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Abstract

In this study, information gap decision theory (IGDT) is reformed to formulate the uncer-
tain parameters of wind power, photovoltaic and load. Traditional IGDT presumes that
positive and negative deviations of uncertain parameters of the predicted value are equal,
and it would result in imprecise assessment of fluctuated intervals. This study proposes an
improved IGDT to overcome the inaccuracy of traditional IGDT by considering unsym-
metrical fluctuation levels of uncertainties. For the operation and control of active distribu-
tion network, the non-linear power flow constraints are included and linearised with a novel
method based on circumscribed polyhedron approximation, which guarantees the accuracy
of the solution results and takes less computing time. Additionally, from the mathemati-
cal point of view, the model established in this study is a multilevel optimisation problem,
and linear Karush–Kuhn–Tucker conditions are formulated to transform the multilevel
optimisation problem into a single-level optimisation problem. Finally, the economic via-
bility and model applicability are verified through the modified IEEE 33-node distribution
system.

1 INTRODUCTION

As different types of distributed generations (DGs) have been
integrated into the power network in recent years, the distribu-
tion network is changing gradually from a traditional passive
system to a modern active one on its operation and manage-
ment. Thus the concept of active distribution network (ADN)
has been put forward, and some practical research results have
been achieved [1]. Considering that the power output of DGs
and the demand of loads are difficult to predict accurately, and
the power exchange between ADN and the bulk power system
is bidirectional, the optimised operation of ADN is very chal-
lenging. Recently, it has been widely concerned how to take into
account the uncertainty of DGs and the demand of loads in the
research of optimal dispatching of ADN [2–4].
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Several approaches have been developed to improve ADN
operational adequacy with the consideration of uncertainty. The
probabilistic optimal power flow model can be presented to
cope with wind power integration [5, 6]. A chance constrained
framework is established in [7, 8] to address the security prob-
lem caused by the uncertainties of DGs. A grey-box model is
proposed in [9] to deal with the uncertainty of photovoltaic
(PV) power. In [10], the probabilistic locational marginal price
is employed to deal with the forecasting error of load. However,
the mentioned studies only consider either the uncertain power
output of DGs or the uncertain demand of load but neglect the
combined influence of these two aspects on the operation of
the distribution network. The uncertainties of multiple DGs and
load are considered in [11, 12] with robust and multi-scene opti-
misation methods. However, multi-scene optimisation method

952 wileyonlinelibrary.com/iet-rpg IET Renew. Power Gener. 2021;15:952–963.

https://orcid.org/0000-0001-9984-0461
https://orcid.org/0000-0001-5024-4968
mailto:mfudong@126.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-rpg


GE ET AL. 953

TABLE 1 Comparison between the existing and the proposed methods

No.

Source of

methods Object

Uncertainty

modelling

Demand for

uncertain

information

Positive and negative

deviations of

uncertain

information Solving method

1 [11] Uncertainty of wind Multi-scene Much Unsymmetrical Bucket

2 [12] Uncertainties of DGs and load Robust Much Unsymmetrical column-and-constraint
generation

3 [14] Uncertainty of wind Information gap
decision theory
(IGDT)

Less Symmetrical Mixed integer non-linear
programming

4 [16] Uncertainty of electricity
market price

IGDT Less Symmetrical Boundary value

5 [19] Uncertainty of reactive power
balance

Gauss-type and Z-type Much Unsymmetrical Intelligent algorithms

6 Proposed Uncertainties of distributed
generations and load

Improved IGDT Less Unsymmetrical Mixed integer linear
programming (MILP)/
Karush–Kuhn–Tucker

is dependent on the probability statistics data; in fact, it is dif-
ficult to obtain the accurate statistical data of DGs power and
load. Robust optimisation method is used to ensure the feasi-
bility of all possible scenarios, and thus leads to conservative
results.
To make decision with less information of uncertain param-

eters and guarantee the economy of system operation, the
information gap decision theory (IGDT) is developed in [13].
A non-probabilistic information gap model is used in [14] to
formulate the uncertainties in short-term scheduling of energy
hub system, which is independent of historical data and can
guarantee the net cost of energy hub scheduling lower than
expected. In [15], IGDT is proposed as a basic approach
for enhancing decision making under uncertainty, especially
when less information is available. However, the traditional
IGDT method assumes that positive and negative deviations
of uncertain parameters from the predicted value are equal,
which would result in the fluctuated intervals being assessed
inaccurately. Therefore, a more accurate model is needed to
overcome the disadvantage of traditional IGDT.
The boundary value method is used to solve the IGDT

model, which tests the feasibility of solutions in typical scenar-
ios and simplifies the calculation, but the method might cause
the solution to be too optimistic [16, 17]. In fact, the IGDT-
based model in this study is a multilevel optimisation prob-
lem. Karush–Kuhn–Tucker (KKT) conditions can be used as
an effective method to transform multilevel optimisation prob-
lem into an equivalent single-level optimisation problem [18].
However, solving the problem can become more difficult with
non-linear KKT conditions. So, the intention of this study is to
overcome this obstacle, and build efficient KKT conditions to
solve the optimal scheduling problem of ADN.
In ADN systems, various types of DGs are connected,

