], who

specified a DP via a base distribution H with support Θ and a positive concentration

parameter γ. Particularly, given a finite partition {A1, . . . , AK} of Θ, G0 is a DP with

base distribution H and concentration parameter γ, denoted by G0 ∼ DP (γ,H), if

(G0(A1), . . . ,G0(AK)) ∼ Dirichlet
(
γH(A1), . . . , γH(AK)

)
. (A.1)

That is, the marginal distribution of G0 on every finite partition of Θ follows a

Dirichlet distribution. The base distribution H can be seen as the mean of the DP,
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as E
[
G(A)

]
= H(A) for any measurable set A ⊆ Θ, whereas the concentration

parameter γ can be interpreted as an inverse variance of the concentration of mass

around the base distribution H, namely Var
[
G(A)

]
= H(A)(1 − H(A))/(γ + 1).

Stick-Breaking Construction: Another representation of a DP was given

by Sethuraman [1994]. Let α = (α k )∞k=1 be a probability mass function on a count-

ably infinite set, where the discrete probabilities are defined as follows

νk | γ ∼ Beta ( 1, γ ), k = 1, 2, . . .

αk = νk

k−1∏
l=1

(1 − νl), k = 1, 2, . . .
(A.2)

This stick-breaking construction is commonly denoted by α ∼ GEM(γ) (GEM is

an abbreviation for Griffiths, Engen and McCloskey [Pitman, 2002]). Here, γ is a

positive real number that controls the expected value of the number of elements in

α with significant probability mass. In fact, Equation (A.2) can be interpreted in

the following way: begin with a stick of unit length and split it at location ν1; then,

assign α1 to be the length of the remaining stick that has been split and recursively,

break the other portion to obtain α2, α3 and so on. Notice that this construction

ensures that the sequence α satisfies
∑∞

k=1 α k = 1.

Sethuraman [1994] showed that, conditional on the probability mass func-

tion α constructed as in Equation (A.2), the random distribution G0

G0 =

∞∑
k=1

αkδθk , θk |H ∼ H, k = 1, 2, . . . (A.3)

is a draw from a DP (γ,H), θk are distributed according to H, and δθ denote a unit-

mass measure concentrated at θ. This representation shows that measures drawn
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from a DP are always discrete.

Example: Figure A.1 displays draws from G0 ∼ DP (γ,H) for several val-

ues of γ, where the base distribution H is N(0,
√

10). It becomes clear that the

smaller γ, the fewer elements in α have a significant probability mass, resulting

in draws from a DP to be concentrated on a fewer atoms. Conversely, increasing

the magnitude of γ leads to draws from a DP spread over a larger number of atoms.

Furthermore, Figure A.1 shows how the parameter γ influences the concentration of
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Figure A.1: Example of a DP represented via stick-breaking construction. Histograms of draws
from G0 ∼ DP(γ,H) for γ = 0.5, 5, 20 and 100, where H ∼ N(0,

√
10). The red line is the density

of H.

mass around the base distribution H: the greater γ, the closer the draw from the DP

appears to be to the base measure H. In fact, as γ → ∞, we have that G(A)→ H(A)

for any measurable set A ∈ Θ

Polya Urn Representation: We now consider analyzing the distribution

of draws θ
′

i ∼ G0, without explicitly examining G0 directly. In particular, let

θ
′

1, θ
′

2, . . . be a sequence of independent and identically distributed random variables
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distributed according to G0. Blackwell et al. [1973] showed that the conditional dis-

tributions θ
′

i | θ
′

1, . . . , θ
′

i−1 when G0 is marginalized out is given by

θ
′

i | θ
′

1, . . . , θ
′

i−1 ∼

i−1∑
l=1

1
i − 1 + γ

δθ ′l
+

γ

i − 1 + γ
H (A.4)

This representation, commonly referred to as the Pólya urn scheme, can be inter-

preted with a metaphor in which balls are drawn from an urn model. Here, a ball

of a unique color is associated with each atom and these balls are drawn at random.

With probability proportional to γ, we create a new atom by drawing from H, and

a ball of this new color is placed into the urn. Otherwise, we draw a ball at random

from the urn and we put it back together with a further ball having the same color.

Because samples from a DP are always discrete, there is a positive probabil-

ity that different observations θ
′

i assume identical values from the set of K unique

values {θ1, . . . , θK}, where θk is defined as in Equation (A.3). Hence, we can re-write

Equation (A.4) as

θ
′

i | θ
′

1, . . . , θ
′

i−1 ∼

K∑
k=1

Nk

i − 1 + γ
δθk +

γ

i − 1 + γ
H (A.5)

where Nk is the number of observations θ
′

i ′ assuming value θk for 1 ≤ i′ < i.

