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ABSTRACT

As megaconstellations are launched and the space sec-
tor grows, space debris pollution is posing an increasing
threat to operational spacecraft. Low Earth orbit is a
junkyard of dead satellites, rocket bodies, shrapnels, and
other debris that travel at very high speed in an uncon-
trolled manner. Collisions at orbital speeds can generate
fragments and potentially trigger a cascade of more colli-
sions endangering the whole population, a scenario known
since the late 1970s as the Kessler syndrome. In this work
we present Kessler: an open-source Python package for
machine learning (ML) applied to collision avoidance.
Kessler provides functionalities to import and export con-
junction data messages (CDMs) in their standard format
and predict the evolution of conjunction events based on
explainable ML models. In Kessler we provide Bayesian
recurrent neural networks that can be trained with existing
collections of CDM data and then deployed in order to
predict the contents of future CDMs in a given conjunc-
tion event, conditioned on all CDMs received up to now,
with associated uncertainty estimates about all predictions.
Furthermore Kessler includes a novel generative model
of conjunction events and CDM sequences implemented
using probabilistic programming, simulating the CDM
generation process of the Combined Space Operations
Center (CSpOC). The model allows Bayesian inference
and also the generation of large datasets of realistic syn-
thetic CDMs that we believe will be pivotal to enable
further ML approaches given the sensitive nature and pub-
lic unavailability of real CDM data.

Keywords: spacecraft collision avoidance, space debris,
machine learning, probabilistic programming

1. INTRODUCTION

With the advent of the New Space era and the launch of
megaconstellations the population of human-made objects
in orbit is constantly growing, together with the risk of
collisions among objects. Currently, more than 30,000
objects are known to be orbiting the Earth, including a
small percentage of payloads of active missions, and a
vast population of rocket bodies, mission related objects,
debris, and inactive satellites. Several studies exist that
analyze the future growth of space objects and warn about
the associated increase in collision risks [30, 29, 38, 34].

In 1978, Donald J. Kessler and Burton Cour-Palais, sci-
entists at the NASA Johnson Space Center, conjectured
a theoretical scenario where a few collisions could pro-
duce orbiting fragments that would in turn increase the
probability of further collisions and potentially trigger
a chain reaction leading to the growth of a debris belt
around the Earth [22], a process that has been known as
the Kessler syndrome since the 1980s. As past collision
events demonstrated [4], a collision among satellites can
release thousands of debris pieces, which travel at ex-
tremely high velocities, therefore representing a big threat
for the neighboring population of resident space objects.

For these reasons, international institutions and space
agencies constantly release and update international guide-
lines for the mitigation of collision risk and the safeguard-
ing of the space environment [9]. Moreover, satellite
operators continuously monitor operational satellites and
perform collision avoidance actions (e.g., maneuvers) for
reducing the collision risk. The US Strategic Command
(USSTRATCOM) continuously tracks resident space ob-



jects via a global Space Surveillance Network (SSN) and
updates a public catalog of two-line element (TLE) data,
where each epoch some environment model parameters
are stored together with orbital element information from
which the current position and velocity of resident space
objects can be estimated.

Meanwhile, the Combined Space Operations Center
(CSpOC) propagates the SSN observations several days
into the future, and monitors possible collision events with
other objects in space. If a conjunction has been projected
according to some screening criteria, then a “Conjunction
Data Message” (CDM) [12] is released to the owner/op-
erator of the satellite. This message contains information
about the conjunction event at the predicted time of closest
approach (TCA), such as environment aspects used for
the orbit propagation, as well as the predicted states of the
screened pair of objects, and their associated uncertainties
(in the form of covariances). Furthermore, as more obser-
vations are processed by CSpOC, new CDMs are released
in the week leading up to TCA. Usually, operators are
provided with a time-series of CDMs that they use for
analyzing each conjunction event and for planning risk
mitigation strategies when needed [8, 33, 11].