and corresponding non-linear constraints are included in the
model of optimal scheduling of ADN. In recent years, some
improved intelligent algorithms [19, 20] have been employed
to solve the mixed integer non-linear programming (MINLP)

model directly, but they still cannot always give a proper balance
between computational time and the accuracy of the solution
results. Second-order cone programming (SOCP) is a convex
programming method and can improve the solution efficiency
of non-linear model with high accuracy [21]. However, it
remains to be solved on how to transform SOCP into a mixed
integer linear programming (MILP).
In this context, an optimal scheduling model of ADN based

on an improved IGDT is established in this study and is
transformed into a MILP model with a new cone linearisa-
tionmethod based on circumscribed polyhedron approximation
(CPA), which reduces the solving difficulty of optimal schedul-
ing model of ADN. In addition, linear KKT conditions are
established to convert the multilevel optimisation problem into
an equivalent single-level optimisation problem. Finally, a modi-
fied IEEE 33-node power distributed system is used to validate
the performance of the proposed improved model and method
of solution.
The comparison between typical existing works and the

proposed approach is reported in Table 1. Compared with the
uncertainty modelling methods presented in [11, 12, 19], IGDT
does not rely on historical data, requires less uncertain infor-
mation, and ensures strong decision-making ability. Meanwhile,
different from the existing IGDT method, this study considers
that the fluctuation range of positive and negative deviations
between the uncertain parameters and the predicted values
are unsymmetrical, which makes the estimation of the fluctu-
ated intervals more accurate. Other features of the proposed
approach include transforming the ADN model into an easily
solved MILP model with CPA and linear KKT conditions.
The main contributions of this study are as follows:

1. An improved IGDT model is developed to obtain accu-
rate assessments of fluctuated intervals of uncertain param-
eters, and it takes into consideration the different amplitudes
of positive and negative deviations of uncertain parameters
from the predicted values. Correspondingly, a new objective
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function that can describe the relationship between the cost
and uncertain parameters is formulated in this study.

2. Complex non-linear constraints are included in the estab-
lished ADN model, such as the power flow constraints and
branch power limits, and converted into an MILPmodel by a
new cone linearisation method with CPA. The CPA method
not only reduces the difficulty of solving the model but also
improves the speed of calculation.

3. To evaluate the maximum and minimum cost of the sys-
tem simultaneously, two sets of KKT conditions are sub-
tly designed for the IGDT model, and the multilevel opti-
misation problem is converted into a single-level optimisa-
tion equivalent problem. In addition, the KKT conditions
are converted to mixed integer linear constraints, which is
beneficial to the improvement of computational efficiency.

2 AN IMPROVEDMODEL
CONSIDERING THE UNCERTAINTIES
OF WIND POWER, PV AND LOAD

2.1 Total day-ahead operation costs of ADN
systems

The total cost of the operation of ADN in the day-ahead
scheduling horizon can be expressed as

C =

T∑
t=1

⎧⎪⎨⎪⎩
Ng∑
g=1

CgtgPg
t
g +

Nd∑
d=1

(ad Pd
t
d

2
+ bd Pd

t
d
+ cd ) (1)

+

Nk∑
k=1

Ckt
k
Pkt

k
−

Ng∑
g=1

CstgPs
t
g

⎫⎪⎬⎪⎭�T (1)

Equation (1) reveals that the total cost contains the purchased
costs from the upper grid, generation cost of micro-turbine,
and the managed costs of the demand side, except for profits
of the power sold to the upper grid. The generation cost func-
tion adPd

t
d
2+bdPd

t
d+cd of micro-turbine can be linearised with

piecewise linearisation method [22].

2.2 Objective function based on the
improved IGDT

In the actual optimal scheduling problem, the power output of
wind turbine, PV and the demand of load are uncertain and the
forecasting information is limited; so in this study, it assumes
that only the predicted value can be obtained. To describe
the uncertainty, the traditional IGDT model presented in [14]
formulates equal positive and negative deviations of uncertain
parameters from the predicted value, which will result in an
imprecise assessment of fluctuated intervals. To overcome the
inaccuracy of traditional IGDT, an improved IGDT model is

proposed in this study with different fluctuation levels of uncer-
tainties, and the detailed formulations are as follows:

(1 − Zwa )Pwr
t
w ≤ Pwtw ≤ (1 + Zwb )Pwr

t
w (2)

(1 − Zva )Pvr
t
v ≤ Pvtv ≤ (1 + Zvb)Pvr

t
v (3)

(1 − Zla )Plr
t
l
≤ Pl t

l
≤ (1 + Zlb )Plr

t
l

(4)