Chinese Restaurant Process: Another perspective on the DP that high-

lights its clustering properties is obtained by analyzing the predictive distribution

of draws θ
′

1, . . . , θ
′

N ∼ G0. Let z i be a discrete random variable over the positive

integers that selects the unique value θk such that θ
′

i = θ z i and let Nk =
∑N

i=1 δ (z i, k)

be the number of indicator random variables assuming the value of k. Then, Equa-

tion (A.5) yields to the following predictive distribution on the indicator random
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variables z N+1 | z 1, . . . , z N

π ( zN+1 = z | z 1, . . . , z N , γ ) =

K∑
k=1

Nk

N + γ
δ (z, k) +

γ

N + γ
δ (z, K + 1), (A.6)

where δ (z, k) = 1 if k = z and zero otherwise and K + 1 is a value that has not

previously been seen. This representation, which is commonly referred to as the

Chinese restaurant process, induces a distribution over partitions of {1, . . . ,N}. The

analogy is as follows. Consider a Chinese restaurant with infinitely many tables,

where each table can sit infinitely many costumers and each table is served a unique

dish θk. A costumer θ
′

i enters the restaurant and decides whether to join a currently

occupied table k, with probability proportional to the amount of people sitting at that

table, or sit at a previously unoccupied table K + 1, with probability proportional to

γ.

A.2 Hierarchical Dirichlet Process

Hierarchical approaches are naturally applied in Bayesian nonparametric statistics

for problems that involves modelling several groups of data [Hjort et al., 2010].

For example, when the model for each group of data includes a discrete variable

of unknown cardinality, and we would like to tie these variables across groups,

i.e allow these groups to be statistically linked with each other, the hierarchical

Dirichlet process introduced by Teh et al. [2006] can be particularly well-suited for

the task.

Hierarchical Dirichlet Process: The hierarchical Dirichlet process (HDP)

defines a set of group-specific probability distributions G j - where we assume there
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are J of such groups - and a global probability distribution G0 as follows

G0 | γ, H ∼ DP ( γ, H )

G j | η, G0 ∼ DP ( η, G0 ), j = 1, . . . , J.
(A.7)

The global distribution G0 is a DP with base distribution H and strength

parameter γ, the group-specific probability distributions G j are DP distributed with

base distribution G0 and concentration parameter η, and the probability distributions

G j are conditionally independent given G0. Hence, the HDP is based on a recursion

where the base distribution G0, i.e the base distribution for the group-specific DPs

G j, is itself a DP. The locations of the atoms for the group-specific probability

distributions G j are discrete and drawn from the support of G0. These atoms are

also shared among different groups, as each G j inherits atoms from the same base

distribution G0 and E[G j |G0]→ G0.

Stick-Breaking Construction: A construction that provide a better intu-

ition about the sharing of atoms across multiple DPs in a HDP, is the stick-breaking

representation

G0 =

∞∑
k=1

αk δθk

α
∣∣∣ γ ∼ GEM ( γ )

θk

∣∣∣ H ∼ H, k = 1, 2, . . .
(A.8)

G j =

∞∑
t=1

π̃ jt δθ ∗jt

π̃ j

∣∣∣ η ∼ GEM ( η ) j = 1, . . . , J

θ ∗jt
∣∣∣G0 ∼ G0 t = 1, 2, . . .

(A.9)

This formulation shows how the groups-specific DPs G j are constructed as a reweighted

sum of the atoms from the global DP G0. That is, the group-specific set of atoms θ ∗jt

are drawn from the global set of atoms θk of G0, ensuring that there exists non-zero

probability that distinct G j share atoms between each other. Figure (A.2) displays
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an example of an HDP with J = 3 groups, represented via stick-breaking construc-

tion. In this case, α and π̃ j can be interpreted as probability distributions over the

positive integers, namely α | γ ∼ GEM ( γ ) and π̃ j | η, α ∼ DP ( η, α ).
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Figure A.2: Example of a HDP with J = 3 groups, represented via stick-breaking construction.
Left panel shows a draw of the global distribution α, whereas the other panels displays draws of the
group-specific distributions π̃1, π̃2 and π̃3, conditional on α.

