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ABSTRACT

Recently, the first treatment of the space population as
a multi-layer temporal network was introduced. This
model has allowed the application of network theory
techniques for a holistic treatment of the space environ-
ment. In this work, we go one step further by focusing on
the physical layer of the network, investigating its struc-
ture, dynamics, and stability. The interactions among res-
ident space objects are modeled through their collision
rates: each node represents a population of satellites in
a given orbital class, and each link represents their time-
varying collision rates with other nodes. Satellites can
flow in between these classes and populations, depending
on several sink and source phenomena, including explo-
sions, collisions, natural decay due to atmospheric drag,
post-mission disposal strategies, operational lifetime du-
ration, and new launches. The underlying dynamics on
the network is modeled as a stochastic contact process, in
which nodes can assume two possible states: operational
and non-operational. The network, therefore, presents a
time-varying structure where the number of active and
inactive objects, their distribution, their time-varying col-
lision rates, and many other key variables can be stud-
ied. The conceptual simplicity and versatility of the net-
work allow to study various topologies and dynamics,
and therefore investigate interactions among space ob-
jects under different levels. In this framework, several
aspects are studied: first of all, two network topologies
are introduced. Then, the concept of global stability of
the network is introduced and discussed, and a stochas-
tic evolutionary network model is built to simulate the
sink and source phenomena in the space environment and
evolve the overall population of objects in low Earth or-
bit for long periods of time. Finally, we perform experi-
ments using a lattice network structure to show how this
model can be used to probabilistically study the evolution
of space objects and all the key variables involved, such
as the number of collisions, the fragments generated, the
collision rates evolution, and many others.

1. INTRODUCTION

The space industry is one of today’s most growing sec-
tors and, as a consequence, the number of resident space

objects is continuously rising, due to new investments
and launches from institutional and commercial partners.
This poses a threat to currently operating satellites, whose
lifetime might be jeopardized by the increased risk of col-
lision with other objects. It is therefore essential to de-
velop the necessary techniques to model, understand and
predict the current space environment and its future evo-
lution [1]. For this reason, the space community has de-
veloped a plethora of techniques and tools to model the
current environment and analyze possible evolution sce-
narios, accounting for sink and source mechanisms, such
as explosions, collisions, new launches, decay of satel-
lites, active removal, and de-orbiting [2]. Other studies
have also numerically studied the impact of the planned
launches of megaconstellations on the current space en-
vironment and their effect on its long-term stability [3].
The purpose of these studies and experiments is to gain
insights into the driving factors that regulate the space en-
vironment stability and to analyze control strategies for
avoiding a collisional domino effect and feedback run-
away mechanism that could hinder space activities and
access to space [4]. While most of these models offer a
probabilistic view of the space environment, they often
are computationally intensive and lack of versatility in
studying the relationships among resident space objects
under different orbital configurations. In this work, we
propose a temporal network model of the space environ-
ment, where nodes can assume two states: either opera-
tional or non-operational, and they represent specific or-
bital classes (e.g. orbital shells, keplerian elements sets,
etc.) and populations (e.g. rocket bodies, megaconstel-
lations, mission related objects, etc.). The model em-
bodies several source and sink phenomena (such as fu-
ture launches, collisions, explosions, natural decay) and
is able to evolve a given population of objects for long
periods of time while leaving to the user the possibility to
tweak and tune several hyperparameters that influence the
space environment evolution (e.g. number of launches,
post-mission disposal duration, collision avoidance ma-
neuvers rate of success, etc.). We show that depending
on how orbital classes are defined, the network displays
different topologies, whose features and interactions with
the underlying population stability and evolution can be
studied using graph theoretic tools. Then, we discuss
two types of network configurations and present how the
study of the stability of these networked systems can be
approached. Finally, we present several experiments per-



formed with a lattice network structure and show its key
features and usage.