Expressions (2)–(4) represent the active power output of
wind, PV and load fluctuate in a certain range of the predicted
value. Zwa, Zwb, Zva, and Zvb, Zla, Zlb are positive and nega-
tive deviations of uncertain parameters of wind, PV and load,
respectively, from the corresponding predicted values.
In order to make the maximum and minimum operation cost

of the system within the expected value, limits of generation
cost functions are built:

maxC ≤ Cch,Cch = (1 + 𝛿ch )Co (5)

minC ≤ Cco,Cco = (1 − 𝛿co)Co. (6)

Equations (5) and (6) indicate that the constraints of the max-
imum and minimum generation cost of and, respectively, and
they will not exceed the expectations.
As the system cost decreases with the increase of wind and

PV output and the reduction of load demand, a new multi-
objective function is established to satisfy Equations (5) and (6)
as follows:

maxZwa, maxZva, maxZlb max−Zwb max−Zvb max−Zla
(7)

Since the multi-objective functions are modelled as the maxi-
mum value of Expression (7), the economic scheduling scheme
of ADN realises immunity against the unfavourable deviations
of the uncertain parameters.

2.3 Constraints

The multi-objective functions in Expression (7) should be sub-
ject to the following constraints

Pt
i =

n∑
j∈Ωi

V t
i V

t
j (Gi j cos 𝜃

t
i j + Bi j sin 𝜃

t
i j ) (8)

Qt
i
=

n∑
j∈Ωi

V t
i
V t

j
(Gi j sin 𝜃

t
i j
− Bi j cos 𝜃

t
i j
) (9)

∑
g

(Pgtg − Pstg )=
∑
l

Pl t
l
−
∑
m1

Pdgtm1 −
∑
k

Pkt
k

(10)∑
g

(Qgtg − Qstg )=
∑
l

Ql t
l
−
∑
m1

Qdgtm1 −
∑
k

Qkt
k

(11)

Vi,min ≤V t
i ≤Vi,max (12)
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Pd gm1 ,min ≤ Pdgtm1 ≤ Pd gm1 ,max (13)

Qdgm1,min ≤ Qdgtm1 ≤ Qdgm1} ,max (14)

S ti j =

√
(Pt

i j
)
2
+ (Qt

i j
)
2
≤ Si j,max (15)

Pkt
k,min ≤ Pkt

k
≤ Pkt

k,max (16)

0 ≤ Pstg ≤ d1Ps
t
g,max (17)

0 ≤ Pgtg ≤ d2Pg
t
g,max (18)

d1 + d2 = 1. (19)

Expressions (8)–(11) are power flow constraints, where m1
is the indices of DGs (including micro-turbines, wind turbines,
and PV power stations); Equation (12) represents bus voltage
limits; Expressions (13) and (14) are power output constraints of
DGs; Equation (15) represents branch power limits; Expression
(16) is the interruptible loads limit; and Expressions (17)–(19)
represent the constraints of the exchange of power between the
feeder and the grid. If feeder sells electricity to the grid, d1 = 1,
d2 = 0; otherwise d1 = 0, d2 = 1.

In Models (8)–(19), complex non-linear constraints are
included, such as power flow constraints in Equations (8)
and (9) and branch power limits in Equation (15); and in
addition, binary variables are included in Expressions (17)–
(19). Therefore, the proposed improved model is an MINLP
model.

3 CONVERSION OF THE
NON-LINEAR FORMULATIONS FOR
THE PROPOSED IMPROVEDMODEL

As mentioned in Section 2.3, the proposed improved model is
an MINLP model and is difficult to solve directly. Thus, the
model is transformed into an MILP model, which is easy for
the optimisation of the ADN.

3.1 Linearisation of power flow constraints
and branch power limits

To transform power flow constraints in Equations (8) and (9)
to a linear function, ancillary variables Rt

i , R
t
j ,M

t
i j , Z

t
i j are intro-

duced as follows:

Rt
i =

(V t
i )

2√
2

(20)

Rt
j =

(V t
j )

2√
2

(21)

Mt
i j =V t

i V
t
j cos 𝜃

t
i j (22)

Zt
i j =V t

i V
t
j sin 𝜃

t
i j . (23)

The power flow constraints are converted into the following
functions:

Pt
i =

n∑
j∈Ωi

(Gi jM
t
i j + Bi jZ

t
i j ) (24)

Qt
i =

n∑
j∈Ωi

(Gi jZ
t
i j − Bi jM

t
i j ) (25)

(Mt
i j
)2 + (Zt
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)2 = 2Rt

i
Rt
j

(26)

Since Equation (26) is difficult to solve, it is converted
into

(Mt
i j )

2 + (Zt
i j )

2 +

(
Rt
i − Rt

j√
2

)2

=

(
Rt
i + Rt

j√
2

)2

(27)

And further, Equation (27) is relaxed into a second-order
cone.

