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Chapter 1

Introduction

Fractional evolution equations has been a rapidly developing area over the last

few decades. One of the reasons is their ability to better model real-world

phenomena compared to their non-fractional counterpart, which usually model

local behaviour. The nature of fractional in time operators (respectively in

space) allow us to model, for example, processes that exhibit some kind of

memory (resp. non-local interactions). The processes associated with time-

fractional evolution models possess some remarkable properties. For some

motivation, let us compare the difference between the standard and the time-

fractional heat equation,

Dβ
0+∗u =

1

2
∆u, ∂tu =

1

2
∆u,

where Dβ
∗ is the Captuo-Dzhbrayashan fractional derivative in time, β ∈ (0, 1)

and ∆ is the Laplacian operator (a second order uniformly elliptic operator). In

the standard heat equation, the fundamental solution is given by the transition

density of a standard Brownian motion. In the time-fractional heat equation,

the fundamental solution is given by a standard Brownian motion, time-

changed by an inverted stable subordinator. An inverted stable subordinator

is obtained as the right-inverse of stable subordinator (which is an increasing

jump process), which means that it is an increasing continuous process which

is constant precisely whenever the subordinator jumps. For this reason, time

fractional diffusion equation is widely used to model anomalous diffusions which

exhibit subdiffusive behaviour, due to the diffusive particles being trapped.

Such fractional time diffusion equations also arise as a scaling limit of random
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conductance models (random walks in random environments). This point of

view is particularly interesting, since the limiting process is a non-Markovian

process which arises as the scaling limit of Markovian process, see Barlow and

Cerny (2011) and Meerschaert and Sikorskii (2012). The authors in Hairer

et al. (2018) discussed how a fractional kinetic process (with β = 1
2
) emerges

as the intermediate time behaviour of perturbed cellular flows.

Recently much attention has been given to the Green’s function of

fractional differential equations. In Z.-Q. Chen et al. (2018), the authors obtain

two-sided estimates for the Green’s functions of fractional evolution equations,

under the assumption that the Green’s function of the spatial operator satisfies

global (in time) two-sided estimates. In Grigoryan and Kumagai (2008), the

authors explore the general structure of two-sided estimates for the transition

probabilities associated to local or non-local Dirichlet forms. They show that

the bounds for transition probabilities associated to local Dirichlet forms will

always be of exponential type, and for those associated to non-local Dirichlet

forms the bounds will be of polynomial type. Even more recently, the authors in

Deng and Schilling (2018) give some exact asymptotic formulas for the Green’s

function of fractional evolution equations. The authors in Kelbert et al. (2016)

study error estimates for continuous time random walk (CTRW) approximation

of classical fractional evolution equations, for which the heat kernel estimates

for Dβu = ∆u and Dβu = −ψ(−i∇)u, where −ψ(−i∇) generates a symmetric

stable process, are obtained as a by-product.

In Eidelman and Kochubei (2004) the authors use the parametrix method

(or Levi method) to study the equation Dβu(t, x)−Bu(t, x) = f(t, x), where

the operator B is a uniformly elliptic second order differential operator (which

we look at in Theorem 4.2.1) with bounded continuous real-valued coefficients.

They do this by using the machinery of the parametrix method (Levi method),

looking first at the constant coefficient case then using these estimates to study

the variable coefficient case. In the articles Kochubei et al. (2018, 2019), the

authors study the Cesaro mean of the heat kernel of subordinated processes

and for this they use a version of a Karamata-Tauberian theorem. Diffusion

processes in random environments are also closely related objects, and in fact

there are many works looking at estimates for the heat kernels of such processes,

for example in Cabezas et al. (2015) the authors obtain sub-Gaussian bounds

for the transition kernel of a random walk in a random environment.
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Boundary value problems on Rk
+ × Rn of the form

k∑
i=1

ti
Dβi

0+∗u(t, x) = Lxu(t, x), (t, x) ∈ Rk
+ × Rn,

u(t, x)|ti=0 = φi(z), z ∈ Rk−1
+ × Rn

where each CD derivative acts on a different coordinate, arise in many areas

of mathematics. A particularly noteworthy application can be found in the

mathematics of insurance. Consider k processes (Xβ1
t1 (s), · · · , Xβk

tk
(s)), where

each Xβi
ti (s) is a process started at ti > 0 generated by − ti

Dβi
0+∗. If each

process corresponds to the wealth of a company, then whenever one of the

coordinates hit zero, one of the companies have defaulted. Insurance companies

are interested in the ruin probability, which is the probability of one of the

companies defaulting before a finite time horizon T . That is, if τβi0 (ti) denotes

the first time the process Xβi
ti (s) hits zero,

τβi0 (ti) := inf{s > 0 : Xβi
ti (s) ≤ 0},

then the ruin probability is the quantity

Ψ(ti, T ) = P[τβi0 (ti) < T ].

See Y. Chen et al. (2013), Djehiche (1993), Konstantinides and J. Li (2016),

X. Li et al. (2015), and Ramasubramanian (2016) for ruin probabilities of

multidimensional risk models, or Asmussen and Albrecher (2010) for a broader

treatment of ruin probabilities. Similar kinds of questions also appear when

looking at barrier options under one-dimensional Markov models, see Mijatović

and Pistorius (2013). It is natural to consider multi-dimensional versions of

these, Leccadito et al. (2016), as investors often deal with basket options.

A further natural appearance comes when considering portfolios of credit

derivative obligations (CDO), which can be described by a Markov process in

Rk
+. Reaching a boundary of dimension k − n means that n out of d bonds

underlying the portfolio of CDOs have defaulted. It is natural in this setting

to consider spatially non-homogeneous processes, since the behaviour of the

processes should feel the approach to the boundary, which is not the case for
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Lévy processes. This would then mean looking at evolutions of the form

k∑
i=1

ti
D

(νi)
0+∗u(t, x) = Lxu(t, x),

where each νi is a Lévy-type kernel which may depend on ti. The series

of articles Scalas, Gorenflo, and Mainardi (2000a,b) and Scalas, Gorenflo,

Mainardi, and Raberto (2001), give a nice overview of the usage of fractional

calculus and jump-diffusion processes in finance. Another popular model these

days is the so called Pearson diffusion, and also the fractional version, which

are diffusion processes with polynomial diffusion coefficients, see Leonenko et al.

(2013). Fractional models are also finding new footing in theoretical physics,

via fractional and non-local Schrödinger operators, see for example Kaleta,

Kwaśnicki, et al. (2018) and Kaleta and Lörinczi (2019). Also for a broader

scientific development, see Herrmann (2014), Mainardi (2010), Meerschaert

and Sikorskii (2012), and Tarasov (2011).

Of more general interest in finance are affine processes which live in

Rk
+ × Rd, see Duffie et al. (2003). Our final motivation for considering stable

processes on R2
+ (i.e, (5.0.1) without the spatial operator Lx), is the topic of

limit order books. A simplified model would be that one coordinate of Xβ1,β2
t1,t2 (s)

is the volume of trades available at the best buy price while the other is the

volume at the best sell price. The event that this process hits the boundary

means that there are no more trades offered at that price and thus a price

change occurs. We discuss this problem in more detail in Chapter 6. See Cont

and De Larrard (2012) and Hambly et al. (2018) and references therein for

related attempts at modelling order books using reflected Brownian motions

on the orthant and reflected SPDEs.

1.1 Structure

The main aim of this thesis is to explore two-sided estimates for the Green’s

function of fractional evolution equations. In Chapter 2, we recall some

background material from classical fractional calculus, probability theory,

operator semigroups and asymptotic analysis. In Chapter 3, we begin by

defining generalised fractional derivatives in dimension one, before making our
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way to d-dimensional generalisations. We also discuss some general results

from evolution equations involving fractional-type operators.

Chapters 4 and 5 make up the main focus of the thesis, where we obtain

two-sided estimates for the Green’s function of a wide range of fractional

evolution equations. We wrap up the story with a discussion on a possible

financial application of our estimates - limit order books.

1.2 General notation and function spaces

For an open or closed convex subset S of Rd, C(S) is the Banach space of

continuous functions on S equipped with the sup-norm. Ck(S) is a Banach

space of k times continuously differential functions with bounded derivatives

on S with the norm being the sum of the sup norms of the function itself and

all its partial derivatives up to and including order k. For a subset A ⊂ S, we

define the spaces

CconstA(S) = {f ∈ C(S) : f |A is a constant},

CkillA(S) = {f ∈ C(S) : f |A = 0},

C∞(Rd) = {f ∈ C(Rd) : lim
x→∞

f(x) = 0},

C2
c (Rd) = {f ∈ C2(Rd) : f has compact support }

B(S) = {f : S → R bounded and measurable }.

We denote by Rd,O, Sd−1,N, a.e., a ∨ b and a ∧ b, the d-dimensional

Euclidean space, the positive orthant {x ∈ Rd, x ≥ 0}, the surface of the

d-dimensional sphere, the positive integers, the statement almost everywhere

with respect to Lebesgue measure, the maximum and the minimum between

a, b ∈ R, respectively. The space M+(Rd \ {0}) is the space of positive Borel

measures on Rd \ {0}.
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Chapter 2

Preliminaries

In this chapter we introduce relevant background material which is used

throughout the thesis. We begin with some general facts about Lévy (and

Feller) processes and their associated semigroups. Following this we discuss

some well-known estimates for the transition densities of such processes, before

going on to describe some methods from asymptotic analysis which are used at

various points.

2.1 Lévy processes, Feller processes and oper-

ator semigroups

Our main references here are Kolokoltsov (2011), Böttcher et al. (2014) and

Sato (1999). For x ∈ E ⊂ Rd, we use the notation Xx(s) = (Xx(s))s≥0 to mean

an E-valued stochastic process which is started at x. When E = R+ (or Rk
+

for k ≥ 1), we will mostly use the letter t to denote the starting point of the

process, while keeping x as the starting point for processes living in Rd. Recall

that a Lévy process X = (X(s))s≥0 is a stochastic process which has stationary

and independent increments, X0 = 0 almost surely (a.s) and is continuous in

probability. Such a process always has a modification which has a.s cádlág

(from the French for continuous from the right, limits from the left) sample

paths. We always work with such a modification.

Let B be a Banach space. Then a (one-parameter) family of linear

operators (Tt)t≥0 on B is a semigroup if Tt+s = TsTr for every s, r ≥ 0 and T0 is

the identity mapping in B. A semigroup of operators is strongly continuous if
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limt→0 ‖Ttf − f‖ = 0 for any f ∈ B. A semigroup of operators is a contraction

semigroup if each Tt is a contraction: ‖Tt‖ ≤ 1. If f ≥ 0 implies Ttf ≥ 0,

then the operator Tt is positivity preserving. A strongly continuous semigroup

of positivity preserving linear contractions on the Banach space B = C∞(S),

where S is a locally compact metric space, is called a Feller semigroup.

We only deal with cases S = Rd or S ⊂ Rd. A Feller process is a time-

homogeneous Markov process whose transition semigroup Ttf(x) = Ef(Xx(t))

is a Feller semigroup. Again, any Feller process has a cádlág modification and

we always work with such a modification, see Böttcher et al. (2014, Theorem

1.19). A consequence of the Riesz-Markov theorem is that for an arbitrary

Feller semigroup Tt on C∞(S), there exists a uniquely defined family of positive

Borel measures pt(x, dy) on S with norm not exceeding one, depending vaguely

continuous on x such that

Ttf(x) =

∫
S

pt(x, dy)f(y). (2.1.1)

A Feller semigroup is called conservative if such measures pt(x, ·) are probability

measures.

The infinitesimal generator of a Feller semigroup (Tt)t≥0 (or of a Feller

process (Xt)t≥0) is the linear operator (L,D(L)) defined by

D(L) :=

{
u ∈ C∞(S) : lim

t→0

Ttu− u
t

exists as uniform limit

}
,

Lu := lim
t→0

Ttu− u
t

, u ∈ D(L).

A classical result on the structure of generators of Feller semigroups is due

to Courrege (1965), which says that if the domain of a Feller generator in

C∞(Rd) contains the space C2
c (Rd), then on that space it has the following

Lévy-Khintchine form with variable coefficients:

Lf(x) =
1

2
(G(x)∇,∇)f(x) + (b(x),∇f(x)) + c(x)f(x) (2.1.2)

+

∫
Rd

[f(x+ y)− f(x)− (∇f(x), y)1B1(y)]ν(x, dy), f ∈ C2
c (Rd),

where B1 is a ball of radius 1, G(x) is a symmetric non-negative matrix, and
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ν(x, ·) is a Lévy measure on Rd:∫
Rd

min(1, |y|2)ν(x, dy) <∞, ν(x, {0}) = 0,

depending measurably on x. If additionally L is the generator of a conservative

Feller semigroup, then the term c(x) vanishes.

In the above, note that for a fixed x ∈ Rd, (b(x), G(x), ν(x, ·)) is a Lévy

triplet in the sense that b(x) ∈ Rd is the drift coefficient, G(x) ∈ Rd×d is the

diffusion coefficient and ν(x, ·) ∈ M+(Rd \ {0}) is the Lévy jump measure.

The term c(x) is the killing rate of the associated process, and if it is present,

the associated process is a sub-Markov process (because the measure in the

representation (2.1.1) will be a sub-probability measure). The operator L

(2.1.2) (with vanishing c) is a pseudo-differential operator, with symbol

ψ(x, ξ) =
1

2
ξ ·G(x)ξ − ib(x) · ξ −

∫
Rd\{0}

(
eiξ·x − 1− iy · ξ1B1(y)

)
ν(x, dy).

The resolvent (or λ-potential) of a Feller semigroup Tt generated by an operator

(L,D(L)) is defined as the Laplace transform of the semigroup,

Rλf(x) = (λ− L)−1f(x) =

∫ ∞
0

e−λsTsf(x) ds.

The image of the resolvent operator (of the semigroup Tt) coincides with the

domain of the generator D(L). Note that for a Feller process with transition

probabilities ps(x, dy), the resolvent operator can be written as

Rλf(x) =

∫ ∞
0

e−λsEf(Xx(s)) ds

=

∫ ∞
0

∫
Rd
e−λsf(y) ps(x, dy) ds

=

∫
Rd
f(y)Uλ(x, dy),

where the integral kernel Uλ(x, ·) is the λ-potential measure of the process

Xx(t). The potential operator (i.e, the 0-potential operator) is given by

R0f(x) = E
∫ ∞

0

f(Xx(s)) ds,

8



whenever it exists. The potential operator is in general unbounded, however

when it is bounded on the Banach space B, it follows that R0 : B → D(L) is a

bijection and LR0g = −g, see Dynkin (1965, Theorem 1.1’).

2.2 Stable processes

A particularly important class of Lévy processes for us are those that are α-stable

processes1, whose basic properties we recall now. Our standard references for

stable processes are Zolotarev (1986) and Samorodnitsky and Taqqu (1994). A

random variable X is said to have a stable distribution if there are parameters2

0 < α ≤ 2, σ ≥ 0, −1 ≤ γ ≤ 1 and µ ∈ R such that its characteristic function

has the following form

φ(y) := E[eiyX ] = exp
{
−σα|y|α(1− iγ(sign y) tan

πα

2
) + iµy

}
.

In which case we write X ∼ Wα(σ, γ, µ). The parameter σ is the scale, γ the

skewness and µ is the location parameter of the distribution. Of particular

interest to us are the random variables which are totally positively skewed (γ =

1), centred (µ = 0) and are stable of order α ∈ (0, 1). Such random variables

are called stable subordinators. A Lévy process (X(s))s≥0 is a standard α-stable

Lévy process if X(s)−X(t) ∼ Wα((s− t)1/α, γ, 0) for any 0 ≤ t < s <∞ and

for some 0 < α ≤ 2, −1 ≤ γ ≤ 1.

The transition density of an increasing α-stable Lévy subordinator

corresponding to the characteristic function φ, which we denote by p+α(t, x)

(i.e, γ = 1, σ = t
1
α and µ = 0), is given by the following Fourier transform:

p+α(t, x) =
1

2π

∫
R

exp

{
−ixy − t|y|α exp

{
iπ

2
α sgn y

}}
dy

=
1

π
<
∫ ∞

0

exp

{
−ixy − tyα exp

{
iπ

2
α

}}
dy, (2.2.1)

where <(z) is the real part of z ∈ C. Similarly, the transition density of a

1also sometimes called α-stable Lévy motions
2We exclude the case α = 1 here for simplicity as this special case, which involves

logarithmic behaviour, does not come up in the following chapters.
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decreasing α-stable Lévy subordinator is given by

p−α(t, x) =
1

π
<
∫ ∞

0

exp

{
−ixy − tyα exp

{
−iπ

2
α

}}
dy.

Remark 1. From the analytical point of view, the functions p±α(t, x) for

α ∈ (0, 1) are the Green’s functions of the left and right fractional derivatives

(cf. (3.1.1)). Thus p±α(t, x) solves

∂tp±α(t, x) = −Dα
±p±α(t, x), t ≥ 0, p±α(0, x) = δ(x).

For this reason we may write Gα(t, x) sometimes instead of pα(t, x), and when

we omit the ± sign, we usually mean p+α(t, x).

The function pα(t, x) has the following scaling property,

pα(t, x) = t−
1
αpα(1, t−

1
αx),

and for this reason we write pα(1, z) := wα(z), which we use throughout the

thesis.

For α ∈ (0, 2), the characteristic function of a symmetric stable distribu-

tion in Rd (up to a shift) has the form

φα(p) = exp

{
−|p|α

∫
Sd−1

|(p/|p|, s)|αµ(ds)

}
, (2.2.2)

where the (finite Borel) measure µ on Sd−1 is called the spectral measure, see

Samorodnitsky and Taqqu (1994, Theorem 2.3.1). Let Sµ be the function on

Sd−1 given by

Sµ(p) =

∫
Sd−1

|(p, s)|αµ(ds), (2.2.3)

so that

ψα(p) := − log φα(p) = |p|αSµ(p/|p|), p ∈ Rd. (2.2.4)

Note that ψα is the symbol of a pseudo-differential operator Ψα(−i∇) which

we will study later. When µ is the uniform measure on Sd−1 the operator

Ψα(−i∇) is just the fractional Laplacian −(−∆)
α
2 with symbol ψα(ξ) = |ξ|α,

which generates a symmetric α-stable Lévy process in Rd.
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2.3 Estimates

For a domain D ⊂ Rd, the notation f(x) � g(x) in D means that there exists

constants C, c > 0 such that f satisfies the following two-sided estimate,

cg(x) ≤ f(x) ≤ Cg(x), ∀x ∈ D,

The notation f(x) ∼ g(x) for x→∞ means that

f(x)

g(x)
→ 1, as x→∞.

Then for each M > 0 there exists a constant C > 0 such that

C−1g(x) ≤ f(x) ≤ Cg(x), x ∈ (M,∞).

Similarly, the notation f(x) ∼ g(x) for x→ 0 means

f(x)

g(x)
→ 1, as x→ 0.

Then for each m > 0 there exists a c > 0 such that

c−1g(x) ≤ f(x) ≤ cg(x), x ∈ (0,m).

If both f and g on R+ are positive, bounded and satisfy f(x) ∼ g(x) for x→∞
(resp. x→ 0), then f(x) � g(x) in (M,∞) for any M > 0 (resp. in (0,m) for

any m <∞). See Bruijn (1981) for more details on asymptotic analysis.

Aronson estimates

An operator H = ∂t−L, where L = {aij(t, x)∂xi∂xju+bi(t, x)∂xiu+c(t, x)u}, is

said to be uniformly parabolic if the operator L is elliptic (see (2.3.4)) for each

(t, x) ∈ (0, T ]× Rd for some fixed T > 0. Let Z(t, x; s, ξ) be the fundamental

solution of the Cauchy problem for the uniformly parabolic equations

∂tu−{aij(t, x)∂xi∂xju+bi(t, x)∂xiu+c(t, x)u} = 0, u(0, x) = δ(x−ξ). (2.3.1)
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Under the assumption that the coefficients are bounded and uniformly Hölder

continuous in x defined on (0, T ]× Rd for some fixed T > 0, the fundamental

solutions Z are known to satisfy the following two-sided estimates, see for

example Porper and Èidel’man (1984),

Z(t, x; s, ξ) � (s− t)−d/2 exp

{
−c(x− ξ)2

s− t

}
. (2.3.2)

Remark 2. Let us comment on the link between fundamental solutions and

Feller processes. The spatial operator in (2.3.1) generates a diffusion process in

Rd, whose transition function is given by p(s− t, x, dy) = Z(t, x; s, dy) and the

corresponding transition semigroup Tsf(x) is the integral operator with integral

kernel Z(0, x; s, dy).

On the other hand, Aronson (Aronson, 1967) obtained global (i.e, for all

t > 0) two-sided estimates for the fundamental solution (or Green’s function)

G(t, x, y) of the divergence equation

∂tu = ∇ · (a(x)∇u). (2.3.3)

Assuming that the coefficients a(x) = (aij(x))1≤i,j≤d are continuous, symmetric

and uniformly elliptic, i.e. there exists µ ≥ 1 such that

µ−1|ξ|2 ≤ aij(x)ξiξj ≤ µ|ξ|2, for all ξ ∈ Rd, (2.3.4)

then there exists a constant C such that for (t, x, y) ∈ (0,∞)× Rd × Rd,

G(t, x, y) � t−d/2 exp

{
−C |x− y|

2

t

}
. (2.3.5)

We call the estimates (2.3.2) and (2.3.5) the local and global Aronson estimates

respectively. From the probabilistic point of view, Aronsons estimates show

that (non-degenerate) diffusion processes, whose generators are of the form

Lu = ∇ · (a(x)∇u) 3, are comparable to standard Brownian motion in the

sense that their transition densities are comparable. From the analytical point

of view, Aronson estimates show that the fundamental solution to second order

uniformly elliptic PDE’s are estimated above and below by the fundamental

3or more generally the spatial operator in (2.3.1)
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solution to the standard heat equation

∂tu =
1

2
∆u.

Stable and stable-like estimates

Next we recall the estimates for the fundamental solution to the pseudo-

differential evolution,

∂tu = −Ψα(−i∇)u, (2.3.6)

where Ψα is a pseudo-differential operator which is homogeneous of order

α ∈ (0, 2). That is, the symbol of Ψα is of the form

ψα(p) = |p|αSµ(p/|p|), p ∈ Rd,

where Sµ(p) is given by

Sµ(p) =

∫
Sd−1

|(p, s)|αµ(ds),

and µ is called the spectral measure (cf. 2.2.4). The operator Ψα is the generator

of an α-stable process which lives on Rd, with characteristic exponent ψα. See

for example Kolokoltsov (2019a, Theorem 4.5.1) or Eidelman, Ivasyshen, et al.

(2004) for the following estimates. Assuming that

• The function Sµ belongs to Cd+1+[α](Sd−1),

• The spectral measure µ has a density which is strictly positive,

• α ∈ (0, 2),

then the Green’s function Gψα(t, x − y) of the evolution (2.3.6) satisfies the

following two-sided estimates for (t, x, y) ∈ (0,∞)× Rd × Rd,

Gψα(t, x− y) � min

(
t

|x− y|d+α
, t−

d
α

)
. (2.3.7)

Note that the restriction α ∈ (0, 2) and the positivity of the density of the

spectral measure is required for the lower bound of Gψα - the upper bound still

holds if we drop the strict positivity of the density µ and take any α > 0.
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If additionally Sµ is (d+ 1 + [α] + l)-times continuously differentiable,

then Gψα(t, x) is l-times continuously differentiable in x and for (t, x, y) ∈
(0,∞)× Rd × Rd,∣∣∣∣ ∂k

∂xi1 · · · ∂xik
Gψα(t, x− y)

∣∣∣∣ ≤ C min

(
t

|x− y|d+α+k
, t−(d+k)/α

)
, (2.3.8)

for all k ≤ l and all indicies i1, · · · , ik.
Next we have the case when Ψα may have variable coefficients, which

are known as stable-like operators. Let Gψα,x denote the fundamental solution

to the pseudo-differential evolution equation

∂tu = −Ψα(x,−i∇)u,

with homogeneous symbol ψα(x, p) = |p|αSµ(x, p/|p|), where

Sµ(x, p) =

∫
Sd−1

|(p, s)|αµ(x, ds).

Theorem 2.3.1. Assume that Sµ(x, p) is a γ-Hölder continuous function in the

variable x taking values in a compact subset of (0,∞) and γ ∈ (0, 1]. Assume

further that for all x ∈ Rd, µ has a strictly positive density. Then for some fixed

T > 0, there exists a constant C > 0 such that for t ∈ (0, T ) and x, y ∈ Rd,

1

C
Gψα(t, x− y) ≤ Gψα,x(t, x, y) ≤ CGψα(t, x− y).

What this means is that the global in time estimates (4.2.17) for the

Green’s function Gψα , also serve as a small-time estimate for the Green’s

function Gψα,x. Indeed one would hope that operators with variable coefficients

can be approximated by the method of freezing coefficients. So we have the

following small-time estimate for t ∈ (0, T ), x, y ∈ Rd

1

C
min

(
t

|x− y|d+α
, t−

d
α

)
≤ Gψα,x(t, x, y) ≤ C min

(
t

|x− y|d+α
, t−

d
α

)
,

(2.3.9)

for some fixed 0 < T <∞. We also have the following estimates for the spatial

derivatives of the Gψα,x, see Kolokoltsov (2019a) (Theorem 5.8.3).