2. BACKGROUND

More than 34,000 objects above 10 cm in size are known
to orbit Earth and around 1 million are estimated above 1
cm in size1. Although space debris mitigation guidelines
are increasingly adopted by space actors, these trends
are expected to worsen due to the growing interest in
space technologies both from the private and public sec-
tors. Previous studies have shown that the risk of col-
lision among objects in space has been growing in the
last decades and is expected to worsen in the near future
[5]. These trends and the risk of a domino effect of col-
lisions among objects can hinder future access to space.
In this regard, debris evolutionary models are pivotal to
improve our understanding of the space environment and
its evolution. The first orbital debris model dates back
to the 1970s when it was developed at NASA [6]. Since
then, several other models have been developed by pri-
vate partners and space agencies, such as EVOLVE 4.0
[7], LEGEND [8], DELTA [9], MEDEE [10], LUCA2
[11], IDEMN [12], etc. Usually, these models propagate
the current population of objects in time and compute all
the effects of sink and source mechanisms in such a pop-
ulation. These effects include possible collisions among
objects, possible explosions, orbital decay due to atmo-
spheric drag or other perturbative effects, future launches
of objects in space, adoption of post-mission disposal
strategies, adoption of collision avoidance strategies, and
active debris removal. Often, when a collision or explo-
sion event is simulated, NASA’s breakup model is used
to simulate the fragments number, area to mass ratio, and
change in velocity: this model employs an empirically
derived set of probability density functions to describe
the distributions of these variables after a disruption [13].
Most of the aforementioned models compute the collision
rates using algorithms that assess how long surrounding
objects stay in the proximity of each object and then de-
rive a collision rate from that. Some examples of these al-
gorithms are Orbit-Trace [14] and CUBE [15]. The cost
of the propagation of the entire population added to the
computational burden of these collision rates estimation
algorithms can make these models quite slow and less
versatile. Reference [16] proposed a different approach,
by computing collision rates through orbital debris flux
and by extracting the colliding masses using the geomet-
ric average of the orbital region of interest. While this
approach solves the computational complexity issues, it
averages the colliding masses, therefore failing to capture
all the possible collision configurations. To combine the
speed of the latter model with the accuracy of the former,
we build a simulator that employs a fully probabilistic
approach and that is versatile to different orbital config-
urations. In the next section, we will detail the overall
structure and features of the aforesaid model.

1https://www.esa.int/Safety_Security/Space_
Debris/Space_debris_by_the_numbers, April 2021.

3. TEMPORAL NETWORK MODEL

3.1. General Form

As already mentioned, the growing rate of launches and
tracked objects in space makes it cumbersome to main-
tain and develop a population dynamics model that keeps
track of every single object. For this reason, we focused
on a stochastic approach that treats each collision event
as a random event where the collision time, the colliding
masses, and the generated fragments number and charac-
teristics are treated in a probabilistic manner. This type
of model is able to capture the uncertainties in the prob-
lem and inform the user about the probability of certain
scenarios taking place in the future. This tool can be ex-
tremely important in assessing the environment evolution
and provides the user with a general model that governs
the population dynamics and stability. We formulate this
model as a time-varying network, where each node is a
population of a certain class, and each link represents
the relationship among nodes, which can be expressed
in terms of in/out-flow of mass or in terms of collision
probability among classes and populations. By assuming
that:

• each node represents a type of population of either
active on inactive objects in a given orbital class k;

• we use y to indicate the active objects in population
j and x to indicate the inactive objects in the same
population. Thus the active objects of population j
in class k are yjk and the inactive objects in the same
population of the same class are xjk;

• mass can flow from one class to another;

the general form of such a temporal network model is the
following:

dyjk =fyjk(xjk, yjk)dt+ gyjk(xjk, yjk)dB

dxjk =fxjk
(xjk, yjk)dt+ gxjk

(xjk, yjk)dB,
(1)

where B denotes a Wiener process and f and g are two
generic functions that describe the drift and diffusive
parts of the dynamics, respectively.