(1 − 𝜌)
Rt
i
+ Rt

j√
2

≤

√√√√√(Mt
i j
)
2
+ (Zt

i j
)
2
+

(
Rt
i
− Rt

j√
2

)2

≤

Rt
i
+ Rt

j√
2

(28)

where the value of ρ is small and taken as 10−2.
It is observed that the cone constraints (15) and (28), cor-

responding to power flow constraints, can be expressed in the
form √

𝛽22 + 𝛽23 +⋯+ 𝛽2n ≤ 𝛽1 (29)

Together with the model in Section 2, the constructed model
is a mixed integer SOCP (MISOCP) model.
Such models are used to be solved by MISOCP approach

directly [21]. However, it is computationally time-consuming. In
order to improve the efficiency of calculation, a new cone lin-
earisation method based on CPA is proposed, which can trans-
form Expression (28) into linearisation formulas.
The proposed cone linearisation method in this study is as

follows.
For the cone constraints with three variables in the form√

𝛽22 + 𝛽23 ≤ 𝛽1, (30)

it can be represented as a circular cone and can be
obtained by rotating the curve in Equation (31) around the
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FIGURE 1 The schematic of circumscribed polyhedron approximation
(CPA) method in three-dimension coordinate

β1-axis. {
𝛽1 − 𝛽2 = 0
𝛽3 = 0

(31)

To linearise the cone, a generatrix in Equation (31) is taken
from the circular cone. The direction vector is (1, 1, 0), and
according to [23], the tangent plane equation of the generatrix
is β1−β2 = 0. Therefore, the half-space including the cone is
β1-β2 ≥ 0.
If the generatrix in Equation (31) rotates anticlockwise

around the β1-axis with angle θ, the direction vector can be
obtained as (1, cosθ, sinθ). The corresponding generatrix is
expressed as

𝛽1
1
=

𝛽2
cos 𝜃

=
𝛽3
sin 𝜃

(32)

Accordingly, the tangent plane equation can be formulated as

𝛽1 − 𝛽2 cos 𝜃 − 𝛽3 sin 𝜃 = 0 (33)

And the half-space including the cone is

𝛽1 − 𝛽2 cos 𝜃 − 𝛽3 sin 𝜃 ≥ 0 (34)

It can be found that when rotating with the angle

𝜃k =
2k𝜋
q

, k= 1, 2,… ,q (35)

where q is the total rotating times, the original second-order
cone can be approximately represented by the polyhedron that
is enclosed with tangent planes as shown in Figure 1 and refers
to CPA.
Therefore, the cone in Expression (30) can be substituted by

a circumscribed polyhedron with q surfaces as follows:

𝛽1 − 𝛽2 cos
2k𝜋
q

− 𝛽3 sin
2k𝜋
q

≥ 0, k = 1, 2,… ,q (36)

Similarly, for n-dimensional second-order cone in Expression
(29), the direction vector at any point can be derived as follows

(1, cos 𝜃1 cos 𝜃2⋯ cos 𝜃n−2,… , cos 𝜃1 cos 𝜃2⋯ cos 𝜃n−i

sin 𝜃n−i+1,… , sin 𝜃1), i = 3, 4,… n (37)

where θ1, θ2,…,θn-2 are the angles of counterclockwise rotating
around each coordinate axis.
Accordingly, the corresponding tangent hyperplane equation

passing can be formulated as Equation (38) with the half-space
of the cone in Expression (39).

𝛽1 − 𝛽2 cos 𝜃1 cos 𝜃2⋯ cos 𝜃n−2 − … − 𝛽i cos 𝜃1 cos 𝜃2

⋯ cos 𝜃n−i sin 𝜃n−i+1 − … − 𝛽n sin 𝜃1 = 0 (38)

𝛽1 − 𝛽2 cos 𝜃1 cos 𝜃2 ⋅ ⋅ ⋅ cos 𝜃n−2 − … − 𝛽i cos 𝜃1 cos 𝜃2

⋯ cos 𝜃n−i sin 𝜃n−i+1 − … − 𝛽n sin 𝜃1 ≥ 0 (39)

Thus, when the angles of counterclockwise rotating around
each coordinate axis are set to 2kjπ/qj, the original n-
dimensional second-order cone is linearised with

𝛽1 − 𝛽2 cos
2k1𝜋

q1
cos

2k2𝜋

q2
⋯ cos

2kn−2𝜋

qn−2
− …

−𝛽i cos
2k1𝜋

q1
cos

2k2𝜋

q2
⋯ cos

2kn−i𝜋

qn−i
sin

2kn−i+1𝜋

qn−i+1

−… − 𝛽n sin
2k1𝜋

q1
≥ 0, k j = 1, 2,… q j , j = 1, 2,… n − 2

(40)

The preceding derivation process shows that the cone in
Equation (15) and Expression (28) related to power flow con-
straint can be approximated by the CPA method, and taking the
right part of Expression (28) as an example, it can be substituted
by the following linear constraints:

Rt
i + Rt

j√
2

−Mt
i j cos

2k1𝜋
q1

cos
2k2𝜋
q2

− Zt
i j cos

2k1𝜋
q1

sin
2k2𝜋
q2

−
Rt
i − Rt

j√
2

sin
2k1𝜋
q1

≥ 0 (41)

where q1 = q2 = 6 in this study, and k1 = k2 = 1,2,3,4,5,6.
The left part of Expression (28) and branch power limits of

Expression (15) can also be conversed similarly. Due to space
limitation, details of conversion are not included here.