The tasks of assessing the collision risk of a conjunction
event and devising an optimal strategy to mitigate collision
risk place a significant burden on space operators that
is expected to increase as more objects are launched in
space and the space sector grows [28]. Several ways of
tackling the space debris problem have been studied by
companies, space agencies and researchers in the last years
[25, 46, 31, 24]. Recently, the European Space Agency
(ESA) has started an international competition called the
Collision Avoidance Challenge1 to study the possibility of
helping human operators through machine learning (ML)
based approaches that can model and predict conjunction
events, therefore alleviating the burden on operators [42].
During the competition, a dataset of thousands of CDMs
collected by ESA from 2015 to 2019 has been released,
which we call the Kelvins dataset [41]. Although this
represents the first public release of CDMs, the data were
partially anonymized, hiding the full state (position and
velocity) of the satellites, as well as any absolute time
information (e.g., TCA, CDM creation time) and other
information (e.g., objects’ identities).

We believe that ML approaches will be essential in im-
proving collision avoidance analyses and decision making
processes in the near future and enable scalable automated
systems that would greatly enhance the collision avoid-
ance process, with positive consequences for the safe-
guarding of the space environment. Following up on the
ESA studies, we develop Kessler (Figure 1) a ML library
for spacecraft collision avoidance, that we named in honor
of the NASA scientist Donald J. Kessler known for propos-
ing the Kessler syndrome. To deliver maximum benefit
to the space and ML communities, we release Kessler as
an open-source project that we expect to keep improving

1https://kelvins.esa.int/
collision-avoidance-challenge/

Figure 1. Kessler is an open-source library released at
https://github.com/kesslerlib/kessler

following this initial release and to which we welcome
contributions from the wider community.

Kessler is an open-source Python package that currently
includes Bayesian ML and probabilistic programming
components. The library currently provides the following
key capabilities:

• Functionality to import and export CDM data, using
either the CDM standard format or databases that
can be connected to Kessler through an API based on
pandas2 DataFrame objects, and grouping CDMs
into Event objects representing conjunctions.

• Plotting code to visualize event evolution either in a
sequence of existing CDMs in a conjunction event, or
with future CDMs predicted by the ML modules, rep-
resenting event evolution predictions with associated
uncertainty information.

• A ML module that currently implements Bayesian re-
current neural networks, specifically based on a stack
of the long short-term memory (LSTM) architecture
[18] that we designed and evaluated to work well in
this setting [37], ready to train with the user’s own
collection of CDM data.

• A probabilistic programming module simulating
conjunction events and CDM generation processes,
which can be used for either performing event anal-
ysis using Bayesian inference or generation of syn-
thetic CDM datasets sampled from this probabilistic
generative model.

In the following, we will describe the package and its key
features. In particular, we will first discuss related work
and methodology on which the main Kessler tools are
based on. Then we will detail the software architecture,
show some of the package functionalities, and present our
conclusions and recommendations for future work.

2https://pandas.pydata.org/

https://kelvins.esa.int/collision-avoidance-challenge/
https://kelvins.esa.int/collision-avoidance-challenge/
https://github.com/kesslerlib/kessler
https://pandas.pydata.org/


2. RELATED WORK

2.1. Spacecraft collision avoidance

As previously discussed, operators regularly receive CDM
updates describing target and chaser objects in a conjunc-
tion event and their associated uncertainties, in the week
leading up to TCA. Optionally, the data is augmented with
other sources (e.g., other radar measurements, telemetry).
Given this collection of information, operators usually
perform two steps. First, in case more data are available,
they combine the information and assess the state of the
two objects and their uncertainties at TCA, for which
several techniques exist and are used. These range from
linear/linearised methods such as Kalman filters [43], to
semi-analytic techniques such as differential algebra with
Gaussian mixture models, and polynomial chaos expan-
sion [39, 20, 45, 2], or sampling-based techniques such as
Monte Carlo [13]. Second, they process the CDM informa-
tion and their own analysis (if relevant) to obtain collision
risk estimates for the studied conjunction event. Usually
the more the time approaches TCA, the more CDMs con-
tain precise (i.e., less uncertain) information. Therefore,
in a typical scenario, the operators continuously update
these risk estimates, until one or two days before TCA,
where they shall make a decision on whether to maneuver
the craft or not in order to avoid a collision.