Theorem 2.3.2. Let α > 0, and denote by l the maximal integer less than
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α. Assume that µ ≥ µ0 > 0, for some positive number µ0, and for all p

Sµ(x, p) is q-times differentiable in x and each of these derivatives are, for all

x, (d+ 1 + (l + q)(α + 1))-times continuously differentiable in p. Then for a

fixed T > 0 and any k ≤ l,∣∣∣∣ ∂k

∂xi1 · · · ∂xik
Gψα,x(t, x, y)

∣∣∣∣ ≤ C min

(
t

|x− y|d+k+α
, t−

(d+k)
α

)
(2.3.10)

for (t, x, y) ∈ (0, T )× Rd × Rd.

Stable subordinators

For β ∈ (0, 1) a β-stable subordinator Xβ
t (s) is a β-stable process with transition

density pβ(s, x) of the form (2.2.1). We define the following first passage times,

τβ0 (t) := inf{s > 0 : Xβ
0 (s) ≥ t}, t ∈ R+.

Note that this is the same as the process t−Xβ
0 (s) exiting the interval R+. Recall

that the transition density of Xβ
t (s) can be written as pβ(s, x) = s−

1
βwβ(s−

1
β x)

where wβ(·) is the density of a standard β-stable random variable Wβ(1, 1, 0).

For β ∈ (0, 1) the density wβ(r) has the following asymptotic behaviour in a

neighbourhood of 0, Uchaikin and Zolotarev (1999, Theorem 5.4.1)

wβ(r) ∼ Cβr
− 2−β

2(1−β) exp{−cβr−
β

1−β } := fβ(r), r → 0, (2.3.11)

and in a neighbourhood of ∞,

wβ(r) ∼ C̃βr
−1−β, r →∞.

Remark 3. One can see (2.3.11) directly from (2.2.1) by applying the saddle

point method of Proposition 2.4.1.

Due to the positivity of wβ(x), we can combine these behaviours so that

there exists constants C, C̃ > 0 such that

wβ(r) � C1{r<1}fβ(r) + C̃1{r≥1}r
−1−β. (2.3.12)

We will also be using the asymptotic behaviour of the density of τβ0 (t), which
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we denote by µβ0,t(s). This density is given by

µβ0,t(s) =
t

β
s−1− 1

βwβ(ts−
1
β ), (2.3.13)

see Meerschaert and Scheffler (2004, Corollary 3.1). Thus we have

Lemma 2.3.3. For β ∈ (0, 1) the density µβ0,t(s) of τβ0 has the following

asymptotic behaviour at 0 and ∞,

tβµβ0,t(t
βs) ∼

 cβ, s→ 0,

cβs
−1+ 1

2(1−β) exp{−cs
1

1−β }, s→∞.

for some constants cβ > 0.

Proof. Since wβ(r) ∼ r−1−β as r →∞, then wβ(r−
1
β ) ∼ r1+ 1

β as r → 0. Thus

using (2.3.13), we have for s→ 0,

tβµβ0 (tβs) = cβs
−1− 1

βwβ(s−
1
β ) ∼ cβs

−1− 1
β s1+ 1

β = cβ.

Using (2.3.11), note that wβ(r−
1
β ) ∼ fβ(r−

1
β ) for r →∞. Thus for s→∞,

tβµβ0 (tβs) = cβs
−1− 1

βwβ(s−
1
β ) ∼ cβs

−1− 1
β fβ(s−

1
β )

= cβs
−1+ 1

2(1−β) exp
{
−cβs

1
1−β

}
,

as claimed.

2.4 Asymptotic Methods

We describe here some methods from asymptotic analysis, namely variants of

the Laplace method and its application to the incomplete gamma function. Our

main references for asymptotic analysis are Bruijn (1981), Fedoryuk (1987),

and Murray (1984).
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Laplace method

The main goal of the Laplace method is to estimate integrals of the form∫ b

a

g(x) exp{−λh(x)} dx.

As a motivating example, let a = 1, b =∞, h(x) = x and g(x) = xN for some

integer N > 04. In this case, one could integrate by parts N times, until the

xN term vanishes, and one is left with a final integral∫ ∞
1

exp{−λx} dx = λ−1 exp{−λ},

so that, for sufficiently large λ,∫ ∞
1

xN exp{−λx} dx = O(1)λ−1 exp{−λ}+O(λ−N−1 exp{−λ}).

Now the main idea is that largest contribution to the asymptotic behaviour of∫ b

a

g(x) exp{−λh(x)} dx, (2.4.1)

comes from a neighbourhood around the point (or neighbourhoods around the

points) at which the function h(x) in the exponent attains its minimum value.

Outside this neighbourhood the contribution is exponentially small, and so

when one proves asymptotic formulas using Laplace methods, the integrals are

split up into the neighbourhood around which the major contribution occurs

(or around each such neighbourhood, if −h(x) is not unimodal) and the regions

for which the approximation error is exponentially small. Although we focus

on integrals over some interval (a,∞), the point is that extending the interval

only introduces exponentially small errors and so the value of the integral over

a larger interval is essentially the same. Let us assume that in 2.4.1 h is a real

continuous function which attains a minimum at the boundary point b, that

h′(b) exists and h′(b) > 0. Moreover assume that h(x) > h(b) (for x > b) and

h(x)→∞ as x→∞. Then we have the following asymptotic formula, see for

4This is just the upper incomplete gamma function, which we look at next.
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example Bruijn (1981, Sections 4.2, 4.3)∫ ∞
b

g(x) exp{−λh(x)} dx ∼ g(b)(λh′(b))−1 exp{−λh(b)}, λ→∞. (2.4.2)

On the other hand, if the function h has a minimum on the interior of the

interval (b,∞), say at the point b̃ ∈ (b,∞). Finally, assume that the derivative

h′(x) exists in some neighbourhood of x = b̃, that h′′(b̃) exists and that

h′′(b̃) > 0. Then

∫ ∞
b

g(x) exp{−λh(x)} dx ∼ g(b̃)

√
2π

λh′′(b̃)
exp{−λh(b̃)}, λ→∞. (2.4.3)

Using these formulas, we now prove an asymptotic formula for a particular

type of integrals which comes up in our estimates in later chapters.

Proposition 2.4.1. Let a > 0, N ∈ R, c > 0 and Ω ≥ 1. Then the following

asymptotic formula holds as Ω→∞,∫ 1

0

wN exp{−Ωw − cw−a} dw ∼ C1(a,N, c)Ω−
2(N+1)+a

2(a+1) exp
{
−C2(c, a)Ω

a
a+1

}
,

where C1(a,N, c) = (ac)
2(N+1)−1
2(a+1)

√
2π
a+1

, and C2(c, a) = (ac)
1
a+1 [1 + a−1].

Proof. Define

J(Ω) :=

∫ 1

0

wN exp{−wΩ− cw−a} dw,

and let h(w) = −wΩ − cw−a. Differentiating h with respect to w, one finds

the maximum of h at

w = w∗ :=

(
Ω

ac

)− 1
a+1

.

Now the trick is to make the substitution w = w∗s in the integral J(Ω),

to obtain

J(Ω) = wN+1
∗

∫ w−1
∗

0

sN exp{−w∗sΩ− c(w∗s)−a} ds

= wN+1
∗

∫ w−1
∗

0

sN exp{−(Ωaac)
1
a+1 [s+ a−1s−a]} ds.

Now we are in a position to apply the asymptotic formula (2.4.3), with
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g(s) = sN , h(s) = s + a−1s−a and λ = (Ωaac)
1
a+1 . For this we need some

derivatives of h,

h′(s) = 1− s−a−1,

h′′(s) = (a+ 1)s−a−2,

thus h has a minimum at s = 1 ∈ (0, w−1
∗ ). Finally applying (2.4.3) we have

J(Ω) ∼
(

Ω

ac

)−N+1
a+1

√
2π

(Ωaac)
1
a+1 (a+ 1)

exp{−(Ωaac)
1
a+1 [1 + a−1]}

= C1(a,N, c)Ω−
2(N+1)+a

2(a+1) exp
{
−C2(c, a)Ω

a
a+1

}
,

as required.

We further have the slight extension of the above calculations.

Corollary 2.4.2. Let a, b > 1, n ∈ R, and c := min(a, b). Then as ΩA−1 →∞,∫ ∞
1

zn exp{−Ωz−1−A−aza−zb} dz ∼ C1Ω
2(n+1)−c
2(c+1) A

2c(n+1)+c
2(c+1) exp

{
−C2

(
ΩA−1

) c
c+1

}
.

Proof. This formula is a consequence of the previous proposition after esti-

mating the terms in the exponential:∫ ∞
1

zn exp
{
−Ωz−1 − A−aza − zb

}
dz ∼

∫ ∞
1

zn exp
{
−Ωz−1 − A−czc − zc

}
dz

∼
∫ ∞

1

zn exp
{
−Ωz−1 − CA−czc

}
dz.

After a change of variables, the formula follows from an application of the

previous Proposition.

Incomplete Gamma function

Here we describe the asymptotic behaviour of the upper incomplete gamma

function, which is defined by

Γ(s, A) =

∫ ∞
A

ys−1 exp{−y} dy.
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Equivalently after a change of variables y = Aw,

Γ(s, A) = As
∫ ∞

1

ws−1 exp{−Aw} dw.

We have the following asymptotic behaviour of Γ(s, A) for A→ 0,

Γ(s, A) ∼


−s−1As, s < 0,

(| logA|+ 1), s = 0,

1− s−sAs, s > 0.

Thus, for A ≤ 1,

A−sΓ(s, A) � Cs


1, s < 0,

(| logA|+ 1), s = 0,

A−s, s > 0.

For A → ∞, we use the Laplace method (2.4.2) with h(x) = x, b = 1,

g(x) = xs−1,

A−sΓ(s, A) ∼ A−1 exp{−A}, A→∞.
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Chapter 3

Caputo-Dzherbashyan and

Riemann-Liouville type

operators

In this chapter we first discuss the operators arising in standard fractional calcu-

lus (or ’classical’ fractional calculus, by now), mentioning also the probabilistic

interpretation along the way. This will then take us to the naturally defined

generalised fractional operators motivated by the probabilistic interpretation

of the classical operators. We then discuss the various extensions of these

operators, whose foundations were laid in Kolokoltsov (2015). In particular

we discuss various multidimensional extensions, while keeping in mind the

probabilistic meaning of such operators.

3.1 Standard fractional derivatives

For a function f ∈ C([a, b]), the iterated Riemann integral of order n ∈ N is

given by the formula

Ina+f(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t) dt, x ∈ [a, b].

From this a natural definition of the (left) fractional integral of order β > 0 is

given by:

Iβa+f(x) =
1

Γ(β)

∫ x

a

(x− t)β−1f(t) dt.
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The integral Iβa+ is called the left Riemann-Liouville (RL) fractional integral.

Now we are presented with two ways of defining a corresponding notion of

fractional derivatives, either by differentiating the fractional integral of a

function, or by taking the fractional integral of the derivative of a function.

Definition 3.1.1. For n ∈ N+ and β ∈ (n, n+ 1), the (left) Riemann-Liouville

fractional derivative of a function f ∈ Cn+1([a, b]) is given by

Dβ
a+f(x) =

dn+1

dxn+1
In+1−β
a+ f(x) =

1

Γ(n+ 1− β)

dn+1

dxn+1

∫ x

a

(x− t)n−βf(t) dt,

for x > a. The (left) Caputo-Dzherbashyan (CD) fractional derivative is given

by

Dβ
a+∗f(x) = In+1−β

a+

dn+1

dxn+1
f(x) =

1

Γ(n+ 1− β)

∫ x

a

(x− t)n−β
[
dn+1

dtn+1
f

]
(t) dt,

for x > a.

In this thesis we are mostly interested in the fractional derivatives of

order β ∈ (0, 1), since for such β they represent the generators of (spectrally

one-sided) Lévy process.

Remark 4. Also of interest to probabilists are derivatives of order β ∈ (1, 2),

which represent generators of (two-sided) β-stable processes. We do not study

their generalisations in this thesis. One also defines

Notice that the RL fractional integral Iβa+ is obtained from Iβ−∞+ by

restricting its action to the space Ckill(−∞,a](R),

Iβa+f(x) = Iβ−∞+f(x), f ∈ Ckill(−∞,a](R).

For β ∈ (0, 1), after integrating by parts (here we need f to be β-Hölder

continuous) one can write the RL and CD derivatives as

Dβ
a+f(x) =

1

Γ(−β)

∫ x−a

0

(f(x−y)−f(x))y−1−β dy+
f(x)

Γ(1− β)(x− a)β
, x > a,

and

Dβ
a+∗f(x) =

1

Γ(−β)

∫ x−a

0

(f(x−y)−f(x))y−1−β dy+
f(x)− f(a)

Γ(1− β)(x− a)β
, x > a.
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The right versions of RL and CD derivatives of order β ∈ (0, 1) can be

analogously defined by

Dβ
a−f(x) =

1

Γ(−β)

∫ a−x

0

(f(x+y)−f(x))y−1−β dy+
f(x)

Γ(1− β)(a− x)β
, x < a,

and

Dβ
a−∗f(x) =

1

Γ(−β)

∫ a−x

0

(f(x+y)−f(x))y−1−β dy+
f(x)− f(a)

Γ(1− β)(a− x)β
, x < a.

Comparing the derivatives Dβ
a+ and Dβ

a+∗ with (2.1.2), we note that −Dβ
a+

generates a sub-Markov Feller process (which is killed upon crossing a) with

Lévy measure ν(y) = −y−1−β/(Γ(−β)) and killing rate −1/(Γ(1− β)(x− a)β).

On the other hand −Dβ
a+∗ generates a decreasing Feller process which is

absorbed upon crossing a, see for example Kolokoltsov (2015, Section 3.1)

or Böttcher et al. (2014) for the probabilistic interpretation of fractional

derivatives. Notice that for smooth bounded integrable functions, the RL and

CD derivatives coincide for a = −∞, β ∈ (0, 1). We call their common value

the fractional derivative in generator form1,

Dβ
+f(x) := Dβ

−∞+f(x) = Dβ
−∞+∗f(x) =

1

Γ(−β)

∫ ∞
0

(f(x−y)−f(x))y−1−β dy.

(3.1.1)

From the theory of Lévy processes in Section 2.1, we recognise −Dβ
+ as the

generator of a decreasing β-stable Lévy process with Lévy measure ν(y) =

−y−1−β/(Γ(−β)) and thus generates a strongly continuous semigroup of posi-

tivity preserving contractions on C∞(R).

It is clear from the definition that the composition Dβ
+ ◦ I

β
−∞ acts like

the identity operator on functions with compact support. Thus Iβ−∞ represents

the potential operator of the strongly continuous semigroup of linear operators

in C∞(R) which is generated by −Dβ
+. Note that Iβ−∞ is unbounded in C∞(R),

but becomes bounded when restricted to Ckill(−∞,a](R). That is,

Rλ = (λ+Dβ
+)−1 → Iβ−∞, as λ→ 0. (3.1.2)

1also known as the Marchaud derivative. This is the left derivative, with the right version
denoted by Dβ

− which is given by changing the variable of integration y 7→ −y. This also

applies to Dβ
a− and Dβ

a−∗.
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Thus the operator Iβa+ is the potential operator of the semigroup generated

by −Dβ
+ restricted to the space Ckill(−∞,a](R). For a background on potential

operators and measures, see Schilling et al. (2012) or Van Den Berg and Forst

(2012) (or from a probabilistic point of view, Feller (2008)). We can also obtain

a path integral representation of Iβa+. For this we need Dynkin’s martingale,

see Dynkin (1965, Theorem 5.1).

Theorem 3.1.2. Let (A,D(A)) be the generator of a Feller process Xx(t).

Then for f ∈ D(A),

f(Xx(t))− f(Xx(0))−
∫ t

0

Af(Xx(s)) ds,

is a martingale.

Assuming that τ is a stopping time such that E[τ ] < ∞, we apply

Doob’s optimal stopping theorem to the above which gives Dynkin’s formula:

for f ∈ D(A),

f(x) = E[f(Xx(τ))]− E
∫ τ

0

g(Xx(s)) ds

where g = Af , and τ is the first time Xx(t) exits an interval (a, x′] for some

x′ > x. The solution to the boundary value problem

Dβ
a+∗f(x) = Dβ

a+f(x) = Dβ
+f(x) = g(x), x ∈ (a,∞],

f(x) = 0, x ∈ (−∞, a],

is given by Iβa+g for g ∈ Ckill(−∞,a](R). Thus, seeing as −Dβ
+ is the generator

of Feller process Xβ
x (t), we use Dynkin’s formula to get

f(x) = E[f(Xβ
x (τa))] + E

∫ τa

0

Dβf(Xβ
x (s)) ds

= E
∫ τa

0

g(Xβ
x (s)) ds.

A final interpretation of Iβa+ is given by noting that the fundamental solution

(supported on R+) of Dβ
+ is given by Uβ(z) = zβ−1

+ /Γ(β), which is precisely

the integral kernel of Iβ−∞+. These three facets of the operator Iβa+ lead us

naturally to the generalised fractional operators.

Finally, we recall one of the most important tools from fractional calculus
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- the Mittag-Leffler function. It is defined by the power series

Eβ(z) =
∞∑
k=0

zk

Γ(kβ + 1)
, z ∈ C, β > 0,

where Γ is the Gamma function:

Γ(z) =

∫ ∞
0

xz−1e−x dx, <(z) > 0.

The fundamental importance of the Mittag-Leffler function is due to the fact

that solutions of the simplest fractional linear equations of the form

Dβ
a+∗f(x) = −λf(x) + g(x), f(a) = fa, x > a,

for β ∈ (0, 1), can be given by

f(x) = Eβ(−λ(x− a)β)fa + β

∫ x−a

0

g(x− y)yβ−1 d

dy
Eβ(−λyβ) dy,

see Diethelm (2010, Theorem 7.2). Another important fact about Mittag-Leffler

functions is that they can be represented in terms of the transition densities of

β-stable subordinators,

Eβ(s) =
1

β

∫ ∞
0

esxx−1− 1
βwβ(x−

1
β ) dx, β ∈ (0, 1), s ∈ C.

We return to this remarkably important formula in the next section.

3.2 Generalised fractional operators

In view of the fractional derivative in generator form Dβ
+, a natural generalisa-

tion from the probabilistic point of view is to replace the kernel y−1−β/(−Γ(−β))

by some general Lévy-type kernel ν(t, dy). That is, consider the operator D
(ν)
+

on R defined by:

D
(ν)
+ f(t) = −

∫ ∞
0

(f(t− r)− f(t))ν(t, dr).

We will always assume that ν has a density ν(t, r) which satisfies:
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Assumption 3.2.1 ((L0)). ν(t, s) is continuous as a function of both variables,

and is continuously differentiable in the first. Furthermore,

sup
t

∫
(1 ∧ r)ν(t, r) dr <∞, sup

t

∫
(1 ∧ r)

∣∣∣∣ ∂∂tν(t, r)

∣∣∣∣ dr <∞,

and for any ε > 0 there exists a K > 0 such that

sup
t

∫
R\(−K,K)

ν(t, s) ds < ε, sup
t

∫
R\(−K,K)

∣∣∣∣ ∂∂tν(t, r)

∣∣∣∣ dr < ε,

sup
t

∫
(−1/K,1/K)

|r|ν(t, r) dr < ε.

Under the assumption (L0), the operator −D(ν)
+ generates a conservative

Feller semigroup Tt in C∞(R) with invariant core C1
∞(R), see Kolokoltsov

(2019a). We may occasionally also make the following assumptions.

Assumption 3.2.2 ((L1)). There exists ε > 0 and δ > 0 such that ν(t, r) ≥
δ > 0 for all t and all |r| < ε.

Assumption 3.2.3 ((L2)). The transition probabilities of the process X+(ν)

are absolutely continuous with respect to the Lebesgue measure, and we denote

by p+(ν)(s, r, y) the transition densities.

Assumption 3.2.4 ((L3)). The transition density p+(ν)(s, r, y) is continuously

differentiable in s.

The classical CD derivative Dβ
a+∗ is obtained from Dβ

+ by the restriction

of its action to the space Cconst(−∞,a](R) considered as the subspace of C(R)

by extending their values as constants to the left of a, see Kolokoltsov (2019a,

Proposition 1.8.2). Then looking for a generalised CD derivative arising from

D
(ν)
+ we define

D
(ν)
a+∗f(t) = −

∫ t−a

0

(f(t− s)− f(t))ν(t, s) ds− (f(a)− f(t))

∫ ∞
t−a

ν(t, s) ds.

Analogously, the generalised RL derivative arising from D
(ν)
+ is obtained by the

restriction of its action to the space Ckill(−∞,a](R) considered as the subspace
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of C(R) by extending their values as 0 to the left of a:

D
(ν)
a+f(t) = −

∫ t−a

0

(f(t− s)− f(s))ν(t, s) ds+ f(t)

∫ ∞
t−a

ν(t, s) ds.

Under assumption (L0), the operator D
(ν)
a+∗ (respectively D

(ν)
a+) generates a Feller

semigroup on Cconst(−∞,a](R) (resp. a sub-Feller semigroup on Ckill(−∞,a](R)).

The corresponding generalised fractional integrals arising from the generalised

fractional derivative D
(ν)
+ can be defined in a few different ways depending on

which point of view one chooses: probability, semigroup theory or generalised

functions. In view of (3.1.2) and the discussion thereafter, the operator Iβ−∞+ is

the potential operator of the semigroup generated by −Dβ
+. Thus we define the

generalised fractional integral Iνa+ as the potential operator of the semigroup

generated by −D(ν)
+ restricted to the space Ckill(a)([a,∞)).

Let us denote by (T νt )t≥0 the semigroup generated by the operator −D(ν)
+ .

Then for f ∈ Ckill(a)(R)∩C∞(R), the potential operator U (ν) of the semigroup

T νt is given by

U (ν)f(t) =

∫ ∞
0

T νr f(t)dr =

∫ ∞
0

∫ ∞
a

f(s)p(ν)(r, t, ds) dr

=

∫ ∞
0

∫ t

a

f(s)p(ν)(r, t, ds) dr

=

∫ t−a

0

f(t− s′)
(∫ ∞

0

p(ν)(r, t, ds′)dr

)
,

where p(ν)(r, t, ds) are the (transformed) transition probabilities of the process

generated by −D(ν)
+ . The potential measure is defined as the integral kernel of

the potential operator, and by an abuse of notation, we denote this measure

by U (ν)(t, ds). Thus the generalised fractional integral I
(ν)
a+ is given by

I
(ν)
a+f(t) =

∫ t−a

0

f(t− s)U (ν)(t, ds)

where the potential measure U (ν)(t, ds) is equal to the vague limit

U (ν)(t,M) =

∫ ∞
0

p(ν)(r, t,M)dr,

of the measures
∫ K

0
p(ν)(r, t, ·)dr, K →∞ (see Schilling et al. (2012) (p. 63))
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for any compact set M . Furthermore the λ-potential measure is defined by

U
(ν)
λ (t,M) =

∫ ∞
0

e−λrp(ν)(r, t,M)dr,

so that if λ > 0 and g ∈ Ckill(−∞,a](R) ∩ C∞(R), the convolution (U
(ν)
λ ? g)(t),

which is given by

(U
(ν)
λ ? g)(t) =

∫ t−a

0

g(t− s)
∫ ∞

0

e−λrp(ν)(r, t, ds)dr, (3.2.1)

is the resolvent operator of the semigroup generated by −D(ν)
+ restricted to

Ckill(−∞,a](R). That is, f(x) = (U
(ν)
λ ? g)(x) for g ∈ Ckill(−∞,a](R) ∩ C∞(R) is

the classic solution to the equation

D
(ν)
+ f = D

(ν)
a+f = D

(ν)
a+∗f = −λf + g.

This also holds for λ = 0, and so the potential operator with kernel

U (ν)(t, dy),

(U (ν) ? g)(x) = I
(ν)
a+g(x),

represents the classical solution to the equation

D
(ν)
a+∗f = g,

on Ckill(−∞,a](R).

Example 3.2.5. For the case ν(t, dy) = −1/[Γ(−β)y1+β]dy, (3.2.1) says that

f(t) =

∫ t−a

0

g(t− s)
∫ ∞

0

e−λrpβ(r, s)dsdr,

where pβ(r, s) are the transition densities of a β-stable subordinator, is the

solution to the linear fractional equation

Dβ
+f(t) = −λf(t) + g(t), f(a) = 0.