3.2 The solving of multilevel optimisation
problem with KKT conditions

For the convenience of description, the proposed improved
model is converted to the form shown in Figure 2.
In Figure 2, y represents the vector of Zwa, Zwb, Zva, Zvb, Zla,

Zlb; y* represents the vector of optimum value of y; x1 and x2
represent the vector of the other variables corresponding to the
maximise and minimise operating cost of and, respectively; and
x1

* and x2
* represent the optimal solution of x1 and x2; max f(y)

is the objective function in Expression (7). And g1(x1
*,y) ≤ 0

and g1(x2
*,y)≤ 0 represent constraints in Expressions (2) to (4);

g(x1) ≤ 0 and g(x2) ≤ 0 represent inequality constraints from
Expressions (12) to (18), and (41); and constraint h(x1) = 0 and
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FIGURE 2 The description of the proposed improved model

h(x2) = 0 are equality constraint of Expressions (1), (10), (11),
(19), (24) and (25).
In previous studies, the boundary value method [16] has been

used to solve the multilevel optimisation problem. However,
this method has only been tested with some typical scenarios
and cannot reliably guarantee the feasibility of the solution. The
KKT condition is an effective method for multilevel optimi-
sation problems, which can simplify the original problem and
realise equivalent transformation. And thus, two sets of KKT
conditions are subtly constructed for IGDTmodel in this study,
and the maximum and minimum costs of the system are evalu-
ated.

1. In order to obtain the maximum operating cost of ADN, the
Lagrangian function is formulated as

C1 = L (x1, 𝜆1,𝜇1 ) = C (x1 ) −
∑

𝜆1g (x1 ) −
∑

𝜇1h (x1 )
(42)

The KKT conditions for the maximum operating cost of
ADN are:

𝜕L (x1, 𝜆1,𝜇1 )

𝜕x1
=
𝜕C (x1 )

𝜕x1
− 𝜆1

∑ 𝜕g (x1 )

𝜕x1
− 𝜇1

∑ 𝜕h (x1 )

𝜕x1

= 0 (43)

g(x1 ) ≤ 0 (44)

h(x1 ) = 0 (45)

𝜆1g (x1 ) = 0 (46)

˘1 ≥ 0. (47)

where μ1 is the vector of Lagrange multiplier for the equality
constraints; and λ1 is the vector of Lagrange multiplier for the
inequality constraints.

FIGURE 3 Network structure of modified IEEE 33-node distribution
system

Equation (46) is a non-linear quadratic constraint and
is a combination of Expressions (44) and (47); and when
λ1 > 0, g(x1) = 0; and when λ1 = 0, g(x1) ≤ 0. Conse-
quently, Equation (46) can be converted to the following linear
constraints

−𝜎𝜉 ≤ g(x1 ) ≤ 0 (48)

0 ≤ 𝜆1 ≤ 𝜎
(
1 − 𝜉

)
(49)

where σ is a large positive number, which can be set to 1010; ξ is
a binary variable; and when λ1 > 0, ξ = 0; else ξ = 1.

1. To calculate the minimum operating cost of ADN, the corre-
sponding Lagrangian function and KKT conditions can also
be constructed similarly and are not discussed in detail due
to space limitation.

In conclusion, the optimal scheduling problem of ADN
is formulated into a multi-objective MINLP model with the
improved IGDT. And then the non-linear power flow and
branch power limits are linearised by the proposed CPA. In
addition, linear KKT conditions are established to calculate the
maximum and minimum costs of the system. Finally, the pro-
posed model is transformed into a multi-objective MILP. The
normalised normal constraint method [24] is used to combine
the multi-objective function into a single-objective function for
optimisation.

4 CASE STUDIES

4.1 System parameters

The proposed improved model is solved with CPLEX solver
under general algebraic modelling system [25]. The modified
IEEE 33-node distribution system [26], shown in Figure 3, is
selected to verify the rationality of the proposed method. All
tests are carried out on a dual-processor Intel Core i5-6200U
with 2.30 GHz CPU and 8.0 GB of RAM.
In the modified IEEE 33-node system, four power sources

are added, including two microturbines, one wind turbine, and
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TABLE 2 The optimised results of day-ahead scheduling in active
distribution network system

Model

Total

cost/$

# of con-

straints

# of

variables Time/s

Mixed integer
second-order cone
programming [21]

9956.31 81,904 78,973 522.383

MILP with ε-relaxation
[30]

9965.76 97,731 92,227 12.454

MILP with
circumscribed
polyhedron
approximation

9959.89 85,914 81,267 8.778

one PV. The accessed points of two microturbines are node 24
and node 30, respectively, and the total installed capacity of the
two microturbines is 1 MW. The accessed point of the wind tur-
bine is node 27 and the total installed capacity is 1 MW. The
accessed point of the PV power station is node 7 whose total
installed capacity is 1 MW. Node 0 is set as the balanced node,
which is connected to the external power grid. Load nodes 24,
25, 32 are industrial load; load 7, 8, 14, 30, and 31 are commer-
cial load; and load nodes 4, 9, and 26 are selected as controllable
nodes. The total dispatch period of ADN is set to one day, and
the dispatch interval is 1 h. The predicted data of wind power,
PV and load are shown in Figure 4. The parameters of microtur-
bine is from [27]. The electricity purchase prices of ADN from
the main network using time-sharing electricity prices and the
compensated prices of interruptible load are referred from [28,
29]. The parameters Pdgm1,min, Qdgm1,min, Sij ,min and Pkt k,min are
set to zero. And the values of other parameters are provided in
Tables 5 and 6.