Chinese Restaurant Franchise: A related representation of the Chinese

restaurant process is the Chinese restaurant franchise [Teh et al., 2006] which de-

scribes the marginal probabilities obtained by marginalizing out G0 and G j in the

HDP. In a Chinese restaurant franchise the analogy of a Chinese restaurant process

is extended to a set of restaurants, one for each of the group of the HDP. An infinite

global menu of dishes is shared across the set of restaurants. The process of seating

costumers at tables happens in a similar way as for the Chinese restaurant process,

but is restaurant specific. The process of choosing dishes at a specific table happens

franchise-wide, namely the dishes are selected with probability proportional to the

number of tables (in the entire franchise) that have previously served that dish.

More formally, define θ
′

j1, . . . , θ
′

jN j
to be the set of costumers in restaurant j,

where each θ
′

ji is distributed according to G j. Each costumer is pre-allocated to a

specific restaurant designated by that costumer’s group j. Let θ ∗j1, θ
∗
j2, . . . denote the

dish served at table t in restaurant j, where θ ∗jt is distributed according to G0. Finally,

let θ 1, θ 2, . . . be the global menu of dishes of the franchise, where θk is distributed
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according to the base measure H. We augment the space and introduce indicator

random variables t ji and k jt, such that t ji indicates the table assignment for the i th

costumer in the j th restaurant, whereas k jt represents the dish assignment of the t th

table in the j th restaurant. The i th costumer in the j th restaurant chooses a table via

t ji ∼ π̃ j, and at each table is assigned a dish via k jt ∼ α, where α can be seen as

a collection of ratings for the dishes served in the global menu. Additionally, the

following equality holds: θ
′

ji = θ ∗jt ji
= θ k jt ji

. Figure A.3 displays an an example of a

Chinese restaurant franchise with J = 2 restaurants.

The predictive distributions that outline the Chinese restaurant franchise are

given as follows

p (t ji | t j1, . . . , t ji−1, η ) ∝
T j∑
t=1

ñ jt δ(t ji, t) + η δ (t ji, T j + 1)

p(k jt | k1, k2, . . . , k j−1, k j1, . . . , k jt−1, γ) ∝
K∑

k=1

m·k δ (k jt, k) + γ δ (k jt,K + 1),

(A.10)

where ñ jt is the number of costumers in the j th restaurant sitting at table t, m jk is

the number of tables in the j th restaurant serving dish k, T j is the total number of

occupied tables in restaurant j, and K is the total number of unique dishes served

in the franchise. Marginal counts are described with dots. Thus, m·k =
∑J

j=1 is

the number of tables in the whole franchise serving dish k. Also we denote with

k j = (k j1, . . . , k jT j) the dish assignments for the tables of the j th restaurant.

Equation (A.10) dictates that the i th costumer entering the j th restaurant sits

in one among the T j currently occupied tables, say t, with probability proportional

to the number of currently seated costumers ñ jt, or start a new table T j + 1 with

probability proportional to η. The first costumer to sit at a table proceeds to the
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buffet line and chooses a dish based on the popularity of that dish in the whole fran-

chise, namely he chooses an already selected dish θk jt with probability proportional

to m·k, or order a new dish θK+1 with probability proportional to γ.

𝑗 = 𝟣
k11 = 1 k12 = 1 k13 = 3

𝜽1 𝜽2 𝜽3

𝜽*11 = 𝜽1 𝜽*12 = 𝜽1 𝜽*13 = 𝜽3

𝑗 = 2

k21 = 3 k22 = 2 k23 = 2

𝜽*21 = 𝜽3 𝜽*22 = 𝜽2 𝜽*23 = 𝜽2

𝜃ʹ11 𝜃ʹ14𝜃ʹ12
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𝜃ʹ24

𝜃ʹ25

Figure A.3: Chinese restaurant franchise including J = 2 restaurants (rectangles). Costumers (θ
′

ji)
are seated at tables (circles) in the restaurants, where at each table a dish (θ ∗jt ) is chosen from a
global menu (θk). Notice that in a restaurant multiple tables may serve the same dish. This picture
is best viewed in colours.

As depicted in Figure A.3, the Chinese restaurant franchise allows multiple

tables in the same restaurant to serve the same dish. The restaurant-specific DPs

can be instead re-written in terms of the unique dishes in the following way [Fox

et al., 2011]

G j =

∞∑
k=1

π jk δθk

θk

∣∣∣ H ∼ H k = 1, 2, . . .

π j

∣∣∣ η, α ∼ DP (η, α) j = 1, . . . , J
(A.11)
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where

π jk =
∑

t : k jt=k

π̃ jt.

According to this representation, π j now defines a probability distributions over

unique dishes rather than tables.
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