On the other hand, it is well known that the solution to such linear
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fractional equations are given by

f(t) = β

∫ t

a

g(z)(t− z)β−1E
′

β(−λ(t− z)β)dz

= β

∫ t−a

0

g(t− y)yβ−1E
′

β(−λyβ)dy,

where Eβ(z) is the Mittag-Leffler function

Eβ(z) =
∞∑
k=0

zk

Γ(kβ + 1)
, z ∈ C. (3.2.2)

Thus we have

Uβ
λ (t) =

∫ ∞
0

e−λrpβ(r, t)dr = βtβ−1E
′

β(−λtβ),

which is equivalent to the Zolotarev-Pollard formula for the Mittag-Leffler

function in terms of the transition densities of stable subordinators,

Eβ(s) =
1

β

∫ ∞
0

esxx−1−1/βpβ(1, x−1/β) dx. (3.2.3)

This representation of the Mittag-Leffler function is the key starting

point for all estimates of the Green’s function associated to fractional evolution

equations that we obtain in later chapters.

As noted in Kolokoltsov (2017), we can extrapolate from the case

Dβ
0+∗u(t) = −λu(t), λ > 0, u(0) = u0,

to the Banach-valued version

Dβ
0+∗u(t, x) = Lu(t, x), u(0, x) = Y (x),

where L is some operator generating a Feller semigroup. One can expect that

the solution to this equation can be written in terms of an operator-valued

Mittag-Leffler function,

u(t, x) = Eβ
(
Ltβ
)
Y (x), (3.2.4)
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where Eβ(s) are Mittag-Leffler functions defined by (3.2.2). However, this

series representation does not allow one to define Eβ(L) for an unbounded

operator L. In both Kolokoltsov and Veretennikova (2014) and Kolokoltsov

(2017) the authors find that the most convenient way to overcome this difficulty

is to use the formula (3.2.3) for the Mittag-Leffler function. This connection

between Mittag-Leffler functions, Laplace transforms and stable densities is due

to Zolotarev (1957, 1961, 1986)—although preliminary versions of this formula

were also noted almost a decade earlier by Pollard (1948). Thus formula (3.2.3)

could be called the Pollard-Zolotarev formula. Notice that if an operator L

generates a Feller semigroup with transition densities G(t, x, y), then

eLt
βzY (·) =

∫
Rd
G(tβz, ·, y)Y (y) dy.

With the help of Fubini’s theorem, the solution (3.2.4) can be written as

u(t, x) = Eβ(tβL)Y (x)

=
1

β

∫ ∞
0

eLt
βzY (x)z−1− 1

βwβ(z−
1
β ) dz

=
1

β

∫ ∞
0

∫
Rd
G(tβz, x, y)Y (y)z−1− 1

βwβ(z−
1
β ) dy dz

=

∫
Rd

(
1

β

∫ ∞
0

G(tβz, x, y)z−1− 1
βwβ(z−

1
β ) dz

)
Y (y) dy

=:

∫
Rd
G(β)(t, x, y)Y (y) dy.

In Chapter 4, we obtain estimates for the Green’s function given by,

G
(β)
L (t, x, y) :=

1

β

∫ ∞
0

GL(tβz, x, y)z−1− 1
βwβ(z−

1
β ) dz, (3.2.5)

where GL(z, x, y) is the Green’s function associated with the spatial operator

L, i.e., the fundamental solution of

∂tu = Lu.
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3.3 Mixed RL and CD-type operators on the

orthant

In this section we look at mixtures of generalised CD and RL derivatives on

the d-dimensional orthant, i.e, on the domain O ⊂ Rd,

O = {(t1, · · · , td) ∈ Rd : ti ≥ 0, i = 1, · · · , d}.

We define also the space

On,d = {(t1, · · · , td) ∈ Rd : ti > 0, i = 1, · · · , n, tj ≥ 0, j = n+ 1, · · · d},

for 0 ≤ n ≤ d with the convention that O0,d = O and Od,d = O \ {0}. In this

section we will use a boldface letter to denote an element living in a subset of

Rd, for example an O-valued process Xr(s) starting from r ∈ O. We denote

by Oi,0 the i-th face of the boundary (at zero) of O, that is for i = 1, · · · , d,

Oi,0 = {t ∈ O; ti = 0}.

Define hi,0(t) to be the projection of Oi,0 onto the subspace Oi ⊂ Rd−1 by

removing the coordinate which is zero, that is, hi,0(t) : Oi,0 7→ Oi,

hi,0(t) = (t1, · · · , ti−1, ti+1, · · · , td). (3.3.1)

Let ν = (ν1, · · · , νd) be a collection of Lévy kernels which each satisfy

the assumptions (L0)-(L3) (thus for i = 1, · · · , d the corresponding CD or

RL type operators generate a Feller process with a continuously differentiable

transition density). Define the operators

D
(ν)
mix =

n∑
i=1

tiD
(νi)
0+ +

d∑
i=n+1

tiD
(νi)
0+∗, 0 ≤ n ≤ d, (3.3.2)

D
(ν)
free =

d∑
i=1

tiD
(νi)
+ .
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We denote by

Xt
0+(ν)∗(s) :=

(
X

0+(ν1)
t1 (s), · · · , X0+(νn)

tn (s), X
0+∗(νn+1)
tn+1

(s), · · · , X0+∗(νd)
td

(s)
)
,

the Feller process generated by the operator −D(ν)
mix, which lives on On,d ∪ {δ}

where δ is a cemetery state. This process is obtained from the process

Xt
+(ν)(s) :=

(
X

+(ν1)
t1 (s), · · ·X+(νn)

tn (s), X
+(νn+1)
tn+1

(s), · · · , X+(νd)
td

(s)
)

which is generated by −D(ν)
free, by either killing it whenever any of the first n

coordinates attempt to cross the boundary points ri = 0, 1 ≤ i ≤ n, or by

stopping it if any of the last d−n coordinates does the same with the boundary

points rj = 0, n+ 1 ≤ j ≤ d.

Remark 5. Since each −Dνi
+ generates an independent Feller process, the

Lie-Trotter theorem implies that −D(ν)
free also generates a Feller process whose

coordinates are independent Feller processes generated by −D(νi)
+ . Note that

Xt
+(ν)(s) is an Rd-valued process.

Let p+(νi)(s, ti, ri) denote the transition density function of the process

X
+(νi)
ti . Due to the independence between the coordinates of the process

Xt
+(ν)(s), its transition density function, denoted by p+(ν)(s, t, r), satisfies

p+(ν)(s, t, r) =
d∏
i=1

p+(νi)(s, ti, ri).

If τ
ti,(νi)
0 is the first exit time from R+ of the process X

+(νi)
ti , then denote the

first exit time via the CD-type boundary by τ̃ = minn+1≤i≤d τ
ti,(νi)
0 , and the

first exit time via the RL-type boundary τ ′ = min1≤j≤n τ
tj ,(νj)
0 . Then the first

exit time of Xt
+(ν)(s) from O is

τ
t,(ν)
0 := min(τ ′, τ̃) (3.3.3)

:= min

(
min

1≤j≤n
τ
tj ,(νj)
0 , min

n+1≤i≤d
τ
ti,(νi)
0

)
Lemma 3.3.1. Let t ∈ On,d for some 1 ≤ n ≤ d. Let ν = (ν1, ν2, · · · , νd) be

a collection of functions such that each νi satisfy assumptions (L0) and (L1).

Then:
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i) The sets Oi,0 for i = 1, · · · d are regular in expectation for both operators

−D
(ν)
0+ and −D

(ν)
0+∗. Moreover, E

[
τ
t,(ν)
0

]
<∞.2

Further assuming that each νi satisfies (L2)-(L3),

ii) If µ
t,(ν)
0 (ds) denotes the law of τ

t,(ν)
0 , then its density function µ

t,(ν)
0 (s) is

given by

µ
t,(ν)
0 (s) =

d∑
i=1

µ
ti,(νi)
0 (s)

∏
j 6=i

∫ tj

0

p+(νj)(s, tj, r) dr, s ≥ 0, (3.3.4)

where µ
ti,(νi)
0 (s) is the density of τ

ti,(νi)
0 .

Proof.

i) The regularity in expectation of the boundary Oi,0 is a consequence of

assumption (L1) and the method of Lyapunov functions. Namely, to show

that the boundary is regular, it is sufficient to find a continuous function f

in a neighbourhood of O such that f is differentiable for x > 0, f(y) = 0

for each y ∈ Oi,0, and for x ∈ (0, c) with some c ∈ O \ {Oi,0} one has

f(x) > 0, −D
(ν)
0+f(x) < 0 (similarly for the CD-type operator). One can

take the function

fω(x) =
d∏
i=1

xωii , ωi ∈ (0, 1) for 1 ≤ i ≤ d.

Clearly fω(y) = 0 for each y ∈ Oi,0 since such a y has a 0 in atleast 1

of the coordinates. For x ∈ O \ {0}, fω(x) > 0 since each coordinate is

non-zero. For x approaching 0 (in any of its coordinates) from the right,

−D
(ν)
0+fω(x) < 0 due to (L1). To show that E[τ

t,(ν)
0 ] < ∞, it suffices to

show that the exit time for each coordinate has finite expectation. For

this, compare each process (X
(νi)
ti (s))s≥0 with a process (ti −X(ν̃)

0 (s))s≥0

where X
(ν̃)
0 (s) is a (non-decreasing) compound Poisson process with Lévy

density ν̃i(dy) = γ1[0,ε](y), where γ and ε are chosen from Assumption

(L1). See for example the comparison principle in Zhang (2000).

2The operators −D(ν)
0+ and −D(ν)

0+∗ correspond to the mixed operator −D(ν)
mix with n = d

and n = 0 respectively
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ii) This follows by differentiating

P[τ
t,(ν)
0 > s] =

d∏
i=1

P[τ
ti,(νi)
0 > s]

with respect to s and using the chain rule:

∂

∂s
P[τ

t,(ν)
0 > s] =

∂

∂s

d∏
i=1

∫ ti

0

p+(νi)(s, ti, r) dr

=

[
d∑
i=1

∂

∂s

∫ ti

0

p+(νi)(s, ti, r) dr

]∏
j 6=i

∫ ti

0

p+(νj)(s, tj, r) dr

=
d∑
i=1

µ
ti,(νi)
0 (s)

∏
1≤j≤d,j 6=i

∫ tj

0

p+(νj)(s, tj, r) dr.

We will use the shorthand (−D(ν)
mix, λ, g, φ) to mean the problem

D
(ν)
mixu(t) = −λu(t) + g(t), in O,

u(t) = φi(hi,0(t)), in Oi,0.

For t ∈ O we denote by Bi(t) the subset of Oi (cf. (3.3.1)) which is defined by

Bi(t) := {r ∈ Oi, rj ≤ hi,0(t), j 6= i}.

Theorem 3.3.2. Let ν = (ν1, ν2, · · · , νd) be a vector such that each νi is a func-

tion satisfying conditions (H0)-(H1). Suppose λ > 0 and φj ∈ Ckill(∂Oj)[Rd−1
+ ]

where n+ 1 ≤ j ≤ d.

1. If g ∈ C[O] satisfies g(ti, ·)|ti=0 ≡ 0 when 0 ≤ i ≤ n and g(·, tj)|tj=0 =

λφj(·) for n+ 1 ≤ j ≤ d, then the mixed problem (−D(ν)
mix, λ, g, φ) has a

unique solution in the domain of the generator given by u = R0+(ν)∗
λ g,

the resolvent operator of the process X
0+(ν)∗
t .

2. For any g ∈ B[O] the mixed linear problem (−D(ν)
mix, λ, g, φ) is well-

posed in the generalized sense and the solution admits the stochastic

representation
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u(t) = E

[∫ τ
t,(ν)
0

0

e−λsg
(
Xt

0+(ν)∗(s)
)

ds

]

+ E

[
d∑

j=n+1

e−λτ
tj ,(νj)

0 φj

(
hj,0

(
X

0+(ν1)
t1

(
τ
tj ,(νj)
0

)
, · · · ,

X
0+∗(νd)
td

(
τ
tj ,(νj)
0

)))
1
{τ̃=τ

tj ,(νj)

0 }

]
Moreover if each νi, i = 1, · · · , d satisfies condition (L2)-(L3), then the

solution has the further representation

u(t) =

∫ t

0

g(t− r)

∫ ∞
0

e−λsp+(ν)(s, t, t− r) ds dr

+
d∑

j=n+1

∫
Bj(t)

φj(hj,0(t)−r)

∫ ∞
0

e−λsµ
tj ,(νj)
0 (s)

d∏
i=1
i 6=j

p+(νi)(s, ti, ti − ri) ds

 dr

(3.3.5)

Proof.

1. Since −D(ν)
mix generates a Feller process, we can apply Theorem 1.1 from

Dynkin (1965). Then if g is a continuous function on O such that

g(ti, ·)|ti=0 ≡ 0, 0 ≤ i ≤ n then the function u(t) = R0+(ν)∗
λ g(t) solves

the mixed equation without any boundary conditions. Also

u(t1, · · · , tn, 0, · · · , 0) = R0+(ν)∗
λ g(t1, · · · , tn, 0, · · · , 0)

= g(t1, · · · , tn, 0, · · · , 0)/λ,

implies that, under the condition g(·, tj)|tj=0 = λφj(·) for n+ 1 ≤ j ≤ d,

the function u solves the mixed problem.

2. For the generalized solution, take a function g ∈ B[O], and a function

ψ in the domain of −D(ν)
mix satisfying ψ(ti, ·)|ti=0 = 0, for 1 ≤ i ≤ n, and

ψ(·, tj)|tj=0 = φj(·), for n+ 1 ≤ j ≤ d. Then set w := u−ψ, and since w

vanishes on the boundary ∂O,

w(t) = E

[∫ τ
t,(ν)
0

0

e−λsg̃
(
Xt

0+(ν)∗(s)
)

ds

]
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where g̃ = g − λψ − (D
(ν)
mix)ψ. So this rewrites as

w(t) :=E

[∫ τ
t,(ν)
0

0

e−λsg
(
Xt

0+(ν)∗(s)
)

ds

]

− E

[∫ τ
t,(ν)
0

0

e−λs(λ+D
(ν)
mix)ψ

(
Xt

0+(ν)∗(s)
)

ds

]

Now Doob’s stopping theorem applied to the martingale

e−λrψ
(
Xt

0+(ν)∗(r)
)

+

∫ r

0

e−λs(λ+D
(ν)
mixψ

(
Xt

0+(ν)∗(s)
)

ds

with the stopping time τ
t,(ν)
0 implies that the second term is

ψ(t)− E
[
e−λτ

t,(ν)
0 ψ

(
Xt

0+(ν)∗(τ
t,(ν)
0 )

)]
Now using u = w + ψ, we have

u(t) = w(t) + ψ(t) =E

[∫ τ
t,(ν)
0

0

e−λsg
(
Xt

0+(ν)∗(s)
)

ds

]
+ E

[
e−λτ

t,(ν)
0 ψ

(
Xt

0+(ν)∗(τ
t,(ν)
0 )

)]
.

Finally using ψ(·, tj)|tj=0,n+1≤j≤d = φj(·) and (3.3.3), we have

E
[
e−λτ

t,(ν)
0 ψ

(
Xt

0+(ν)∗(τ
t,(ν)
0 )

)]
= E

[
d∑

j=n+1

e−λτ
tj ,(νj)

0 φj

(
hj,0

(
X

0+(ν1)
t1

(
τ
tj ,(νj)
0

)
, · · · ,

X
0+∗(νd)
td

(
τ
tj ,(νj)
0

))
1
{τ̃=τ

tj ,(νj)

0 }

]
.

For the stochastic representation when (L2)-(L3) holds, we begin with

the inhomogeneous term. Notice first that τ
t,(ν)
0 and Xt

0+(ν)∗(s) are not

independent, however we can rewrite as follows,

E

[∫ τ
t,(ν)
0

0

e−λsg
(
Xt

0+(ν)∗(s)
)

ds

]
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= E
[∫ ∞

0

e−λsg
(
Xt

0+(ν)∗(s)
)

1{s<τt,(ν)0 }ds

]
= E

[∫ ∞
0

e−λsg
(
Xt

0+(ν)∗(s)
)

1{Xt
0+(ν)∗(s)>0}ds

]
.

Now conditioning on Xt
0+(ν)∗(s) and making a substitution we have

E
[∫ ∞

0

e−λsg
(
Xt

0+(ν)∗(s)
)

1{Xt
0+(ν)∗(s)>0}ds

]
=

∫ ∞
0

e−λs
∫ t

0

g(r)1{r>0}p
+(ν)(s, t, r) drds

=

∫ t

0

g(t− r)

∫ ∞
0

e−λsp+(ν)(s, t, t− r) dsdr.

Turning to the homogeneous term, let us focus only on the first term of

the summation. Recall that the projection hn+1,0 removes the coordinate

which is zero. The first term of the sum corresponds to the process

X
0+(νn+1)∗
tn+1

(s) (i.e, the (n + 1)-th coordinate) being the first process to

hit the boundary. So as to not make the notation too cumbersome, let

us assume that n + 1 = 1, which corresponds to having only CD-type

derivatives.

E
[
e−λτ

t1,(ν1)
0 φ1

(
X

0+∗(ν2)
t2

(
τ
t1,(ν1)
0

)
, · · · , X0+∗(νd)

td

(
τ
t1,(ν1)
0

))
1{τ̃=τ

t1,(ν1)
0 }

]
.

Note that the event {τ̃ = τ
t1,(ν1)
0 } is equivalent to the event{

min
2≤j≤d

τ
tj ,(νj)
0 > τ

t1,(ν1)
0

}
.

Thus we can first condition on τ
t1,(ν1)
0 , whose density is denoted by

µ
t1,(ν1)
0 (s), to get∫ ∞

0

e−λsE
[
φ1

(
X

0+∗(ν2)
t2 (s), · · · , X0+∗(νd)

td
(s)
)

1A

]
µ
t1,(ν1)
0 (s) ds, (3.3.6)

where A =
{

min2≤j≤d τ
tj ,(νj)
0 > s

}
. Now since the event A is equivalent
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to

{X0+∗(νj)
tj (s) > 0, 2 ≤ j ≤ d},

we now condition on each X
0+∗(νj)
tj . Due to their independence, the

transition density is given by

d∏
j=2

p(νj)(s, tj, rj).

Thus after a transformation of ri 7→ ti − ri and rearranging, (3.3.6) is

equal to

∫ ∞
0

e−λs
∫ t2

0

· · ·
∫ td

0

φ1(r2, · · · , rd)µt1,(ν1)
0 (s)

d∏
j=2

p(νj)(s, tj, rj) dr2 · · · drdds

=

∫
B1(t)

φ1 (h1,0(t)− r)

∫ ∞
0

e−λsµ
t1,(ν1)
0 (s)

d∏
j=2

p(νj)(s, tj, tj − rj) dsdr,

which is precisely the first term of the sum appearing in the homogeneous

term in (3.3.5). The other terms of the sum are obtained in the same

way.

3.4 Mixed Linear equations: stable case

Let us specialise the results of the previous section to the case of stable processes,

since we focus on this case in Chapter 5. That is, in the set up of (3.3.2), let

n = 0, d = 2 and

ν1(x, y) = ν1(y) = y−1−β/(−Γ(−β)),

ν2(x, y) = ν2(y) = y−1−γ/(−Γ(−γ)),

where β, γ ∈ (0, 1). Then the operator Dν1,ν2
mix is the sum of standard CD

derivatives D
(β,γ)
0+∗ := t1

Dβ
0+∗ + t2

Dγ
0+∗. The operator −D(β,γ)

0+∗ generates an

O2-valued Feller process given by

X
(β,γ)
t (s) := (Xβ

t1(s), X
γ
t2(s)),
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where each coordinate is a decreasing stable process, absorbed at 0 on an

attempt to cross it. The transition density of the process on the orthant is

given by

p(β,γ)
s (t, r) = pβs (t1, r1)pγs (t2, r2).

Let τ t0 denote the first time process Xβ,γ
t hits ∂O,

τ t0 := inf{s > 0 , Xβ,γ
t (s) 6∈ (0,∞)× (0,∞)}.

Using (3.3.3), this exit time is

τ t0 = τ t1,β0 ∧ τ t2,γ0 ,

where τ t1,β0 and τ t2,γ0 are the exit times of Xβ and Xγ from (0,∞). Plugging in

the density (2.3.13) of these exit times into (3.3.4), τ t0 then has a density given

by

µβ,γ0 (s) = µβ0 (s)

∫ t1

0

pβs (t1, r) dr + µγ0(s)

∫ t2

0

pγs (t2, r) dr

=
t1
β
s−1− 1

βwβ(t1s
− 1
β )

∫ t2

0

s−
1
γwγ(rs

− 1
γ )dr

+
t2
γ
s−1− 1

γwγ(t2s
− 1
γ )

∫ t1

0

s−
1
βwβ(rs−

1
β )dr

Finally consider the following problem on the orthant, for g ∈ C[O] such that

g(t1, 0) = g(0, t2) = 0

(− t1
Dβ

0+∗ − t2
Dγ

0+∗)u(t1, t2) = −λu(t1, t2) + g(t1, t2), t1, t2 > 0, λ > 0,

u(0, t2) = φ1(t2), u(t1, 0) = φ2(t1).

Using Theorem 3.3.2, the solution u has the following stochastic representation,

u(t) =

∫ t2

0

φ1(t2 − r2)

(∫ ∞
0

e−λsµβ0 (s)pγs (t2 − r2) ds

)
dr2

+

∫ t1

0

φ2(t1 − r1)

(∫ ∞
0

e−λsµγ0(s)pβs (t1 − r1) ds

)
dr1

+

∫ t1

0

∫ t2

0

g(t− r)

(∫ ∞
0

e−λspβ,γs (t− r) ds

)
dr1dr2
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=

∫ t2

0

φ1(t2 − r2)

(
t1
β

∫ ∞
0

e−λss−1− 1
β
− 1
γwβ(t1s

− 1
β )wγ(r2s

− 1
γ ) ds

)
dr2

+

∫ t1

0

φ2(t1 − r1)

(
t2
γ

∫ ∞
0

e−λss−1− 1
β
− 1
γwγ(t2s

− 1
γ )wβ(r1s

− 1
β ) ds

)
dr1

+

∫ t1

0

∫ t2

0

g(t1 − r1, t2 − r2)

(∫ ∞
0

e−λss−
1
β
− 1
γwβ(r1s

− 1
β )wγ(r2s

− 1
γ )ds

)
dr1dr2.

We return to a related problem in Chapter 5, with vanishing g and the scalar

λ replaced with the generator of a Feller semigroup.

3.5 Two-sided fractional derivatives on the band

in Rd

The ideas of interrupting and killing processes to define generalised fractional

derivatives extends naturally to higher dimension. Compared to the last two

sections, where we focused on monotone processes with independent coordinates

on the orthant, here we outline the case of a general Feller process in Rd and

focusing in particular on the domain

B = {x ∈ Rd, x1 ∈ (a, b), x2 ∈ Rd−1}. (3.5.1)

Consider the following operator acting on smooth bounded functions f ,

Lνf(x) =

∫
Rd

(f(x+ y)− f(x))ν(x, y)dy,

where ν(·, ·) : Rd × Rd \ {0} → R+ is a Lévy kernel, i.e a function satisfying

sup
x

∫
Rd

min(1, |y|)ν(x, y)dy <∞.

Operators of the form Lν generate Feller processes Xfree
x on Rd. The analogue

of RL derivative arising from a process Xfree
x in Rd and domain D ⊂ Rd is

the generator of the process killed upon leaving D. The case of the CD-type

derivative is more delicate. We need to specify a point where a process jumps

across a boundary. A natural method is to assume that a trajectory of a jump

follows shortest path (i.e, in the Euclidean case Rd just a straight line). In

the case d = 1, there is only one way to specify where the process crosses
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the boundary, so that the two-sided CD-type operator D
(ν)
[a,b]∗ is defined for

f ∈ C1([a, b]) by

D
(ν)
[a,b]∗f(x) =

∫ b−x

a−x
(f(x+ y)− f(x)) ν(x, y)dy + (f(a)− f(x))

∫ a−x

−∞
ν(x, y)dy

+ (f(b)− f(x))

∫ ∞
b−x

ν(x, y)dy,

where a < 0 < b. Note that this operator coincides with L(ν) when a = −∞
and b =∞.

For d > 1, the corresponding operator on the band (3.5.1) is given by

restricting the operator to functions that are constant (in the first variable)

outside of the interval (a, b) in the first variable:

D
(ν)
B∗f(x) =

∫
Rd−1

∫ b−x1

a−x1
(f(x+ y)− f(x)) ν(x, y) dy1dy2

+

∫
Rd−1

∫ a−x1

−∞

(
f

(
a, x2 +

a− x1

y1

· y2

)
− f(x)

)
ν(x, y) dy1dy2

+

∫
Rd−1

∫ ∞
b−x1

(
f

(
b, x2 +

b− x1

y1

· y2

)
− f(x)

)
ν(x, y) dy1dy2,

which is the multidimensional extension of the CD operator on the band in Rd.

See Figure 3.1 for an illustration of the ‘interruption’ procedure.

The extension of the RL derivative on the band in Rd is given by

D
(ν)
B f(x) =

∫
Rd−1

∫ b−x1

a−x1
(f(x+ y)− f(x))ν(x, y) dy1dy2 −Ka,bf(x),

where −Ka,b is the operator of multiplication by −ka,b(x), defined as

ka,b(x) :=

(∫
Rd−1

∫ a−x1

−∞
+

∫
Rd−1

∫ ∞
b−x1

)
ν(x, y) dy1dy2.