4.2 Day-ahead scheduling in ADN system
in the base scenario

To verify the performance of the proposed linearised method
(CPA), the original problem is formulated directly as the MIS-
COP model for comparison. In addition, as another commonly
utilised linearised method to approximate MISCOP, ε-relaxation
method is also included. The results are shown in Table 2.
It shows that the total cost of the MISOCP model is the

least, and it contains the least variables and constraints. How-
ever, many non-linear constraints are included in the MISOCP
model and result in a time-consuming computation. Thus, the
MISOCP model should be converted into an MILP model to
achieve higher calculation speed. It can be observed that the
total costs optimised by the three approaches are close, indi-
cating that the model can still maintain high accuracy after lin-
earisation transformation. Further, compared with ε-relaxation
method, the total number of constraints and variables of the
CPA are decreased by 12.09%, and 11.88%, respectively. The
computing time of the CPA method is reduced by 3.68 s as
well, corresponding to a remarkable improvement of efficiency

FIGURE 4 The predicted data of wind power, photovoltaic (PV) and load
(a) wind, (b) PV, (c) load

by 29.52%. This is because to establish MILP model, the four-
dimensional second-order cones constraints as in power flow
constraints in Expression (28) are traditionally converted into
two three-dimensional second-order cone and linearised by
ε-relaxation method with many auxiliary variables and con-
straints. For the CPA method, the four-dimensional second-
order cones can be linearised directly, which need much less
auxiliary variables and constraints. Thus, the CPAmethod in this
study has enhanced solution performance.
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FIGURE 5 Comparing the range of uncertainties based on Karush–Kuhn–Tucker (KKT) conditions and boundary value method (a) wind power, (b) PV power,
(c) load
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FIGURE 6 The power output of distributed generations, and the sold, purchased and interruptible electricity based on boundary value method and KKT (a)
boundary value method, (b) KKT

4.3 Case studies considering the
uncertainties

4.3.1 Comparing the optimal results based on
KKT conditions and boundary value method

The difference between the KKT method and boundary value
method [16] in solving multilevel optimisation problems is com-
pared. The fluctuated intervals of wind power, PV and load
obtained by KKT conditions and boundary value method are
drawn in Figure 5.
The timeslots of enlarged graphics in Figures 5(a)–(c) are all

from 1:00 to 4:00 P.M. The range of boundary value method
is represented between solid lines, while that of the KKT is
reflected between dotted lines. Compared with boundary value
method, KKT obtains a smaller range of uncertainties, and the
shadow parts in FigureS 5(a)–(c) represent the reduced range
of uncertainties. It can be seen that the fluctuated intervals of
uncertain parameters are assessed differently through KKT and

boundary value method. Then, the minimum and maximum
cost are calculated in the obtained intervals by the two meth-
ods, respectively. The minimum cost of the two methods are
both lower than the expected cost of $9760.69. However, the
maximum cost of the boundary value method is higher than
the expected cost of $10,159.09, and this verifies that the model
based on KKT has a better economic and feasibility. Also, KKT
can assess the fluctuated intervals of uncertain horizons more
accurately than the boundary value method.
In order to compare the scheduling schemes based on the two

methods, the power output of DGs, and the sold, purchased and
interruptible electricity are compared in Figure 6.
The enlarged graphics in Figures 6(a) and (b) compare

the interrupted loads calculated based on the boundary value
method and KKTmethod from 3:00–4:00 P.M. Figures 6(a) and
(b) show that both methods can satisfy power demand.
While scheduling schemes based on the two methods are

different since the fluctuation range of wind power, PV,
and load are assessed differently. Therefore, the traditional
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TABLE 3 The results of three methods

Method

Expected

cost/$ Time/s

# of

variables

10 scenarios
Multi-scene [11] 15
scenarios20 scenarios

9978.46 13.394 108,295

9971.31 15.898 117,977

9967.87 17.362 136,769

Robust optimisation [12] 9984.83 8.919 83,405

Improved IGDT 9959.89 8.811 83,341

boundary value method will result in a deviation of the schedul-
ing scheme.