By expanding the non-diffusive form, we get:

dyjk =
[
INy

jk −
∑
l,m

yjk(1− sCAM )(C2τ2kjlmxlm+

+ C1τ1kjlmylm)−OUT yjkyjk
]
dt

dxjk =
[∑
l,m

[xjk(C4τ4kjlmylm + C3τ3kjlmxlm)+

+ yjk(1− sCAM )(C2τ2kjlmxlm+

+ C1τ1kjlmylm)] + INx
jk −OUT xjkxjk

]
dt,

(2)



where sCAM refers to the probability of successfully per-
forming collision avoidance maneuvers (i.e., sCAM = 1
if all collision avoidance maneuvers are performed suc-
cessfully), IN and OUT refer to the source and sink
terms, respectively, of the given j population of active
or non-active objects, at the kth orbital class. In particu-
lar, IN includes explosions, new launches, and inflow of
masses from neighboring classes; whereasOUT includes
outflow of masses towards neighboring classes or towards
Earth (in the case of re-entry). Furthermore, τ represents
a time-varying normalized collision rate among popula-
tion and classes, where τ1 refers to the collision rate be-
tween active objects, whereas τ2 between active and in-
active ones, τ3 between inactive ones and τ4 between in-
active and active ones. It is clear that each class and pop-
ulation can interact with any object of the neighboring
populations and classes, in terms of collisions. The signs
of the collision rates can be understood considering that
the number of inactive objects grows and the number of
active objects decreases as collisions increase. Further-
more, the exact definition of these terms is strictly related
to the topology of the network. Finally, the C coeffi-
cients are needed to account for the number of objects
produced in each collision. In the general case where
a temporal network with only populations of active and
inactive objects (i.e., j=1) is considered, where orbital
classes are grouped according to Keplerian elements val-
ues, we would have a fully connected graph structure, as
shown in Figure 1a. On the other hand, by dividing the
classes into orbital shells, one would get a lattice struc-
ture as shown in Figure 1b, where only the members of
the same class (i.e., orbital altitude range) can interact in
terms of collisions and mass can in and out-flow in be-
tween neighboring classes. In the following section, we
investigate the key features of this network.

3.2. Lattice Network

This type of network describes the case in which the or-
bital classes are orbital shells between 200 and 2,000 km,
assuming that objects in a shell can only collide with oth-
ers in the same shell. Such a model is widely studied
in literature and therefore provides a baseline to compare
our proposed method [16], [12]. In this case, the only col-
lision rates that survive from Equation (2) are only those
with k = l, since we assume that only elements of the
same orbital shell can collide. Moreover, assuming to
only consider active and inactive objects with no other
specific population, we would get:

dyk =
[
INyk − yk(1− sCAM )(τ5kkxk + τ6kkyk)

−OUTkyk
]
dt

dxk =
[
yk(1− sCAM )(τ5kkxk + τ6kkyk) + τ7kkxkxk

−OUTkxk + INxk

]
dt

(3)

where τ6kk is the collision rate among operational satel-
lites, τ7kk among inactive, and τ5kk between operational
and inactive. We can express these coefficients, using a
debris flux assumption, as [16]:

τ5kk =π(Rxk
+Ryk)2ρxk

ρykvrVbin,k

τ6kk =4πR2
yk
ρykvr

(ρykVbin,k − 1)

2

τ7kk =4πR2
xk
ρxk

vr
(ρxk

Vbin,k − 1)

2

(4)

where Rxk
and Ryk are the radii of the non-operational

and operational objects, whereas Vbin,k is the volume of
the kth orbital shell, ρxk

and ρyk are the spatial densities
of inactive and active objects in the considered shell, and
vr is the relative velocity among the two colliding objects
(which is assumed to be fixed at 10 km/s).