Remark 6. Let us make some remarks about the well-posedness of these

generalised derivatives. In the case d = 1 (i.e, when B = [a, b]), it is shown

in Kolokoltsov (2019b, Theorem 5.1) that −D(ν)
[a,b] generates a Feller semigroup

in Ckill{a,b}([a, b]) and a bounded semigroup in {f ∈ Ckill{a,b}([a, b]) : f ′ ∈
Ckill{a,b}([a, b])}. The main idea is to take a bounded approximation of the

integral over B in D
(ν)
B and this approximated operator is just −Ka,b perturbed by
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Rd−1

R
a b

(x1 + y1, x2 + y2)

(x1, x2)

(a, x2 + a−x1
y1
· y2)

B

Figure 3.1: Illustration of interruption procedure on the band in Rd. A process
which tries to jump from (x1, x2) ∈ B to (x1 + y1, x2 + y2) 6∈ B gets placed at
the point where the boundary intersects with the straight line between (x1, x2)
and (x1 + y1, x2 + y2).

a bounded operator which, by standard perturbation theory arguments, generates

a family of bounded semigroups. Perturbation theory also provides a series

representation of the approximated semigroup which allows one to deduce the

regularity required to show that the approximation semigroup converges to a

Feller semigroup whose generator is D
(ν)
B . Further, Kolokoltsov (2019b, Theorem

5.2) shows that the CD-type derivative D
(ν)
[a,b]∗ generates a Feller semigroup in

C([a, b]) and a strongly continuous semigroup in {f ∈ C1([a, b]) : f ′(a) =

f ′(b) = 0}. In Kolokoltsov (2015, Theorem 4.4), it is proven that the CD-type

derivative D
(ν)
B∗ generates a Feller process on B and a Feller semigroup on C∞(B)

with invariant core C1
∞(B). When looking at boundary value problems involving

CD-type operators (with non-zero boundary conditions), one can either work

directly with the resolvent of the semigroup generated by D
(ν)
∗ (which requires

first proving that it generates a semigroup), or alternatively one can first shift

the unknown function to obtain the equivalent boundary value problem involving

RL-type derivatives with zero boundary values.

Next we consider an important property of the interrupted process

X
(ν)∗
x (s) generated by D

(ν)
B∗ , which is the regularity of the boundary ∂B. Recall

42



that a point x0 ∈ ∂B is regular if τB(x) → 0 in probability as B 3 x → x0,

where τB(x) is first time the process (Xx(t))t≥0 enters ∂B defined by

τB(x) := inf{s > 0 : X(ν)∗
x (s) ∈ ∂B}.

In order to prove the regularity of the boundary ∂B, we need some additional

assumptions of the behaviour of the jump kernel ν(·, y) close to the boundary.

Assumption 3.5.1. There exists a constant C > 0 and q ∈ (0, 1) such that∫
Rd−1

∫ 0

−∞
min(|y1|, ε)ν(a, x2; y1, y2)dy1dy2 > Cεq

and ∫
Rd−1

∫ ∞
0

min(y1, ε)ν(b, x2; y1, y2)dy1dy2 > Cεq,

for all x2 ∈ Rd−1.

Proposition 3.5.2. The set ∂B is regular in expectation for D
(ν)
B∗ . Further,

τB(x) for x ∈ B has finite expectation.

Proof. We use the method of Lyapunov functions (see Kolokoltsov, 2011,

Proposition 6.3.1). For this, we need to find a function f from the domain

of the generator which is strictly positive in the interior of B, zero on the

boundary of B and for which D
(ν)
B∗f(x) ≤ −c < 0. Let us deal with the ∂Ba

(the part of the boundary in which the first coordinate is x1 = a), and take as

the Lyapunov function fω(x1, x2) = (x1 − a)ω, where ω ∈ (0, 1). Then clearly

for x0 ∈ ∂Ba, fω(x0) = fω(a, x2) = 0, and for x ∈ B \{x0}, f(x) > 0. Applying

D
(ν)
B∗ to the Lyapunov function fω,

−D(ν)
B∗f(x) =

∫
Rd−1

∫ b−x1

a−x1
f(x+ y)− f(x)ν(x; y)dy1dy2+

+

∫
Rd−1

∫ a−x1

−∞
f

(
a, x2 +

a− x1

y1

y2

)
− f(x)ν(x; y)dy1dy2

+

∫
Rd−1

∫ ∞
b−x1

f

(
b, x2 +

b− x1

y1

y2

)
− f(x)ν(x; y)dy1dy2

=

∫
Rd−1

∫ b−x1

a−x1
(x1 + y1 − a)ω − (x1 − a)ων(x; y)dy1dy2+
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−
∫
Rd−1

∫ a−x1

−∞
(x1 − a)ων(x; y)dy1dy2

+

∫
Rd−1

∫ ∞
b−x1

(b− a)ω − (x1 − a)ων(x; y)dy1dy2

≤ −C, x1 → a,

due to Assumption 3.5.1 on the behaviour of ν close to the boundary. Thus

the boundary ∂Ba is regular in expectation. The regularity of the other

boundary point works in the same way with the Lyapunov function fω(x1, x2) =

(b− x1)ω.

Example 3.5.3. Consider the CD derivative on the band in Rd, with the

Lyapunov function f(x1, x2) = (x1 − a)ω for some ω ∈ (0, 1). Then

−Dβ
B∗f(x) =

∫
Rd−1

∫ b−x1

a−x1
[(x1 + y1 − a)ω − (x1 − a)ω] ν(x; y)dy1dy2

−
∫
Rd−1

∫ a−x1

−∞
(x1 − a)ων(x; y)dy1dy2

+

∫
Rd−1

∫ ∞
b−x1

[(b− a)ω − (x1 − a)ω] ν(x; y)dy1dy2

=

∫
Rd−1

∫ b−x1

a−x1
[(x1 + y1 − a)ω − (x1 − a)ω]

dy1dy2

|y|d+β

−
∫
Rd−1

∫ a−x1

−∞
(x1 − a)ω

dy1dy2

|y|d+β

+

∫
Rd−1

∫ ∞
b−x1

[(b− a)ω − (x1 − a)ω] ν(x; y)
dy1dy2

|y|d+β

=I1 + I2 + I3. (3.5.2)

The first term I1 in (3.5.2) splits into two parts I1 = I1,+ + I1,− which are the

positive jumps towards the boundary point b in the first coordinate, and the

negative jumps towards the boundary point a in the first coordinate. Considering

the negative jumps first:

I1,− :=

∫
Rd−1

∫ 0

a−x1
[(x1 + y1 − a)ω − (x1 − a)ω]

dy

|y|d+β

I1,− =

∫
Rd−1

∫ 0

−1

[(y1(x1 − a)− (a− x1))ω − (x1 − a)ω]
dy(x1 − a)

(y2
1(x1 − a)2 +

∑d
i=2 y

2
i )

1
2

(d+β)
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=

∫
Rd−1

∫ 1

0

[(1− y)ω − 1]
dy(x1 − a)1+ω

(x1 − a)d+β(y2
1 +

∑d
i=2 y

2
i (x1 − a)−2)

1
2

(d+β)

Making the substitution yi 7→ ỹi(x1 − a), we have

I1,− =

∫
Rd−1

∫ 1

0

[(1− y1)ω − 1]
dy1dỹ(x1 − a)1+ω−d−β+d−1

(y2
1 +

∑d
i=2 ỹ

2
i )

1
2

(d+β)

=(x1 − a)ω−β
∫
Rd−1

∫ 1

0

[(1− y1)ω − 1]
dy1dy2

|y|d+β
,

which approaches 0 from below as x1 → 0. The term containing the positive

jumps between 0 and b and the jumps above b are dealt with similarly. The

integral I2 is clearly negative as x1 → a.

3.6 Two-sided equations on the band

Now we will consider some problems on the band B ⊂ Rd involving the CD

and RL-type operators that we have described in the previous section,3

D
(ν)
B∗u(x) = −λu(x) + g(x), x ∈ B (3.6.1)

u(a, x2) = ua(x2), u(b, x2) = ua(x2),

where λ ≥ 0, ua(·), ub(·) ∈ C(Rd) and g is some given function on B. We refer

to these problems with the short hand notation (−D(ν)
B∗ , λ, g, ua(·), ub(·)). In

order to solve problems involving D
(ν)
B∗ we shift the unknown function and look

at the equivalent zero-boundary value problem of the form (−D(ν)
B , λ, g̃, 0, 0),

which is the corresponding RL-type problem. Let us consider some notion of

solutions to the two sided RL-type problem,

D
(ν)
B u(x) = −λu(x) + g(x), x ∈ B (3.6.2)

u(a, x2) = u(b, x2) = 0,

for λ ≥ 0. We denote by DkillB and DstopB the domain of the generators D
(ν)
B and

D
(ν)
B∗ respectively.

3For full details in the case of two-sided operators on the interval B = [a, b], see Hernández-
Hernández and Kolokoltsov (2016). The proofs work largely in the same way in the setting
of the band, so we only sketch them here.
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Definition 3.6.1. Let g ∈ B[B] and λ ≥ 0. A function u ∈ Ckill∂B[B] is said

to solve the linear equation of RL type (−D(ν)
B , λ, g, 0, 0) as:

• a solution in the domain of the generator if u is a solution belonging to

DkillB ;

• a generalized solution if for all sequences of functions gn ∈ Ckill∂B[B]

such that supn ‖gn‖ <∞ and limn→∞ gn → g a.e., it holds that u(x) =

limn→∞wn(x) for all x ∈ B where wn is the unique solution (in the

domain of the generator) to the RL type problem (−D(ν)
B , λ, gn, 0, 0).

Since D
(ν)
B generates a Feller process X

(ν)
x (s) which is killed upon crossing

∂B, we can use Dynkin’s formula to obtain a unique solution in the domain of

the generator to the RL-type problem (3.6.2). Recall that Dynkin’s formula

says that for a function f from the domain of a generator L of a Feller process

Xx(s),

f(x) = E[f(Xx(τ))e−λτ ] + E
∫ τ

0

e−λs(λ− L)f(Xx(s)) ds,

where τ is a stopping time with finite expectation. Thus if u is a solution

to (3.6.2) in the domain of the generator, then recalling that τB(x) has finite

expectation and X
(ν)
x (τB(x)) = 0 and u(a, x2) = u(b, x2) = 0, it can be written

as

u(x) = E

[∫ τB(x)

0

e−λs(λ−D(ν)
B )u(X(ν)

x (s)) ds

]

= E

[∫ τB(x)

0

e−λsg(X(ν)
x (s)) ds

]
. (3.6.3)

Equations on the band involving CD-type operators

Take the CD-type operator on the band B given by

D
(ν)
B∗f(x) =

∫
Rd−1

∫ b−x1

a−x1
[f(x+ y)− f(x)] ν(x; y)dy1dy2+

+

∫
Rd−1

∫ a−x1

−∞

[
f

(
a, x2 +

a− x1

y1

y2

)
− f(x)

]
ν(x; y)dy1dy2

+

∫
Rd−1

∫ ∞
b−x1

[
f

(
b, x2 +

b− x1

y1

y2

)
− f(x)

]
ν(x; y)dy1dy2.
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The CD-type equation is

D
(ν)
B∗u(x) = −λu(x) + g(x), x ∈ B

u(a, x2) = ua(x2), u(b, x2) = ub(x2).

Let u be a function that solves the CD-type equation with the correct boundary

values u(a, x2) = ua(x2), u(b, x2) = ub(x2). Now take any function φ ∈ DstopD∗

that satisfies the correct boundary condition φ(a, x2) = ua(x2) and φ(b, x2) =

ub(x2). For such a function we could take φ ∈ C2[B] such that φ′ ∈ C0[B] with

(−D(ν)
B∗φ)(x1, x2) = 0 for x ∈ ∂B and φ(a, x2) = ua(x2) and φ(b, x2) = ub(x2).

Now define w(x1, x2) := u(x1, x2)− φ(x1, x2) for x ∈ B. Then we have

D
(ν)
B w(x) = D

(ν)
B∗w(x) = D

(ν)
B∗u(x)−D(ν)

B∗φ(x),

because w is a function that vanishes on the boundary ∂B. Thus

−D(ν)
B w(x1, x2) = −λu(x1, x2) + g(x1, x2)−D(ν)

B∗φ(x1, x2)

= −λw(x1, x2)− λφ(x1, x2) + g(x1, x2)−D(ν)
B∗φ(x1, x2).

And so we have arrived at the RL type equation (−D(ν)
B , λ, g−λφ−D(ν)

B∗φ, 0, 0)

for the function w. Thus if this w solves the RL problem, then u = w + φ can

be considered as a generalized solution to the CD type problem.

Definition 3.6.2. Let g ∈ B[B] and λ ≥ 0. A function u ∈ C[B] is said to

solve the CD-type equation as

1. A solution in the domain of the generator if u is a solution belonging to

DstopD∗ ;

2. a generalized solution if u can be written as u = φ+ w, where w is the

(possibly generalized) solution to the RL type problem

(−D(ν)
B , λ, g −D(ν)

B∗φ− λφ, 0, 0),

with φ ∈ C2[B] satisfying that φ′ ∈ C0[B], (−D(ν)
B∗φ)(x1, x2) = 0 for

x1 ∈ {a, b}, φ(a, x2) = ua(x2) and φ(b, x2) = ub(x2).
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Theorem 3.6.3. If u = w+ φ exist for the CD-type linear equation, with w, φ

are as the above definition, then the solution u is unique and independent of φ.

Now we can state the well-posedness result for equations involving

CD-type operators.

Theorem 3.6.4. Let λ ≥ 0. Suppose that −D(ν)
B generates a Feller process on

B.

1. For any g ∈ B[B], the two-sided equation of CD-type is well-posed in the

generalized sense. The solution admits the stochastic representation

u(x) = E
[
ua(X

(2)
x (τD(x)))e−λτD(x)1{Xx(τD(x))∈Dca}

]
(3.6.4)

+ E
[
ub(X

(2)
x (τD(x)))e−λτD(x)1{Xx(τD(x))∈Dcb}

]
+ E

[∫ τD(x)

0

e−λtg(Xx(t))dt

]
.

2. The solution to the Caputo-type equation depends continuously on the

function g and on the boundary conditions {ua(·), ub(·)}

Proof.

1. Already we know that (−D(ν)
B ,Dkill) generates a killed Feller process X

(ν)
x

on B and this also ensures that τB(x) has finite expectation. Let us

take any function φ ∈ C2[B] satisfying the conditions of Definition 3.6.2.

After recasting the CD problem as a RL-type one, we can use (3.6.3) to

get that the generalized solution w to the RL-type problem

(−D(ν)
B , g −D(ν)

B∗φ− λφ, λ, 0, 0),

is given by w = I − II, where

I := E

[∫ τB(x)

0

e−λtg(X(ν)
x (t)) ds

]
,

II := E

[∫ τB(x)

0

e−λt(λ+D
(ν)
B∗)φ(X(ν)

x (s)) ds

]
.
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Then by definition, u = w + φ is the generalized solution to the Caputo-

type equation. Now we will making use of Dynkin’s martingale again,

Y (r) := e−λrφ
(
X(ν)
x (r)

)
+

∫ r

0

e−λs(λ+D
(ν)
B∗)φ(X(ν)

x (s))ds,

along with the stopping time τB(x). The idea is to note that E[Y (τB(x))] =

E[Y (0)] (by Doob’s stopping theorem), which gives us

E
[
e−λτB(x)φ

(
X(ν)
x (τB(x))

)]
+

∫ τB(x)

0

e−λs(λ+D
(ν)
B∗)φ(X(ν)

x (s))ds

= E
[
e−λ0φ(X(ν)

x (0))
]

= φ(x),

since Xx(0) = x, and so we have

II = E

[∫ τB(x)

0

e−λs(λ+D
(ν)
B∗)φ(X(ν)

x (s))ds

]
= φ(x)− E

[
e−λτB(x)φ

(
X(ν)
x (τB(x))

)]
.

Now recall that u = w + φ and w = I − II, thus combining these

expressions we get

u(x) = E

[∫ τB(x)

0

e−λtg
(
X(ν)
x (t)

)
dt

]
− φ(x) + E

[
e−λτB(x)φ

(
X(ν)
x (τB(x))

)]
+ φ(x)

= E

[∫ τB(x)

0

e−λtg
(
X(ν)
x (t)

)
dt

]
(3.6.5)

+ E
[
e−λτB(x)u

(
X(ν)
x (τB(x))

)]
,

since by assumption, φ agrees with u on the boundary of B (i.e, at

X
(ν)
x (τB(x))). Now since at the random time τB(x) the process X

(ν)
x takes

values either along (a, x2) or (b, x2), the last term in (3.6.5) can be written

as

E
[
e−λτB(x)u

(
X(ν)
x (τB(x))

)]
= E

[
ua(X

(2)
x (τB(x)))e−λτB(x)1{X(ν)

x (τB(x))∈Dca}

]
+ E

[
ub(X

(2)
x (τB(x)))e−λτB(x)1{Xx(τB(x))∈Dcb}

]
,
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which yields the first result.

2. The continuous dependency follows from the stochastic representation

and the estimate

‖u− un‖ ≤ (‖ua‖+ ‖ub‖) sup
x∈B

E[e−λτB(x)] + ‖g − gn‖ sup
x∈B

E[τB(x)],

where un and gn are as in Definition 3.6.1.
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Chapter 4

Two-sided estimates for Green’s

function of fractional evolution

equations

The work in this chapter is adapted from the article Johnston and Kolokoltsov

(2019a). The main aim is to obtain two-sided estimates for the Green’s function

of fractional evolution equations of the form

tD
β
0+∗u(t, x) = Lxu(t, x),

u(0, x) = Y (x).

Under suitable conditions on the operator Lx, the solution to such equations is

given by the operator valued Mittag-Leffler function

u(t, x) = Eβ
[
tβL
]
Y (x) =

∫ ∞
0

esLY (x)µβ0 (s) ds,

where µβ0 is the density of τβ0 := inf{s > 0 : Xβ
t (s) ≤ 0}, where (Xβ

t (s))s≥0

is the β-stable subordinator (with inverted direction) generated by −Dβ
0+∗.

Denoting by GL(s, x, y) the transition densities of the process generated by L,

the solution u can be written in the form

u(t, x) =

∫
Rd
Y (y)

(∫ ∞
0

GL(s, x, y)µβ0 (s) ds

)
dy

=:

∫
Rd
Y (y)G

(β)
L (t, x, y) dy
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This section is dedicated to obtaining two-sided estimates for the Green’s

function G
(β)
L when L is the generator of the following Rd-valued processes:

• Diffusion processes whose transition densities satisfy global Aronson

estimates (2.3.5)

• Non-degenerate diffusion processes whose transition densities satisfy local

Aronson estimates (2.3.2)

• Non-isotropic α ∈ (0, 2) stable processes whose transition densities satisfy

the global stable estimates (2.3.7)

• Non-isotropic stable-like processes whose transition densities satisfy the

local stable-like estimates (2.3.9)

4.1 Global Estimates

We first look at global in time two-sided estimates for G
(β)
L in two special cases.

Notice in (3.2.5) that the integral over the time variable z ranges from 0 to ∞,

and so in order to perform any estimates on the term GL(z, x, y) one can only

use estimates that hold for all z ∈ (0,∞). We begin with two such cases, when

one has global in time estimates for GL. Namely, when L is a second order

uniformly elliptic operator in divergence form or when L is a homogeneous

pseudo-differential operator (with constant coefficients).

4.1.1 Divergence Structure

In this section we consider the time-fractional diffusion equation given by

Dβ
0+∗u(t, x) = Lu(t, x) := ∇ · (A(x)∇u(t, x)), u(0, x) = Y (x), (4.1.1)

where Dβ
0+∗ is the Caputo fractional derivative acting on the time variable, and

the spatial operator is a second order elliptic operator in divergence form which

was discussed in Section 2.3. Recall that the solution of (4.1.1) is given by

u(t, x) = Eβ(Ltβ)Y (x),
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and the associated Green’s function is given by

G(β)(t, x, y) =
1

β

∫ ∞
0

G(tβz, x, y)z−1− 1
βwβ(z−

1
β ) dz, (4.1.2)

where G(t, x, y) is the Green’s function associated with the second order elliptic

operator in divergence form, (2.3.3). We have the following two-sided estimates

for the Green’s function G(β), which are global in time. In the following, we

use the notation Ω := |x− y|2t−β.

Theorem 4.1.1. Assume that the function A(x) is measurable, symmetric

and satisfies (2.3.4) for some µ ≥ 1. Then there exists a constant C such

that for (t, x, y) ∈ (0,∞) × Rd × Rd, the Green’s function G(β)(t, x, y) for

the time-fractional diffusion Equation (4.1.1) satisfies the following two-sided

estimates,

• For Ω ≤ 1,

G(β)(t, x, y) � C


t−

β
2 , d = 1,

t−β(| log Ω|+ 1), d = 2,

t−
dβ
2 Ω1− d

2 , d ≥ 3.

(4.1.3)

• For Ω ≥ 1,

G(β)(t, x, y) � Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp
{
−CβΩ

1
2−β

}
. (4.1.4)

Proof. Let us begin by using the asymptotic behaviour of the stable density

wβ in (4.1.2),

G(β)(t, x, y) =
1

β

∫ ∞
0

G(tβz, x, y)z−1− 1
βwβ(z−

1
β ) dz

� cβ

∫ 1

0

G(tβz, x, y) dz + cβ

∫ ∞
1

G(tβz, x, y)z−1− 1
β fβ(z−

1
β ) dz,

where fβ(x) = x−
2−β

2(1−β) exp{−cβx−
β

1−β }. Next we apply Aronsons estimates

(2.3.5) to G(tβz, x, y),

G(β)(t, x, y) � Ct−
dβ
2

∫ 1

0

z−
d
2 exp{−Ωz−1} dz
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+ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1− 1

β exp{−Ωz−1}fβ(z−
1
β ) dz,

where Ω := |x − y|2t−β. Making a change of variables z = w−1 so that

dz = −w−2dw,

G(β)(t, x, y) � Ct−
dβ
2

∫ ∞
1

w
d
2
−2 exp{−Ωw} dw

+ Ct−
dβ
2

∫ 1

0

w
d
2
−1+ 1

β exp{−Ωw}fβ(w
1
β ) dw (4.1.5)

=: I1 + I2.

We now estimate I1 and I2 in two different cases, depending on the

behaviour of Ω.

Case 1: Ω ≤ 1. Making a further substitution of V = Ωw in the integral

I1 gives us the simpler form of

I1 = Ct−
dβ
2 Ω1− d

2

∫ ∞
Ω

V
d
2
−2 exp{−V } dV.

Now if d = 1, then we have the asymptotic behaviour

I1 = t−
β
2 Ω

1
2

∫ ∞
Ω

V −
3
2 exp{−V } dV ∼ t−

β
2 Ω

1
2 Ω−

1
2 = Ct−

β
2 , as Ω→ 0,

and in particular for Ω ≤ 1 there exists a constant C > 0 such that

I1 � Ct−
β
2 .

If d = 2, then we see logarithmic behaviour,

I1 = Ct−β
∫ ∞

Ω

V −1 exp{−V } dV ∼ t−β(| log Ω|+ 1), Ω→ 0, (4.1.6)

and in particular for Ω ≤ 1 there exists a constant C > 0 such that

I1 � Ct−β(| log Ω|+ 1).

If d ≥ 3, then the integral is the so-called upper incomplete gamma
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function, and has the asymptotic behaviour

I1 = Ct−
dβ
2 Ω1− d

2

∫ ∞
Ω

V
d
2
−1 exp{−V } dV ∼ Ct−

dβ
2 Ω1− d

2 Γ

(
d

2
− 1

)
, as Ω→ 0,

and in particular for Ω ≤ 1 there exists a constant C > 0 such that the

two-sided estimate

I1 � Ct−
dβ
2 Ω1− d

2 ,

holds. Thus we have the following two-sided estimate for I1,

I1 � C


t−

β
2 , d = 1,

t−β(| log Ω|+ 1), d = 2,

t−
dβ
2 Ω1− d

2 , d ≥ 3.

Turning to the integral I2,

I2 = Ct−
dβ
2

∫ 1

0

w−
d
2
−1+ 1

β exp{−Ωw}fβ(w
1
β ) dw

= Ct−
dβ
2

∫ 1

0

w−
d
2
−1− 1

2(1−β) exp{−Ωw − cβw−
1

1−β } dw (4.1.7)

� Cd,βt
− dβ

2 ,

due to the fast decay of fβ in a neighbourhood of 0. Thus combining the

estimates for I1 and I2 gives (4.1.3).

Case 2: Ω ≥ 1. In this case we use the Laplace method as described in

Section 2.4. Firstly for I1, using g(w) = w
d
2
−1, h(w) = w and b = 1 in (2.4.2)

we have

I1 = Ct−
dβ
2

∫ ∞
1

w
d
2
−1 exp{−Ωw} dw ∼ t−

dβ
2 Ω−1 exp{−Ω},

and in particular the estimate

I1 � Ct−
dβ
2 Ω−1 exp{−Ω}, Ω ≥ 1.