4.3.2 Comparison of the results among robust
optimisation, stochastic optimisation and improved
IGDT methods

The Latin hypercube sampling technology with uniform dis-
tribution, which only considers the uncertainty of wind power
and assumes that the predicted wind power output follows the
Gaussian distribution, was used to sample 2000 random wind
power output scenarios; and 10, 15, and 20 scenarios are then
obtained via scenario reduction. Comparisons among multi-
scene optimisation [11], robust optimisation [12], and improved
IGDT method are implemented, and the results are listed in
Table 3.
Table 3 shows that the results calculated by multi-scene opti-

misation method are dependent on the number of scenarios.
As the number of scenario increases, the randomness of wind
power is described more accurately, but it causes more vari-
ables and calculation time. And robust scheduling model is to
minimise the worst-case cost, which will generate conservative
solutions and result in higher expected costs. Compared with
these two methods, improved IGDT takes the least computing
time and obtains the lowest expected cost of ADN. In addi-
tion, another advantage of the proposed improved model in this
study that it can assess the fluctuation range of wind power cor-
responding to the operating cost, which is of great significance
to the dispatchers.

4.3.3 Optimisation results of the ADN model

The uncertainties of wind power, PV and load are obtained by
solving the proposed improved model, and it is assumed that
δch = δco = δ. The results are shown in Table 4.
Table 4 shows that when the deviation factor increases and

in order to ensure the economy of system operation, the fluc-
tuation amplitudes of wind power, PV and load also increase.
When the deviation factor is set to 0.04, the uncertain values
are: Zwa = 2.36%, Zwb = 6.62%, Zva = 3.31%, Zvb = 3.18%,
Zla = 4.76%, and Zlb = 1.14%, respectively. This means, when
wind power, PV and load fluctuate within [0.9764, 1.0662],
[0.9669, 1.0318], and [0.9524, 1.0114] of the predicted value,
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FIGURE 7 The total operating cost of active distribution network under
different scenarios of the three models

respectively, the minimum total cost should be lower than
$9561.49, and the maximum total cost should be no more than
$10,358.29.
Similar conclusions are to be expected in the situation of

larger distribution networks. The uncertainty of wind power,
PV and load make it difficult to be modelled, and the pro-
posed improved IGDT has solved this modelling problem and
has been verified in the ADN system. It is essentially the same
difficulty to model wind power, PV and load in larger distribu-
tion systems for the uncertainties, and so the improved IGDT
proposed in this study also applicable to larger distribution
systems.

4.3.4 Comparison of the total cost between the
proposed improved and traditional IGDT model

In order to further verify the superiority of the proposed
improved model, three models are used to calculate the total
cost of day-ahead scheduling in the ADN system.

Model 1: Opportunistic model based on IGDT [14], which
tries to guarantee the minimum total cost lower than
expected;

Model 2: Robust model based on IGDT [15], which guar-
antee the maximum total cost lower than expected;

Model 3: The proposed improved model in this study,
which tries to guarantee the minimum and maximum
total cost lower than expected.

Thirty scenarios of wind power, PV and load are randomly
sampled from each uncertainty intervals estimated by three dif-
ferent models based on IGDT. These scenarios are substituted
one by one into the deterministic model of ADN, and the cal-
culated total operating costs are shown in Figure 7.
As highlighted in Figure 7, for model 1, it is difficult, under

most scenarios, to ensure the total cost of the operation of ADN
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TABLE 4 The results of the proposed improved model

δ Zwa/% Zwb/% Zva/% Zvb/% Zla/% Zlb/%

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 1.56 6.02 2.19 2.51 4.16 0.79

0.04 2.36 6.62 3.31 3.18 4.76 1.14

0.06 3.17 7.08 4.46 3.69 5.29 1.61

0.08 3.98 7.55 5.59 4.21 5.88 2.02

0.10 4.78 8.00 6.73 4.70 6.50 2.42

0.12 5.59 8.46 7.86 5.21 7.22 2.83

0.14 6.40 8.88 8.99 5.68 7.97 3.23

0.16 7.20 9.24 10.12 6.08 8.73 3.65

TABLE 5 The values of parameters

Parameter Vi ,min Vi ,max Pdgm1,max Qdgm1,max Sij ,max Pst g,max Pgt g,max

Value 9.5 kV 10.5 kV 300 kW 100 kVar 300 kVA 500 kW 500 kW

to be lower than the minimum expected cost of $9760.69. More-
over, the total cost of model 1 is high; and for models 3 and
2, the total cost of the operation of ADN under various sce-
narios can guarantee to be lower than the maximum expected
cost $10,159.09. However, model 3 has a greater possibility of
obtaining lower total cost. Consequently, model 3 can secure
better economical solution.