2.2. Bayesian machine learning

Although ML, mainly in the form of deep learning
[15, 27], has been extremely successful in providing state-
of-the-art results in many complex applications, it is well
known that the predictions of neural networks can be
over-confident even when the network produces a wrong
prediction [3, 26, 40]. This problem is one of the main
factors to consider in the application of neural networks to
safety-critical applications. To address this issue, ML re-
search has delivered several techniques to augment neural
networks with reliable uncertainty measures that should
clearly indicate when the model is confident in its pre-
dictions or not. Some of these techniques are ascribed to
the family of Bayesian deep learning models [47, 21, 7],
where the idea is to design models that can produce prob-
ability distributions as outputs (as opposed to single point
estimates), and to measure the uncertainty on a prediction
as a spread over such distributions (e.g., variance or en-
tropy). This can be achieved by replacing the weights of a
neural network with probability distributions over these
weights, learned via an inference procedure at training
time. Since applying inference is usually computation-
ally expensive, many approximate inference schemes have
been designed. One of the most popular approximate in-
ference schemes is Monte Carlo dropout, where the idea
is to apply dropout, originally proposed as a regularization
scheme for neural network training [17], both at training
and test time [14]. Dropout is a technique that randomly
switches off a proportion of the units of a neural network

by sampling a binary mask according to a Bernoulli dis-
tribution. It has been shown that, if applied at test time,
this technique can be considered a variational approximate
inference scheme. For this reason, the distribution pro-
duced by feeding the same input to the neural network
multiple times with dropout (i.e., resampling the mask that
switches off different units in each evaluation) can be used
to quantify the uncertainty of the trained neural network.

2.3. Probabilistic programming

Probabilistic programming [16, 44] is a paradigm for sta-
tistical modeling that enables automated Bayesian infer-
ence in probabilistic models implemented using general-
purpose programming languages. It is a technique that
can be classified under the larger field of simulation-based
inference [10]. Recently techniques have been developed
to enable the use of existing stochastic simulator code
bases as probabilistic programs so that Bayesian inference
in these simulators can be performed [5, 6], creating a
new connection between a very large collection of accu-
rate large-scale simulators in many application domains
and probabilistic inference techniques developed by the
ML community. The idea in probabilistic programming
is to leverage domain knowledge to design a simulator
(a model) that accurately reproduces the phenomenon of
interest. The simulator includes a collection of latent
random variables x, each of which is assumed to be dis-
tributed according to a prior distribution in a Bayesian
setting, jointly referred to as p(x), expressing the domain
knowledge. The joint prior distribution encodes the ex-
pert’s knowledge about the values that x can assume in
the given application and the belief about their probability
of occurrence before observing the data point on which
inference needs to be performed. In addition to the latent
variables x, the model includes observable random vari-
ables y. Given the priors p(x) and the generative model
that produces y from x, the simulator implicitly speci-
fies a joint distribution p(x,y) = p(x) p(y|x). Using an
observation model defined through the specification of
the likelihood p(y|x), families of inference algorithms
(e.g., Markov chain Monte Carlo, importance sampling,
variational inference) allow to automatically produce pos-
terior distributions p(x|y), which describe values of x
that could have generated the observed data y, therefore
explaining the observed data under the model specified by
the probabilistic program. Crucially, the joint generative
model p(x,y) can also be used to generate synthetic data
instances xi,yi ∼ p(x|y) sampled from the generative
model.