3.3. Network Model Simulation

In previous sections, the constitutive equations of the net-
work model have been introduced and it was shown how
they can be used to compute the number of inactive and
active objects in each class and population. Both the
number of active and inactive objects are to be consid-
ered two stochastic quantities whose value depends on an
underlying (time varying) process that defines the values
of the coefficients τ and the IN and OUT terms. This
model captures the underlying uncertainties in the global
dynamics of the space environment and thus results in a
probabilistic description of its evolution. For treating this,
the underlying stochastic processes are simulated at each
time-step to check for increase and decrease in each pop-
ulation and class due to sink and source phenomena (i.e.,
IN and OUT ), check for collisions among objects, up-
date the collision rates (i.e., τ ) and the number of active
and inactive objects per population and class, and repeat
these steps until the final simulation time is reached.

In short, this space debris evolutionary temporal network
model leverages probability distributions to capture the
underlying uncertainties in the evolution. The general de-
scription of the model is displayed in Figure 2. As it can
be seen, the model features the following steps:

1. the model inputs have to be provided: these in-
clude the current population file (where orbits and
physical characteristics of resident space objects are
provided) and the launch file that specifies launch
characteristics (for simulating future launches). Op-
tionally, megaconstellation details can be provided.
Also, the model allows to specify the operational
lifetime of active satellites before they become in-
active, and the post-mission disposal strategies to be
implemented afterwards (e.g. 25 years lifetime be-
fore burning up during re-entry);



(a) Fully connected network: dividing classes using orbital elements.
(b) Lattice network: dividing classes using orbital
shells.

Figure 1: Two types of network topology.

Figure 2: Space debris evolutionary model workflow

2. the time stamp is advanced, and new launches (i.e.,
INyk(ti)), end-of-life options (i.e., OUTyk(ti) →
INxk

(ti)) and natural decay (i.e., OUTxk
(ti)) are

checked and updated if needed;

3. collision rates are computed (i.e., τ1jklm, τ2jklm,

τ3jklm, τ4jklm). For instance, for the lattice network
case, Equation (4) is used;

4. Poisson distributions are used to establish if a col-
lision between objects has to happen. In a certain
time interval ∆t, whether a collision between class



k, population j and class l, population m happens is
determined by sampling a Poisson distribution. In
particular, the probability of having a collision at
each time interval ∆t can be written as:

Pr(collision) = τe−τ

where τ is the collision rate in the considered time
interval. This is computed for all the populations
and classes (e.g. τ1kjlm, τ2kjlm, τ3kjlm, τ4kjlm are
used as rates);

5. in case a collision check returns a positive answer,
categorical distributions are used to establish the tar-
get and chaser masses involved in the collision for
the considered population and orbital classes. The
colliding masses are then removed from the relevant
populations and classes;

6. NASA standard breakup model is then used to sim-
ulate the number of fragments generated (which will
be used to update the number of inactive objects in
the considered region), their area, mass, and their
change in velocity: this model leverages mixtures of
normal distributions to generate the area to mass ra-
tio of the produced fragments, which in turn are de-
pendant on the colliding masses. More details about
this model can be found in literature [13];

7. then, all the contributions of the sink and source
terms described above are used to assess the incre-
ment/decrement in the number of active and inactive
objects in each population and class (which means
that dykj and dxkj are computed). Finally, the num-
ber of inactive and active objects per class and pop-
ulation (i.e., ykj(ti+1) and xkj(ti+1)) and the popu-
lation density characteristics are updated. These lat-
ter include the densities of the considered orbital re-
gions used for computing the collision rates, as well
as the area and mass characteristics of each region
(useful for the collision rates computation, for the
selection of the colliding masses, and for comput-
ing the characteristics of the fragments if a collision
happens);

8. time is advanced and step 2 is repeated until the final
time has been reached.

As discussed, the model captures the underlying prob-
lem uncertainties by means of probability distributions, in
particular, Poisson, categorical and mixture distributions
are used for this purpose. This makes this evolutionary
model stochastic since every run of the model will output
a different result, and multiple simulations can be per-
formed to analyze possible future scenarios of the space
debris population. We discuss some experiments in Sec-
tion 4.