5 CONCLUSION

This study builds an optimal scheduling model of ADN based
on the proposed improved IGDT to comprehensively take into
account the uncertainties of wind power, PV and load. The orig-
inal non-linear model is transformed into an SOCP model and
then converted to a linear model with a new cone linearisation
method based on CPA, which ensures the accuracy and calcula-
tion speed of solving the model. The modified IEEE 33-node
distribution system is tested to validate the proposed improved
model and approach. The main features are summarised as fol-
lows.
Considering the uncertainties of wind power, PV and load,

a multi-objective optimal scheduling model of ADN is estab-
lished based on the improved IGDT. This model is success-
fully used to determine the fluctuation amplitudes of uncertain
parameters, and the relationship between the range of uncertain

parameters and the lowest acceptable target has been charac-
terised quantitatively so as to provide the decision-making basis
for scheduling operators.
The non-linear constraints such as the power flow con-

straints and branch power limits are transformed into an
MILP model with a new cone linearisation method based
on CPA. According to the intensive comparisons between
the ε-relaxation and the CPA methods, the latter shows a
significant advantage in the cone linearisation with fewer
requirements of auxiliary variables, distinct improvements on
the computational efficiency, and the guarantee of the operating
economy.
The proposed improved model is a multilevel optimisation

problem and not easy to be solved directly. In this study, KKT
conditions are constructed to equivalently convert the original
problem into a single-level optimisation problem and enable
simultaneous evaluation of maximum and minimum costs. It is
verified from the case studies that the model based on KKT is
more economic and feasible than that of traditional boundary
value method.
In the future work, considering that the energy storage would

be an indispensable configuration for wind and PV, various
influences of the energy storage on ADN should be inves-
tigated. In addition, the uncertainty of different demand-side
resources is to be deeply analysed in the optimal operation of
ADN.

TABLE 6 The values of of Pkt k,max

t/h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Pkt k ,max/kW 28 26 26 23 26 27 27 42 61 73 75 72 67 69 73 73 76 74 71 70 72 62 41 34
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NOMENCLATURE

Indices

i/j, l, w, v indices of nodes, loads, wind turbines, photovoltaics
(PVs)

m1 indices of DGs (including microturbines, wind tur-
bines, and PV power stations)

t, g, d, k indices of time intervals (in h), feeders, microtur-
bines interruptible loads

Parameters

ΔT length of each time interval (in 1 h)
Si j,max max apparent power on the line between

node i and j (in kVA)
Ωi a collection of nodes connected to node i
Bi j electrical susceptance between node i and j
Gi j electrical conductance between node i and j

Pd gm1 ,min min active power of the m1
th DG (in kW)

Pd gm1 ,max max active power of the m1
th DG (in kW)

Qdgm1,min min reactive power of the m1
th DG (in kVar)

Qdgm1,max max reactive power of the m1
th DG (in kVar)

Pkt
k,min, Pk

t
k,max min and max interrupted power of load k at

period t (in kW)
Pstg,max max electricity of feeder g sells to the grid at

period t (in kW)
Pgtg,max max electricity of feeder g purchases from the

grid at period t (in kW)
Vi,min,Vi,max min and max voltage of node i (in kV)

𝛿ch, 𝛿co robust and chance profit deviation
Pdd,min, Pdd,max min and max active power of the micro-

turbine d (in kW)
Qdd,min, Qdd,max min and max reactive power of the micro-

turbine d (in kVar)
Ckt

k
,Cgtg ,Cs

t
g compensated prices of responsive load k be

reduced, the purchased electricity and sold
electricity prices of feeder g at period t (in
$/kWh)

ad , bd , cd scheduling cost coefficient of microturbines
Pwrtw , Pvr

t
v , Plr

t
l

predicted power of wind turbine w, PV
power station v, and load l at period t (in kW)

Ng,Nd ,Nk, n number of feeders, microturbines, interrupt-
ible loads, and nodes

T time horizon of the problem (in 24 h)

Variables

S ti j apparent power on the line between node i and
j (in kVA)

Pgtg purchased electricity of feeder g at period t (in
kW)

Pstg electricity sold to the grid of feeder g at period
t (in kW)

Pd t
d

power output of the microturbine d (in kW)
Pdgtm1 power output of the m1

th DG (in kW)
Qdgtm1 reactive power output of them1

th DG (in kVar)

Pkt
k

interrupted electricity of load k at period t (in
kW)

Co optimisation total day-ahead cost o
C total day-ahead operation cost of scheduling

model (in $)
V t
i voltage of node i at period t (in kV)

V t
j voltage of node j at period t (in kV)
𝜃ti j impedance angle of the branch between node i

and j at period t
d1, d2 binary variables, the value is 0 or 1(if feeder

sells electricity to the grid, d1 = 1, d2 = 0; oth-
erwise d1 = 0, d2 = 1).

Cch,Cco higher and lower expected cost set by the
decision-maker (in $)

Pt
i , Q

t
i active and reactive power of node i at period t

(in kW), (in kVar)
Zwa, Zva, Zla negative deviation rate of wind, PV, and load,

and the value range are all in [0,1]
Zwb, Zvb, Zlb positive deviation rate of wind, PV, and load,

and the value range are all in [0,1]
Pwtw , Pv

t
v , Pl

t
l

power output of wind turbine w, PV power sta-
tion v, and load l at period t (in kW)

Qdt
d
, Qwtw , Qv

t
v reactive power output of micro-turbine d, wind

turbine w, and PV power station v at period t (in
kVar)
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