For the second integral, we use Proposition 2.4.1 with N = d
2
−1− 1

2(1−β)
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and a = 1
1−β ,

I2 = Ct−
dβ
2

∫ 1

0

w−
d
2
−1+ 1

β exp{−Ωw}fβ(w
1
β ) dw

∼ Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp{−CΩ
1

2−β },

and again in particular, the two-sided estimate

I2 � Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp{−CΩ
1

2−β }.

Combining the estimates for I1 and I2 shows (4.1.4), and we are done.

If one additionally assumes that the diffusion coefficients A(x) of (2.3.3)

are twice continuously differentiable, the following estimates hold for the spatial

derivatives of the fundamental solution of (2.3.3),∣∣∣∣ ∂∂xG(t, x, y)

∣∣∣∣ ≤ Ct−
d+1
2 exp

{
−C |x− y|

2

t

}
, (4.1.8)

for (t, x, y) ∈ (0,∞)×Rd×Rd. We next have estimates for the spatial derivative

of G(β)(t, x, y).

Proposition 4.1.2. Under the same assumptions as Theorem 4.1.1, assume

additionally that A(x) is twice continuously differentiable, then the following

estimates for the spatial derivatives of the Green’s function G(β)(t, x, y) holds

for all (t, x, y) ∈ (0,∞)× Rd × Rd,

• For Ω ≤ 1,

∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ C

 t−β(| log Ω|+ 1), d = 1,

t−
(d+1)β

2 Ω1− d+1
2 , d ≥ 2.

• For Ω ≥ 1,∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Ct−
(d+1)β

2 Ω−
(d+1)

2 ( 1−β
2−β ) exp

{
−CβΩ−

1
2−β

}
.

56



Proof. Recall that

G(β)(t, x, y) =
1

β

∫ ∞
0

G(tβz, x, y)z−1− 1
βwβ(z−

1
β ) dz,

where G satisfies the global estimate (4.1.8). Using the triangle inequality after

taking the derivative inside the integral,∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ =

∣∣∣∣ ∂∂x 1

β

∫ ∞
0

G(tβz, x, y)z−1− 1
βwβ(z−

1
β ) dz.

∣∣∣∣
≤ C

∫ ∞
0

∣∣∣∣ ∂∂xG(tβz, x, y)

∣∣∣∣ z−1− 1
βwβ(z−

1
β ) dz

≤ Ct−
(d+1)β

2

∫ ∞
0

z−
(d+1)

2 exp{−Ωz−1}z−1− 1
βwβ(z−

1
β ) dz

≤ Cβt
− (d+1)β

2

∫ 1

0

z−
(d+1)

2 exp{−Ωz−1} dz (4.1.9)

+ Cβt
− (d+1)β

2

∫ ∞
1

z−
d+1
2 exp{−Ωz−1}z−1− 1

β fβ(z−
1
β ) dz

= Cβt
− (d+1)β

2

∫ ∞
1

w
d+1
2
−2 exp{−Ωw} dw

+ Cβt
− (d+1)β

2

∫ 1

0

w
d+1
2
−1− 1

2(1−β) exp{−Ωw − cβw−
1

1−β } dw

:= I1 + I2,

where in the above calculations, after using the estimates (4.1.8) and (2.3.12),

we made the substitution z = w−1. Note that the integrals I1 and I2 differ

from those appearing in (4.1.5) only by replacing d with d+ 1. Thus the only

change in the calculations is where the dimension dictates the behaviour of the

estimate, namely in the integral I1 under the regime Ω ≤ 1. In this case, make

the substitution wΩ = V ,

I1 = Ct−
(d+1)β

2 Ω1− d+1
2

∫ ∞
Ω

V
d+1
2
−2 exp{−V } dV.

For d = 1, we are in the same situation as (4.1.6), thus

I1 ∼ Ct−β(| log Ω|+ 1), Ω→ 0,
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and in particular

I1 ≤ Ct−β(| log Ω|+ 1), for Ω ≤ 1.

Otherwise for d ≥ 2 we have

I1 ≤ Ct−
(d+1)β

2 Ω1− d+1
2 Γ

(
d+ 1

2
− 1

)
= Cdt

− (d+1)β
2 Ω1− d+1

2 .

For the integral I2, replacing d with d+ 1 in (4.1.7) does not spoil the estimate,

thus

I2 ≤ Cd,βt
− (d+1)β

2 , for Ω ≤ 1.

This shows

∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ C

 t−β(| log Ω|+ 1), d = 1,

t−
(d+1)β

2 Ω1− d+1
2 , d ≥ 2.

for Ω ≤ 1 as required. For Ω ≥ 1, the estimates follow again by using the

Laplace method. Namely taking g(w) = w
d+1
2
−1, h(w) = w and b = 1 in (2.4.2)

we have

I1 ≤ t−
(d+1)β

2 Ω−1 exp {−Ω} , for Ω ≥ 1.

Finally using N = d+1
2
− 1− 1

2(1−β)
and a = 1

1−β in Proposition 2.4.1 gives us

I2 ≤ Ct−
(d+1)β

2 Ω−
d+1
2 ( 1−β

2−β ) exp
{
−CΩ

1
2−β

}
, for Ω ≥ 1.

Thus ∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ I1 + I2

≤ Ct−
(d+1)β

2 Ω−
d+1
2 ( 1−β

2−β ) exp{−CΩ
1

2−β },

as required.

4.1.2 Pseudo-differential Operators: Constant Coefficients

Next we turn our attention to another class of problems, where the spatial

operator is a homogeneous (constant coefficient) pseudo-differential operator.
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That is, for β ∈ (0, 1) and α > 0,

Dβ
0u(t, x) = −Ψα(−i∇)u(t, x), u(0, x) = Y (x), (4.1.10)

where Ψα is a pseudo-differential operator whose symbol is of the form

ψα(p) = |p|αSµ(p/|p|),

where Sµ is a positive function on Sd−1, see (2.2.4). To this end, we use known

properties of the Green’s function Gψα(t, x) associated with Ψα, namely that it

satisfies the stable estimates (2.3.7)

As discussed in the introduction of this chapter, the solution of (4.1.10)

is given by

u(t, x) = Eβ(−Ψα(−i∇)tβ)Y (x),

where

Eβ(s) =
1

β

∫ ∞
0

eszz−1− 1
βwβ(z−1/β) dz.

Thus the corresponding Green’s function G
(β)
ψα

(t, x, y) of (4.1.10) is given

by

G
(β)
ψα

(t, x, y) :=
1

β

∫ ∞
0

Gψα(tβz, x− y)z−1− 1
βwβ(z−

1
β ) dz.

In keeping with the previous section, we denote Ω := |x− y|αt−β. We

have the following two-sided estimate for the Green’s function G
(β)
ψα

(t, x, y).

Theorem 4.1.3. Let α ∈ (0, 2) and β ∈ (0, 1). Assume that w ∈ C(d+1+[α])(Sd−1),

and that Sµ ≥ S0 > 0 for some constant S0. Further assume that the spec-

tral measure µ of the stable operator Ψα has a strictly positive density. Then

there exists a constant C > 0 such that the Green’s function for the frac-

tional evolution equation (4.1.10) satisfies the following two-sided estimates for

(t, x− y) ∈ (0,∞)× Rd.

• For Ω ≤ 1,

G
(β)
ψα

(t, x− y) � C


t−

dβ
α , d < α,

t−β(| log Ω|+ 1), d = α,

t−
dβ
α Ω1− d

α , d > α.

(4.1.11)
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• For Ω ≥ 1,

G
(β)
ψα

(t, x− y) � Ct−
dβ
α Ω−1− d

α . (4.1.12)

Proof. We again begin by using the asymptotic behaviour of the stable density,

G
(β)
ψα

(tβz, x− y) �cβ
∫ 1

0

Gψα(t, x− y) dz

+ cβ

∫ ∞
1

Gψα(tβz, x− y)z−1− 1
β fβ(z−

1
β ) dz,

where fβ(z) = z−
2−β

2(1−β) exp{−cz−
β

1−β }. Before using the estimates (2.3.7) for

Gψα (with t = tβz), note that using the notation Ω = |x− y|αt−β, we have

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
=

 t−
dβ
α Ω−1− d

α z, for z < Ω,

t−
dβ
α z−

d
α , for z ≥ Ω.

(4.1.13)

Thus we have,

G
(β)
ψα

(t, x− y) � c

∫ 1

0

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
dz

+ c

∫ ∞
1

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
z−1− 1

β fβ(z−
1
β ) dz

(4.1.14)

:= I1 + I2.

Now we deal with two cases.

Case 1: Ω ≤ 1. Using (4.1.13), in this case the integral I1 equals

I1 = ct−
dβ
α Ω−1− d

α

∫ Ω

0

z dz + ct−
dβ
α

∫ 1

Ω

z−
d
α dz

=
c

2
t−

dβ
α Ω1− d

α + ct−
dβ
α

∫ 1

Ω

z−
d
α dz.

Note that for d = α, the integral over the interval (Ω, 1) is

t−β
∫ 1

Ω

z−1 dz = t−β| log Ω|.
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On the other hand, for d 6= α we have

t−
dβ
α

∫ 1

Ω

z−
d
α dz =

1

1− d
α

t−
dβ
α (1− Ω1− d

α )

� C

 t−
dβ
α , d < α,

t−
dβ
α Ω1− d

α , d > α.

Thus in this case we have,

I1 � C


t−

dβ
α , d < α,

t−β(| log Ω|+ 1), d = α,

t−
dβ
α Ω1− d

α , d > α.

Turning to I2, note that the integral does not involve Ω, and is convergent

since fβ(z−
1
β ) is bounded and vanishes as z →∞. Thus

I2 = Ct−
dβ
α

∫ ∞
1

z−
d
α
−1− 1

β fβ(z−
1
β ) dz � Cβ,d,αt

− dβ
α .

Combining the estimates for I1 and I2 shows (4.1.11).

Case 2: Ω ≥ 1. In this case, the integral I1 is simply

I1 = ct−
dβ
α Ω−1− d

α

∫ 1

0

z dz =
c

2
t−

dβ
α Ω−1− d

α .

For the second integral, we have

I2 = ct−
dβ
α Ω−1− d

α

∫ Ω

1

z−
1
β fβ(z−

1
β ) dz + ct−

dβ
α

∫ ∞
Ω

z−
d
α
−1− 1

β fβ(z−
1
β ) dz.

Note that the integral in the first term approaches a convergent integral (for

large Ω), while the second can be dealt with by using the Laplace method, see

2.4.2,

I2 � ct−
dβ
α Ω−1− d

α

∫ ∞
1

z−
1
β fβ(z−

1
β ) dz + ct−

dβ
α

∫ ∞
Ω

z−
d
α
−1+ 1

2(1−β) exp{−cβz
1

1−β } dz

� Cβt
− dβ
α Ω−1− d

α + ct−
dβ
α Ω−

d
α
− 1

2(1−β) exp{−cΩ
1

1−β }

� Ct−
dβ
α Ω−1− d

α ,
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where we have used (2.4.2) with g(x) = x−
d
α
−1+ 1

2(1−β) and h(x) = x
1

1−β . Combin-

ing the estimates for I1 and I2 proves (4.1.12), which completes the proof.

Proposition 4.1.4. Under the assumptions of Theorem 4.1.3, assume addi-

tionally that w ∈ Cd+1+[α]+l(Sd−1). Then the following estimates hold,

• For Ω ≤ 1,

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα

(t, x− y)

∣∣∣∣ ≤ C


t−

(d+k)β
α d+ k < α,

t−β(| log(Ω)|+ 1) d+ k = α,

t−
(d+k)β
α Ω1− (d+k)

α d+ k > α,

(4.1.15)

for all k ≤ l and i1, · · · , ik.

• For Ω ≥ 1,∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα

(t, x− y)

∣∣∣∣ ≤ Ct−
(d+k)β
α Ω−1− (d+k)

α , (4.1.16)

for all k ≤ l and i1, · · · , ik.

Proof. Using the asymptotic behaviour of wβ followed by (2.3.8) we have∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα

(t, x− y)

∣∣∣∣ ≤ I1 + I2,

where

I1 := C

∫ 1

0

min
(
t−

(d+k)β
α Ω−1− d+k

α z, t−
(d+k)β
α z−

d+k
α

)
dz,

and

I2 := C

∫ ∞
1

min
(
t−

(d+k)β
α Ω−1− d+k

α z, t−
(d+k)β
α z−

d+k
α

)
z−1− 1

β fβ(z−
1
β ) dz.

(4.1.17)

Again we are in the situation where these integrals are the same as those found

in (4.1.14) after changing d 7→ d+ k. Thus we have for Ω ≥ 1,

I1 =
c

2
t−

(d+k)β
α Ω−1− d+k

α ,
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and

I2 = ct−
(d+k)β
α Ω−1− d+k

α

∫ Ω

1

z−
1
β fβ(z−

1
β ) dz + ct−

(d+k)β
α

∫ ∞
Ω

z−
d+k
α
−1− 1

β fβ(z−
1
β ) dz

≤ Ct−
(d+k)β
α Ω−1− d+k

α + ct−
(d+k)β
α Ω−

d+k
α
− 1

2(1−β) exp{−cΩ
1

1−β }

≤ Cd,k,α,βt
− (d+k)β

α Ω−1− d+k
α .

Combining the estimates for I1 and I2 gives us (4.1.16). For Ω ≤ 1 we have

I2 = ct−
(d+k)β
α

∫ ∞
1

z−
d+k
α
−1− 1

β fβ(z−
1
β ) dz ≤ Ct−

(d+k)β
α .

It only remains to check the estimate for I1 when Ω ≤ 1,

I1 = ct−
(d+k)β
α Ω−1− d+k

α

∫ Ω

0

z dz + ct−
(d+k)β
α

∫ 1

Ω

z−
d+k
α dz

=
c

2
t−

(d+k)β
α Ω1− d+k

α + ct−
(d+k)β
α

∫ 1

Ω

z−
d+k
α dz.

Thus we have

I1 ≤ C


t−

(d+k)β
α , d+ k < α,

t−β(| log Ω|+ 1), d+ k = α,

t−
(d+k)β
α Ω1− (d+k)

α , d+ k > α.

Combining the estimates for I1 and I2 for Ω ≤ 1 gives us (4.1.15).

4.2 Local Estimates

In the following two sections we look at two other families of spatial operators

which extend the global estimates obtained in the previous sections. Firstly

we consider a more general second order elliptic operator (not necessarily in

divergence form), then we consider homogeneous pseudo-differential operators

with variable coefficients. In both cases we provide local (i.e., small-time) two-

sided estimates for the Green’s functions of the associated fractional evolution

equations. The key point here is that for these spatial operators, we no longer

have global (in time) estimates for the associated Green’s functions. Before

going to the new estimates, we describe how one turns local estimates into

global estimates. If for some Green’s functions G0(t, x, y), G1(t, x, y), one has
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the local two-sided estimate for some constant c > 0

1

c
G1(t, x, y) ≤ G0(t, x, y) ≤ cG1(t, x, y), (t, x, y) ∈ (0, T ]× Rd × Rd,

for some fixed T > 0, then by taking convolutions and using the Chapman-

Kolmogorov equations,

G0(2t, x, y) =

∫
Rd
G0(t, x, z)G0(t, z, y) dz

≤
∫
Rd
cG1(t, x, z)cG1(t, z, y) dz

= c2G1(2t, x, y).

Repeating this procedure n-times,

G0(nt, x, y) =

∫
Rd
· · ·
∫
Rd
G0(t, x, x1) · · ·G0(t, xn, y)dx1 · · · dxn

≤
∫
Rd
· · ·
∫
Rd
cG1(t, x, x1) · · · cG1(t, xn, y)dx1 · · · dxn

= cnG1(nt, x, z).

By fixing t and setting τ = nt (so that τ ≈ n for large values of n and τ), we

then get

G0(τ, x, y) ≤ cτ/tG1(τ, x, y)

= e
τ
t

log cG1(τ, x, y)

≈ eτ c̃G1(τ, x, y), ∀τ > 0, x, y ∈ Rd

Applying the same procedure to the lower bound gives us the global two-sided

estimate

e−cτG1(τ, x, y) ≤ G0(τ, x, y) ≤ ecτG1(τ, x, y) (4.2.1)

for all (τ, x, y) ∈ (0,∞)× Rd × Rd.

4.2.1 Non-degenerate Diffusions

In Section 4.1.1 we derived global two-sided estimates for the Green’s function

of fractional evolution equations involving a fractional derivative in time and a
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second order elliptic operator in divergence form as the spatial operator. The

key point in that case is that Aronsons estimates provides two-sided Gaussian

estimates that hold globally for all time t > 0. In this section we consider the

case that the spatial operator is any non-degenerate diffusion operator, which

can generally be of the form

Lu(t, x) := aij(x)∂xi∂xju(t, x) + bi(x)∂xiu(t, x) + c(x)u(t, x). (4.2.2)

Assuming that a(x) is uniformly elliptic and continuously differentiable, b(x)

and c(x) are continuous, and the uniform bound holds:

sup
x

max(|∇a(x)|, |b(x)|, |c(x)|) ≤M.

Then the Green’s function associated with (4.2.2), satisfies the following local

estimates:

t−
d
2

C
exp

{
−C |x− y|

2

t

}
≤ G(t, x, y) ≤ Ct−

d
2 exp

{
−C |x− y|

2

t

}
, (4.2.3)

for (t, x, y) ∈ (0, T )×Rd×Rd for some fixed T > 0. We also have the following

estimates for the spatial derivative of the Green’s function G,∣∣∣∣ ∂∂xG(t, x, y)

∣∣∣∣ ≤ Ct−
d+1
2 exp

{
−C |x− y|

2

t

}
, (4.2.4)

for (t, x, y) ∈ (0, T )×Rd×Rd. The main obstacle now is that the estimates for

the Green’s function of (4.2.2) are only for small-time, thus a serious problem

seems to arise when trying to insert the local estimate into the Pollard-Zolotarev

formula, which involves integrating over all time z ∈ (0,∞). However we use

the trick described in the previous section to make the local estimates global,

in (4.2.1). To this end, the following two-sided estimate holds for G(t, x, y) for

all (τ, x, y) ∈ (0,∞)× Rd × Rd,

e−cττ−
d
2 exp

{
−C |x− y|

2

τ

}
≤ G(τ, x, y) ≤ ecττ−

d
2 exp

{
−C |x− y|

2

τ

}
,

(4.2.5)
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for some constant c. In addition, for all (τ, x, y) ∈ (0,∞)× Rd × Rd,∣∣∣∣ ∂∂xG(τ, x, y)

∣∣∣∣ ≤ ecτ max(τ−
1
2 , 1)τ−

d
2 exp

{
−C |x− y|

2

τ

}
.

Alternatively we can split the estimates for the spatial derivative up into

small-time and large-time - for τ ∈ (0, 1),∣∣∣∣ ∂∂xG(τ, x, y)

∣∣∣∣ ≤ Cτ−
d+1
2 exp

{
−C |x− y|

2

τ

}
, (4.2.6)

and for τ ∈ (1,∞),∣∣∣∣ ∂∂xG(τ, x, y)

∣∣∣∣ ≤ ecττ−
d
2 exp

{
−C |x− y|

2

τ

}
. (4.2.7)

Now we proceed to obtain estimates for the Green’s function of the fractional

evolution

Dβ
0u(t, x) = Lu(t, x),

where L is defined as above in (4.2.2). The Green’s function for this fractional

evolution equation is given by

G(β)(t, x, y) =
1

β

∫ ∞
0

G(tβz, x, y)z−1− 1
βwβ(z−

1
β ) dz. (4.2.8)

Again let Ω = |x−y|2t−β. We have the following local estimates for the Green’s

function G(β) above.

Theorem 4.2.1. Assume that a(·) ∈ C1(Rd) is uniformly elliptic and b(·), c(·) ∈
C(Rd). Suppose also that,

sup
x

max(|∇a(x)|, |b(x)|, |c(x)|) ≤M.

Then for a fixed T > 0, there exists constants C1, C2, C3 such that for (t, x, y) ∈
(0, T ] × Rd × Rd the Green’s function G(β)(t, x, y) defined by (4.2.8) satisfies

the following estimates,
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• For Ω ≤ 1,

G(β)(t, x, y) � C1


t−

β
2 , d = 1,

t−β(| log Ω|+ 1), d = 2,

t−
dβ
2 Ω1− d

2 , d ≥ 3.

(4.2.9)

• For Ω ≥ 1,

G(β)(t, x, y) � C2t
− dβ

2 Ω−
d
2( 1−β

2−β ) exp{−C3Ω
1

2−β }, (4.2.10)

where C1, C2 depends on T, d, β and C3 depends on T and β.

Proof. First splitting up to the stable density,

G(β)(t, x, y) � Cβ

∫ 1

0

G(tβz, x, y) dz + Cβ

∫ ∞
1

G(tβz, x, y)z−1− 1
β fβ(z−

1
β ) dz

=: I1 + I2.

Note that on using the estimate (4.2.3) in I1, we have the same integral of the

same name appearing in (4.1.5). Thus for Ω ≤ 1,

I1 = Cβ

∫ 1

0

G(tβz, x, y) dz � CT t
− dβ

2

∫ 1

0

z−
d
2 exp{−Ωz−1} dz

� C


t−

β
2 , d = 1,

t−β(| log Ω|+ 1), d = 2,

t−
dβ
2 Ω1− d

2 , d ≥ 3.

(4.2.11)

In addition for Ω ≥ 1,

I1 � CT t
− dβ

2 Ω−1 exp{−Ω}. (4.2.12)

Turning our attention to I2, let us consider separately the upper and lower

bound.

Upper bound for I2

First applying the upper bound from (4.2.5) to G,

I2 ≤ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1− 1

β exp{ctβz − Ωz−1}fβ(z−
1
β ) dz
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= Ct−
dβ
2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{ctβz − Ωz−1 − cβz
1

1−β } dz. (4.2.13)

For Ω ≤ 1, we have

I2 ≤ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1− 1

2(1−β) exp{ctβz − cβz
1

1−β } dz

≤ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1− 1

2(1−β) exp{cT βz − cβz
1

1−β } dz

= CT,d,βt
− dβ

2 ,

for t < T for some fixed T > 0. Combining this with (4.2.11) gives (4.2.9).

For Ω ≥ 1, we use again that the decay of exp{−cβz1/(1−β)} for large z

is stronger than the growth of exp{ctβz} for large z as long as t < T for some

fixed T > 0. That is,

I2 ≤ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp
{
−Ωz−1 + ctβz − cβz

1
1−β

}
dz

≤ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp
{
−Ωz−1 − CT,βz

1
1−β

}
dz

= Ct−
dβ
2

∫ 1

0

w
d
2
−1− 1

2(1−β) exp
{
−Ωw − CT,βw−

1
1−β

}
dw,

where we have made the substitution w = z−1 in the last line. Now we apply

Proposition 2.4.1 with N = d
2
− 1− 1

2(1−β)
and a = 1

1−β ,

I2 ≤ Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp{−CΩ
1

2−β }.

Note the constants in the above estimate depend on T . Combining this with

(4.2.12) gives us the required upper bound in (4.2.10).

Lower bound for I2

Using the lower bound from (4.2.5) in I2,

I2 ≥ ct−
dβ
2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−ctβz − Ωz−1 − cβz
1

1−β } dz.

Firstly for Ω ≤ 1,

I2 ≥ Cβt
− dβ

2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−Ωz−1 − ctβz − cβz
1

1−β } dz
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≥ Cβt
− dβ

2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−ctβz − cβz
1

1−β } dz

≥ Cβ,T t
− dβ

2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−cT βz − cβz
1

1−β } dz

= CT,β,dt
− dβ

2 .

Finally for Ω ≥ 1,

I2 = Cβt
− dβ

2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−Ωz−1 − ctβz − cβz
1

1−β } dz

≥ Cβt
− dβ

2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−Ωz−1 − (ctβ + cβ)z
1

1−β } dz

≥ Cβt
− dβ

2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−Ωz−1 − CT,βz
1

1−β } dz,

where we have used the fact that exp{−ctβz} ≥ exp{−ctβz
1

1−β } for z > 1.

After making the substitution z = w−1 we apply Proposition 2.4.1,

I2 ≥ Cβt
− dβ

2

∫ 1

0

w
d
2
−1− 1

2(1−β) exp{−Ωw − CT,βw−
1

1−β } dw

≥ C1t
− dβ

2 Ω−
d
2( 1−β

2−β ) exp{−C2Ω
1

2−β },

where C1 depends on T, β and d, and C2 depends on T and β. Combining this

with (4.2.12) gives us the lower bound in (4.2.10), as required.