3.4. Stability Condition

The general study of the stability of a networked system
described by a set of stochastic differential equations can

be carried out using Lyapunov theory. By assuming the
generic network form expressed in Equation (1), the sta-
bility study involves the study of a Lyapunov function. In
particular, defining the following operator:

L =
∂

∂t
+

d∑
i=1

fi
∂

∂xi
+

1

2

d∑
i=1

[ggT ]ij
∂

∂xi∂xj
. (5)

If a positive-definite Lyapunov function V (x, t) exists
such that:

LV ≤ 0 ∀x, t ∈ [t0,∞), (6)

then the trivial (i.e., equilibrium) solution is stable.
Whereas if LV < 0, then the trivial solution is said
asymptotically stable. These stochastic stability concepts
are a direct generalization of Lyapunov’s direct method
for ordinary differential equations [17]. Moreover, more
general concepts exist in the context of the study of the
stability of stochastic differential equations, such as ex-
ponential stability and stability in probability [18]. The
study of the stability for random processes is far from
trivial, and the thorough analysis of these concepts goes
beyond the scope of this work.

For showing an application of the stability analysis, we
limit ourselves to Equation (2) and to the case in which
IN and OUT terms are constant. This resembles a
known structure studied in multigroup epidemic models
[19]. In this case, by grouping the multi-indexes jk into
one single index k, for ease of notation, we can define the
following Lyapunov function:

V (yk, xk) =
∑
k

(
yk − y∗k − y∗k log(

yk
y∗k

)

+ xk − x∗k − x∗k log(
xk
x∗k

)

)
,

where x∗k and y∗k refer to the equilibrium solutions of
Equation (2). Then:



LV =
∑
k

(
y∗kOUTk

[
2− yk

y∗k
− y∗k
yk

]
+
∑
j

[
τ2kj [y

∗
kx

∗
j −

y∗k
yk
y∗kx

∗
j + y∗kxj

− xjykx
∗
k

xk
−
y∗kx

∗
jxk

x∗k
+ y∗kx

∗
j ]

+ τ1kj [y
∗
ky

∗
j −

y∗k
yk
y∗ky

∗
j + y∗kyj

− ykyjx
∗
k

xk
−
y∗ky

∗
jxk

x∗k
+ y∗ky

∗
j ]

+ τ3kj [xkxj − x∗kxj − x∗jxk + x∗jx
∗
k]

+ τ4kj [xkyj − x∗kxj − x∗jxk + y∗jx
∗
k]

])
.

Redefining:

τ2kj =τ2kjx
∗
jy

∗
k

τ1kj =τ1kjy
∗
j y

∗
k

τ3kj =τ3kjx
∗
jx

∗
k

τ4kj =τ4kjy
∗
jx

∗
k.

We get:

LV =
∑
k

[
y∗kOUTk

[
2− yk

y∗k
− y∗k
yk

]
+
∑
j

(
τ2kj(2 +

xj
x∗j
− y∗k
yk
− xjykx

∗
k

xkx∗jy
∗
k

− xk
x∗k

)

+τ1kj(2 +
yj
y∗j
− y∗k
yk
− ykyjx

∗
k

xky∗ky
∗
j

− xk
x∗k

)

+τ3kj(1−
xk
x∗k
− xj
xj∗

+
xkxj
x∗kx

∗
j

)

+τ4kj(1−
xk
x∗k
− yj
y∗j

+
xkyj
x∗ky

∗
j

)

)]
.

(7)

Due to the fact that xk and yk are always positive and
−a ≤ −(1 + log(a)) (since a− 1− log a ≥ 0, if a > 0)
and applying logarithm’s properties, one can derive the
following stability condition:

LV ≤
∑
k

[
y∗kOUTk(2− yk

y∗k
− y∗k
yk

)

]
= −

∑
k OUTk

(yk − y∗k)2

yk
≤ 0 .

(8)

Therefore, with the above-mentioned assumptions, the
equilibrium solution is always stable, when it exists.