3. METHODOLOGY

3.1. Bayesian ML for spacecraft conjunctions

In previous work [37] we discuss that approaching the
spacecraft collision avoidance problem as discriminative
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Figure 2. Left: At training time the LSTM is optimized to reproduce the time-shifted CDM sequences in training data.
Right: At test time, given a sequence of CDMs for the current event, the trained LSTM is used to predict future CDMs that
characterise the event evolution.

binary-classification formulation in ML (i.e., high- vs low-
risk events) has various shortcomings (e.g., training data
class imbalance, scarce interpretability of the output). For
this reason, we focus our attention on the generative mod-
eling of the problem, in other words we would like to
deliver ML methods that describe the temporal evolution
of a sequence of CDMs given all previously observed
CDMs. More specifically, we train a special kind of recur-
rent neural network, a long short-term memory (LSTM)
network [18] to predict the features and time of arrival of
the next CDM given all previous CDMs in an evolving
conjunction event (Figure 2). This setup is analogous to
statistical language models in ML [32, 23] that predict
the probability of the next symbol (e.g., a character or a
whole word) in a given language, conditioned on all the
symbols seen up to a given point. In order to quantify
the uncertainty about the predicted values, we set up this
network as a Bayesian neural network and apply Monte
Carlo dropout at test time.

3.2. A generative probabilistic model for spacecraft
orbits, collisions, and CDM generation

As mentioned previously and discussed in previous work
[1], a pivotal component of the probabilistic programming
approach is the definition and construction of a stochastic
generative model. In this case, the purpose of the model is
not only to mimic conjunction events, but also to simulate
the CDM generation process. Once such a model is cal-
ibrated, it can then be used for either data generation or
inference purposes. Here we briefly detail the construction
of such a model and its key elements. The first essential
component of the model are the priors: these are probabil-
ity density functions describing the current resident space
objects characteristics (e.g., mass, area) and orbits (e.g., or-
bital elements). We constructed these distributions based
on real data collected from the public USSTRATCOM
catalog and ESA DISCOS database.3 By sampling from
these distributions, two objects (i.e., the target and the
chaser) are instantiated, and their initial two-line elements
(TLEs) are extracted [35]. Once this is done, the orbits of
the objects are propagated forward in time using an orbital
propagator to produce ground-truth orbit trajectories. We
used SGP4 propagator for preliminary experiments and de-
sign of the software, a fast low-precision propagator often

3https://discosweb.esoc.esa.int/

used for preliminary analysis of orbital trajectories in low
Earth orbit [19]. Having propagated the orbits, a check is
made if a conjunction warning is to be triggered. If that is
the case, we flag the event as a conjunction event and we
simulate the ground observation part, by generating radar
measurements, propagating them until TCA via Monte
Carlo propagation, and generating CDMs associated with
each observation. Both the timing of these observations
and the measurement errors have been calibrated on the
Kelvins dataset. In particular, the observation times have
been formulated as probability distributions and have been
calibrated to match Kelvins dataset distributions, whereas
measurement errors were calibrated by tuning their values
until the propagated covariance distributions at TCA were
matching the ones in the Kelvins dataset.

4. SOFTWARE ARCHITECTURE

Kessler is written in Python 3 and made available through
a GitHub repository.4 Kessler software architecture con-
sists of several components. The first one covers the im-
porting, exporting, plotting and analysis functionalities,
where CDMs can be loaded and analyzed both graphically
and statistically. Then, two other main functionalities
are present: a ML module where Bayesian LSTMs can be
trained using a dataset of existing CDMs and subsequently
used to make predictions of future CDMs in new conjunc-
tion events at test time; and a probabilistic programming
module that provides a generative model for conjunction
events and CDMs. In this section, we will briefly detail
these Kessler functionalities and discuss their usage.

4.1. CDM importing and exporting, analysis, and vi-
sualization

Kessler offers two main possibilities to load CDMs: ei-
ther from their original kvn format, or from a pandas
DataFrame object. Once loaded, CDMs are divided
into conjunction events automatically and their units ful-
fill the CDM standard format [12]. Then, the software
offers two main functionalities to plot the conjunction
events (i.e., time series of CDMs):

4https://github.com/kesslerlib/kessler

https://discosweb.esoc.esa.int/
https://github.com/kesslerlib/kessler
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Figure 3. An example of plot features() usage, for three events and with three different features plotted: relative
speed, miss distance and along-track component of relative velocity.
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Figure 4. An example of plot uncertainties() usage, for three events.

• plot features(): a function that takes as in-
put the features to be visualized of the conjunction
event(s) and plots them. An example for three events
is shown in Figure 3.