Next we look at estimating the spatial derivative of the Green’s function

G(β), firstly for large-time using (4.2.7) then for small-time using (4.2.6). As

usual, let Ω := |x− y|2t−β. Firstly for large finite time,

Proposition 4.2.2. Under the same assumptions as Theorem 4.2.1, suppose

further that a(x) is twice continuously differentiable, and b(x), c(x) are con-

tinuously differentiable (with all derivatives bounded). Then for a fixed finite

T > 1, the following estimates hold for the spatial derivative of the Green’s

function G(β)(t, x, y) for (t, x, y) ∈ (1, T )× Rd × Rd,

• For Ω ≤ 1,

∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ CT,d,β

 t−β(| log Ω|+ 1), d = 1,

|x− y|1−d, d ≥ 2.
(4.2.14)
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• For Ω ≥ 1,∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ CT,d,β|x− y|−d(
1−β
2−β ) exp{−CT,β|x− y|

2
2−β }. (4.2.15)

Proof. We start as usual by first splitting up the integral into small and large

z, and also use the triangle inequality,∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Cβ

∫ 1

0

∣∣∣∣ ∂∂xG(tβz, x, y)

∣∣∣∣ dz

+Cβ

∫ ∞
1

∣∣∣∣ ∂∂xG(tβz, x, y)

∣∣∣∣ z−1− 1
β fβ(z−

1
β ) dz.

Note that t ∈ (1, T ) means that t−β ∈ (T−β, 1). Thus for z ∈ (1,∞) we have

z ≥ t−β. Now we use the local estimate (4.2.6) for the first integral and (4.2.7)

for the second,∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Ct−
(d+1)β

2

∫ 1

0

z−
d+1
2 exp{−Ωz−1} dz

+ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp
{
−Ωz−1 + ctβz − cβz

1
1−β

}
dz

=: I1 + I2.

Note that the integral in I1 is the same as (4.1.9), and thus for Ω ≤ 1

I1 = Ct−
(d+1)β

2

∫ 1

0

z−
d+1
2 exp{−Ωz−1}dz ≤

 t−β(| log Ω|+ 1), d = 1,

t−
(d+1)β

2 Ω1− d+1
2 , d ≥ 2.

Note however that t ∈ (1, T ), which means that t−β ∈ (T−β, 1). Thus

I1 ≤ CT,β,d

 t−β(| log Ω|+ 1), d = 1,

|x− y|1−d, d ≥ 2.
(4.2.16)

For Ω ≥ 1,

I1 ≤ Ct−
(d+1)β

2 Ω−1 exp{−Ω} ≤ CT,d,β|x− y|−2 exp{−CT,β|x− y|2}.

As for the integral I2, this is the same one which appeared in the previous
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proof, (4.2.13), and thus for Ω ≤ 1,

I2 ≤ Ct−
dβ
2 ≤ CT,d,β.

Combining this with (4.2.16) which gives both (4.2.14). Finally an application

of Proposition 2.4.1 gives for Ω ≥ 1,

I2 = Ct−
dβ
2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp
{
−Ωz−1 + ctβz − cβz

1
1−β

}
dz

≤ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp
{
−Ωz−1 − CT,βz

1
1−β

}
dz

≤ Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp{−CΩ
1

2−β }

≤ CT,d,β|x− y|−d(
1−β
2−β ) exp{−CT,β|x− y|

2
2−β }.

Combining this with the estimate for I1, gives the estimate (4.2.15) for Ω ≥ 1,

as required.

Next we have the estimates for small-time.

Proposition 4.2.3. Under the same assumptions as Theorem 4.2.1, suppose

further that a(x) is twice continuously differentiable, and b(x), c(x) are con-

tinuously differentiable (with all derivatives bounded). Then the following

estimates hold for the spatial derivative of the Green’s function G(β)(t, x, y) for

(t, x, y) ∈ (0, 1)× Rd × Rd,

• For Ω ≤ 1,

∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Cd,β

 t−β(| log Ω|+ 1), d = 1,

t−
(d+1)β

2 Ω1− d+1
2 , d ≥ 2.

• For 1 ≤ Ω ≤ t−β(
2−β
1−β ),∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Ct−
(d+1)β

2 Ω−( d+1
2 )( 1−β

2−β ) exp{−CΩ
1

2−β }.

• For Ω ≥ t−β(
2−β
1−β ),∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp{−CΩ
1

2−β }.
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Proof. Splitting the integral up using the stable density then using the

estimates (4.2.6) and (4.2.7),∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Cβt
− (d+1)β

2

∫ 1

0

z−
d+1
2 exp{−Ωz−1} dz

+ Cβ

∫ ∞
1

max((tβz)−
1
2 , 1)z−

d
2
−1− 1

β exp

{
−Ω

z
+ ctβz

}
fβ(z−

1
β ) dz

= Cβt
− (d+1)β

2

∫ 1

0

z−
d+1
2 exp{−Ωz−1} dz

+ Cβt
− (d+1)β

2

∫ t−β

1

z−
d+1
2
−1+ 1

2(1−β) exp
{
−Ωz−1 + ctβz − cβz

1
1−β

}
dz

+ Cβt
− dβ

2

∫ ∞
t−β

z−
d
2
−1+ 1

2(1−β) exp
{
−Ωz−1 + ctβz − cβz

1
1−β

}
dz

=: I1 + I2 + I3.

Now we investigate the usual cases.

Case 1: Ω ≤ 1 The integral in I1, being the same as the one in (4.2.16),

has the upper bound

I1 = Ct−
(d+1)β

2

∫ 1

0

z−
d+1
2 exp{−Ωz−1} dz ≤ C

 t−β(| log Ω|+ 1), d = 1,

t−
(d+1)β

2 Ω1− d+1
2 , d ≥ 2.

The other two integrals in I2 and I3 approach convergent integrals for bounded

Ω, so

I2 = Ct−
(d+1)β

2

∫ t−β

1

z−
d+1
2
−1+ 1

2(1−β) exp{−Ωz−1 + ctβz − cβz
1

1−β } dz

≤ Ct−
(d+1)β

2

∫ ∞
1

z−
d+1
2
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz

≤ Cd,βt
− (d+1)β

2 ,

and

I3 = Ct−
dβ
2

∫ ∞
t−β

z−
d
2
−1+ 1

2(1−β) exp
{
−Ωz−1 + ctβz − cβz

1
1−β

}
dz

≤ Ct−
dβ
2

∫ ∞
t−β

z−
d
2
−1+ 1

2(1−β) exp
{
ctβz − cβz

1
1−β

}
dz

≤ tβ−
β

2(1−β) exp{−Cβt−
β

1−β }
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≤ Cd,βt
− dβ

2 .

Thus in this case,

∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ C

 t−β(| log Ω|+ 1), d = 1,

t−
(d+1)β

2 Ω1− d+1
2 , d ≥ 2.

Case 2: Ω ≥ 1 A direct application of the Laplace method gives

I1 ≤ t−
(d+1)β

2 Ω−1 exp{−Ω}.

For the second integral we have,

I2 ≤ Ct−
(d+1)β

2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−Ωz−1 − Cβz
1

1−β } dz

≤ Ct−
(d+1)β

2 Ω−( d+1
2 )( 1−β

2−β ) exp{−CΩ
1

2−β }

where we have used Proposition 2.4.1 in the last estimate. Finally since

t ∈ (0, 1), another application of Proposition 2.4.1 gives

I3 ≤ Ct−
dβ
2

∫ ∞
1

z−
d
2
−1+ 1

2(1−β) exp{−Ωz−1 − Cz
1

1−β } dz

≤ Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp{−CΩ
1

2−β },

Note that

t−
(d+1)β

2 Ω−( d+1
2 )( 1−β

2−β ) exp{−CΩ
1

2−β } ≤ Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp{−CΩ
1

2−β },

when t−
β
2 Ω−

1
2( 1−β

2−β ) ≤ 1. Thus for Ω ≥ t−β(
2−β
1−β ),∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Ct−
dβ
2 Ω−

d
2( 1−β

2−β ) exp{−CΩ
1

2−β },

while for 1 ≤ Ω ≤ t−β(
2−β
1−β ),∣∣∣∣ ∂∂xG(β)(t, x, y)

∣∣∣∣ ≤ Ct−
(d+1)β

2 Ω−
d+1
2 ( 1−β

2−β ) exp{−CΩ
1

2−β }.
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4.2.2 Pseudo-differential Operators: Variable Coefficients

Finally we derive two-sided estimates for the Green’s function of time-fractional

stable-like equations. Stable-like operators are homogeneous pseudo-differential

operators with variable coefficients (that depend on the spatial variable x,

but not time). As noted earlier in (2.3.7) the fundamental solution Gψ of the

evolution equation

∂tu = −Ψα(−i∇)u,

with ψα(p) = |p|αSµ(p/|p|), satisfies the following two-sided estimate for all

(t, x− y) ∈ (0,∞)× Rd,

Gψα(t, x− y) � C min

(
t

|x− y|d+α
, t−d/α

)
. (4.2.17)

When the coefficients of the operator Ψα depends also on the spatial variable,

the same kind of estimates hold for small-time. Using the same technique as

the previous section to extend these small-time estimates to global estimates,

we have the following two-sided estimates for τ > 0, x, y ∈ Rd,

e−Cτ min

(
τ

|x− y|d+α
, τ−

d
α

)
≤ Gψα,x(τ, x, y) ≤ eCτ min

(
τ

|x− y|d+α
, τ−

d
α

)
,

(4.2.18)

and∣∣∣∣ ∂k

∂xi1 · · · ∂xik
Gψα,x(τ, x, y)

∣∣∣∣ ≤ eCτ max
(
τ−

k
α , 1
)

min

(
τ

|x− y|d+α
, τ−

d
α

)
.

(4.2.19)

Now consider the following fractional evolution equation,

Dβ
0+∗u(t, x) = −Ψα(x,−i∇)u(t, x), u(0, x) = Y (x), (4.2.20)

where the symbol of Ψα is of the form

ψα(x, p) = |p|αSµ(x, p/|p|), (4.2.21)

where Sµ satisfies the assumptions of Theorem 2.3.2. The solution of (4.2.20)

is given by

u(t, x) = Eβ(−Ψα(x,−i∇)tβ)Y (x),
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where Eβ is the Mittag-Leffler function. The Green’s function of Equation

(4.2.20) is then

G
(β)
ψα,x

(t, x, y) =
1

β

∫ ∞
0

Gψα,x(t
βz, x, y)z−1− 1

βwβ(z−
1
β ) dz. (4.2.22)

Let Ω = |x− y|αt−β.

Theorem 4.2.4. Let α ∈ (0, 2) and β ∈ (0, 1). Assume that the function Sµ in

(4.2.21) is γ-Hölder continuous in the first variable and k-times continuously

differentiable in the second variable. Assume further that the spectral measure

µ has a strictly positive density. Then for a fixed T > 0 there exists constants

C such that for (t, x, y) ∈ (0, T ]× Rd × Rd the following two-sided estimates

for (4.2.22) hold,

• For Ω ≤ 1,

G
(β)
ψα,x

(t, x, y) � C


t−

dβ
α , d < α,

t−β(| log(Ω)|+ 1), d = α,

t−
dβ
α Ω1− d

α , d > α.

• For Ω ≥ 1,

G
(β)
ψα,x

(t, x, y) � Ct−
dβ
α Ω−1− d

α ,

where the constants C depend on d, α, β and T .

Proof. We start by estimating the stable density with (2.3.12),

G
(β)
ψα,x

(t, x, y) � Cβ

∫ 1

0

Gψα,x(t
βz, x, y) dz

+ Cβ

∫ ∞
1

Gψα,x(t
βz, x, y)z−1− 1

β fβ(z−
1
β ) dz. (4.2.23)

In the first integral, we use the estimate (2.3.9), and for the second term we

use the global version (4.2.18) with τ = tβz. Starting with the upper bound,

we have

G
(β)
ψα,x

(t, x, y) ≤ CT

∫ 1

0

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
dz
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+ c

∫ ∞
1

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
z−1− 1

β ect
βzfβ(z−

1
β ) dz.

Recall that,

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
=

 t−
dβ
α Ω−1− d

α z, z ≤ Ω,

t−
dβ
α z−

d
α , z ≥ Ω.

Then we have

G
(β)
ψα,x

(t, x, y) ≤ c

∫ 1

0

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
dz

+ c

∫ ∞
1

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
z−1− 1

β ect
βzfβ(z−

1
β ) dz

(4.2.24)

:= I1 + Iup2 ,

for the upper bound, and

G
(β)
ψα,x

(t, x, y) ≥ 1

c

∫ 1

0

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
dz

+ C

∫ ∞
1

min
(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
z−1− 1

β e−ct
βzfβ(z−

1
β ) dz

:= I1 + I lo2 ,

for the lower bound. Note that the integral in I1 is the as the one appearing in

(4.1.14) and so, for t < T ,

I1 � CT


t−

dβ
α , d < α,

t−β(| log Ω|+ 1), d = α,

t−
dβ
α Ω1− d

α , d > α,

for Ω ≤ 1, and

I1 � t−
dβ
α Ω−1− d

α ,

for Ω ≥ 1. For the remaining integral I2, we have the usual two cases.
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Case 1: Ω ≤ 1. In this case we have

Iup2 = Ct−
dβ
α

∫ ∞
1

z−
d
α
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz.

This integral converges as long as t < T , since exp{ctβz} ≤ exp{Cz
1

1−β }
for sufficiently large z. Thus

Iup2 ≤ CT,d,β,αt
− dβ
α .

On the other hand, we have

I lo2 = Ct−
dβ
α

∫ ∞
1

z−
d
α
−1+ 1

2(1−β) exp{−ctβz − cβz
1

1−β } dz,

which is strictly positive for t < T , thus

I lo2 ≥ CT,d,β,αt
− dβ
α .

Combining these estimates with those for I1 gives the estimates for G
(β)
ψα,x

for

Ω ≤ 1.

Case 2: Ω ≥ 1. In this case we have

Iup2 = Ct−
dβ
α Ω−1− d

α

∫ Ω

1

z
1

2(1−β) exp{ctβz − z
1

1−β } dz

+ Ct−
dβ
α

∫ ∞
Ω

z−
d
α
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz,

and

I lo2 = Ct−
dβ
α Ω−1− d

α

∫ Ω

1

z
1

2(1−β) exp{−ctβz − z
1

1−β } dz

+ Ct−
dβ
α

∫ ∞
Ω

z−
d
α
−1+ 1

2(1−β) exp{−ctβz − cβz
1

1−β } dz.

Firstly we have,

t−
dβ
α Ω−1− d

α

∫ Ω

1

z
1

2(1−β) exp{ctβz − cβz
1

1−β } dz ≤ CT,d,β,αt
− dβ
α Ω−1− d

α
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and

t−
dβ
α Ω−1− d

α

∫ Ω

1

z
1

2(1−β) exp{−ctβz − cβz
1

1−β } dz ≥ C̃T,d,β,αt
− dβ
α Ω−1− d

α .

Next note that exp{tβz} ≤ exp{T βz} and exp{−tβz} ≥ exp{−T βz} for t < T .

Thus,

Iup2 ≤ Ct−
dβ
α Ω−1− d

α + Ct−
dβ
α

∫ ∞
Ω

z−
d
α
−1+ 1

2(1−β) exp{tβz − cβz
1

1−β } dz

≤ Ct−
dβ
α Ω−1− d

α + Ct−
dβ
α

∫ ∞
Ω

z−
d
α
−1+ 1

2(1−β) exp{−CT,βz
1

1−β } dz

≤ Ct−
dβ
α Ω−1− d

α + Ct−
dβ
α Ω−

d
α
− 1

2(1−β) exp{−CT,βΩ
1

1−β }

≤ CT,β,α,dt
− dβ
α Ω−1− d

α , (4.2.25)

and

I lo2 ≥ Ct−
dβ
α Ω−1− d

α + Ct−
dβ
α

∫ ∞
Ω

z−
d
α
−1+ 1

2(1−β) exp{−tβz − cβz
1

1−β } dz

≥ Ct−
dβ
α Ω−1− d

α + Ct−
dβ
α

∫ ∞
Ω

z−
d
α
−1+ 1

2(1−β) exp{−CT,βz
1

1−β } dz

≥ Ct−
dβ
α Ω−1− d

α + Ct−
dβ
α Ω−

d
α
− 1

2(1−β) exp{−CT,βΩ
1

1−β }

≥ CT,β,α,dt
− dβ
α Ω−1− d

α .

Thus for Ω ≥ 1, we have

G(β)(t, x, y) � CT,d,β,αt
− dβ
α Ω−1− d

α ,

as claimed.

Next we look at the spatial derivatives, where we consider separately

small and large (but finite) time.

Proposition 4.2.5. Under the same assumptions as Theorem 4.2.4 and The-

orem 2.3.2, the spatial derivatives of the Green’s function G
(β)
ψα,x

(t, x, y) for

(t, x, y) ∈ (0, 1)× Rd × Rd satisfy,
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• For Ω ≤ 1,

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤ C


t−

(d+k)β
α , d+ k < α,

t−β(| log Ω|+ 1), d+ k = α,

t−
(d+k)β
α Ω1− d+k

α , d+ k > α.

(4.2.26)

for all k ≤ l and all indicies ii, · · · , ik.

• For 1 ≤ Ω ≤ t−β,∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤ Ct−
(d+k)β
α Ω−1− (d+k)

α (4.2.27)

for all k ≤ l and all indicies ii, · · · , ik.

• For Ω ≥ t−β,∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤ Ct−
dβ
α Ω−1− d

α (4.2.28)

for all k ≤ l and all indices ii, · · · , ik.

Proof. Splitting up the stable density followed by using the estimates (2.3.10)

and (4.2.19) we have∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤ cβ

∫ 1

0

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
Gψα,x(t

βz, x, y)

∣∣∣∣ dz

+cβ

∫ ∞
1

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(tβz, x, y)

∣∣∣∣ z−1− 1
β fβ(z−

1
β ) dz

=: I1 + I2,

where

I1 := C

∫ 1

0

min
(
t−

(d+k)β
α Ω−1− d+k

α z, t−
(d+k)β
α z−

d+k
α

)
dz,

and

I2 := C

∫ ∞
1

max((tβz)−
k
α , 1) min

(
t−

dβ
α Ω−1− d

α z, t−
dβ
α z−

d
α

)
z−1− 1

β ect
βzfβ(z−

1
β ) dz.

Now note that since t ∈ (0, 1), the integral in I1 is the same as that one
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appearing in (4.1.17), and thus for Ω ≤ 1,

I1 = Ct−
(d+k)β
α Ω−1− d+k

α

∫ Ω

0

z dz + Ct−
(d+k)β
α

∫ 1

Ω

z−
d+k
α dz

≤ C


t−

(d+k)β
α , d+ k < α,

t−β(| log Ω|+ 1), d+ k = α,

t−
(d+k)β
α Ω1− d+k

α , d+ k > α.

For Ω ≥ 1,

I1 = Ct−
(d+k)β
α Ω−1− d+k

α

∫ 1

0

z dz =
C

2
t−

(d+k)β
α Ω−1− (d+k)β

α . (4.2.29)

Turning to I2, we need to consider some different cases.

Case 1: Ω ≤ 1. In this case

I2 = Ct−
(d+k)β
α

∫ t−β

1

z−
d+k
α
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz

+ Ct−
dβ
α

∫ ∞
t−β

z−
d
α
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz

≤ Ct−
(d+k)β
α

∫ ∞
1

z−
d+k
α
−1+ 1

2(1−β) exp{−Cβz
1

1−β } dz

+ Ctβ−
β

2(1−β) exp{−Ct−
β

1−β }

≤ Cβ,d,α,kt
− (d+k)β

α .

Combining this with the estimate for I1 shows (4.2.26).

Case 2: 1 ≤ Ω ≤ t−β. In this case we have

I2 = Ct−
(d+k)β
α Ω−1− d+k

α

∫ Ω

1

z
1

2(1−β) exp{ctβz − cβz
1

1−β } dz

+ Ct−
(d+k)β
α

∫ t−β

Ω

z−
d+k
α
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz

+ Ct−
dβ
α

∫ ∞
t−β

z−
d
α
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz

≤ Ct−
(d+k)β
α Ω−1− d+k

α

∫ ∞
1

z
1

2(1−β) exp{ctβz − cβz
1

1−β } dz

+ Ct−
(d+k)β
α

∫ ∞
Ω

z−
d+k
α
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz
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+ Ctβ−
1

2(1−β) exp{−Ct−
β

1−β }

≤ Cβt
− (d+k)β

α Ω−1− d+k
α

+ Cd,α,β,lt
− (d+k)β

α Ω−
d+k
α
− 1

2(1−β) exp{−CΩ
1

1−β }

+ Ctβ−
1

2(1−β) exp{−Ct−
β

1−β }

≤ Cβ,d,α,kt
− (d+k)β

α Ω−1− d+k
α .

Combining this with (4.2.29) shows (4.2.27).

Case 3: t−β ≤ Ω.

I2 = Ct−
(d+k)β
α Ω−1− d+k

α

∫ t−β

1

z
1

2(1−β) exp{ctβz − cβz
1

1−β } dz

+ Ct−
dβ
α Ω−1− d

α

∫ Ω

t−β
z

1
2(1−β) exp{ctβz − cβz

1
1−β } dz

+ Ct−
dβ
α

∫ ∞
Ω

z−
d
α
−1+ 1

2(1−β) exp{ctβz − cβz
1

1−β } dz

≤ Cβt
− (d+k)β

α Ω−1− d+k
α

+ Cβt
− dβ
α Ω−1− d

α

+ Cd,β,α,lt
− dβ
α Ω−

d
α
− 1

2(1−β) exp{−CΩ
1

1−β }

≤ Cd,β,α,kt
− dβ
α Ω−1− d

α .

Finally combining this with (4.2.29) shows (4.2.28).

Next, for large (finite) time.

Proposition 4.2.6. Under the same assumptions as Theorem 4.2.4 and The-

orem 2.3.2, then for fixed T > 0, the following estimates hold for the spatial

derivatives of the Green’s function G
(β)
ψα,x

(t, x, y) for (t, x, y) ∈ (1, T )×Rd×Rd,

• For Ω ≤ 1,

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤ CT,d,β,α,k


1, d+ k < α,

t−β(| log Ω|+ 1), d+ k = α,

|x− y|α−d−k, d+ k > α,

(4.2.30)

for all k ≤ l and all indicies ii, · · · , ik.
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• For Ω ≥ 1,∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤ C|x− y|−α−d, (4.2.31)

for all k ≤ l and all indicies ii, · · · , ik.

Proof. As usual we first use the asymptotic behaviour of the stable density,∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤cβ ∫ 1

0

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
Gψα,x(t

βz, x, y)

∣∣∣∣ dz

+cβ

∫ ∞
1

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
Gψα,x(t

βz, x, y)

∣∣∣∣ z−1− 1
β fβ(z−

1
β ) dz

Next, we use the estimate (2.3.10) for the first term and (4.2.19) for the second.

Note that since t ∈ (1, T ), then∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤ c

∫ 1

0

min
(

(tβz)−
d+k
α , t−

(d+k)β
α Ω−1− d+k

α z
)

dz

+c

∫ ∞
1

min
(

(tβz)−
d
α , t−

dβ
α Ω−1− d

α z
)
z−1− 1

β ect
βzfβ(z−

1
β ) dz

:= I1 + I2

The integral in I1 is the same as that one appearing in (4.1.17), and thus for

Ω ≤ 1,

I1 = Ct−
(d+1)β
α Ω−1− d+1

α

∫ Ω

0

z dz + Ct−
(d+1)β
α

∫ 1

Ω

z−
d+1
α dz

≤ C


t−

(d+k)β
α , d+ k < α,

t−β(| log Ω|+ 1), d+ k = α,

t−
(d+k)β
α Ω1− d+k

α , d+ k > α.

However in this situation t ∈ (1, T ), so t is away from both 0 and ∞. Thus,

recalling that Ω = |x− y|αt−β,

I1 ≤ CT,d,β,k,α


1, d+ k < α,

t−β(| log Ω|+ 1), d+ k = α,

|x− y|α−d−k, d+ k > α.
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For Ω ≥ 1,

I1 = Ct−
(d+1)β
α Ω−1− d+k

α

∫ 1

0

z dz =
C

2
t−

(d+k)β
α Ω−1− d+k

α ≤ CT,β,d,α,k|x− y|−α−d−k.

Furthermore, the integral I2 is the same as the one defined as Iup2 in (4.2.24),

thus for Ω ≤ 1,

I2 ≤ Ct−
dβ
α ≤ Cd,β,α,T

So for Ω ≤ 1,

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
G

(β)
ψα,x

(t, x, y)

∣∣∣∣ ≤ I1+I2 ≤ CT,d,β,α,k


1, d+ k < α,

t−β(| log Ω|+ 1), d+ k = α,

|x− y|α−d−k, d+ k > α,

which thus gives (4.2.30). Finally for Ω ≥ 1, using (4.2.25),

I2 ≤ Ct−
dβ
α Ω−1− d

α ≤ CT,d,β,α|x− y|−α−d,

thus combining the estimates for I1 and I2 for Ω ≥ 1 gives us (4.2.31).

4.3 Generalised Evolution Equations

In this last section, we look at the following generalised evolution, D
(ν)
0+∗u(t, x) = Au(t, x), (0,∞)× Rd

u(0, x) = φ(x), {0} × Rd,
(4.3.1)

where D
(ν)
0+∗ is the Caputo-type operator

D
(ν)
0+∗u(t) = −

∫ t

0

(f(t− r)− f(t))ν(t, dr)− (f(0)− f(t))

∫ ∞
t

ν(t, dr).