4. EXPERIMENTS

For the experiments, we use the current population (as
of January 2021) and 2010-2018 MASTER launch data
to simulate future launches. Moreover, we do not con-
sider megaconstellations and we study the lattice network
structure. Operational satellites are assumed to become
non-operational after 8 years from their launch, and to
be disposed with 100% success rate after 25 years they
have become non-operational. It is assumed that collision
avoidance maneuvers are executed with 100% success
rate on operational satellites (i.e., sCAM = 1), which
means that only collisions among inactive objects can
happen. For every simulation run, we keep track of all
the variables involved, including but not limited to the
number of operational and non-operational objects, their
characteristics, the number of collisions, the number of
generated fragments, etc. Furthermore, in these simula-
tions, only objects above 10 cm in size have been consid-
ered. The considered population spans from 200 to 2000
km, with each orbital shell, defined every 20 km. There-
fore, the lattice network comprises 90 orbital shells and
180 nodes, with a total of 360 links that describe collision
rates among nodes. In Figure 3, we show several key pa-
rameters monitored during 200 simulations for 150 years
each. As can be seen, we monitored the number of active
objects, inactive objects, and the collision rate (expressed
as the number of collisions per year) as a function of the
years. In green, we highlight the median value of the vari-
ables, while in red and black the lower and upper bounds,
respectively, and with the dashed line the standard devi-
ation. The number of active objects grows from 2907 to
15352 in 150 years, and its behavior is the same across all
the simulations, due to the fact that we assume that colli-
sion avoidance maneuvers are always performed success-
fully, and therefore collisions with active objects are not
possible. The collision rates are computed by summing,
at each time step, the collision rates of every orbital class.
Due to this, the model allows to investigate the growth of
every class collision rate, therefore informing the user on
which are the most critical nodes in the network. More-
over, we also inspected the total number of fragments and
collisions in each run and reported their histograms. On
average, after 150 years, the simulated space environment
scenarios end up reaching around 1.5 times the current
inactive objects population and three times their current
collision rate (which is currently around 0.347). These re-
sults appear in agreement with previous results [12], [5].
However, there are rare events, which show that the pop-
ulation of inactive objects can grow as much as 4 times its
current value and the collision rate can reach up to 80 col-
lisions per year, with more than 2000 collisions happen-
ing in the next 150 years. These very rare scenarios repre-
sent cases in which the collisions trigger a domino effect
that causes full development of a Kessler syndrome.



(a) Inactive objects count as a function of years.
(b) Overall collision rates expressed as number of collisions per
year.

(c) Total number of fragments histogram. (d) Total number of collisions histogram.

(e) Number of active objects as a function of time.

Figure 3: Key parameters monitored during the simulations.

5. CONCLUSIONS

In this work, a temporal network model that probabilis-
tically describes the space environment evolution over
long periods of time has been introduced. This model
demonstrated to retain the flexibility of previous stochas-
tic models while permitting more versatility and concep-
tual simplicity. Indeed, by changing the definition of
orbital classes and other network parameters, the user
can investigate different network topologies, which can
lead to the study of nontrivial relationships among orbital
classes. Moreover, this type of approach broadens the set
of tools that can be used for analyzing the space environ-
ment evolution, allowing the use of network theory tools
for investigating the structure, dynamics, and stability of
the network, and the presence of weak or strong links and

nodes that can play a fundamental role in the space debris
environment evolution. This analysis can be fundamen-
tal to understand the future evolution of collision risk in
space, for any given orbital region, and therefore to in-
form operators on the risk profile of a given mission dur-
ing its lifetime. Furthermore, such a model can also be
used as a framework to investigate different mitigation
strategies, such as post-mission disposal duration, colli-
sion avoidance success rate, and active debris removal,
needed for stabilizing the space environment over long
periods of time. In this work, we have presented a pre-
liminary treatment of this network model, applied to a
lattice structure in which orbital classes correspond to
orbital shells. We then discussed several experiments,
where we showcased the use of the network in investigat-
ing different possible future space environment scenarios.



In the future, we plan to study more topologies and to an-
alyze the role of different control strategies for stabilizing
the space environment evolution and reduce the risk of a
Kessler syndrome.
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