• plot uncertainties(): a function that plots
all the covariance matrix elements for the considered
events and for both the objects. An example of its
usage is shown in Figure 4.

Moreover, the CDM content can also be manually in-
spected and processed by accessing the relevant CDMs
from the event dataset object.

4.2. Machine learning module

As mentioned above, besides loading and plotting
functionalities, the library also offers a ML module,

where a Bayesian LSTM can be instantiated as an
LSTMPredictor object and trained on datasets of
CDMs. The ML implementations in Kessler are based
on PyTorch5 [36]. The learn function can be called
by passing the relevant neural network training hyper-
parameters (e.g., batch size, learning rate). Once the
model is learned from data, it can be used to predict
future CDMs in new, previously unseen, conjunction
events at test time. Kessler offers two different functions
for doing this: model.predict event step() and
model.predict event(). While the former only
predicts the next CDM, the latter predicts the entire CDM
sequence, using the neural network’s predicted CDM at
each time step as an input for future time steps (Fig-
ure 2). Due to the Bayesian nature of the implemented
stacked LSTM architecture, the network returns distribu-
tions rather than point predictions. In Figure 5, we show
an example of both functions’ usage.

5https://pytorch.org/

https://pytorch.org/


Figure 5. Top row: usage of model.predict event(), where the first CDM is used for predicting the whole event.
Bottom row: usage of model.predict event step(), where the next CDM is predicted from a time series of CDMs.

4.3. Probabilistic programming module

A key novelty of the Kessler package is its probabilistic
programming module, which uses PyProb6 [6], a universal
probabilistic-programming framework based on PyTorch.
This module can be used to generate synthetic conjunction
events by simply importing the Conjunction object
from Kessler, and by either sampling event realizations
from the prior model and filtering the forward samples for
only events that represent conjunctions or by generating
each conjunction individually. This can be done by using
two separate functions:

• prior = model.prior(N): this samples the
prior N times, therefore producing N ground truth
orbits of target and chaser pairs. These events can
then be filtered (using model.filter()) for only
those that are conjunction events and thus contain
associated synthetic CDMs. In Figure 6, we show
several plots related to some prior runs where we
show in orange the events that ended up in conjunc-
tions and in blue those that did not.

• model.get conjunction(): this automati-
cally samples the prior distributions until a conjunc-
tion event is found, and returns the conjunction event,
whose CDMs and features can then be analyzed, plot-
ted and/or predicted.

As already discussed, this generative model can be used in
PyProb probabilistic programming framework to perform
posterior inference over model latents using posterior
= model.posterior(N, observation), condi-
tioned on observed CDMs. For this, one has to choose
the inference engine (e.g., importance sampling, Markov
chain Monte Carlo) and the likelihood distributions that
describe the probability of the observed data conditioned
on the latents. In previous work [1], some experiments
with these techniques have been presented and discussed.

6https://github.com/pyprob/pyprob

5. CONCLUSIONS

In this work we introduced Kessler, a new open-source
project focused on delivering high-quality and tested ML
techniques to the space community for applications in
spacecraft collision avoidance. We would like to main-
tain and develop Kessler further as a state-of-the-art ML
library with contributions from the larger ML and space
communities. The community can leverage Kessler for
several different purposes, and here we finish by listing
some of its key use cases:

• Importing, analyzing, and visualizing CDM se-
quences;

• Training of ML models from private or public
datasets of real CDMs in order to deploy these mod-
els to perform predictions at test time with new con-
junction events with associated model uncertainties;

• Simulating conjunction events and generating real-
istic synthetic CDM datasets, which can be used as
training data to enable further ML approaches;

• Performing Bayesian inference and therefore helping
operators/users to determine key variables that lead
to conjunction events and make reliable predictions
(with associated uncertainties);

• Providing an open-source framework to host fu-
ture risk assessment approaches based on ML and
Bayesian inference.
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Figure 6. Several features of the sampled priors, including the distributions of the orbital elements of both target and
chaser and the orbit geometry and some key CDMs features of one of the sampled conjunction events. Conjunction events
are highlighted in orange and non-conjunction ones in blue.
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