Here ν(t, ·) is a Lévy transition kernel that satisfies

sup
t

∫
min(1, r)ν(t, dr) <∞.
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The solution to Equation (4.3.1) is given by

u(t, x) = E(ν),t(A)φ(x),

where E(ν),t(A) is the operator-valued generalised Mittag-Leffler function which

is defined by the operator-valued integral

E(ν),t(A) =

∫ ∞
0

dseAs
(
− ∂

∂s

(∫ t

0

G(ν)(s, t, dr)

))
= 1 + AΠ−A(ν) (t, [0, t]),

(4.3.2)

where Π−A(ν) is the operator-valued potential measure of the semigroup T
(ν)
s esA

generated by (−D(ν)
0+∗ + A),

Π−A(ν) (t, dr) =

∫ ∞
0

dseAs
∫ t

0

G(ν)(s, t, dr).

Then we can rewrite this solution to get the Green’s function,

E(ν),t(A)φ(x) =

∫
Rd
φ(y)

∫ ∞
0

GA(s, x, y)
∂

∂s

(∫ 0

−∞
G(ν)(s, t, dr)

)
dsdy

=

∫
Rd
φ(y)G

(ν)
A (t, x, y) dy,

where G
(ν)
A is the Green’s function of the evolution Equation (4.3.1) given by

G
(ν)
A (t, x, y) :=

∫ ∞
0

GA(s, x, y)
∂

∂s

(∫ 0

−∞
G(ν)(s, t, dr)

)
ds.

We will use the following comparison principle from Kolokoltsov (2019b).

Theorem 4.3.1. Let ν and ν̃ be two Lévy measures satisfying

ν(t, dr) ≥ ν̃(dr),

sup
t

∫ ∞
0

min(1, r)ν(t, dr) <∞,
∫ ∞

0

min(1, r)ν̃(dr) <∞,

and ν(t, (0,∞)) = ν̃((0,∞)) =∞. Then for any non-increasing function f we

have the comparison principle for the semigroups:

T νt f ≥ T ν̃t f,
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where T
(ν)
t and T ν̃t are the semigroups generated by −D(ν) and −D(ν̃)

D(ν)f(t) = −
∫ ∞

0

(f(t− r)− f(t))ν(t, dr)

and

D(ν̃)f(t) = −
∫ ∞

0

(f(t− r)− f(t))ν̃(dr)

respectively. Moreover, the potential measures of the semigroups T νt and T ν̃t

satisfy the comparison principle,

U (ν)(t, [0, t]) ≤ U (ν̃)([0, t]).

A direct application of this comparison principle gives us the following

result, which allows us to obtain estimates for the solutions of generalised

evolution equations by using our estimates for G(β) from the previous sections.

Theorem 4.3.2. Let A be one of the spatial operators from (4.1.1), Theorem

4.1.3, (4.2.2) or (4.2.20) along with their relevant assumptions. Let ν(t, ds) be

a Lévy transition kernel which has upper and lower bounds of β-fractional type,

(−1/Γ(−β1))Cνs
−1−β1ds ≤ ν(t, ds) ≤ (−1/Γ(−β2))Cνs

−1−β2ds,

for some β1, β2 ∈ (0, 1) and Cν > 0. Then

c2Eβ2(At
β2)φ(x) ≤ E(ν),t(A)φ(x) ≤ c1Eβ1(At

β1)φ(x),

for a non-increasing function φ, where

E(ν),t(A)φ(x) =

∫
Rd
φ(y)G

(ν)
A (t, x, y) dy,

and

Eβ(Atβ)φ(x) =

∫
Rd
φ(y)G

(β)
A (t, x, y) dy.

Proof. This follows from the formula (4.3.2) and an application of the com-

parison principle for potential operators.

Thus the estimates obtained in Theorem 4.1.1, Theorem 4.1.3, Theorem

4.2.1 and Theorem 4.2.4 can be used to estimate solutions of generalised

evolutions (4.3.1).

85



Remark 7. In order to see why this result is expected, let us give some

intuition behind the comparison principle. The assumption that the Lévy kernel

is bounded below by the Lévy kernel of a β-stable subordinator, means that the

Lévy subordinator generated by the operator −D(ν)
+ where

D
(ν)
+ f(t) = −

∫ ∞
0

(f(x− y)− f(x))ν(dy),

has on average jumps that are larger than those of the process generated by

Dβ
+f(t) =

∫ ∞
0

(f(x− y)− f(x))[y1+βΓ(−β)]−1 dy.

So on the sample paths level, the jumps of X(ν) will typically be larger than those

of Xβ, which means that the inverse process of X(ν) will typically be constant

for longer times than the inverse process of Xβ. Thus when we subordinate the

spatial process, Y (t), generated by the operator A by the inverse subordinator

given by

Sνt := inf{s ≥ 0 : Xν
s ≥ t},

and compare its paths to the spatial process subordinated by an inverse stable

subordinator Sβt , we will see that Y (Sνt ) is dominated by Y (Sβt ) in the sense

that Y (Sνt ) will have longer trapping times.

Conclusion

In this chapter, we have looked at two-sided estimates for the Green’s function

of fractional evolution equations of the form

Dβu(t, x) = Lu(t, x), u(0, x) = Y (x).

The solution of such fractional evolution equations can be written with the

help of operator-valued Mittag-Leffler functions,

u(t, x) = Eβ(tβL)Y (x) =

∫ ∞
0

ezt
βLY (x)z−1− 1

βwβ(z−
1
β ) dz

=

∫
Rd
Y (y)

∫ ∞
0

GL(tβz, x, y)z−1− 1
βwβ(z−

1
β ) dz
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=

∫
Rd
Y (y)G

(β)
L (t, x, y) dz.

We have given two-sided estimates for the Green’s function G
(β)
L (t, x, y) (and

its spatial derivatives) in several different situations. The situations can be

split up into two broad cases: when the Green’s function GL associated with L

does or does not have known global in time estimates. In those two cases, we

consider generators of diffusion processes in Theorems 4.1.1 and 4.2.1; and we

consider generators of stable and stable-like processes in Theorems 4.1.3 and

4.2.4. Finally, we looked at generalised evolution equations where the operator

acting on the time variable is given by a Caputo-type operator

D
(ν,t)
0+∗u(t) = −

∫ t

0

(u(t− s)− u(t))ν(t, ds)−
∫ ∞
t

(u(0)− u(t))ν(t, ds).

We concluded that solutions to generalised evolution equations of the form

D
(ν,t)
0+∗u(t, x) = Lu(t, x), u(0, x) = Y (x), (4.3.3)

where ν(t, ds) is a Lévy-type kernel which for fixed t is comparable to the Lévy

measure of a β-stable subordinator, could be estimated using the estimates

obtained for G
(β)
L . Then whenever one is looking at evolution equations of the

form (4.3.3), or, from the probabilistic point of view, at stochastic processes

generated by −D(ν) + L, then under the assumption that ν is comparable

to β-stable, the estimates shown in this article can be used to gain a lot of

information.

Note that in this article we have viewed G
(β)
L (t, x, y) as the Green’s

function of the evolution equation

Dβu(t, x) = Lu(t, x).

Probabilistically speaking, G
(β)
L are the transition densities of the process XL,β

t

generated by −Dβ − L. The process XL,β
t is the subordination of the process

generated by L by the inverse of the process generated by Dβ. In this view

one could use the estimates in this article to obtain sample path properties of

a subordinated process XL,β
t .
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Chapter 5

Mixed fractional evolution

equations

This chapter is based on the article Johnston and Kolokoltsov (2019b), where we

obtain two-sided estimates for the Green’s function of the following boundary

value problem,

t1
Dβ

0+∗u(t1, t2, x) + t2
Dγ

0+∗u(t1, t2, x) = Lxu(t1, t2, x), (5.0.1)

u(0, t2, x) = φ1(t2, x),

u(t1, 0, x) = φ2(t1, x).

In Section 5.4 we look at a higher dimensional version of (5.0.1) in the sense

that we have k fractional derivatives on the left hand side (cf. Section 3.3),

each acting on a different variable,

k∑
i=1

ti
Dβi

0+∗u(t, x) = Lxu(t, x), (5.0.2)

where (t, x) ∈ Rk
+×Rd, with some specified boundary behaviour. The estimates

obtained in this article can be used to study more general CD-type evolution

equations (see Kolokoltsov (2019a, Section 8.5)) of the form

k∑
i=1

ti
D
νi(ti,·)
0+∗ u(t, x) = Lxu(t, x), (5.0.3)
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where each νi(ti, ·) is a Lévy-type kernel, under the assumption that each νi(ti, ·)
has a density which is comparable to the density of a βi-stable process. This

was done for the case k = 1 in Johnston and Kolokoltsov (2019a), so we do not

repeat it here.

5.1 Transition density of spatial process

Let Yx(s) be a diffusion process with generator L = ∇ · (a(x)∇) for some

symmetric measurable function a on Rd. Recall that Aronsons estimates,

(Aronson, 1967), say that the transition densities GY (s, x, y) of Yx(s) satisfy

the following two-sided Gaussian estimates for all s > 0,

GY (s, x, y) � s−
d
2 exp

{
−c |x− y|

2

s

}
. (5.1.1)

Let Xα
r (s) be the process (independent of Yx(s)) generated by −Dα

0+∗, which

is a decreasing β-stable process absorbed at 0 on an attempt to cross it. The

transition density of the process (Yx(s), X
α
r (s)) is given by

GY,γ(s, r, x, y) = GY (s, x, y)s−
1
γwγ(rs

− 1
γ ).

The following result is obtained by applying Aronsons estimate for GY and

(2.3.12) for wγ.

Lemma 5.1.1. The transition density of (Xγ
r (s), Yx(s)) satisfy the following

estimates

• For s ≤ rγ,

GY,γ(s, r, x, y) � Cr−1−γs1− d
2 exp

{
−c |x− y|

2

s

}
.

• For s > rγ,

GY,γ(s, r, x, y) � Cr−
2−γ

2(1−γ) s
1

2(1−γ)−
d
2 exp

{
−c |x− y|

2

s
− cs

1
1−γ r−

γ
1−γ

}
.
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Planar decreasing stable process on the positive orthant

Figure 5.1: Sample path of Xβ,γ
t1,t2(s) until the time s = τβ,γ0 when it hits the

boundary and Xβ,γ
t1,t2(τ

β,γ
0 ) = (149, 0) in this case. Here β = γ = 0.8 and

t1 = t2 = 1000. Made using the R packages ggplot2 (Wickham, 2016) and
stabledist (Wuertz et al., 2016).

5.2 Processes on the orthant

Consider the process living on R2
+ defined by Xβ,γ

t1,t2(s) := (Xβ
t1(s), X

γ
t2(s)),

where each coordinate a one-dimensional stable subordinator (with inverted

sign) which absorbed at 0, as described in the previous subsection. The process

Xβ,γ
t1,t2(s) is generated by − t1

Dβ
0+∗ − t2

Dγ
0+∗, where β, γ ∈ (0, 1), and it is

started at (t1, t2) ∈ R+ × R+. For clarity, see Figure 5.1 for a typical sample

path of Xβ,γ
t1,t2(s). We assume that the processes Xβ and Xγ are independent.

This independence assumption implies that the first time the process Xβ,γ
t1,t2

hits the boundary of R+ × R+ is given by

τβ,γ0 = min
(
τβ0 , τ

γ
0

)
.
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5.3 Mixed linear evolution

Consider the problem

(t1D
β
0+∗ + t2

Dγ
0+∗)f(t1, t2, x) = Af(t1, t2, x),

f(0, t2, x) = φ1(t2, x),

f(t1, 0, x) = φ2(t1, x).

(5.3.1)

Here A is the generator of a Feller process Yx(s) started at x ∈ Rd. For

simplicity let us take A = ∇ · (a(x)∇), where a(x) is a symmetric, uniformly

elliptic and measurable function so that A generates a non-degenerate diffusion,

with transition densities GY (s, x, y) which satisfy Aronsons two-sided estimates

(5.1.1).

Remark 8. Note that we could also obtain estimates for the Green’s function

in the case when L is, say, a non-isotropic homogeneous pseudo-differential

operator of order α ∈ (0, 2) whose symbol is of the form

ψα(x, p) = |p|αw(x, p/|p|), x ∈ Rd,

where w(x, ·) is some strictly positive function on Sd−1. See Eidelman, Ivasyshen,

et al. (2004) and Kolokoltsov (2000) for the relevant estimates for GY in that

case.

5.3.1 Well-posedness of the mixed boundary value prob-

lem

Let us briefly discuss the well-posedness of problem (5.3.1). We only sketch

the main steps, but see Kolokoltsov (2019a, Chapter 8), Hernández-Hernández,

Kolokoltsov, and Toniazzi (2017, Theorem 4.20) or Kolokoltsov (2019b, Section

4) for a full account of well-posedness for these types of problems. For even more

general operators A generating Feller semigroups (and even generalised versions

of Caputo-derivatives), one can obtain both uniqueness and the stochastic

representation (5.3.3) of the solution to (5.3.1) via Dynkin’s formula (Dynkin,

1965, Theorem 5.1). To obtain existence of a classical solution, the main idea

is to first transform the problem to an equivalent one involving zero boundary

conditions and Riemann-Liouville fractional derivatives (by introducing a new
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unknown function u(t1, t2, x) = f(t1, t2, x)− 1{t2>0}φ1(t2, x)− 1{t1>0}φ2(t1, x)).

This equivalent problem is then the following RL-type mixed boundary value

problem,

(t1D
β
0+ + t2

Dγ
0+ − A)u(t1, t2, x) = gφ(t1, t2, x), (5.3.2)

u(0, t2, x) = u(t1, 0, x) = 0,

where

gφ(t1, t2, x) = (t2D
γ
0+∗ − A)φ1(t2, x) + (t1D

β
0+∗ − A)φ2(t1, x).

Notice that here we require φ1 and φ2 to be in the domain of the generators

(− t2
Dγ

0+∗ + A) and (− t1
Dβ

0+∗ + A) respectively. The unique solution in the

domain of the generator to (5.3.2) is then found by applying the potential

operator (of the semigroup T βs T
γ
s e

sA generated by (− t1
Dβ

0+ − t2
Dγ

0+ + A)) to

the forcing term gφ(t1, t2, x). The solution to the Caputo problem (5.3.1) is

then recovered by undoing the shift by φ1 and φ2,

f(t1, t2, x) = 1{t1=0}φ1(t2, x) + 1{t2=0}φ2(t1, x)

+ 1{t1=0}

∫ t2

0

∫ ∞
0

erAGβ,γ(r, s2)dr(− t2
Dγ

0+∗ + A)φ1(t2 − s2, x)ds2

+ 1{t2=0}

∫ t1

0

∫ ∞
0

erAGβ,γ(r, s1)dr(− t1
Dβ

0+∗ + A)φ2(t1 − s1, x)ds1,

where Gβ,γ(r, s) is the transition density of the process generated by (t1D
β
0+∗ +

t2
Dγ

0+∗). Rearranging and using Kolokoltsov (2019b, Equation 4.126) we have

f(t1, t2, x) = E(β,γ)
[
tβ1L

γ
]
φ1(t2, x) + E(β,γ)

[
tγ2L

β
]
φ2(t1, x)

for Lγ := (− t2
Dγ

0+∗ + A) and Lβ := (− t1
Dβ

0+∗ + A). Here E(β,γ)[D] are

generalised operator-valued Mittag-Leffler functions, which are introduced and

extensively studied in the survey Kolokoltsov (2019b),

E(β,γ)
[
tβ1L

γ
]
φ1(t2, x) =

∫ ∞
0

esL
γ

φ1(t2, x)µβ0 (s) ds,
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where µβ0 (s) is the density of the exit time τβ0 ; we will justify this in the next

subsection.

5.3.2 Estimates for Green’s function

As mentioned in the previous section, an application of Dynkin’s formula

followed by Doobs optimal stopping theorem gives the following stochastic

representation of the solution (whenever it exists) to (5.3.1),

f(t1, t2, x) = E
[
φ1

(
Xγ
t2(τ

β
0 ), Yx(τ

β
0 )
)

1{τβ0 <τ
γ
0 }

+ φ2

(
Xβ
t1(τ

γ
0 ), Yx(τ

γ
0 )
)

1{τγ0 <τ
β
0 }

]
(5.3.3)

A simple conditioning argument (see Appendix A.1), shows that this solution

can be written as

f(t1, t2, x) =

∫ t2

0

∫
Rd
φ1(r, y)

(∫ ∞
0

GY (s, x, y)pγs (t2, r)µ
β
0 (s) ds

)
dydr

+

∫ t1

0

∫
Rd
φ2(r, y)

(∫ ∞
0

GY (s, x, y)pβs (t1, r)µ
γ
0(s) ds

)
dydr,

(5.3.4)

=:

∫ t2

0

∫
Rd
φ1(r, y)G

(β,γ)
1 (t1, r, x, y) dydr

+

∫ t1

0

∫
Rd
φ2(r, y)G

(β,γ)
2 (t2, r, x, y) dydr,

where

G
(β,γ)
1 (t1, r, x, y) :=

t1
β

∫ ∞
0

GY (s, x, y)s−1− 1
β
− 1
γwγ(rs

− 1
γ )wβ(t1s

− 1
β ) ds,

and

G
(β,γ)
2 (t2, r, x, y) :=

t2
γ

∫ ∞
0

GY (s, x, y)s−1− 1
β
− 1
γwβ(rs−

1
β )wγ(t2s

− 1
γ ) ds.

Note in the above we have used (2.3.13) for densities µα0 and µβ0 of the exit

times τα0 and τβ0 . On the other hand, rearranging (5.3.4) we find

f(t1, t2, x) =

∫ ∞
0

(∫ t2

0

(∫
Rd
φ1(r, y)GY (s, x, y)dy

)
pγs (t2, r)dr

)
µβ0 (s)ds
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+

∫ ∞
0

(∫ t1

0

(∫
Rd
φ2(r, y)GY (s, x, y)dy

)
pβs (t1, r)dr

)
µγ0(s)ds

=
t1
β

∫ ∞
0

es(A−D
γ
0+∗)φ1(t2, x)s−1− 1

βwβ(t1s
− 1
β )ds

+
t2
γ

∫ ∞
0

es(A−D
β
0+∗)φ2(t1, x)s−1− 1

γwγ(t2s
− 1
γ )ds

=
1

β

∫ ∞
0

ezt
β
1 (A−Dγ0+∗)φ1(t2, x)z−1− 1

βwβ(z−
1
β )dz

+
1

γ

∫ ∞
0

ezt
γ
2 (A−Dβ0+∗)φ2(t1, x)z−1− 1

γwβ(z−
1
γ )dz,

where we have made in the last step the substitutions z = stβ in the first

integral and z = stγ in the second.

Remark 9. Note that this means

f(t1, t2, x) = Eβ[tβ1L
γ]φ1(t2, x) + Eγ[t

γ
2L

β]φ2(t1, x)

where Lγ = A−Dγ
0+∗ and Lβ = A−Dβ

0+∗, where Eα is the (operator) valued

Mittag-Leffler function,

Eβ(L)φ(t, x) =

∫ ∞
0

esLφ(t, x)s−1− 1
βwβ(s−

1
β ) ds.

Thus, the Green’s function associated to (5.3.1) are the coordinates of

the integral kernel of the operator which acts on the boundary functions φ1

and φ2:

(φ ∗Gfull)(t1, t2, x) =

∫
∂R2

+×Rd
φ(r1, r1, y)Gβ,γ

full(t1, t2, r1, r2, x, y) dydr1dr2

=

∫
∂R+×Rd

φ1(r2, y)G
(β,γ)
1 (t1, r2, x, y)dr2dy

+

∫
∂R+×Rd

φ2(r1, y)G
(β,γ)
2 (t2, r1, x, y)dr1dy

= (φ1 ∗G(β,γ)
1 )(t1, x) + (φ2 ∗G(β,γ)

2 )(t2, x).

Remark 10. More generally, the function

f(x) = (φ ∗GA)(x) =

∫
∂X

φ(z)GA(x, z) dz,
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solves the boundary value problem

Af(x) = 0, x ∈ X,

f(z) = φ(z), z ∈ ∂X,

where φ is a suitable function on the boundary of X.

For this reason, to obtain global two-sided estimates for the full Green’s

function Gfull = (G
(β,γ)
1 , G

(β,γ)
2 ), it suffices to obtain estimates for G

(β,γ)
1 , since

the estimates for G
(β,γ)
2 will be the same up to exchanging coordinates. For the

sake of readability we drop the subscripts from G
(β,γ)
1 and t1 and look only at

the function

G(β,γ)(t, x; r, y) := G
(β,γ)
1 (t1, x; r, y).

Making the substitution s = tβz, we have

G(β,γ)(t, x; r, y) = t−
β
γ

∫ ∞
0

GY (tβz, x, y)z−1− 1
β
− 1
γwγ(rt

−β
γ z−

1
γ )wβ(z−

1
β ) dz

=

∫ ∞
0

GY,γ(tβz, r, x, y)tβµβ0 (tβz) dz, (5.3.5)

where GY,γ and µβ0 are as in Lemma 2.3.3 and Lemma 5.1.1. Let Ω := |x−y|2t−β,

A = rγt−β.

Proposition 5.3.1. For (t, r, x, y) ∈ (0,∞)× (0, t2)×Rd×Rd and t2 ∈ (0,∞),

the following estimates hold,

• For Ω ≤ 1,

G(β,γ)(t, r, x, y) � Ct−
β
γ
− dβ

2 A−1−γ


C, d ≤ 3

(| log (Ω(A−1 ∧ 1)) |+ 1), d = 4,

Ω2− d
2 , d ≥ 5.

(5.3.6)

• For Ω ≥ 1,

G(β,γ)(t, r, x, y) � Ct−
β
γ
− dβ

2 ΩN1AN2 exp
{
−
(
Ω(max{A−1, 1}

) 1
2−min(β,γ)

}
,

(5.3.7)
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where

N1 = −d
2

(
1− α
2− α

)
+

1− α
2(2− α)(1− α̃)

N2 = −d
2

(
1

2− α

)
+

1

2(2− α)(1− α̃)
+

1

2(1− α)
− 2− γ

2γ(1− γ)

α = min(β, γ)

α̃ = max(β, γ).

Proof. We sketch the main ideas of the proof here, see Appendix A.2 for the

full details of the calculations. After applying Lemma 2.3.3 and Lemma 5.1.1

in (5.3.5), we end up with 4 integrals which contribute to the estimate for

G(β,γ). For Ω ≤ 1, the main contribution comes from the integral

I1 = t−
β
γ
− dβ

2 A−1− 1
γ

∫ A∧1

0

z1− d
2 exp

{
−Ωz−1

}
dz.

After a substitution of w = Ωz−1, we immediately recognise the integral form

of the incomplete gamma function, see Section 2.4,

I1 = t−
β
γ
− dβ

2 A−1− 1
γ Ω2− d

2

∫ ∞
(A−1∨1)Ω

w
d
2
−3 exp{−Ωw} dw.

Thus we have the two-sided estimate for I1 for Ω ≤ 1,

I1 � Ct−
β
γ
− dβ

2 A−1−γ


C, d = 1, 2, 3,

(| log (Ω(max{A−1, 1}) |+ 1), d = 4,

Ω2− d
2 , d ≥ 5.

Since the integral I1 is the main contributor to the estimate, this proves (5.3.6).

For Ω ≥ 1, the main contribution to the estimate comes from the integral

I4 = t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
A∨1

z−
d
2
−1+ 1

2(1−β)+ 1
2(1−γ) exp

{
−Ωz−1 − A−

1
1−γ z

1
1−γ − z

1
1−β

}
dz.

To estimate this integral, let α = min(β, γ) and α̃ = max(β, γ). Then as an

upper (resp. lower) bound for I4 we replace the powers in the exponential term
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with α (resp. α̃). That is, the upper estimate

I4 ≤ C1t
−β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
A∨1

z−
d
2
−1+ 1

2(1−β)+ 1
2(1−γ) exp

{
−Ωz−1 − A−

1
1−α z

1
1−α

}
dz,

and the lower estimate

I4 ≥ C2t
−β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
A∨1

z−
d
2
−1+ 1

2(1−β)+ 1
2(1−γ) exp

{
−Ωz−1 − A−

1
1−α̃ z

1
1−α̃

}
dz.

Then an application of Proposition 2.4.1 from the Preliminaries proves (5.3.7),

and we are done.

5.4 Extension to higher dimension

Let us outline how to extend the previous sections to the case where we have

more than two fractional derivatives. Let O be the orthant in Rk defined by

O := {(t1, · · · , tk) ∈ Rk, ti ≥ 0, i ∈ {1, · · · , k}}.

Let Oi,0 denote the collection of vectors ti,0 from O whose i-th coordinate is

zero,

Oi,0 := {ti,0 = (t1, · · · , ti−1, 0, ti+1, · · · , tk)}.

Define hi,0(t) to be the projection of Oi,0 onto the subspace Oi ⊂ Rk−1 by

removing the coordinate which is zero, that is, hi,0(t) : Oi,0 7→ Oi

hi,0(ti,0) = (t1, · · · , ti−1, ti+1, · · · , tk).

We look at the equations on O × Rd,(
k∑
i=1

ti
Dβi

0+∗ − A

)
f(t, x) = 0, on O × Rd, (5.4.1)

f(ti,0, x) = φi(hi,0(ti,0), x), on Oi,0 × Rd,

where each φi is a function on Oi × Rd.

Remark 11. In order to have continuity of the solution to the above boundary

value problem, we would need to also impose additional boundary conditions
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in order to ensure that the solution coincides at the points where the boundary

meets - i.e, at the origin. Without this additional assumption we only have a

generalised solution, which is enough for our purposes.

As before, let Xβi
ti (s) denote the process started at ti ∈ R+ generated

by −Dβi
0+∗ where βi ∈ (0, 1), and let τβi0 denote the exit time of this process

from (0,∞),

τβi0 := inf{s > 0 : Xβi
ti (s) ≤ 0}.

Let Xβ
t (s) = (Xβ1

t1 (s), · · · , Xβk
tk

) be the process on O generated by

− tD
β
0+∗ := −

k∑
i=1

ti
Dβi

0+∗,

and due to the independence of each process Xβi
ti , the exit time of Xβ

t (s) from

the orthant O is given by

τβ0 = min
i∈{1,··· ,k}

τβi0 .

For t ∈ Rk
+, let Bi(t) denote the subset of Oi defined by

Bi(t) := {r ∈ Oi, rj ≤ tj, j 6= i},

i.e, Bi consists of elements of the form

[0, t1]× · · · × [0, ti−1]× [0, ti+1]× · · · × [0, tk] ∈ Oi.

The solution to (5.4.1) is given by

f(t, x) = E

[
k∑
i=1

φi(hi,0(Xβ
t (τβ0 ), Yx(τ

β
0 ))1{τβ0 =τ

βi
0 }

]

=
k∑
i=1

(∫
Bi(t)

∫
Rd
φi(r, y))

(∫ ∞
0

pY (s, x, y)
k∏
j 6=i

pβjs (tj, rj)µ
βi
0 (s) ds

)
dydr

)
.

Remark 12. The last equality above is a straightforward combination (or

extension) of Proposition A.1.1 and the proof of (3.3.5).
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Thus the objects we are interested in is

G(βi)(ti, x; r, y) =

∫ ∞
0

pY (s, x, y)
k∏
j 6=i

pβjs (tj, rj)µ
βi
0 (s) ds,

where (ti, x) ∈ R+ × Rd, and (r, y) ∈ Oi × Rd. Note that

k∏
j 6=i

pβjs (tj, rj) =
k∏
j 6=i

s
− 1
βj wβj(rjs

− 1
βj )

and

µβi0 (s) =
ti
βi
s
−1− 1

βiwβi(tis
− 1
βi ),

thus

G(βi)(ti, x; r, y) =
ti
βi

∫ ∞
0

pY (s, x, y)s
−1−

∑k
i=1

1
βi

k∏
j 6=i

wβj(rjs
− 1
βj )wβi(tis

− 1
βi ) ds

=
ti
βi

∫ ∞
0

GY (s, r, x, y)µβ0 (s) ds

Focusing on the first coordinate, we have

G(β1)(t1, x; r, y) =
t1
β1

∫ ∞
0

pY (s, x, y)s
−1−

∑k
i=1

1
βi

k∏
j=2

wβj(rjs
− 1
βj )wβ1(t1s

− 1
β1 ) ds

=

∫ ∞
0

GY,k(s, r, x, y)µβ10 (s) ds,

where µβ0 (s) is the density of the exit time τβ10 , and GY,k(s, r, x, y) is the density

of the process (Yx(s), X
β2
r2

(s), Xβ3
r3

(s), · · · , Xβk
rk

(s)),

GY,k(s, r, x, y) = pY (s, x, y)s
−

∑k
i=2

1
βi

k∏
j=2

wβj(rjs
− 1
βj )

� s−
d
2 exp

{
−|x− y|

2

s

}
s
−

∑k
i=2

1
βi

k∏
j=2

wβj(rjs
− 1
βj )

� s−
d
2 exp

{
−|x− y|

2

s

}(
sk−1

k∏
j=2

r
−1−βj
j 1

{s<r
βj
j }

+ · · ·
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+ sn−1

n∏
j=2

r
−1−βj
j 1

{s<r
βj
j }

k∏
i=n+1

s
− 1
βi fβj(ris

− 1
βi )1{s>rβii }

+ · · ·

+
k∏
i=2

s
− 1
βi fβi(ris

− 1
βi )1

{s>r
βj
j }

)

where the cross terms runs from n = k−1 down to n = 1 in the above above and

are the mixtures of long and short tails. Note that we use the convention that∏1
i=2 =

∏k
i=k+1 = 1. The RHS in the above can be written more compactly as

s−
d
2 exp

{
−|x− y|

2

s

} k∑
n=1

sn−1

n∏
j=2

r
−βj−1
j 1

{s<r
βj
j }

k∏
i=n+1

s
− 1
βi fβi(ris

− 1
βi )1{s>rβii }

.

Note also that

k∏
i=n+1

s
− 1
βi fβi(ris

− 1
βi ) =

k∏
i=n+1

s
1

2(1−βi) exp
{
−cβj

(
r−βjs

) 1
1−βj

}
r
−

2−βj
2(1−βj)

j

Let A1 = t−β11

∏k
i=2 r

βi
i and Ω = |x− y|2t−β11 .

Conjecture 5.4.1. For (t1, r, x, y) ∈ (0,∞) × O1 × Rd × Rd, we have the

following two-sided estimates for the Green’s function G(β1),

• For Ω ≤ 1,

G(β1)(t1, r, x, y) � Ct
− dβ1

2
1 Π1


C, d ≤ 2k − 1,∣∣∣log

(
Ω

min{A1,1}

)∣∣∣+ 1, d = 2k,

Ω2− d
2 , d ≥ 2k + 1,

where Π1 =
∏k

i=2 t
−β1
βi

1 A
−1− 1

βi
1 .

• For Ω ≥ 1,

G(β1)(t1, r, x, y) � Π2t
− dβ1

2
1 AN1

1 ΩN1 exp

{
−
(

Ω

min{A1, 1}

) 1
2−α
}
,

where Π2 =

(∏k
i=2 t

−β1
βi

1 A
− 2−βi

2βi(1−βi)
1

)
, α = min{β1, · · · , βk}, and the pow-
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ers N1 and N2 depend on k, d and βi for 1 ≤ i ≤ k.
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Chapter 6

Applications

In this final Chapter we discuss a possible application of our results to the

area of finance. In the previous Chapter we looked at evolution equations on

Ok × Rd (in particular the case k = 2), where Ok is the orthant in Rk. A

natural place where processes on the orthant O2 appear is in the modelling of

limit order books. In particular we will consider the following boundary value

problem,

t1
Dβ

0+∗u(t1, t2) + t2
Dγ

0+∗u(t1, t2) = 0, on O2, (6.0.1)

u(0, t2) = φ1(t2), on {0} × R+,

u(t1, 0) = φ2(t1), on R+ × {0}.

6.1 Limit order books: overview

A limit order book device used by many organized electronic markets to keep

track of the interest of market participants. When an order arrives at an

exchange, it waits in a limit order book to be executed. Market participants

have two main options to post buy or sell orders, namely, limit orders and

market orders. A limit order is an order to trade a certain volume of a stock1

at a given specified price. The limit order book is the collection of all available

limit orders. A market order is an order to buy or sell a certain volume of the

stock at the best available price in the limit order book. Market orders are not

added to the order book, instead the trade occurs immediately and the order

1or to trade another type of security, like equities, futures or derivatives.
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book gets updated. Orders may also be cancelled at any time, but if one is

concerned with just the evolution of the volume of orders, this has the same

effect on the volume of trades available as a market order (or a limit order

which is submitted at a price which can be immediately executed).

At any given time an order book holds the number of outstanding orders

which are awaiting execution. Each order submitted to an order book consists

of a collection of numbers indicating, among other things, (i) the price, (ii)

the volume and (iii) the direction (buy or sell). From this point of view, the

volume of trades available at a given price behaves like a queuing process,

whose arrivals are the incoming orders while jobs are completed through one

of two ways:

• A trade is executed via a market order (or limit buy/sell order that is

less/more than the bid/ask price) of the opposite type.

• A cancellation occurs (either because the time limit was reached, or the

traded cancelled the order).

The bid price pb is defined as the highest price at which there is a limit buy

order, while the ask price pa is the lowest price at which there is a limit sell

order. See Figure 6.1 for a schematic illustration of limit order book. There

are many works that model the limit order books, see the recent book Abergel,

Anane, et al. (2016) and references therein for a nice overview of the various

methods used. Viewing the dynamics of orders and prices as a queuing system

is a popular method of modelling limit order books. For example in Abergel

and Jedidi (2013), Cont and De Larrard (2012), Kruk (2003), and Lipton

et al. (2013), the authors consider various diffusive and fluid limits of bid/ask

prices, essentially by considering the heavy traffic limits of order arrivals. In

this view the volume process V = (Vb, Va) converges to a reflected Brownian

motion in the positive orthant O2, which is restarted from within the orthant

whenever it hits the boundary, according to some distribution R = (R1, R2).

The distribution R is the distribution of the sizes of the queues at prices

‘behind’ the prices pb and pa. Some works try to model each level of the order

books, which requires knowing the distribution R, see Cont, Stoikov, et al.

(2010) and Hambly et al. (2018), while it is simpler to consider only the highest

level of the order book (i.e, only the prices and volumes at the bid and ask

prices) see for example Avellaneda et al. (2011). Typically the arrival of orders
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Figure 6.1: Example of a fictional limit order book of a stock on an exchange.
Here the ask price is pa = 101 and the bid price is pb = 99. The spread is
S = 2δ = 2 and the mid-price is 100. The volume of orders available at the bid
and ask are Vb = 10 and Va = 20 respectively. If a market order came along to
sell 10 units of this stock, after the trade is executed the volume Vb would be
depleted and the new ask price would be pb = 98 with a volume of Vb = 20.

are modelled by simple independent Poissonian arrival times, or by the more

complex Hawkes processes which are state-dependent, see for example Blanc

et al. (2017) and Lu and Abergel (2018).

Here we propose a simple toy model, where we consider only the top

level of the order book and we assume that the dynamics of the volume process

V (s) = (Vb(s), Va(s)) is governed by the operator −Dβ,γ
0+∗ from (6.0.1) which

we discussed in Chapter 5. Note in particular that this means that we are

assuming the processes Vb(s) and Va(s) are strictly decreasing. This could for

example be reasonable if the net flow of orders is always negative, so that the

number of orders executed per second is always larger than the number of

incoming orders. We then assume that each time this volume process restarts

at a uniform point somewhere inside O2 whenever it hits ∂O2. Finally we

assume that each time the boundary is hit (which means one of the queues Vb

or Va has depleted), there occurs a price change in that same direction, while

keeping the spread S := pa − pb to always be equal to one tick δ. In Figure

6.2 we give an possible sample path of the dynamics of the process on the

orthant up until it first hits the boundary. Figure 6.3 shows an example sample
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Figure 6.2: The volume process on the positive orthant. Both processes are
decreasing α-stable subordinators with α = 0.8, starting at (1000, 1000).
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Figure 6.3: The volume process on the positive orthant, restarted at some
uniformly distributed point (between 1000 and 2000) each time one coordinate
hits the boundary of the orthant. As before, α = 0.8. In this example, the net
price change is −2, with the price changing on average every 127 time steps.

path of the process after being restarted several times, resulting in a net price

change. Finally, Figure 6.4 shows a possible price process arising from letting

the process X(β,γ) run for many lifetimes, restarting inside the orthant each

time it reaches the boundary.

So far we have only considered a process on the orthant whose coordinates

are independent decreasing β-stable subordinators. In Figure 6.5 we plot an

α-stable process in R2, with α ∈ (0, 2), whose characteristic function is given

by (2.2.2). Aesthetically, this process seems to exhibit behaviour that is more

realistic for limit order books than the one already discussed, and may be an

interesting avenue of future work.
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Figure 6.4: Example of price process which is driven by the process on the
orthant: each time Xβ,γ hits the x-axis (respectively y-axis) the price moves
down (respectively up). Here β = γ = 0.8, with 10000 price changes. Also
shown is a zoomed in portion of the price process, highlighting the fact that
the process remains constant for however long it takes for the volume process
to hit the boundary of the orthant.
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Figure 6.5: Example of bivariate α-stable on the orthant with two-sided jumps
and positive drift. Here the order of stability is α = 1.5, centred at (1, 1) and
the spectral measure µ has 4 masses at (1, 0), (0, 1), (−1, 0), (0,−1). Plotted
with the aid of the R packages ggplot2 and alphastable, see Wickham (2016)
and Teimouri et al. (2019).
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There are several interesting questions that one may think about when

modelling limit order books;

i) How many times did the price change over a certain time period?

ii) How long does it take for a price to move?

iii) When the price does change, which direction does it move in?

iv) What is the long-time behaviour of the price process?

Items i) and ii) are settled by understanding the distribution of τβ,γ0 , in particular

E[τβ,γ0 ]. Item iii) requires understanding the conditional distribution of the

price process. In reality, the processes modelling the sizes of the queues at the

ask and bid price should have a more complex structure. Firstly, the order of

stability should depend on the current size of the queue. Secondly, the sizes of

the queues should depend on each other - indeed, empirical studies have shown

that the queue sizes of the bid and ask price are negatively correlated. Possible

steps to take in this direction is to replace in (6.0.1) the classic fractional

derivatives with −D(ν)
0+∗ where ν is the Lévy measure of a stable-like process,

for example. This will be the subject of future work.
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Appendix A

Appendix

A.1 Conditioning argument

Recall that µα0 is the density of the random variable τα0 and pαs (t, r) are the

transition densities of the monotone process Xα
t (s) started at t ∈ (0,∞).

Proposition A.1.1. For β, γ ∈ (0, 1),

E
[
φ1(Xγ

t2(τ
β
0 ), Yx(τ

β
0 ))1{τβ0 <τ

γ
0 }

]
=

∫ t2

0

∫
Rd
φ1(r, y)

∫ ∞
0

pY (s, x, y)pγs (t2, r)µ
β
0 (s) dsdydr, (A.1.1)

and similarly,

E
[
φ2(Xβ

t1(τ
γ
0 ), Yx(τ

γ
0 ))1{τγ0 <τ

β
0 }

]
=

∫ t1

0

∫
Rd
φ2(r, y)

∫ ∞
0

pY (s, x, y)pβs (t1, r)µ
γ
0(s) dsdydr. (A.1.2)

Proof. In the LHS of (A.1.1) condition first on {τβ0 = s},

E
[
φ1(Xγ

t2(τ
β
0 ), Yx(τ

β
0 ))1{τβ0 <τ

γ
0 }

]
=

∫ ∞
0

E
[
φ1(Xγ

t2(s), Yx(s))1{s<τγ0 }
]
µβ0 (s) ds.

Due to the monotonicity of the process Xγ
t2 , the events {τ γ0 > s} and {Xγ

t2(s) >

0} are equivalent. Thus we next condition on {Xγ
t2(s) = r},

=

∫ ∞
0

E
[
φ1(Xγ

t2(s), Yx(s))1{Xγ
t2

(s)>0}

]
µβ0 (s) ds
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=

∫ ∞
0

∫ t2

0

E
[
φ1(r, Yx(s))1{r>0}

]
µβ0 (s)pγs (t2, r) drds.

Finally conditioning on {Yx(s) = y} and rearranging, we have∫ t2

0

∫
Rd
φ1(r, y)

∫ ∞
0

pY (s, x, y)pγs (t2, r)µ
β
0 (s) dsdydr,

where pY (s, x, y) are the transition densities of the process (Yx(s))s≥0 started

at x ∈ Rd. The proof of (A.1.2) is similar and is omitted.

A.2 Proof of Proposition 5.3.1

Let A := rγt−β, Ω := |x− y|2t−β. First we use Lemma 2.3.3 to estimate the

density µβ0 , then we use Lemma 5.1.1 to estimate the spatial density

G(β,γ)(t, x; r, y) =

∫ ∞
0

G(Y,γ)(tβz, r, x, y)tβµβ0 (tβz) dz

�
∫ 1

0

G(Y,γ)(tβz, r, x, y) dz

+

∫ ∞
1

G(Y,γ)(tβz, r, x, y)z−1− 1
β fβ(z−

1
β ) dz

� t−
β
γ
− dβ

2

∫ 1

0

z−
1
γ
− d

2 exp
{
−Ωz−1

}
wγ(A

1
γ z−

1
γ ) dz

+ t−
β
γ
− dβ

2

∫ ∞
1

z−1+ 1
2(1−β)−

1
γ
− d

2 exp
{
−Ωz−1 − cβz

1
1−β

}
· wγ(A

1
γ z−

1
γ ) dz

� I1 + I2 + I3 + I4

where

I1 = t−
β
γ
− dβ

2 A−1− 1
γ

∫ A∧1

0

z1− d
2 exp

{
−Ωz−1

}
dz 1{A∈R+}

I2 = t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ 1

A

z
1

2(1−γ)−
d
2 exp

{
−Ωz−1 − A−

1
1−γ z

1
1−γ

}
dz 1{A<1}

I3 = t−
β
γ
− dβ

2 A−1− 1
γ

∫ A

1

z
1

2(1−β)−
d
2 exp

{
−Ωz−1 − cβz

1
1−β

}
dz 1{A>1}

109



I4 = t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
A∨1

z−
d
2
−1+ 1

2(1−β)+ 1
2(1−γ)

exp
{
−Ωz−1 − A−

1
1−γ z

1
1−γ − z

1
1−β

}
dz 1{A∈R+}

Now we have 4 regimes to consider, which are

• Case 1a): A ≤ 1 and Ω ≤ 1

• Case 1b): A ≥ 1 and Ω ≤ 1

• Case 2a): A ≤ 1 and Ω ≥ 1

• Case 2b): A ≥ 1 and Ω ≥ 1.

By directly comparing the powers of z,Ω and A in the integrals above, we can

reduce our attention to the integrals I1 and I4. Indeed for Ω ≤ 1 we have

0 = I3 < I4 ≤ I2 ≤ I1, A ≤ 1,

and

0 = I2 < I4 ≤ I3 ≤ I1, A ≥ 1.

For Ω ≥ 1 we have

0 = I3 < I1 ≤ I2 ≤ I4, A ≤ 1,

and

0 = I2 < I1 ≤ I3 ≤ I4, A ≥ 1.

Thus we have a preliminary two-sided estimate for G(β,γ)(t, r, x, y),

C1I1 ≤ G(β,γ)(t, r, x, y) ≤ C2I1, for Ω ≤ 1,

and

C3I4 ≤ G(β, γ)(t, r, x, y) ≤ C4I4, for Ω ≥ 1,

for some constants C1, C2, C3, C4.
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A.2.1 Estimates for I1

For the first integral, we have for A ≤ 1,

I1 = t−
β
γA−1− 1

γ

∫ A

0

z1− d
2 exp

{
−Ωz−1

}
dz

Then for Ω→ 0 and A→ 0,

I1 ∼ Cβ,d,γt
−β
γ
− dβ

2 A−1− 1
γ


1, d ≤ 3,

| log ΩA−1|+ 1, d = 4,

Ω2− d
2 , d ≥ 5.

For Ω→∞ and A→ 0,

I1 ∼ Cβ,d,γt
−β
γ
− dβ

2 A1− d
2
− 1
γ Ω−1 exp

{
−ΩA−1

}
.

For A ≥ 1 we have

I1 = t−
β
γ
− dβ

2 A−1− 1
γ

∫ 1

0

z1− d
2 exp

{
−Ωz−1

}
dz,

so for Ω→ 0 and A→∞,

I1 ∼ Cβ,d,γt
−β
γ
− dβ

2 A−1− 1
γ


1, d ≤ 3,

| log Ω|+ 1, d = 4,

Ω2− d
2 , d ≥ 5.

For Ω→∞ and A→∞,

I1 ∼ t−
β
γ
− dβ

2 A−1− 1
γ Ω−1 exp {−Ω} .

A.2.2 Estimates for I4

For A ≤ 1,

I4 = t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
1

zn exp
{
−Ωz−1 − A−

1
1−γ z

1
1−γ − cβz

1
1−β

}
dz.
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Let α := min(β, γ) and α̃ = max(β, γ). For bounded Ω ≤ 1, we have

I4 ≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
1

zn exp
{
−cγA−

1
1−γ z

1
1−γ − cβz

1
1−β

}
dz

≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
1

zn exp
{
−cγA−

1
1−γ z

1
1−α

}
dz

≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)A
1

1−γ exp
{
−CA−

1
1−γ

}
,

where we have used (2.4.2). Next we use (2.4.2) to get for Ω ≥ 1,

I4 ≤ t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
1

zn exp
{
−Ωz−1 − A−

1
1−α z

1
1−α

}
dz

∼ Ct−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ) Ω
2(n+1)−c
2(c+1) A

2c(n+1)+c
2(c+1) exp

{
−C2

(
ΩA−1

) c
c+1

}
, ΩA−1 →∞,

where c = 1
1−α and n = −d

2
− 1 + 1

2(1−β)
+ 1

2(1−γ)
. Thus

I4 ≤ Ct−
β
γ
− dβ

2

(
ΩA

1
1−α

)− d
2( 1−α

2−α)+ 1−α
2(2−α)(1−α̃)

A
1

2(1−α)−
2−γ

2γ(1−γ) exp
{
−C

(
ΩA−1

) 1
2−α
}
.

Finally for A ≥ 1, we have

I4 = t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
A

zn exp
{
−Ωz−1 − cγA−

1
1−γ z

1
1−γ − cβz

1
1−β

}
dz.

For bounded Ω, but unbounded A we have

I4 ≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
A

zn exp
{
−cβA−

1
1−γ z

1
1−γ − cγz

1
1−β

}
dz

≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)An exp
{
−cβA

1
1−β

}
, for A→∞.

For unbounded Ω and A, the term A−
1

1−γ is negligible since A is large, then

we apply the usual Laplace approximation Proposition 2.4.1 to get

I4 ≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
A

zn exp
{
−Ωz−1 − cβA−

1
1−γ z

1
1−γ − cγz

1
1−β

}
dz

≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ ∞
1

zn exp
{
−Ωz−1 − cαz

1
1−α

}
dz

≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ)

∫ 1

0

w−n−2 exp
{
−Ωw − cαw−

1
1−α

}
dw

≤t−
β
γ
− dβ

2 A−
2−γ

2γ(1−γ) Ω
n+1
2−α−

1
2(2−α) exp

{
−Ω

1
2−α

}
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for Ω→∞ and A ≥ 1. For the lower bound of I4, simply reverse the role of α

and α̃ in each case - otherwise structure of the estimates are the same.
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Mijatović, A. and M. Pistorius (2013). “Continuously monitored barrier options

under Markov processes”. In: Math. Finance 23.1, pp. 1–38. issn: 0960-1627.

Murray, J. D. (1984). Asymptotic analysis. Second. Vol. 48. Applied Mathematical

Sciences. Springer-Verlag, New York, pp. vii+164. isbn: 0-387-90937-0. doi:

10.1007/978-1-4612-1122-8.

Pollard, H. (1948). “The completely monotonic character of the Mittag-Leffler

function Eα(−x)”. In: Bulletin of the American Mathematical Society 54.12,

pp. 1115–1116.

Porper, F. and S. D. Èidel’man (1984). “Two-sided estimates of fundamental solutions

of second-order parabolic equations, and some applications”. In: Russian

Mathematical Surveys 39.3, pp. 119–178.

Ramasubramanian, S. (2016). “A multidimensional ruin problem and an associated

notion of duality”. In: Stoch. Models 32.4, pp. 539–574. issn: 1532-6349. doi:

10.1080/15326349.2016.1175949.

Samorodnitsky, G. and M. S. Taqqu (1994). Stable non-Gaussian random processes.

Stochastic Modeling. Stochastic models with infinite variance. Chapman &

Hall, New York, pp. xxii+632. isbn: 0-412-05171-0.

Sato, K.-i. (1999). Levy Processes and Infinitely Divisible Distributions. Vol. 85.

Cambridge university press, p. 568.

Scalas, E., R. Gorenflo, and F. Mainardi (2000a). “Fractional calculus and continuous-

time finance”. In: Phys. A 284.1-4, pp. 376–384. issn: 0378-4371. doi: 10.

1016/S0378-4371(00)00255-7.

Scalas, E., R. Gorenflo, and F. Mainardi (2000b). “Fractional Calculus and continuous-

time finance II: the waiting-time distribution”. In: Physica A. Stastical Me-

chanics and its Applications 287.3-4, pp. 468–481. issn: 0378-4371.

Scalas, E., R. Gorenflo, F. Mainardi, and M. Raberto (2001). “Fractional calculus and

continuous-time finance. III. The diffusion limit”. In: Mathematical finance

(Konstanz, 2000). Trends Math. Birkhäuser, Basel, pp. 171–180.
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